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Abstract

For a biological agent operating under environmental pres-

sure, energy consumption and reaction times are of criti-

cal importance. Similarly, engineered systems also strive

for short time-to-solution and low energy-to-solution char-

acteristics. At the level of neuronal implementation, this

implies achieving the desired results with as few and as early

spikes as possible. In the time-to-first-spike coding frame-

work, both of these goals are inherently emerging features of

learning. Here, we describe a rigorous derivation of error-

backpropagation-based learning for hierarchical networks of

leaky integrate-and-fire neurons. We explicitly address two

issues that are relevant for both biological plausibility and

applicability to neuromorphic substrates by incorporating dy-

namics with finite time constants and by optimizing the

backward pass with respect to substrate variability. This

narrows the gap between previous models of first-spike-time

learning and biological neuronal dynamics, thereby also en-

abling fast and energy-efficient inference on analog neuro-

morphic devices that inherit these dynamics from their bio-

logical archetypes, which we demonstrate on two generations

of the BrainScaleS analog neuromorphic architecture.

1 Introduction

In recent years, the machine learning landscape has been

dominated by deep learning methods. Among the bench-

mark problems they managed to crack, some were thought

to still remain elusive for a long time (LeCun et al., 2015;

Krizhevsky et al., 2012; Goodfellow et al., 2014; Silver et al.,

2017; Vaswani et al., 2017). It is thus not exaggerated to say

that deep learning has reformed our understanding and the

future role of “artificial intelligence” (Brooks et al., 2012;

Ng, 2016; Hassabis et al., 2017; Sejnowski, 2018; Richards

et al., 2019).

However, compared to abstract neural networks used in

deep learning, their more biological archetypes – spiking

neural networks – still lag behind in performance and scal-

ability (Pfeiffer & Pfeil, 2018). Reasons for this difference

in success are numerous; for instance, unlike abstract neu-

rons, even an individual biological neuron represents a com-

plex system, with finite response times, membrane dynamics

and spike-based communication (Gerstner, 2001; Izhikevich,

2004), making it more challenging to find reliable coding

and computation paradigms (Gerstner, 1998; Maass, 2016;

Davies, 2019). Furthermore, one of the major driving forces

behind the success of deep learning, the backpropagation of

errors algorithm (Rumelhart et al., 1986), remained incom-

patible with spiking neural networks for a long time (Esser

et al., 2015; Schmitt et al., 2017; Tavanaei et al., 2018;

Neftci et al., 2019).

Despite these challenges, spiking neural networks promise

to hold some intriguing advantages. The asynchronous na-

ture of spike-based communication allows a coding scheme

that utilizes both spatial and temporal dimensions (Gütig &

Sompolinsky, 2006), unlike rate-based or spike-count-based

approaches (Cao et al., 2015; Diehl et al., 2016; Schmitt

et al., 2017; Wu et al., 2019), where the information of

spike times is lost due to temporal or population averag-

ing. Due to the inherent parallelism of all biological, as

well as many biologically-inspired, neuromorphic systems,

this promises fast, sparse and energy-efficient information

processing, which might hold the key to novel computing

architectures that could one day rival the efficiency of the

brain itself (Mead, 1990; Indiveri et al., 2011; Roy et al.,

2019). This makes spiking neural networks potentially more

powerful than the ”conventional”, simple models currently

used in machine learning (Maass, 1997), even though this

potential still remains mostly unexploited (Pfeiffer & Pfeil,

2018).

Many attempts have been made to reconcile spiking neu-

ral networks with their abstract counterparts in terms of

functionality, e.g., featuring spike-based stochastic inference

models (Petrovici et al., 2013; Neftci et al., 2014; Petrovici

et al., 2016; Neftci et al., 2016; Leng et al., 2018; Kungl

et al., 2019; Dold et al., 2019; Jordan et al., 2019) and deep

models trained on target spike times by shallow learning

rules (Kheradpisheh et al., 2018; Illing et al., 2019) or us-

ing spike-compatible versions of the error backpropagation

algorithm (Bohte et al., 2000; Lee et al., 2016; O’Connor &

Welling, 2016; Zenke & Ganguli, 2018; Huh & Sejnowski,
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2018; Jin et al., 2018; Tavanaei et al., 2018; Kulkarni &

Rajendran, 2018; Wu et al., 2018; Wu et al., 2019; Bellec

et al., 2019). A particularly elegant way of utilizing the

temporal aspect of exact spike times is the time-to-first-

spike (TTFS) coding scheme (Thorpe et al., 2001). Here,

a neuron encodes a continuous variable as the time elapsed

before its first spike. Such single-spike coding enables fast

information processing by inherently encouraging as few and

as early spikes as possible, which meets physiological con-

straints and reaction times observed in humans and animals

(Thorpe et al., 1996; Decharms & Merzenich, 1996; Wehr

& Laurent, 1996; Johansson & Birznieks, 2004; Gollisch &

Meister, 2008; Saal et al., 2016; Portelli et al., 2016). Apart

from biological plausibility, such a coding scheme is a nat-

ural fit for neuromorphic systems that offer energy-efficient

and fast emulation of spiking neural networks (Schemmel

et al., 2010; Akopyan et al., 2015; Friedmann et al., 2017;

Davies et al., 2018; Mayr et al., 2019; Pei et al., 2019).

