
Department of Physics and Astronomy

University of Heidelberg

Bachelor Thesis in Physics

submitted by

Jonas Weidner

born in Künzelsau (Germany)

2019

Experiment Visualization and Simulations towards a

Cortical Microcircuit on the BrainScaleS Neuromorphic

Hardware

This Bachelor Thesis has been carried out by Jonas Weidner at the

Kirchhoff Institute for Physics in Heidelberg

under the supervision of

Dr. Johannes Schemmel

2

Abstract This thesis is part of the long-term goal to run the cortical column

network by Potjans and Diesmann (2014b) on the BrainScaleS hardware system

of the Electronic Vision(s) group located at the University of Heidelberg. This

model was chosen because it is conceptually easy. It is wide spread in the field

of neuromorphic hardware and large scale neuromorphic simulations on high

performance computers, because it can reproduce biological brain activity.

To keep the results comparable, a simulation was implemented with the Nest

simulator and was compared to Potjans and Diesmann (2014b) and Albada

et al. (2018). The underlying code provides a solid foundation for the future

hardware implementation.

Moreover a hardware mapping analysis was done, showing that for a cortical

column network with a size of 10% of the original network on a single wafer,

only 5% of the synapses are not realizable.

Furthermore the web visualization of the BrainScaleS-1 system was improved,

amongst other things, by implementing synapses and their weights and by de-

creasing the loading times significantly.

Zusammenfassung Diese Arbeit ist Teil des langfristigen Ziels, das Cortical

Column Netzwerk von Potjans and Diesmann (2014b) auf dem BrainScaleS

Hardware System der Electronic Vision(s) Gruppe der Universität Heidelberg

umzusetzen. Dieses Modell wurde gewählt, da es konzeptionell einfach und

im Forschungsgebiet der neuronalen Hardware und der neuronalen Comput-

ersimulationen weit verbreitet ist, da es biologisches Verhalten des Gehirnes

reproduzieren kann.

Um die Ergebnisse vergleichbar zu halten wurde eine Simulation mit dem Nest

Simulator erstellt, welche mit Potjans and Diesmann (2014b) und Albada et al.

(2018) verglichen wird. Der zugrudne liegende Code bildet das Fundament für

die zukünftige Hardware Implementation.

Zudem wurde eine Hardware Mapping Analyse durchgeführt, welche gezeigt

hat, dass ein Cortical Column Netzwerk mit 10% der Orginalgröße auf einem

einzelnem Wafer mit 5% Synapsenverlust realisiert werden kann.

Des Weiteren wurde die Web Visualisierung des BrainScaleS-1 Systems

verbessert, indem unter anderem Synapsen und deren Gewichte implementiert

wurden und die Ladezeit wesentlich verkürzt wurde.

3

Contents

1 Introduction 6

1.1 General Motivation . 6

1.2 Neuronal Networks . 6

1.3 Cortical Column Network . 7

1.4 BrainScaleS-1 System . 9

1.5 Nest Simulation . 10

1.6 PyNN . 10

1.7 Placement and Routing on Hardware . 11

1.7.1 Different Mapping Algorithms . 11

1.8 Web Visualization . 12

1.8.1 Comparison to other Visualization Tools 13

1.8.2 Pixi.JS . 14

1.8.3 Emscripten . 14

1.8.4 Building Steps . 14

2 PyNN Reimplementation of the Cortical Column Network 16

2.1 Benchmark . 16

2.2 Hardware and Nest . 17

3 Mapping Results 17

3.1 Different Mapping . 17

3.2 Visualization of the Mapping . 20

4 Nest Simulation of the Cortical Column network 21

4.1 Mean Rates of all Populations . 21

4.2 Rate Distributions . 22

4.3 Irregularity . 24

4.4 Irregularity Distribution . 25

4.5 Synchrony . 27

5 Web Visualization 28

5.1 Functionality . 28

5.1.1 Synapse . 28

5.1.2 Synapse Type Indication . 28

5.1.3 Synaptic Weight . 29

4

5.2 Performance Improvements . 30

5.2.1 Identifying main Performance Bottlenecks 30

5.2.2 Improvements . 30

6 Outlook 31

6.1 Simulation . 31

6.2 Mapping . 31

6.3 Web Visualization . 32

7 Discussion 34

Bibliography 35

8 Acknowledgements 38

5

1 Introduction

1.1 General Motivation

The long-term goal is to run the cortical column network on the BrainScaleS-1 neu-

romorphic hardware platform. This model is a wide spread benchmark in the field of

neuromorphic computing. e.g. Albada et al. (2018), Cain et al. (2016), Merkt, Schüßler,

and Rotter (2019). Recently a real time implementation of the cortical column was im-

plemented on the SpiNNaker1 neuromorphic hardware (Furber et al. 2013), described in

Rhodes et al. (2019). Therefore different basic work has to be done. This thesis deals

with the simulation of the network and with the visualization of the mapping on the

BrainScaleS-1 hardware.

The simulation is important to compare the results to the hardware results. The goal

is to start with a fully functional simulation and then change all parameters to hardware

realistic ones (size of the network, synapse parameters, neuron parameters) while keeping

the overall results of the network constant.

On the other side we want to start with the hardware mapping from small networks

and scale up while improving the mapping algorithm.

The visualization is necessary in order to help experiment designers optimize their

network on hardware.

1.2 Neuronal Networks

Artificial neuronal networks are based on a brain inspired structure. In the following

only the abstract behavior is discussed.

The smallest unit is a neuron. In the model we used it can be seen as a node with

multiple inputs, one output and a scalar value, the membrane potential. If the mem-

brane potential reaches a threshold, the neuron spikes. A spike is parameterized just

by the point in time when it occurs. In addition to the explained model of Rosenblatt

(1985), neurons have way more parameters that specify the dynamical membrane po-

tential behavior. An example of membrane potentials of neurons located in the cortex

of a rat is shown in Figure 1a.

Synapses can be considered as the connections between neurons. Those can either

be excitatory or inhibitor, which means that they increase or decrease the membrane

potential of a target neuron if the source neuron sends a spike. Additionally they have a

scalar value indicating the weight of the connection and also other dynamical parameters.

1Spiking Neural Network Architecture

6

(a) (b)

Figure 1: (a) 32 neural signals of the cerebral cortex of a rat measured with an imple-

mented thread (left) by Musk and Neuralink (2019). It shows membrane potentials with

spikes. (b) Threads implemented in the cortical surface of a rat brain. Both images were

taken from Musk and Neuralink (2019).

A detailed explanation of different neuron and synapse models can be found in (Petrovici

2015).

1.3 Cortical Column Network

The cortical column is based on biological experiments. For example by Thomson et al.

(2002) measuring connection probabilities by using electrophysiological recordings of rat

and cat brains. This was done by implementing sharp electrodes into the brain similar

to the picture shown in Figure 1b.

The cortical column model was invented by Potjans and Diesmann (2014b) based

on biological experiments. It describes column of 1 mm2 of the cortical column of

a human brain. The network is built out of eight populations, shown in Figure 2a. A

population consists of 1,065 to 21,915 neurons. All populations are connected to all other

populations with a certain probability (allowing zero as probability), given in Potjans

and Diesmann (2014b, Tab. 5). In detail, it is the chance that two specific neurons of

different populations are connected.

