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Abstract Neuromorphic computing aims to imitate the behaviour of

neurons and synapses of the brain to solve complex problems. In the Elec-

tronic Vision(s) group this task is done using electronic circuits. In this

thesis we try reconstructing the synaptic weight by analysing postsynaptic

potentials (PSPs) to work towards a synaptic weight calibration. To do this

we looked at di�erent approximations to describe the conductance based

(COBA) AdExp neurons used in the BrainscaleS-1 wafer scale system. The

AdExp model contains additional terms to the standard "Leaky Integrate

and Fire" (LIF) neuron model. We found that approximations only describe

the course of the PSPs for very small weights which means that we cannot

use them to calibrate for a wide range of weights. For this reason we used

numeric python modules to �t the not analytically solvable solution to the

COBA neurons. We used the �t to �nd neuron parameters best suitable to

measure the synaptic weights. To reconstruct an accurate weight we had

to compensate for nonlinear hardware behaviour and adjust our �t to work

even with noise on the �tted data. In conclusion a better understanding of

the synaptic weight was developed in this thesis which will help in future

experiments.
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Zusammenfassung Neuromorphes Computing nutzt Modelle um das

Verhalten von den Neuronen und Synapsen des Gehirns zu imitieren und

mit diesen komplexe Aufgaben zu bewältigen. In der Electronic Vision(s)

Gruppe werden hierfür elektronische Schaltkreise verwendet. In dieser Ar-

beit befassen wir uns mit der Bestimmung des synaptischen Gewichts durch

das Analysieren von Postsynaptischen Potentialen. Dadurch soll auf eine

Kalibrierung des synaptischen Gewichts hingearbeitet werden. Hierfür haben

wir uns mit Näherungen für die im BranscaleS-1 Wafersystem verwendeten

Konduktanz basierten AdExp Neuronen beschäftigt, die eine Weiterentwick-

lung des Standard "Leaky Integrate and Fire" Neuron Modells darstellen.

Dabei sind wir jedoch zu dem Schluss gekommen, dass das Fitten der nu-

merisch bestimmten Lösung die einzige Möglichkeit ist, um das Gewicht für

einen gröÿeren Parameter Bereich zu rekonstruieren. Mithilfe des Fits haben

wir Neuronparameter bestimmt mit denen die Rekonstruktion des Gewichts

am Besten funktionierte. Um ein genaues synaptisches Gewicht zu bestim-

men haben wir Wege gesucht, um nichtlineare E�ekte der Hardware zu kom-

pensieren und unsere Fit-Routine angepasst, um auch exakt mit rauschbe-

hafteten Messdaten arbeiten zu können. Insgesamt führt diese Arbeit zu

einem besseren Verständnis des synaptischen Gewichts, was in zukünftigen

Experimenten hilfreich sein wird.
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1 Introduction

As the performance increase of conventional computers built after the Von

Neumann principle is coming to an end with a decline in the in Moore's law

predicted performance increase [1], the search for new kinds of computers

becomes more and more important [2]. Inspired by the human brain, which is

very energy e�cient and able to excel at a wide range of tasks, neuromorphic

hardware presents itself as an interesting �eld of study. The neuromorphic

BrainscaleS-1 system from the Electronic Vision(s) group from the University

of Heidelberg utilizes electronic circuits to imitate the behaviour of biological

neurons and synapses [3].

1.1 Leaky Integrate and Fire Model Theory

The neurons used in the BrainscaleS-1 system are so called conductance based

AdExp neurons [3]. This model describes the behaviour of neurons by using

an analogy to electronic circuits to reduce the complexity of the biological

neurons. The states of the neuron (i.e. voltages of the neurons membrane)

follow the following di�erential equation.

−Cm
dV

dt
=g1(V − V1)− g1∆thexp(

V − Vth

∆th

)

+ ge(t)(V − Ee) + gi(t)(V − Ei) + w(t)

(1)

With g1 leak conductance, V1 resting potential, ge/i(t) total synaptic conduc-

tance, Ee/i synaptic reversal potential, ∆th slope factor, Vth threshold poten-

tial and w(t) adaptation factor. As we only look at non spiking behaviour

((V (t) < Vth)∀t) and set parameters scaling the adaptation current to zero

the AdExp model is identical to the "Leaky Integrate and Fire" model. We

will from now on call it the LIF model. The states of the neuron therefore

follow the following di�erential equation [4]:

Cm
dV

dt
= −gl(V − Vl)−

∑k

i=1
Isyn

i (t). (2)

As can be seen, the change over time of the membrane potential V depends

on the di�erence of the potential to a leak or resting potential Vl and the
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leakage conductance gl. The current �owing on the membrane is given by

the sum over all k synaptic connections which each contribute a current Isyn
i .

The form of this current depends on the used neuron model. For the current

based neuron model (CUBA) the current is given by:

Isyn(t) = w · exp
(
−t− t0

τsyn

)
·Θ(t− t0). (3)

The current changes after the arrival of a synaptic spike at time t0 and de-

cays exponentially with the synaptic time constant τsyn. The amplitude of

the current is linearly scaled with the synaptic weight w.

A model closer to biology and used in the BrainscaleS-1 system is the conduc-

tance based neuron model (COBA). Here the current �owing on the mem-

brane additionally depends on the di�erence of the membrane voltage to a

reversal potential.

Isyn(t) = w · exp
(
−t− t0

τsyn

)
·Θ(t− t0) · (V − Vi) (4)

The only di�erence between CUBA and COBA is the introduction of the dif-

ference of the membrane voltage V and the reversal potential Vi. The reversal

potential will from now on be called Esyn for synaptic reversal potential.

It is important to note, that the currents are estimated to change instanta-

neously after the arrival of a spike. Depending on the synapse model one

would introduce another exponential factor which describes the rise of the

current. However the rising time constant is very small for the synapse we

look at compared to the synaptic time constant τsyn and the membrane time

constant τm = cm
gl
and thus this factor can be neglected. As mentioned before

the �ring part of the neurons is also neglected here. The membrane voltage

would rise exponentially after reaching a threshold and then reset to a �xed

reset potential for a time τref . The neuron then emits a spike travelling to its

postsynaptic partners. Though this part is really important for computation

with neurons we will not look at this feature as we set the threshold voltage

over our excitatory reversal potential. Ideally we will then have no spiking

behaviour of the analysed neurons.

Though the conductance based model better describes the biological neuron
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behaviour it comes with di�erent problems. The di�erential equation for cur-

rent based neurons is easily solvable. For the conductance based di�erential

equation however an analytical solution is not possible.

1.2 Realization on Hardware

Figure 1: Synaptic input circuit of HICANN revision

4/4.1 to realize the course of the synaptic conduc-

tance seen in Eq. (2). The synaptic weight is here

introduced as the current Isyn that �ows on an inte-

grator and then scales the resistive element between

reversal potential and membrane. Figure from [5].

On hardware the scaling of the synaptic current is realized by controlling

a resistive element between the membrane and the reversal potential. The

circuit can be seen in Figure 1. This circuit looks identical for the excitatory

and the inhibitory input of the neurons. The only di�erence being a change

in the reversal potential (here Esyn, for inhibitory smaller than the resting

potential for excitatory higher than the resting potential) and a change in

the resistive element to realize a constant conductance independent of the

applied voltages.

After the arrival of a spike the current Isyn �ows on the integrator for a con-

stant time tsyn. The voltage of the integrator is then translated to a current

by OTA1. The current IOTA1 then linearly scales the conductance of the re-

sistive element. In the integrator we �nd another resistive element which is
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scaled by the voltage Vsyntc. This resistive element allows us to change the

synaptic time constant which describes the decay of the conductance after

the spike τsyn = Rsyntc ·C. Also a bias is applied to the OTA and the opera-

tion ampli�er in the integrator to improve the stability of the circuit. These

biases are created in the bias Generator scaled by two parameters Vsyn and

Vconvoff .

