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Abstract

The BrainScaleS-1 wafer-scale hardware supports the emulation of large-scale
spiking neural networks. Obtaining a valid hardware con�guration involves placing
and routing the user-de�ned neural network toplogy onto the hardware. This thesis
describes the work performed by the author to improve this process. Previous
misbehaviour was corrected as well as the emulation of larger networks was
enabled. For example, the lossless mapping results archived on a real-world-like
wafer by the benchmark suite are better by a factor of 4 to 15 depending on the
topology of the network. Some networks that were not able to be mapped without
loss can be mapped now. On that way the calibration database was changed and is
queried for hardware limitations. The interface of the placement algorithms were
changed to allow the user to select and con�gure prede�ned placement strategies
or create own strategies. The new placement strategies include simple liner, and
also algorithms that cluster populations or neurons based on their connectivity.

Zusammenfassung

Das BrainScaleS-1 Wafer-scale System ermöglicht die Emulation groÿskaliger
spikender neuronaler Netzwerke. Um eine korrekte Kon�guration für Experimente
zu erhalten ist eine Abbildung (mapping) der vom Nutzer gegeben gegeben
Netzwerke auf die Netzwerkstruktur der Hardware erforderlich. Dise Arbeit
handelt von den Verbesserungen an der Abbildungssoftware (mapping-software).
Bestehendes Fehlverhalten wurde korrigiert und die Emulation groÿer Netwerke
wurde ermöglicht. Beispielsweise können die Netwerke der Benchmark-suite
auf einem Modell-Wafer, welcher der zukünftig zu erwartenden Qualität
entspricht, auf die 4- bis 15-Fache Gröÿe skaliert werden, jeweils abhängig
von der Topologie des Netzwerks. Netze die zuvor nicht ohne Verluste
realisiert werden konnten, können nun realisiert werden. Um die Resultate
zu erlangen wurde die Callibrationsdatenbank verändert und nun auch gelesen,
um die Hardwarebeschränkungen während des Abbildevorganges abzufragen.
Die Architektur des Plazier-Algortihmus wurde verändert um den Nutzern
eine Schnittstelle zu bieten, über die vergefertigte Strategien wählbar und
kon�gurierbar sind, und auch um neue Strategien zu de�nieren. Die neuen
Strategien beinhalten einfache lineare Strategien, aber auch Strategien, die
basierend auf Verbindungen von Populationen und Neuronen Gruppierungen
vornehmen.
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1. Introduction

The Human-Brain-Project (HBP) is an EU Flagship initiative to accelerate science.
It provides infrastructure for scientists to research on brain related topics [27].
It is separated into multiple subprojects. One of them, SP9, focuses on
Neuromorphic Computing. At the Heidelberg University the BrainScaleS system
is located. It emulates Spiking Neural Networks (SNN) using custom made devices.
They model the characteristics and interaction of biological neurons using the High
Input Count Analog Neural Network (HICANN) chip which simulates neurons by
the adaptive exponential integrate-and-�re (AdEx) [7] model in analogue circuits.
The human brain is build of roughly 86× 109 neurons [3], a single wafer in
the BrainScaleS-1 System contains only about 200× 103 neurons. Ordered by
the number of neurons this places the BrainScaleS-1 wafer on a similar level as
the Drosophila [11]. Among the main advantages of the mixed-signal system
simulation of neural networks compared to simulation on classical computers is
the acceleration factor. Biological time is accelerated by a factor of approximately
104. While the energy e�ciency per synaptic operation is another remarkable
advantage of the wafer system compared to classical computers.
In order to simulate neural networks on the system, they need to be translated
from the biological description to a hardware con�guration. The marocco software
handles the place-and-route part [2]. It was developed during the PhD work of S.
Jeltsch [19], a former group member.
marocco was initially developed when the hardware system was still under
development, so it assumes the hardware to behave as speci�ed. But alike most
real world experiments it turned out there were problems which were unconsidered
during maroccos development. The software in its old state was not to able handle
the real behaviour of the hardware well.
This thesis deals with �xes and improvements to the marocco software to allow
the up-scaling of neural networks on real world wafer systems.
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2. The Wafer-scale system

To run experiments on the BrainScaleS system the biological description of the
neural network written in PyNN [12] with their Populations and Projectons has
to be translated to a valid hardware con�guration. marocco handles the place and
route part, therefore hardware resources used during mapping are discussed in this
chapter.

