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Abstract

Stochastic sampling networks approximating Boltzmann machines are a brain-inspired machine learn-

ing paradigm that has been used extensively for its Bayesian inference capabilities. However, due to

their inherently inhomogeneous probability landscape, the network may get trapped in a single mode

by low probability transition states, which pose an effective energy barrier, prevent mixing between

modes and harm the generative capabilities of the network. Mixing has been facilitated in simulation

by modulating the rate of noise to sampling neurons, effecting a flattening of the probability land-

scape. In this work we implement this tempering on the BrainScaleS-1 mixed-signal physical model

system. We implemented tempering via noise weight modulation, with the addition of high weight low

frequency noise resulting in a temperature increase. We verified the linear scaling of the associated

abstract BM weights in spiking networks, and showed that mixing in a simple two-mode system is

indeed facilitated. Contrary to simulation, tempering via noise rate modulation was not successful.

Despite this, it still improved mixing in the simplified example, by distorting the network in a non-

trivial manner. Weight modulated noise should thus be used to improve the performance of generative

sampling networks.

Zusammenfassung

Netzwerke von spikenden Neuronen, die von Boltzmann Verteilungen sampeln, sind ein vom Gehirn

inspiriertes maschinelles Lernverfahren, die vor allem wegen ihrer bayes’schen Inferenzfähigkeiten be-

nutzt werden. Wegen ihrer inhomogenen Wahrscheinlichkeitsverteilung, werden Moden mit einer

hohen Wahrscheinlichkeit voneinander durch effektiven Energiebarriere, bestehend aus Zuständen

niedriger Wahrscheinlickheiten, getrennt. Dies verursacht Probleme mit dem Mixing zwischen diesen

Moden. In Simulation war eine passende Modulation der Frequenz des Hintergrund-Poisson-Rauschens

eine Lösung mit der die Energie-Landschaft abgeflacht wird. Wir streben hier an, dieses Tempering

auf der BrainScaleS-1 Hardwareplatform zu implimentieren.Wir haben Tempering durch die Modu-

lation der Rauschengewichte implementiert, worin der Zusatz des hoch-gewichteten Rauschens mit

einer niedrigen Frequenz einen Temperaturanstieg verursacht hat. Wir haben auch bestätigt, dass

die entsprechenden BM-Gewichte dadurch linear skalieren, und wir haben auch gezeigt, dass Mixing

in einem einfachen zwei-Moden System verbessert wird. Im Widerspruch zu Ergebnissen in Simula-

tion wurde Tempering durch die Modulation der Rauschenfrequenz nicht erreicht. Trotzdem wurde

verbessertes Mixing in diesem zwei-Moden System beobachtet, indem das Netzwerk nicht trivial ver-

dreht wird. Die Rauschengewichte sollten folglich moduliert werden, um die Leistungsfähigkeit der

generativen Samplingnetzwerke zu verbessern.
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Preface

All experiment implementations within the Experiments section both on hardware and in sim-
ulation are my own work, along with all experiment-specific data analysis code. If experiments
are referred to within the Experiments section which are not of my own making, I will make
it explicitly clear. I made extensive use of the widely available Python packages matplotlib,
NumPy, SciPy, and Elephant [Yeg+15]. I did not make any contributions to the theory, apart
from coarsely modelling spike loss as a convolution, and the majority of the theory is taken
from [Pet15]. I did not make any contribution to the BrainScaleS system itself [Sch+10]. For
running on the hardware and in simulation, I used the PyNN network specification framework
[Dav+10], to which I also did not make any contributions.
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Chapter 1

Introduction

The human brain is able to perform pattern recognition and certain computational tasks far
better than even the most cutting edge machine learning algorithms [Alc+19] [Sze+13]. Com-
pared to conventional computing, it benefits from a low power consumption of about 20W,
and is able to perform complex inference and decision making tasks in real time given noisy,
imperfect and ambiguous data [Dru00]. The neuromorphic computing subdivision of the Hu-
man Brain Project thus aims to harness these desirable characteristics for computation, where
novel brain-inspired computing frameworks are explored [Mar12]. For certain tasks, such analog
neuromorphic implementations outperform their conventional software counterparts [Wun+19].

Novel computing architectures require correspondingly novel and suitable algorithms; and for
that the brain provides inspiration. There is evidence that the brain’s computing capabil-
ity stems from constantly performing Bayesian inference, where the brain changes its internal
representation to build up a prior of past experiences, against which it compares new input
[Ber+11]. One such brain-inspired neural network architecture capable of this type of prob-
abilistic inference is the Boltzmann machine (BM), with origins in statistical physics, where
a network of connected binary random variables may be trained to sample from an underly-
ing state distribution (the prior) [AHS85]. The resulting BM is then capable of performing
simultaneous generation, classification and pattern completion tasks [SH09] [Esl+14].

Using the biologically plausible leaky integrate-and-fire (LIF) neuron model, networks of spiking
LIF neurons may also be trained to approximate sampling from an underlying Boltzmann
distribution, similarly to a BM driven by a suitable sampling mechanism. Such networks
have been used extensively in simulation for a wide range of machine learning tasks [Dol+18]
[Pet+16] [Sch+17] [Len+18] as well as the modelling of physical systems [Bau16].

Networks of LIF neurons are implemented on the BrainScaleS-1 neuromorphic mixed-signal
hardware, where individual neurons are physically emulated by a dedicated capacitor and tran-
sistor circuit. This physical emulation benefits from a 104× acceleration with respect to biolog-
ical timescales [Sch+10]. Motivated to harness this hardware speedup, LIF network sampling
on hardware was first successfully implemented on the BrainScaleS-1 system in [Kun16], where
a small-scale LIF network was trained to sample from an arbitrary BM. LIF networks on hard-
ware have since been used to perform accelerated Bayesian inference [Kun+18].

When such networks have been successfully trained to a target BM, the problem arises, both in
simulation and on the hardware, that regions of high probability states may be separated by low
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probability ”energy barriers”, and so hinder the ability of the network to explore the state space
which it is to represent; the network gets trapped in sub-optimal local minima. The ability
of the network to switch between high probability modes, and surpass said energy barriers, is
known as mixing. Since there is growing evidence that decision making in the brain is also
sampling based [Fis+10], the brain may be overcoming this issue with oscillations in neural
activity, where the network is less constrained by the energy/probability landscape during
periods of high activity. Among other solutions to mediate mixing in BMs [Des+] [Sal10], we
consider here effecting a levelling of the probability landscape by increasing the temperature in
the abstract BM, tempering, by increasing the strength of noise input to neurons within a LIF
sampling network.

This was performed in simulation, and found indeed to improve sampling performance [Kor17]
for tempering effected by modulating the rate of noise to sampling neurons. A definite relation
between temperature and both the rate and weight of input noise was also found [Bau16].

The main aim of this project is thus to implement this tempering on the BrainScaleS neuro-
morphic mixed-signal physical model system [Sch+10]. Since the hardware is fundamentally a
physical emulation, there are multiple hardware-specific distortive mechanisms and limitations
to be considered, and so an intermediate aim is to probe the hardware-imposed limits of spike
based tempering.

We will find that for a given input rate, there is limit to how high the weight of the noise can
be set before saturation effects dominate, which we then use as a guide when maximising the
noise strength. We find, contrary to theory and results found in simulation, that activation
function widening and thus tempering via noise rate modulation is not successful. We do find
however, that widening and thus tempering via modulation of noise weight is successful, and
we achieve a doubling of temperature in the BM regime, a flattening of the state probability
distribution, and a facilitation of mixing in a two-mode sampling network. Despite tempering
not being achieved with noise rate modulation, it will nonetheless also be found to facilitate
mixing.

Due to a limitation of the bandwidth of external input to the chip, and since neurons in sampling
networks conventionally1 each require a private source of externally generated noise, a separate
network of inhibitorily connected neurons is often used as a source of this stochasticity [Jor+15].
Here we also aim to improve upon their design, by allowing the output network noise frequency
to be modulated, for eventual use as a noise source in large scale tempering experiments.

1Though there are works where neural computation has been performed without an explicit source of stochas-
ticity [Jor+17]



Chapter 2

Theoretical background

A brief theoretical overview is here given, so that the rather abstract statement that ”LIF
networks sample from an arbitrary Boltzmann machine” may be better understood, and also
that an intuition may be given for the subsequent mixing problem that arises, and its tempering-
based proposed solution. For a more rigorous mathematical treatment of this chain of logic, see
[Pet15]. In this section I present the fundamental single neuron dynamics, and then the most
important derived results of consequence to this work.

2.1 Single neuron dynamics

In order to capture the relevant dynamics of networks of spiking neurons in the brain, each
neuron is formulated as an abstract ordinary differential equation (ODE), each with a time
varying membrane potential u, and has the ability to spike. Although the following neuron
models are biologically inspired, their biological plausibility is not discussed here, and the reader
may be directed to [Pet15], [D+03], [GSD12] for such discussion. Neurons are connected to
other neurons via synapses, which may be uni or bidirectional, and have an associated weight.
If a neuron spikes, then the spike signal is transported by a synapse from the presynaptic
spiking neuron to the postsynaptic neuron. The arrival of a spike at the postsynaptic neuron
may then cause a change in the postsynaptic neuron’s potential u. The change in a neuron’s
potential as a result of an incoming spike from one of its presynaptic partners is known as a
post synaptic potential (PSP). Synapses are split into two groups: an excitatory synapse causes
the membrane potential u of its postsynaptic neuron to increase upon arrival of a spike, and
an inhibitory synapse causes u to decrease upon arrival of a spike. In the absence of synaptic
input, a neuron’s potential falls to a constant rest value. When the potential u of a neuron
is high enough, the neuron spikes, and transmits this spike to all of its postsynaptic partners.
For a finite time period after spiking τref , the refractory period, the neuron enters a refractory
state, where its potential is clamped to a lower potential Vreset and the neuron may not spike.
These dynamics are captured by the leaky integrate-and-fire (LIF) neuron model [BV07], which
I first present. The single neuron model will naturally lead to the emergence of a simplified
behaviour in a so called high conductance state, where the membrane potential will become a
linear transformation of its synaptic input, a necessary condition for sampling.

4



2.1. Single neuron dynamics 5

2.1.1 The leaky integrate-and-fire neuron model with conductance
based synapses

The general LIF neuron model is given by

Cm
du

dt
= gl(El − u) + Isyn + Iext (2.1)

where Cm is the capacitance of the neuron’s membrane, gl the leak conductance, El the leak/rest
potential, Isyn a the sum of the currents due to synaptic interactions from other neurons, and
Iext an externally applied current. The ”leaky” part of the LIF equation is that in the absence
of synaptic or external interaction (Isyn = Iext = 0), the membrane potential u decays exponen-
tially to the leak potential El with a characteristic time constant τm = Cm

gl
, the membrane time

constant. The leak potential El is thus often referred to as the rest potential. Iext is omitted
in all further equations, as no external current is applied throughout this work. The synaptic
current Isyn is specified by the choice of synapse model, where here we use the conductance-
based neuron model (COBA), as it is this model which is implemented on the BrainScaleS-1
system (Section 3).

In the COBA model, the effect of incoming spikes is modelled by an increase in conductance
towards one of two reversal potentials, Erev

e and Erev
i , for excitatory and inhibitory synapses

respectively. They are set above and below the rest potential El respectively. The synaptic
current Isyn for a COBA neuron is thus given by

Isyn = gsyne (t)(Erev
e − u) + gsyni (t)(Erev

i − u) (2.2)

where gsyne (t) and gsyni (t) are conductances which linearly sum up incoming spikes, for excitatory
and inhibitory synapses respectively. Since a spike occurs at a single discrete point in time, it
must first be convolved with an appropriate continuous and finite valued function, a synaptic
interaction kernel. The form of the synaptic kernel is in general a modeling decision; on the
BrainScaleS-1 system a decaying exponential is implemented with characteristic time constants
τ syne and τ syni for excitatory and inhibitory synaptic interactions respectively. However, for the
sake of simplicity, here we take τ syne = τ syni = τ syn. The synaptic conductances for a neuron
are thus given by

gsynx (t) =
∑
syn k

∑
spk s

wkΘ(t− ts) exp

(
−t− ts
τ syn

)
, x ∈ {e, i} (2.3)

where the first summation is over all synapses of type x, the second over all spikes arriving at
said synapse, with spike times ts, wk is the weight associated with a given synapse, and Θ is
the Heaviside step function. An incoming spike thus causes an exponentially decaying jump
in the conductance towards one of the reversal potentials, which in turn enacts a change in u
towards one of these reversal potentials Erev

e/i . When the potential u passes a specified threshold
Vthresh, the neuron spikes. The potential is then clamped to a sub-threshold reset value Vreset
for a refractory time τref , and is said to be in a refractory state.
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2.1.2 High conductance state

When the neuron is subject to sufficiently high synaptic input, the neuron enters a so-called
high conductance state (HCS), which is required for sampling [Pet+15]. It is useful to define
the total conductance gtot as

gtot = gl +
∑
k

gsyn
k (2.4)

where the summation is over all synapses. The distinction between whether the summation is
over all synapses, each with a separate associated gk, or whether it is a summation over {e, i}
and gk is then the total conductance from all synapses of that synapse type, need not be made,
since at every step the individual convoluted conductances from incoming spikes are summed
linearly. The HCS is then defined as when there is sufficiently high synaptic input that the
total conductance is dominated by the synaptic conductance, i.e.

∑
k g

syn
k >> gl. By dividing

the full COBA-LIF equation (Equations 2.1 and 2.2) by gtot, the COBA-LIF equation may be
reformulated as

τeff
du

dt
= ueff − u (2.5)

with the effective membrane time constant τeff defined by

τeff =
Cm
gtot

(2.6)

and the effective membrane potential ueff defined by

ueff =

glEl +
∑
k

gsyn
k Erev

k

gtot
(2.7)

If we assume that we are sufficiently far into the HCS, which is the case in sampling where
neurons are bombarded with high frequency excitatory and inhibitory noise, then we assume
that the expected value of gtot approaches infinity, i.e. 〈gtot〉 → ∞. As a direct consequence
of this, the effective time constant τeff approaches 0, i.e. 〈τeff〉 → 0. From Equation 2.5, this
means that the potential u at all times (when not refractory) decays almost instantly to the
effective membrane potential ueff, and so effectively follows it instantly. Under the assumption
of a perfect HCS, the effect of a single spike upon the total conductance may be treated as
small and perturbative, and allows the expression for ueff to be greatly simplified to

ueff(t) = u0
eff +

∑
k

gsyn
k (t)

(
Erev
k − 〈ueff〉

)
〈gtot〉

(2.8)

where u0
eff is a constant offset in the effective membrane potential, as a result of our perturbative

treatment. The effective membrane potential ueff, and due to a very fast τeff also the ”true”
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membrane potential u, is thus a linear transformation of its convolved synaptic inputs, which
will be of gross importance when considering sampling.

