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We consider the phase ordering dynamics of an isolated quasi-two-dimensional spin-1 Bose gas quenched
into an easy-plane ferromagnetic phase. Preparing the initial system in an unmagnetized anti-ferromagnetic
state the subsequent ordering involves both polar core and Mermin-Ho spin vortices, with the ratio between the
different vortices controllable by the quench parameter. Ferromagnetic domain growth occurs as these vortices
annihilate. The distinct dynamics of the two types of vortices means that the domain growth law is determined
by two macroscopic length scales, violating the standard dynamic scaling hypothesis. Nevertheless we find that
universality of the ordering process manifests in the decay laws for the spin vortices.

PACS numbers: 11.10.Wx 03.75.Lm 47.27.E-, 67.85.De

I. INTRODUCTION

Quenching a many-body system from a disordered into an
ordered phase leads to the formation of spatial field patterns
of linear and non-linear field excitations, including solitonic
waves, (quasi)topological defects, domain walls and more ir-
regular structures [1–4]. These patterns will consecutively
start to grow developing macroscopic order in the system.
The pattern size is generically given by a characteristic length
scale L, which is initially set by the quench and grows in the
course of the ordering process. Once it exceeds character-
istic microscopic length scales, the phase ordering typically
becomes universal such that it exhibits a power-law growth in
time as L(t) ∼ t β, with universal scaling exponent β.

Due to their rich phase diagram [5, 6] and their high
controllability in experiments, spinor Bose gases are ideally
suited for studying universal dynamics in quantum many-
body systems. Apart from experimental studies of short-time
dynamics following quenches between different phases [7, 8],
subsequent domain coarsening of spin textures, without refer-
ence to universal scaling, has been observed in the long-time
dynamics of a quasi-2D spin-1 system [9]. Universal scaling
with exponent β ' 1/2 has recently been observed experimen-
tally in a ferromagnetic spin-1 Bose gas in a near-1D geom-
etry [10]. Theoretical studies have shown that universal scal-
ing can occur in the ordering process of one- and quasi two-
dimensional (quasi-2D) spin-1 as well as binary Bose gases
after a parameter quench into an ordered phase [11–19].

Phase ordering kinetics and coarsening are commonly dis-
cussed in dissipative systems [3, 20–26], where the univer-
sal ordering process is characterized by the underlying dy-
namics of (quasi)topological excitations. Dissipative coars-
ening forms a special case of more general spatio-temporal
universal dynamical phenomena far from equilibrium which
can occur in both, open and isolated (quantum) many-body
systems [4, 27–29]. Following a quench far out of equilib-
rium, a system can in general approach a non-thermal fixed
point [10, 30–35]. Such fixed points have been discussed and
experimentally observed with [35–40] and without [10, 30–
33, 41–43] reference to ordering patterns and kinetics as well
as topological defects.

Here, we numerically study phase ordering dynamics in
an isolated quasi-2D spin-1 Bose gas after a quench into
the easy-plane ferromagnetic phase. Our key observation
is that by initializing the system in an unmagnetized anti-
ferromagnetic state (see, e.g., [44]) the initial quench dynam-
ics produces both polar-core vortices (PCVs) and Mermin-Ho
vortices (MHVs) as the ordered domains develop. These two
types of spin vortices have distinct universal decay laws, with
the respective vortex densities introducing two independent
macroscopic length scales. The ratio of these vortices can be
engineered by the quadratic Zeeman energy, which we find to
have a striking effect on the time scales and nature of the or-
dering. Earlier work studying spin-1 quench dynamics found
that only PCVs played a role in the phase ordering [14]. Phase
ordering of a (non-quenched) spin-1 system containing only
MHVs was investigated in Ref. [45], with the initial vortices
inserted randomly into the initial equilibrium state.

Our paper is organized as follows: In Sect. II, we introduce
the model under consideration as well as the applied quench
protocol. In Sect. III, we review the relevant spin vortices of
the system in the easy-plane ferromagnetic phase. The main
results are presented in Sect. IV. We begin with a brief discus-
sion of the numerical methods used to simulate the dynamics
after the quench. We then present an algorithm for the detec-
tion of different types of spin vortices. With this at hand we
examine the phase ordering dynamics of the system. We ex-
tract the universal decay laws of the spin vortices and show
the violation of single-length scaling. We finally draw our
conclusions and give an outlook to future work in Sect. V.

