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Towards Balanced Random Networks on the BrainScaleS I System
Quirinus Schwarzenböck

Abstract

Under the premise that the cortical column network, developed by Potjans andDiesmann
(2012) is currently being implemented on BrainScaleS I hardware, a mixed-signal system
for the emulation of spiking neural networks, this thesis is taking a closer look onwhich ef-
fects are likely to occur when transferring a network from digital to analogue simulations.
This is done by taking the neural network described in Brunel (2000), a network that has
a close resemblance to some parts of the cortical column network, and investigate how
it reacts to the transfer to leaky integrate-and-fire neurons with current and conductance
based synapse models, to distortions on the neuron parameters, as they are expected to
occur on hardware, and other possible obstacles one might be facing during this transi-
tion, like a limited range the synaptic time constant can be chosen from. Paving the road
for a successful emulation of the column, this allows a first prediction how the network
could behave on BrainScaleS I and which parameters have to be handled carefully dur-
ing the transmission and for which parameters the network is showing stable behaviour,
even if they are connected with some distortions.

Zusammenfassung

Mit Hinblick auf die aktuell laufende Implementierung des Cortical Column Netwerks
(Potjans und Diesmann 2012) auf BrainScaleS I, einemMixed-Signal System das Gepulste
Neuronale Netze emuliert, beschäftigt sich diese Arbeit mit den Effekten die auftreten,
wenn man Netzwerke die bisher digital simuliert wurden auf analoger Hardware laufen
lässt. Um dies zu erreichen, wird das ursprünglich von Brunel (2000) beschriebene Netz-
werk, ein Netzwerk das große Ähnlichkeit mit Teilen des Cortical Column Netzwerkes
aufweist, auf den Übergang zu Leaky Intergate-And-Fire Neuronen mit strom- und span-
nungsbasierten Synapsen Modellen, den Einfluss den eine Verteilung der Neuronen Pa-
rameter auf das Verhalten des Netzwerks haben und andere Schwierigkeiten die bei dem
Übergang auf die Hardware auftreten können, beispielsweise dem limitierten Bereich in
dem die synaptische Zeitkonstante gewählt werden kann untersucht. Das erlaubt eine
erste Einschätzung wie sich das Cortical Column Netzwerk auf der Hardware verhalten
wird, in welchen Fällen sich das Netzwerk stabil verhalten wird oder in welchen Fällen
Unterschiede zu erwarten sind.
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Chapter 1

Introduction

The human brain is known to be a powerful computing unit. It demonstrates quick learn-
ing capabilities and does so while exhibiting amazing robustness against hardware de-
fects (Piccinini and Bahar 2013). These points justify the efforts that is being made to
understand how the brain works in general on the one hand and to check whether these
mechanisms can be incorporated into future computer hardware.
The field of research following up on this idea is called neuromorphic computing. Among
other things, neuromorphic computing uses Spiking Neural Networks (SSN) as a base for
computations. SSNs can be simulated either digitally, an approach taken by Manchester
Universitywith Spinnaker (Furber et al. 2014), or one can take amore radical approach and
design hardware chips that are simulating neurons analogously and run the networks on
these chips. The latter way, known as physical modelling, has been chosen by Electronic
Vision(s) Group at Heidelberg University with their system BrainScaleS (Schemmel et al.
2010).
There are however some differences when running SSNs on software or on hardware.
Some problems are affecting both systems. The limited bandwidth for example between
neurons can lead to data packages being dropped instead of transmitted if too much
spikes have to be transmitted at the same time. But there are also problems specific to the
simulation type. When simulating neural networks on software, calculations are done
numerically and errors in the simulation are due to numeric approximations. On hard-
ware on the other hand, parameters have to be set on said hardware. This will likely lead
to some variation of the parameters in the simulated network, since it is not possible to
manufacture every single part of a chip in exactly the same way. One way to counteract
these imperfections is to calibrate the individual hardware parts, which does help but can
not make the chip perfect.

One possible application of BrainScaleS is a running version of the Cortical Column net-
work, a well-known network in neuromorphic computing that has been used by a variety
of groups as a benchmark, including Spinnaker (Sacha J. van Albada et al. 2018).
The Cortical Column is build out of several groups of populations of neurons. One of
these groups has a close resemblance to a network described and analysed in Brunel
(2000). This network shall be the basis of this thesis, with the goal to investigate the ef-
fect of applying variation to different parameters and simulating themodel with different
neuron models.
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Chapter 2

Theory and Methods

Biologically speaking, neurons are cells with an electrically excitable cell membrane. The
potential difference to their surroundings is called membrane potential. Under certain cir-
cumstances, for example when the membrane potential reaches a certain value, they are
capable of producing short peaks in the membrane potential, so called spikes. They are
connected to other neurons via synapses, which are transmitting these spikes between
neurons (Brandes, Lang, and R. F. Schmidt 2019).
Spikes arriving at neurons are activating a wide variety of ion channels, that are respon-
sible for changing the neurons membrane potential. Although these processes have been
a subject of research for quite some time now, they are still computationally expensive
and in some cases only solvable numerically. The different ion channels can roughly be
matched with one of two categories: inhibitory, which will lower the membrane poten-
tial, and excitatory, that will cause a rise in the membrane potential (Gerstner, Kistler, et
al. 2014).
To simplify this process one tries to mimic a neurons behaviour with more simple models,
in this thesis the leaky integrate-and-fire (LIF) model, that will be explained in section 2.1,
with a more detailed look on three subtypes, that are used in this thesis.
While it is still part of ongoing research how information between neurons is transmitted
exactly (Gerstner, Kreiter, et al. 1997), the LIF model is based on the assumption that the
timing of spikes is a crucial component carrying information when working with neu-
rons. It therefore aims at reproducing the production of spikes in a neuron, a so called
spiketrain. With this spiketrain, one can not only look at the individual spikes, but also at
the rates that spikes are emitted at, how regular neurons are emitting spikes and if there
is some correlation between the timing of the spikes. The important quantities for this
thesis are discussed in section 2.3.

2.1 Leaky Integrate-and-Fire Model

A simplified model to describe the membrane potential u(t) of a neuron as a function of
time is a leaky integrate-and-fire (LIF) neuron. It consists of a capacitor Cm, a resistor that
is characterised by its conductivity gL and a so called resting potential VL, all wired in a
closed circuit (see figure 2.1). The simulated membrane potential is then defined as the
potential of the capacitor.
The neuronwill produce a spike when themembrane potential is above the threshold value
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Chapter 2. Theory and Methods

Vm

I(t)

VL

gL
Cm

Figure 2.1 General circuit diagram for a LIF neuronwith input current I(t) = Iext(t)+Isyn.

Θ. While the membrane potential of the neuron is below mentioned threshold, its be-
haviour is characterised by (Gerstner, Kistler, et al. 2014)

Cm
du

dt
= gL(VL − u) + Isyn + Iext. (2.1)

The possible input currents are Isyn, a current dependent on the spikes the neuron is re-
ceiving and Iext, a current that is externally provided and therefore independent of the
network and its spikes. Without any input currents (Isyn = Iext = 0) the membrane po-
tential will decay to the resting potential.
An additional definition that can be useful to characterise a LIF neuron is the membrane
time constant τm given by

τm = Cm

gL
. (2.2)

In case the membrane potential reaches its threshold at time ts the neuron spikes at t = ts.
After a spike the neuron is reset to its reset potential Vr < Θ and remains there for the
duration of its refractory time τref :

u(t) = Vr, for ts < t < ts + τref . (2.3)