7

The great achievement of Potjans and Diesmann (2014b) was to reproduce the bio-

logical behaviour by simulation. Because of the known biological results, the cortical

column network can be seen as a benchmark for simulation and neuromorphic com-

puting. Benchmarks are needed in this field to reach further improvements as recently

mentioned by Davies (2019).

The eight populations are assigned to four layers, which are called layer 2/3, 4, 5

and 6, as shown in Figure 2a. Each layer includes one excitatory and one inhibitory

population. Excitatory means that spikes sent from this population lead to a rise of the

membrane potential of the spike receiving target neuron. Spikes sent from an inhibitory

population decrease the membrane potential of the target neuron.

(a) Overview (b) Connections

Figure 2: (a) Illustration of a 1 mm2 cortical column network with about 80,000 neurons

and 300 Mio. synapses. The structure of the network was derived from multiple biolog-

ical experiments. It consists of four layers 2/3, 4, 5 and 6 with one excitatory and one

inhibitory population each. Excitatory external input and main internal probabilistic

connections are drawn. Figure taken from Albada et al. (2018, Fig. 1). (b) Visualization

of connections from source(left) to target(right) populations. Exact connection proba-

bilities can be found in Potjans and Diesmann (2014b, Tab. 5). Figure taken from Cain

et al. (2016, Fig. 1a).

8

1.4 BrainScaleS-1 System

The BrainScaleS-1 System is a neuromorphic hardware system developed by the Elec-

tronic Vision(s) group at the Kirchhoff-Institute for Physics at Heidelberg University

(BrainScaleS System - Neuromorphic Computer Coming Online 2016). The system is

shown in Figure 3b. It contains 20 silicon wafers shown in Figure 3a. Each wafer contains

384 HICANN2 chips, which are interconnected via an on-wafer network. A HICANN

chip consists of 512 neurons (256 in the upper and lower part each) and 220 synapses

per neuron. This adds up to four million neurons and one billion synaptic connections

for the whole system.

The spike input and output is handled by vertical connections linking all HICANN

chips to a set of 48 FPGA3s.

(a) Wafer with Controlling (b) 20 Built-in Wafers

Figure 3: BrainScaleS-1 - Neuromorphic Hardware System. Images were taken from

(Twitter Account of Electronic Vision(s) group 2019).

The neurons and synapses are realized with analog electronic circuits based on the

AdEx - LIF4 neuron model. This model is a simplification of the Nobel Prize winning

HodgkinHuxley neuron model by Hodgkin and Huxley (1952), which is based on four

differential equations. A detailed explanation is given by Naud et al. (2008). Inter wafer

spike communication is digital. Compared to biological timescales a similar emulated

neural network on the BrainScaleS-1 System is approximately 10,000 times faster.

2High Input Count Analog Neural Network Chip
3Field Programmable Gate Array
4Adaptive Exponential Leaky Integrate-and-Fire Neuron Model

9

1.5 Nest Simulation

With the NEST5 simulator it is possible to simulate a large variety of different spiking

neural networks. One can chose models out of a wide range of different neuron and

synapse models. For more details refer to Plesser et al. (2007). We use it to compare

the results to the neuromorphic hardware by using the Python interface PyNN (Davison

et al. 2009). We used Nest version 2.2.2.

1.6 PyNN

PyNN is a Python interface for common neuronal network simulators (Davison et al.

2009) (“PyNN Documentation” 2019). It offers a generalized python interface for the

BrainScaleS hardware, for the Nest simulation software and for other simulators.

In the following example, the Python code connects a source population with three

neurons to a target population with four neurons. All neurons of the source population

are connected to all neurons of the target population. The synaptic weight is 0.4. The

simulator can be chosen in the first line. Import ”nest” to make a Nest simulation or

”pyhmf” to run on the BrainScaleS hardware. A visualization is shown in Figure 4.

import nest or phymf as pynn

sourcePopulat ion = pynn . Populat ion (3)

ta rge tPopu la t i on = pynn . Populat ion (4)

conncetor = pynn . AllToAllConnector ()

synapse = pynn . Stat i cSynapse (weight = 0 . 4)

pynn . Pro j e c t i on (sourcePopulat ion , targetPopulat ion ,

connector , synapse)

5Neural Simulation Tool

10

Figure 4: Visualization of an All-to-All network described in section 1.6. Each of the

three neurons of the source population (left, orange) is connected to all four neurons of

the target population (right, green).

1.7 Placement and Routing on Hardware

The network, specified in PyNN, has to be mapped on hardware. This is done by the

program marocco6. Therefore all specified neurons and synapses have to be placed on

hardware and need to be connected. There are a lot of different hardware properties

and limitations, making it a complex and non-trivial problem to solve. Hence, I want

to focus on finding the best mapping variables and algorithm for the cortical column

network.

1.7.1 Different Mapping Algorithms

To get more inputs on a model neuron, it is possible to merge multiple hardware neurons

to one model neuron. The size of the hardware neuron can be varied from 2 to 64.

The mapping is split into multiple parts. We focus on the placement, which places all

neurons and the routing, which connects them. The easiest placing algorithm is the so

called linear placer. It starts at a specified starting point and places one neuron after

another. Afterwards the routing algorithm connects them.

The ”byNeuron” placer also places one neuron after another, but it takes into account

that the neuron has to be connected to all of his already placed source and target neurons.

Therefore it checks if there are globally enough routes available between the HICANN

chips.

When placing a neuron, the ”constrained” placer checks if there are locally enough

synapses available to get all input. If this is not the case, the neuron is replaced at

6Mapping and Routing Software for the BrainScaleS-1 System

11

another location. The ”constrained” placer builds on the ”byNeuron” placer.

A very detailed explanation is given by Jeltsch (2014) in his PhD thesis. Major

improvements were made by Passenberg (2019) and by Klähn (2017).

1.8 Web Visualization

The BrainScaleS-1 System enables users to emulate neural networks on a hardware

system. The marocco mapping and routing software translates the network so that the

hardware can emulate it. Results of this mapping process can be visualized with the web

visualization software. Therefore a hardware run is therefore not required. It is enough

to just run the mapping. Figure 5 shows the user interface of the web visualization

software.

Figure 5: Web Visualization Software. On the left side is a list of the realized connections

between neurons. So called routes. All settings are located on the right. In the middle

one can see a zoomable wafer representation.

The purpose of the visualization is to show experimenters which regions of the wafer

are in use and how they interconnect. It is basically a 2D surface where one can zoom

in and out and switch the visibility of different elements on or off. Zooming in, one gets

a more detailed view on the neurons, synapses, connections and other elements on the

chip. This is shown in Figure 6.

The web visualization software was created by Richard Boell as part of his bachelor

thesis (Boell 2018) and is maintained by the Electronic Vision(s) group.

12

(a) Upper HICANN half (b) Upper HICANN half, background image

is turned of.

Figure 6: Web visualization zoomed into a HICANN-Chip with and without background

image is shown. The example from Section 1.6 is visualized, an All-To-All network from

3 to 4 neurons. The blue stripes symbolize the neurons. Only one connection is needed,

because all source neurons address all target neurons. The green line represents this

connection. The signal starts at a neuron (one of the blue stripes) and travels down

to the green line. From there it travels via the MergerTree to the right and up along

the green line. The green triangle is the synapse driver that connects the signal to the

synapse grid (the rectangle above the neurons). The used synapses are the few green

dots (top left). From there the signal goes back down to the target neurons, which are

also located on the same chip (blue stripes).