For hierarchical TTFS networks, a gradient-descent-

based learning rule was proposed in (Mostafa, 2017; Kher-

adpisheh & Masquelier, 2019), using error backpropagation

on a continuous function of output spike times. However,

this approach is limited to a neuron model without leak,

which is neither biologically plausible, nor compatible with

most analog very-large-scale integration (VLSI) neuron dy-

namics (Thakur et al., 2018). We extend the aforemen-

tioned approach to the leaky integrate-and-fire (LIF) model

with current-based (CuBa) synapses, which represents an

analytically treatable dynamical model of spiking neurons

with realistic integration behavior (Rauch et al., 2003; Ger-

stner & Naud, 2009; Teeter et al., 2018), i.e., with finite

membrane (τm) and synaptic (τs) time constants. For three

special cases (τm = τs, τm = 2τs and τm → ∞), both the

times-to-first-spike as well as the gradients of the loss func-

tion are analytically calculable.

The closed and exact analytical form of the proposed

model, especially for gradients used in weight updates, en-

ables a robust implementation on neuromorphic physical-

model systems. We demonstrate such an implementation on

the BrainScaleS-2 (Friedmann et al., 2017; Billaudelle et al.,

2019) and BrainScaleS-1 (Schemmel et al., 2010; Schmitt

et al., 2017; Kungl et al., 2019) accelerated, analog spik-

ing neuromorphic systems. By incorporating information

generated on the hardware for updates during training, the

algorithm can adapt to the imperfections of the analog cir-

cuits. This allows a natural transfer from theory and sim-

ulation to a neuromorphic physical model system, demon-

strating that the proposed model deals well with various

drawbacks of physical-model systems such as fixed-pattern

noise and limited parameter precision and control. Such

a robustness of coding and learning under imperfections of
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Figure 1: Pattern recognition with time-to-first-spike cod-
ing. (A) Hierarchical feed-forward network structure. Colors encode
labels, throughout all figures. (B) Input (�,�), hidden (◦) and label
(N) spike times in a raster plot. The TTFS coding amounts to con-
verting black (�)/white (�) pixels to early/late spikes and that the
first label neuron to spike determines the inferred class (N). (C) Post-
synaptic potential (PSP) shapes for different ratios of τs and τm. For
finite time τm the membrane ’forgets’ prior input, making it funda-
mentally different from the case where τm is infinite. (D) Illustration
of a key challenge posed by finite membrane time constants: small vari-
ations of synaptic weights (not shown) or input spike times (upward
arrows) can result in an appearing/disappearing output spike and a
corresponding discontinuity in the function describing its timing.

the underlying neuronal substrate represents a quintessen-

tially desirable property for every model claiming biological

plausibility and for every application geared towards phys-

ical computing systems (Prodromakis & Toumazou, 2010;

Esser et al., 2015; van De Burgt et al., 2018; Wunderlich

et al., 2019; Kungl et al., 2019; Dold et al., 2019; Feldmann

et al., 2019).

In the following, we first introduce the CuBa LIF model

and the TTFS coding scheme (Section 2.1), before we

demonstrate how both inference and training via error back-

propagation can be performed analytically with such dy-

namics (Section 2.2). Finally, the presented model is evalu-

ated both in software simulations (Section 3.1) and neuro-

morphic emulations (Section 3.2).

2 Mathematical results

2.1 Preliminaries

Leaky integrate-and-fire dynamics The dynamics of

an LIF neuron with CuBa synapses are given by

Cmu̇ = gl(El−u)+
∑
i

wi
∑
ti

θ(t− ti) exp

(
− t− ti

τs

)
, (1)
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with membrane capacitance Cm, leak conductance gl, presy-

naptic weights wi and spike times ti, synaptic time constant

τs and θ the Heaviside step function. The first sum runs

over all presynaptic neurons while the second sum runs over

all spikes for each presynaptic neuron. The neuron elicits

a spike at time T when the presynaptic input pushes the

membrane potential above a threshold ϑ. After spiking,

a neuron becomes refractory for a time period τref , which

is modeled by clamping its membrane potential to a reset

value %: u(t′) = % for T ≤ t′ ≤ T+τref . For convenience and

without loss of generality, we set the leak potential El = 0.

Eqn. (1) can be solved analytically, which yields the sub-

threshold dynamics

u(t) =
1

Cm

τmτs
τm − τs

∑
i

wiκ(t− ti) , (2)

κ(t) = θ(t)

[
exp

(
− t

τm

)
− exp

(
− t

τs

)]
, (3)

with membrane time constant τm = Cm/gl and the PSP

kernel κ given by a difference of exponentials. Here we al-

ready assumed the TTFS use case with only one relevant

spike for each neuron, for which the second sum in Eqn. (1)

reduces to a single term. The choice of τm ultimately in-

fluences the shape of a PSP, starting from a simple expo-

nential (τm � τs), to a difference of exponentials (with an

alpha function for the special case of τm = τs) to a graded

step function (τm � τs) (Fig. 1C).

The first two cases are markedly different from the last

one, which is also known as either the non-leaky integrate-

and-fire (nLIF) or simply integrate-and-fire (IF) model and

was used in previous work (Mostafa, 2017). In the nLIF

model, input to the membrane is never forgotten, as op-

posed to the LIF model, where the PSP reaches a peak

after finite time and subsequently decays back to its base-

line. In other words, presynaptic spikes in the LIF model

have a purely local effect in time, unlike in the nLIF model,

where only the onset of a PSP is localized in time, but

the postsynaptic effect remains forever, or until the postsy-

naptic neuron spikes. A finite τm thus assigns much more

importance to the time differences between input spikes and

introduces discontinuities in the neuronal output that make

an analytical treatment more difficult (Fig. 1D).