To connect two neurons one uses synapses. Synapses transmit information only in one di-
rection, from the presynaptic neuron to the postsynaptic neuron. With thismodel the only
information transmitted between connected neurons is the emission of a spike, alongwith
the information whether the neuron emitting the spike is inhibitory or excitatory. The
time that passes between a spike being emitted by the presynaptic neuron and received
by the postsynaptic neuron is called the synaptic delay τsyn and is specific for the respective
synapse. The other parameter characterising a synapse is the weight ω, determining how
much influence a spike will have on a neuron (Brunel and Rossum 2007).
There are several ways Isyn can be described. For this thesis δ-input, current, and con-
ductance based LIF neurons are being used and described in the following paragraphs.
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2.1. Leaky Integrate-and-Fire Model

2.1.1 δ-input based LIF neurons

δ-input based LIF neurons can actually be seen as a special case of the CUBA LIF neurons,
which are explained in the next section. However, they can be described more easily
than current based neurons and demonstrate a very particular behaviour, which makes it
useful to have a more detailed look at them.
δ-input based neurons need the least parameters to be described. The idea is that a spike
arriving at the neuronwill instantly add a certain potential∆u to the membrane potential
u. This allows equation 2.1 to be rewritten as formula 2.4, where the index k characterises
the summation over all presynaptic neurons with the weights ∆uk, and the index s the
summation over all the spikes of a neuron k:

τm
du

dt
= (VL − u) +

∑
k

∑
s

∆ukδ(t − tk
s). (2.4)

Since the potential difference is instantaneous and fixed, the capacity together with the
conductivity can be combined to one parameter τm according to equation 2.2. Describing
how fast the membrane potential is exponentially decaying towards the resting poten-
tial, the membrane time constant gives in this case a more direct insight to the neurons
behaviour than the capacity or the conductance (Brunel 2000).

2.1.2 Current based LIF neurons

Current based (CUBA) LIF neurons are mathematically more easily describable than con-
ductance based neurons, since the effect an arriving spike is having on the membrane
potential is independent of the state of the neuron.
The idea of current based synapses is, that a spike s from neuron k arriving at the neuron
will trigger a current to the neuron, scaled by the weight of the synapse ωk. Assuming
that the kernel does not have a unit of its own, for this model the weight ω has the unit
Ampère. The incoming current is described by a kernel εn(t), specific to the neuron itself
and whether the arriving spike is inhibitory (n = inh) or excitatory (n = exc). This gives
the synaptic input the form:

Isyn =
∑

k

∑
s

ωkεn(t − tk,s). (2.5)

Some advantages of this model are the already mentioned independence of Isyn from the
state of the network and that the membrane time constant (see equation 2.2) characterises
the decrease of the membrane potential as well (Petrovici, Bill, and Hartl 2017).

5



Chapter 2. Theory and Methods

2.1.3 Conductance based LIF Neurons

Conductance based (COBA) LIF neurons use the approach that is the closest one of the three
depicted models to the original ion channels. The idea is to connect additional pairs of
potentials and controllable resistors, wired in series, parallel to the capacitor and change
the membrane potential by regulating the conductivity of the additional resistors (Gerst-
ner, Kistler, et al. 2014).
Explicitly one adds one series of potential and resistor for excitatory spikes and one for
inhibitory spikes, as can bee seen in figure 2.2. The synaptic input current is then given by
equation 2.6, the behaviour of the conductance by equation 2.7. The conductances of the
additional resistors are calculated by a kernel specific to the synapse εn(t) and whether
the triggering spike was emitted by an inhibitory (n = inh) or excitatory (n = exc) neu-
ron. The conductance is scaled by a weight ωk determined by the synapse connecting the
postsynaptic neuron to the presynaptic neuron k. Keeping the assumption that the kernel
does not have a unit, for this model the ω has the unit Siemens:

Isyn = gexc(t)(Vexc − u) + ginh(Vinh − u), (2.6)

gn(t) =
∑

s

∑
k

ωkεn(t − tk,s), n ∈ {exc, inh}. (2.7)

As with previousmodels the membrane time constant can still be defined by equation 2.2,
but with this approach the quantity loses its physical meaning. To characterise the decay
of the membrane potential with this model, the effective membrane time τeff is introduced.
It still characterises an exponential decay of the membrane potential, but is calculated
according to:

τeff = Cm

gL + ge + gi
. (2.8)

This directly leads to the properties andmore importantly differences of this model to the
previously explained and more alike models. The dynamic range is limited by the excita-
tory and inhibitory potentials, while so far it has been theoretically unlimited. The effec-
tivemembrane time is not constant anymore, but depends on arriving spikes. The change
in membrane potential for arriving spikes is also not constant anymore but changes with
the state of the neurons membrane potential. Considering all of these aspects the transi-
tion from CUBA to COBA LIF neurons can not necessarily expected to be trivial.

2.2 Network Architecture

The network investigated for this thesis is randomly and sparsely connected. It was
adopted from Brunel (2000), where it was described and mathematically analysed.
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2.3. Network Behaviour Analysis

Vm

I(t)

VL

gL
Cm

Vexc

gexc

Vinh

ginh

Figure 2.2 Conductance based LIF neuronwith potentials Vi and adjustable conductances
gn(t), n ∈ {exc, inh}.

The network consists of N neurons, Nexc = 0.8N of which are excitatory and Ninh = 0.2N

inhibitory. The used neuron model is the δ-input based LIF neuron described in section
2.1.1. Each neuron is connected toC = Cexc+Cinh presynaptic neurons, withCexc = εNexc

excitatory and Cinh = εNinh inhibitory connections. For this thesis ε = 0.1.
The weight of these connections is determined by the parameters Jexc and Jinh = −gJexc,
where Jexc is the potential difference added to the membrane potential for an excitatory
spike, Jinh for an inhibitory spike. The parameter g determines how Jexc and Jinh relate
to one another. It is one of the two parameters used to influence the networks behaviour
and chosen between zero and eight for this thesis, as in Brunel (2000).
Additionally each neuron is connected to asmany external spike sources as it is connected
to excitatory neurons (Cext = Cexc external spike sources). All of them are excitatory and
their synaptic weights are equal to the synaptic weights of excitatory spikes inside the net-
work (Jext = Jexc). These sources are sending spikes according to a Poisson distribution
with a mean frequency νext that is calculated by equation 2.9. To calculate νext one needs
the threshold frequency νthr, which is defined as the minimal regular frequency a neuron
needs to receive excitatory spikes at, that will cause a neuron to reach its threshold in the
limit t → ∞, and η, the second parameter used to influence the network:

νext = ηνthr, (2.9)

νthr = Θ
JexcCexcτm

. (2.10)

The final parameter needed to characterise the network is the synaptic delay D that will
be chosen between 1.5 ms and 3.0 ms. A summary of all the networks parameters can be
found in table 2.1.

2.3 Network Behaviour Analysis

When analysing the behaviour of the networks in this thesis there are two aspects that
are taken into consideration. On the one hand one looks at the regularity of individual
neurons, describing how constant their firing rate is with respect to time. The mathemat-
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Chapter 2. Theory and Methods

Symbol Value Description
Θ 20 mV Threshold of the neurons

Vrest 0 mV Resting potential of the neurons
Vreset 10 mV Reset potential
Jexc 0.1 mV Weight for excitatory spikes
τm 20 ms Time constant of a neuron membrane
τref 2 ms Refractory time of the neurons
D 1.5 ms to 3 ms Synaptic delay
η 1 to 4 Parameter determining the external frequency
g 0 to 8 Relation between weight for excitatory

and inhibitory spikes

Table 2.1 Summary of the parameters of the original networkwith δ-input based neurons.

ical background is presented in section 2.3.1. On the other hand one is interested in how
the neurons are correlated to each other. This is further explained in section 2.3.2. The
techniques introduced in the following paragraphs differ from the approach to classify
the network used in Brunel (2000), where the networks are looked at analytically and the
classification of the networks, or more exactly the transition from one state to another, is
given by Hopf bifurcations.