1.8.1 Comparison to other Visualization Tools

There are already different visualizations existing in the field of neuromorphic comput-

ing. The VIOLA software is a web based Nest visualization tool developed by Senk

et al. (2018). It provides different views on the result of layer simulated spiking neural

networks. The visualization tool developed by Nowke et al. (2015) focuses on large brain

like models. It links the Nest model directly to brain regions.

In contrast to the presented Nest visualization tools, we primarily wanted to have a

visualization, which is closer to hardware to reveal chip specific concerns.

This year, Rowley et al. (2019) presented their SpiNNTools software package. It

enables users to work with graphs, as shown in Figure 2a, on the SpiNNaker hardware

platform. A similar tool, to create graphs as shown by Passenberg (2019, Fig. 3.4), is

13

currently under development and will be included into the marrocco program.

As the HICANN chip has a unique design, so it also needs a special visualization tool.

1.8.2 Pixi.JS

PixiJS is an open source 2D WebGl graphics library (PixiJS 5 2019). It is used for the

2D wafer mapping web visualization. There are different ways to draw graphics on the

screen. The first way is to draw them as graphic objects. The other way is to generate a

texture out of a graphic object and draw them as a so called sprite object. The graphic

object is the right way for most objects in the web visualization. A comparison was done

by Boell (2018).

1.8.3 Emscripten

Emscripten is a tool to wrap C++ code to JavaScript. The main reason to use it, is to

reuse C++ code in the Web Visualization. Classes and functions are getting transferred

automatically, but they still have to be specified so that they can be used. The following

code shows how the class named marocco::results::Marocco and the function named

marocco::results::Marocco::load can be used in JavaScript as MaroccoInJavaScript

and loadInJavaScript.

EMSCRIPTEN BINDINGS (marocco r e su l t s){
emscr ipten : : c l a s s < marocco : : r e s u l t s : : Marocco >(”MaroccoInJavaScript ”)

. f unc t i on (” loadInJavaScr ip t ” , & marocco : : r e s u l t s : : Marocco : : load)

}

A more detailed explanation can be found in Boell (2018, Sec. 3.2).

1.8.4 Building Steps

The workflow is shown in Figure 7. The main part of the web visualization is written in

TypeScript (TypeScript 2019) and is transcompiled into JavaScript.

The marocco::results class contains all mapping results. This class can read and

write an XML7 results file, which is loaded into the web visualization. The marocco::results

class is reused in the web visualization. This is done by Emscripten (Emscripten 2019),

which rewrites the class in JavaScript. Compared to rewriting the code by hand in

TypeScript, this makes it way easier to maintain the code when changing something

in marocco. In the Electronic Vision(s) group it turned out that maintenance-intensive

programs will brake soon after the maintainer is gone.

7Extensible Markup Language

14

marocco::results
C++

Webvisu
JavaScript

Emscripten

Source Code
TypeScript

transcompile

Design
Experiment

Marocco
mapping

Results.xml

Run
on
HW

Draw

Figure 7: Building steps and usage of the web visualization software. At first, the

experiment has to be designed. The marocco mapping tool creates an XML results file

that can be run on the BrainScaleS-1 hardware. The web visualization can read the

same file. The source code is written in TypeScript and is translated into JavaScript.

To read the results file, the marocco::results class gets embedded into JavaScript via

Emscripten (Emscripten 2019).

15

2 PyNN Reimplementation of the Cortical Column Network

We already had some code of the cortical column network from Albada et al. (2018).

Because of four different reasons we decided to reimplement the network in PyNN.

The first reason was that the already existing code was hard to understand and so it

would not be much faster to use it. Additionally, the idea was to get familiar with the

network and develop some intuition by writing the code on our own. Another point

is that we can focus on Nest and especially the BrainScaleS system and also include

the mapping process. Furthermore we can start from the original model Potjans and

Diesmann (2014b) and get independent results.

We decided to start with a light version that only contains the connections and the

mapping as benchmark for the marocco routing tool and for further improvements. The

other version, containing all specific neuron and synapse parameters, is used for the Nest

simulation and for hardware experiments simultaneously.

2.1 Benchmark

For the benchmark we implemented the eight populations, the internal connections

and the external input of the column network accordingly to Potjans and Diesmann

(2014b, Tab. 5), in PyNN (Davison et al. 2009). To realize the internal connections

we chose the pyNN.FixedProbabilityConnector. In Figure 8 it is compared to the

pyNN.FixedTotalNumberConnector, which was not working and had to be implemented

manually.

(a) PyNN Fixed Probability Connector (b) PyNN Fixed Total Number Connector

Figure 8: Visualization of two PyNN Connectors. The source population (left, orange,

3 neurons) connects to the target population (right, green, 4 neurons). (a) Each source

neuron connects to every target neuron with a certain probability (50% in this case). (b)

The total amount of connections is fix (6 in this case). Compared to (a) it can happen

that two neurons are connected multiple times.

As external input we chose the row named ”(reference)” from Potjans and Diesmann

16

(2014b, Tab. 5). A PyNN.FixedNumberPostConnector, which connects all target neurons

to a fixed number of source neurons from a virtual external input population, realizes

the external input.

2.2 Hardware and Nest

Compared to the benchmark implementation, we focused on the Nest version at first. We

added the synaptic weights and delays, as well as the neurons as current based neurons

with all parameters accordingly to (Potjans and Diesmann 2014b, Tab. 5). This neuron

was chosen, knowing that it has to be replaced with a conductance based one, which is

implemented on the BrainScaleS hardware. The reason for that is that they are quite

similar and we wanted to reproduce the results of (Potjans and Diesmann 2014b) before.

It turned out that the fixed probability connector assumes that each neuron in the

source population is connected to each neuron of the target population with the given

probability. In contrast, (Potjans and Diesmann 2014b) meant the probability that two

neurons of the different populations are connected, which differs in total connections by

about 10%. For the Nest simulation this was corrected by calculating the total amount

of connections (Potjans and Diesmann 2014b, Eq. 1,2). More details can be found in

(Potjans and Diesmann 2014a, Sec. 1). With that both connectors were implemented.

Comparisons of the realized connections showed that the difference between the different

connectors is very small. This might be helpful later. We can choose the one that fits

better on hardware.

The external input mechanism was changed to get an individual input for each neuron

by a PyNN.OneToOneConnector from the virtual external input population to each pop-

ulation. The reason therefore is that all neurons get input. The virtual external input

population emits Poisson distributed spikes.

These changes are no problem for the benchmark, because it is only a small difference

and we focus on the relative changes in different mapping algorithms. Furthermore, for

the final column network on the hardware, there will change a lot after implementing

the right scaling behaviour.

3 Mapping Results

3.1 Different Mapping

For all mapping analysis we used the benchmark version of our cortical column PyNN

implementation. Thereby we assumed to have a perfect wafer, meaning all components

17

are working. Via calibration not working components can be blacklisted and can be

considered later in the mapping process. For a better comparison we chose to stick to a

perfect wafer for the mapping tests.

In Figure 9 different mapping algorithms are compared. The amount of lost synapses is

compared to the network size. As there is no working scaling algorithm yet, we mapped

a smaller network by linearly scaling down the amount of neurons per population and

keeping the connection probability the same.