II. SPIN-1 BOSE GAS

We consider a homogeneous quasi-2D spin-1 Bose gas de-
scribed by the Hamiltonian [46]

H =

∫
d2x

[
ψ†

(
−
~2∇2

2M
+ q f 2

z

)
ψ +

c0

2
n2 +

c1

2
|F|2

]
, (1)

where ψ = (ψ1, ψ0, ψ−1)T is the bosonic spinor field whose
components account for the magnetic sublevels mF = 0,±1
of the F = 1 hyperfine manifold. The quadratic Zeeman
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energy q along the z-direction can be controlled by external
magnetic fields. We work in a frame where a possible ho-
mogeneous linear Zeeman shift has been absorbed into the
definition of the fields. Spin-independent contact interactions
are described by the term c0n2, where n = ψ†ψ ≡

∑
m ψ
†
mψm

is the total density. Spin-dependent interactions are charac-
terized by the term c1|F|2, where F = ψ†fψ is the spin den-
sity and f =

(
fx, fy, fz

)
is a vector that contains the matrices

forming the fundamental representation of the spin-1 algebra.
This term includes the redistribution of population between
the three components via spin-mixing dynamics [46].

For ferromagnetic interactions (i.e. c1 < 0) and q > 0
the system exhibits two different phases separated by a quan-
tum phase transition (QPT) [47]. For q > q0 = 2n0|c1| the
system is in the polar phase where the mean-field ground
state is unmagnetized and given by the state vector ψP =

eiθ √n0 (0, 1, 0)T . Here, n0 is the homogeneous condensate
density and θ is a global phase distinguishing different realiza-
tions of the spontaneous symmetry breaking. For 0 < q < q0
the system is in the easy-plane ferromagnetic phase in which
the mean-field ground state reads

ψEP =
√

n0
eiθ

2


e−iφ

√
1 − q/q0√

2(1 + q/q0)
eiφ

√
1 − q/q0

 , (2)

where φ denotes the angle of the in-plane magnetization with
respect to the x-axis. The magnitude of the magnetization is
|F⊥| = n0[1 − (q/q0)2]

1
2 . We take F⊥ = Fx + iFy as the spin

order parameter for this phase.
Beginning from a polar condensate at q > q0 it has been

shown that after a sudden quench across the QPT the system
undergoes phase ordering dynamics within the easy-plane fer-
romagnetic phase [10, 13, 14]. In this work we investigate the
phase ordering dynamics occurring when quenching the sys-
tem into the easy-plane ferromagnetic phase starting from the
state

ψAF =

√
n0

2

 eiφ1

0
eiφ−1 ,

 , (3)

where φ±1 denote arbitrary phases. This unmagnetized state is
a mean-field ground state for the case of anti-ferromagnetic
interactions (c1 > 0), commonly referred to as the anti-
ferromagnetic phase. It can be easily generated experimen-
tally by applying a π/2 rf-rotation to a polar condensate [44].

Quenching into the easy-plane ferromagnetic phase gives
the system an excess energy (relative to the easy-plane ground
state) of ∆εAF = q + 1

4 q0 (1 − q/q0)2. This is larger than the
excess energy for a polar initial condition (∆εP = ∆εAF − q),
indicating that more heating will occur for the initial condition
we employ. However, the degree of extra heating will be less
for smaller q and here we focus on the regime q . 0.3 q0.

III. SPIN VORTICES

In 2D systems vortices often play a dominant role in the
phase ordering dynamics. We therefore briefly review the

structure of single spin vortices in the easy-plane ferromag-
netic phase. We write its wave function in polar coordinates
with origin taken at the vortex core. Sufficiently far from the
core the general vortex state vector is of the form

ψV =

√
n0

2
eiσφϕ


e−iσαϕ

√
1 − q/q0√

2(1 + q/q0)
eiσαϕ

√
1 − q/q0.

 . (4)

Here, ϕ is the azimuthal angle, σφ and σα are integers ac-
counting for the directions of the mass and spin flow around
the vortex, respectively. Different types of spin vortices arise
from different combinations of σφ and σα. We only discuss
elementary vortices given by σφ = 0,±1 and σα = ±1 as they
will be long-lived configurations in the system.

Polar core vortices (PCVs) exhibit spin circulation (σα =

±1) but no mass circulation (σφ = 0), and have an unmag-
netized (i.e. polar) core. The two types of PCVs can be dis-
tinguished by the phase winding in the order parameter field,
i.e. F⊥ ∼ eiσαϕ. Here we refer to these as positive (p) σα = 1
and negative (n) σα = −1 PCVs, and note that these two types
constitute a vortex-antivortex pair and can annihilate.