The linear scaling of the conductance with the synaptic weight happens in

the input current Isyn. Ideally the current is given by

Isyn = Vgmax · gscale ·
w

gdiv

. (5)

In Figure 2 we see how the scaling is done in hardware. The scaling describes

Figure 2: Scaling of the current Isyn of the synaptic

input circuit. The reference current vgmax is scaled

using di�erently sized current mirrors depending on

the input parameters gdiv and bit-weight w and the

for all HICANNs �xed scaling factor gscale. Figure

from [5].

the steps from the bias current scaled by Vgmax to the current Isyn. The w

here is a bit-weight which can take values of 0 to 15 by switching on and

of 4 transistors of di�erent sizes. The divisor gdiv works similarly and takes

values from 1 to 30 (realized with 8 transistors). Though the transistors

do not scale with potencies of 2 like for the bit weight (scaling factors of
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1+1+2+2+4+4+8+8). The factor gscale is �xed for all HICANN and only

dependent on the revision (4. for revision 4 and .4 for revision 4.1). The

factor gdiv is chosen for the complete row of synapses. Vgmax can be chosen

from one of four possible global parameters per quadrant of the chip. As we

only look at one HICANN with a external spike input the whole range of

parameters is available to us.

1.3 Task of Thesis

This thesis tries to connect the synaptic weight in the theoretical model with

the realization of the synaptic weight on hardware. It builds up on the work

in [5] and continues the work towards the recreation of the synaptic weight.

The hardware underlies variations between each neuron, synapse and even

each individual transistor. These variations come e.g. from di�erences in the

doping strength or variations in the size of each transistor. For this reason

the actual synaptic weight is di�erent between neurons for identical setup

parameters.

In this thesis we will show how to reconstruct the synaptic weight by analysing

postsynaptic potentials. This way a systematic comparison of hardware mea-

surements and simulation will be possible.
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2 Towards a Synaptic Weight Reconstruction

The approach to reconstruct the synaptic weight is to analyze the postsy-

naptic potential after the arrival of a spike. As seen in section 1 the voltage

course follows the di�erential equation from Eq. (2). As the synaptic weight

is a parameter in the di�erential equation we expect to be able to reconstruct

it from the height and shape of the PSP.

2.1 Impact of Neuron Parameters on the Postsynaptic

Potential

In order to get a better understanding of the solution of Eq. (2) we use the

simulation software NEST [6]. In the simulation we look at the membrane

voltage of a single neuron and are able to analyse the neuron behaviour

after the arrival of a spike. With NEST we are able to choose each neuron

parameter individually. We can therefore directly observe the impact of

changes in the parameters. We will study the e�ect of the parameters in

Eq. (2) i.e. membrane and synaptic time constants τm and τsyn, resting and

reversal potential Vrest and Esyn and the weight w and membrane capacity

Cm.

Apart from the shape of the PSP we will look at the height explicitly. The

height is easy to measure which is why a reconstruction of the synaptic

weight only involving the height and the neuron parameters would be very

e�cient. For this reason we also simulated the heights of the PSP while

changing neuron parameters. While iterating over weight and one chosen

neuron parameter the other parameters were �xed at Cm = 0.2µF, Vrest =

1000mV, Esyn = 1600mV, τm = 20ms and τsyn = 5ms. However for the

iteration over τsyn and τm both time constants were set to 20 ms for easier

comparison of the simulated curves to each other. The dimension of the

weight used in the simulation is µS.

We will begin with analysing the e�ect of the membrane and the synaptic

time constant.
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2.1.1 E�ect of Membrane and Synaptic Time Constant

(a) "blue": τm = 40ms and τsyn =

5ms,

"orange": τm = 20ms and τsyn = 5ms

(b) "blue": τm = 20ms and τsyn =

10ms,

"orange": τm = 40ms and τsyn = 10ms

(c) "blue": τm = 10ms and τsyn =

10ms,

"orange": τm = 10ms and τsyn = 20ms

Figure 3: Simulated PSPs with di�erent synaptic and membrane time con-

stants (time constants shown in subcaptions). Other neuron parameters are

�xed at Vrest = 1000mV, Esyn = 1600mV, w = 0.8µS and Cm = 1µF.

We see that a longer membrane time constant leads to a longer PSP (see

Figure 3). We also �nd that the height of the PSP depends on the neuron

parameters. The maximum in these examples can be seen in the "orange"
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curve in Figure 3b with τm = 40ms and τsyn = 10ms. This also makes sense

as these are the longest time constants in this example. The current �ow

seen in Eq. (4) decaying with τsyn charges the membrane over a longer time

and the large membrane time constant leads to a slower decay of the charged

capacitor. In the "orange" curve in Figure 3a and "blue" curve in Figure 3c

we have the smallest pair of time constants. For this reason the height of the

PSP is smaller.

We also observe that a longer synaptic time constant also increases the du-

ration of the PSP (see "orange" curve in Figure 3c). Though here the mem-

brane voltage decays quicker than with higher membrane time constant the

current �owing on the membrane happens for a longer time. This leads to

the longer PSP.

Another interesting result can be seen in the "blue" curve in Figure 3b and

"orange" curve inFigure 3c. Here the values of the two time constants were

switched. As the course of the PSP is di�erent between the two �gures we

know that the solution of Eq. (2) is not symmetric in the time constants.

(a) PSP height over τm with di�erent

weight

(b) PSP height over weight with di�er-

ent τm

Figure 4: E�ect of the neuron parameter τm on the height of the PSP in

simulation.

In Figure 4 and Figure 5 we see that the two time constants have a similar

but not identical e�ect on the PSP height. In Figure 5b we see that the
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(a) PSP height over τsyn with di�erent

weight

(b) PSP height over weight with di�er-

ent τsyn

Figure 5: E�ect of the neuron parameter τsyn on the height of the PSP in

simulation.

maximal membrane potential approaches higher values for lower weight than

in Figure 4b even though the time constants were altered in a identical way.

From these plots we again �nd that the time constants are not symmetrical

and cannot freely be exchanged.

2.1.2 E�ect of Resting and Reversal Potential

In Figure 6 we see the PSP with changed resting and reversal potential.

While changing the parameters the di�erence of the two potentials was kept

the same. With a change like this we do not see di�erences in the voltage

course but only a o�set. In Figure 8 and Figure 7 we �nd linear relations

between the simulated PSP height and the resting and reversal potential.

The only di�erence is the sign of the slope of the two relations. We also

see in Figure 8, that the height approaches zero when the resting potential

approaches the reversal potential. Because there is no voltage di�erence, no

additional current is �owing onto the membrane. For this reason a spike does

not lead to a measurable peak. We �nd the same e�ect in Figure 7. Here a

height of zero is measured when the reversal potential approaches the resting

potential. The explanation for this is identical.
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Figure 6: Simulated PSPs with di�erent resting and

reversal potential (potentials shown in legend). Other

neuron parameters are �xed at τm = 20ms, τsyn =

5ms, w = 0.8µS and Cm = 1µF.

(a) PSP height over Esyn with di�erent

weight

(b) PSP height over weight with di�er-

ent Esyn

Figure 7: E�ect of the neuron parameter Esyn on the height of the PSP in

simulation.
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(a) PSP height over Vrest with di�erent

weight

(b) PSP height over weight with di�er-

ent Vrest

Figure 8: E�ect of the neuron parameter Vrest on the height of the PSP in

simulation.

2.1.3 E�ect of Weight and Membrane Capacity

In Figure 9 we see that the membrane capacity and the synaptic weight have

the opposite impact on the PSP. We see the same PSP for the "blue" curve

in Figure 9a and "green" curve inFigure 9b as well as for the "orange" curve

in Figure 9a and "orange" curve in Figure 9b. The reason for this is that

the ratio of synaptic weight and capacity is the same for these simulations.

As we are not able to measure the membrane capacity of our neuron circuits

anyway this motivates us to conduct our reconstruction of the parameters

for the ratio of w
Cm

.
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(a) "blue": Cm = 1µF and w = 0.8µS,

"orange": Cm = 2µF and w = 0.8µS

(b) "blue": Cm = 4µF and w = 0.8µS,

"orange": Cm = 4µF and w = 1.6µS

"green": Cm = 4µF and w = 3.2µS

Figure 9: Simulated PSPs with di�erent synaptic weight and membrane

capacitance (weight and capacitance shown in subcaptions). These weights

and capacity were arbitrarily chosen. However the w
Cm

chosen is in the order

of values found in biology. Other neuron parameters are �xed at Vrest =

1000mV, Esyn = 1600mV, τm = 20ms and τsyn = 5ms.

(a) PSP height over Cm with di�erent

weight

(b) PSP height over weight with di�er-

ent Cm

Figure 10: E�ect of the neuron parameter Cm on the height of the PSP in

simulation.
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2.2 First Approach

In [5] the following equation was �tted on averaged PSPs recorded from mul-

tiple measurements with single spikes to calibrate parameters of the synaptic

input circuit.