As already mentioned, hardware neurons can be connected to get more input. The

maximum size is 64. With previous testing we found out that 4, 8 and 16 are the best

sizes. This makes sense because all of the 64 hardware neurons can be used.

2 4 6 8 10
Size Compared to the Original Model in %

0

10

20

30

40

50

Re
la

tiv
e

Sy
na

ps
e

Lo
ss

es
 in

 %

N_Size: 16 Placer: byEnum
N_Size: 16 Placer: byNeuron
N_Size: 16 Placer: constrained
N_Size: 4 Placer: byEnum
N_Size: 4 Placer: byNeuron
N_Size: 4 Placer: constrained
N_Size: 8 Placer: byEnum
N_Size: 8 Placer: byNeuron
N_Size: 8 Placer: constrained

12 48 108 192 300
Amount of total Synapses in 10,000

Figure 9: All not realized connections (synapse losses) of different mapping algorithms

are compared to the network size in total synapses and relative to the original model

of Potjans and Diesmann (2014b). Different hardware neuron sizes and placement algo-

rithms are used.

The best result that we can get is a 5% loss with network size of 10%, as shown in

Figure 9. This results in about 130,000 used neurons of about 200,000 available ones.

Of the available 41 Mio. synapses 3 Mio. are occupied.

18

The most important factor is the hardware neuron size. It turned out that a mapping

with 16 hardware neurons per model neuron is the optimum case. Additionally the

network would not fit on one wafer with a network size of 10% and a hardware neuron

size of 32, as it would take twice as many hardware neurons in total. A hardware neuron

size of 20, which is the largest neuron size fitting three neurons on one neuron block,

was tested as well.

The ”constrained” placer has the fewest losses. This was expected, as it includes

the ”byNeuron” placer. But with a neuron size of 16 the difference between those two

placers is small because of the already large amount of possible input synapses per model

neuron.

It still might still be better on a realistic wafer to use smaller hardware neurons. This

would lead to a smaller network on the chip and would leave more spare components for

eventually blacklisted components.

In Figure 10 the distribution of synapse losses over all population connections is shown.

It turns out that the loss is equally spread. As mainly the whole populations are regarded

in the network analysis, it is also important that those receive equal synapse losses, which

is also given. This is important to receive the same results as Potjans and Diesmann

(2014b). It is assumed that small equally distributed losses can be compensated by

larger synaptic weights.

This mapping analysis should not be considered as a precise statement of how large

the cortical column network can be realized on a single wafer, but rather as a rough

estimation. As we have not considered blacklisting we will get more losses, but the real

scaling algorithm will also affect the mapping.

19

23
e-

23
e

23
i-2

3e
4e

-2
3e

4i
-2

3e
5e

-2
3e

5i
-2

3e
6e

-2
3e

6i
-2

3e
ex

t.-
23

e
23

e-
23

i
23

i-2
3i

4e
-2

3i
4i

-2
3i

5e
-2

3i
5i

-2
3i

6e
-2

3i
6i

-2
3i

ex
t.-

23
i

23
e-

4e
23

i-4
e

4e
-4

e
4i

-4
e

5e
-4

e
5i

-4
e

6e
-4

e
6i

-4
e

ex
t.-

4e
23

e-
4i

23
i-4

i
4e

-4
i

4i
-4

i
5e

-4
i

5i
-4

i
6e

-4
i

6i
-4

i
ex

t.-
4i

23
e-

5e
23

i-5
e

4e
-5

e
4i

-5
e

5e
-5

e
5i

-5
e

6e
-5

e
6i

-5
e

ex
t.-

5e
23

e-
5i

23
i-5

i
4e

-5
i

4i
-5

i
5e

-5
i

5i
-5

i
6e

-5
i

6i
-5

i
ex

t.-
5i

23
e-

6e
23

i-6
e

4e
-6

e
4i

-6
e

5e
-6

e
5i

-6
e

6e
-6

e
6i

-6
e

ex
t.-

6e
23

e-
6i

23
i-6

i
4e

-6
i

4i
-6

i
5e

-6
i

5i
-6

i
6e

-6
i

6i
-6

i
ex

t.-
6i

0

1

2

3

4

Sy
na

ps
es

1e5 Realized and Lost Synapses ordered by the Target Population
Lost Synapses
Realized Synapses

Figure 10: Loss distribution of all internal and external connections of the best mapping

result of Figure 9. The network size is 10%, the hardware neuron size is 16 and the

”constrained” placer is used.

3.2 Visualization of the Mapping

In Figure 11, a cortical column network with a size of 10% is visualized in the web

visualization. A hardware neuron size of 16 and the ”constrained” placer were chosen.

This setting is currently the cortical column network with the fewest losses as shown in

Figure 9.

It is shown that about 70% of the wafer is used by the cortical column network. If

this could be implemented on hardware, it would be a great achievement. As shown in

Figure 11, there is still some space on the left. It might be possible to use this space as

well, but loss will rise in this case because of increasing difficulty to connect the neurons.

This is also a good example of how the web visualization can help during the mapping

process.

20

Figure 11: Web visualization of 10% of a cortical column network. The best mapping

(Figure 9), containing the ”constrained” placer and a hardware neuron size of 16, with

5% loss is shown. The selected routes (right) indicate the used HICANN chips.

4 Nest Simulation of the Cortical Column network

In the following the different behaviors of the cortical column networks are compared to

the results of Potjans and Diesmann (2014b) and Albada et al. (2018).

4.1 Mean Rates of all Populations

The spike rates of all populations are shown in Figure 12. They were compared to

different random seeds for the normal delay and weight distributions of the synapses, as

well as for random external inputs. Moreover the rates from (Albada et al. 2018) and

from (Potjans and Diesmann 2014b, Fig. 6b) are plotted.

21

23e 23i 4e 4i 5e 5i 6e 6i
Populations

2

4

6

8

M
ea

n
Ra

te
 in

 H
z

Albada rates
Potjans rates
Seed1
Seed2
Seed3
Seed4
Seed5
Seed6
Seed7

Figure 12: Mean rates of all populations with seven different random seeds compared to

Albada et al. (2018) and Potjans and Diesmann (2014b, Fig. 6b). The simulation time

was 60s. The first second was not considered and all neurons of the populations were

measured.

First of all, one can see that the rates fit well to the results of Albada et al. (2018) and

Potjans and Diesmann (2014b). Additionally, it can be shown that the different random

seeds do not effect the mean rates much, accept for population 5e. This fits to Albada

et al. (2018, Fig. 6), which shows a similar behavior for different seeds as well.

Small differences appear in population 4i, 6e and 6i. This can be explained by the

different simulators and numerical difficulties. Even Potjans and Diesmann (2014b) and

Albada et al. (2018) differ a bit.

4.2 Rate Distributions

More detailed results of the population internal rate distributions are shown in Figure

13. Those results can be compared with Albada et al. (2018, Fig. 5d). The bin width

22

Bw was chosen with the rule of Freedman and Diaconis (1981).

Bw = 2
IQR(X)

3
√
n

(1)

X describes the sample, IQR the interquartile range and n the number of measure-

ments. For comparison we smoothed the histogram bins in the same way as Albada

et al. (2018, Sec. 2.4) did. Therefore we used the scipy.stats.gaussian kde function

with bandwidth 0.3Hz to perform a Gaussian kernel density estimation.