2.3.1 Neuron Behaviour

The first quantity introduced to analyse the behaviour of a single neuron is the interspike
interval (ISI), defined as the time passed between two spikes of a neuron. To figure out
how regularly a neuron is firing the coefficient of variation (CV ), the ratio of the standard
deviation to the mean (see equation 2.11) is used:

CV (X) = σ(X)
µ(X)

. (2.11)

One advantage of this quantity is its normalisation to its mean. This allows a more mean-
ingful comparison between data sets with a wider variety of means. The disadvantage
that comes with this normalisation applies to data sets with a mean close to zero. In these
cases the CV is very sensitive to slight variations in the mean of the data sets, making a
comparison of their CV unhelpful.
The CV of the ISI of a single neuron then describes the regularity of a neuron, the mean
of all of the ISIs, CVISI, in a network is used to characterise the neuron behaviour in a
network.

8



2.4. Network Behaviour

2.3.2 Global Behaviour

The behaviour of all neurons combined, called global behaviour as of now, describes how
synchronous neurons are firing. In Brunel (2000) a networks synchronicity is determined
by its common instantaneous firing rate ν(t). The common instantaneous firing rate is de-
fined by the probability ν(t)dt of each neuron to emit a spike in the time interval t to t+dt.
A constant instantaneous firing rate ν(t) = ν means that all neurons are firing indepen-
dent of each other and are therefore uncorrelated and the network behaves asynchronous.
A synchronous network on the other hand is defined by a instantaneous firing rate ν(t)
varying over time.
To classify networks, an approach used for similar networks, for example in Potjans and
Diesmann (2012) was employed: a histogram of all spikes in the network is created and
theCV (see equation 2.11) of the bin heights is calculated. Employing the definition above
of synchronicity, the bins of a histogram of an asynchronous network can be expected to
be about equal height, while the bins of a synchronous network will display a lot more
variation. To account for differences in the the overall network activity, i. e. the mean
frequency a spike is emitted in the network, the CV seems to be a well equippedmeasure
for the global behaviour, as of now referred to as CVG.

2.4 Network Behaviour

With two states for each, the neuron and global behaviour (see section 2.3), there is a total
of four states the network can be in. According to Brunel (2000), these states are:

• In the synchronous regular (SR) state almost all neurons are firing simultaneously in
a few clusters. These clusters behave as oscillators, that can be seen in the global
activity. CVISI is small, CVG high.

• The asynchronous regular (AR) state presents with very regularly firing neurons as
well, but the neurons are firing independent of each other, leading to smallCVG and
CVISI values.

• Asynchronous irregular (AI) states manifest with stationary global activity and irreg-
ularly firing neurons. CVISI is high, CVG is small.

• Synchronous Irregular (SI) have oscillatory global activity and strongly irregular be-
having neurons. Both CVISI and CVG are high.
For high external frequencies the global oscillations are faster than for low external
frequencies. While this can qualitatively seen in the simulation data, it has not been
taken into consideration in the analysis of the simulated networks.

9



Chapter 2. Theory and Methods

Figure 2.3 The theoretically expected network behaviour for different delays D as func-
tions of the parameters g and η. The different regions are labelled as introduced
in section 2.4. The continuous lines are Hopf bifurcations between the different
states.

Under which circumstance these states are theoretically expected for a network build ac-
cording to the architecture described in section 2.2 are pictured in figure 2.3. An example
for each of these states is depicted in figures 3.3 and 3.4.

2.5 BrainScaleS System

As this thesis investigates possible differences in the behaviour of a network, when it is
simulated on classical computers versus when it is emulated on hardware, namely the
BrainScaleS system, the latter one is shortly introduced here.
The BrainScaleS system, developed at Kirchhoff-Institute for physics at Heidelberg Uni-
versity by the Electronic Vision(s) Group, is a system designed for the emulation of neuro-
morphic processes. The crucial part of the systems are wafers, each consisting of 384High
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2.5. BrainScaleS System

Input Count Analogue Neural Network (HICANN) chips, one of which contain 512 neurons
and 220 synapses for each neuron (Schemmel et al. 2010).
The emulation is done by a mixed-signal chip, the analogue part of which is responsi-
ble for emulating the membrane potential of a neuron and the synapses leading to it,
based on the Adaptive Exponential (AdEx) LIF neuron model, a simplified version of the
Hodgkin-Huxley-Model (Hodgkin and Huxley 1952), developed by Brette and Gerstner
(2005). The digital part of the chip is responsible for deciding which neuron receives
spikes fromwhich other neuron. With appropriately chosen capacities and conductances
(compare to equation 2.2), this hardware setup one second of a biological network can be
emulated 10.000 times faster.
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Chapter 3

Experiments and Results

The first part of this thesis focuses on simulating the network described in section 2.2 with
CUBALIF neurons and reproducing results fromBrunel (2000) (see section 3.1.1). The net-
work is then investigated on how it reacts to variation in neuron and synapse parameters,
their initial membrane potential in section 3.2.2, as well as the effect that is caused by us-
ing COBA LIF neurons when simulating the network in section 3.3. The final step is to
prolong the time it takes for the total change in membrane potential to happen in section
3.5. The final step is the transition to COBA LIF neurons in section 3.3. All of these effects
are discussed with respect to possible problems one will be facing when implementing
similar networks to the one in this thesis on BrainScaleS I.
The network is implemented using PyNN (Davison et al. 2009), a language used for im-
plementing neural networks on several simulating engines and neuromorphic hardware
(PyNN: documentation 2019). The simulations for this thesis use the simulation engine
NEST (Peyser et al. 2017).
Besides the neuron models, the only difference to section 2.2 incorporated in the imple-
mentation of the network is that all external input a neuron receives is coming from only
one source with mean frequency νext, sim = Cextνext. Since the input is still generated to
have a Poisson distribution this matches the input from combined multiple sources, that
will have in total a Poisson profile if they start with one in the first place (Grimmett and
Welsh 2014). It is however more efficient in computing time to reduce the sources for each
neuron to one random number generator.

3.1 CUBA LIF Neuron Network

For the transition from the original network (see section 2.2) to CUBA LIF neurons, neu-
rons with an exponential kernel are used:

εn(t) = ε(t) = exp
(

− t

τsyn

)
, n = {exc, inh}. (3.1)

This kernel has been chosen, because it is the fastest decreasing kernel supported by
PyNN, an important aspect when mimicking the behaviour of the δ-input based neurons.
Additionally the COBA LIF neuron model supported by BrainScaleS hardware also uses
an exponential kernel.
With this kernel, the synaptic time constant τsyn is introduced, describing how fast the
kernel, and therefore the current to the neuron, is decreasing with time. As a result of
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Chapter 3. Experiments and Results

this, the behaviour of a δ-input based LIF neuron will be most closely reproduced with
small synaptic time constants.
To calculate the weight, that causes a specific change ∆u in the membrane potential of
the neuron, the equation describing the membrane potential of a CUBA LIF neuron with
kernel 3.1 comes in handy (taken from Rudolph-Lilith, Dubois, and Destexhe (2012)):

u(t) = VL +
∑

s

∑
k

Θ(t − tk
s) τmτsyn,kωk

Cm(τm − τsyn,k)

exp
(

− t − tk,s

τm

)
− exp

(
− t − tk,s

τsyn,k

) .