V (t) ≈ Vrest + Θ(t0) · A · (exp
(
t0 − t
τm

)
− exp(

(
t0 − t
τsyn

)
) (6)

Here A is given by

A =
w · (Esyn − Vrest) · τg

Cm

. (7)

with τg given by:

τg = (
1

τsyn

− 1

τm

)−1 (8)

Using the height of the PSP (with τ = τsyn

τm
) as a parameter given by:

h = A · (τ
τ

1−τ − τ
1

1−τ ) (9)

start parameters were easier to be estimated.

This gives us a �rst estimation of the synaptic weight only depending on the

neuron parameters and the height of the PSP. This approximation only holds

for small peaks as we expect a saturation e�ect from the conductance based

model as the membrane voltage approaches the reversal potential. This e�ect

can be seen in Figure 11a. Without a point of failure the approximation

begins to deviate from the simulated PSP heights immediately. We see a

monotonic rise in the relative error (see Figure 11b). A reconstruction based

on this approximation would therefore only be accurate for very low weights.

Since we want to reconstruct for a wider range of weights di�erent approaches

will be necessary.

In Eq. (6) we also see that the two time constants τm and τsyn appear in a

symmetrical fashion, we however showed in Section 2.1 that this is not the

case for the actual voltage course. For small PSP with low weight where this

approximation is expected to hold the time constant could have a symmetric

e�ect, however this was not further investigated in this thesis.
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(a) height of simulated PSP versus the

weight used in simulation with approx-

imation given by Eq. (9)

(b) Relative di�erence of PSP height

from approximation and hardware

measurement given by 1− hsimulated
happrox

Figure 11: Comparison of the PSP height from approximation and hard-

ware measurement. Height approximation is qualitative description of qual-

ity of approximation. Neuron parameters used were Vrest = 900mV, Esyn =

1300mV, τm = 20ms and τsyn = 2ms.

2.3 Numeric Solution of COBA Di�erential Equation

As previously mentioned an analytical solution of Eq. (2) is not possible

however a lot of research is still done to �nd approximated solutions to the

di�erential equation. In [7] the equation was solved up to the point of con-

taining a gamma function. This equation accurately describes the voltage

course of a conductance based LIF neuron after a spike arrives at t=0. How-

ever the Gamma function still does not allow an analytical solution.

V (t) =exp(− t

τ l
m

+
τs

∆τ s
m

e−
t
τs ) ·

(
Ele

− τs
∆τs

m − Es(e
− τs

∆τm
s − exp[

t

τ l
m

− τs

∆τ s
m

e−
t
τs ])

− Γ[− τs

τ l
m

,
τs

∆τ s
m

e−
t
τs ,

τs

∆τ s
m

](
τs

∆τ s
m

)
τs
τ l
m
τs

τ l
m

(Es − El)
)

(10)

Here ∆τ s
m=̂ w

Cm
, τ l

m=̂τm and τs=̂τsyn. The Gamma function with three argu-

ments is the incomplete Gamma function de�ned by

Γ(a, x, y) =

∫ y

x

ta−1e−tdt (11)
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In [8] this equation was further approximated.

V (t) =VL + (V0 − VL)e
(−t−t0)( 1

τL
m

+ 1
τe
m(t0)

+ 1

τ i
m(t0)

)

+
Ve − VL

τ e
m(t0)

(
1

τL
m

+
1

τ e
m(t0)

+
1

τ i
m(t0)

− 1

τe

)−1

· [e−
t−t0
τe − e−(t−t0)( 1

τL
m

+ 1
τe
m(t0)

+ 1

τ i
m(t0)

)
]

(12)

The formalism is a little bit di�erent τ e
m(t0) is the time constant resulting

from the synaptic conductance and the membrane capacity. It is therefore

given by τ e
m(t0)=̂ w

Cm
. τe is the synaptic time constant τsyn and τL

m is the mem-

brane time constant τm. In Eq. (12) the exponential in the Gamma function

was approximated with the �rst order Taylor expansion. The accuracy of

the approximation therefore quickly decreases and the approximation only

describes the voltage course for times much smaller than the synaptic time

constant. In Figure 12 the approximated PSPs with identical neuron param-

eters and weight were plotted. We immediately see that the approximations

deviate from the simulation. We therefore will not be able to use any approx-

imation for our weight reconstruction and have to use the numeric solution

if we want to �t any measured or simulated data.
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Figure 12: Comparison of the mentioned approxi-

mations of the neuron behaviour. Chosen neuron

parameters were Vrest = 900mV, Esyn = 1300mV,

τm = 20ms, τsyn = 2ms and w = 0.14 µS
µF
. We see

that the approximation from [5] describes the course

better then the course from [8].

2.4 Fitting the Numeric Solution and First Hardware

Measurement

2.4.1 Fitting of Simulation Data

We use Eq. (10) to �t simulation data from NEST. We �nd that �tting

Eq. (10) using the python module mpmath to numerically solve the incom-

plete Gamma function takes a long time (order of seconds). This as a problem

as we want to measure the weight for a large number of neurons and a wide

range of parameters. Using numerical methods to solve the di�erential equa-

tion from Eq. (2) directly, proved to be faster. For this the odeint function

from the python module scipy [9] was used. We found that the �tted func-

tion describes the simulation data very well (χ2
red in the order of 1e-8, which

can be explained by numerical errors) and is able to reconstruct the used
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parameters for the simulation from the voltage course. When introducing

some arti�cial Gaussian noise we are still able to reconstruct the data (σ of

0.1mV). However with increasing noise the reconstructed weight and reversal

potential deviate from the used parameters for the simulation (see Figure 13,

Gaussian noise with σ of 1.0mV). This will be a problem when we later want

to reconstruct the weight from the measured PSPs as the measured PSPs

also contain noise (see Figure 15).

(a) Fitted parameters:

Vrest = 900.0mV, Esyn = 1401.0mV,

τm = 20.01ms, τsyn = 1.96ms and w =

0.111S/F

(b) Fitted parameters:

Vrest = 900mV, Esyn = 1278.4mV,

τm = 19.93ms, τsyn = 2.03s and w =

.147S/F

Figure 13: Fitted PSPs with some random gaussian noise and free reversal po-

tential (di�erent noise for di�erent plots). Setup parameters: Vrest = 900mV,

Esyn = 1300mV, τm = 20ms, τsyn = 2ms and w = 0.140S/F

With the noise the �t is not able to di�erentiate between a increasing weight

or a increasing reversal potential. As can be seen in Figure 13 the �tted re-

versal potential varies here from 1280mV to 1400mV. The weight varies from

0.111S/F to 0.147S/F. Higher variations are also possible depending on the

noise. We will therefore need to keep the reversal potential �xed to be able

to reconstruct the synaptic weight (done in Figure 14). As can be seen the

weight is reconstructed correctly with the �xed reversal potential. To get an

accurate weight however we will need to �nd other ways to �x the reversal

potential to its exact value for each neuron. For the �rst �tted measurements
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(a) Fitted parameters:

Vrest = 899.9mV, Esyn = 1300mV,

τm = 20.03ms, τsyn = 2.01ms and

w = 0.140S/F

(b) Fitted parameters:

Vrest = 900.1mV, Esyn = 1300mV,

τm = 19.92ms, τsyn = 2.01ms and

w = 0.139S/F

Figure 14: Fitted PSPs with some random Gaussian noise and �xed re-

versal potential (di�erent noise for di�erent plots). Setup parameters:

Vrest = 900mV, Esyn = 1300mV, τm = 20ms, τsyn = 2ms and w = 0.140S/F

we will just use the setup reversal potential parameter. This way variations

in the reversal potential between neurons appear as additional variations in

the weight.

2.4.2 First Measurement on Hardware

We now look into the �rst measurements on hardware. Here we varied neuron

parameters and compared these to the �tted parameters. The measurement

was conducted on wafer 33 HICANN 297. In the measurement routine mul-

tiple PSPs will be measured. A averaged PSP from these measurements will

then be returned for each neuron and step of the bit-weight. This way the

noise is reduced to the values seen in the plots (e.g. Figure 15). Otherwise

the membrane voltage underlies a noise with a spread of σmem ≈ 5mV.