0 5 10 15 20 25
Rate in Hz

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
un

ts
 N

or
m

ed
 to

 1

23e Smooth (0.8 +-2.0)Hz
23i Smooth (3.0 +-4.8)Hz
23e Bins
23i Bins

(a) Population 2/3

0 5 10 15 20 25
Rate in Hz

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Co
un

ts
 N

or
m

ed
 to

 1

4e Smooth (4.6 +-7.4)Hz
4i Smooth (6.3 +-8.3)Hz
4e Bins
4i Bins

(b) Population 4

0 5 10 15 20 25
Rate in Hz

0.00

0.02

0.04

0.06

0.08

0.10

Co
un

ts
 N

or
m

ed
 to

 1

5e Smooth (8.0 +-10.0)Hz
5i Smooth (9.0 +-10.6)Hz
5e Bins
5i Bins

(c) Population 5

0 5 10 15 20 25
Rate in Hz

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Co
un

ts
 N

or
m

ed
 to

 1

6e Smooth (1.7 +-4.9)Hz
6i Smooth (8.5 +-11.0)Hz
6e Bins
6i Bins

(d) Population 6

Figure 13: Spike rate distributions for all eight populations over all neurons of one random

seed sample. Blue describes the excitatory and orange the inhibitory population. The

mean rate and the standard deviation is shown in the legend. The bin width was chosen

with the Freedman and Diaconis (1981) rule and the smoothing is explained in Section

4.2. The same parameters as in (Albada et al. 2018, Fig. 5d) were chosen. The last 9s

of a 60s simulation were considered. In (a) and (d) the excitatory bins are very dense,

which explains the blue area.

23

Compared to (Albada et al. 2018, Fig. 5d), we get very similar results, as shown in

Figure 13. The main difference appears for population 4 and 5. Albada et al. (2018)

measure a narrower, but therefore a more right shifted, distribution.

The smoothed lines vary quite a bit from the bins. Especially the first bin, with a

rate of zero, seems way smaller than it is. On the other side, the smoothing provides a

better overview for very small bins as shown in Figure 13a and 13d. It is questionable

why Albada et al. (2018) chose a Gaussian kernel density estimation, as our bins do not

appear normal distributed, but rather exponentially decreasing.

4.3 Irregularity

The irregularity is a measurement of how irregular spikes of one neuron appear. There-

fore, the inter spike time intervals ISI of one neuron, the times between one spike and the

following, are considered. As measurement of the irregularity, the coefficient of variation

CV is defined equivalent to Potjans and Diesmann (2014b, Fig. 6c).

Cv =
σ(PISI)

µ(PISI)
(2)

PISI is the distribution of all ISI’s of one neuron. µ and σ characterize the mean and

standard deviation.

Intuitively, if the neuron spikes with a nearly constant rate, this leads to a small

standard deviation of the ISI’s and therefore to a small irregularity. The CV (PISI) of a

completely random uniform spike distribution, a Poisson distribution is equal to 1. For

more detail see (Gerstner et al. 2014, Sec. 7.3).

The mean of 1000 neurons CV ’s per population for a simulation time of 60 seconds is

shown in Figure 14.

24

(a)

0.0 0.2 0.4 0.6 0.8
Irregularity

6i

6e

5i

5e

4i

4e

23i

23e

Po
pu

la
tio

ns

(b)

Figure 14: Irregularity of all populations of the cortical column network. (a) Results

of Potjans and Diesmann (2014b, Fig. 6d). Dark stands for excitatory and bright for

inhibitory populations. (b) Our Results. Measurements were taken from 1000 neurons

per population. The simulation time was 60s, where the first second was not considered.

Compared to Potjans and Diesmann (2014b, Fig. 6d) we get very similar results. The

irregularity is close to one, which is close to a Poisson process. For the last populations,

the irregularity is a bit smaller, but this can be explained with statistical and numerical

variations.

4.4 Irregularity Distribution

The CV distributions are inspired by Albada et al. (2018, Fig. 5e). Our comparable

results, with the same parameters, are shown in 15. Compared to the rate distributions

(4.2), the smoothing Albada et al. (2018) did, was not applied, as the bins, calculated

with Equation 1, already have a smooth size. Additionally it is easier to see the first

bin, which contains all neurons spiking exactly twice. As two spikes only have one inter

spike time interval (ISI), the coefficient of variation (CV) is zero (Equation 2). Because

of the inclusion of the first bin by Albada et al. (2018), we also plotted it for better

comparison.

25

0.0 0.5 1.0 1.5 2.0
CV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Co
un

ts
 n

or
m

ed
 to

 1

23e
(0.8 +-0.3)
23i
(0.8 +-0.2)

(a) Population 23

0.0 0.5 1.0 1.5 2.0
CV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Co
un

ts
 n

or
m

ed
 to

 1

4e
(0.8 +-0.2)
4i
(0.8 +-0.2)

(b) Population 4

0.0 0.5 1.0 1.5 2.0
CV

0.0

0.5

1.0

1.5

2.0

2.5

Co
un

ts
 n

or
m

ed
 to

 1

5e
(0.8 +-0.2)
5i
(0.8 +-0.2)

(c) Population 5

0.0 0.5 1.0 1.5 2.0
CV

0.0

0.5

1.0

1.5

2.0

2.5

Co
un

ts
 n

or
m

ed
 to

 1

6e
(0.8 +-0.3)
6i
(0.8 +-0.2)

(d) Population 6

Figure 15: Irregularity (Coefficient of Variation) distributions of inter spike times of all

eight populations. Blue describes the excitatory and orange the inhibitory population.

The mean and the standard deviation are shown in the legend. The same parameters

as chosen by Albada et al. (2018, Fig. 5e) were used. The simulation time was 60s,

but the first second was not considered. All neurons that have more than one spike

were measured. The bin width was chosen accordingly to the Freedman-Diaconis rule

explained in Equation 1. Compared to Albada et al. (2018), smoothing was not applied,

because the distributions are already recognizable.

26

Compared to Albada et al. (2018, Fig. 5e), Figure 15 shows that the first bin is usually

way larger in our results. This is caused by the smoothing process (explained in Section

4.2), Albada et al. (2018) used.

The relative differences between the excitatory and inhibitory distributions is similar

to Albada et al. (2018), as well as the absolute distributions of population 4 and 5.

The peaks of the irregularity distributions of population 2/3e, 2/3i and 6e are higher

compared to Albada et al. (2018). Those deviations can be explained by the statistical

and numerical variations.

4.5 Synchrony

Synchrony is a measurement for simultaneity of spikes of multiple neurons in one popu-

lation. Therefore, all spikes of all considered neurons in a certain time step t are counted.

The distribution of counts in all time steps is called PC(t). The synchrony S is defined

equivalent to Potjans and Diesmann (2014b, Fig. 6d) as the variation of PC .

S = var(PC) (3)

The synchrony of all populations of the column network is shown in 16

(a)

0 1 2 3 4
Synchrony

6i

6e

5i

5e

4i

4e

23i

23e

Po
pu

la
tio

ns

(b)

Figure 16: Synchrony of all populations of the cortical column network. (a) Results

of Potjans and Diesmann (2014b, Fig. 6d). Dark stands for excitatory and bright for

inhibitory populations. (b) Our results. Measurements were taken from 1000 neurons

per population. The simulation time was 60s and the time step t was 3 ms. The

measurement was started after one second.