2.1 Hardware resources

This section is structured by following the signal from a source neuron to another
target neuron as pictured in 2.1. The resources used on the way are shortly
described. To get a more detailed description consult, e.g., the PhD thesis of
S. Jeltsch [19].

Figure 2.1: The signal of a Sending Neuron (1) is merged in the Merger Tree (2)
and injected to the Layer1 network at SPL1 repeaters (3). Layer1 crossbars (4)
are used to switch the signal to Synapse drivers (5) where the signal is injected
into the synapses (6) [19]

2
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2.1.1 HICANN

The building block of the wafer is the High Input Count Analog Neural Network
(HICANN) chip. Is it possible to use a single one of these chips to run emulations
of Neural Networks. The HICANN is a mixed-signal chip. The hardware (HW)
neurons operate as analogue electronics to physically simulate biological (BIO)
neurons. Signals between HW neurons is processed digitally. A total of 384
HICANNs are on a single wafer. They are connected to their neighbours to allow
the simulations of larger networks.
The HICANN holds 512 Neurons (sec. 2.1.2) that are grouped into 8
NeuronBlocks (sec. 2.1.3). Spikes that are created by Neurons get routed
via the Merger Tree (sec. 2.1.4) to the Layer1 (sec. 2.1.5) network.
After travelling in through the Layer1 network, the signal is injected via
SynapseDrivers (sec. 2.1.6) into the synapse array (sec. 2.1.7) of the
targeted neuron.
Connections between neighbouring HICANNs are established on the Layer1
network.

2.1.2 Neuron

Neurons, also referred to as denmem, are analogue circuits that are designed
to simulate biological neurons as adaptive exponential integrate-and-�re (AdEx)
neurons [7].The 512 hardware neurons are split into 8 NeuronBlocks containing
64 neurons each. They are ordered as 32 neurons an the top row and 32 on the
bottom row. Neighbouring neurons on the same NeuronBlocks can be connected
to increase the input synapse count. The current software requires that Neurons
on the top and bottom are connected. Possible neuron sizes range from two to 64
in steps of two.

2.1.3 Neuron Blocks

NeuronBlocks build a logical unit containing 64 Neurons. The signal from neurons
on the same NeuronBlock are bundled on the same Layer1 bus. To distinguish
the signals of the neurons, a di�erent address is used for each neuron. The address
consists of 6 bit allowing 64 possible addresses while 5 addresses are reserved for
special purposes.

2.1.4 Merger Tree

The signal of multiple Neuron Blocks can be merged in the Merger Tree. At the top
of the merger tree are background generators, that are used for signal locking in
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the digital layer1 network. At the bottom of the merger tree external spikes can be
injected. This is used to stimulate the network during runtime of the experiment.

2.1.5 Layer1 network

The Layer1 network is a circuit switched network consisting of 256 vertical and 64
horizontal buses (VLine, HLine) which are interconnected by a sparse matrix. In
such it is not possible to switch arbitrarily to another bus.
The 8 outputs of the Merger Tree enter the Layer1 network at the HLines
6, 14, 22, 30, 38, 46, 54, 62. To prevent an immediate blocking of the signal, the
buses are rotated by 2 on every transition to a neighbouring HICANN. So after
4 steps along x-direction the signal will reach another possible insertion point. A
complete round is done after 32 steps in horizontal direction. In vertical direction
the 256 buses are split to the left and right half of the chip. Rotation is done
only among 128 buses, thus a full round is done after 64 steps. After two steps
in vertical direction the VLine is again accessible from an HLine that might be
sending. With the 8 switches and all senders active 16 HICANN might be located
vertically before VLines are exhausted.
To feed the signal into the synapse array a switch from a VLine to the synapse
drivers has to be activated. It is possible to switch to the synapse drivers on the
neighbouring HICANN.

