Brain-Inspired Hardware
for Artificial Intelligence
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Summary

We showcase a mixed-signal neuromorphic chip with an acceleration factor of 1000 relative to biology and novel facilities for
synaptic plasticity. A fully on-chip closed-loop reinforcement learning experiment allows us to demonstrate the speed and energy-

efficiency of our neuromorphic emulation as compared to a digital simulation on an off-the-shelf CPU. Besides this, we demonstrate that
temporal noise can be used as a computational resource and that fixed-pattern noise can be implicitily compensated by learning. For
detailed results, we refer to [1].

/Background

Physical-model neuromorphic hardware

models using analog electronic circuits.

emulates the dynamics of neuron and synapse
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synapses can be produced using CMOS
technology.
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Such neuromorphic chips that contain neural
networks made up of electronic neurons and
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/Materials and Methods

with 32 synapses each.

chip spiking neural network for control and
reinforcement learning [1].
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We use a single-chip prototype of BrainScaleS 2
with 32 analog leaky integrate-and-fire neurons

The experiment simulates the Pong video game
using the embedded processor and uses the on-

1.5mm , 01234567893l

)
Prototype : '
Chib > = Playing
- Field
T ——
: =|
= State 00e
Acion ®0 0@ 0 ®
A T IR
07
Reward 0.4

~

The chip learns to map states to rewarded

Dependent Plasticity (R-STDP) [4]:
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actions using Reward-modulated Spike-Timing-
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Live-On-Tape Demonstration:
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/BrainScaleS 2

Heidelberg [2]. It features

biology,
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__ (65nm CMOS by TSMC)

BrainScaleS 2 (BSS2) is a neuromorphic plattorm developed in
* configurable analog neurons based on the AdEx model and
synapses with correlation sensors and short-term plasticity,

* a 1000-fold acceleration of neuronal dynamics relative to

* an embedded plasticity processor for flexible synaptic plasticity.
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BrainScaleS 1 wafer-scale system [3]
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Temporal noise on the
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neuromorphic chip causes trial-  simylation using NEST running
to-trial variability of firing rates, 5 an Intel CPU requires the

enabling action exploration and injection of noise for learning.
hence, learning.

The learning process Compared to the digital =~ Compared to the

turns a uniform into a simulation, BSS2 digital simulation,

diagonally-dominant  consumes at least three BSS2 is at least

weight matrix. orders of magnitude less  an order of
energy per iteration. magnitude faster.

An equivalent software
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