27

The results of the synchrony plot differ from Potjans and Diesmann (2014b, Fig. 6d).

The main difference appears for population 5e. This population is the most fragile one,

which can also be seen in Figure 12, in Potjans and Diesmann (2014b, Fig. 8c) and in

Albada et al. (2018, Fig. 6). So it can partly be explained by statistical deviation.

Popualtion 4i, 5i, 6e and 6i match the results of Potjans and Diesmann (2014b).

A possible explanation might be the very important and small bin size of 3 ms com-

pared to the the simulation time step of 0.1 ms. Moreover, the measurement is specifically

depending on the simulation time, the amount of measured neurons and the mentioned

bin, making it hardly comparable.

5 Web Visualization

Before optimizing the web visualization, it was in a fluid and fast state for small networks

with up to about 100 connections. For larger networks it was very slow in the loading

phase and also choppy during zooming.

Therefore, different performance improvements were implemented, as well as addi-

tional functional features.

5.1 Functionality

5.1.1 Synapse

Synapses can be considered as the connection between neurons. The synapses from the

new web visualization are shown in Figure 17. They are located in the large rectangle

above the neurons, called synapse grid, as a simple rectangle. On the hardware they are

located at the same position. Additionally there is another synapse grid on the lower

half of the HICANN chip. The synapse color is the same as the color of the route for

better distinction.

5.1.2 Synapse Type Indication

Synapses are either excitatory or inhibitory. This describes the behavior of a spike at

the post synaptic neuron. To indicate this in the new web visualization a red/blue

rectangle is drawn on top of the synapse, signalizing an excitatory/inhibitory synapse.

A screenshot of the visualized synapse type is shown in Figure 17b.

28

5.1.3 Synaptic Weight

The synaptic weight defines how strong the impact of a spike from a certain synapse on

the membrane potential of the post synaptic neuron is. This means that a high weight of

an excitatory synapse leads to a higher membrane potential of the target neuron, which

leads to a higher probability of a spike from the target neuron. In the web visualization

the weight is indicated as the intensity of the blue or red color in the box on top of the

synapse that indicates the synapse type (Figure 17b).

(a) The upper half of the HICANN

chip is shown in the web visualiza-

tion. The green line indicates the

connection.

(b) 14 new synapses (green rectangle) and three synapse

drivers (triangle) are shown. The rectangle on top of the

synapse indicates the type (excitatory or inhibitory) by

color (red or blue) and the weight of the synapse by in-

tensity. The weight increases from left to right.

Figure 17: New web visualization of a network that connects one neuron to 126 other

neurons (blue stripes) with an excitatory and an inhibitory connection. The source

neuron is located in the left most blue stripe in (a). From there the spike travels along

the green line to the left and up to the synapse driver (green triangle) in (b). The

synapse driver sends the spike to the 126 inhibitory and 126 excitatory synapses. From

there the spike travels back down to the different neurons.

29

5.2 Performance Improvements

5.2.1 Identifying main Performance Bottlenecks

Before improving we had to find out which objects and functions cause the major per-

formance issues. This was done by inspecting different parameters like the used memory

and the frames per second by using the build in tools of the Firefox8 web browser. The

main investigation was done as part of my internship (Weidner 2019).

It turned out that the memory consumption causes the major performance problem.

It came from a lot of PixiJS graphic objects, especially for larger networks. Those were

used to build up the whole wafer. Due to the relatively large amount of synapses in a

typical network, those were the main performance limiters.

5.2.2 Improvements

At first we removed some unnecessary or doubled calculations. Moreover we set the

synapse grid, which was a white grid behind the synapses, invisible by default, because

it is not necessarily needed and contains a lot of graphic objects as well.

As mentioned before, synapses are the main problem. Therefore we chose a simple

style. Two rectangles were implemented, one shows the color of the route and the other

one signalizes the synapse type as shown in Figure 17b. To reduce the amount of graphic

objects, we combined all synapses of one route to one texture which is called sprite in

PixiJS. Therefore one cannot address them individually after they are drawn once, but

it increases the performance substantially.

For large networks we reached a memory reduction of about 30%. The main improve-

ment is a more fluid zooming. For the user experience this is more important than the

initial loading time.

8Firefox https://www.mozilla.org/de/firefox/

30

https://www.mozilla.org/de/firefox/

6 Outlook

6.1 Simulation

As already mentioned at the beginning, the overall goal is to get the cortical microcircuit

running on the BrainScaleS hardware. We could reproduce the major results from Al-

bada et al. (2018) and Potjans and Diesmann (2014b) in a new PyNN Nest simulation.

The PyNN script can now be modified to run on hardware. Therefore I recommend

to define three to five benchmark parameters that specify how good the network on

hardware fits the initial network behaviour of Potjans and Diesmann (2014b). Those

benchmark parameters can be derived from the rate distributions, the synchrony and

the irregularity. Furthermore they should quantify the current state of the network.

The following steps should all happen while keeping benchmark parameters as good

as possible. At first, the network should be scaled down to a size that fits on one

wafer, to about 5% to 10%. Then the synapses should be changed to conductance based

synapses, which are integrated, in the BrainScaleS-1 System. Afterwards all hardware

parameters should be simulated as real as possible. For example, the weights are only

discreetly adjustable (4 Bit and offset) and the delay depends on the distance on the

chip and might be faster even when reaching a multiple wafer cortical column network.

Furthermore, the jitter from hardware has to be simulated too. The synapses lost due

to the mapping can also be simulated. It might be possible to compensate the synapse

losses by increasing the synaptic weights.

Parallel, a simple version of the network should be implemented on hardware as soon as

possible to figure out yet unknown problems early. By continuously testing of hardware

and simulation with the defined benchmark parameters steady improvements can be

reached.

After the limits of one wafer are reached, the cortical column network should be

scaled back up again and a multiple wafer cortical column should be implemented. The

inter-wafer communication is still under development.

On the other side, the benchmark parameters are a good tool to verify the hardware

state by running the experiment nightly.

6.2 Mapping

The mapping is now in a state where about 10% of the whole cortical column network

can be mapped on a single wafer with about 5% synapse loss. It is assumed that it

does not matter much how many synapses are lost, but rather how the realized ones are

31

distributed over the populations. As this is quite equal in our case, this might be an

advantage.

After all hardware adaptions to the simulation it might be useful to manually improve

the mapping by varying different not yet tested placement parameters. At the moment

it makes no sense to do so, because it is assumed that there will change a lot until the

cortical column will run on hardware.

It also has to be considered that some parts of the BrainScaleS-1 Wafer are defect

due to different production issues. Via calibration, the not working components are

getting blacklisted, which becomes important concerning larger networks. The mapping

can use this blacklisting data to only use working components. The mapping with

blacklisting was not tested in this thesis. When doing so with the finally scaled network,

the distribution of the loss has to be tested again.

Because of hardware limitation, the absolute maximum size of a column network that

can be realized is 10 Mio. synapses on a single wafer. With the current scaling algorithm,

which might be changed, this leads to a cortical column network with 18% in size.

6.3 Web Visualization

There are still a lot of things that can be improved in the web visualization. The zooming

is still not perfectly fluid and the loading still takes too long. The synapses are currently

not drawn perfectly in the same size.