Time-to-first-spike coding Our spike-based neural

code follows an idea first proposed in (Mostafa, 2017). Un-

like coding in artificial neural networks (ANNs) and dif-

ferent from rate-based codes in spiking neural networks

(SNNs), this scheme explicitly uses the timing of individ-

ual spikes for encoding information. In time-to-first-spike

(TTFS) coding, the presence of a feature is reflected by

the timing of a neuron’s first spike, with earlier spikes rep-

resenting a more strongly manifested feature. This has

the effect that important information inherently propagates

faster through the network, with potentially only few spikes

needed for the network to process an input. Consequently,

this scheme enables a more efficient processing of inputs,

both in terms of time-to-solution and energy-to-solution (as-

suming the latter depends on the total number of spikes and

the time required for the network to solve, e.g., an input

classification problem).

2.2 Learning rules

In order to formulate the optimization of first-spike times

T as a gradient-descent problem, we need to derive closed-

form expressions for these T . This is equivalent to finding

the time of the first threshold crossing by solving u(T ) = ϑ

for T . Even though a general closed-form solution does not

exist, we show analytical solutions for three specific cases:

(i) τm →∞, (ii) τm = τs and (iii) τm = 2τs:

T

τs
= ln

[
a1

a∞ − ϑCm/τs

]
, τm =∞ (nLIF) ; (4)

T

τs
=

b

a1
−W

−glϑa1 exp

(
b

a1

)
︸ ︷︷ ︸

=: z

, τm = τs (LIF) ; (5)

T

τs
= 2 ln

[
2a1

a2 +
√
a22 − 4a1glϑ

]
, τm = 2τs (LIF) ; (6)

where W is the Lambert W function and using

an :=
∑
i∈C

wie
ti/nτs , (7)

b :=
∑
i∈C

wi
ti
τs
eti/τs , (8)

as shorthand for sums over the set of causal presynap-

tic spikes C = {i | ti < T}. All three equations are differ-

entiable with respect to synaptic weights and presynaptic

spike times. For a detailed derivation of these results, we

refer to Appendix A.

The implicit assumption of having only the first spike

emitted by every neuron be relevant for downstream pro-

cessing can effectively be ensured by using a long enough

refractory period. Since the only information-carrying sig-

nal that is not reset upon firing is the synaptic memory,

which is forgotten on the time scale of τs, we found that,

in practice, setting τref = τs leads to most neurons elicit-

ing only one spike before the classification of a given input

pattern.

3



The case τm →∞ has already been discussed in Mostafa

(2017) and was reproduced here for completeness and com-

parison. Due to the symmetry in τm and τs of the PSP

(Eqn. A7), the τm = 2τs case describes the τm = 1
2τs case as

well. Using Eqns. (4) to (6), we can treat the TTFS network

much like an ANN, where instead of rates, spike times are

propagated. In a layered feed-forward network, Eqns. (4)

to (6) can be used iteratively, i.e., one can calculate the

spike times of the first layer, use these to calculate the spike

times of the second layer, etc., until the label neurons are

reached.

While we found both rules for finite τm to work well in

practice, we focus on τm = τs in the following, as τm = 2τs
and τm = 1

2τs can be treated analogously. Equations for all

cases are derived in Appendix A.

Exact error backpropagation with spikes As de-

picted in Fig. 1A, we consider feed-forward networks of

CuBa LIF neurons. The input uses the same coding scheme

as all other neurons, with input neurons spiking earlier for

darker pixels. In particular, no external time reference is

required: the network effectively processes contrast infor-

mation and is essentially agnostic with respect to specific

absolute input spike times. The output of the network is

defined by the identity of the label neuron that spikes first

(Fig. 1B).

We denote by t
(l)
k the output spike time of the kth neuron

in the lth layer, e.g., for a network with N layers, t
(N)
k is the

spike time of the kth neuron in the label layer. The weight

projecting to the kth neuron of layer l from the ith neuron

of layer l − 1 is denoted by w
(l)
ki .

To apply a variant of the error backpropagation algorithm

(Rumelhart et al., 1986), we choose a loss function that

is differentiable with respect to synaptic weights and spike

times. During learning, the objective is to maximize the

temporal difference between the correct and all other label

spikes while minimizing the time-to-correct-solution. The

following loss function fulfills the above requirements:

L[t(N), p] =− log

 exp
(
−t(N)

p /ξτs

)
∑
k exp

(
−t(N)

k /ξτs

)


+ α

[
exp

(
t
(N)
p

βτs

)
− 1

]
,

(9)

where t(N) denotes the vector of label spike times t
(N)
k , p

the index of the correct label and ξ, α and β represent scal-

ing parameters. Because the softmax-scaled spike times can

be viewed as assigning a probability to the different labels,

the first term represents a cross-entropy of this distribution

relative to the true label distribution (which is 1 for the cor-

rect label and 0 otherwise). Reducing this term therefore

increases the temporal difference between the output spike

of the correct label neuron and all other label neurons. No-

tably, it only depends on the spike time difference and is

invariant under absolute time shifts, making it independent

of artificial outside clocking. The second term is a regu-

larizer that favors solutions where the correct label neuron

spikes as early as possible.

