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Motivation 3. Model and neurophysiological interpretation

Whether the brain uses an optimization
scheme like backprop to guide synaptic
plasticity in deep hierarchical cortical areas is
still an open question.

Network structure and dynamics condensed in energy function (squared errors):
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Recently, several models explaining how l ,
backprop might be realized in the cortex have A: gating of forward and backward flow,  C: reconstr. error C = |lug — ugrgtH
inhibitory microcircuits®® as well as energy- How adjust deep synapses gt
based’* and Lagrangian neurodynamics>. . Neurosynaptic dynamics derived as gradient descent:
Here, we extend these models to unsupervised learning and bidirectional . o)) W — 0F P 0FE
(supervised and unsupervised) learning while maintaining a high degree of cmMi = ou; ’ i = Tlw ow; "’ i = g 0G;

biological plausibility.
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1. Predictive coding?

* Recently, several models demonstrated biologically
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= 5-compartment model with soma and
four dendritic branches.
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. ert architecture and add plausible approximations of backprop e
Sveve one = Ere ) [Ef * Here, we extend these to unsupe.rwsed learning in a folded and
00O approximately backprop autoencoder architecture. Decoding, encoding and errors are
--i © 6 S e e e e .aII propagated through the same neurons.
[ s JENIEIANIVECORW Ul ° Learning is implemented by dendritic prediction of somatic activity.
— the network is stationary Forward and backward weights optimize different quantities, even
| * high-level, no though formally the plasticity rules are identical.

implementation details

Also: check out my new publication on Bayesian inference in deterministic

. . .. spiking networks! :)
2. Dendritic microcircuit®

e apical compartments encode no noise, https:

prediction error
errors calculated via inhibitory microcircuit

* microcircuit weights trainable to cancel top-layer feedback,
no weight transport

neurons hold both forward and error information
* requires phases for learning

nudge to target behaviour
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3. Neuronal Least Action>

* neuronal dynamics derived from Euler-Lagrange equations +
prospective coding

SL=0& W=-n-VylL

withu =u — tu

du(tz) | o derived neurodynamics: leaky integrators with look-ahead
4 dynamics py(£) = 7i(®) + Tri(®)i () ~ @(ui(t + 1)) (A)
u
due to SW * no phases, time-continuous backprop (B)

W@}“ __— * same error interpretation as the dendritic microcircuit model
mowie | e see also: Poster T19 by Kungl, Akos F. et al.

Stochasticity from function — Why the Bayesian brain may need
' 10.1016/j.neunet.2019.08.002

learning is driven by the dendritic prediction of somatic activity.
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Both plasticity rules can be interpreted as
Urbanczik-Senn type’ rules:

For edge cases (A = 0 or A = 1), the plasticity approximates error backpropagation,
e.g.,
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One learning rule, two optimizations

Using the solution of stationary neurodynamics as well as choosing A < 1,4 >0
the plasticity rules can be rewritten as:
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reduce cost function via backprop, G 2
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Wi 1 ‘ Go representations through bottleneck,
visible @ @ @ @ @ Wu similar to autoencoders.
’ 5. Outlook
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latent input: decode through
backward weights to generate data.
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< happens )

simultaneously!

visible input: encoded in latent
space through forward weights.
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and refractory period of 3ms.
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Bidirectional learning by adding cost function
in latent layer = currently work in progress!

Spiking neuron models?
Initial results for classification of MNIST
images with stochastic binary neurons
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