(3.2)

Since a small synaptic time constant is necessary for mentioned reasons, the assumption
τsyn ≪ τm, togetherwith equation 3.2 leads to the following approximation for theweight
ω as a function of ∆u:

∆u ≈ τsynω

Cm
, (3.3)

⇒ ω ≈ ∆uCm

τsyn
, for τsyn ≪ τm. (3.4)

With the membrane time constant τm = 20.0 ms and the synaptic time constant set to
τsyn = 0.01 ms, the weight that causes a change in membrane potential of ∆u = 0.10 mV
should be about ω = 0.01 nA. This has been experimentally tested to be accurate to two
decimal places by simulating only one excitatory spike arriving at a neuron and reading
ot the change in maximal change in membrane potential.
The synaptic time constant is set to τsyn = 0.01 ms, since this allows almost the complete
change in membrane potential to happen within one simulation time step (dt = 0.1 ms).
The capacitance of the capacitor of the LIF neuron is set to 1.0 pF. Since the particular
value of the capacitor does not influence the networks behaviour, because synapticweight
scales with it according to equation 3.4, it has been chosen from one of the examples avail-
able on the PyNN webpage (PyNN: documentation 2019). An overview of the parameters
of the network can be found in 2.1, the additional parameters needed for the simulation
of the network with CUBA LIF neurons are listed in table 3.1. The parameters for the
simulation that have not yet been mentioned are discussed in section 3.1.2.

3.1.1 Reproduction of existing results

As a reference that the network is working properly the simulation from Brunel (2000),
see figure 3.1, was recreated, see figure 3.2. How the parameters needed for the analysis
of the network have been chosen is discussed in section 3.1.2
Looking at the results of the simulation, starting with the global behaviour (see figure
3.2a) one can see that, just as in figure 3.1, for 0.0 < g < 3.0 the network is behaving
synchronous for all investigated η values. In this area in plot 3.2a some spots are clearly
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3.1. CUBA LIF Neuron Network

Symbol Value Description
Cm 1.0 pF Capacitance of the neurons capacitor
τsyn 0.01 ms Synaptic time constant
gL 5.0 pS Conductance to the leak potentials
ω 0.01 nA Calculated synaptic weight
dt 0.1 ms Simulation time step
T 2000 ms Duration of the simulation

Table 3.1 Additional parameters used for the simulation of the network with CUBA LIF
neurons. The network parameters can be found in 2.1.

Figure 3.1 The simulated network behaviour by Brunel (2000) as functions of the param-
eters g and η.
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Chapter 3. Experiments and Results

brighter than other ones. This can be explained by the number of clusters that are built by
the neurons in the SR state. For a network in the SR state with two clusters, an example
can be seen in 3.3a, theCVG value is higher than for a networkwith three clusters, which is
due to the calculation of te CVG value. The CVG value for all parameter sets is CVG > 2.0.
It is also visible that in this area some spots are clearly brighter than For 3.0 < g < 3.7
there is a clear transition from synchronous behaviour to asynchronous behaviour, the
CVG value falls to CVG < 0.8. The transition takes place at g = 3.0 for η = 1 and then
shifts, linearly with respect to η, to g = 3.7 at η = 4.0.
This effect is also visible when looking at the neuron behaviour, which changes from reg-
ular firing states, where all states have CVISI < 0.5 to irregular firing ones along the same
transition line. The contrast of this transition is however much more subtle (see plot 3.2),
since the value of CVISI is increasing with further increase of g.
While the neuron behaviour keeps being irregular with a further increase in g for all η val-
ues, since CVISI is only increasing further, the global behaviour is more interesting. In the
upper right corner, i e. for g > 5.5 and η > 3.0, as well as for parameter sets with η = 1.0
and 3.8 ≤ g ≤ 5, the CVG value increases to CVG > 1.2, making the network again syn-
chronous. Together with the irregular neuron behaviour, the network is in these areas in
SI regimes.
In these SI regimes the values for CVG are not as high as in the SR regime, which is a re-
sult of the fact that the neurons are not firing in clusters any more, but in a irregular way
that leads to a oscillatory behaviour in the global activity, making the CVG value smaller.
This can be seen when comparing the global behaviour between figures 3.3b (SI network)
and 3.3a (SR network). While this means that the CVG values are not as high as in the SR
regime, it is still clearly distinguishable from the asynchronous behaviour. For a better
understanding of the states the network can be in according to section 2.4, in figure 3.3
and 3.4 each of the networks states is visualised, by plotting the spiking times of some
randomly selected neurons to visualise the neuron behaviour as well as the histogram
the histogram of the global behaviour that depicts the global behaviour.

3.1.2 Simulation and Characterisation Parameters

This section takes a look on how the parameters for the simulation and the analysis meth-
ods have been chosen.
Each network parametrisation is simulated for T = 2000 ms with simulation time steps
of dt = 0.1 ms. The simulation time accounts for the time the network needs to reach
its final state in which the individual neuron behaviour and global behaviour would not
change anymore. This process, as spot checks for several parameter sets, that are covering
all four network states, have revealed, could take up to 700 ms. To account for eventual
outliers a time buffer was added prior to the data that was used for the network analysis
which started at simulated time t = 1000 ms and ended with the end of the simulation at
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(a) Plot of the characteristic of the global activity CVG.
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(b) Plot of the characteristic of the neuron activity CVISI.

Figure 3.2 Plot of the characteristics of the network. In the area between 2.9 ≤ g ≤ 3.8
more data points have been recorded than for the other parts of the plot, since
this allows the depiction of the transition line between the different network
states more easily and recreating this transition line is one of the more interest-
ing parts of the plot.
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(a) Network in the Synchronous Regular (SR) state with CVISI = 0.00 and CVG = 2.76.
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(b) Network in the Synchronous Irregular (SI) state with CVISI = 1.34 and CVG = 1.24.

Figure 3.3 Examples for described synchronous states the investigated network can be
in. The upper part of each plot pictures the spiketimes of 40 randomly selected
neurons, while the lower part is the histogram also used for the global analysis,
calculated as described in the text. For both figures, 3.3a (g = 2.2, η = 2.2), and
3.3b (g = 8.0, η = 4.0), a delay of D = 1.5 ms has been used. Apart from these
settings the network parameters are set according to tables 2.1 and 3.1.
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(a) Network in the Asynchronous Regular (AR) state with CVISI = 0.59 and CVG = 0.71.
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(b) Network in the Asynchronous Irregular (AI) state with CVISI = 0.04 and CVG = 0.80.

Figure 3.4 Examples for described asynchronous states the investigated network can be
in. The upper part of each plot pictures the spiketimes of 40 randomly selected
neurons, while the lower part is the histogram also used for the global analysis,
calculated as described in the text. For figure 3.4b (g = 6.5, η = 1.9) a delay of
D = 1.5 ms has been used, for figure 3.4a (g = 1.0, η = 3.5) a delay of D = 2 ms.
Apart from these settings the network parameters are set according to tables
2.1 and 3.1.
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Chapter 3. Experiments and Results

t = 2000 ms. Having 1000 ms to analyse the network proved to be enough time for the
analysis methods to provide consistent results. This means that the network behaviour
would lead to the same result as seen in the previous section. For the simulation time
step smaller intervals between dt = 0.01 ms to 0.1 ms have been tested, which has lead to
consistent results, so the simulation time step is set to dt = 0.1 ms.
For the calculation of CVG, a histogram with respect to the temporal development, of all
the spikes is calculated (see section 2.3.2). Choosing a bin width dtb for the histogram,
several aspects have to be considered:

• The bin width should be a multiple of the simulation time step (dt = 0.1 ms), in
order to avoid artefacts when calculating the histogram.

• The bins have to be high enough to be distinguishable from background noise.

• The computation time.

To take the first aspect into consideration, the analysis was tested for bin sizes between
0.1 ms and 1.0 ms, with increments of 0.1 ms. For bin sizes dtb = 0.1 ms to 0.5 ms the pro-
duced results proofed to be consistent with one another. Looking at the second aspect,
bin sizes dtb ≥ 0.2 ms lead for every network to bins with at least 100 events, which is
considered to be enough. Since the computing time proved to be negligible, the bin size
is set to dtb = 0.2 ms. With this analysis method the results of Brunel (2000) for the global
behaviour can be reproduced (see section 3.1.1).
For the neuron analysis (see section 2.3.1) an important question that has to be asked is
whether calculating the mean of the individual neurons CVISI is a legitimate quantity to
characterise the network or not. This requires that the individual CVISI values are dis-
tributed around their mean, peaking at their mean value and that the standard deviation
of this distribution is reasonably small. This has been investigated for all network states
and in each case the distribution of the individual neurons CVISI values has been found
to match the requirements. In figure 3.5a one of this distributions is being shown. The
standard deviation for a network is shown in figure 3.5b. This makes it clear that the stan-
dard deviation σ of the individual neuron CVISI values is generally smaller than σ < 0.25.
Therefore taking the mean of the individual neuron CVISI values should be a well suited
measure.
In conclusion, both the analysis for the neuron behaviour and global behaviour is well
suited for this network.