In Figure 17, Figure 18 and Figure 21 we see corresponding �tted neuron pa-

rameter plotted at di�erently set 4-bit weights. The used neuron parameters

were Vrest = .8V, Esyn = 1.2V and gdiv = 30. Also two values for Vgmax were

18



Figure 15: Measurement of Neuron 1 on wafer 33

HICANN 297. The chosen parameters were Vrest =

900mV, Esyn = 1300mV, τm = 20e− 7s, τsyn =

2e− 7s, gdiv = 30, Vgmax = .9V and bit-weight 5. The

relative noise is comparable to the noise seen in Fig-

ure 13b. For this reason we will have problems when

�tting hardware measurements as the noise will im-

pact our �t as seen in simulation.

used, �rstly Vgmax was set at .9V and later the lowest weight of Vgmax = 0.0V

was used. In the plots if no Vgmax is mentioned it is set at .9V and if a low

Vgmax is mentioned it is set as 0.0V.

In Figure 17 we see that the �tted membrane time constant is approx-

imately constant for all bit weights except for the "green" measurement

with τsyn = 5e− 7s, τm = 40e− 7s and the "orange" measurement with

τsyn = 10e− 7s, τm = 20e− 7s. A �tted time constant varying over di�erent

weights indicates a deformation of the PSP (e.g. by saturation of the OTA

translating the integrated voltage to the bias current to the resistive element

between membrane and reversal potential, see Figure 16), another hint for

this is the increasing χ2
red in Figure 22. However we cannot be certain as we
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do not have access to the integrator voltage and therefore cannot observe this

e�ect directly. For the lower weights (Vgmax = 0.0V) we see no change in the

Figure 16: Voltage current characteristic of the OTA

with a voltage of .9V at the negative Pin. See a

roughly linear course for a small range (good accuracy

for V+ = .9± .1V) around .9V for the positive pin and

then a saturation. This could explain a deformation of

PSPs for higher weight (i.e. higher integrator voltage

to the OTA). Simulation done using cadence circuit

simulation.

�tted time constant as e.g. the OTA probably does not saturate. This e�ect

can also be observed in Figure 19 where we compare two neuron �ts with

a Vgmax = 0.0V and Vgmax = 0.9V. We also expect a higher synaptic time

constant to have a similar e�ect, as the voltage in the integrator does not

decay as fast, it is more likely for the OTA to saturate for higher synaptic

time constant. We also see quite a spread between measurements with the

same setup parameter and low weight ("red" and "purple"). One reason for

this could be trial to trial variations however for the lower bit weight the

"blue" and the "purple" curve are very close to each other, which could hint
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at an impact of the �t depending on the synaptic time constant. However

we did not investigate this further.

Figure 17: Median of �tted Membrane time in e-6s

constant at di�erent 4-bit weight for measurement

runs with di�erent neuron parameters, all 512 neurons

on HICANN used for median. Lower synaptic time-

constants and lower weight (low Vgmax = 0.0V) lead

to more weight independent membrane time constant.

Also lower membrane time constants (here 20e-7s) are

better realized on hardware.

In Figure 18 we see a similar but even stronger e�ect. We see that the �t-

ted synaptic time constants of measurements with Vgmax = .9V all seem to

increase with increasing weight. The size of the increase seems to depend

on the time constant itself (smallest synaptic time constant of 2e-7 has the

smallest deviation for the highest bit weight, contrary biggest time constant

of 10e-7 even starts to deviate for smaller bit-weights). The deformation by

e.g. OTA saturation therefore seems to impact the synaptic time constant

�t even more. However we also see that the spread between di�erent mea-

surements seems to be much smaller for low weight and same setup synaptic

time constant ("purple" and "pink") compared to the one in Figure 17. The

membrane time constant therefore seems to have a smaller impact on the

synaptic time constant �t than vice versa.
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Figure 18: Median of �tted synaptic time constant

at di�erent 4-bit weight for measurement runs with

di�erent neuron parameters, all 512 neurons on HI-

CANN used for median.

Next we look at our parameter of interest, the synaptic weight. We will

�rst look at the measurements with the Vgmax of .9V. As expected we see a

roughly linear increase in weight when increasing the 4-bit weight (see Fig-

ure 21). However we also see some nonlinear behaviour identical for all of

the di�erent measurement runs. This nonlinear increase was shown in [5] in

hardware simulation. There formula 5.5) (see Eq. (13)) describes a increase

of the synaptic weight depending on each bit individually.

Isyn(Vgmax, gdiv, w) = Vgmax · gscale ·
w

gdiv

+ i0 + i1w1 + i2w2 + i4w4 + i8w8 (13)

As the 4-bit weight activates di�erent transistors (see Figure 2), a parasytic

charging e�ect leads to the observed nonlinearity. Characteristically for a

e�ect depending on the individual bits are the observed dips at the bit weights

4, 8 and 12 which is when many of the transistors are switched on or o�.

We also see that the �tted weights di�er for di�erent measurement runs. This

e�ect seems to depend on the synaptic time constant. The higher the used

time constant the higher the �tted weight. Same time constants lead to nearly

identical �tted weights. Again we suspect a deformation of the PSP that

alters the �tted weight. To understand how the di�erent parameters impact

the quality of the �t we look at the χ2
red values of the �t. As we did not take
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(a) Fitted trace of Neuron 1 on wafer

33 HICANN 0. Chosen parameters

were Vrest = 800mV, Esyn = 1200mV,

τm = 20e− 7s, τsyn = 10e− 7s, gdiv =

30, Vgmax = 0.9V

(b) Fitted trace of Neuron 1 on wafer

33 HICANN 0. Chosen parameters

were Vrest = 800mV, Esyn = 1200mV,

τm = 20e− 7s, τsyn = 10e− 7s, gdiv =

30, Vgmax = 0.0V

Figure 19: Fitted Hardware traces of the measurement with τm = 20e− 7s

and τsyn = 10e− 7s. We see the e�ect, that the �t describes the measurement

less accurately for high weights in Figure 19a. This explains the change in

reconstructed parameters seen in Figure 17 and Figure 18.

any errors into account we are not able to draw any quantitative conclusions

from this graph. However we clearly see that the �ts with higher synaptic

time constant deviate from the measurement for lower weights ("orange"

reaches χ2
red = 4e− 5, "blue" reaches χ2

red = 4e− 6 and "green" reaches

χ2
red = 1.6e− 6). We also see that again the low weight Vgmax measurements

are better �tted by the used model (this leads us to believe that saturation

of the synaptic input circuit leads to deformation of the PSPs). We also see

that the lowest synaptic time constant of τsyn = 2e− 7s is best �tted for the

measurements with the higher weight. For this reason we will use this time

constant for following measurements.
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Figure 20: Simulated current Isyn in hardware simula-

tion with di�erent setup Vgmax and gdiv. Similar non

linear behaviour with changing bit weights was repro-

duced when �tting the PSPs from the measurement.

Figure from [5]

Figure 21: Median of �tted weight at di�erent 4-bit

weight for measurement runs with di�erent neuron pa-

rameters, all 512 neurons on HICANN used for me-

dian. Reproduced the nonlinear weight e�ect seen in

Figure 20.

24



Figure 22: χ2
red of the �ts at di�erent 4-bit weight for

measurement runs with di�erent neuron parameters.

The higher synaptic time constants seems to have a

big impact on the quality of the �t which hints at

saturation in the synaptic input circuit.

2.5 Improving the Fitting

As mentioned before we were not able to �t the reversal potential, as the �t

could not di�erentiate between an increasing weight and an increasing rever-

sal potential. We therefore want to identify the used reversal potential and

�x it at that value to make the measured weights comparable for di�erent

neurons. If the used reversal potential is not correct, the �ts quality will

decrease and we will also calculate weights which would be higher or lower

than they actually are.