Weights are updated such that they minimize the loss

L[t(N), p]. For weights projecting into the label layer, up-

dates are calculated via

∆w
(N)
ki ∝ −

∂L[t(N), p]

∂w
(N)
ki

= − ∂t
(N)
k

∂w
(N)
ki

∂L[t(N), p]

∂t
(N)
k

, (10)

where the second term can be obtained straightforwardly

from Eqn. (9): The first term depends on the PSP shape;

the corresponding differentiation of Eqn. (5) results in

∂t
(l)
k

∂w
(l)
ki

(w(l),t(l−1)) = − 1

a1
exp

[
t
(l−1)
i

τs

]
(11)

×
[(

t
(l−1)
i

τs
− b

a1

)
(1− zW ′(z)) + zW ′(z)

]
,

for an arbitrary layer l, where z and a1 are given in Eqns. (5)

and (7). Using a relation for the derivative of W, the equa-

tion can be simplified and made to depend on the output

spike time t(l):

∂t
(l)
k

∂w
(l)
ki

(w, t(l−1), t(l)) (12)

= − 1

a1
exp

[
t
(l−1)
i

τs

]
1

W (z) + 1

t
(l)
k − t

(l−1)
i

τs
.

Using this additional information optimizes learning in sce-

narios where the inferred output spike and the true output

spike differ (Section 3.1).

The weight updates of deeper layers can be calculated

iteratively by application of the chain rule:

∆w
(l)
ki ∝ −

∂L[t(N), p]

∂w
(l)
ki

= − ∂t
(l)
k

∂w
(l)
ki

δ
(l)
k , (13)

where the second term is a propagated error that can be

calculated recursively with a sum over the neurons in layer

(l + 1):

δ
(l)
k :=

∂L[t(N), p]

∂t
(l)
k

=
∑
j

∂t
(l+1)
j

∂t
(l)
k

δ
(l+1)
j . (14)

4



The latter derivative amounts to, once the output spike time

is reinserted as above,

∂t
(l)
k

∂t
(l−1)
i

(w, t(l−1), t(l)) (15)

= − 1

a1
exp

[
t
(l−1)
i

τs

]
1

W (z) + 1

w
(l)
ki

τs

t
(l)
k − t

(l−1)
i − τs
τs

.

The learning rule can be rewritten in layer-wise form to

resemble the standard error backpropagation algorithm for

abstract neurons (see Appendix B for the standard back-

propagation equation):

δ(N) =
∂L

∂t(N)
, (16)

δ(l−1) = ρ(l−1) �
(
W̃

(l)T

δ(l)
)
, (17)

∆w(l) = −η
(
δ(l)ρ(l−1)

T
)
� B̂(l)

, (18)

where � is the element-wise product, the T -superscript de-

notes the transpose of a matrix and δ(l−1) is a vector con-

taining the backpropagated errors of layer (l − 1). The in-

dividual elements of the tensors above are given by

ρ
(l)
i = − 1

a1
exp

[
t
(l)
i

τs

]
1

W (z) + 1

1

τs
, (19)

B̂
(l)
ki = t

(l)
k − t

(l−1)
i , (20)

W̃
(l)
ki = w

(l)
ki

t
(l)
k − t

(l−1)
i − τs
τs

. (21)

In this form, it becomes apparent that for training, only the

label layer error and the neuron spike times are required,

which can either be calculated using Eqn. (5) or by simu-

lating (or emulating) the LIF dynamics (Eqn. 1).

As mentioned above, the treatment of the other two spe-

cial cases is analogous to the above. Thus, for CuBa LIF

neurons with finite time constants τm = τs, τm = 2τs and

τm = 1
2τs, both the forward pathway (spike times) and back-

ward pathway (backpropagation) can be calculated analyt-

ically using a loss that is differentiable with respect to both

synaptic weights and neuronal spike times.

3 Demonstrating learning on vari-

ous spiking substrates

3.1 Simulation results

Classification task We demonstrate the above frame-

work in a pattern classification task (Fig. 2A), with the

spiking network (Fig. 1A) simulated in NEST (Gewaltig

& Diesmann, 2007). To assist learning, mini batch train-

ing was used and the weight updates ∆w calculated as de-

scribed in Section 2.2 were L1-normalized layer-wise to be

smaller than 10. Furthermore, for layers with more than

35% of silent neurons averaged over the minibatches, all af-

ferent weights were increased by a fixed amount in order

to have sufficient activity. In case of multiple layers where

this applied, only the first layer with insufficient spikes was

boosted.

Fig. 2B-K shows results from training a network with

49 visible, 80 hidden and 4 label neurons on this data set.

While not used during training, the temporal evolution of

the membrane potentials helps illustrate the learning pro-

cess. Fig. 2B-D shows voltages in the label layer for one

class (orange) before, during and after training, illustrat-

ing how the trained weights make the correct neuron spike

earliest by a large margin (see also Fig. 2E).

The spike times including the input spikes (vertical lines)

and the ones in the hidden layer are shown in a raster plot

in Fig. 2E. Due to the finite membrane and synaptic time

constants, output spikes can only happen within a finite

time window after their inputs. In the particular training

scenario described in Fig. 2, this renders output spikes hap-

pening immediately before the late input spikes extremely

unlikely. This effective gap can also be seen in the evolution

of the spike times during training, where a small change in

synaptic weights can bring a spike from the early into the

late group and vice-versa, leading to sudden jumps in both

spike timing and loss (Fig. 2F-I,K; see also Fig. 1D).