2.1.6 Synapse Drivers

There are 220 Synapse Drivers on a HICANN (version 4). 55 of them are in
each corner. Multiple Synapse Drivers can be chained to increase the number of
synaptic inputs for the neuron, while putting less capacitive load on the Layer1
network drivers.
One Synapse Drivers has access to two rows of 256 synapses. Two bits of the
address are decoded in the Synapse Drivers to select 1 out of 4 synapses. A total
of 128 synapses are now active. Additionally to the 4 remaining bits an analogue
signal is sent to the synapses.

2.1.7 Synapse Array

The Synapse decodes the other 4 bits of the address. If it matches the line of the
analogue signal is connected to the neuron. A neuron of size two (x=1, y=2) has
access to 220 synapses in each the top and the bottom synapse array.
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2.2 Routing Limitations

Resources might only be used once, so the routing process gets harder with
progressed routing, as the resources availability reduces. This is noticeable during
routing, because after traversing 4 HICANNs in horizontal direction another signal
might be injected by the Merger Tree, which will already occupy the bus.
By the regular order in the switching matrix of the Layer1 network shown in
�gure 2.2, the periodicity of the signal at a given HICANN is already de�ned by
the sending HICANN and the merger tree con�guration. A Similar statement
holds for the switches between VLines and Synapse Drivers. At time of injection
the signal is already destined to access one of 28/26 Synapse Drivers (14/13 per
side) of the total 220 drivers at the target.
Nonetheless it is not possible to use any combination of the switches, as it would
lead to too large capacities which the layer1 drivers are not able to drive. To keep
the signal stable there must not be used more than

• 1 Layer1 Crossbar switch;

• 1 switch into the Synapse Array;

• 3 Synapse Drivers in a chain;

Di�erent timing settings or di�erent hardware might allow to change these
constraints.
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Figure 2.2: A cropped view on the switch matrix. In the top are switches between
vertical buses (VLines) and wires to the Synapse Drivers. The Bottom shows
the crossbars between HLines and VLines. Every crossbar is a green dot. The
small lavender boxes on the left of the horizontal buses are theDrivers. On every
second line the driver is on the next HICANN. In blue are the SPL1 repeaters,
at which the signal from the Mergertree is injected.



3. Encountered state of the place and

route algorithm

�Place and route� or �mapping� in terms of this work is the process of translating
the biological representation of a neural network written in PyNN [12] to a valid
hardware con�guration. Figure 3.1 shows the mapping problem. Hardware
neurons, buses and synapses are con�gured in a way to represent neurons and
connections of the described network.
The software stack to solve the mapping problem for the wafer system was a joint
e�ort of multiple PhD thesis. The architecture of the software was provided by
E. Mueller [24]. Hardware con�guration and calibration was provided in the PhD
thesis of C. Koke [22]. M. Kleider [21] did additional work on calibration. The
place and route software marocco was written during S. Jeltsch PhD thesis[19].
marocco splits the mapping problem into three steps:

1. Neuron placement

2. Layer1 routing

3. Synapse routing

The placement itself is not di�cult, but it has to provide good characteristics,
such that the Layer1 routing will �nd routes on the limited resources available.
The routing problem is similar to the rectilinear Steiner tree problem, that is known
to be NP-hard [16]. To generate a mapping in reasonable time the algorithm has to
simplify the problem. The properties of the biological network and of the hardware
are used by heuristics.
Neuron placement and Layer1 routing a�ects the global state of the hardware,
and therefore cannot be parallelised in a simple way. Synapse routing could be
parallelised easily on HICANN granularity.
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P1 P2

P3

P4

P5

Figure 3.1: Place and route is the translation from the biological representation
of a network in the top to a hardware con�guration in the bottom. A possible
placement con�guration is indicated as coloured neurons. A population may span
across multiple HICANNs. For simplicity in the hardware con�guration �only�
airlines to and from population P2 are shown. On the hardware they have to be
routed along the grey Layer1 Bus network.
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Figure 3.2: the spiral is build by sorting Neuron Blocks �rst by the number of
available Neurons, then by the spiral metric. In the background are blacklisting
data for the Wafer 33. One sees that the availability of neurons is scattered, which
results in neurons being scattered across the Wafer, as it starts at red via orange
and cyan to light and dark blue.