There are four types of elementary Mermin-Ho vortices
(MHVs) which exhibit both mass (σφ = ±1) and spin (σα =

±1) circulation, and the vortex core is magnetized. The wind-
ing numbers of the mF-th component is given by wmF =

σφ − mFσα. Thus a MHV is characterized by a double wind-
ing in either the mF = 1 or −1 component, a single winding in
mF = 0, and no winding in the remaining component. We de-
note the four types of MHVs as (σφ, σα) = (p,p), (n,n), (p,n),
(n,p) where p ≡ +1 and n ≡ −1. The spin circulation σα can
be determined from the phase winding of the transverse spin
whereas σφ can directly be inferred from the phase winding
of the mF = 0 component. This unambiguously characterizes
all types of MHVs. The two MHVs (p,p) and (n,n) constitute
a vortex-antivortex pair, and similarly for (p,n) and (n,p).

IV. PHASE ORDERING DYNAMICS

A. Numerical methods and parameter quench

We simulate the phase ordering dynamics starting from the
anti-ferromagnetic initial state (3). To seed the growth of un-
stable modes due to the quench, and the subsequent formation
of symmetry breaking domains, it is crucial to account for
fluctuations beyond mean-field order. We do this by adding
noise to the initial state according to the truncated Wigner pre-
scription [15, 48, 49]. The time evolution of this initial state
is then given by the spin-1 Gross-Pitaevskii equations (GPEs)

i~∂tψ =

(
−
~2∇2

2M
+ q f 2

z + c0n + c1F · f
)
ψ, (5)

which are solved by means of a spectral split-step algo-
rithm. Our quasi-2D simulations are performed for the case of
c0/|c1| = 3, and n0 = 104 ξ−2

s , where ξs = ~/
√

Mq0 is the spin
healing length of the system. Each component of the spinor
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FIG. 1. Image of a 336 ξs × 336 ξs subregion of the system at time t = 2485 ts, where ts = ~/q0 is the characteristic spin time, for a quench
to q = 0.15 q0. (a)-(c) Phase profiles φmF = Arg(ψmF ) of the three mF components. (d) Phase field of the transversal spin revealing the spin
circulations. (e) Identified spin vortices: Vortex-antivortex pairs are shown with the same color code. All types of Mermin-Ho vortices (MHVs)
(blue pluses/dots and red stars/triangles) and polar core vortices (PCVs) (green crosses/squares) are present. Vortex labeling and details of the
identification procedure are given in the main text. (f) All vortices detected in the data depicted in (a)-(d) including their winding numbers
indicated by wδ with δ = 0,±1, F, where wF denotes the winding identified in F⊥. Comparison of (e) and (f) shows that our algorithm is able
to identify all PCVs and MHVs in the system with a high accuracy. A Gaussian blur filter with 2 grid point width is applied to the data in
(a)-(c) and 3 grid point width to the data in (d) to reduce short length scale noise.

field is represented on a 2D grid of 2048× 2048 points of spa-
tial extent l × l = 1600 ξs × 1600 ξs, and subject to periodic
boundary conditions.

We consider a sudden quench made by setting q to a value
in the range [0, q0] at the start of the simulation. In the early
time evolution the dynamics is dominated by the growth of
unstable modes leading to the formation of transverse magne-
tization [see, e.g., [50, 51]]. Spin vortices develop between the
small magnetized domains that form with a length scale com-
parable to ξs. Once the (local) ferromagnetic order is estab-
lished these defects are topologically stabilized and can only
decay by mutual annihilation when the appropriate vortex-
antivortex pair meets. This process is relatively slow com-
pared to the initial growth of local order and dominates the
long-time phase ordering dynamics of the system [3]. The
mean distance between spin vortices is proportional to the av-
erage size of the magnetic domains, and is generally taken as
the key length scale for the universal phase ordering process.

B. Detection of spin vortices

Compared to the well studied case of quenches from the
polar initial state, where only PCVs emerge, our initial state

gives rise to a rich ensemble of different vortices. An exam-
ple of the vortex configuration in a subregion of the system
is shown in Fig. 1. This example is taken at a time suffi-
ciently long after the quench such that the average domain
size is much larger than the microscopic length scales of the
system (ξs).

