The LIF circuit

In the leaky-integrate-and-fire (LIF) model the neuron’s soma integrates synaptic input and constantly leaks charge. It fires when its voltage crosses the threshold value v_{th}. Whenever a neuron emits a spike the exponentially decaying synaptic conductance g_{syn} is increased by the synaptic strength w.

$$
\frac{C}{\text{d}t} = g_{\text{syn}} (E - v) + \sum g_{\text{syn}} (E_{\text{syn}} - v) \\
\frac{dv}{dt} = \frac{g_{\text{syn}}}{\tau_{\text{syn}}} + w \sum_{j \neq i} \delta (t - t_{\text{ref}})
$$

After a spike the membrane is clamped to a reset potential v_{ref} for a fixed period of time τ_{ref}. In the limit $\tau_{\text{ref}} \to 0$ the transfer function of the neuron is close to linear. Finite τ_{ref} limit the output. Adding Poisson noise softens the onset of the activation, furthermore this renders the neuron stochastic, enabling an ensemble to sample from a Boltzmann distribution [1].

Relation to Spin Glasses

Boltzmann machines are mathematically equivalent to spin glasses. In networks of LIF neurons we can therefore observe known physical phenomena such as the Curie law and hysteresis.

$$W = 4J \\
b = 2h - 2W$$

For $J = \frac{1}{4} W$ and $b = \frac{1}{2} b + W$, the Curie law

$$S \sim \frac{T}{T_c - T}$$

To translate between different interaction shapes we match the mean interaction strength within the refractory time (shaded area).

$$W = 4J \\
b = 2h - 2W$$

For $J = \frac{1}{4} W$ and $b = \frac{1}{2} b + W$, the Curie law

$$S \sim \frac{T}{T_c - T}$$

Network and future hardware implementation

Implementation on the BrainScaleS 1 system uses the 2D topology of the Ising network. We segment the “magnet” into smallish slices which can be handled by a single chip. Each slice consists of it’s “heat bath”, an “external field” neuron and the network. This implementation restricts chip-to-chip communication to nearest neighbors.

Each BSS1 wafer should be able to support more than 10 000 network neurons. The heat bath is implemented as a network of randomly inhibitory connected neurons with leak-over-threshold, in order to reduce the IO requirement. External fields will be emulated by providing two (inhibitory and excitatory) external spike sources that project on to all network neurons.