3.1 Neuron placement

When I started working on the software the placement strategy was to sort the
NeuronBlocks by their available space and if they are equal a spiral order around
the centre of the wafer is applied. Neuron Blocks with smaller space available were
used �rst. The populations were sorted by their initialisation order which is equal
to their ID.
A �gure picturing this strategy is given in 3.2, the order of priority starts at red
via orange and cyan to light and dark blue, This method �nds a solution to the
placement problem in n-log-n time, O(NB log(NB) + Nrn log(Nrn) + Nrn). The
initial sorting dominates the runtime.
The strategy turns out to be bad for the currently existing wafer system. As
some neurons are blacklisted on the real system the ordering of the NeuronBlocks
lets the placer jump from location to location. When a population is larger than a
NeuronBlock, the population is torn apart and placed over multiple NeuronBlocks
scattered over the wafer. This resulted in two major problems.

1. By starting with NeuronBlocks with less space, the �rst populations are
split with a higher probability. This leads to more injection points of the
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signal which makes it di�cult to realise all connections as more VLines are
required at the target and in turn more Synapse Drivers are required.

2. The targeted neurons are also scattered across the wafer. This leads to
longer connections on the Layer1 network and more branches of the signal
path. That will use more network resources and leads to blocking of the
network.

3.2 Layer1 routing

For routing two methods are available: a Dijkstra and a Backbone router [19], [14].

Dijkstra The Dijkstra router [13] [6] is not favoured, as it branches quite often
and thus uses a lot of the rare L1Crossbars, and it does not handle the routing
limitations of the hardware well. An additional di�culty is, that we do not have
a single target vertex, but there are 512 vertices possible to be used as target. All
of the 512 VLines can be used to feed the signal into the requested synapse array.

Backbone The second router is similar to a single-trunk Steiner tree router
but we call it Backbone router. What [10] calls trunk, is called backbone in our
software. We place the backbone on the HLine the signal of the neuron is injected
on. So there is no optimisation in the placement of the backbone. A minimal
single-trunk Steiner tree may be found in linear time [10].
The Backbone router utilised in marocco walks the horizontal bus until it reaches
the x-coordinate of every target. If it could not reach that far, for example because
the bus is already occupied by another route or because there is no horizontal
neighbour ,which is a consequence of the wafer being round, a detour is tried by
walking a short distance in vertical direction.
After the Backbone has been established the router considers to branch from each
segment of the horizontal backbone to a VLine. If there are targets at x-coordinate
of the segment, the 8 VLines are tried to be extended to reach all the targets. The
VLine that reaches the most targets is set to be used. The synapse arrays in this
x-coordinate are marked as reached by the VLine and removed from the target
list. There are two problems with this implementation of the Backbone router.
Figure 3.3 pictures them.

• The Backbone router did not consider the HICANNs on neighbouring
x-coordinates as targets even though it is possible to inject signal into the
Synapse Arrays of the neighbouring HICANNs. This leads to more branches
being made and more buses in use. The chance of congestion is increased.
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Figure 3.3: Example for routing from a source S to targets T [0 - 6]. The Backbone
router was in a state that could produce a result coloured in black and red. While
it would be possible to produce a result coloured in black and blue. The blue
result is better than the red as it reaches T3, which is blocked by blacklisted or
occupied HICANNs coloured in light red, and consumes less resources to reach T1.
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• In cases where a detour has been performed, the router did not take note of
the used L1Crossbar. In turn it happened, that another L1Crossbar might
be set, during the branching step. On the current hardware this violates the
constraints dictated by the power of the L1Repeaters, which are not capable
to drive two crossbars at the current timing settings.

The worst case runtime of the Backbone router is cubic O(Nrn+ |V |2) [19]. While
in average cases with few detours the expected runtime is O(Nrn+ |V |). With |V |
the number of buses scaling with the number of Neurons.