2.1.3 Activation functions

When the neuron is bombarded by high frequency Poisson noise, it can be shown that the
effective membrane potential ueff follows an Ornstein-Uhlenbeck (OU) [Gar09] process, a ran-
dom walk. Since we assume that we are in a perfect HCS, this means that until ueff passes the
spiking threshold Vthresh, the membrane potential u below the spiking threshold also follows a
random walk. If ueff passes Vthresh, then the neuron spikes and is clamped to Vreset for time
τref in a refractory state. After time τref , u then decays instantly to ueff, possibly spiking again
immediately. A simulated trace for u performing this random walk and spiking process is shown
in Figure 2.1. That up until spiking, u follows a random walk process, means that whether
the neuron spikes or not is an inherently stochastic process, with an associated probability of
spiking and thus being in a refractory state. Furthermore, this means that in the absence of
spiking behaviour, u has a Gaussian PDF with an associated mean µ, and variance σ2 given by

σ2 = Var[u] =

∑
k

νk

[
wk
(
Erev
k − µ

)]2

τ syn

〈gtot〉2
(2.9)

where νk is the frequency of Poisson noise to a synapse and wk the weight of the synapse.
A useful (but incomplete) geometric interpretation of the spiking probability is then that it
may be proportional to the probability mass of u above the spiking threshold. If the neuron
is then biased towards higher potentials, such that the mean membrane potential is increased,
then the spiking probability will also increase. Again, this may be thought of as increasing the
probability mass beyond Vthresh. This gives rise to the activation function of a neuron, where
the spiking probability is found for different mean membrane potentials, or in practise, as the
neuron is subject to varying bias (Figure 2.3). It can be shown that in the HCS, activation
functions strongly resemble logistic (sigmoid) functions, which is of fundamental importance
for sampling [Pet+15].

Continuing with the geometric interpretation of the activation function1, then if its width is
increased (as achievable initially through an increase in Poisson noise rate or weight as per
Equation 2.9), then for an equivalent shift in the mean, there will be a more gradual change
in the probability mass beyond Vthresh than if the Gaussian were slimmer. Thus the effect of
a change in the mean potential upon the spiking probability, in practise brought about by the
PSPs of other spiking neurons within a sampling network, will be lessened. This mechanism
serves as the basis of implementing spike based tempering.

From Equation 2.9 however, the width of the membrane potential distribution increases only
initially with increasing Poisson noise rate νk, before peaking and subsequently dropping, as
seen in Figure 2.2, due to the fact that the squared gtot implicitly also contains νk. There is no
such limit on widening by increasing the weights. However, despite the fact that the membrane
potential thins again with increasing rate, and thus from our geometric interpretation of the

1Since there does not exist an easy expression for the explicit relation between ν,w and alpha.
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Figure 2.1: Membrane potential u (blue line) of a neuron in simulation subject to Poisson
bombardment, leading to the effective membrane potential ueff (blue and red lines) to
perform an OU random walk. The membrane potential u follows ueff until the spiking
threshold Vthresh (black horizontal line) is reached, at which point the neuron spikes and
is refractory for τref . The pink Gaussians show the PDF of ueff, and thus also u if spiking
behaviour were removed. Figure adapted from [Pet15].

activation function we would expect the activation functions to thin also, this was found to not
be the case. The activation function width α was instead found to obey

α ∝
√
w2ν (2.10)

even when ν was much larger than the frequency at which σ2 peaks in Figure 2.2 [Bau16].
Thus a widening of the membrane potential is deemed not necessary to achieve widening of
the activation function. This also exemplifies the limits of the geometric interpretation of the
relation between activation functions and the Gaussian distribution of the membrane potential.

2.2 Sampling theory

2.2.1 Boltzmann machines

A Boltzmann machine (BM) is a network of stochastic binary units with symmetric connections
[HSA84]. The state of the network may thus be represented by a column vector z, where
zk ∈ {0, 1} represents the state of the k-th unit in the network, where 0 and 1 correspond to
being in the off or on state respectively. For every network state z, there is an associated
energy E(z) given by

E(z) = −1

2
zTWz − zTb (2.11)

where W is the weight matrix of the connections between units, is symmetric with zeroes along
the diagonal, and b a generic bias vector. If each possible network state is then treated as a
single microstate in a canonical ensemble, then the probability of a state is given by
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Figure 2.2: The variance of the membrane potential distribution for COBA-LIF neurons
in simulation, for varying rate and weight of Poisson noise input. In agreement with
Equation 2.9, there is an initial increase in the variance with increasing rate, however the
variances peaks and drops off again. Figure adapted from [Pet15]. Despite this lack of
membrane potential widening with increasing rate, the activation function width α was
found to increase with increasing input rate well beyond the peak seen here [Bau16].

Figure 2.3: Activation function of a neuron on the HICANNv4 chip. The number of
spikes produced is a proxy for the spiking rate, and so also the spiking probability. Figure
adapted from [Kun16].
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p(z) =
1

Z
exp{−E(z)} =

1

Z
exp

{
1

2
zTWz + zTb

}
(2.12)

where Z is the partition function given by
∑

z exp{−E(z)}. If from this we now consider the
conditional probability of the k-th unit being in an on state, given the state of the rest of the
network z\k, we get

p(zk = 1 | z\k) =
1

1 + exp{−uk}
= S(uk) (2.13)

where uk is a weighted linear transformation of the current state of the rest of the network, as
well as a fixed bias, and S() is the logistic (sigmoid) function. The uk, which we will refer to
as a ”potential” is given by

uk = bk +
∑
i 6=k

Wikzi (2.14)

and so is solely responsible for determining the conditional probability of unit k being in an on
state. If this conditional probability is re-purposed as an update rule, such that all units within
the network are sequentially set to an on or off state, with probabilities determined by the
conditional probability, then the evolution of the network state z forms a Markov chain Monte
Carlo (MCMC) sampler. This particular case of sequentially updating the network state using
the conditional probabilities is known as Gibbs sampling [GG87], and it can be shown that
for an arbitrarily large number of update steps, the distribution of observed network states z
converges on the exact target distribution of the BM given by Equation 2.12.

2.2.2 LIF Networks implement Gibbs sampling

A general overview of the link between BMs and LIF networks is given here in order to justify
the statement that LIF networks sample from BMs, however for a more precise mathematical
treatment, especially in the transition from discrete time-step updates to continuous updating,
the reader is again directed to [Pet15].

Since every neuron in a LIF network may be in either a refractory state or not, each neuron may
be treated as a two state binary system, with 1 being that the neuron is refractory, and 0 not.
As was seen in Section 2.1.3, neurons in the 0 state may transition to the 1 state according to
the spiking probability given by the neuron’s activation function. Since the activation functions
in LIF networks are found to be logistic in shape, they thus bear direct similarity to the logistic
update rule found in the BM regime.

The input field for logistic activation function is the mean membrane potential ueff, which was
found in the HCS to be a linear sum of its synaptic input 2.8. If the synaptic time constants
τ syn are set such that τ syne = τ syni = τref , then the membrane potential ueff is affected by a
spiking neuron for approximately as long as the neuron is refractory. Thus, ueff becomes a
linear transformation of the state of the rest of the network. This bears striking resemblance
to logistic update rule’s input field variable uk in the BM regime, which per Equation 2.14 is
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also a linear transformation of the state of the rest of the network z\k. If the neurons within
a LIF network are fully connected, the weights are made symmetric, and self-connections are
disallowed, then the weight matrix in the BM regime W directly mirrors the synaptic weights
in the LIF regime2.

The largest dissimilarity between the two regimes however, is that in the BM regime, it is
implicitly assumed that spikes are convoluted with a rectangular synaptic interaction kernel of
exact length τref , since per Equation 2.14, the abstract potential uk is uniformly affected for
as long as the presynaptic-equivalent unit is refractory/on [Bue+11]. This is in contrast to the
LIF regime, where neurons interact approximately via decaying exponential PSPs.

Due to the strong similarities discussed above and despite the mismatch in PSP shapes, under
suitable conditions neurons in a LIF network implement Gibbs sampling, and thus the observed
network states z sample from an arbitrary BM [Bue+11]. This result serves as the basis for all
sampling experiments. LIF sampling networks were first implemented on the HICANNv4 chip
in [Kun16], where it was found that a minimum of 300Hz excitatory and inhibitory Poisson
noise was required in order to achieve the HCS required for sampling.

2.2.3 Training and the mixing problem

Since no training of LIF networks is performed within this work, a thorough detailed procedure
of the training algorithms is not given. It is however to useful to appreciate the general result of
training, such that the mixing problem central to this work may be understood. The reader is
directed to [AHS85] and [Bre15] for a detailed procedure of the implementation of such training
algorithms.

The training algorithm most used in related works here is Contrastive Divergence (CD). By
observing the correlations between spiking neurons 〈zizj〉 and individual neuron spiking prob-
abilities 〈zi〉, the weights and biases respectively are updated to move the LIF network state
distribution towards a target distribution defined by a target BM. In this way, the spiking LIF
network gains an internal representation of the data/task for which it is trained.

Using the example of a classification problem, after training the LIF network will have converged
on a target BM, where states corresponding to the input training data/classifications are given
a high probability. As a corollary to this, states which do not represent the trained data-set
are assigned a low probability. These states thus have respectively low and high associated
energies E(z) in the BM regime. As a result of successful training, these energy differences
will be maximised, and so the state energy/probability landscape will become increasingly
inhomogeneous. Though this would not be a problem if states were sampled from this state
distribution p(z) directly (Equation 2.12), we know that the evolution of the network state
z instead implements Gibbs sampling (and indeed most useful sampling algorithms use some
kind of MCMC and have the mixing problem if the energy landscape has deep wells). In
order to move from one high probability state to another, as is required to accurately represent
the underlying distribution, the network will need to move through the aforementioned low
probability transition states. These states thus pose an effective energy barrier, and mean that

2Though the translation from abstract weights to synaptic weights is non-trivial
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the network state z may be confined3 to a sub-optimal local minimum in energy, corresponding
to a poor classification. The movement of the network state z past these high energy barriers so
that it may explore the network more freely is known as mixing. One solution to this problem
is to effect an increase in temperature in the corresponding BM, such that energy landscape is
flattened, and is known as tempering. This was achieved for current based LIF (CUBA-LIF)
neurons in simulation in [Kor17].

2.2.4 Temperature modulation

Until now, the notion of temperature in a BM has been omitted, since the temperature scale
may be defined arbitrarily. If it is re-added, we get an altered probability distribution given by

p(z) =
1

Z
exp

{
−E(z)

T

}
=

1

Z
exp

{ 1
2
zTWz + zTb

T

}
(2.15)

and an altered update rule given by

p(zk = 1 | z\k) =
1

1 + exp
{
−uk

T

} = S(
uk
T

) (2.16)

where T is the temperature, and the partition function Z has also been appropriately amended.
From these it can be seen that if the temperature T were defined to be different from 1, the
energies E and potentials uk, and thus weights and biases W and b could simply be scaled
such that there the distribution p(z) is invariant. It is thus only useful to consider the notion
of temperature when considering a temperature change while the weights and biases are kept
fixed. Thus an increase in temperature leads to a flattening of the energy landscape, and
effectively manifests as a scaling down of all weights and biases in the BM regime. Due to the
equivalence between the update rule in the BM regime and the activation function in the LIF
regime, an increase in T in the BM regime is synonymous with an increase in the activation
function width α in the LIF regime4. Due to the linearity of the potential in both regimes, this
is in keeping with the idea that a temperature increase is equivalent to a linear scaling down of
all weights and biases, as a scaling down of the input field of a function (the logistic function) is
exactly equivalent to a widening of said function. This temperature modulation was performed
for CUBA-LIF neurons in simulation in [Kor17], and by varying the rate of Poisson noise input
to sampling neurons the relationship

α ∝ T ∝ σ ∝
√
ν (2.17)

was found, where α is the width of activation functions in the LIF regime, T the temperature
in the abstract BM regime, σ the standard deviation/width of the individual neuron membrane
potential distributions, and ν the rate of Poisson noise input to sampling neurons [Kor17]. This

3Or rather, it may take a very long time before it escapes, and so it requires a very long time for the LIF
network distribution to resemble the BM distribution p(z) and thus implement effective sampling as desired.

4It is also only useful to define α with respect to it changing, and so the unit α, like T is also defined
arbitrarily.
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was also tested for COBA-LIF neurons, which are the focus of this work, where it is known
from Figure 2.2 that σ does not continue to increase with increasing ν. The noise rate and
weight was varied, and the relationship

α ∝ T ∝
√
w2ν (2.18)

was found, where w is the weight of Poisson noise input to a sampling neuron [Bau16]. These re-
sults are all from simulation, and they serve as the theoretical basis to implement a temperature
change on hardware.

2.2.5 Noise networks

Sampling theory assumes that each neuron has a source of perfectly uncorrelated, private
Poisson noise, such that each neuron’s OU random walk is also uncorrelated. Due to input
bandwidth constraints, there is thus an upper limit on the number of neurons for which Poisson
noise can be externally privately generated. If, in order to circumvent this limitation, the
privately generated noise is replaced by noise shared between multiple neurons, the resulting
shared-noise correlations lead to a significant reduction in sampling performance. It was found
that sampling performance could be regained, if the shared Poisson noise was instead replaced
by noise produced from a dedicated network of inhibitorily connected neurons, noise neurons.
The noise neurons are set up with Vthresh < El to ensure constant spiking, and by exploiting
the decorrelating effect of inhibitory noise, act as a source of slightly anti-correlated noise,
which counteracts the positive correlation brought about by sampling neurons sharing noise
neurons [Jor+15]. Any slightly remaining correlation in the noise may be accounted for during
training by an appropriate sampling weight change, since from a training perspective, there is
no difference between a correlation brought about due to shared noise sources and a correlation
due to a causal link between the neurons [Dol+18]. However, it is sill favourable to rid of
unwanted correlations as much as possible, and to produce noise which bears as much similarity
to Poisson generated noise as possible. We here wish to further this paradigm, by altering the
noise network such that it may have a modulatable output frequency, so that it may be a source
of noise for large scale tempering.