Each spin vortex is located by finding a vortex in the phase
field of the transversal spin [see Fig. 1(d)]. The spin vortex
type is identified as follows: We count the number and the cor-
responding winding of vortices occurring in the phase fields of
the three mF components in a specified detection area around
the spin vortex [see Fig. 1(a)-(c) and (f)]. The initial detection
area is taken to be 3 × 3 grid points. After extracting all the
information from the phase fields we are usually able to un-
ambiguously determine the type of the spin vortex. We find
that some of the spin vortices are stretched (i.e. the vortices
in the different mF components are spatially separated) due
to the heating from the energy released by the quench. Such
vortices cannot be identified if they extend beyond the ini-
tial detection area, so we repeat the identification step using
a larger detection area in an iterative procedure. In each iter-
ation step we increase each side of the detection area by one
grid point. We terminate the algorithm when the spin vortex
has been identified or the detection area has grown to include a
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FIG. 2. Vortex number Nvort as a function of time within the phase
ordering regime for q = 0.15 q0. The decay of PCVs (orange di-
amonds) and fit Eq. (6) (dotted line). The decay of MHVs (green
crosses) and fit Eq. (7) (solid line). Total number of spin vortices
(blue dots). The data is averaged over 5 trajectories and the error
bars correspond to the standard deviation of the results.

vortex number exceeding a threshold value. Note that a small
systematic error can arise in our identification analysis when
a vortex-antivortex pair is separated by less than three grid
points, which can for example happen when they are about to
annihilate. The result of the vortex identification analysis is
shown in Fig. 1(e). We observe all types of PCVs and MHVs
to be present in the system [see Fig. 1(e) and (f)], and that
our algorithm is able to identify them accurately. In addition
to spin vortices, free vortices occur in each of the mF com-
ponents and tend to cluster into small groups with the same
phase winding.

C. Universal decay laws of spin vortices

To characterize the phase ordering dynamics following the
quench we quantify the evolution of the spin vortex number
in the system. Fig. 2 shows the total number of PCVs (or-
ange diamonds) and MHVs (green crosses) at times 850 ts .
t . 8300 ts for a quench to q = 0.15 q0. There is approxi-
mately an equal number of PCVs and MHVs at the earliest
time presented however the decay rate of each type of vortex
is distinctly different, with the PCVs decaying faster than the
MHVs. This leads to qualitatively different regimes for the
phase ordering dynamics: As the MHVs become dominant at
later times the rate of decay of the total number of spin vor-
tices changes (and hence the magnetic domain growth law)
approaching that of the MHVs.

We quantitatively determine the decay laws for the two
types of spin vortices. The PCV decay is consistent with

Nvort ∼ [t/ ln (t/t0)]−2 , (6)

where t0 is a short-time cutoff [20] [see dotted line in Fig. 2].
This result agrees with the domain growth law and vortex
decay rate found in earlier work on the polar to easy-plane
quench where only PCVs emerge [14]. The MHVs decay
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FIG. 3. Vortex number Nvort as a function of time within the phase
ordering regime for quenches to (a) q = 0.3 q0 and (b) q = 0.05 q0.
The decay of PCVs (orange diamonds) and fit Eq. (6) (dotted lines).
The decay of MHVs (green crosses). (a) Fit Eq. (7) (solid line). (b)
Fit Kudo decay law (solid line) according to [45]. Total number of
spin vortices (blue dots). The data is averaged over 5 trajectories and
the error bars correspond to the standard deviation of the results.

more slowly, consistent with XY-like scaling [20, 21, 23]

Nvort ∼ [t/ ln (t/t0)]−1 , (7)

[see solid line in Fig. 2].
We have also considered quenches to other values of q, and

present results for two other cases in Fig 3. These results re-
veal that the respective decay laws we have identified for the
PCVs and MHVs are universal. For the quench to q = 0.05 q0
we find that we have to modify the XY decay law stated in
Eq. (7) taking into account the possible difference in the num-
ber of vortices between the two subclasses of MHVs. The
decay is well fit [52] by a decay law found for MHVs in a
similar parameter regime (q/q0 � 1, close to the isotropic
phase at q = 0) by Kudo et al. [45]. This Kudo decay law is
governed by the XY universality class, so this does not indi-
cate a change in the universality of the MHV decay.

A key feature we observe is that varying the quadratic Zee-
man energy we can engineer the proportion of PCVs and
MHVs that are present at the start of the phase ordering dy-
namics. Increasing the quadratic Zeeman energy the ratio of
PCVs to MHVs decreases [see Figs. 2 and 3].

We have also studied quenches for a larger interaction pa-
rameter ratio of c0/|c1| = 12 and find the number and the ratio
of spin vortices as well as their decay to be consistent with the
results presented above.