3.3 User requirements

Some users of marocco provided networks for benchmark purposes. The
benchmark suite [4] contains:

• a fully visible Boltzmann machine [1] �gure 3.4a. Every neuron connects
excitatory and inhibitory to all other neurons.
The total number of neurons is scaled.

• an Ising network �gure 3.4b. It is build of three populations. A two
dimensional Ising network with wrapping edges [18]; A noise network by
Pfeil (see below) with 500 ; and a bias neuron.
The linear size of the network is scaled.

• Pfeil's noise network [26] �gure 3.4c. Every Neuron connects randomly to
20 other neurons with an excitatory connection.
The total number of neurons is scaled.

• a random network [8] �gure 3.4d, Every Neuron connects randomly with
a given probability to any other neuron. 10% and 30% connectivity are
benchmarked.
The total number of neurons is scaled.

• a Restricted Boltzmann machine [17] �gure 3.4e There are two populations
of the same size. Each neuron connects to all neurons of the other population
using excitatory and inhibitory connections.
The population size is scaled.

• and a network called rbmLocalReceptiveFieldsNetwork (net6) �gure 3.4f.
There are three populations, a visible layer, a hidden layer, and a label
population. Between the hidden and the visible layer are local receptive
�elds. One edge of the hidden and the full label layer are connected



User requirements 13

bidirectionally by excitatory and inhibitory synapses that are redundant by
the number of the edge length. This seems to be a bug in the network
description. To prevent confusion I will refer to it as net6.
The edge length is scaled.

The relative amount of realised synapses and the runtime are used as metrics for a
performance analysis of mapping process using these networks. The analysis can
be found in section 5.
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(a) fully visible Boltzmann machine, all

neurons connect to all other excitatory and

inhibitory

(b) ising network: a green random network

is in the left, the red ising part in the

middle and in blue on the right is a bias

neuron

(c) Pfeils noise Network: each neuron

connects randomly to 20 other neurons.

(d) random network: each neuron connects

to other neurons by a chance of 10%

(e) Restricted Boltzmann Machine: there

are two populations. Each neuron is

fully connected to the other population,

excitatory and inhibitory

(f) net6: there are 3 populations, visible

layer partially connects to a hidden layer

which is fully connected to a label layer

Figure 3.4: Networks of the benchmark suite. The �gures were generated by Gephi
[23] using graph drawing algorithms of T. Fruchterman and E. Reingold[15] and
T. Kamada and S. Kawai [20].



4. Improvements to the place and

route algorithm

To increase the amount of routed synapses, di�erent approaches were followed.
At �rst the L1Routing was modi�ed to allow the backbone router to consider
neighbouring HICANNs as targets and thus try to use less crossbars and have
more branching possibilities. (sec. 4.2)
Second the placement of external sources has been changed to keep the synapse
driver chain length within the constraints of the hardware. (sec. 4.4)
Third the architecture of the neuron placement was enhanced to allow di�erent
placement strategies. New simple and complex strategies are provided and an
interfaces for the user to interact with them, or de�ne their own placement
strategies. (sec. 4.3)
In a fourth step a new Merger Tree algorithm was implemented to bundle the
output of neurons onto as few L1Buses as necessary but still keeping the synapse
drivers chain length within the constraints. (sec. 4.5)
Finally a backtracking placement strategy was implemented which re-sizes and
re-locates neurons if local synapse driver chain length requirements are not met.
(sec. 4.3.2.7)
During all these steps further improvements and deepened insight into the
algorithms revealed bugs that did not yet occur to have an in�uence on the
mapping results.

4.1 Functional bug �xes

Several problems were present in the software stack and produced invalid results
or let the software crash in a segfault. These Changesets �x them:

15
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Figure 4.1: With the current hardware con�guration it is not possible to set two
switches from the same HLine. Therefore it is not allowed to use both red VLines.
Though it is �ne to use both blue buses or one of each colour.