Chapter 3

Hardware details

PyNN [Dav+10] is a high-level simulator-agnostic modelling language which may be used to
specify networks of spiking neurons. The NEST [GD07] simulator backend was used for the
initial simulations of the noise network, and then all subsequent experiments were run using the
Heidelberg BrainScaleS-1 [Sch+10] physical hardware emulation backend with the HICANNv4
chip, since tempering has already been extensively shown to work in simulation [Kor17] [Bau16].
When we refer to a given experiment being run ”on hardware” (as opposed to in simulation),
it is this physical emulation to which we are referring. For further details on the hardware
implementation, see [Kun16] and [Sch+10].

The BrainScaleS system is physical neuron emulation system, with each wafer being composed
of 384 High Input Count Analog Neural Network chips (HICANNs), each of which is capable of
the analogue emulation of 512 COBA-LIF1 neurons, where each neuron is essentially emulated
by a discrete capacitor and accompanying neuron circuitry. The HICANNv4 chip is used
here. Each wafer may simultaneously emulate up to 196,608 neurons, with over 44 million
synapses. As a result of this physical emulation, the hardware emulates neurons with a 104

speedup over their biological counterparts. There is thus a distinction in time scales when
dealing with physical emulation on the hardware, whether the times refer to hardware run
times or biological times. Throughout this work, all times are given as the biological time.
Similarly, any parameters are given in biological units (mV, µS,ms), which are then scaled
to appropriate physical values on the hardware. The exception to this is where the explicitly
digital hardware parameters are manually set for a greater degree of control, and the parameters
are often unitless. When transitioning from digital simulation to analogue emulation on the
hardware, there are some detrimental effects to be avoided or handled as necessary. The main
hardware-specific distortive effects considered within this work are listed.

Fixed pattern noise

Due to the imperfect manufacturing of the wafer, there is a fixed mismatch in the transistors
governing individual neuron behaviour. Since this mismatch does not vary over time, it is
known as a fixed-pattern noise. Though these fixed differences form neuron to neuron may

1The neuron model used is actually the adaptive exponential integrate-and-fire neuron model [BG05], but
the adaptive behaviour may be switched off to effectively implement COBA-LIF neurons

14
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be calibrated away, by sweeping the settable digital hardware parameters and measuring the
realised biological parameters (e.g. El, τref ) for each neuron individually [Sch13], there is still
a degree of systematic variation from neuron to neuron. Also, not all parameters utilise this
individual calibration.

Floating gate variations

The digital parameters which are then sent to the individual neuron circuits at runtime are
stored on so called floating gates (FG), which are analogue units responsible for storing the
neuron parameters. Due to a limited precision of the setting of the FG voltages, the realised
voltage (and thus neuron characteristics) vary from trial to trial. To avoid going into to much
detail about the neuron circuit at a transistor level, we will simply treat this effect as an
additional noise upon setting the neuron parameters, which vary from trial to trial [Pet+14].
This effect is know as floating gate variation.

Spike loss

Spikes are recorded by a digital spike recorder on a per reticle (grouping of 8 HICANNs) basis.
If the local neuron spiking rate is too high, then there is the possibility for spike events to go
unrecorded [Klä17]. We later argue that the spikes are lost at a much greater rate upon readout
to the host computer than they are between neurons on chip.

Synapse loss

Since there are a fixed number of synapses available on the hardware, and indeed not enough
that every neuron may be connected to every other, beyond a certain number of synapses,
requested connections must fail to be realised on the hardware. This effect is known as synapse
loss, and in actuality begins to occur well before the maximum number of synapses is reached,
due to the sparsity in available routing resources and the complexity of the mapping algorithm.
[Pet+14].

OTA saturation

The synaptic interaction current is governed by a set of Operational transconductance amplifiers
(OTAs), which essentially ideally provide a current which is proportional to the linear sum of
all convolved input spikes with their associated synaptic weight, as given by gsyn in the theory.
However, since the OTAs are physical components and so have associated physical limits, they
deviate from theory by having a limit on the total output current. The reaching of this limit,
where the OTA may not output any more current despite receiving further input spikes is know
as OTA saturation, after which point the hardware will fail to accurately emulate a COBA-LIF
neuron [Mil12]. This is of gross importance in sampling, where it is fundamental that the
synaptic conductance gsyn is linear in the HCS.



Chapter 4

Experiments

4.1 Creating a modulated noise network

Since there is limited bandwidth available for inputting external spikes to neurons on the
hardware [Kar14], a network of inhibitorily connected neurons is placed on the wafer to serve
as a (slightly anticorrelated) noise source, as has been found to work as a functional replacement
for each neuron having a private source of externally generated Poisson noise [Jor+15]. Since
we wish later to vary the input noise rate to sampling neurons to implement tempering, we
thus wish to alter this noise network so that its noise output frequency may be modulated.
This modulation will be effected by subjecting the neurons within the noise network (”noise
neurons”) to an excitatory bias, such that they are biased to spike faster.

4.1.1 Initial considerations

For sampling on the hardware, a minimum frequency of 300Hz excitatory and inhibitory input
is required [Kun16]. To avoid OTA saturation (discussed in Section 4.3.1), this 300Hz baseline
frequency must actually be split among at least 8 sources. Furthermore, it is highly desirable
for the frequency of each of these sources to be similar (again, to avoid OTA saturation as will
be seen). We aim here for an achievable noise frequency range of 300Hz → 1200Hz, such that
as per Equation 2.18, a 2x widening in activation function widths should be achievable. To this
end, some general statements about the noise network’s parameters can be made:

On controlling the spiking rate range

In order to be achieve a 4x increase in spiking rate, the inter-spike-interval (ISI) of the neurons
must be reduced by a factor of 4. The ISI of spiking neuron is in general composed of two
time periods: the fixed refractory time τref and an arbitrary dynamic rise time towards the
spiking threshold tarb. The addition of excitatory stimuli reduces the dynamics time tarb, but
since τref cannot be dynamically changed, there is thus a hard limit on the possible frequency

16
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speedup of ISIslow
ISIfast

=
tarb+τref
τref

. Thus τref is initially set to 0, to rid of this limit1. This then

poses the issue that, without a refractory time as a hard limit, the neurons may now spike too
quickly, as 300

8
Hz is the maximum baseline spike rate desired from the network. In order to

replace the delay which the refractory time would have provided, and indeed with delays that
may be overridden by external excitatory input, many of the other neuron parameters are thus
determined: a large membrane time constant τm, a large membrane capacitance Cm (limited
to two values on the hardware), and a large potential gap Vthresh − Vreset to be traversed.

On ensuring spiking

The neuron rest potential El is placed above Vthresh, such that in the absence of external
inhibition, each neuron will spike at a constant rate. In order to slow down the spike rate as
desired above, the exponential decay behaviour of the membrane potential could be exploited by
placing the El arbitrarily close to but still above Vthresh. Though this would work in simulation,
due to the inaccuracy of setting the potentials on the hardware [Kok17], the target El must be
set sufficiently far above Vthresh to ensure that all neurons are, without inhibition, in a constant
spiking state.

On the synaptic time constants

The mechanism for ensuring that the noise produced by the network is decorrelated is that the
noise neurons are inhibitorily connected to each other. The inhibitory synaptic time constant
τ syni thus plays a large role in the noise network dynamics. One noise neuron spiking should
have the effect that its post synaptic noise neurons may not spike for a short time, their spiking
is temporarily delayed. We propose here that only a short τ syni compared to the mean ISI
is required to fulfill this role. A large τ syni may have the effect, especially when the network
activity is increased, that a neuron’s spiking behaviour may be delayed indefinitely, and as such
does not ever spike, which is to be avoided.

On the other hand, a long excitatory synaptic time constant τ syne is preferred. This is so that
the controlling external excitatory bias spikes may better resemble a constant bias current. If
a constant frequency excitatory input is considerably time varying (as with a short τ syne ), then
there is the possibility that a spike in the excitatory bias may trigger many noise neurons to fire
simultaneously, which is entirely contrary to the aim of producing anti/decorrelated noise. This
also implies that the excitatory stimulus weight should be very low. If these criteria are not
enforced strongly enough, the produced noise spike trains may become entirely synchronised.

4.1.2 Noise network optimisation

The noise network is configured as shown in Figure 4.1. It is initially run in simulation, in order
to better understand the behaviour of the network before implementing it on the hardware,
where the hardware-specific distortion mechanisms described in Chapter 3 may pose additional
difficulties. Each noise neuron is randomly connected to Npre other noise neurons inhibitorily, at

1There are also other hardware imposed limits on the minimum possible ISI, such as the hardware clock
speed, however we will find that a minimum in tarb is met before this becomes relevant.
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Figure 4.1: Network setup for using a modulated noise network as a noise source during
sampling. The P, N, and S circles represent Poisson input sources, Noise neurons, and
Sampling neurons respectively. The red and blue arrows show the directed synaptic con-
nections, excitatory and inhibitory respectively. Each noise neuron is randomly connected
to Npre other presynaptic noise neurons, at fixed inhibitory weight. In the experiments
studying the dynamics of the noise network only, the sampling neurons are omitted.

a fixed weight winh. Every noise neuron is connected excitatorily to a single source of externally
generated Poisson noise spikes, at a weight low enough to avoid any synchronisation effects as
previously discussed. The individual neuron parameters are set as discussed in the initial
considerations, but are also varied slightly from neuron to neuron, to better reflect the effect of
fixed pattern noise and FG variations on neuron parameters when the network is implemented
on the hardware.

For each noise neuron, the relevant statistics to characterise its produced noise are the frequency
ν and the coefficient of variation (CV) of the ISIs. The CV is used since a perfect Poisson noise
source, by definition, would produce spikes with an exponential ISI distribution, which has a
CV of 1. Thus, the CV is used as a measure of similarity to the ideal case of Poisson noise,
and thus the ”health” of the noise, since sampling theory presupposes Poisson generated noise,
and it is not a priori known what effect this deviation from theory will have. Due to a nonzero
rise time, there is a lower limit on the possible ISIs for an individual neuron, whereas no such
limit exists for Poisson noise, where a spike may be followed immediately by another without
delay. Thus, a CV of 1 for an individual neuron is somewhat unachievable. However, when the
spike trains from many neurons are superimposed (as will be done when a sampling neuron is
connected to multiple noise neurons), this minimum ISI limit is removed, and so we expect the
CV of the resulting composite spike trains to be improved. It must also be noted that a CV
of exactly 1 would not necessarily imply that the noise is suitable for sampling, as it does not
give any measure of correlation between spike trains.

For arbitrarily chosen initial Npre and winh values in simulation, the CV/ν plot is shown in
Figure 4.2. There is an apparent trade-off between CV and ν, manifesting in a ”banana”
shape, and this shape is preserved when the external excitatory stimulus is applied. This
trade-off was found to not be inherent to the dynamics of the noise network, but rather the
result of applying homogeneous winh values to an inhomogeneous neuron population, as a
simple iterative algorithm to alter the individual winh values to move the neurons towards more
favourable CV/nu values was found to be successful, as shown in Figure 4.3. Due to spike loss
making this difficult to implement on the hardware (as will be discussed), this technique was not
explored or used further, but still represents a possible improvement in future to improve the
health of noise produced, and decrease the variance in noise neuron frequency. Despite this, it
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Figure 4.2: CV and frequency of the spikes produced from individual noise neurons in
simulation, using initial guesses for Npre and winh values. Left is without any exter-
nal stimulus, right is with 1200Hz excitatory Poisson noise stimulus. The characteristic
”banana” shape can be seen here, representing the apparent trade-off between CV and
ν. From the left to right, the frequencies have been successfully increased as a result of
external excitatory stimulus. A CV closer to 1 indicates the noise better resembles Pois-
son noise. The CV values also change from left to right, and so present the problem of
optimising Npre and winh to maximise the CV in both cases.

still remains to find values of Npre and winh to be applied to the entire noise network, for which
healthy (Poisson-like) noise is produced in both the stimulated and unstimulated cases. The
problem then arises of how to clarify the ”health” of the network to be maximised. However,
from CV/ν plots with purposefully too much inhibition, some features to be avoided can be
identified, as shown in an extreme case in Figure 4.4. There are two undesirable characteristics
of note: due to too much inhibition, and particularly by being connected to a hyperactive
presynaptic neuron, some neurons have an almost negligible spiking rate, and are denoted as
being ”silent”. On the other hand, some neurons receive too little inhibition (in particular due
to relying on the silent neurons for inhibition), and so have a CV close to 0 and a very high
frequency, and are denoted as being ”hyperactive”. Quantifying these effects by looking at the
variance of frequencies or CVs did not provide enough differentiation between comparatively
healthy noise. Instead, viewing the neuron hyperactivity as a consequence of the existence of
silent neurons, the number of silent neurons is chosen as an additional measure of the health
of a noise network. The mean CV, mean ν, and number of silent neurons (classified as having
a frequency less than 2Hz) were plotted for a sweep of Npre and winh values for both 0Hz and
1200Hz excitatory stimulus in simulation, and are shown in Figure 4.5. Though no obvious
optimal point appears, it is observed that for similarly achieved mean CV values, there are far
more silent neurons for high Npre networks. When implementing on hardware, a low Npre (≈
3) is thus used, and winh will be increased until adverse effects are encountered.