5

D. Violation of single-length scaling

We find that our system evolution violates the dynamic scal-
ing hypothesis, which underlies standard universal phase or-
dering. The dynamic scaling hypothesis [3] states that corre-
lation functions of the order parameter collapse (i.e. become
time independent) when spatial coordinates are scaled by the
(single) macroscopic length scale L(t). Our system instead
has two distinct macroscopic length scales which have differ-
ent scaling with time: the mean distance between PCVs

LPCV(t) ∼ t/ ln t (8)

and the mean distance between MHVs

LMHV(t) ∼ (t/ ln t)1/2. (9)

Only in the limit of one spin vortex type being much more
numerous than the other will pure single length scaling ac-
cording to the dynamic scaling hypothesis hold.

We verify the above mentioned properties by studying the
momentum-space correlation function of the transversal spin

S (k, t) = 〈| f⊥(k, t)|2〉, (10)

where f⊥ = F⊥/n0 and the brackets denote an average over
different trajectories of the simulation. According to the scal-
ing hypothesis, a self-similar evolution of the correlation func-
tion, involving a single macroscopic length scale L(t) only, is
given by the scaling form

S (k, t) = [L(t)]α/β fs (L(t) k) , (11)

where fs is a universal scaling function and α, β are the cor-
responding scaling exponents. As the single length scale L(t)
evolves in time according to L(t) ∼ t β we can write Eq. (11)
in the more general form

S (k, t) = (t/tref)α fs
(
[t/tref] β k

)
, (12)

with tref being some reference time within the scaling regime.
If the integral over the correlations is conserved in time within
the infra-red momentum regime obeying the scaling evolu-
tion, one finds the constraint α = 2β for a two-dimensional
system.

Fig. 4 shows the momentum-space correlation function of
the transversal spin rescaled according to Eq. (12) for two dif-
ferent regimes of the time evolution in case of a quench to
q = 0.15 q0. For times 650 ts . t . 1700 ts the correlation
function exhibits approximate scaling with scaling exponents
α = 1.91 ± 0.19 and β = 0.95 ± 0.11 [see Fig. 4(a)], whereas
for times 4100 ts . t . 8300 ts we extract scaling exponents
α = 0.96 ± 0.23 and β = 0.49 ± 0.11 [see Fig. 4(b)]. The ex-
ponents result from performing a least-square fit of the data
using the reference times tref = 690 ts and tref = 4137 ts,
respectively. The errors are deduced from the width of the
marginal-likelihood functions of the scaling exponents [33].
The extracted scaling exponents are consistent with the inte-
gral of the correlation function being conserved in time within
the infra-red scaling regime as we find α ≈ 2β. Note that we
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FIG. 4. Universal scaling dynamics of the momentum-space cor-
relation function (10) of the transversal spin, S (k, t), according to
Eq. (12) for a quench to q = 0.15 q0. (a) Using the scaling expo-
nents α = 1.91 ± 0.19 and β = 0.95 ± 0.11 and taking the refer-
ence time to be tref = 690 ts, the data collapses to a universal scaling
function for times 650 ts . t . 1700 ts. The scaling exponents are
consistent with the scaling law obtained for PCVs [see Eq. (8)]. The
power-law fall-off of the distribution as S (k, t) ∼ k−ζ is given by
ζ = 2.71 ± 0.01, which differs from the exponent ζ = 2.45 reported
for a system containing PCVs only [14]. (b) Using the scaling expo-
nents α = 0.96 ± 0.23 and β = 0.49 ± 0.11 and taking the reference
time to be tref = 4137 ts, the data collapses to a universal scaling
function for times 4100 ts . t . 8300 ts. The scaling exponents
are consistent with the scaling law obtained for MHVs [see Eq. (9)].
The power-law fall-off of the distribution as S (k, t) ∼ k−ζ is given
by ζ = 2.90 ± 0.01. All scaling exponents are obtained by means of
a least-square fit to the corresponding data within the infra-red mo-
mentum regime below the scale kmaxξs = 0.4 and kmaxξs = 0.2 for
the cases (a) and (b) respectively. The exponent ζ results from fitting
the scaling form A/[1+(k/kL)ζ], with characteristic momentum scale
kL ∼ L(t)−1, to the above stated infra-red regime of the rescaled data.
The solid grey lines show the best fit of the scaling form. All data
depicted is averaged over 64 trajectories.

do not take into account a possible logarithmic correction en-
tering the scaling forms (11) and (12) in our analysis. As the
time window considered for the scaling analysis of the corre-
lation function is comparatively small we expect the effects of
logarithmic corrections to not be detectable within the error of
the extraction method.