3.2 Distributed parameters

Having a network that is working as expected, the next goal is to investigate how it is
going to react to varying parameters. So far all parameters have been set to one value for
the complete network, without any deviation at all. Since BrainScaleS is a mixed-signal
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(a) Exemplary distribution of individual neuron CVISI. The individual neurons CVISI are dis-
tributed around their mean (µ = 0.62) with a standard deviation of σ = 0.10. The distribu-
tion was taken from an irregular regime with parameters g = 6.0, η = 1.8, D = 1.5 ms. Other
parametrisations in the irregular regime lead to similar results.
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(b) The standard deviation for a complete parameter sweep of a network with delay D = 1.5 ms.

Figure 3.5 Testing the neuron behaviour analysis.
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chip, one has to expect some noise when setting network parameters, due to slight im-
perfections in the manufacturing process. This effect is approximated with a Gaussian
parameter distribution that has a standard deviation of 10 % for parameters describing
potentials and 20 % for temporal parameters (S. Schmitt: private communication). This
leaves the deviations of capacitor of the neurons to be determined. The accuracy of the
capacitors used in BrainScaleS hardware was investigated by D. Schmidt (2014) and was
in every case more accurate than 5 % of the capacity. As a result, the distribution of the
capacities has been conservatively approximated with a standard deviation of 5 % of the
total capacity. The network is investigated towards the effect these variations cause indi-
vidually and combined in section 3.2.2.
It is worth mentioning, that the delays of a network can not be configured, but are nev-
ertheless present, depending on the routes that neurons are connected with on the chip.
Therefore, it has been decided that the approach to simulate the effect by using a Gaussian
distribution of the delay parameter with a standard deviation of 20 % should still be used
for the investigation. Another parameter of the network that can not be set when emulat-
ing networks on BrainScaleS is the initial membrane potential. It is however still possible
to influence the initial membrane potential, for example by giving a strong initial stimu-
lus before the simulation starts or by only starting the simulation after enough time has
passed that all neurons are at rest. To take this into account, the next section discusses the
effect differently distributed initial neuron membrane potentials have on the behaviour
of the network.

3.2.1 Distributed Initial Parameters

So far, everything was done with a constant initial membrane potential for all neurons
u(t = 0 ms) = 10 mV. In this case the actual starting value should have no influence on
the network since every neuron receives a Poissonian input, that raises their membrane
potentials in a similar manner with only slight temporal variation.
Since BrainScaleS does only indirectly allow to influence the initial membrane potential, it
is more interesting to look at the network while varying initial membrane potentials. For
one, this was tested with a uniform distribution with varying width and with the differ-
ence that either all themembrane potentials have been smaller that the neurons threshold,
but also for the case that a part of the population was initialised with membrane poten-
tials above their threshold. This means that a part of the neuron population will emit a
spike immediately after the simulation started.
This setup was done in a similar fashion with a normal distribution, i. e. with a stan-
dard deviation starting at a few percent and going up to thirty percent, and with the
option that membrane potentials that would be initialised above the threshold are either
redrawn from the distribution or allowed to stay that way. The explicitly tested variations
are listed in table 3.2.
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3.2. Distributed parameters

Distribution µ σ Range
A uniform - - 0 mV to 20 mV
B uniform - - −70 mV to 20 mV
C uniform - - −30 mV to 50 mV
D normal 10 mV 4 mV -
E normal 20 mV 4 mV -
F normal 0 mV 20 mV -

Table 3.2 Overview of the investigated initial membrane potentials withmean µ and stan-
dard deviation σ for normal distributions and a range for uniform distributions
and cut off normal distributions. All normal distributions have been testedwith
a distribution that is cut off at the threshold value Vthr = 20 mV as well as one
that is open.

For all these initial membrane potential distributions the network behaviour stays the
same and all the characteristics are approximately constant. Only in the SR regime some
effect can be seenwhen using a distributionwhere about half of the neurons are initialised
with a membrane potential that is higher than the threshold vthr = 20 mV. With this ap-
proach, networks in the SR state can be influenced to reliably build two neuron clusters,
opposed to sometimes randomly building three or more (see figure 3.2a). This can exam-
platory be seen in figure 3.6a.

3.2.2 Distributed Neuron Parameters

This section investigates how the network reacts, when a variation is added to individual
neuron parameters as well as to a combination of them.
When adding the variations in table 3.3 to the neuron parameters individually, none of
these distortions do affect the states of the network enough to make it change its be-
haviour, except when looking at the delay D. This is shown in figure 3.7.
While there are some numerical differences in the characteristics of the neuron behaviour
and global behaviour, synchronicity and regularity is kept in all cases, except when vary-
ing the delayD. With this parameter the network behaviour in the SR state clearly changes
and the global behaviour becomes asynchronous. It is also the only case where the error
is visible in figure 3.7, meaning that for different seeds the CVG value is varying more,
making the network unstable for a distributed delay D. Since this is the only parameter,
that causes the networks behaviour to change significantly, it is investigated with more
details in section 3.2.3.
Despite the fact that the other parameters do not lead to changes in the overall network
behaviour, this does not necessarily hold when combining the variation for all these pa-
rameters. The effect on a network where every parameter is varied except the delay is
depicted in figure 3.8 and explicitly listed in the last column of figure 3.7. As it can be
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(a) Plot of the characteristic of the global activity CVG.
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(b) Plot of the characteristic of the neuron activity CVISI.

Figure 3.6 Exemplary plot for the CUBA LIF network with delay D = 1.5 ms and a dis-
tribution of the initial membrane potentials. In this case a normal distribution
with the range −30 mV to 50 mV was used.
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3.2. Distributed parameters

Parameter Value Standard deviation
Cm 1.0 pF 5 %
τm 20.0 ms 20 %
τsyn 0.01 ms 20 %
τref 2.0 ms 20 %
D 1.5 ms to 3.0 ms 20 %

Vrest 0.0 mV 10 %
Vreset 10.0 mV 10 %
Vthr 20.0 mV 10 %
ωexc 0.1 nA 10 %
ωinh 0.0 nA to 0.8 nA 10 %

Table 3.3 Overview of the standard deviation of the normal distribution each parameter
is tested with.

seen, this combination has the effect that the transition line between the SR regime for
values with g < 3 and the AI regime for g > 3 does not go up diagonally anymore, but
now the transition happens for all η values at around the same values of g. The transition
line is also not as clear as it is without distributed parameters, but it smears out a bit into
both regimes. This change in the transition line can be similarly found when looking at
the regularity of the network.
Another effect this combination of varied parameters has is, that for SI states the CVG

value drops so far that it can not really be distinguished from the asynchronous states
(see the last column of figure 3.7a). While there is still some increase in the CVG value
(see figure 3.7b) when looking at the areas where the maximal values reached are and can
barely be distinguished from asynchronous behaviour (see figure 3.7). A third mention-
able effect for this investigation is, that for small η values it appears to be more likely for
the SI regime to be built of three clusters instead of two. All of these effects can probably
be explained by the fact that the neuron parameters are distributed and therefore the neu-
rons are behaving in the slightly different ways, leading to less correlation and therefore
less synchronous behaviour (see section 2.3.2) in the network.