4.1.3 Spike loss on hardware

Guided by Figure 4.5, the noise network is then run on the hardware, where it is expected for
the optimal values to need reconsideration, as the behaviour of the network more often than
not changes considerably when moving to the hardware, for reasons such as a lack of calibration
on some neuron parameters (τm, τ

syn
e/i and other limitations as discussed in Chapter 3).
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Figure 4.3: Demonstration in simulation that the banana shaped CV/ν trade-off is not
inherent to the noise network, and may be overridden by iterative modification of indi-
vidual winh values. On each iteration, the noise network was run with its current set of
weights, and the CV/ν found for every neuron. Neurons were classified as being ”silent”,
i.e. receiving too much inhibition and having a negligible spiking frequency, or hyper-
active, i.e. having a poor CV value and a considerable spiking frequency. The weights
from these neurons’ presynaptic partners were then decreased or increased respectively.
10 iterations were performed. The CV for almost all neurons improved, and the variance
in neuron frequency was reduced. The improvements were retained when Poisson noise
was subsequently added. Unfortunately due to spike loss issues on the hardware, this
technique was not implemented or explored further.
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Figure 4.4: Example of a noise network in simulation with highly undesirable features.
The number of presynaptic inhibitory partners Npre is very low (2), and the connected
weight winh is relatively high. This results in the noise neurons splitting into two distinct
groups: those which receive too much inhibition, barely spike at all and are ”silent”, and
those that consequently receive barely any inhibition and are ”hyperactive” with a very
high spiking frequency.
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Figure 4.5: Sweeping Npre and winh values in simulation to find optimal values to use in
the noise network. Left is the noise network without any external stimulus, and right
is with 1200Hz of external excitatory Poisson stimulus. The optimal values will be those
which produce ”healthy” noise in both cases, and which allow the required change in
output frequency. Each plotted point (circle or cross) represents a separate run of the
noise network with different Npre and winh values. Each line is a different Npre value as
labelled, and each point (circle or cross) along a line is a new winh value, increasing from
the bottom at 0.001µS up to 0.050µS at the top in 20 equally spaced intervals. For each
run, the mean CV and mean frequency ν of all the neurons is plotted, while the number
of silent neurons (those with ν < 2Hz) is plotted intermittently. The optimal point would
be where the CV is high in both cases, the frequency is considerably increased, and there
are few silent neurons. Though there is no obvious optimal point to pick, a few general
observations can be made. Increasing Npre and winh both in general result in an increase
of CV and a decrease in ν, as is to be expected from increasing the amount of inhibition
within the network. For similar CV values around 0.6, the number of silent neurons is
vastly greater for higher Npre values, indicating a large variance in neuron frequency, which
is to be avoided. Also, for high winh values, there is almost no change in neuron frequency
between unstimulated and stimulated. This figure and these observations are then used
as a guide when implementing the noise network on hardware.
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However, when run on the hardware with similar values as in simulation, the CV/ν plots yielded
suspicious results, with vastly improved CV values, but simultaneously with a large fraction
of silent neurons. A possible cause of these anomalous results was spike loss, and the noise
network was altered to test this hypothesis. Npre was set to 0, such that there was no inter-
neuron connectivity or inhibitory behaviour. The noise neurons should thus spike each at a
constant rate, and so have a single sharp spike in their ISI distributions, and thus have CV
≈ 0. This was not the case, and the neurons appeared to have CVs ≈ 0.5 still. When viewing
the individual ISI distributions, there was the expected sharp peak, but followed by subsequent
lower peaks at integer multiples of the first peak’s ISI, as in Figure 4.6.

These results can easily be explained by spike loss, as the loss of a spike upon readout would
lead to an observed ISI consisting of two of the true ISIs, and so would cause an observed ISI
peak at twice the true ISI’s value. To extend this intuition, we make the IID (independent and
identically distributed) assumption with spike loss events, that is that there is a fixed probability
γ for any given spike to be lost upon readout. This is a strong assumption, because spike losses
are in reality more likely to occur simultaneously, since they occur when the local spiking rate
is too high for all spikes to read out. However, this assumption is shown to adequately model
most of the effects of spike loss upon the ISI distributions here. If the true ISI distribution is
given by p∗(t) and is normalised, then the distribution of ISIs for which exactly one spike is
lost p1(t) may be given by the joint probability of two true ISI distributions, marginalised over
all values for which the sum of the individual true ISIs is constant, or

p1(t) =

∫ t

0

p∗(t− τ)p∗(τ)dτ =

∫ +∞

−∞
p∗(t− τ)p∗(τ)dτ = p∗ ~ p∗(t) (4.1)

where the integral limits may be extended to the infinities since p∗(t) = 0 ∀t < 0, and ~
represents a convolution. As a corollary to this, the ISI distribution resulting from 2 consecutive
spike losses p2(t) is given by p2(t) = p∗ ~ p∗ ~ p∗(t) and so forth. From the IID assumption,
the probability of an n-spike loss event is γn(1 − γ), and so the observed ISI distribution p(t)
may be given by

p(t) = (1− γ)p∗ ~
[
δ(τ) + γp∗ + γ2p∗ ~ p∗ + γ3p∗ ~ p∗ ~ p∗ + . . .

]
(t) (4.2)

where δ(τ) is the Dirac delta distribution. In order to test the validity of this treatment of
spike loss, the true ISI distributions of the neurons were recorded by sequentially recording the
analogue membrane potential trace of individual neurons (due to bandwidth constraints, only
2 may be recorded simultaneously), and inferring spike events therefrom. The true (analogue
recorded) ISI distribution may then be compared with that which was digitally recorded (and
thus subject to spike loss), as well as the ISI predicted to be digitally observed as per Equation
4.2, and is shown in Figure 4.6. We see that spikes obtained from the analogue read indeed
differ from those recorded digitally, and so that spike loss is indeed occurring. The degree of
spike loss was larger than expected, as for a network of 100 neurons on one HICANN spiking
at ≈ 20Hz each, the spike loss rate varies from 0.1% for the 100th neuron to 80% for the 1st
neuron2. When the spike rate is increased to ≈ 80Hz per neuron, the spike loss rate increases to
over 99% for the first 30 neurons. As well as affecting the recorded ν values in a linear manner,

2The spike loss rate being dependent upon the index of the neuron is to be expected, as the digital spike
encoder prioritises neurons in the same order.
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the recorded CV values are disproportionately affected even for low spike loss rates, with a 9%
spike loss rate artificially inflating the CV by a factor of 8 in Figure 4.6. As such, digital spike
recording may not be used to reliably infer the CV /ν values of neurons within the noise network.
For this reason, the aforementioned iterative weight modification algorithm shown in Figure 4.3
could not easily be implemented on hardware. The predicted ISI distributions obtained from
the convolutional treatment of spike loss showed good agreement with the digitally recorded
distributions, and predict artificially inflated CV values of similar values to those recorded,
justifying the convolutional treatment and the assumptions made.

Although some algorithms were designed to try to undo the effects of the infinite self convolution
upon the true ISI distribution, in order to try to recover p∗(t) from p(t), in most cases they
suffered from the fact that the spike loss rate γ had to be known in advance exactly. However,
for the simple case of p(t) consisting of consecutive peaks advanced by multiples of the first
peak’s ISI, a simplistic treatment was found to be adequate: all ISI values from the n-th peak
were divided by n, to bring it in line with the first peak. This was useful for situations where
the true ISI distribution p∗(t) had a single well defined value, as for the case of neurons spiking
at a constant rate. However, this approach could not be applied with the noise network, where
we are inherently aiming for a large spread in ISI. Thus when wanting to reliably measure the
noise network’s activity, the spikes must be inferred from sequentially analogue recording the
neurons’ potentials. This however has the downside of being slow, as each3 neuron requires
that the network be run again for it to be recorded. More importantly, this means that the
inferred spikes from each neuron are not recorded simultaneously, and so we cannot check for
unwanted spike train correlations. All subsequent noise network runs on the hardware use this
analogue spike reading method.

It must be noted that we are implicitly assuming that the digital spikes are being lost on
readout only, and are still being communicated to their target neurons. This hypothesis is
however supported by the CV/ν plots of the noise networks where spike loss was at its worst.
For the case of 1200Hz input noise, the first 30% of neurons had almost 100% spike loss. For
our low value of Npre = 3, if those spike were also lost between neurons and not just on readout,
it would be overwhelmingly likely for at least 1 neuron in the population to have all 3 of its
presynaptic partners be from this 30%, and so to receive no inhibition and have a CV of ≈ 0,
but no such neurons were observed.

4.1.4 Modulating the noise network on hardware

The true CV/ν plots for the stimulated and unstimulated noise networks on hardware are shown
in Figure 4.7. They show that undesirable noise network characteristics have successfully been
avoided (silent and hyperactive neurons). It is then to be determined, how many noise neurons
a sampling neuron should be connected to. Figure 4.8 shows the CV/ν of the composite spike
trains arising from combining the noise from a varying number of noise sources N . A total
noise frequency of 300Hz for no network stimulus is desirable, as it is the minimum required
frequency for sampling. It is also desirable for N to be a multiple of 8, as the noise input may
then be distributed equally among a sampling neuron’s OTAs. A higher N is also desirable, as
it is met with an increase in the resulting CV, though this is naturally a diminishing effect. Too
high an N will however be problematic, since this requires more synapses to be drawn between

3Or rather, every other, since 2 neurons may be analogue recorded simultaneously.
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Figure 4.6: Spike loss and its effect upon the observed ISI of a neuron spiking at a constant
frequency on hardware. a) The spikes received by the digital spike recorder. b) The
spikes inferred from the analogue membrane trace, thus are loss free. c) The analogue
membrane potential trace, from which the lossless true spike train and true ISI distribution
is inferred. d) The observed ISI distribution p(t) of the digitally recorded spikes, showing
the recorded CV/ν values, as well as the spike loss rate when compared to e). e) The
true ISI distribution p∗(t) inferred from the analogue recorded spikes in b), as well as the
true CV value. f) The ISI distribution predicted to be digitally observed from e), treating
spike loss as a convolution as described by Equation 4.2. Spikes are indeed shown to be
lost from b) to a), and the effect of this spike loss is evident in d), where the initial true
peak is followed by consecutive smaller peaks at integer multiples of the 1st peak’s ISI. The
predicted ISI distribution to be observed in f) shows good agreement with d), and predicts
a CV similar to that observed in d), justifying our convolutional treatment of spike loss.
To be noted is that the spike loss rate γ here of ≈ 9% has resulted in disproportionately
large 8x increase in the observed CV. The 50th neuron in a population of 100 neurons
on a single HICANN all spiking at ≈ 20Hz is shown here. This is an example of a case
where the true ISI distribution p∗(t) may be reconstructed from the digitally observed
lossy distribution p(t) by dividing the n-th peak’s ISI values by n to shift them back to
the true peak.
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Figure 4.7: CV/ν plots for the noise network implemented on the hardware, without
stimulation (left) and with 500Hz excitatory Poisson stimulus (right). The spikes were
recorded by sequentially recording the analogue membrane trace for each neuron, as de-
scribed in Section 4.1.3, in order to counteract spike loss. Although the individual neuron
CVs are not as good as found in simulation, this will be rectified when combining the spike
trains from many noise neurons. The desired increase in noise neuron spiking frequency
can be seen here, and the possible undesirable characteristics of a CV/ν plot, as shown in
Figure 4.4, have been avoided.

the noise network and each sampling neuron, and so may increase the chance of synapse loss.
For a finite number of noise neurons to sample from, it will also result in sampling neurons
sharing more noise sources, and so will receive correlated noise. An N of 16 was chosen as
a sufficient compromise among these constraints. The output noise frequency of the noise
network is plotted in Figure 4.9 for various excitatory stimulus frequencies. We see that the
noise network has an output frequency range of ≈ 300Hz → 1200Hz, at a consistently high
(>0.9) CV value, and that there is very little variance in the noise frequency for different
samples of 16 neurons. This figure may then be used as a calibration curve when wishing to
use this noise network as a source of modulated noise in sampling experiments.

4.2 On the refractory period

Since sampling theory assumes that all sampling neurons have the same refractory period, it is
thus favourable to ensure that the sampling neurons on the hardware also have a small spread
in their refractory periods. Furthermore, since the state of a neuron (whether it is refractory
or not) at time t will eventually be inferred by whether a spike has been recorded between t
and t− τref , if a constant global τref value is used rather than finding the ”true” τref for each
neuron individually (and after every FG resetting), a large spread in the neuron population’s
refractory period values would cause the recorded network state to deviate from its ”true” state.
Though in simulation these issues can be avoided by simply setting all neurons to have a similar
τref value, we expect that on the hardware the previously discussed fixed pattern noise as well
as FG variations will introduced an unwanted spreading of the τref values. The optimal τref
value would thus be sufficiently large to minimise the effects of synaptic delays on the recorded

4Or, more likely, their excitatory OTA circuits are saturating.
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Figure 4.8: The CV and ν of the resulting spike trains when noise from N individual noise
neurons (on hardware) is combined. The blue and orange lines are the CV and frequency
respectively. Left is without any external stimulation, right is with 500Hz of excitatory
Poisson stimulus. The coloured regions show the standard deviation of the respective
variable between different samples of N noise neurons from the noise network. We see
that although the CVs of the individual neurons were ≈ 0.2 (Figure 4.7), the CV of the
composite spike train is greatly increased as desired. Since 300Hz was found to be the
minimum required frequency for sampling [Kun16], we will thus connect each sampling
neuron to 16 noise neurons, such that without stimulus, the noise network will provide ≈
300Hz noise with a high CV. 16 is also a favourable number of noise neurons to use, as it
means that each OTA on a sampling neuron with be connected to 2 noise neurons, and so
each OTA should receive a similar amount of noise, the importance of which will become
apparent when reviewing OTA saturation in Section 4.3.1.
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Figure 4.9: Frequency of noise produced by the noise network on hardware when stimulated
with varying rates of excitatory Poisson noise input. The CV and ν is taken from the
composite spike train of noise produced by 16 noise neurons, as determined in Figure 4.8.
As desired, the network has ≈ 300Hz noise output when unstimulated, and may rise to
≈ 1200Hz. Increasing the noise frequency is met with a slight decrease in CV, as is it be
expected when the neurons are being pushed to their maximum spiking frequency4, and
so individually have worsening CVs. This also explains the plateauing of the resulting
output noise frequency. This figure may be used as a calibration curve for determining the
required stimulus frequency in order to achieve a target noise network output frequency.

states and imperfect HCS [Kun16], but also have a small spread in its realised value across the
sampling neuron population.

It is also favourable to perform this fixing of the sampling neuron τref value early on, as this
also fixes the synaptic time constants τ syne/i = τref as dictated by sampling theory.

In order to measure the realised refractory period distribution, a network of unconnected,
bursting neurons was set up in accordance with [Sch14]. The spike threshold potential was set
to be lower than the rest potential, such that each neuron was bursting at frequency that was
constant over time, and the remaining parameters (reset potential, membrane time constant)
were set as to minimise the time taken for the neuron to spike again after it has finished being
refractory, the rise time. Assuming that the rise time does not vary considerably between
neurons, is not affected by the set τref,set value, and that the ISI for a neuron set to τref,set = 0
consists purely of the rise time, the measured refractory time of the neuron is given by

τref = ISImean − ISI0 (4.3)

where τref is the measured refractory time of the neuron, ISImean the mean ISI of the neuron
(here disregarding spike loss), and ISI0 the mean ISI of the neuron at τref,set = 0, corresponding
to the rise time [Sch14].
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4.2.1 Accounting for spike loss

With the effect of spike loss upon the ISI distributions better understood as per Section 4.1.3,
precautions were taken to ensure it did not affect the measured refractory times. Since there
are no synaptic connections in the desired network, the neurons can be spread out across many
HICANNs without incurring the usual negative effects which would need to be considered (e.g.
synapse loss). Thus, by placing few neurons on each HICANN, it can be ensured that the total
spike rate per reticle (grouping of 8 HICANNs) is low enough such that spike loss is minimised,
or rather can be easily accounted for.