4.1.1 Restrict L1Crossbar

Changeset: 4251

Using allowed con�gurations of the setup is crucial for an experiment. Therefore a
new function was added to the L1Routing which evaluates allowed L1Crossbars

from a predecessor list and the HICANNManager, who accesses the calibration
database to query the constraints. The L1BackboneRouter and L1GraphWalker

were modi�ed to make use of the L1Crossbar restrictioning. Previous to CS4189
the crossbar con�gurations were invalid only in rare cases, like when a detour
has been made directly at the source HICANN and there are also targets on the
same x-coordinate. As both directions (east and west) are handled separately it
happened that two crossbars were used from the same HLine to make the detour
and to reach the target. Figure 4.1 pictures such a case in red. An allowed
con�guration includes at most one red line.

https://gerrit.bioai.eu/#/c/4251
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4.1.1.1 Restrict L1Crossbar after detours

Changeset: 6601

In cases where a detour due to the wafer edge was made, the predecessor list was not
updated correctly. This led to multiple crossbars being used on the HICANN where
the detour was initiated, if another VLine could reach more targeted HICANNs in
the same x-coordinate.

4.1.2 Handle neighbouring HICANN injection correctly

Changeset: 4778

The Improved Backbone router 4189 increases the probability of VLines injecting
the signal into the neighbouring HICANN signi�cantly. This led to cases, where
the same VLine index was used from the same HICANN and the neighbouring one
to reach the same Synapse Array. Programmes interpreting the results and using
marocco calls, like the WebVisu, failed in this case.

4.1.3 Augment L1Routes only with local synapses

Changeset: 5837

Another Bug a�ecting the result processing using marocco calls, is �xed by this
changeset. Routes ending at the target VLine shall be augmented with the
synapses they connect to. But all Synapses were appended to the route, this
added Synapses on other chips as well. In consequence tools like the WebVisu
crashed. This change checks if source and target neuron of the route matches
them of the projection, before adding the synapse.

4.1.4 Skip disabled DNCs for external Sources

Changeset: 5842

The blacklisting database is able to mark DNCs as disabled for external spike
sources, but the mapping did not use that data and used the blacklisted DNCs
nonetheless. Disabling DNCs is important on HICANNs that can only be acessed
via JTAG but not via the highspeed interface. Such a HICANN can be con�gured
and used for routing, but no spike data can be transferred to and from this
HICANN.

https://gerrit.bioai.eu/#/c/6601
https://gerrit.bioai.eu/#/c/4778
https://gerrit.bioai.eu/#/c/5837
https://gerrit.bioai.eu/#/c/5842
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4.1.5 Wrong initialisation of the Predecessor list

Changeset: 5858

During routing the available resources are represented in a graph of type
boost::adjacency_list [5]. An std::vector is used to store the predecessor
of each vertex. Enumerating from 0 is common practice in informatics and so in
this case. This means 0 is a valid vertex of the graph [6]. The predecessor list
was initialised with 0 which lead to the problem, that the L1Crossbar restriction
introduced in 4251 could not �nd a valid con�guration for vertices connected to
vertex 0. According to documentation [6] the right way to initialise the predecessor
list is to set predecessors itself p[v] = v. This was implemented.

4.1.6 VLineUsage

Changeset: 6317

As there are 16 VLines competing for 14 synapse drivers the usage of those can be
queried in the VLineUsage function. During branching the returned value is used
in a scoring function to penalise high competition. When more than 12 VLines

are set as target, the score for the following VLines is decreased. Until now the
VLineUsage was queried, but not updated with new information, resulting in the
same result for all requests.