In hardware simulation another e�ect was found which we will need to ac-

count for to get a working and accurate weight measurement. In Figure 23a

we see that the current voltage characteristic of the resistive element is not

linear. Instead we see a linear decline (as expected for a classical resistor)

and then a sharp decline as the potential of the membrane approaches the

setup reversal potential. The COBA LIF equation (Eq. (2)) contains a con-

ductance independent of the voltage di�erence. Our �tted function therefore

can only describe a PSP whose voltages are always in the linear regime of the

current voltage characteristic. We can do this by conducting our measure-
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ments further away from the reversal potential using a lower resting potential

and choosing our neuron parameters to get a smaller height of the PSP (e.g.

small synaptic and membrane time constants). However we still need to

adjust the reversal potential as the setup reversal potential is calibrated by

measuring the maximum voltage reached of the membrane. In Figure 23a

the calibration would lead to measured reversal potentials of 1.6V ("red"),

1.4V ("green") and 1.2V ("blue"). These voltages however do not describe

the e�ective reversal potential which is described by the continuation and

subsequent cutting of the linear range and the x-axis. This would be the

course of a classical resistor with voltage independent conductance.

(a) Course of the current voltage char-

acteristic of the resistive element be-

tween the membrane and the reversal

potential at �xed bias current for dif-

ferent reversal potentials. Done with

cadence circuit simulation.

(b) Additional Conductance depen-

dence added to Eq. (2). This way

we are able to reproduce the current

voltage characteristic seen in hardware

simulation. Done by adding a forth

power term to the conductance term

in Eq. (2).

Figure 23: Comparison of the current voltage characteristics of the hardware

simulation and an approximation in Python. This way we want to simulate

the e�ect the nonlinearity has on the measured PSPs.

The only observable we have access to is the membrane voltage. For this rea-

son we cannot reproduce Figure 23a on hardware. To look for the from now

on called e�ective reversal potential (i.e. value of potential that determines

26



the course of the PSP in case that the voltages do not enter a range were the

conductance behaves nonlinearly) we remind ourselves of Figure 8a. There

we saw that the height of the PSP approaches 0 as the resting potential ap-

proaches the reversal potential. As only the height of the PSPs is plotted we

are able to reproduce this plot on hardware.

To �rst look at what we expect we alter our di�erential equation Eq. (2)

by adding an additional factor to the conductance. This factor depends on

the di�erence of the membrane potential and the reversal potential. In our

custom simulation (see Figure 23b) we chose a forth power term to approx-

imate the behaviour seen in Figure 23a. This is just an approximation and

only qualitatively describes the hardware simulation. We are now able to

simulate the PSPs by solving our new di�erential equation. We chose an

e�ective reversal potential of 1.45 V and a reversal potential of 1.3 V. These

parameters were chosen this way as we used a reversal potential of 1.3 V for

our following measurements and found that the e�ective reversal potential

was in the range of 1.45V. The bend of the curve was chosen to start at .9

V, this was motivated by what we saw in Figure 23a.

In Figure 24 we see the simulated height of the solution to our altered dif-

ferential equation over the chosen resting potential. We see that the linear

approximation on the �rst simulated points crosses the x-axis at the e�ective

reversal potential. This was done by using the scipy odeint function which

we also use to �t the measurements. This motivates us to use a measurement

run like this to �nd the e�ective reversal potential of our neurons to better

�t the data and gather a weight independent of the resting potential.

Due to a power outage wafer 33 was not usable for this part of the experiment.

For this reason we switched to wafer 30 HICANN 0 for our measurement.

To gather the data we had to shut o� the connections to inhibitory synapses

by setting the bias current of the OTAs in the inhibitory synaptic input cir-

cuits to zero. Without setting the OTA bias to zero the resistive elements

between the membrane and the inhibitory reversal potential do not reach a

conductance of zero even when no synaptic input is present (inhibitory spikes

to the neuron). This leads to a leak current pulling the membrane potential

towards the reversal potential. The value of the potential in the case of no
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Figure 24: Expected course of the height of the PSP

over the used resting potential with the nonlinearity

of the resistive element added to Eq. (2). The lin-

ear continuation for lower Vrest cuts the x-axis at the

e�ective reversal potential.

synaptic input is therefore not only in�uenced by the setup leakage potential

but also the reversal potentials. This e�ect is stronger for higher potentials

as the current �owing from the membrane to the reversal potential increases

with the voltage di�erence. Since we do not need the inhibitory synaptic

input circuit for our measurement we are easily able to eliminate this error

by switching the inhibitory input o� completely which sets the conductance

of the inhibitory resistive element to zero. This way the inhibitory reversal

potential was not pulling the membrane (i.e. resting potential) to lower val-

ues (see Figure 25b). Without turning of the inhibitory input we are not

able to achieve resting potentials close to our reversal potential of 1.3V (see

Figure 25a).

We were able to replicate the expected results on hardware as can be seen

in Figure 26. We see a similar course of the height as we expected from

Figure 24. The small discrepancies from measurement and simulation are
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(a) Fitted resting potential versus

setup resting potential with inhibitory

synaptic input turned on

(b) Fitted resting potential versus

setup resting potential with inhibitory

synaptic input turned o�

Figure 25: Measured resting potential versus the setup resting potential with

the inhibitory synaptic input turned o� and on. Without disabling the in-

hibitory synaptic input the inhibitory reversal potential pulls the membrane

down, the membrane does not reach the desired value.

probably caused by our chosen nonlinear conductance model and di�erently

chosen start of bend and e�ective reversal potential. With this measurement

we are able to reconstruct the e�ective reversal potential by �tting on the

points where we did not see any bend in the measured height. To get a better

approximation we averaged over all the weight settings. This leads to the

following distribution of e�ective reversal potentials (see Figure 27). This

gives us an average e�ective reversal potential of E_rev∗ = (1.48 ± 0.16)V

(the star denotes the e�ective reversal potential contrary to the setup re-

versal potential). The e�ective reversal potential is therefore higher than

the setup reversal potential and the cross of our curves in Figure 26 with

the x-axis. This proves our expectations correct. To now test if our calcu-

lated e�ective reversal potential is the reversal potential a�ecting the mem-

brane we look at di�erent measurement runs with changing resting poten-

tial. In this measurement run we kept all other neuron parameters �xed

(Esyn = 1.3V, τsyn = 2e − 7s, τm = 20e− 7s, gdiv = 30, Vgmax = .9V). We

iterate over the resting potential from .4V to 1.3V. The measurements are
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Figure 26: Median PSP height over the used resting

potential in hardware measurements. Each dot indi-

cates a measurement run. The di�erent coloured lines

are di�erent chosen 4-bit weight. For some weights

the linear approximation to the �rst data points is

plotted. They cut the x-axis at the e�ective reversal

potential.

then �tted two di�erent ways. First we will �t the run with our �xed setup

reversal potential, afterwards we will �t with the calculated e�ective reversal

potential for each neuron. Simulation results can be seen in Figure 28. We

hope to �nd a from the resting potential independent weight for our calcu-

lated e�ective reversal potential (see Figure 28b) and an increase in the �tted

weight when using the setup reversal potential (see Figure 28a). The wig-

gles seen in Figure 28a are numerical errors, which arise from �nite stepsizes

when solving the di�erential equation. With di�erent simulation software

these could be reduced.

In Figure 29 we see the comparison of the two ways of �tting. Figure 29b

shows the �t with the calculated e�ective reversal potential. The weight

is approximately constant in the range of the resting potential where the
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Figure 27: Histogram of the e�ective reversal poten-

tials reconstructed by �tting Figure 26 for each neuron

individually. The e�ective reversal potential is higher

than the setup reversal potential as expected from the

python simulation.

conductance does not yet bend. Only for the higher resting potentials the

�tted weight deviates from this constant value as the �t does not describe

the data accurately due to the bend in the conductance. However we saw

the same e�ect in the simulation with the arti�cial bend in the conductance

(Figure 28b). In Figure 29a we see that the �tted weight is not constant

but instead monotonically rising. Again this was expected after looking at

the simulation in Figure 28a. We therefore seem to be able to eliminate the

e�ect of the bending conductance in the linear regime and should be able to

reconstruct the synaptic weight from our �t.
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(a) Fitted weight versus �tted resting

potential. Used setup reversal poten-

tial for the �t. Fitted on simulated

data with the above nonlinear conduc-

tance

(b) Fitted weight versus �tted resting

potential. Used e�ective reversal po-

tential for �t. Fitted on simulated data

with the above nonlinear conductance

Figure 28: Fitted weight of our custom simulation.

2.6 Results Improved Fitting

We now analyze the measurements conducted to �nd the e�ective reversal

potential, which we will �t again with the new �xed reversal potential. From

Figure 17 and Figure 18 we expect roughly constant time constants for the

di�erent weights, since we used the best parameters found of τm = 20e− 7s

and τsyn = 2e − 7s. Also we expect that the chosen resting potential has

no impact on the other �tted neuron parameters (we already saw that the

weight was independent of Vrest in Figure 29b). However we �nd that the

neuron parameters are not �tted as expected.