When viewing the ISI distributions of an individual neuron, the same repeated but shifted
multiple peaks were found as seen in Figure 4.6, and so the same treatment was applied to
”undo” the convolution that spike loss had applied. That is, ISI values from the n-th peak
were divided by n to scale them back to the first peak. Since the resulting ISI distribution was
very sharp (individual neurons’ ISIs do not vary considerably over time), and to reduce the risk
of outliers affecting the recorded ISI, the median of each neuron’s ISI distribution was taken to
be the ”true” fixed value for that neuron. The distribution of median ISIs across all neurons is
shown in Figures 4.11 and 4.10.

4.2.2 Refractory periods on Wafer 33

The refractory period measurement experiment was run first on wafer 33, where average cali-
bration for the refractory periods was active, meaning that the τref,set space has been swept by
manual setting of the digital Ipl parameter (which is responsible for the setting of the refractory
period at a transistor level) and the refractory periods measured as per the procedure described
above. When the refractory period is averaged over all neurons, a mapping between Ipl values
and τref is then realised, which is then used for all neurons indiscriminately. This calibration
method therefore does not account for the variation due to fixed pattern noise present between
neurons.

The results are shown in Figure 4.10. The distribution obtained for τref,set = 0 was as expected,
with a sharp spike at 0.8ms with a width of 0.1ms. When viewing the individual membrane
potential traces, this was found to indeed correspond to the rise time, confirming the assumption
that the rise time can be subtracted off of the measured ISI as a constant. However, for all non-
zero τref,set values, the measured τref was much larger than requested, and more importantly
had a width larger than the requested value. To highlight the consequences of this, if a neuron
were set to τref,set = 10ms, the neuron spiking every 50ms would be indistinguishable from the
neuron being refractory 100% or 20% of the time. Wafer 33 was thus deeded unsuitable for
sampling with the currently available calibration.

4.2.3 Refractory periods on Wafer 30

The experiment was thus moved to wafer 30, where individual neuron calibration was active,
meaning that a similar calibration procedure had been performed as in the average calibration,
except that a mapping between the set Ipl value and τref was found for every neuron individually,
thus reducing the neuron to neuron variability. The results are shown in Figure 4.11. Here the
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distributions are much thinner, with widths being approximately 1
10

of their corresponding τref .
The relative sizes of ISImean and their corresponding standard deviation σ were concordant
with previous calibration studies [Kug18].

However, another feature of note is that while the τref values are within one or two standard de-
viations of the corresponding τref,set, the difference between the τref and the measured ISImean
is much larger than that on wafer 33, corresponding to a larger rise time. This contradicts the
findings for τref,set = 0 on wafer 33, where the rise time was found to be a fixed value of about
0.8ms, which did not change considerably from neuron to neuron. In comparison, here on wafer
30, τref,set = 0 yields a much larger ISImean of 2.5ms, with a not-insignificant spread of 0.5ms.
It was found that for τref,set = 0, the digital Ipl parameter was not being set to its maximum
value of 1023 as it should in order to yield the lowest possible refractory time, but was instead
being set to values as low as 100. Therefore the τref,set = 0 ISI distribution is not representative
of the lowest possible τref value, and so does not constitute the rise time only, and instead is
erroneously increased by a finite refractory time, which also accounts for the increased spread.
If this ISI was erroneously taken to be ISI0 during calibration, it would thus manifest as a
constant decrease in the measured τref during calibration, meaning that Ipl values would thus
be incorrectly mapped to τref values lower than the true realised refractory period. Thus when
requesting a certain refractory period, the set Ipl will correspond to a true refractory period
greater than that requested by the same fixed offset, as can be seen by the ISImean values
being considerably larger than their τref,set counterparts, by more than the true rise time of
approximately 0.8ms. To support this hypothesis, when the Ipl values were manually forced to
0, the ISI plot closely resembled that from wafer 33. The offset also did not vary with neuron
size significantly.

As a measure of the spread to be minimised, the coefficient of variation CV = σ
τref

was used,

as it more meaningfully gives the proportion of the refractory time that is indeterminate. As
per the previous reasoning for the need for a long τref , as well as in keeping with values used
in other works and to minimise the CV, τref = 10ms was selected. In order to account for the
above discussed offset, a value of τref,set = 8.5ms is instead requested. All subsequent sampling
neurons use this value5 of τref and τ syne/i = 10ms, and are conducted on wafer 30.

4.3 Limits of Poisson input noise on the HICANNv4

chip

The underlying mechanism to implement tempering is to effect a widening of the neurons’
activation functions, i.e. increase the associated temperature, by increasing the strength6 of
noise input to said neurons.

As introduced in Section 2.1.3, there is a limited but intuitive geometric interpretation of the
link between the width of individual neuron membrane potential distributions, and the width
of the corresponding activation functions. The main limitation is that as the noise rate is
increased, the membrane potential width peaks and then drops off, whereas the activation

5Synaptic time constant calibration was not yet available
6We are here purposefully ambiguous with the word strength, as we mean either the weight or rate of the

Poisson noise.
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Figure 4.10: Refractory period distribution for varying requested refractory period τref,set
on wafer 33. Each binned data point is the median ISI of a single neuron, corrected for
spike loss. ISImean, τref , σ and σ

τref
are the mean of the ISI distribution, the subsequent

refractory period as determined by Equation 4.3, the standard deviation / width of the
distribution, and the coefficient of variation. Since for non-zero τref,set the width σ is of
similar size to the corresponding ISImean, this wafer is deemed unsuitable for sampling
with the currently available calibration in favour of wafer 30. The ISI for τref,set = 0 is
fittingly very small and almost single valued, corresponding to the ISI being due to the
rise time of the neurons only, and being affected very little by both FG variation and fixed
pattern noise. To minimise spike loss, only 85 neurons were used with only 5 neurons
on a single reticle, and so large bin sizes are here required. The figure has been limited
prematurely on the right to enable comparison with Figure 4.11. Within the population,
2 outliers have been removed, having ISIs of ≈ 600ms.
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Figure 4.11: Refractory period distribution for varying requested refractory period τref,set
on wafer 30. Figure elements have the same meaning as Figure 4.10.
The τref values are much closer to their corresponding τref,set values, and both the widths
and coefficient of variations are much smaller, making this wafer much more suitable for
sampling. Note that for τref,set = 0, the mean is much greater and not single valued as
on wafer 33, caused by the controlling Ipl digital parameter not being set to 1023. Since
the ISImean from τref,set sets the value of the apparent rise time ISI0, this erroneously
high rise time could have had a knock on effect on all subsequent recorded τref values.
τref,set = 8.5ms is used in all subsequent experiments, for a realised τref value of ≈ 10ms.
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function continues to widen. They are nonetheless related phenomena, and so it is worthwhile
to check that the membrane potential widths are responding on the hardware as expected as the
noise strength is varied. In simulation, the activation functions widened with both increasing
weight and rate, each over a much larger range of values than covered here [Bau16]. We however
expect to encounter hardware-specific limitations upon the noise strength and thus achievable
activation function widths before then.

The major limitation that is discussed here is the saturation of the OTA circuits, as introduced
in Chapter 3. Spikes received at the postsynaptic neuron are convoluted with a decaying
exponential kernel with time constant τ syne/i , and are then passed to the OTA, which would ideally
produce a synaptic current proportional to the linear sum of all the incoming spikes. However,
due to the fact that the OTA will have an upper limit on the maximum current output, it is
expected that a saturation regime may be reached, whereby the OTA reaches this maximum
output current. Such a regime is to be avoided, as saturating at a constant output current
would mark a complete loss of the stochasticity upon which sampling is reliant. Furthermore,
saturation would cause the neuron to become unresponsive to any further incoming spikes,
which would naturally be detrimental to sampling. Since reaching a constant maximum in the
OTA output current would mark a complete loss of stochasticity, we expect the stochasticity
of the neuron dynamics (characterised by the free membrane potential distribution width σ) to
suffer before reaching complete saturation.

In order to detect OTA saturation occurring, we make two statements about the expected
behaviour of the membrane potential, if there is no OTA saturation.

1. With increasing noise weight, it has been found in simulation (Figure 2.2) that the mem-
brane potentials continue to widen monotonically.

2. If the neuron is exposed to only excitatory or inhibitory, then increasing either the noise
rate or weight should result in the membrane potential moving closer to the respective
reversal potential.

Though there is the possibility that the behaviour of the membrane widths may in fact be more
complex, if the means stop shifting towards the respective reversal potential (and the mean is
not close to it) then this is a definite sign of OTA saturation occurring. This thus motivates
the sweeping of the rate and weight Poisson noise input to a non-spiking neuron, to check for
saturation effects.

4.3.1 Limits of Poisson noise weight

The weight of input noise to a sampling neuron was first swept for a fixed Poisson input
frequency. The weight was varied by varying the parameters w ∈ [0, 15] and gmax ∈ [0, 1023],
the 4-bit digital weight of the individual connection and a wafer-wide7 scale factor on the current
respectively, whereby the synaptic current Isyn produced by a PSP should obey Isyn ∝ w · gmax

gdiv
,

where gdiv is another digital scale factor, is set to 2 and due to redundancy with gmax is not
varied [Sch+10]. The setup for the experiment is shown in Figure 4.12 a): a sampling neuron

7gmax may actually take multiple values on a single wafer, however for the sake of simplicity it is here treated
as a wafer-wide constant.
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Figure 4.12: The three network setups for determining the limits of noise rate and weight
input to a sampling neuron. Sampling neurons and Poisson input neurons are denoted S
and P respectively. Red arrows denote an excitatory connection. All setups were also run
with inhibitory connections, later denoted as blue arrows. a) The initial setup for probing
the limits, with no regard for OTA saturation. b) In order to limit the load on individual
OTAs, the input noise is split up into 8 (4 pictured for the sake of clutter) separate Poisson
sources, with total input rate 300Hz still. In doing so, saturation effects are delayed and
a larger membrane potential distribution is reached.

is exposed to a single source of Poisson noise either excitatorily or inhibitorily, initially at the
minimum frequency required for sampling of 300Hz. The spiking threshold Vthresh was set
high enough such that no spiking behaviour may occur, and the remaining parameters were
set to the values which will be used during sampling. In particular, the reversal potentials
Erev
i and Erev

e were set to their respective extremes of -100mV and +45mV, such that none of
the saturation effects could be confused with effects associated with the membrane potential
nearing the reversal potentials.

For a varying noise weight at a fixed input rate of 300Hz, the membrane potential distributions
are shown in Figures 4.13 and 4.14 for excitatory and inhibitory input noise respectively.

In both figures, with increasing gmax and digital weight there is an initial mean shift towards
their respective reversal potentials, as well as a widening of the distributions. But at high gmax
and weight values, saturation behaviour begins to occur, whereby the mean does not shift any
further, and the width diminishes to the readout noise width. For comparison, Figure 4.15
shows a neuron under 900Hz excitatory noise, where saturation effects occur at much smaller
weight values. In order to better quantify these two effects, the same experiments were run
again with many more gmax and digital weight samples, and the mean and standard deviation
from every gmax/weight pair were plotted as in Figures 4.16 and 4.17 for 300Hz and 900Hz
excitatory noise respectively. The mean plateaus at much lower values of gmax and digital
weight for the 900Hz plot compared to the 300Hz, as is to be expected if the OTA is indeed
entering a saturation regime. Their inhibitory counterparts showed identical behaviour, except
with the mean potentials falling rather than rising to a plateau, and as such have been omitted.
In order to reduce the effects of OTA saturation, and consequently to allow greater noise weights
to be safely used, the setup was altered to resemble Figure 4.12 b). In this configuration, the
300Hz input noise is split up instead into 8 separate Poisson sources, each with 1

8
of the total

desired input frequency. This thus allowed the total noise input to be shared among multiple
OTAs, reducing the load on any single OTA. The results from this setup are shown in Figures
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Figure 4.13: Free membrane potential of a sampling neuron under 300Hz excitatory Pois-
son noise from a single source, with varying weight strength. With increasing gmax and
digital weight, the width increases as expected, and the mean also shifts upwards towards
Esyne . However, at very high gmax and weight values, a maximum mean shift is reached,
and the distribution thins to the readout noise width (as in weight 0, gmax 1), signifying
OTA saturation. Setup described in Figure 4.12 a).

Figure 4.14: Free membrane potential of a sampling neuron on hardware under 300Hz
inhibitory Poisson noise from a single source, with varying weight strength. The same
initial widening then saturation behaviour is observed here for the inhibitory case as for
the excitatory, as seen in Figure 4.13
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Figure 4.15: Free membrane potential of a sampling neuron on hardware under 900Hz
excitatory Poisson noise from a single source, with varying weight strength. The widening
here is less noticeable, but what is of importance is that the saturation effects (reduction
of width, reaching a maximum in the shift of the mean) occurs much earlier than as seen
for 300Hz in Figures 4.13 and 4.14.

4.18 and 4.19 for 300Hz and 900Hz input rate respectively. In both cases, the weights at which
saturation effects occurred were increased significantly, and the maximum membrane potential
width in both cases increased by 2-3×. Unless specified otherwise, all subsequent experiments
will ensure that noise inputs are split among the OTAs in a similar manner.

Though the gmax and digital weight values at which saturation occur have been increased, we
still wish to robustly identify, for a range of frequencies, the exact values at which saturation
becomes significant, such that it may be avoided. From the mean and standard deviation plots,
two such identifiers of saturation thresholds were considered. First, as in Figure 4.15, the points
at which the mean begins to plateau was considered as an identifier, as plateauing is a definite
consequence of OTA saturation, whereas the behaviour of the width may be more complex.
However, this method raised multiple issues, such as how the maximum is defined (especially
in the low frequency cases), and at what distance to the maximum should saturation be said to
occur (especially since the standard deviation is not singly determined), and thus was deemed
not robust enough. Instead, the saturation points were chosen to be the points at which the
slope of the standard deviation plot, in the positive gmax-weight direction, become negative.
Though the falling of the standard deviation may not be as decisive an indicator of saturation
as the mean, in all cases the standard deviation begins to drop close to but before an obvious
plateauing of the mean is reached, and so provides a robust identifier that errs on the side
of caution. The results are shown Figure 4.20, and show that for increasing frequency, the
maximum weight values to which the noise may be set decrease.

