
0.0 0.2 0.4 0.6 0.8 1.0
Iteration # 1e5

0.0

0.2

0.4

0.6

0.8

1.0

M
e
a
n
 E

x
p

e
ct

e
d

 R
e
w

a
rd

BrainScaleS-2

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
ce

Inherent Noise

Performance

Mean Expected Reward

Brain-Inspired Hardware 
for Artificial Intelligence
Timo C. Wunderlich1,  Akos F. Kungl1, Eric Müller1, Johannes Schemmel1, Mihai A. Petrovici1,2

1: Kirchhoff Institute for Physics, Heidelberg University,  Germany; 2: Department of Physiology, University of Bern, Switzerland

Physical-model neuromorphic hardware 
emulates the dynamics of neuron and synapse 
models using analog electronic circuits.

Background

Such neuromorphic chips  that contain neural 
networks made up of electronic  neurons and 
synapses can be produced using CMOS 
technology.

BrainScaleS 2
BrainScaleS 2 (BSS2) is a neuromorphic platform developed in 
Heidelberg [2]. It features
• configurable analog neurons based on the AdEx model and 
synapses with correlation sensors and short-term plasticity,
• a 1000-fold acceleration of neuronal dynamics relative to 
biology,
• an embedded plasticity processor for flexible synaptic plasticity. 

Single-chip prototype
(65nm CMOS by TSMC)

BrainScaleS 1 wafer-scale system [3]

Materials and Methods

Summary
We showcase a mixed-signal  neuromorphic chip with an acceleration factor of 1000 relative to biology and novel facilities for 
synaptic plasticity. A fully on-chip closed--loop reinforcement learning experiment allows us to demonstrate the speed and energy-
efficiency of our neuromorphic emulation as compared to a digital simulation on an off-the-shelf CPU. Besides this, we demonstrate that 
temporal noise can be used as a computational resource and that fixed-pattern noise can be implicitily compensated by learning. For 
detailed results, we refer to [1].

We use a single-chip prototype of BrainScaleS 2 
with 32 analog leaky integrate-and-fire neurons 
with 32 synapses each.

Results

The experiment simulates the Pong video game 
using the embedded processor and uses the on-
chip spiking neural network for control and 
reinforcement learning [1]. 

The chip learns to map states to rewarded 
actions using Reward-modulated Spike-Timing-
Dependent Plasticity (R-STDP) [4]:
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Temporal noise on the 
neuromorphic chip causes trial-
to-trial variability of firing rates,  
enabling action exploration and 
hence, learning.

An equivalent software 
simulation using NEST running 
on an Intel CPU requires the 
injection of noise for learning.

Live-On-Tape Demonstration:

The learning process 
turns a uniform into a 
diagonally-dominant 
weight matrix.

Compared to the digital 
simulation, BSS2 
consumes at least three 
orders of magnitude less 
energy per iteration. 

Compared to the 
digital simulation, 
BSS2 is at least 
an order of 
magnitude faster.
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