The evolution of the label layer spike times for all four

classes is shown in Fig. 2F-I, including the steps at which

the voltage plots were recorded. The spike times for the

different classes together decide both the accuracy (the pro-

portion of correct classifications) and the loss (Eqn. 9). The

evolution of both during training is shown in Fig. 2J,K.

It is important to note that we have chosen a simple

dataset in order to make it amenable to emulation on our

neuromorphic systems (Section 3.2). In particular, it is lin-

early separable and would thus not require backpropagation

for perfect classification. Therefore, to demonstrate that er-

ror backpropagation is working as intended, we performed

an additional simulation with frozen weights between the

hidden and label layer, training only the ones between in-

put and hidden layer. As expected and shown in Fig. 2L,

training was successful in this setup, but took considerably

longer for the same initialization and hyperparameters as

used in Fig. 2B-K.

As mentioned above, our loss function consists of two

parts (Eqn. 9), the first relating to TTFS coding and the sec-

ond representing a regularizer that pushes correct neurons

5
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Figure 2: Pattern recognition with time-to-first-spike coding for a simple data set. (A) Input pattern set consisting of four classes.
(B-D) Voltage dynamics in the label layer (colored traces) and output spikes (downward arrows) induced by spikes from the hidden layer (upward
arrows) for one pattern (plots of data from the same pattern are marked by gray background) at different stages of training. As intended, the
learning rule has the effect of decreasing the spike time of the correct label neuron (H) while increasing the spike time of the other neurons. The
colors of the traces correspond to the four different label neurons (Fig. 1A,B), with the correct one shown in orange. All times are given in units
of the synaptic time constant τs. (E) Raster plot after training for the same sample, including spikes in the hidden layer (gray marks) and early
and late input times (vertical lines). The classification (first label spike, orange) happens prior to a significant fraction of the hidden neuron
spikes. (F-I) Evolution of label neuron spike times during training for all four classes, with colors marking the different label neurons as above,
and incorrect labels being lighter. The correct neuron’s spike time decreases while all others are pushed back, producing a distinct gap. In (G)
the snapshots from B, C, and D are marked. (J) Evolution of accuracy during training. (K) Loss (green is the first term of Eqn. (9), blue the
α-weighted second term) only reaches small values once the accuracy (I) is already at 100%. (L) To show that back-propagation is working we
trained only the weights from input to hidden neurons, keeping those from the hidden to label neurons fixed.

to spike early, and stabilises the training. Figure 3 shows

the effect of regularization: it shifts correct label spikes to

earlier times, which in turn causes the afferent active hidden

neurons to spike earlier as well.

Inserting substrate-specific information into the

backward pass As noted in the introduction, TTFS cod-

ing is a natural fit for neuromorphic hardware due to its

emphasis on speed (early spikes), especially for accelerated

devices which can profit additionally from intrinsic speed-up

(Section 3.2). However, this speed comes at the price of re-

duced control over certain neuron and synapse parameters.

This implies in particular that the ratio of the membrane

and synaptic time constants is different from the ideal val-

ues of τm
τs

= 1 or τm
τs

= 2 used in derivations. It is therefore

crucial that the learning rule still works under such param-

eter variability in order for it to be applicable to such neu-

romorphic substrates. The question at hand touches upon

whether our learning rules also work for other parameter

values than the specific ones for which they were derived,

and if so, how well. We study the robustness of learning for

different time constant ratios by sweeping a range of mem-

brane time constants using the NEST (Gewaltig & Dies-

mann, 2007) simulator for the forward pass and the different

learning rules for the backward pass.

One detail is important in this context. Eqns. (4) to (6)

for the spike times depend only on neuron parameters,

presynaptic spike times and weights, thus the derivatives

needed for the weight update initially depend on those ’nat-

ural’ variables as well (Eqns. A15 and A22). With some ma-

nipulations, the equation for the actual output spike time

can be inserted (Eqns. A17 and A24), producing a version

of the learning rule that profits from more information of

the forward pass and is thus significantly more stable. The

two versions are identical only in case the forward and back-

ward pass have exactly the same ratios. The effect of this

disparity is shown in Fig. 4. For both update rules, includ-

ing information about the true spiking activity significantly

improves learning over a wide range of τm/τs ratios.

3.2 Fast neuromorphic classification

In this framework, classification speed is a function of the

network depth and the time constants τm and τs. Assum-

ing typical biological timescales, most input patterns in the

above scenario are classified within several ms. By lever-

aging the speedup of neuromorphic systems such as Brain-

ScaleS (Schmitt et al., 2017; Billaudelle et al., 2019), with

intrinsic acceleration factors of 103-104, the same computa-

tion can be achieved within µs.
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Figure 3: Spike time distributions over all four classes before
(A,B) and after training without (α = 0, C, D) and with (α =
0.3, E, F) regularization. Left column (gray): hidden layer; right
column: label layer, with correct spikes marked in green and false
ones in orange. Here, we used noised inputs, with five examples per
class, i.e. 20 patterns in total. The separation of the distribution into
two distinct modes is a direct consequence of the black/white input
and its encoding (see also Fig. 2). While the network trains to 100%
accuracy for both values of α (data for α = 0 not shown), a nonzero α
leads to significantly earlier spikes in the label layer, as well as to the
correct label neurons never spiking during the second volley.

However, the speed advantages of such analog systems

compared to software simulations come at the cost of re-

duced control, and training needs to cope with phenomena

such as spike time jitter and neuron parameter variability.