Especially for the cortical column network, but also for other large networks, it would

be nice to see which synaptic connection could not be implemented. Figure 18a shows

what this could look like. Moreover it would also be great to see not only lines but to

get statistical information about the losses, similar to Figure 10.

The next step would be to access the mapping via the visualization. With that it will

be possible to change the mapping by mouse and with a good overview.

Moreover results of experiments or even live experiments could be shown in the web

visualization. The activity of neurons and synapses could be displayed to really see what

happens on the chip. An example is shown in Figure 18b.

Additionally the web visualization should support multi wafer networks, as soon as

they are realizable, as well as future large scale chip layouts.

32

(a) (b)

Figure 18: (a) Example of what it could look like in the future to indicate not realized

synaptic connections between neurons in the web visualization by airlines. (b) Example

for experiment results in the visualization. Shown is the membrane trace of the neuron

in the mouse-hovered column.

In my opinion it would not make sense to design the whole experiment in this web

visualization, because it shows the mapped network on the chip, which does not reflect

the abstract network structure. Therefore another graphical tool would be nice, to make

the BrainScaleS system accessible for everybody. If realized, it would make sense to use

this abstract tool to create networks for other platforms like with PyNN.

Personally I think, a web based visualization software including all parts of the ex-

periment, from modeling over hardware mapping to plotting results, similar to google’s

TensorBoard (Mart́ın Abadi et al. 2015) for machine learning, should be the long term

goal.

33

7 Discussion

Several things were improved to realize the cortical column network from Potjans and

Diesmann (2014b) on the BrainScaleS hardware platform.

First of all, the mapping to the hardware was investigated. It turned out that a

network with about 3 Mio. synapses is mappable on one wafer chip, which is equivalent

to a cortical column network of 10%. Thereby it is important to mention that the

amount of needed synapses depends strongly on the not yet finished network size scaling

algorithm. Specific improvements can increase the realizable network size even further.

The results of the simulated cortical column network are similar to the ones of Albada

et al. (2018) and Potjans and Diesmann (2014b) and can serve as a good basis for further,

more hardware orientated, simulations. The small differences concerning the synchrony

and the rate distributions should be further investigated. In addition, the PyNN code

can also be used to run on hardware.

To the web visualization, I added various important information like synaptic weights

and types. The memory was reduced by about 30% leading to a more fluid zooming.

This helps to get a better overview of the mapped network.

I think it would be nice to have an easier way to get started in the Electronic Vision(s)

group. During my time here a few documentations for different software have already

been added, but some more basic and easier examples would be nice. As there are so

many confusing names of different hardware and software, it would be helpful to create

a short overview at one place.

In my opinion it is also quite hard for external users to run experiments on the Brain-

ScaleS hardware. In general, I think a very simple graphical interface to run small

networks on the hardware to lower the entry threshold for biologists and other inter-

ested people is worth aspiring. Thereby it has to be taken into account that compared

to software simulations neuromorphic hardware is way more complicated and specific,

but it also has big advantages in run time and energy consumption.

In conclusion, I can say that I enjoyed it a lot getting an introduction into the very

interesting field of neuromorphic computing.

34

Bibliography

Albada, Sacha J. van et al. (2018). “Performance Comparison of the Digital Neuromor-

phic Hardware SpiNNaker and the Neural Network Simulation Software NEST for

a Full-Scale Cortical Microcircuit Model”. In: Frontiers in Neuroscience 12, p. 291.

url: https://www.frontiersin.org/article/10.3389/fnins.2018.00291.

Boell, Richard (2018). “Visualization of Mapping and Routing of the BrainScaleS Sys-

tem”. Bachelorarbeit. Universität Heidelberg. url: http://www.kip.uni-heidelb

erg.de/Veroeffentlichungen/details.php?id=3760.

BrainScaleS System - Neuromorphic Computer Coming Online (2016). url: https:

//www.uni- heidelberg.de/presse/news2016/pm20160316- neuromorphic-

computer-coming-online.html.

Cain, Nicholas et al. (2016). “The Computational Properties of a Simplified Cortical

Column Model”. In: PLOS Computational Biology 12.9, pp. 1–18. url: https:

//doi.org/10.1371/journal.pcbi.1005045.

Corporation, Mozilla (2019). Firefox. url: https://www.mozilla.org/de/firefox/.

Davies, Mike (2019). “Benchmarks for progress in neuromorphic computing”. In: Nature

Machine Intelligence. url: https://www.nature.com/articles/s42256-019-

0097-1.

Davison, Andrew et al. (2009). “PyNN: a common interface for neuronal network simula-

tors”. In: Frontiers in Neuroinformatics 2, p. 11. url: https://www.frontiersin.

org/article/10.3389/neuro.11.011.2008.

Emscripten (2019). url: https://emscripten.org.

Freedman, David and Persi Diaconis (1981). “On the histogram as a density estimator:L2

theory”. In: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 57.4,

pp. 453–476. url: https://doi.org/10.1007/BF01025868.

Furber, Steve et al. (2013). “Overview of the SpiNNaker System Architecture”. In: Com-

puters, IEEE Transactions on 62, pp. 2454–2467.

Gerstner, Wulfram et al. (2014). Neuronal Dynamics - From single neurons to networks

and models of cognition. url: https://neuronaldynamics.epfl.ch/online/

index.html.

Hodgkin, Alan L. and Andrew F. Huxley (1952). “A quantitative description of mem-

brane current and its application to conduction and excitation in nerve”. In: The

Journal of Physiology. url: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC1392413/.

35

https://www.frontiersin.org/article/10.3389/fnins.2018.00291
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3760
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3760
https://www.uni-heidelberg.de/presse/news2016/pm20160316-neuromorphic-computer-coming-online.html
https://www.uni-heidelberg.de/presse/news2016/pm20160316-neuromorphic-computer-coming-online.html
https://www.uni-heidelberg.de/presse/news2016/pm20160316-neuromorphic-computer-coming-online.html
https://doi.org/10.1371/journal.pcbi.1005045
https://doi.org/10.1371/journal.pcbi.1005045
https://www.mozilla.org/de/firefox/
https://www.nature.com/articles/s42256-019-0097-1
https://www.nature.com/articles/s42256-019-0097-1
https://www.frontiersin.org/article/10.3389/neuro.11.011.2008
https://www.frontiersin.org/article/10.3389/neuro.11.011.2008
https://emscripten.org
https://doi.org/10.1007/BF01025868
https://neuronaldynamics.epfl.ch/online/index.html
https://neuronaldynamics.epfl.ch/online/index.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/

Jeltsch, Sebastian (2014). “A Scalable Workflow for a Configurable Neuromorphic Plat-

form”. PhD thesis. Universität Heidelberg. url: http://www.kip.uni-heidelber

g.de/Veroeffentlichungen/details.php?id=3052.

Klähn, Johann (2017). “Training Functional Networks on Large-Scale Neuromorphic

Hardware”. Master. Universität Heidelberg. url: http://www.kip.uni-heidelbe

rg.de/Veroeffentlichungen/details.php?id=3641.

Mart́ın Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. Software available from tensorflow.org. url: http://tensorflow.org/.

Merkt, Benjamin, Friedrich Schüßler, and Stefan Rotter (2019). “Propagation of orien-

tation selectivity in a spiking network model of layered primary visual cortex”. In:

PLOS Computational Biology 15.7. url: https://doi.org/10.1371/journal.

pcbi.1007080.