The gmax and digital weight value for noise in rate modulation based tempering experiments
is then chosen as follows: for an intermediate noise weight value of 7 (such that sampling
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Figure 4.16: The mean and standard deviation of the membrane potential distribution for
a sampling neuron on hardware subject to 300Hz excitatory Poisson noise from a single
source, with varying noise weight. As in Figure 4.13, saturation effects can be seen in the
plateauing of the mean, as well as the the simultaneous drop in the standard deviation.

Figure 4.17: The mean and standard deviation of the membrane potential distribution
for a sampling neuron on hardware subject to 900Hz excitatory Poisson noise from a
single source, with varying noise weight. Compared to the 300Hz noise input in 4.16,
the saturation effects occur at much lower weights and are considerably more noticeable,
with the mean becoming almost completely flat, and the standard deviation dropping to
a minimum almost immediately.
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Figure 4.18: The mean and standard deviation of the membrane potential distribution for
a sampling neuron on hardware subject to 300Hz excitatory Poisson noise, spread among 8
sources, with varying noise weight. Compared with Figure 4.16, where the only difference
is that the noise input is split equally among all available OTAs, here the maximum
shift in the mean is much greater, with little sign of plateauing. Similarly, the maximum
achieved standard deviation is much greater, and does not decrease again significantly.
OTA saturation effects have thus been prevented for all but the most extreme weight and
gmax values.

Figure 4.19: The mean and standard deviation of the membrane potential distribution for
a sampling neuron on hardware subject to 900Hz excitatory Poisson noise, spread among
8 sources, with varying noise weight. Again compared with Figure 4.17, where the only
difference is that the noise input is split equally among all available OTAs, though there
is still visible saturation behaviour, it has been delayed to intermediate gmax and digital
weight values, rather than occurring immediately. Thus by splitting the input among
multiple OTAs, using 900Hz input noise for sampling should be possible as long as the
weight parameters are set low enough as to avoid the saturation regions.
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a) Excitatory b) Inhibitory

Figure 4.20: Noise weight values at which OTA saturation begins to occur for different
frequencies, for purely excitatory and purely inhibitory input in a) and b) respectively.
Setup is shown in Figure 4.12 b). Saturation occurring is characterised by a decrease in
membrane potential width with increasing gmax and digital weight. The gmax value is
then set wafer wide to the maximum value for which a digital weight of 7 remains below
the curves of the desired frequency range. The strange behaviour in the bottom right
corner of b) is due to unwanted artifacting arising due to the low sampling resolution
of the digital weights sweep (only integers values) and subsequent processing. The gmax
range was swept with 20 logarithmically spaced samples, explaining the kinks in in the
300Hz curves.

neurons may have weights weaker and stronger than the noise), the highest gmax value is
picked for which saturation is not reached for the desired maximum frequency. For the following
experiments, gmax was set to 150, such that a tripling of the frequency from 300Hz to 900Hz
can be safely made, but saturation effects are expected to occur for higher frequencies.

4.3.2 Membrane potential distributions with varying noise rates

Using the allowed weight values determined in the previous section, the dependence of the
membrane potential width upon the noise input rate was examined. For the sake of confirming
the findings from the previous section, the same experiment was also run with a lower gmax
value. The results are shown in Figures 4.21 and 4.22 for gmax values 150 and 50 respectively.
In the former, the membrane width maximises at 300Hz and then decreases, while the latter
maximises around 600Hz and then decreases. Since OTA saturation has been avoided up to at
least 900Hz in both plots, supported by the fact that the widths do increase from gmax 50 to 150
up to 900Hz as enforced and justified in Section 4.3.1, the lack of widening cannot be attributed
to OTA saturation. The lack of widening also cannot be attributed to spike loss, as in all cases
the distributions of the individual excitatory or inhibitory plots continue to shift towards their
respective reversal potentials with increasing noise rate. That the lack of widening is due to the
theoretical effect described in Section 2.1.3, thus becomes a more probable possibility. In order
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to better compare with the behaviour of the width in simulation (found to be in accordance
with theory [Pet15]), the weight and input frequency were swept simultaneously to replicate
Figure 2.2 on the hardware. The results for gmax 150 and 50 are shown in Figure 4.23, and
largely mirror the behaviour found in simulation, with a notable exception that the peak in
width for an increasing input rate is followed by a plateau at an intermediate value, rather than
dropping to 0. This deviation from theory is especially prominent for the values used in the
previous rate variation figures 4.21 and 4.22, where the peak at approximately 300Hz is followed
by an almost immediate plateau. Despite this deviation from theory, if the lack of widening
is indeed a theoretical effect only, then it should not pose a restriction on the widening of the
activation functions, as discussed in Section 2.1.3.

4.4 Widening of single neuron activation functions on

the HICANNv4 chip

Knowing now at what noise strengths OTA saturation occurs, the activation functions are
found when varying either the weight or rate of Poisson input noise. The theoretical require-
ment for sampling is that the activation functions should be approximately sigmoidal, with
the input variable being the mean membrane potential. Though in simulation the mean mem-
brane potential can easily be swept directly by varying the rest potential El, a change in mean
membrane potential was instead effected by connecting the sampling neuron to a set of bias
neurons spiking at a constant rate, and then varying the connection weight (”bias weight”)
between maximum excitatory and maximum inhibitory (denoted as a weight sweep from 15
→ -15). This thus emulates the bias that a sampling neuron would be subject to from other
neurons within a connected sampling network. Though the addition of bias input could alter
the frequencies/weights at which OTA saturation occurs, since the majority of the activation
function dynamics occur at small bias weights, any possible bias-induced saturation is here
disregarded.

4.4.1 Widening via noise rate modulation

The first attempted method to induce a widening of the activation functions was to modulate
the rate of Poisson input noise to the sampling neurons, as successfully shown in [Kor17]
for CUBA-LIF neurons in simulation, where the activation function widths α were found to
obey α ∝ σ ∝

√
ν where σ is the standard deviation (width) of the free membrane potential

distribution and ν the rate of Poisson noise input. Though the relation σ ∝
√
ν holds only

for CUBA-LIF neurons, since a peak in width is reached at around 300Hz input rate (Figure
4.23) for COBA-LIF neurons, this relationship was found in simulation to not be necessary in
order for α ∝

√
ν to hold [Bau16] for COBA-LIF neurons, as is here desired. Modulating the

noise rate rather than weight to change the temperature has the advantage that a continuous
possible temperature range may be achieved, and that the modulated Poisson noise may instead
be replaced by noise produced from a modulated noise network as described in Section 4.1. The
network setup is described in Figure 4.24.

The spiking threshold Vthresh was set such that a zero bias corresponded approximately to a
spike rate of half the neuron’s maximum rate, so that an unbiased neuron does not have any
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Figure 4.21: Membrane distributions for different noise input rates (varying from row to
row), for either excitatory and inhibitory, or only excitatory or inhibitory (for columns
1,2,3 respectively), at gmax 150 digital weight 7 as determined in Section 4.3.1. The weight
values were chosen such that the OTA saturation regime has not been entered, at least for
rates up to 900Hz. Despite the rate of noise input increasing, past 300Hz (the minimum
frequency required for sampling), the membrane distributions do not widen, and instead
become thinner, indicating that the width may already have reached its maximum value
as theorised in [Pet15] at 300Hz. The 1200Hz row should be interpreted with caution, as
it is entering the saturation regime as shown in Figure 4.20. The lack of widening past
300Hz should not be attributed to spike loss, as both the excitatory and inhibitory only
columns show that the distributions continue to be shifted further towards their respective
reverse potentials with increasing noise up to at least 900Hz, showing that the spikes are
at least being received.



4.4. Widening of single neuron activation functions on the HICANNv4 chip 41

12
00

Hz  = 2.3mV
Both

 = 1.7mV
Excitatory

 = 1.2mV
Inhibitory

90
0H

z  = 2.3mV  = 1.9mV  = 1.3mV

60
0H

z  = 2.5mV  = 2.0mV  = 1.4mV

30
0H

z  = 2.3mV  = 1.7mV  = 1.2mV

20
0H

z  = 2.0mV  = 1.5mV  = 1.1mV

10
0H

z  = 1.5mV  = 1.1mV  = 0.8mV

40 20 0

0H
z  = 0.3mV

40 20 0

 = 0.3mV

40 20 0

 = 0.3mV

Membrane potential [mV]

Figure 4.22: Figure construction is identical to 4.21, except with a lower gmax value
of 50 (weight 7 remains unchanged). Due to the lower gmax value, and according to
the saturation regions defined by Figure 4.20, saturation effects have been avoided for
all frequencies shown. In agreement with 4.20, and rather as the desired consequence of
the chosen width-based indicator of OTA saturation, the widths of all the excitatory or
inhibitory distributions up to 900Hz increase from this figure to Figure 4.21, as should be
expected from an increase in noise weight. However for 1200Hz, for which OTA saturation
has been determined to occur for gmax 150, the widths instead decrease from gmax 50 to
150. Similar to the gmax 150 case, except that the width maximises at 600Hz rather than
300Hz, there is overall very little widening, and indeed a decrease in width from 600Hz to
1200Hz.
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Figure 4.23: The width of the membrane potential distribution on hardware subject to
excitatory and inhibitory Poisson noise at different weights and rates, at gmax 150 (left)
and gmax 50 (right). A sample is taken every 100Hz and at every integer digital weight.
Figures 4.21 and 4.22 thus represent a slice at digital weight 7 from the left and right
figures respectively. Using Figure 4.20, it is known that for gmax 150, saturation effects
are avoided for 900Hz approximately up to weight 9, and for 1200Hz up to weight 5, and
thus the behaviour of the width beyond these values should be disregarded. Similarly,
for gmax 50 (right), saturation may be disregarded for all but the highest digital weight
values at 1200Hz. Comparing with the same plot from simulation (Figure 2.2), the overall
behaviour is largely similar, with the width initially increasing increasing with both rate
and weight, but reaching a peak at a fixed rate. Notably different however is that past
the peak, the width plateaus at an intermediate value rather than going to zero with large
input rate. This occurs in regions where saturation effects may be ignored. Besides which,
saturation would be associated with a decrease in width. Also, the width does not become
independent of weight at high input rate, though this could be a direct consequence of the
fact that the width does not drop to 0 (or rather the voltage readout noise width).

Figure 4.24: Setup for finding single neuron activation functions, where activation function
widening is to be achieved by modulation of Poisson noise input rate. Diagram elements
have the same meaning as in Figure 4.12, with the addition that neurons labelled B are
bias neurons, with El > Vthresh to have a constant spiking rate. The actual implemented
network had all Poisson inputs and bias neurons instead split into 8 separate inputs, each
with an 1

8 of the total frequency shown, as described in Figure 4.12 b). The rate of exci-
tatory and inhibitory input noise was increased simultaneously, with shift compensation
being coarsely implemented by increasing the excitatory less than the inhibitory as shown.
For every frequency value, the bias weights are swept from -15 → +15, corresponding to
15 → 0 inhibitory with 0 excitatory, then 1 → 15 excitatory with 0 inhibitory.
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inherent preference to be in a refractory ”1” or non-refractory ”0” state, corresponding to a
spiking probability of 0.5, and thus to set the interesting dynamics regime in the middle of the
available bias values. Due to both the fixed pattern noise and FG variations, this was very
weakly enforced, and so the appropriate Vthresh value was only heuristically selected.

Due to an imbalance in the relative strength of the excitatory and inhibitory noise, when
noise rates are increased past the 300Hz minimum, the bias corresponding to a 0.5 spiking
probability shifts. In order to try to emulate that only the temperature in the underlying
Boltzmann distribution is being increased, the shift should be minimised as best possible. This
can easily be seen from equation 2.16, where the input corresponding to a spiking probability
of 0.5 would have a 0 in the exponent (though not necessarily corresponding to 0 bias input in
our activation functions). Since a temperature increase in the abstract domain would result in
linear scaling in all of the exponents, the spiking probability at this point would be invariant,
and thus the 0.5 spiking point should not shift.

In order to implement this so called ”shift compensation”, in simulation the tuning of the
inhibitory noise rate was chosen as a means of counteracting this shift [Kor17]. However,
since the 0.5 point was found most often to be shifting towards greater inhibitory bias, and to
avoid increasing the rate of either noise input rate lest OTA saturation regimes accidentally be
entered, here the excitatory noise rate was chosen as a means of tuning/modulation instead.
Again, due to the fixed pattern noise and FG variations, as well as an apparent non linearity in
the shift at different rates, this was in practise difficult to achieve or optimise. Thus a simplistic,
heuristically found solution was employed, whereby the excitatory noise rates νex are a linear
function of the inhibitory noise rates νin, with 300Hz inhibitory mapping to 300Hz excitatory,
and 900Hz inhibitory to 700Hz excitatory. The results from a shift compensated activation
function with varying noise input rate are shown in Figure 4.25 and 4.26 for gmax 150.