In particular, this implies τm 6= τs, so the derived learning

rule is only an approximation of true gradient descent in

these systems, as discussed above.

3.2.1 Learning with TTFS on BrainScaleS-2

We ported the network architecture and training scheme to

the BrainScaleS-2 system, a mixed-signal accelerated neuro-

morphic platform. The application-specific integrated cir-

cuit (ASIC) is built around an analog neuromorphic core

which emulates the dynamics of neurons and synapses. All

state variables, such as membrane potentials and synap-

tic currents, are physically represented in their respective

circuits and evolve continuously in time. Considering the

natural time constants of such integrated analog circuits,

this emulation takes place at 1000-fold accelerated time

scales compared to the biological nervous system. One

BrainScaleS-2 core features 512 AdEx neurons, which can

be freely configured; these circuits can be restricted to LIF

dynamics as required by our training framework (Aamir et

al., 2018b; Aamir et al., 2018a). Both the membrane and

synaptic time constants were calibrated to 5 µs.
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τm [τs]

10−3

10−1

101

lo
ss
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τm = 2τs learning rule

Figure 4: Fitness of learning rules for varying τm. We simulated
the forward pass for different τm/τs ratios by varying the τm of neurons
in the network. Here, we show the median cross-entropy over the last
300 training steps after a total of 3000 training steps, averaged over 30
different random initializations. This allows us to compare the efficacy
of learning in two scenarios for the backward pass. Solid lines: weight
updates depending only on neuron parameters, presynaptic spike times
and weights (Eqn. 11). Dashed lines: weight updates including the
true output spike times (Eqns. 15 and 12). Dotted lines: ideal τm/τs
ratios. Note how including output spike times significantly improves
the training for both learning rules across a wide range of parameters.

Each neuron circuit integrates stimuli from a column of

256 current-based synapses (Friedmann et al., 2017). Each

synapse holds a 6 bit weight value; its sign is shared with

all other synapses located on the same row in the synapse

matrix. The presented training scheme, however, allows

weights to continuously transition between excitation and

inhibition. We therefore allocated pairs of synapse rows

to convey the activity of single presynaptic partners, one

configured for excitation, the other one for inhibition.

Synapses receive their inputs from an event routing mod-

ule allowing to connect neurons within a chip as well as

to inject stimuli from external sources. Events emitted by

the neuron circuits are annotated with a time stamp and

then sent off-chip. The neuromorphic ASIC is accompanied

by a field-programmable gate array (FPGA) to handle the

communication with the host computer. It also provides

mechanisms for low-latency experiment control including

the timed release of spike trains into the neuromorphic core.

The FPGA is furthermore used to record events and digi-

tized membrane traces originating from the ASIC.

We used an in-the-loop-training approach, where emula-

tion runs on the neuromorphic substrate were interleaved

with host-based weight update calculations (Schmitt et al.,

2017). For the emulation of the forward pass, the data set

was broken down into mini-batches, converted into input

spike trains and then injected into the neuromorphic sys-
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Figure 5: Neuromorphic pattern recognition with time-to-first-spike coding on BrainScaleS-2. (A) Accuracy and (B) energy (green:
cross-entropy, blue: α-weighted regularizer in Eqn. (9)) during training. (C-F) Evolution of label neuron spike times, displayed separately for the
four classes. For each pattern, the spike time of the neuron representing this class is shown as a solid line in full color. (G) Raster plot of hidden
neurons (gray) and the four label neurons (colored) after training, shown for a stimulus representing the second pattern (N). (H-K) Membrane
voltage traces of the label neurons, for the four classes respectively. These analog membrane traces were digitized on the neuromorphic substrate
after 100 training steps.

tem via the FPGA. The latter was also used to record the

spikes emitted by the hidden and label layers. Weight up-

dates were – based on these output spike trains – calculated

on the host computer and then written back to the synapse

memory. This backward pass shared its implementation

with the previously described simulation framework.

We were able to successfully and reliably train the net-

work emulated on BrainScaleS-2 on the discussed data set

(Fig. 5). The system quickly learned to fully discriminate

between the presented patterns, with clear separation be-

tween label spike times. Learning performance in terms of

convergence speed is difficult to compare because the hyper-

parameters are not easily transferable, but appears similar

to the numerical simulations of the same network. After

training, due to the interplay of the system’s intrinsic accel-

eration and the nature of the learning algorithm itself, each

pattern was classified in less than 5 µs.

3.2.2 Learning with TTFS on BrainScaleS-1

To demonstrate the amenability of our approach to dif-

ferent neuromorphic substrates, we also tested it on the

BrainScaleS-1 system (Schemmel et al., 2010). This ver-

sion of BrainScaleS has a very similar architecture to

BrainScaleS-2 , but its component chips are interconnected

through postprocessing on their common wafer (wafer-scale

integration). More importantly for our coding scheme

and learning rules, its circuits emulate conductance-based

(CoBa) instead of CuBa neurons. Furthermore, due to the

different fabrication technology and design choices (in par-

ticular, the floating-gate parameter memory, see Srowig et

al., 2007; Schemmel et al., 2010; Koke, 2017), the parame-

ter variability and spike time jitter are significantly higher

than on BrainScaleS-2 (Schmitt et al., 2017).