In Figure 30 we can see that the synaptic time constant varies for di�erent

weights. This was expected as the di�erent weights lead to di�erent satura-

tion of the OTA and di�erently deformed PSPs. However we also see that

the variation for di�erent weights varies depending on the used resting poten-

tial. For higher resting potentials we expect a variation, as the conductance

begins to bend as the membrane voltage approaches the reversal potential

and the di�erential equation no longer accurately describes the behaviour.
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(a) Median of �tted weight versus �t-

ted resting potential. Used setup re-

versal potential for the �t. Result

roughly follows the expectations from

Figure 28a.

(b) Median of �tted weight versus

�tted resting potential. Used e�ec-

tive reversal potential for �t. Result

roughly follows the expectations from

Figure 28b.

Figure 29: Comparison of the di�erent �ts. Figure 29b with calculated e�ec-

tive reversal potential, Figure 29a with setup reversal potential. The weight

is constant when the e�ective reversal potential is used otherwise the �tted

weight increases as the resting potential approaches the reversal potential.

Wiggles in the plot are the result from �nite step sizes in the numeric solution

of our expanded di�erential equation.

On the other hand the di�erent course for lower resting potential cannot be

explained this way.

In Figure 31 we also see a variation of the time constant with increasing

weight. This behaviour was not seen in Figure 17. However even more in-

teresting is the increase in the membrane time constant for lower resting

potential (i.e. larger di�erence of resting and reversal potential). Only for

resting potentials which approach the reversal potential the �tted synaptic

time constant approaches the setup time constant of τm = 20e−7s. It is also

interesting that this e�ect seems to be only slightly impacted by the chosen

weight. Even for a bit-weight of 0 ("blue" curve) the rise in the time con-

stant is signi�cant. This hints, that this is not an e�ect of the synaptic input

circuit but might be another non constant conductance e�ect of the resistive
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Figure 30: Fitted median synaptic time constant with

used e�ective reversal potential for Fit. Di�erent

curves represent di�erent bit weights. See constant

synaptic time constant for low weight ("blue") as ex-

pected. Spread of time constant at �xed resting po-

tential probably caused by saturation and correspond-

ing deformation of PSP. Weird behaviour for high rest-

ing potential can be explained by the small PSPs.

These lead to failing or inaccurate Fits as the PSP

starts to disappear in the noise of the measurement.

element which is used to set up the membrane time constant. Analysing the

circuit to understand this e�ect was out of the scope of this thesis.

When looking at the χ2
red values of the �ts we see that the �t function does

not describe the data as accurately for lower resting potentials (maximum of

χ2
red at Vrest = .7V) but then improves again for even lower resting potentials.

We also tested if the e�ective reversal potential impacted the �t and �tted

with the setup reversal potential as well (see Figure 33). We see that the

Fit of the membrane time constant is not impacted by the Fit with or with-

out the e�ective reversal potential. The Fit of the synaptic time constant
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Figure 31: Fitted median membrane time constant

with used e�ective reversal potential for Fit. Di�er-

ent curves represent di�erent bit weights. Find unex-

pected dependence of �tted membrane time constant

on the resting potential independent of the weight

(even low weight "blue" not constant). Also see

spread for di�erent weights though this was expected

due to saturation and deformation of the PSP.

appears slightly higher with the setup reversal potential compared to the

e�ective reversal potential. However we still do not get the expected results

of constant �tted time constants.

As this measurement disagrees with the previously done measurement (stronger

dependence on the weight for the time constants) seen in Figure 18 and Fig-

ure 17, we repeat the previous measurement again on wafer 33 HICANN

297.

2.6.1 Repeated Measurement on Wafer 33

As we need to measure with all the di�erent resting potentials anyway we

also redo the calculation of the e�ective reversal potential to see if we get
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Figure 32: χ2
red with used e�ective reversal poten-

tial for Fit. Di�erent curves represent di�erent bit

weights. Find an increase that does not just scale

with the resting potential (i.e. height of the PSP) so

it cannot just be caused by relative �tting errors. Un-

fortunately we do not have a sure explanation at this

point in time.

similar results (see Figure 34). We achieve similar results though the mean

e�ective reversal potential is lower than for the other HICANN on the other

wafer. We again �nd the same behaviour as before when �tting the weight

with and without the e�ective reversal potential. When looking at the �tted

time constants we also �nd the same behaviour as on wafer 30 HICANN 0.

We again �nd the same behaviour as before when �tting the weight with

and without the e�ective reversal potential (see Figure 36). The course of

the time constant therefore seems not to be the e�ect of faulty hardware but

instead is an actual physical property of the chip.

Since we were still not able to reproduce the results of Section 2.4 we look

again into the changes made between these measurements. Apart from

switching from the setup to the e�ective reversal potential (which did not
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(a) Comparison of the Fit of synaptic

time constant with the reversal poten-

tial �xed at the e�ective and setup re-

versal potential.

(b) Comparison of the Fit of mem-

brane time constant with the rever-

sal potential �xed at the e�ective and

setup reversal potential.

Figure 33: Comparison of Fits of time constants with bit-weight = 15, '-'

is the �t with e�ective reversal potential, '- -' is the �t with setup reversal

potential. Only small di�erence for Fit of synaptic time constant nearly no

di�erence for Fit of membrane time constant. Therefore our correction is not

the reason for the resting potential dependent membrane time constant.

seem to have an impact as seen in Figure 33) we changed the reversal po-

tential from 1.2V to 1.3V and turned o� the inhibitory synaptic input to

achieve a wider range of available Vrest. We will therefore switch the synaptic

input circuit back on and look whether we can achieve the old measured data

again.

The results can be seen in Figure 37, we �nd that we still have a dependence

of the �tted parameters on the resting potential. The dependence seems to

be shifted compared to Figure 36b. However at a resting potential of .9V we

�nd that the time constants are roughly independent of the used weight as

expected. This is also at the same di�erence of resting potential and reversal

potential as the one in the measurements in Section 2.4. As it seems we were

just lucky to choose parameters where the �tted parameters were constant

for the used weights and also were approximately in the range of the setup

parameters.
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(a) Height of the PSPs versus the rest-

ing potential. Used to calculate the ef-

fective reversal potential by �tting to

the linear course of the curve.

(b) Distribution of the �tted e�ective

reversal potentials for each individual

neuron. Reconstructed by �tting on

the linear course of Figure 34a.

Figure 34: Measurement to reconstruct the e�ective reversal potential on

wafer 33 HICANN 297. Done like before with wafer 30 HICANN 0. The

mean e�ective reversal potential seems to be lower for this HICANN. This

cannot be explained at this point in time since the same measurement method

was used.

We did not �nd a reason why the �ts are dependent on the resting potential,

as analysing the circuit is out of the scope of this thesis.
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Figure 35: Redone measurement of Figure 29 on wafer

33 HICANN 297. Median of �tted weight with used

e�ective resting potential. Find the same e�ect as

seen on wafer 30 HICANN 0. This proves that this is

a real hardware e�ect that has to be accounted for to

get a correctly estimated synaptic weight.

2.7 Comparison of Hardware With Nest Simulation

With our �t routine we are able to reconstruct neuron parameters, which

we can use in simulation to simulate PSPs. These PSPs are very close to

those measured on hardware. For this reason we believe that we understand

what our �t does. We hope that our �tted neuron parameters represent

the actual hardware parameters if we are in a regime where the synaptic

input does not saturate (low synaptic time constant and low weights), we

do not reach membrane potentials where we are in a regime of non constant

conductance of the resistive element (resting potential further away from the

reversal potential) and the membrane time constant does not deviate from

our setup membrane timeconstant. This leaves us with neuron parameters

of Vrest = .9V, Esyn = 1.3V, τm = 20e− 7s and τsyn = 2e− 7s. Also we

can not increase the weight inde�nitely to make sure that the OTA does not
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(a) Fitted median synaptic time con-

stant with used e�ective reversal po-

tential for Fit. Di�erent curves are

di�erent bit weights w ("brown" 15,

"blue" 0).

(b) Fitted median membrane time con-

stant with used e�ective reversal po-

tential for Fit. Di�erent curves are

di�erent bit weights w("brown" 15,

"blue" 0).