3.2.3 Distributed Delay

As mentioned in the previous section, distributing the delay D of a network is a special
case when varying individual parameters, since it is the only parameter variation that
leads to an actual change in behaviour on its own. To have a better understanding of this
effect, in figure 3.9 it is plotted how the different network states react to an increasing
standard deviation of the delay D. As it can be seen, the regularity of a network remains
largely unaffected except for a small increase in CVISI for AR states from CVISI = 0.04
to CVISI = 0.06 and a slight decrease of the regularity in the SI state form CVISI1.38 to
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(a) Plot of the effect distributed parameters have on the global behaviour CVG for each network
state.
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(b) Plot of the effect distributed parameters have on the neuron behaviour CVISI for each network
state.

Figure 3.7 Depiction of how the CUBA LIF neuron network reacts to distributed neuron
parameters. For each network state, the effect of adding a normal distribution
to each of the neuron parameters is investigated individually. The standard de-
viation for each parameter is the value in brackets behind the parameter. The
network parameters for the used different network states are: SI (D = 1.5 ms,
g = 8.0, η = 4.0), SR (D = 1.5 ms, g = 2.2, η = 2.2), AI (D = 1.5 ms, g = 6.5,
η = 1.9), AR (D = 2.0 ms, g = 1.0, η = 3.5). Additionally in the first col-
umn the characteristics for networks without distributed parameters is shown
for reference and in the last column the characteristics of a network where all
parameters are varied according to table 3.3, except for the delay. The values
shown in the plot have been calculated by running multiple simulations with
different seeds and calculating their mean and standard deviation, but the er-
ror bars are in most cases to small to be visible.
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(a) Plot of the characteristic of the global activity CVG.
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(b) Plot of the characteristic of the neuron activity CVISI.

Figure 3.8 Plot of a CUBA LIF neuron network behaviour with delayD = 1.5 ms in which
all neuron parameters are varied according to 3.3 except for the delay D.
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CVISI = 1.24. In both cases this does not effect the behaviour too much. For the AI and
SR state, the regularity stays approximately constant.
Regarding the change of synchronicity, the measured effects are more significant (see fig-
ure 3.9a). While for the SI and AI state, the synchronicity is unaffected by distributing the
delay D, for both the SI and AR state the CVG value decreases significantly. While for
AI states this means that the network behaviour stays asynchronous, the SI state loses its
synchronous behaviour and becomes asynchronous. The CVG value of the SR state drops
from around CVG = 2.8 to approximately CVG = 0.7. It is also apparent, that the only
case in which error bars are visible in figure 3.9a are for the SI state, especially for distri-
butions 0.1 < σ < 0.16. In this range the SI state is unstable in the way that with different
seeds the network randomly ends up in a synchronous behaviour or in a asynchronous.
When considering the synchronous regular (SR) state, (compare to 3.3a) one has several
clusters of neurons that are all firing simultaneously. Almost all neurons are part of one
of these clusters and the time between two clusters spiking is determined by the synaptic
delay. In case of two clusters for example the spikes emitted by one cluster will cause the
other cluster to spike and vice versa. This means that 3 ms pass between two spikes of
a cluster, a time that is necessarily bigger than the refractory time of the neurons. This
means, that the SR state is dependent on the synaptic delay, which suggests that it is
sensitive to variations of this parameter. The network is therefore expected to lose the
synchrony of the SI state, when the delay D of the Network is not fix anymore.

3.3 COBA LIF Neuron Network

To make another step towards the BrainScaleS system, the neuron model is changed to
COBA LIF neurons, since it is supported by the hardware, while CUBA LIF neurons are
not. To be more precise, the hardware can run simulations of COBA LIF neurons with an
exponentially decaying kernel:

εn(t) = Θ(t) exp
(

− t

τsyn

)
. (3.5)

3.3.1 Transfer of the Network

For the implementation of the networkwith COBALIF neurons, excitatory and inhibitory
potentials have to be set. For the simulation of the network, only relative differences in
the potential are of interest, since the values can be shifted as needed without having any
effect on the network itself. While this does not hold up for hardware simulations, due to
a limited range of potentials that can be set on the hardware, it was therefore focused on
these relative potential differences. This choice was oriented on examples from the Brain-
ScaleS guidebook (Andrew P. Davison et al. 2019), where a difference between excitatory
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(a) Plot of the characteristic of the global activity CVG.
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(b) Plot of the characteristic of the neuron activity CVISI.

Figure 3.9 Change in the CUBA LIF neuron network states in as function of increasingly
wider distributed delay D. The values shown in the plot have been calculated
by running multiple simulations with different seeds and calculating their
mean and standard deviation, but the error bars are in most cases to small to
be visible.
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(a) Plot of the characteristic of the global activity CVG.
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(b) Plot of the characteristic of the neuron activity CVISI.

Figure 3.10 Plot of a CUBA LIF neuron network behaviour with a distributed delay D
with standard deviation of 20 %.
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3.3. COBA LIF Neuron Network

Symbol Value Description
Cm 1.0 pF Capacitance of the neuron
τsyn 0.01 ms Synaptic time constant
Vexc 90 mV Excitatory potential
Vinh −70 mV Inihibitory potential
gL 5.0 pS Conductance to the leak potentials
ω 0.000 13 µS Calculated synaptic weight
dt 0.1 ms Simulation time step
T 2000 ms Duration of the simulation

Table 3.4 Additional parameters used for the simulation of the network with COBA LIF
neurons. The network parameters can be found in 2.1.

and inhibitory potential of 160 mV was used.
With this range in mind, the excitatory potential is set to Vexc = 90 mV and the inhibitory
potential is set to Vinh = −70 mV. This means that the reset potential Vreset = 10 mV
is in the middle of the two potentials. Similarly to the implementation of the network
with CUBA neurons (section 3.1), the synaptic weight for this setup is set in a way that
the membrane potential of a neuron, whose membrane potential is centred between the
excitatory and the inhibitory potential at u = 10 mV, changes its value according to the
network architecture by ∆u = 0.1 mV. The synaptic weight is experimentally deduced
to be ω = 0.000 13 µS, by simulating only one excitatory spike arriving at a neuron and
reading ot the change in maximal change in membrane potential. The setup of the net-
work is set in this way, because after each spike, when the neurons are reset to their reset
potential Vreset = 10 mV, the change in membrane potential is calibrated to this potential.
The simulation of a network according to this setup, the parameters are summed up in
table 3.4, leads to results that are compatible with the results of the CUBA LIF neuron net-
work without any parameter distributions. The results can be found in figure 3.11. When
comparing this figure to figure 3.2, the CUBALIF neuron networkwithout any parameter
distributions, the characteristics of the SR, SI, and AI regimes in the network stay approx-
imately the same. There is however a shift of these regimes happening. The transition
line from the SR regime to the AI regime now happens at 2.7 < g < 3.1. The SI regime in
the upper right corner starts at approximately g > 4.5 and η > 2.8, the SI regime for η = 1
is at 3.5 < g < 4.8. Possible reasons for these shifts are discussed in the next section.

3.3.2 Possible Influences on the Network

As it is explained in section 2.1, the transition from CUBA to COBA neurons is more
complicated than from δ-input based neurons to CUBA neurons. This suggests to do
some theoretical calculations, especially regarding the effectivemembrane time (equation
2.8) and how one can expect it to differ from the constant membrane time. The approach
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(a) Plot of the characteristic of the global activity CVG.
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(b) Plot of the characteristic of the neuron activity CVISI.