We clearly observe two distinct scaling regimes for the time
evolution of our spin-1 system. The scaling exponents for the
early stage of the phase ordering are consistent with the scal-
ing law obtained for PCVs [see Eq. (8)], whereas we find good
agreement with the scaling of MHVs [see Eq. (9)] within the
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FIG. 5. Momentum distributions n(δ)(k) derived from the hydrodynamic decomposition of the kinetic energy density into ε(δ)(k) =

k2n(δ)(k)/(2M) at five different evolution times during the phase ordering process. The momentum distributions representing the quantum
pressure n(q) (orange diamonds), nematic n(n) (green squares), compressible n(c) (red triangles), incompressible n(i) (purple pentagons) and the
spin n(s) (brown arrows) parts of the decomposition are compared to the total occupation number ntot =

∑
m|ψm|

2 (blue dots). See the Appendix
for a detailed definition of each of the parts. The two leftmost panels correspond to the time regime depicted in Fig. 4(a). The power-law
fall-off of the spin part n(s)(k) ∼ k−ζ with exponent ζ ' 2.6 (dashed line) is consistent with the one extracted for the correlation function of the
transversal spin. The two rightmost panels correspond to the time regime depicted in Fig. 4(b). Here, the power-law fall-off of the spin part
with exponent ζ ' 3 (solid line) is also consistent with the one extracted for the correlation function. This indicates that the spin part plays the
dominant role for the shape of the universal scaling function describing the scaling evolution of the transversal spin. The incompressible part
arising from the vortices in the system shows a power-law behavior with ζ ' 4 (dash-dotted line in the rightmost panel) which is consistent
with ζ = d + 2 predicted for an ensemble of randomly distributed vortices in a d-dimensional system [3].

late-time regime. For times 1700 ts . t . 4100 ts we are
not able to collapse the data with a single set of exponents
α, β. This indicates the violation of single-length scaling in
the system. While the decay of each of the underlying spin
vortices obeys a universal scaling law during the whole pro-
cess of phase ordering, the correlation function measuring the
evolution of the order parameter does not. Nonetheless, in
the late-time regime where MHVs are much more numerous
than PCVs [see Fig. 2] we find the phase ordering process to
be well described by a single length scale only corresponding
to the decay of MHVs [see Fig. 4(b)]. Due to the fast decay
of PCVs as compared to MHVs, the phase ordering is domi-
nated by the PCV scaling law at early stages [see Fig. 4(a)],
although there is an approximate equal number of PCVs and
MHVs in the system [see Fig. 2].

However, the phase ordering for evolution times t . 1700 ts
is not purely characterized by the dynamics and the properties
of PCVs. This becomes visible when investigating the scal-
ing function associated with the scaling evolution in Fig. 4(a).
The momentum-space correlation function of the transversal
spin shows a plateau below the characteristic momentum scale
kL ∼ L(t)−1, followed by a power-law fall-off S (k, t) ∼ k−ζ .
Using all rescaled data we determine the exponent ζ by means
of fitting the scaling form A/[1 + (k/kL)ζ] to the infra-red mo-
mentum regime. We extract an exponent ζ = 2.71 ± 0.01
from the fit, which is considerably larger than the exponent
ζ = 2.45, which was found for a system containing PCVs
only [14]. We expect the deviation to arise from the approx-
imately equal number of MHVs being present in the system.
In contrast, in the late-time regime, we extract an exponent of
ζ = 2.90 ± 0.01. This indicates that not only the scaling ex-

ponents but also the shape of the scaling function differs for
the two types of spin vortices causing the associated universal
dynamics to belong to clearly distinct universality classes.

We emphasize that the power-law fall-off of the correlation
function of the transversal spin does not characterize the flow
fields induced by the vortices detected in the system. For an
ensemble of randomly distributed vortices one generally ex-
pects a steeper power-law fall-off of the order parameter cor-
relation function with exponent ζ = d + 2 [3, 37, 53].

Fig. 5 shows the momentum distributions n(δ)(k) derived
from the hydrodynamic decomposition of the kinetic energy
density as defined in the Appendix. Note in particular the
(purple pentagons) curve n(i)(k) which depicts the contribu-
tion of the incompressible, i.e., the divergence-free part of the
velocity field to the kinetic energy spectrum. This part arises
from both, spin and free vortices [c.f. Fig. 1(f)] and falls off

as n(i)(k) ∼ k−ζ with ζ ' 4 during the late-time regime of the
phase ordering. We remark that for the early stage we observe
a slightly steeper power-law consistent with ζ ' 4.3.