4.2 Improved Backbone router

Changeset: 4189

The old implementation of the backbone router only checks for branches to VLines
if there are targets on the same x-coordinate. And then only targets on this
x-coordinate are marked as reached.
But as it is possible to inject the signal from the neighbouring HICANN, the router
was changed to branch also if targets are lying on x± 1. And to inject the signal
into the neighbouring HICANN, if there switch constraints and VLineUsage (see
prev. CS 6317) allows it. The scoring function was changed to return a zero score
if 14 VLines are set as targeting this synapse array. As the target is not set if a
zero scare is retrieved, this shifts synapse loss due to insu�cient synapse drivers
to the Layer1 routing loss category.
Figure 4.2 shows in blue the new lines that are considered during routing from a
source S to a target T . Adding the new branch functionality potentially doubles

https://gerrit.bioai.eu/#/c/5858
https://gerrit.bioai.eu/#/c/6317
https://gerrit.bioai.eu/#/c/4189
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Figure 4.2: For simplicity only two instead of four VLines per side are sketched.
The improved Backbone router considers also the buses on the neighbouring
HICANNs coloured in blue to reach the Target T . Previously it was possible
to switch from a given HLine to 8 VLines on the same HICANN. Now additional
4 VLines on both neighbouring HICANNs are available. All considered VLines

are able to feed into T .

the amount of usable crossbars to circumvent congestion, but still the synapse
drivers and switches into the synapse array limit the router.
If the last HICANN that shall be reached by the router is missed by only one in
the x-coordinate a special missed by one handling kicks in, where it tries to feed
the missed target from the side. This handling is especially useful close to the
edge of the wafer, when target populations are not placed far away. Figure 4.3
visualises the behaviour. It saves a detour and thus two switches and two buses,
but requires more synapse drivers on the closer side of the HICANN.

4.3 Placement algorithms

In the placement part larger changes have been made to the architecture of the
algorithm. The change allows user to select from a prede�ned placement strategy,
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Figure 4.3: The improved backbone router allows to save switches in the special
missed by one case. A blocked/occupied HICANN is sketched in magenta. Used
buses are black, saved buses are dashed, and the new injection is done via the
blue synapse line.

customise the selected one to suit their needs, or even de�ne their own strategy.
In addition to the conversion of placement strategy used until now, new strategies
have been added.

4.3.1 Architectual change

In order to modularise the placement procedure the architecture has been changed
towards a an Object-oriented class interface. The new design allows the easy
extension and modi�cation of placement strategies by deriving from existing ones.
Additionally the classes are provided via the python interface PyMarocco to the
user. To in�uence the behaviour of a placement class the user can create an
instance of it and either do simple changes by the python interface of that class,
or in order to have larger in�uence on the placement, inherit from it and and
overwrite function-calls to suite their needs.
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4.3.2 Algorithms

To give the user examples and provide good defaults the following placement
strategies have been developed.

• base class: PlacePopulationsBase → 4.3.2.1

• placement strategy until now: bySmallerNeuronBlockAndPopulationID →
4.3.2.2

• linear placement: byNeuronBlockEnumAndPopulationID → 4.3.2.3

• linear ascending placement: byNeuronBlockEnumAndPopulationIDasc →
4.3.2.4

• cluster populations: ClusterByPopulationConnectivity → 4.3.2.5

• cluster neurons: ClusterByNeuronConnectivity → 4.3.2.6

• cluster neurons with chain length constriction:
ConstrainedNeuronClusterer → 4.3.2.7

4.3.2.1 PlacePopulationsBase

Changeset: 4641

This Placer is designed as an base class to derive from it. Functions are provided as
hooks for derived classes to call custom code at de�ned times. It would have been
an abstract base class, but wrapping to python prohibits pure virtual functions.
The parameters passed to the run function-call are saved to local variables for the
use in the later placement process.Only the recurring placement task of the last
PopulationSlice on the last NeuronBlock is handled by the base-class. The last
element is accessed because std::vectors provide removal of the last element in
constant time [9]. If it is not possible to place the whole population on the current
NeuronBlock, the Population is sliced into two parts and both are pushed back to
the placement queue. If it is not possible to place more neurons on a NeuronBlock
the NeuronBlock is popped from the queue.
Deriving classes shall sort the PopulationSlice queue and NeuronBlock queue
according their needs.
The actual placement is called in a loop during the run method. Functions to be
overwritten by derived classes are called before, during and after the loop, see the
following code 4.1.

https://gerrit.bioai.eu/#/c/4641
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38 MAROCCO_TRACE("init:");

39 initialise (); // this shall be used as hook by derived classes

40

41 MAROCCO_TRACE("place_one_pop:");

42 while (place_one_population ()) { // one hook is hidden in

43 // place_one_population after a successful placement.