No widening of the magnitude expected occurs, and remains to be explained. In order to try to
remedy this, multiple parameter variations were explored, however none yielded the expected
widening. This included using a gmax value of 50 such that OTA saturation effects may be
completely eliminated, or using doubled or halved synaptic time constants (as permitted for
sampling by [Kun16]). Two parameters variations which may shed light upon the lack of widen-
ing however were when Vthresh was raised or lowered to confine the sigmoid dynamics to either
the excitatory or inhibitory bias region respectively. The results are shown in Figures 4.27
and 4.28 respectively. When the sigmoid dynamics are confined to the excitatory bias regions,
a thinning is observed, corresponding to the neuron paradoxically becoming more determin-
istic with increasing noise rate, even well before OTA saturation is expected to occur. With
the sigmoid dynamics confined to the inhibitory bias regions however, the expected widening
occurs. This is highly contrary to that expected from theoretical considerations, as a lower-
ing of Vthresh should be (ignoring the slight change in distance to the reversal potentials and
assuming a degree of translation invariance) identical to an increase in El (and vice versa),
which corresponds simply to a direct way to effect a change in the mean membrane potential,
as per Equation 2.8. A potential source of the asymmetry could be the asymmetry in the
strength of inhibitory/excitatory synapses (as seen, for example, in the need shift compensa-
tion), however even in the worst case of nonlinear asymmetry, this would result in a nonlinear
horizontal stretching of the activation function from the left to the right. A complete change
in the widening behaviour however, is unexpected and yet to be explained.
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Activation functions

Figure 4.25: Shift compensated activation functions on hardware with modulated Poisson
noise input rate. The network setup is described in Figure 4.24. The denoted rates
are the inhibitory rates. If shift compensation has been implemented (as in this figure),
the excitatory rates are linearly scaled like the rate pairs (νin, νex) (300Hz, 300Hz) and
(1200Hz, 900Hz). All data in this figure is from the same HICANN and same neuron, so
the fixed pattern noise of no consequence here. The particular neuron was selected for
its ”good” sigmoidal shape. Each grey line (30 in total) represents a completely distinct
run on the hardware, and so each involves a new setting of the floating gates. Within
each grey line run, all the biases and weights were swept multiple (5) times, in order to
find an associated error in the spiking rate arising purely from the inherently stochastic
nature of spiking here. However the variance arising therefrom was found to be negligible
compared to the variance arising due to FG variations, and as such is not shown. Thus
the variation between grey lines is purely a consequence of FG variations. Each grey line
is the mean over these digital re-sweeps (which have negligible variation), and the blue
line is the average over all grey lines, and so is an average over FG variations. The two
red dashed lines show the spike rate at 0 bias and the maximum measured spike rate. The
green dashed line shows the bias at 50% of the maximum spike rate, and so corresponds to
a 0.5 spiking probability. Ideally, the 0 bias red dashed line and green dashed line would
be superimposed upon each other. This figure is for gmax 150, and so saturation has been
avoided at least up to 900Hz. We thus expect to see a

√
3 ≈ 1.7 times increase in the

activation function width. Apart from a slight lifting for the inhibitory biases, no such
widening is observed, and remains to be explained.
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Figure 4.26: An alternate form of the activation function with rate modulation showed in
Figure 4.24. Left is the spiking rate for lines of constant bias (bias weight values labelled
on the lines) with increasing noise rate. A widening of the activation functions would
result in a convergence of these lines, corresponding to different biases (the deterministic
element) having a lessened impact on the spiking rate. Ideally, the 0 bias line would be at
0.5 spiking probability (shown by the dashed green line), and thus with increasing noise
rate, if shift compensation were perfectly implemented, would have a spiking rate invariant
of noise frequency. Right is the same as the left, except where it is falsely imposed that the
ideal shift compensation has been realised. That is, 0 bias is defined to be at 0.5 spiking
probability (for each frequency), and all other biases are defined with respect to this false
0 bias point. Any unwanted shifting of the activation function is therefore removed, and
any widening should be easily visible in the convergence of the (false) bias lines towards
0.5 spiking probability. Since there is very little appreciable convergence (except again a
slight lifting of the inhibitory bias lines), this figure more clearly shows that the expected
widening for increasing noise input rate is not occurring.
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Shift corrected bias lines

Figure 4.27: Activation function on hardware with a modulated Poisson noise input rate,
where the sigmoid dynamics have been confined to the excitatory bias range by raising
Vthresh. The figure construction is the same as in Figure 4.25 and 4.26. Besides the lack
of shift compensation, the altered Vthresh value and that the bias neurons here spike at
approximately double the rate, the setup is identical to 4.25, where the sigmoid is centered
at 0 bias, and no widening is observed. Here the activation function paradoxically thins
with increasing input noise rate, as evidenced by the divergence of the shift corrected bias
lines.
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Shift corrected bias lines

Figure 4.28: Activation function on hardware with a modulated Poisson noise input rate,
where the sigmoid dynamics have been confined to the inhibitory bias range by lowering
Vthresh. Figure construction and network setup is completely identical to Figure 4.27, ex-
cept with a lower Vthresh. Here, as expected, the activation function widens with increasing
noise rate, and is further evidenced by the strong converging of the shift corrected bias
lines. The strange behaviour of the strong inhibitory bias lines at high frequency lines is
due to the premature clipping of the sigmoid shape.
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Figure 4.29: Setup for finding single neuron activation functions, where activation function
widening is to be achieved by modulation of Poisson noise input weight. Diagram elements
have the same meaning as in Figure 4.24, and input splitting to avoid OTA saturation was
implemented here also (not shown). The total noise input rate to the sampling neuron was
kept constant at 300Hz, but with a varying proportion of the 300Hz coming from Poisson
sources connected at digital weight 1 or 15. The frequencies were thus swept in opposite
directions as shown. For each frequency value, the bias weights were swept as described
in Figure 4.24.

4.4.2 Widening via noise weight modulation

Since an activation function widening was not achieved on the hardware as the noise rate was
modulated, we thus look to modulating the noise weight instead. In order to maximise the
allowed weights, we use the 300Hz minimum required noise frequency for sampling [Kun16].
The saturation regions of Figure 4.20 are then revisited, and the highest gmax value for which
digital weight 15 does not saturate either synaptic input was chosen. Although a simple way
to modulate the noise weight would be to simply reconfigure the digital noise weight values on
chip within a run using the digital configurator, performing a digital reconfiguration whenever a
temperature change is required was deemed too slow, especially if high-frequency temperature
changes (e.g./ as a solution to mixing) are sought. Instead, the network was set up as in
Figure 4.29, whereby a sampling neuron is connected to two Poisson noise pairs (disregarding
splitting), where one pair (excitatory and inhibitory) is connected permanently at weight 15,
and the other at weight 1. Weight modulation was then achieved by only ever having one of
the Poisson noise source pairs active at 300Hz, while the other is at 0Hz. In actuality, a range
of frequencies was swept such that the total input frequency was 300Hz, such that the 300Hz
transitions from completely at weight 1 to completely at weight 15, in an attempt to regain a
degree of continuousness of the settable temperature without requiring separate noise source
pairs at intermediate weights. The results are shown in Figure 4.30, where a considerable
widening is achieved. To quantify the widening, we do not measure the activation function
widths α directly, as many neurons showed an asymmetry in sigmoidal shape from the left
inhibitorily biased flank to the right excitatory. Furthermore, our x-axis independent variable
is not the mean membrane potential, as is the case in theory, but rather the bias to the neuron,
which is only a proxy therefor. We will instead measure the network temperature change in
the BM regime more directly, by observing how the weights and biases scale, as will be seen in
Section 4.5.
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Figure 4.30: Activation function with weight modulation. Figure construction is the same
as in Figure 4.25. Network setup is described in Figure 4.29. The weight is modulated by
varying the frequency of noise between two Poisson source pairs at weight 1 and weight
15, such that the total input frequency is a constant 300Hz. The listed percentages are
thus the percentage of the 300Hz noise that originates from a Poisson source connected at
weight 15. There is considerable widening of the activation function from all 0% to 100%,
as is to both expected and desired, and is made clear by the convergence of the shift-
corrected bias lines. It should be noted that the maximum widening is largely reached
when the percentage of high weight noise is very low, and so lends itself to the idea that
activation function widening is dominated by the weight of input spikes, or rather the
largest weight among the input spikes.
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Figure 4.31: Setup for recording the state probability distribution of a fully connected
randomly initialised sampling network, as the weight of Poisson noise is modulated. Sym-
bols have the same meaning as in Figure 4.12, with the addition that thick arrows denote
a connection of weight 15, and thin of 1. The weight is modulated by having only one pair
of Poisson noise sources input spikes active at 300Hz at any one time, for each sampling
neuron. The connections between sampling neurons are symmetric and randomly selected
to be either inhibitory or excitatory. 6 sampling neurons were used (3 shown here). The
noise input connections have been dimmed to avoid visual clutter.

4.5 State probability distribution changes under noise

weight modulation

We wish to see how the state distribution changes as the noise weight is modulated, as an
increase in noise strength should result in an increase in the temperature in the abstract Boltz-
mann regime. Rather than training, a sampling network was set up with randomised weights as
described in Figure 4.31, and where each sampling neuron may receive Poisson noise at either
weight 1 or 15. The neurons to use for sampling were picked based on their activation func-
tions, picking those with similar maximum spike rates νmax, so that a mean effective refractory
time of 1

νmax
could be reliably used to infer the network state. If the temperature in the corre-

sponding Boltzmann regime is increased, as a direct result of Equation 2.15 we expect to see
a flattening in the state probability distribution. The resulting state probability distributions
are shown in Figure 4.32. From the ”cold” noise weight 1 distribution to the ”hot” noise weight
15 distribution a definite flattening occurs, indicating that tempering has been achieved to a
degree. Although flatter, the hot distribution resembles the cold (the states remain roughly
sorted in probability), indicating that the sampling distribution may be transforming as would
be expected from an increase in temperature in the abstract regime, since as per Equation
2.15 the order of states by probability would remain the same, since the associated energies of
the states E(z) = 1

2
zTWz + bTz are temperature invariant. Boltzmann machines were then

fitted to both distributions separately, and the resulting fitted parameters are shown in Figure
4.33. We see that the fitted weights transform by scaling linearly from the cold to the hot
distribution, as a temperature change in a Boltzmann machine should manifest. Though there
are only few fitted biases (6, one per neuron), they do not transform in a clear manner, with
some inhibitory biases becoming excitatory and vice versa. This was to be expected, as no
reliable shift compensation was applied, and any shift in the 0.5 spiking probability point (as
in Figure 4.30) would manifest as a change in the neuron’s internal bias.
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State

Figure 4.32: Sampling network state probability distributions for two different Poisson
noise input weights on hardware. The binary network state vector z at time t is inferred
by which neurons have spiked since t = τref . The states have been sorted with respect
to the ”cold” weight 1 distribution. A definite flattening of the distribution occurs when
changing to the ”hot” weight 15 distribution, as is evident from all states apart from
the 6 most probable receiving an increase in probability, as well as the Gibbs entropy
(where each state is an individual microstate) increasing from cold to hot. The hot state
distribution resembles the cold, in that there is still a general slope in the same direction,
meaning that the sampling distribution is transforming at least somewhat as is expected
from a temperature change.

4.6 Mixing aided by noise modulation

4.6.1 Mixing with tempering via weight modulation

To simulate a mixing problem to be solved by tempering, a network was created as described
in Figure 4.34, consisting of two discrete clusters of neurons. Within each cluster, there are
only excitatory connections, but between clusters the connections are only inhibitory. Either
cluster may thus be active (and very stable) with a high probability, but due to the strong
inhibitory connections between the clusters, the activities of the neuron clusters should be
mutually exclusive. This thus poses a mixing problem, since exclusively either cluster may
be active with a high probability, but to change to a network state where the other cluster is
active involves transitioning through states where both are partially active, and so have very
low associated probabilities and high energies. To quantify the activity of each neuron cluster,
the mean binary neuron state across each cluster is taken. We thus look at the activity of each
cluster as the noise weight is varied as described in Section 4.4.2. The results are shown in Figure
4.35. When the network is subject only to the ”cold” weight 1 noise, only one neuron cluster
is active, while the other does not spike at all, and no mixing occurs. When some (16%, 33%)
”hot” weight 15 noise is introduced, mixing between the two modes is allowed to occur, while
the clusters still retain a degree of mutual exclusivity. When the network is subject purely to
weight 15 noise, the mutual exclusivity is lost, and the activity of the clusters fluctuates freely
without any obvious anticorrelation. A weight variation scheme is then employed whereby
mixing is facilitated by intermittently switching to high weight noise to allow the the activities
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Figure 4.33: Fitted abstract Boltzmann parameters for a sampling network state distribu-
tion for two different Poisson noise input weights on hardware. The parameters are fitted
to the ”cold” noise weight 1 and ”hot” noise weight 15 state probability distributions
from Figure 4.32 separately. The fitting minimises the square loss between the measured
probabilities and probabilities determined by Equation 2.12, with the weight matrix W
and bias vector b to be fitted, where W is symmetric with zeros along the diagonal. Here,
the fitted abstract weights in the hot regime are plotted against those in the cold (left),
as well as the fitted biases (right). We see a definite linear scaling in the fitted weights,
which matches how the weights should transform under a temperature increase. Though
there are not enough bias values to draw a clear conclusion, they do not seem to transform
in any clear manner. This was to be expected, since no shift compensation was applied,
and thus different biases were introduced by the modulated noise weight.

Figure 4.34: The network setup for simulating a mixing problem to be solved via noise
weight modulation. Symbols have the same meaning as in Figure 4.12. To each sampling
neuron, private Poisson noise is generated and connected as in Figure 4.29. The neurons
are connected to realise two neuron clusters whose activity should be mutually exclusive,
but the probability of exclusively one of the clusters firing is very high and approximately
equal. Each neuron cluster contained 8 sampling neurons.
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Figure 4.35: Mixing between two high probability sets of states, corresponding to exclu-
sively one of two neuron clusters spiking, for different Poisson noise input weights. The
network setup is described in Figure 4.34. The blue and orange lines denote the mean
binary neuron state within each cluster, and hence the cluster’s spiking activity. For 0%
high weight, corresponding to 300Hz at weight 1, there is no mixing between the two
modes, corresponding to the active cluster never switching. With increasing noise weight
however, the network is able to transition between the two sets of states, as evidenced
by a swapping in which neuron cluster is active. For weights 66% and 100% high weight,
the inter-sampling neuron connections are overridden by the Poisson noise, as the neuron
clusters’ activities cease to be mutually exclusive. For the 100% weight scenario, there
is the possibility that saturation effects are occurring for cluster 1, or that too great an
accidental excitatory bias is being induced by the lack of shift compensation.

of the neuron clusters to fluctuate freely. The results are shown in Figure 4.36. Within any
cold region, the network remains stuck in one of its two modes of only one of the clusters being
active. Within a hot region, the activities of the two clusters fluctuate freely as expected. After
a hot region, the network collapses to one of the two modes, and indeed does not switch to
the same mode after every hot region. Thus the tempering induced by weight modulation has
successfully enabled mixing.