Musk, Elon and Neuralink (2019). “An integrated brain-machine interface platform with

thousands of channels”. In: bioRxiv. url: https://www.biorxiv.org/content/

early/2019/07/17/703801.

Naud, Richard et al. (2008). “Firing patterns in the adaptive exponential integrate-and-

fire model”. In: Biological Cybernetics. url: https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC2798047/.

Nowke, Christian et al. (2015). “Integrating Visualizations into Modeling NEST Simula-

tions”. In: Frontiers in Neuroinformatics 9, p. 29. url: https://www.frontiersin.

org/article/10.3389/fninf.2015.00029.

Passenberg, Felix Constantin (2019). “Improving the BrainScaleS-1 place and route soft-

ware towards real world waferscale experiments”. Masterarbeit. Universität Hei-

delberg. url: http://www.kip.uni- heidelberg.de/Veroeffentlichungen/

details.php?id=3914.

Petrovici, Mihai A. (2015). “Form vs. Function - Theory and Models for Neuronal Sub-

strates”. PhD thesis. Universität Heidelberg. url: https://www.springer.com/

de/book/9783319395517.

PixiJS 5 (2019). url: https://www.pixijs.com/.

Plesser, Hans E. et al. (2007). “Efficient Parallel Simulation of Large-Scale Neuronal

Networks on Clusters of Multiprocessor Computers”. In: Euro-Par 2007 Parallel

Processing. Ed. by Anne-Marie Kermarrec, Luc Bougé, and Thierry Priol. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 672–681.

Potjans, Tobias C. and Markus Diesmann (2014a). “Supplemental Material The cell-type

specific cortical microcircuit: relating structure and activity in a full-scale spiking

36

http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3052
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3052
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3641
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3641
http://tensorflow.org/
https://doi.org/10.1371/journal.pcbi.1007080
https://doi.org/10.1371/journal.pcbi.1007080
https://www.biorxiv.org/content/early/2019/07/17/703801
https://www.biorxiv.org/content/early/2019/07/17/703801
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798047/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798047/
https://www.frontiersin.org/article/10.3389/fninf.2015.00029
https://www.frontiersin.org/article/10.3389/fninf.2015.00029
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3914
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3914
https://www.springer.com/de/book/9783319395517
https://www.springer.com/de/book/9783319395517
https://www.pixijs.com/

network mode”. In: Cerebral Cortex. url: https://academic.oup.com/cercor/

article/24/3/785/398560#supplementary-data.

Potjans, Tobias C. and Markus Diesmann (2014b). “The Cell-Type Specific Cortical Mi-

crocircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model”.

In: Cerebral Cortex. url: https://doi.org/10.1093/cercor/bhs358.

“PyNN Documentation” (2019). In: url: http://neuralensemble.org/docs/PyNN/.

Rhodes, Oliver et al. (2019). “Real-Time Cortical Simulation on Neuromorphic Hard-

ware”. In: The Royal society - Philosophical Transactions A. url: https://arxiv.

org/abs/1909.08665.

Rosenblatt, Frank (1985). “The perceptron: a probabilistic model for information storage

and organization in the brain”. In: Psychological Reviews. url: http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf.

Rowley, Andrew G. D. et al. (2019). “SpiNNTools: The Execution Engine for the SpiN-

Naker Platform”. In: Frontiers in Neuroscience 13, p. 231. url: https://www.

frontiersin.org/article/10.3389/fnins.2019.00231.

Senk, Johanna et al. (2018). “VIOLA-A Multi-Purpose and Web-Based Visualization

Tool for Neuronal-Network Simulation Output”. In: Frontiers in Neuroinformatics

12, p. 75. url: https://www.frontiersin.org/article/10.3389/fninf.2018.

00075.

Thomson, Alex M. et al. (2002). “Synaptic Connections and Small Circuits Involving

Excitatory and Inhibitory Neurons in Layers 2-5 of Adult Rat and Cat Neocortex:

Triple Intracellular Recordings and Biocytin Labelling In Vitro”. In: Cerebral Cortex

12.9, pp. 936–953. url: https://doi.org/10.1093/cercor/12.9.936.

Twitter Account of Electronic Vision(s) group (2019). url: https://twitter.com/

brainscale.

TypeScript (2019). url: https://www.typescriptlang.org.

Weidner, Jonas (2019). Performance Increase of the Visualization Software for the Neu-

romorphic Hardware System BrainScaleS.

37

https://academic.oup.com/cercor/article/24/3/785/398560#supplementary-data
https://academic.oup.com/cercor/article/24/3/785/398560#supplementary-data
https://doi.org/10.1093/cercor/bhs358
http://neuralensemble.org/docs/PyNN/
https://arxiv.org/abs/1909.08665
https://arxiv.org/abs/1909.08665
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
https://www.frontiersin.org/article/10.3389/fnins.2019.00231
https://www.frontiersin.org/article/10.3389/fnins.2019.00231
https://www.frontiersin.org/article/10.3389/fninf.2018.00075
https://www.frontiersin.org/article/10.3389/fninf.2018.00075
https://doi.org/10.1093/cercor/12.9.936
https://twitter.com/brainscale
https://twitter.com/brainscale
https://www.typescriptlang.org

8 Acknowledgements

I would like to thank...

... Dr. Johannes Schemmel for giving me the chance of working on this interesting

topic.

... my direct supervisor Eric Müller for introducing me to the group and for the

great support, as well as for prove reading my thesis.

... Sebastian Schmitt for reading my internship report.

... Hartmut Schmidt for helping me a lot with all the Nest and PyNN stuff and

also for prove reading my thesis.

... Felix Passenberg for all the mapping algorithms and explanations.

... Oliver Breitwieser, Jakob Kaiser, Malte Wehrheim, Philipp Dauer, Aron Leibfried,

Christian Mauch and Quirinus Schwarzenböck for answering all of my questions

and for the interesting discussions in the office.

... Daniel Lange for the overnight prove reading of this thesis.

... the rest of the Electronic Vision(s) group for the great working atmosphere.

... my girlfriend for correcting many of my numerous spelling mistakes and overall

for the moral support.

... my family and friends for the great support during my whole studies.

38

Statement of Originality (Erklärung)

I certify that this thesis is the product of my own work and no other than the cited

sources were used.

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 7.10.2019

Jonas Weidner

39

	Introduction
	General Motivation
	Neuronal Networks
	Cortical Column Network
	BrainScaleS-1 System
	Nest Simulation
	PyNN
	Placement and Routing on Hardware
	Different Mapping Algorithms

	Web Visualization
	Comparison to other Visualization Tools
	Pixi.JS
	Emscripten
	Building Steps

	PyNN Reimplementation of the Cortical Column Network
	Benchmark
	Hardware and Nest

	Mapping Results
	Different Mapping
	Visualization of the Mapping

	Nest Simulation of the Cortical Column network
	Mean Rates of all Populations
	Rate Distributions
	Irregularity
	Irregularity Distribution
	Synchrony

	Web Visualization
	Functionality
	Synapse
	Synapse Type Indication
	Synaptic Weight

	Performance Improvements
	Identifying main Performance Bottlenecks
	Improvements

	Outlook
	Simulation
	Mapping
	Web Visualization

	Discussion
	Bibliography
	Acknowledgements