As a result, while the total kinetic energy spectrum is domi-
nated by the contribution from the incompressible part within
the infra-red momentum region below kξs . 0.2, the power-
law fall-off of the spin correlator S (k, t) is closer to that of the
spin part of the decomposition, for which we find an exponent
consistent with ζ ' 2.6 for times 650 ts . t . 1700 ts, and an
exponent ζ ' 3 in the late-time regime 4100 ts . t . 8300 ts
[see dashed and solid lines respectively in Fig. 5]. Both expo-
nents can be related to the surface structure of the transver-
sal spin domains present in the system. For domains in a
d-dimensional system one generally expects a power law be-
havior of the associated momentum-space correlator with ex-
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ponent ζ = −2d + ds, where ds denotes the surface fractal
dimension [54]. For smooth surfaces the fractal dimension is
ds = d − 1 [54], which results in an exponent ζ = 3. Hence,
the late-time scaling regime dominated by the annihilation of
MHVs can be interpreted in terms of the spin domains having
a rather smooth surface structure. However, within the early
stage of the phase ordering the scaling is consistent with the
spin domains having a fractal surface structure with fractal di-
mension ds ≈ 1.4. Note that a fractal dimension of this size
has been found for the phase ordering process involving PCVs
only [14]. Our results thus seem to indicate that each type of
spin vortex is accompanied by a specific surface structure of
the attached spin domain boundaries.

V. CONCLUSION AND OUTLOOK

In this work we studied the phase ordering dynamics of
a system quenched into the easy-plane ferromagnetic phase.
Our choice of novel initial condition allows both PCVs and
MHVs to form during the quench and subsequently we find
that both types of spin vortices play a crucial role in the phase
ordering. Because the two types of vortices have different de-
cay laws, the standard (i.e. single macroscopic length scale)
dynamic scaling hypothesis cannot hold for this system. We
find that the ratio of PCVs and MHVs produced can be var-
ied by quenching to different q. The subsequent decay of each
type of spin vortex appears universal. We believe this presents
an extension of the dynamic scaling hypothesis to systems
supporting multiple defects relevant to the order parameter.

A feature of our system is that it can be realized in experi-
ments with spinor Bose-Einstein condensates. The initial state
production and tuning of q are common place experimental
manipulations. The main challenges lie in producing a large
quasi-2D system, ideally in a flat bottomed trap, and subse-
quently monitoring the evolution for long time scales.

The initial condition considered here is a π/2-spin rotation
of that studied in earlier work, yet the equilibration dynamics
proceeds in a different manner involving a new class of topo-
logical defects. An interesting future direction is to vary the
spin rotation angle continuously to produce a family of ini-
tial states to explore the crossover between the two different
transient ordering processes.
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APPENDIX

Appendix A: Hydrodynamic decomposition

In this Appendix we provide a brief definition of the hydro-
dynamic decomposition of the spin-1 Bose gas. For details see
also [55, 56]. For simplicity of the expressions we use units of
~ = 1. In a hydrodynamic formulation [55], the spin-1 system
is described by the total density ρ, the spin vector fµ and the
nematic tensor nµν,

ρ =
∑

m

ψ†mψm (A1)

fµ =
1
ρ

∑
m,m′

ψ†m
(
fµ
)

mm′
ψm′ , (A2)

nµν =
1
ρ

∑
m,m′

ψ†m
(
nµν

)
mm′

ψm′ , (A3)

µ = x, y, z, with fµ being the spin-1 matrices in the funda-
mental representation, and the nematic or quadrupole tensor
representation nµν = (fµfν + fνfµ)/2. The superfluid velocity
field v is then given by

v =
−i

2Mρ

∑
m

[
ψ†m (∇ψm) −

(
∇ψ†m

)
ψm

]
. (A4)

For expressing the hydrodynamic energy it is useful to de-
fine the generalized velocities, corresponding to the quantum-
pressure (q), the spin (s), the nematic (n), the incompressible
(i) and compressible (c) parts,

w(q) = M−1∇
√
ρ , w(i,c) =

√
ρ v(i,c) .

w(s)
µ = (2M)−1 √ρ∇ fµ , w(n)

µν = (2M)−1
√

2ρ∇nµν , (A5)

Here, v(i,c) are obtained by a Helmholtz decomposition of
v = v(i) + v(c), with the incompressible part having a vanishing
divergence, ∇ · v(i) = 0, and the compressible part a vanishing
curl, ∇ × v(c) = 0.