Figure 3.11 Plot of the characteristics of the network with COBA LIF neurons. In the area
between 2.6 ≤ g ≤ 3.2 more data points have been recorded than for the other
parts of the plot, since this allows the depiction of the transition line between
the different network states more easily and recreating this transition line is
one of the more interesting parts of the plot.
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3.3. COBA LIF Neuron Network

Symbol Value
gL 5.0 pS

gexc, ext 0.15 pS to 0.6 pS
gexc, int 0.15 pS to 6.0 pS
ginh, int 0.04 pS to 2 pS

Table 3.5 Comparison of the different occurring mean conductances in conductance
based neurons. gL is the mean conductivity of the LIF neuron, gexc, ext is the
mean conductivity caused by the external inputs, gexc, int is the mean conductiv-
ity caused by excitatory internal intputs, ginh, int is themean conductivity caused
by inhibitory internal intputs.

taken for this consideration is to calculate the mean effective membrane time. To do, so
equation 2.8 is rearranged to the following form:

τeff = Cm

gL + gexc, ext + gexc, int + ginh, int
, (3.6)

where a distinction between spikes coming from neurons in the network (int) and from
external sources (ext) was added. This was done because, while the spikes from external
sources follow a Poisson distribution, whichmakes themean a validmeasurement for this
quantity, the spikes in between neurons are, for synchronous global behaviour, expected
to be correlated. This means that at some times many spikes arrive at once at a neuron,
while at other times only few spikes other than the spikes from the external sources arrive
at the neuron. This could lead to a lot of spikes at one time and none at another point
in time, in total making the mean not a meaningful quantity. Since the purpose of this
calculation is only to estimate the effective membrane time, this should be good enough.
The mean of the leak resistor is given by gL = gL, the mean of the other terms gn is given
by the following equation:

gn = lim
T →∞

∫ T

0

1
T

∑
s

ωn exp
(

− t

τsyn

)
dt (3.7)

= νnωnτsyn, (3.8)

where ν is the mean frequency the corresponding spikes are arriving at the neuron. For
this network configuration, the individual neurons are spiking with a mean frequency in
the range of 400 Hz > νneuron > 10 Hz, where higher frequencies are obtained for small g

values and with an increase in g the frequency is decreasing. Together with the number
of connections of a neuron and with formula 2.9, the rate of the external input, this leads
approximately to the conductances given in table 3.5. As mentioned earlier, only the ex-
ternal input is reliably following a Possonian distribution, while spikes in between the
neurons might be correlated. This is especially true for the SR regime, i. e. where g < 3.5,
where the highest neuron spiking frequencies are reached. While these estimations may
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Membrane potential u ∆uexc ∆uinh

0 mV 0.12 mV 0.09 mV
5 mV 0.11 mV 0.10 mV
10 mV 0.10 mV 0.10 mV
15 mV 0.10 mV 0.11 mV
20 mV 0.09 mV 0.12 mV

Table 3.6 An overview of how the change in membrane potential changes with different
membrane potentials when using COBA neurons. The second row (∆uexc) lists
the potential changes for excitatory spikes, the third one (∆uexc) for inhibitory
spikes.

therefore not lead to the most reliable results, it follows that the effective membrane time
constant is to some degree smaller than the membrane time constant of the original net-
work architecture. Since a smaller membrane time constant leads to a faster decay of the
membrane potential u to its resting potential Vrest, this effect can be compared to the effect
higher inhibitory weight would have on the network and thereby shifting the network re-
gions to smaller g values, which is exactly what is seen in figure 3.11.
Another aspect that should be taken into consideration is how the change in membrane
potential is affected by the currentmembrane potential. For this, the change inmembrane
potential after a spike has beenmeasured for several membrane potential values between
u = 0 mV and u = 20 mV, the results are listed in table 3.6. What this means is, that if the
excitatory and inhibitory potentials are not centred around themeanmembrane potential
of a neuron, either inhibitory or excitatory spikes, whichever potential is has the bigger
difference to the mean membrane potential, will have effectively more weight than the
other spikes. This would therefore also lead to a shift along the g axis.

3.4 COBA LIF Network With Distributed Parameters

This section takes a look at what happens when the effects discovered in the previous sec-
tions are combined. This means that all parameters will be distributed according to table
3.3, including the delay D and that the network is based on COBA LIF neurons. Within
this setup, one expects that all synchronous behaviour of the network disappears, as the
synchronicity of the SR state decreases with the distributed delays D (see section 3.2.3)
and the synchronicity of the SI state decreases with the distribution of all the other pa-
rameters (see section 3.2.2).
This is exactly what is seen with this combination. As depicted in figure 3.12, the charac-
teristic for the global behaviour is in no case higher than CVG = 0.55, which is well in the
asynchronous behaviour as it became clear previously.
While this means that the regimes that behave synchronous in the original design have
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Synaptic time constant τsyn Synaptic Weight ω

0.01 ms 10.0 pA
0.1 ms 1.03 pA
0.5 ms 0.220 pA
1.0 ms 0.118 pA
1.5 ms 0.0823 pA
2.0 ms 0.0660 pA

Table 3.7 Summary of adjusted weights for different synaptic time constants with current
based neurons. The resulting total change in membrane potential is 0.1 mV in
each case. Each parameter was determined to three significant digits.

changed their behaviour a lot, looking at the asynchronous regimes, their behaviour did
not only stay unchanged, but the CVG value for the AI regime is only slightly lower
(∆CVG = 0.1) than it is discovered when looking at the standart CUBA LIF neuron net-
work. The asynchronous behaviour of the network is therefore quite stable with respect
to all changes applied to the network.
Looking at the regularity of the network, it is apparent that the increase in regularity does
not happen as rapid as in previous cases and that the initial ascend starts earlier. The
latter point is partly due to the transition line being shifted to smaller g values, as seen in
section 2.1.3. It also does not increase for high g and η values that can be seen in figure
3.2 but seems to be independent of η, which is expected to some degree as this effect was
already discovered in section 3.2.3. For the regularity this means that the regular states
of the network are widely unaffected by the changes made to the network, while for the
irregular states the CVISI is in general smaller than for networks without distributed pa-
rameters, but not small enough to be seen as regular. Thismeans that for both cases, while
the characteristics of the regularity may change a bit the overall behaviour stays the same.

3.5 Prolonged Synaptic Time

The synaptic time constant set for the initial reproduction τsyn = 0.01 ms was explicitly
chosen to resemble the original network, but is much smaller than the adjustable range on
BrainScaleS. On BrainSaleS synaptic time constants can not be much smaller than 2.0 ms
(S. Schmitt: private communication). Thus another necessary test on the network is the
change in behaviour when choosing larger synaptic time constants.
Theweight ω was adjusted for every synaptic time constant in a way, that the total change
in membrane potential still matched the wanted potential difference. This was done ex-
perimentally, by simulating only one excitatory spike arriving at a neuron and reading ot
the change in maximal change in membrane potential, since the accuracy of equation 2.2
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(b) Plot of the characteristic of the neuron activity CVISI.

Figure 3.12 Network with COBA LIF neurons and all parameters are distributed accord-
ing to table 3.3.
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decreases with greater synaptic time constants because the assumption τsyn = 2.0 ms ≪
τm = 20 ms is not true anymore. Tested synaptic time constants along with the adjusted
weight can be looked up in table 3.7.
Without changing any other parameters in the network than the synaptic time constant
τsyn and respectivly the synaptic weight ω else in the network, this leads to a decrease of
the CVG value for every network state (see figure 3.13a). But while this decrease is rela-
tively small for asynchronous states, about ∆CVG = 0.2 for AI states and ∆CVG = 0.15,
and also not leading to a change in the overall behaviour since they already are behaving
asynchronous, the effect on synchronous states is bigger. For SI states the longer synaptic
time leads to a drop of about∆CVG = 0.4 and for SR states of approximately∆CVG = 2.0.
As shown in figure 3.13a this means that the previously synchronous behaving states are
barely distinguishable from the asynchronous states when prolonging the synaptic time
constant to τsyn = 2.0 ms.
Regarding the neuron behaviour, the regularity stays approximately constant for SR, AI
and AR states, and drops about ∆CVISI = 0.5 for SI states (see figure 3.13b), which is
however not enough to change the behaviour of the network from irregular to regular.
The behaviour of the network with a synaptic time constant of τsyn = 2.0 ms is depicted
in figure 3.14. What can be seen when looking at the global behaviour at the area g < 3.5,
where for the standard network the SR regime has been, one can see that the CVG value is
distributed in the range 0.7 < CVG < 1.6, meaning that the global behaviour is unstable
in the area with sometimes behaving on a more synchronous way and most of the times
in a asynchronous one. This also explains the comparably large error bars depicted in
figure 3.13a for SR states.
The plot for the neuron behaviour (figure 3.14b) looks as expected, as it is only missing
the increase of the CVISI value, which is already discussed above.
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(b) Plot of the characteristic of the neuron activity CVISI.