Figure 36: Redone measurement of Figure 31 and Figure 30 on wafer 33

HICANN 297. Find same courses of the �tted time constants. This also

proves that the seen e�ects are real hardware e�ects and not any faults on

the wafer. Outliers in Figure 36a for high resting potential happend due to

the small size of the PSP. The �t routine then has problems accurately �tting

the data as the PSP vanishes in the noise.

saturate.

As we want to demonstrate that we can translate the used synaptic weight

as a parameter of Vgmax, gdiv and the bit weight to the biological weight used

in simulation we have to rescale our measured quantities. The voltages on

hardware scale from 0V to 1.8V. this translates to -120mV to 60mV. The

translation is given by:

Ubio[mV] = (UHW[V]− 1.2V)/10 · 1000
mV

V
(14)

Also the hardware is sped up by a factor of 1e4 compared to biology. This

leads to the following translation:

tbio[ms] = tHW[s] · 104 · 103 ms

s
(15)
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Figure 37: Fitted median membrane time constant

with used e�ective reversal potential for Fit. Di�erent

curves are di�erent bit weights. Done on wafer 33 with

Iconvi turned back on. Same behaviour as without the

inhibitory synaptic input.

As we added an additional factor of 1e6 when �tting the data, this factor has

to be removed additionally.

Lastly we need to rescale the weight. As the dimension of the weight in our

case is a conductance per Farad (i.e. a reciprocal time). We also need to

rescale it like the time, though the inverse way.

wbio[S/F] = wHW[1/s] · 10−4 · 10−3 msS

F
(16)

Again the factor from the �tting of 1e6 needs to be removed �rst. However

here we need to multiply by this factor.

We now look at the rescaled PSPs and compare these to the simulated data

with the �tted parameters used as the neuron parameters for the simulation.

For this comparison we used the the measurement with weight independent

membrane time constants found in Figure 37. We therefore chose the mea-

surement with a resting potential of 0.9V from this run. In order to discuss
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the Fits we will �rst look at a histogram of the χ2
red values of the �t (See

Figure 38).

Figure 38: χ2
red of the �ts. Six outliers above 1e5 were

cut o� but will be discussed separately.

We will �rst look at the �ts with high χ2
red in Figure 39. We do not �nd any

identical reasons for the low quality of the the PSPs. Two PSPs Figure 46b

and Figure 46d show a wrong estimation of the resting potential. Reason for

this could lie in the �t routine. In order to �t the data we had to de�ne the

start of the rise of the PSP as �tting the time t0 of the arrival of the spike

proved to be too inaccurate and time intensive. When �tting the di�erential

equation the start condition was chosen to be the resting potential. A wrong

estimation of the start time could therefore lead to a wrong estimation of

the resting potential. For Figure 39a, Figure 39b and Figure 46c we also �nd

a high �tted synaptic time constant. However we cannot be certain if this

is the cause or the result of the low quality �t. One could work on better

�tting these PSPs by e.g. re�tting with di�erent start parameters or �xing

certain parameters. Intersting is also, that we �nd that in Figure 46b the

synaptic and membrane time constant seem to have switched values. Since

we know that the PSP is not symmetric under the two time constants this
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is probably caused by some deformation of the PSP which did not allow the

�t to distinguish the di�erence of the two time constants.

(a) Neuron 135 (b) Neuron 208

Figure 39: Rescaled Hardware PSPs with �ts producing high χ2
red with the

PSPs simulated using NEST with the �tted neuron parameters in table.

Neuron Parameters for Hardware measurement were Vrest = 900mV, Esyn =

1300mV, τm = 20e− 7s, τsyn = 2e− 7s, gdiv = 30, Vgmax = .9V and bit-

weight 15. The rest of the traces are shown in section 4

Neuron Vrest [mV] Esyn [mV] τm [ms] τsyn [ms] Cm [µF] w [µS]

135 -36.6 5.4 19.55 6.52 1 .30

208 -31.1 19.0 25.99 6.84 1 .17

281 -39.1 10.4 25.89 2.58 1 .21

284 -39.6 13.0 4.23 21.59 1 .18

389 -35.4 23.2 23.15 4.53 1 .16

396 -40.8 6.0 33.58 2.4 1 .21

We now look at the �rst six neurons on this HICANN seen in Figure 40. We

see that most of these seem to be �tted accurately. Only in Figure 40a and

Figure 47c a discrepancy is visible, however we again are not able to explain

this.

Lastly we look at a histogram of the height of the �tted PSPs (see Figure 41.

The PSPs with higher χ2
red are indicated. We can see, that a higher PSP
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(a) Neuron 0 (b) Neuron 1

Figure 40: Rescaled Hardware PSPs of �rst six neurons with the PSPs sim-

ulated using NEST with the �tted neuron parameters in table. Neuron Pa-

rameters for Hardware measurement were Vrest = 900mV, Esyn = 1300mV,

τm = 20e− 7s, τsyn = 2e− 7s, gdiv = 30, Vgmax = .9V and bit-weight 15. The

rest of the traces are shown in section 4.

Neuron Vrest [mV] Esyn [mV] τm [ms] τsyn [ms] Cm [µF] w [µS]

0 -35.3 18.6 21.87 2.72 1 .16

1 -32.1 6.4 21.29 2.4 1 .19

2 -33.5 17.3 13.61 2.47 1 .16

3 -27.5 4.6 17.13 2.73 1 .21

4 -24.2 10.5 25.46 2.99 1 .20

5 -28.99 10.0 20.04 2.81 1 .17

seems to be connected to a higher χ2
red. This can partly be explained be-

cause a relative error in the �t parameters leads to a higher absolute χ2
red.

However the χ2
red are much higher compared to the height of the PSP. This

can be seen in Figure 42. Here we plotted the χ2
red divided by the square of

the height. If the decreased accuracy happened just due to relative errors

of the �t parameters the course would be uniformly distributed. The found

e�ect of high PSPs being described less accurately by the �t is therefore

probably also due to saturation e�ects on the hardware.
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Figure 41: Histogram of the heights of the PSP, dif-

ferent colours indicate di�erent quality of the Fits.

Higher PSPs do not seem to be �tted as well (high

χ2
red).

2.8 Varying Of Weight Parameters

When calibrating parameters on the BrainscaleS-1 system many measure-

ments at varied setup parameters are conducted. By then analyzing the

membrane the desired parameter is reconstructed. This way the dependency

of the setup and measured parameter can be estimated. If the function is

known that describes this dependency the parameters in this function can be

�tted to �nd the corresponding setup parameter for each desired setting.

As the synaptic weight is a parameter described by three setup parameters

(gdiv, Vgmax and bit-weight w) we need to calibrate each parameter individu-

ally. This will make it more di�cult as the parameters in�uence eachother.

However we want to use the whole parameter range for our calibration.

We can see in Figure 43a that the synaptic weight depends on the parameter

gdiv even when we set Vgmax to zero. This was also found in [5] in hardware

simulations and was incorporated into the synaptic current Isyn by adding
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Figure 42: χ2
red divided by the square of the height to

show that reduction in �t quality is not only caused

by a relative scaling of the PSP. The cause for high

χ2
red is probably caused by saturation and a variation

from our �tted model.

additional correction terms. These were however not further explained.

Isyn(Vgmax, gdiv, w) = Vgmax·gscale
w

gdiv
γ

+
β1w + β2w

2

gdiv

+i0+i1w1+i2w2+i4w4+i8w8

(17)

We also see that the courses roughly appear to be reciprocal in gdiv with

a on the bit-weight depending o�set. We also see that the course of the

curves drastically changes for Figure 43a but does not for Figure 43b. This

way we can conclude, that the correction factor is much smaller then the

factor depending on vgmax, as the course for low bit-weight in Figure 43a

seems to disappear in the weight variations. In Figure 44 we again found

the expected nonlinear behaviour for varying bit-weight. This was already

explained in Section 2.4. However we do not see the nonlinear behaviour for

lower bit-weight. The reason for this is probably that the weight variations

are too small (in absolute values) to be recondtructed accurately. As the
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(a) Vgmax = 0.00V (b) Vgmax = 0.01V

Figure 43: Median �tted weight versus the used gdiv parameter. Di�erent

coloured curves are di�erent bit-weights (from the top: 15, 13, 10, 8). See

roughly the expected course. With a with gdiv decreasing �tted weight and

a bit-weight dependent o�set.