The training procedure was analogous to the one used

on BrainScaleS-2 . To accommodate the CoBa synapse dy-

namics, we introduced global weight scale factors that mod-

eled the distance between reversal and leak potentials and

the total conductance, which were multiplied to the synap-

tic weights to achieve a CuBa approximation for which our

learning rules apply. Despite this approximation and the

considerable substrate variability (compare, e.g., Fig. 6C-

F with Fig. 5C-F), our framework was able to compen-

sate well, almost matching the performance achieved on

BrainScaleS-2 (Fig. 6).

4 Discussion

In this manuscript, we proposed a model of deep time-to-

first-spike learning that builds on a principled view of neuro-

synaptic dynamics with finite time constants and comes

with exact learning rules for optimizing first-spike times; an

early version of this work was presented in Göltz (2019). In

this quintessentially spike-based learning framework, only

single spike times are required for calculating the weight

updates, thus reducing the memory (bandwidth and capac-

ity) requirements of synaptic updates in comparison to, e.g.,

rate coding approaches (see, e.g., Schmitt et al., 2017, for

an example of deep but rate-based learning that was also
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applied to a BrainScaleS system).

Our work builds on earlier results by Mostafa (2017),

which we extended to accommodate leaky integrate-and-

fire neurons, thereby including more biologically plausible

and neuromorphic-hardware-compatible neuro-synaptic dy-

namics. Additionally, we introduced a regularizing loss term

that favors early classification, thereby significantly improv-

ing the time-to-solution of the network. To account for

substrate variability, we further incorporated output spike

times directly into the backward pass, which extends the

applicability of our derived learning rules to a wide range

of parameters, thus allowing us to demonstrate the frame-

work on two different neuromorphic platforms (two genera-

tions of the BrainScaleS architecture) that exhibit varying

degrees of parameter noise in their analog components. Un-

like other approaches (Mostafa, 2017; Comsa et al., 2019;

Kheradpisheh & Masquelier, 2019) we do not use any kind

of clocking or bias spikes, thereby being independent of any

absolute time reference or global clock signal.

The complexity of the learned dataset was mostly limited

by the size of the used substrate, but we expect the frame-

work to scale to significantly more challenging problems, as

suggested by the FPGA-based experiments in Mostafa et

al. (2017). After learning, the network needed less than one

spike per neuron to produce a correct classification on all

used substrates. With these few spikes, we achieved a time-

to-solution of less than one synaptic time constant. Since

the dynamical timescales directly affect the duration of the

network emulation between synaptic updates, this inher-

ently leads to a significant reduction of the total training

time. Taking into consideration relaxation times between

patterns, our setup was able to handle a concatenated pat-

tern throughput of at least 20 kHz, independently of emu-

lated network size. These results promise an efficient ex-

ploitation of such accelerated neuromorphic substrates for

high-throughput inference on spiking input data.
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Appendix

A Derivation of main results

In this section we derive the equations in the main

manuscript, starting with the learning rule for τm → ∞,

Eqn. (4), then τm = τs, Eqn. (5) and finally τm = 2τs,

Eqn. (6).

For each, a solution for the spike time T , defined by

u(T ) = ϑ, (A1)

given LIF dynamics

u(t) =
1

Cm

τmτs
τm − τs

∑
spikes ti

wiκ(t− ti) , (A2)

κ(t) = θ(t)

[
exp

(
− t

τm

)
− exp

(
− t

τs

)]
, (A3)

has to be found. For convenience, we use the following def-

initions

an :=
∑
i∈C

wie
ti/nτs , (A4)

b :=
∑
i∈C

wi
ti
τs
eti/τs , (A5)
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with summation over the set of causal presynaptic spikes

C = {i | ti < T}.

A.1 nLIF learning rule for τm → ∞

With this choice of τm, the first term in Eqn. (A2) becomes 1

and we recover the nLIF case discussed in (Mostafa, 2017).

Given the existence of an output spike, in Eqn. (A1) the

spike time T appears only in one place and simple reordering

yields
T

τs
= ln

[
a1

a∞ − ϑCm/τs

]
, (A6)

where we used Eqn. (A4) for n = 1 and n = ∞, the latter

being the sum over the weights.

A.2 Learning rule for τm = τs

Spike time According to l’Hôpital’s rule, in the limit

τm → τs Eqn. (A2) becomes a sum over α-functions of the

form

u(t) =
1

Cm

∑
i

wiθ(t− ti) · (t− ti) exp

(
− t− ti

τs

)
. (A7)

Using these voltage dynamics for the equation of the spike

time Eqn. (A1), together with the definition Eqn. (A5) and

τm = Cm/gl, we get the equation

0 = glϑ exp

[
T

τs

]
+ b− a1

T

τs︸ ︷︷ ︸
=:y

. (A8)

The variable y is introduced to bring the equation into the

form

heh = z (A9)

which can be solved with the differentiable Lambert W func-

tion h = W(z). The goal is now to bring Eqn. (A8) into

this form, this is achieved by reformulation in terms of y

0 = glϑ exp

(
b

a1

)
exp

(
− y

a1

)
+ y (A10)

y

a1︸︷︷︸
=: h

exp

(
y

a1

)
= −glϑ

a1
exp

(
b

a1

)
︸ ︷︷ ︸

=: z

. (A11)

With the definition of the Lambert W function the spike

time can be written as

T

τs
=

b

a1
−W

[
−glϑ
a1

exp

(
b

a1

)]
. (A12)
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Figure A1: (A) Membrane dynamics for one strong input spike at
ti (upward arrow) with two threshold crossings due to leak pullback
(earlier violet, later brown). The change induced by a reduction of
the input weight is shown in red. (B) Edge case without crossing
and exactly one time where V(t) = ϑ. (C) Defining relation for the
Lambert W function W, evidently not an injective map. (D) Distin-
guishing between h ≶ −1 allows to define the inverse function of (C),
the Lambert W function W.