Figure 3.13 Depiction of how the network reacts to prolonged synaptic time constants.
For each network state, the effect of prolonging the synaptic time constant
is investigated. The network parameters for each of the used networks are:
SI (D = 1.5 ms, g = 8.0, η = 4.0), SR (D = 1.5 ms, g = 2.2, η = 2.2), AI
(D = 1.5 ms, g = 6.5, η = 1.9), AR (D = 2.0 ms, g = 1.0, η = 3.5). The values
shown in the plot have been calculated by running multiple simulations with
different seeds and calculating their mean and standard deviation.
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Figure 3.14 Plot of a CUBA LIF neuron network behaviour with delay D = 1.5 ms and a
synaptic time constant of τsyn = 2.0 ms.
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Chapter 4

Discussion

With regards to the ongoing implementation of the Cortical Column Network (Potjans
and Diesmann 2012) on BrainScaleS I, this thesis investigates the effects the transition of
a network from software simulation to emulation on hardware are causing. This is done
because, due to imperfections in the manufacturing process, parameters on an analogue
chip are never going to be completely as expected and even with calibrations one will
not be able reach perfect results. For this thesis, these effects have been estimated with a
Gaussian variance, where the standard deviation for temporal parameters is set to 20 %
of the parameter value, for voltage parameters to 10 % and for capacities to 5 %. Other
aspects that are considered are how the network reacts to LIF neurons with either current
or conductance based synaptic models and how a change in the synaptic time constant
affects the network. This investigations are performed with the network described in
Brunel (2000), a network that shows close resemblance to some parts of the Cortical Col-
umn Network.

The first part of the thesis 3.1 concentrates on reproducing and verifying the results of
Brunel (2000) with software simulations. This is done successfully in section 3.1.1, all
network regimes are found where they are expected. Being able to reproduce existing
results has the advantage that possible mistakes in the implementation of the network
are minimised and the network works as it should do. On the other hand this reproduc-
tion produces a baseline of characteristics of the network which help comparing further
results with the network. Having some idea what to expect also helps with verifying that
the analysis methods are well suited to describe the networks behaviour, as discussed in
section 3.1.2.
The next part (section 3.2) investigates how the individual parameters of the network
react to variations and how different combinations of these variations influence the net-
work. Regarding differently distributed initial membrane potentials (see section 3.2.1),
the network behaves very stable with regards to all variations. While only looking at
the individual parameter variations, only the synaptic delay D had enough influence to
change a networks behaviour significantly, i. e. change its state. As it can be seen in sec-
tion 3.2.3, a distributed delay has a significant influence on the SR states of the network,
since almost all synchronous behaviour is lost. Varying all the remaining parameters at
once (see section 3.2.2) also lead to changes in the behaviour of the network. This time the
SI state was affected most significantly, while the other states keept their behaviour. The
SI state lost its synchronous behaviour in this case. Summarizing the change in global
behaviour, the variation of the parameters mosly affected the synchronous parts of the
network. The characteristics of the asynchronous parts of the networks have stayed ap-
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proximately constant, except when varying the delay D, where in the AR state the CVG

value decreased with higher standard deviations. During the implementation of the Cor-
tical Column Network (Potjans and Diesmann 2012), which is behaving asynchronous,
on BrainScaleS I this means that to keep the characteristics of the network constant, some
attention should be given to how the delay D is handled.
The transition of the neuron model from CUBA LIF neurons to COBA LIF neurons is in-
vestigated in section 3.3. While this transition does not change the network behaviour of
the different regimes of the network, the extent of the regimes changes and they are also
slightly shifted with the used parameters for the COBA LIF network. It may be possible
to counteract these effects to some extent, for example by choosing different excitatory
and inhibitory potentials for the COBA LIF neurons, but this has not been done as part of
this thesis. Apart from eventual corrections of the parameter for the network with COBA
LIF neurons, it has been shown that the transition to COBA LIF neurons works fine for
the network. With this in mind the transition for the Cortical Column Network should
work as well.
These individual results, i. e. having distributed neuron parameters and simulating with
COBA LIF neurons instead of CUBA LIF neurons have been combined and tested all at
once, with the expected result that especially the synchronous behaviour is sensitive to
the variations, while asynchronous behaviour could be reproduced with similar charac-
teristics at the expected places, once one takes the shift of the network regimes, due to the
transition to COBA LIF neurons into account.
The final investigation on how a prolonged synaptic time constant influences the investi-
gated network has been done separately, because this only affects networks, that have a
time constant that is not in the range of time constants achievable on BrainScaleS I. For the
investigated network that had naturally a very short synaptic time constant prolonging
the time constants did once again cause the network to lose its synchronous behaviour,
but also had measurable effects on the regularity. What has been left out for this case
is to investigate how the behaviour is influenced when using different synaptic weights.
This might be another interesting point to look at since this would mean that the mem-
brane potential experiences a bigger change immediately after the neuron has received a
spike.

Finally, Iwould like to talk aboutmyworking experience in the ElectronicVision(s)Group.
I have to admit that I was very shy when I started working with this group and that I
wanted to do anything on my own, without any help. This has lead to several problems
during this thesis that could have been solved a lot faster, or even avoided all together if
I had just asked for help. Once I allowed myself to go to other people for help, even if the
questionmight be stupid, it turned out that everyonewaswilling to help andwould not be
mad if the answer to my question was obvious. During my time with the group I learned
a lot about working as part of a big group, with many people specialising in several very
different topics, for example how important communication is for a successful project.
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Outlook

Sadly I have not been able to implement the network on hardware and actually test the
predictions from this thesis. Doing this could help by either confirming the results about
the change in behaviour of the network that have been made in this thesis or give clues
about which assumptions in this thesis are not valid.
One could also do some further research in the direction of changing the synaptic time
constant of a network without changing the overall behaviour too much. A step in this
direction has for example been done byKorcsak-Gorzo (2015), where a similar but smaller
network with a larger synaptic time constant was investigated.
The investigations in this thesis have been done with continuous synaptic weights. This
is fine for the scope of this thesis, but on BrainScaleS I this is not possible. The system
only allows for discrete synaptic weights (4 bits plus offset). The compatibility with these
discrete weights would not only pose an interesting research topic, but would also sup-
port the general goal of this thesis, to pave the way for the implementation of the Cortical
Column Network (Potjans and Diesmann 2012), which also has to deal with the problem
of modelling the network as originally described as good as possible with the available
weights.
Another point that is mainly affecting the Cortical Column Network is the size of the net-
work. To fit on one wafer, the cortical column has to be scaled down to approximately
5 % to 10 % of the original network (Weidner 2019).
There are several ways to scale down a network. One can for example just scale the neu-
ron size and leave the connection probability, the synaptic weights, the external input
and all the other parameter the same, but one can also adjust the synaptic weight and
or the external input by some factors. Depending on how much the network has to be
scaled down and which properties of the networks should be preserved (synchronicity,
regularity), different approaches should be used. For many specific cases, approaches for
scalability have been described in literature, for example one that might be interesting for
the Cortical Column network: Sacha Jennifer van Albada, Helias, and Diesmann (2015).
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