PSPs are very small (due to the Vgmax = 0.0V) the �t seems to struggle to

reconstruct this e�ect. For this reason we are not able to �t Eq. (17) to

the measurement to reconstruct the ii. Maybe this could be improved by

doing multiple measurements, however this was not done here. In Figure 45

we �nd a nonlinear relation of the synaptic weight and the parameter Vgmax.

This was unexpected as it was not shown in hardware simulation of the

synaptic current Isyn for this reason we have to suspect that it is coming

from saturation in the synaptic input circuit.

Unfortunately this means that we are not able to reconstruct a synaptic

weight of the form shown in Eq. (17). We will therefore not be able to �nd a

function to calculate the synaptic weight after �tting the parameters of said

function. However we should be able to use our results to create a lookup

table to �nd the synaptic weights for some �xed parameters. To be able to

calibrate the synaptic weight we need to understand the hardware better and

have better ways of characterizing saturation e�ects which might occur.
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Figure 44: Median �tted weight versus the used bit-

weight parameter. Course as expected for higher bit-

weight. For lower bit-weight nonlinear course not as

strong as in Figure 21. This is caused by small PSPs,

which means that small variations tend to disappear

in the noise.

3 Conclusion and Outlook

In this thesis we showed the necessary steps to measure the synaptic weight

by �tting PSPs. After �nding that only the solution to the di�erential equa-

tion without any approximations allows to �t the data we analysed PSPs with

di�erent neuron parameters to �nd those which lead to the best results. This

way we found that a small synaptic time constant allows the �tting to work

best. For this reason we used a synaptic time constant of τsyn = 2e− 7s. We

did not use smaller time constants as we can not be certain that smaller time

constants are possible for all neurons and we wanted the neurons to be com-

parable (i.e. have roughly the same neuron parameters). As we found that

we could not �t the weight and reversal potential simultaneously we had to

�x the reversal potential in our �t. To do this we also had to compensate for
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Figure 45: Median �tted weight versus the used Vgmax

parameter with �xed gdiv = 30. Di�erent coloured

curves are di�erent bit-weights (from the top: 15, 13,

10, 8).

a nonlinear hardware e�ect, where the conductance of the resisitve element

between the reversal potential and membrane had an additional dependence

on the di�erence of potentials. We were able to develop a measurement rou-

tine to compensate for this e�ect and �x the reversal potential in the �t to

its exact value. To prove that this worked we showed that the reconstructed

weight is now independent on the used resting potential.

However during the measurement we found that our �t reconstructed a mem-

brane time constant dependent on the resting potential. Since the quality

of the �t however did not decrease drastically and we observed this e�ect

independent of the weight (i.e. independent of the integrator voltage in the

synapic input circuit) we can expect that this is a real e�ect on the hardware

and not another saturation e�ect deforming the PSP. Analysing the circuit

was out of the scope of this thesis.

Lastly we showed the impact of the parameters Vgmax, gdiv and the bit-weight

w. We showed that though the e�ect of these parameters on the synaptic
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current Isyn is known we did not �nd the same e�ect on the synaptic weight.

This leads us to believe, that saturation e�ects do not allow the conductance

to scale linearly with the input current Isyn. For this reason further work

will be necessary to calibrate the synaptic weight, as these saturation e�ects

need to be accounted for.

As we were able to reconstruct the weight in simulation we proved that this

approach works, however we need to make the �tting more robust and do

some adjustments to compensate for variations on hardware. Maybe smooth-

ing the measured data �rst could lead to better �tting results. This might

also improve the algorithm to �nd the beginning of the spike and therefore

reduce outliers seen in Figure 39. We were able to compensate for hardware

nonlinearities for one hardware e�ect (e�ective reversal potential due to volt-

age dependent resistive element), but more work would need to be done to

�nd out more about the observed saturation, which we cannot explain yet.

Nevertheless it could be shown that the analog synapses and neurons closely

follow the mathematical model. Also the better understanding of the synap-

tic weight developed in this thesis will help in future experiments.
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4 Appendix

4.1 Remaining �gures

(a) Neuron 281 (b) Neuron 284

(c) Neuron 389 (d) Neuron 396

Figure 46: Remaining traces with high χ2
red of Figure 39
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(a) Neuron 2 (b) Neuron 3

(c) Neuron 4 (d) Neuron 5

Figure 47: Remaining traces of �rst 6 neurons of Figure 40

4.2 Used Versions of Python Modules

NumPY Version 1.16.4 by the Numpy Developers

http://www.numpy.org/

matplotlib Version 2.2.3 by The Matplotlib development team

https://matplotlib.org/

pandas Version 0.24.1 by the PyData Development Team

http://pandas.pydata.org

SciPy Version 1.2.1 by the SciPy Developers

http://www.scipy.org/
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4.3 Used Versions of Software From the Group

project

name

Commit ID Commit Message

ztl 2934a12003c14e08643cf2b4b3cbe7553e860f08 Add support for other

compilers

vmodule 2eb1aeadd2338f61c7098273d�95fbc2eb1e5d7 Reduce warnings

sthal 2d896e0e4cac02b2e54bd0c09809926401f3ef82 Revert "Lazy population

of HICANN ADC con�g"

sctrltp 446f16d85866aa27031cf032b649a97c27213e7b Fix Timeout-Problems

redman 690d48b10652844f778ca9f39c5f3387a7b48297 Add missing serialization

of id

rant 8d5d65484667852ccfdb52843f0b6d4b6b067324 Fix rant-tests build

pywrap 961e7e3�5921d1eef610fc76c5c513e97415fc6 Add

add_optional_vector

_converter_for

pyublas cb8db753399719cd356afa1b2c749eb54c7c420a Check for same condition

in instantiation and decla-

ration

pythonic e9628388d2eb0ce34db770c660ea37718d97dd3d Add support for other

compilers

pypluplus 064993baaea33e81c93655d79d9a1a6204b4acd0 Fix deprecation warnings

on newer boost versions

pygccxml 8ae9e19ae00c4152fa5a381eb9e663561c07345f �x has_public_binary

_operator to take name

hiding etc into account

logger 8355792fd3e591d08381575fcf5c4b2547b5fe3d Compile �x for gcc 4.4 (i.e.

pywrap)

lib-rcf 8355792fd3e591d08381575fcf5c4b2547b5fe3d Fix rcf_enable_warnings

�ag

lib-boost-

patches

5d74d1ddd3fa2e1da534c753e6fa58931fb8aed4 Add LICENSE and a

short README

hwdb 81f96bd86d89�c5c3e3a66cd44db98eb5d74cfc Move IB6 to CUBE3

hicann-

system

14db2df8b4df50924564ac1e882284333f1bfbc9 Fix name clash of mutex

object and std::mutex

hate c7226ece407813b4e57da7852021a39de2fb4221 Rename is_in to

is_in_type_list

halco cc8854af538a399e924788f4188b15560b9a4a3f Add unique Omnibus ad-

dresses for �sch backends
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halbe 7a8979cf71909e80e74ee8e0f2e64bdaaedc3560 Set BASEDIR_NMPM

_SOFTWARE to �nd

�les during tests

euter 5b6d4c8c1eb2b52514801bbc80841786641eeabe Fix library folder hierar-

chy

code-

format

f3f6424b08e58e64e43e08346ba3ad29f15410c5 Change clang-format cpp-

standard from Cpp03 to

Auto

chip-

teststand

0bf4b4e4915e020d187383cc5d4b87cecc30fab9 Use 'doxygen' tool in

wscript instead of 'docu-

mentation'

cd-

denmen-

teststand

71512c2bba2f4f5439c5fb41ac65f0688646b3a5 Fix unit of bias current

calibtic 99f5801685281581c70c3726af88c91d96087bf5 Log what is loaded

cake 8894bfc46ed7c173538636f3b6bd5a7cbcc60ee2 Added scripts used to Fit

measured data and com-

pare to bio simulation

bitter aa18d4a73a994a7e8590addbc40f6dc34a439b24 Fix warning

symwaf2ic 104b0998ee50e735dacaf59a1829fe476ed5ca1d Add BSS2 FPGA spec

4.4 Own Code Used

Scripts used to generate the data which is analysed in this thesis were placed

here: https://gerrit.bioai.eu/c/cake/+/8338
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