Branch choice Given that a spike happens, there will be

two threshold crossings: One from below at the actual spike

time, and one from above when the voltage decays back

to the leak potential (Fig. A1A,B). Correspondingly, the

Lambert W function (Fig. A1C,D) has two real branches

(in addition to infinite imaginary ones), and we need to

choose the branch that returns the earlier solution. In case

the voltage is only tangent to the threshold at its maximum,

the Lambert W function only has one solution.

For choosing the branch in the other cases we need to

look at h from the definition, i.e.

h =
y

a1
=

b

a1
− T

τs
. (A13)

In a setting with only one strong enough input spike, the

summations in an and b reduce to yield h = (ti − T )/τs.

Because the maximum of the PSP for τm = τs occurs at

ti + τs, we know that the spike must occur at T ≤ ti + τs
and therefore

−1 ≤ ti − T
τs

= h. (A14)

This corresponds to the branch cut of the Lambert W func-

tion meaning we must choose the branch with h ≥ −1. For

a general setting, if we know a spike exists, we expect an
and b to be positive. In order to get the earlier thresh-

old crossing, we need the branch that returns the larger W
(Fig. A1D), that is where W = h > −1.
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Derivatives The derivatives for ti in the causal set i ∈ C
come down to

∂T

∂ti
(w, t) (A15)

=− 1

a1
exp

[
ti
τs

]
wi
τs

[
1 +

(
ti
τs
− b

a1

)
(1− zW ′(z))

]
,

∂T

∂wi
(w, t) (A16)

=− 1

a1
exp

[
ti
τs

] [
zW ′(z) +

(
ti
τs
− b

a1

)
(1− zW ′(z))

]
.

A crucial step is to reinsert the definition of the spike time

where it is possible (cf. Section 3.1). For this we need the

derivative of the Lambert W function zW ′(z) = W(z)
W(z)+1

that follows from differentiating its definition Eqn. (A9)

with h =W(z) w.r.t. z. With this derivative one can calcu-

late the derivative of Eqn. (A12) with respect to incoming

weights and times as functions of presynaptic weights, input

spike times and output spike time:

∂T

∂ti
(w, t, T ) = − 1

a1

1

W (z) + 1
exp

[
ti
τs

]
wi
τs

T − ti − τs
τs

,

(A17)

∂T

∂wi
(w, t, T ) = − 1

a1

1

W (z) + 1
exp

[
ti
τs

]
T − ti
τs

. (A18)

A.3 Learning rule for τm = 2τs

Spike time Inserting the voltage (Eqn. A2) into the spike

time (Eqn. A1) yields

glϑ = e−T/τm
∑
i∈C

wie
ti
τm − e−T/τs

∑
i∈C

wie
ti
τs . (A19)

Reordering and rewriting this in terms of a1, a2, and τs
(with τm = 2τs) we get

0 = −a1
(
e−T/2τs

)2
+ a2e

−T/2τs − glϑ . (A20)

This is written such that its quadratic nature becomes ap-

parent, making it possible to solve for exp(−T/2τs) and thus

T

τs
= 2 ln

[
2a1

a2 +
√
a22 − 4a1glϑ

]
. (A21)

Branch choice The quadratic equation has two solutions

that correspond to the voltage crossing at spike time and

relaxation towards the leak later; again, we want the earlier

of the two solutions. It follows from the monotonicity of the

logarithm that the earlier time is the one with the larger

denominator. Due to an output spike requiring an excess of

recent positively weighted input spikes, an are positive, and

the + solution is the correct one.

Derivatives Using the definition x =
√
a22 − 4a1glϑ for

brevity, the derivatives of Eqn. (A21) are

∂T

∂wi
(w, t) (A22)

= 2τs

[
1

a1
+

2glϑ

(a2 + x)x

]
exp

[
ti
τs

]
− 2τs

x
exp

[
ti

2τs

]
,

∂T

∂ti
(w, t) (A23)

= 2

[
1

a1
+

2glϑ

(a2 + x)x

]
exp

[
ti
τs

]
− 1

x
exp

[
ti

2τs

]
.

Again, inserting the output spike time yields

∂T

∂wi
(w, t, T ) (A24)

=
2τs
a1

[
1 +

glϑ

x
exp

[
T

2τs

]]
exp

[
ti
τs

]
− 2τs

x
exp

[
ti

2τs

]
,

∂T

∂ti
(w, t, T ) (A25)

=
2

a1

[
1 +

glϑ

x
exp

[
T

2τs

]]
exp

[
ti
τs

]
− 1

x
exp

[
ti

2τs

]
.

B Standard error backpropagation

The standard error backpropagation formula for artificial

(rate-based) neural networks (Rumelhart et al., 1986) with

rates a is given by

δ(N) =
∂L

∂a(N)
� a′(N)

, (A26)

δ(l−1) = a′(l−1) �
(
W (l)T δ(l)

)
, (A27)

∆W (l) = −ηδ(l)a(l−1)T . (A28)

Traditionally, in artificial neural networks, the last layer is

a linear classifier, but here, to highlight the resemblance

to rate-based neurons, we define the loss function on the

activation of the neurons in the last layer L = 1
2‖y−aN‖2,

where y is the target label in one-hot coding.
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