Using the hydrodynamic variables we can express the en-
ergy as

E = Ekin +

∫
d2x

[c0

2
ρ2 +

c1

2
ρ2 f 2

µ + qρnzz

]
, (A6)

where the kinetic part reads

Ekin =
1

2M

∫
d2x

[(
∇
√
ρ
)2

+
ρ

4

(
∇ fµ

)2
+
ρ

2

(
∇nµν

)2
]

+
M
2

∫
d2x ρv2 . (A7)

Hence, in Fourier space, the kinetic-energy spectrum is given
by the correlation functions of the generalized velocities

εkin(k) = ε(q)(k) + ε(c)(k) + ε(i)(k) + ε(s)(k) + ε(n)(k) , (A8)
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FIG. 6. Hydrodynamic decomposition of the kinetic energy density into ε(δ)(k) for the same evolution times as in Fig. 5. The contributions
representing the quantum pressure ε(q) (orange diamonds), nematic ε(n) (green squares), compressible ε(c) (red triangles), incompressible ε(i)

(purple pentagons) and the spin ε(s) (brown arrows) parts of the decomposition are compared to εtot(k) = k2ntot(k)/(2M) (blue dots). The sum
of all parts of the decomposition εkin =

∑
δ ε

(δ) (pink thin diamonds) reveals expected deviations between the hydrodynamic decomposition
and εtot for infra-red momenta [37]. While the spin part is characterized by a single power-law according to ε(s)(k) ∼ k−ζ+2 with ζ ' 2.6
(dashed line) in the early stage of the phase ordering, a bimodal distribution with a steeper power-law fall-off consistent with ζ ' 3 (solid line)
within the low momentum region arises in the late-time regime. The incompressible part shows a power-law behavior consistent with ζ ' 4
(dash-dotted line). We remark that the power-law fall-off of εtot arises from contributions of both, the incompressible and the spin part. Hence
it neither gives direct access to the vortices characterizing the scaling evolution nor to the surface structure of the spin domains determining
the shape of the universal scaling function of the transversal spin correlator.

averaged over the orientation of the momentum vector,

ε(δ)(k) =
M
2

∫
dΩk〈|w(δ)(k)|2〉 , (δ = q, i, c) (A9)

ε(s)(k) =
M
2

∫
dΩk〈w(s)

µ (k) · w(s)
µ (k)〉 , (A10)

ε(n)(k) =
M
2

∫
dΩk〈w(n)

µν (k) · w(n)
µν (k)〉 , (A11)

where Einstein’s summation convention is im-
plied. The respective total energies are obtained as
E(δ) =

∫
d2x

∫
dk k ε(δ)(k). The spectrum of the kinetic

energy can then be used to calculate corresponding occupa-
tion numbers using the relation

n(δ)(k) = 2M k−2ε(δ)(k) , (A12)

where δ = q, i, c, s, n. The total occupation number is then
approximately given by

ntot(k) ≈
∑
δ

n(δ)(k) = 2M k−2εkin(k) . (A13)

We remark that the total occupation number ntot and
2M k−2εkin(k) deviate from each other in the regime of infra-
red momenta kξs . 1 due to additional contributions from

four-point correlations of the fundamental fields contributing
to the kinetic energy density, see, e.g., Ref. [37].

Appendix B: Spectrum of the kinetic energy

In this Appendix we briefly discuss the spectrum of the ki-
netic energy of our spin-1 system to give additional insights
to the results presented in Fig. 5 in the main text.

Fig. 6 shows the hydrodynamic decomposition of the ki-
netic energy density as defined in App. A during the phase or-
dering process described in the main text. For the early stage
of the phase ordering the spin part of the decomposition ex-
hibits a power-law behavior according to ε(s)(k) ∼ k−ζ+2 with
ζ ' 2.6. In the late-time regime, the single power-law tran-
sitions into a bimodal distribution characterized by a steeper
power-law fall-off consistent with ζ ' 3 in the low momen-
tum region while the high momentum region is still charac-
terized by an exponent ζ ' 2.6. In contrast, for the incom-
pressible part of the kinetic energy, ε(i)(k), a single power-law
consistent with ζ ' 4 prevails throughout the whole evolu-
tion. Note that the power-law fall-off of the total kinetic en-
ergy εtot(k) = k2ntot(k)/(2M) results from both, the incom-
pressible and the spin part such that it neither provides direct
access to the vortices characterizing the scaling evolution nor
to the surface structure of the spin domains determining the
shape of the universal scaling function of the order parameter
correlator.
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