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1 Objectives

Inspired by the recent success of deep learning [1],
several models emerged trying to explain how the
brain might realize plasticity rules reaching similar
performances as deep learning [2]. However, all of
these models consider only supervised and
unsupervised learning, where an external teacher is
needed to produce an error signal that guides
plasticity.

We introduce a model of reinforcement learning
with the principle of Neuronal Least Action
(R-NLA). We extend previous works on
time-continuous error backpropagation in
cortical microcircuits [3, 4] to achieve a
biologically plausible model implementing deep
reinforcement learning.

3 Intuition behind the so� WTA

The error vector arising from the self-nudging and
reward modulation is similar to a supervised error.

It can be shown that the self-nudging error
points approximately in the same direction as
the policy gradient error.

2 A time-continuous deep learning model

The neuro-synaptic dynamics is derived with
the Lagrange formalism using the Lagrange
function
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leading to neuron dynamics resembling a
leaky integrator:
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In the last layer the error vector ēN = βMr̄N
approximates the error of policy gradient, which
is then propagated to the deeper layers via
stereotypical microcircuits ēi = W T

i+1ēi+1.
The learning rule combines the notion of local
error correction, eligibility traces and reward,
forming a three-factor learning rule [5]:
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Ad hoc surprise-based homeostasis supports
the learning:
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4 Learning is robust against delayed reward

The time-continuous model performs
similarly well as a vanilla policy gradient
algorithm or an arti�cial neural network
based implementation.

The time-continuous model is robust
against delay in the reward even if the
reward is delayed:
I by one iteration
I by a random delay

tdelay ∼ Gamma
(
2, τiteration
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5 Conclusion

R-NLA unites several desired features
I time-continuous network dynamics
I No phases in the learning
I backpropagation based on local plasticity
I Self-teaching in the action layer (also compatible

with node perturbation)
I Robustness against delay in the reward

Check out related research on poster T7 from
Dominik Dold et. al.
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