4.6.2 Mixing with noise rate modulation

Despite the fact that widening of the activation functions was not achieved with noise rate
modulation, we apply it to a sampling network and mixing problem regardless. This is moti-
vated by the fact that although the weight modulated activation functions stop widening past
approximately 30% of noise being high weight (Figure 4.30), the mixing between the two modes
in Figure 4.35 becomes increasingly erratic with increasing weight still. There is thus the pos-
sibility that mixing may be aided without the need for the activation functions to widen. Two
networks were set up, where the sampling neurons were connected to one pair of Poisson input
sources8 as in Figure 4.12, and then the sampling neurons were connected to each-other as in
Figure 4.31 or 4.34, for seeing how the sampling distribution changes and whether mixing is

8As always, this is disregarding that the Poisson noise sources are actually split up into 8 sources to avoid
OTA saturation.
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Figure 4.36: Mixing between two modes on hardware, facilitated by an intermittently high
noise weight. The network setup is shown in Figure 4.34. The neurons are exposed to
”cold” Poisson noise at weight 1 for 40,000ms, and then ”hot” Poisson noise at weight
15 for 10,000ms. Within the cold regions, the activity of the two clusters is mutually
exclusive. Within the hot regions, the mutual exclusivity is lost (as in Figure 4.35), and
the activity of both networks fluctuates freely (as shown by the intermittent high frequency
fluctuations, which appear as the thick vertical bars). After the some of the hot regions,
the active cluster has swapped, indicating that mixing has successfully been facilitated.
Within each 40,000ms cold region, the spike trains were actually generated as 4 spike trains
for 10,000ms each. The thin periodic dips in activity thus occur when switching to a new
spike train being generated. Although this should have no effect, since the spike trains
are generated in software before running, the dips may thus be attributed to possible edge
effects during spike train generation, where the spikes may momentarily be generated with
too high or low a frequency.

facilitated respectively. The results are shown in Figures 4.37 and 4.38 respetively. The results
show that the state distribution does not flatten as with a temperature change, but is instead
altered to a very different BM. Despite this, mixing between the two modes is still aided. The
explanation for this, and the implications thereof, are discussed in Chapter 5.
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Figure 4.37: The state probability distribution of an arbitrary sampling network on hard-
ware as the noise rate is modulated between 300Hz and 1200Hz. The states are sorted
according to the 300Hz states. Since a widening of the activation function via noise rate
modulation was not achieved, we do not expect to see a coherent flattening associated with
a temperature increase here. Indeed we see only that the states are arbitrarily distorted,
with no strong resemblance to what would be the ”cold” 300Hz distribution. Further-
more, the Gibbs entropy of the distributions does not increase, indicating that despite the
distortion, the temperature in the 1200Hz case has not increased.

Figure 4.38: Mixing between two high probability modes on hardware, corresponding
to two neuron clusters with mutually exclusive activity, for different Poisson noise rates.
Although we have repeatedly seen that the higher rates are not associated with a higher
temperature increase, mixing is still facilitated by the increased noise rate.



Chapter 5

Discussion

All tempering experiments were carried out with Poisson noise externally generated for each
sampling neuron, as that it was the theory presumes for the OU (Ornstein-Uhlenbeck) processes
to occur. This was done to avoid an additional layer of separation and thus lack of control of
the sampling neurons.

We then presented a method for determining the limits of noise input to a hardware sampling
neuron, where the most important hardware limitation was OTA saturation. We were thus
able to determine, at each frequency, at what possible noise weights saturation could be safely
avoided (Figure 4.20). Though this experiment was carried out for a single neuron only, and
so did not take the so-called fixed pattern noise into account, it was nonetheless used as a
guideline for all subsequent experiments.

On the lack of activation function widening due to rate modulation

In order to be able to make a direct comparison with a result from simulation, the width of the
free membrane potential was plotted as the weight and rate of noise input was varied (Section
4.3.2. The results qualitatively agreed with those found in simulation, with the width peaking
with increasing input rate. A certain marked deviation from the theory however occurred
after this peak, whereby in simulation (in accordance with theory) the width then falls to 0,
whereas we found instead that the width plateaus. Given the limited validity of the geometric
interpretation of the link between membrane potential widths and activation function widening
as discussed in Section 2.1.3, this is not of direct consequence to the subsequent lack of activation
function widening. However, that both these deviations from simulation occur at similar rates
could indicate that they are caused by a similar phenomenon.

Activation function widening is the critical mechanism by which a temperature change manifests
in LIF sampling. Figure 4.25 shows that activation function widening by modulating the noise
rate was found to not be successful on the hardware. Since in simulation the widening was
found to obey a proportionality in w2ν over a much larger frequency and weight range than
here explored, we thus look to possible hardware-specific explanations. Due to the asymmetry
in the implementation of the inhibitory and excitatory synapses on the hardware, and that the
behaviour of the activation function varied greatly when it was confined to either excitatory
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or inhibitory biases, a closer look at the responsible OTA circuits is thus warranted, which is
beyond the scope of this work.

A possible interim experiment to isolate the issue further could be to remove the spiking be-
haviour of a neuron used in activation function experiments entirely, and to infer an activation
function from its analogue membrane trace, by assuming that we are effectively observing a
spiking neuron’s effective membrane potential. This would have the immediate advantage of
being able to measure the mean membrane potential directly, rather than inferring it from the
amount of bias the neuron is subjected to (though this discrepancy could not cause a change
in widening behaviour). In any case it may shed some light on the situation, for example to
check whether the neuron is still following an OU process.

Successful tempering via noise weight modulation

We thus switched to effecting activation function widening by increasing the weight of Poisson
noise to a sampling neuron (Figure 4.30). We found that the probability landscape flattened as
desired, and the weights closely followed a 0.5x linear scaling, implying a doubling of tempera-
ture (Figure 4.33). The biases did not follow the same trend, which was to be expected since
no robust shift compensation was applied to counteract the arbitrary unwanted shifting of the
activation function as the input noise changes.

We then applied this tempering to a network with two distinct modes, where for low-weight
noise no mixing between the states is observed (Figure 4.35). In order to try to regain a degree of
continuity in the settable temperature without having separate Poisson sources at every digital
weight, we substitute, for example, 300Hz of moderately weighted noise with 150Hz of high
weight and 150Hz of low weight noise. Though this does not have any mathematical backing, it
is still useful for observing what happens when transitioning between the two extremes. We see
that with increasing noise weight, mixing between the two states is indeed facilitated (Figure
4.36).

Multiple mixing facilitation mechanisms

We note however that the activation functions stopped widening further when approximately
33% of the noise was high weight, however the mixing between the two modes continues to
become increasingly erratic with higher weight. We thus propose that there are two mechanisms
contributing to the increased mixing between modes:

1. An initial widening of the activation functions up to 33% high weight noise encompasses a
temperature increase, causing the probability landscape to flatten as per the fundamental
defining BM equations. This is what we refer to as tempering.

2. Any other distortive effects upon the sampling distribution. We may simplistically model
this as a large arbitrary bias, here determined by the uncompensated arbitrary shift-
ing of the activation functions, causing the underlying sampling distribution to change
arbitrarily.
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Since these other distortive effects effectively push the network to sample from a completely
different arbitrary BM, and it is unlikely that two networks will have minima and maxima
occurring in the same places, these distortive effects may allow the network to escape from
probability wells present in the original BM. This has the downside compared to tempering
however, that the subsequent network evolution is not determined by the original BM, and we
are simply hoping that the local landscape in the altered BM is flatter than in the original.

This treatment of other distortive effects as an increasing bias exerted upon the network is
validated in Figure 4.35, where past 33% high weight noise (approximately where a maximum
in activation function width, and thus temperature occurs) the mutual exclusivity between the
two modes that defined the network is completely lost. Since we believe that we are at most
getting a 2x increase in temperature, the states corresponding to mutual exclusivity should still
dominate. If we suppose that we are actually in a regime of infinite temperature, such that all
states are equally likely, then each neuron cluster should oscillate around 0.5 probability. This
is not the case, and instead one of the neuron clusters remains almost completely active, while
the other oscillates freely, indicating that the sampling network has been greatly disturbed, but
not in a manner expected from tempering.

This is especially evident when considering the same experiments, but with noise rate rather
than weight modulation. Since we did not observe any activation function widening, we expect
the tempering mechanism to not be present. In comparison to the flattening, but retaining of the
overall ordering of states when tempering via weight modulation, the state distribution under
rate modulation changes to not resemble the original (Figure 4.37). Furthermore, the associated
entropy of the distribution does not increase, supporting that the distribution changes are due
to non-tempering distortions only. When applied to the aforementioned dual-mode mixing
problem, mixing was also facilitated as expected (Figure 4.38).

Though these distortion effects may be useful when tempering is not sufficient to allow the
network to escape from especially deep probability wells, they should in general be avoided.
This is due to the fact they effectively allow the network to temporarily sample from a (fixed)
separate arbitrary BM. When switching back to the original BM, a systematic bias could be
induced based upon where the network emerges from the 2nd BM. An extreme example of this
would be if the distortive bias were aligned with a particular mode, causing that mode to be
over-represented during sampling.

From the hypothesis of the two mixing mechanisms, we may then conclude that in order to
minimise these biasing distortion effects, when implementing weight modulation based tem-
pering, a sampling neuron should only be exposed to as much high weight noise as is needed
in order to reach the maximum activation function width, since any further high weight noise
results in an increase in the non-tempering distortive effects only.

Since a maximum activation function widening was here achieved by using the maximum range
of settable digital weights, the widening could possibly be increased by drawing connections
from the high-weight noise to the sampling neurons multiple times, to increase the PSP effected
per spike and thus the effective noise weight further. Alternatively, multiple gmax values could
be set per HICANN to similarly increase the range of noise weights. Since a 2x temperature
increase has been demonstrated, tempering could now be employed using a particular temper-
ature variation scheme with trained networks, as done in simulation [Kor17], to see if a similar
increase in generative performance can be achieved.
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On spike loss

Though spike loss was not a focus of this project per se, and was instead encountered as
a negative effect to be avoided, we found that even for moderately sized experiments (100
neurons on 1 HICANN), the spike loss for a significant proportion of these neurons was close
to 100% (this did not affect the subsequent sampling experiments, as very few neurons were
placed on the hardware). We heuristically argued that this spike loss must be predominantly
occurring on readout, however it would be useful to check this, and quantify the degree of spike
loss at different points in the hardware stack. One experiment to check that the spikes are not
being lost on chip would be to check that the PSPs from sequentially connected bursting noise
neurons are seen on a target analogue recorded sampling neuron.

A modulated noise network was created but unused

A noise network where the frequency could be modulated from 300Hz → 1200Hz noise output
was created, with the purpose of using it in rate modulation induced tempering experiments.
Since tempering was not achieved using rate modulated Poisson generated noise, the noise
network was never used as a noise source for sampling neurons. If tempering via rate modulation
is eventually shown to work on the hardware, then the Poisson generated noise may then be
swapped out for noise generated from this noise network.

We assume that the noise network size N is large enough in comparison to Npre that effects
arising from a finite network size have been avoided, and thus that the network (barring synapse,
spike loss etc.) may be scaled up for use in larger experiments, if rate modulation is eventually
found to be effective. We have also assumed that the PSP due to individual excitatory stimulus
spikes has been made low enough, such that the stimulus does not induce any correlation in the
noise neurons. Due to spike loss, the noise spike trains could not be compared for correlations
directly, however the fact that the max noise network output frequency of each neuron spiking
at ≈ 80Hz required a comparatively fast ≈ 1000Hz stimulus, may indicate that the PSP was
indeed made small enough and that the spike trains should indeed be uncorrelated. If this is
not the case, then when used as high-frequency noise source during rate variation experiments,
the noise correlation should manifest as an apparent increase in the excitatory weight between
sampling neurons, relative to when Poisson noise is used.

A preliminary test was done to see if the noise network could be modified to work as a noise
source in rate modulation experiments. Vthresh was set above El, so that in the absence of
external stimulus, no neurons should spike, and thus the network could effectively be switched
on and off. However, even when Vthresh was set 10mV above El, the noise network still output
noise at ≈ 50Hz. Due to the fact that activation widening is achieved even when the amount
of high-weight noise is comparatively low, the noise network was deemed unsuitable for weight
modulation experiments.



Chapter 6

Conclusions

In this work we have successfully realised tempering in a Boltzmann machine inspired stochastic
spiking network on the BrainScalesS-1 neuromorphic hardware system. In our setup, a rela-
tively small proportion of the input noise frequency is replaced with noise of a higher weight,
then by selecting neurons with a sigmoidal shape and that show widening behaviour, temper-
ing is implemented for these neurons by changing between higher and the lower noise weight.
Although the shift of the activation functions in the ”hot” high weight regime should be min-
imised, this is only approximately achievable, and leads to the biases transforming arbitrarily
when modulating the noise weight. On the other hand, the weights in the abstract Boltzmann
regime are linearly scaled down as expected from a temperature increase. This resulted in a
clear flattening of the network state distribution, and enabled mixing in a simplified two-mode
sampling network.

Tempering via modulating the noise rate, in contrast to simulation, was not successful. Instead
of the state distribution flattening, it was instead distorted non-trivially. This was however
found to also facilitate mixing in the two-mode sampling network. As discussed in Chapter 5,
this method should be employed with care, as there is the possibility for systematic biases to
be induced due to the fixed arbitrary distortion.

As an outlook, tempering via weight modulation may now be used to improve the generative
performance of trained sampling networks.

A noise network was designed for use in rate modulation experiments, with its output frequency
able to be increased from the baseline required for sampling. If this network is to be adapted
for tempering via weight modulation, it must be ensured that the noise network can be made
completely inactive with certainty.
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Appendix

Noise neuron parameters

Name Value Description

Vgmax 500 Digital current scale
Cm 1.0 nF Membrane capacitance
Vreset -60 mV Reset potential
Eleak -10 mV Leak potential
Vthresh -20 mV Threshold potential
Esyn

e 60 mV Excitatory reversal potential
Esyn

i -100 mV Inhibitory reversal potential
τref 0 ms Refractory time
τm 100 ms Membrane time constant
τ syn

e 30 ms Excitatory synaptic time constant
τ syn

i 4 ms Inhibitory synaptic time constant

Noise network parameters

Name Value Description

N 100 Number of neurons
Npre 3 Number of presynaptic partners
winh 15 Inter neuron inhibition weight
wstim 1 External excitatory stimulus weight

Table 6.1: Neuron and network parameters for the modulated noise network on hardware.

64



BIBLIOGRAPHY 65

Sampling neuron parameters

Name Value Description

Vgmax 500 (150) Digital current scale
Cm 0.2 nF Membrane capacitance
Vreset -35 mV Reset potential
Eleak -30 mV Leak potential
Vthresh -25 mV Threshold potential
Esyn

e 60 mV Excitatory reversal potential
Esyn

i -100 mV Inhibitory reversal potential
τref 10 ms Refractory time
τm 1 ms Membrane time constant
τ syn

e 10 ms Excitatory synaptic time constant
τ syn

i 10 ms Inhibitory synaptic time constant

Bias neuron parameters

Name Value Description

Vreset -40 mV Reset potential
Eleak 0 mV Leak potential
Vthresh -30 mV Threshold potential
τref 20 ms Refractory time
τm 20 ms Membrane time constant

Activation function network parameters

Name Value Description

Nbias 8 Number of connected bias neurons
Nsplit 8 No. sources total Poisson input split between

Sampling network parameters

Name Value Description

N 6 Number of sampling neurons
wsample 15 Sampling weights (ex. or in.)

Mixing network parameters

Name Value Description

N 16 Number of sampling neurons
wsample 5 Sampling weights (ex. or in.)

Table 6.2: Neuron and network parameters for sampling experiments on the hardware.
Values with parentheses are the changed values for rate rather than weight noise modula-
tion experiments.
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