44 MAROCCO_TRACE("loop:");

45 loop(); // this shall be used as hook by derived classes

46 };

47

48 MAROCCO_TRACE("finalise:");

49 finalise (); // this shall be used as hook by derived classes

Listing 4.1: Code sniplet of the run function of PlacePopulationsBase to show
the hooks

initialise This hook is called in the beginning, so that derived classes can
prepare the structure they require.

loop This hook is called repeatedly while PopulationSlices and NeuronBlocks

are still in the queues. It might be called if no population was placed. The
population might have been split, or a NeuronBlock was removed.

finalise Some derived classes manipulate the member variables in a way, that
a termination will result in wrong assumptions by code following to the placement.
Derived classes have to clean up what they have done, and must leave the Base
class in an ordered way.

update_relations_to_placement This hook is called once a
NeuronPlacementRequest has successfully been assigned to a NeuronBlock.
Both the NeuronPlacementRequest and the NeuronBlock are passed as
arguments to the call. It can be used by derived classes to have a simple way to
handle following placements depending of the current placement.

4.3.2.2 bySmallerNeuronBlockAndPopulationID

Changeset: 4641

This class is the conversion of the placement strategy used until now to the
new class based architecture. See section 3.1 for a more detailed description
of the algorithm. It sorts the NeurnonBlocks by their available space �rst and
then a spiral ordering starting from the centre of the wafer is applied among

https://gerrit.bioai.eu/#/c/4641
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NeuronBlocks with the same available space. NeuronPlacementRequests are
handled in descending order of their ID.
It is a static placement method, that only hooks into the initialise

function. It calls sort algorithms on both the NeuronPlacementRequests and
the NeuronBlocks as described above.

4.3.2.3 byNeuronBlockEnumAndPopulationID

Changeset: 4641

This new placement method is simple and fast. Populations are sorted by their ID
order and the NeuronBlocks by their Enum, a linear progressing number over the
whole wafer. This results in a linear placement from HICANN 0 NB 0 via HICCANN

0 NB 7 and HICANN 1 NB 0 to HICANN 383 NB 7 starting with Population n and
ending with population 0.
it hooks only into the initialise functions.

4.3.2.4 byNeuronBlockEnumAndPopulationIDasc

Changeset: 6297

By request of the users this class is provided to place the Populations in ascending
order, starting from population 0 and ending with population n. The order of the
NeuronBlocks is not altered compared to byNeuronBlockEnumAndPopulationID

4.3.2.3. This gives the users a simpler understanding of where their populations
are placed.
As the performance (sec. 5.2.5) and simplicity of this method surpasses the old
bySmallerNeuronBlockAndPopulationID 4.3.2.2 method, it was chosen to be the
new default placement strategy.
The runtime is calculated by sorting both queues and placing neurons.
O(NB log(textNB) + Nrn log(Nrn) + Nrn)

4.3.2.5 ClusterByPopulationConnectivity

Changeset: 4580

Inspired by Graph drawing algorithms of Fruchtman and Reingold [15] and
Kamada and Kawai [20], which are also part of the Boost Graph Library, a
Clustering of the populations was introduced to keep the connections short. The
Model cannot be directly applied to the problem of placement of the populations,
because the BioGraph is a directed graph, but the algorithms require undirected

https://gerrit.bioai.eu/#/c/4641
https://gerrit.bioai.eu/#/c/6297
https://gerrit.bioai.eu/#/c/4580
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graphs. Additionally sending and receiving are quite di�erent in terms of the
position. Di�erent resources are used with di�erent properties, sending is limited
to 8 possible outputs, depending on the merger tree con�guration, while during
receiving a single synapse driver can access any neuron same HICANN. And
populations spanning multiple NeuronBlocks were di�cult to represent.
The idea to use one of these algorithms was held back, instead a simple clustering
heuristic was invented which adds populations that are connected to an already
placed population to a priority list. This priority list is sorted by the degree to the
placed populations. The average position of the already placed communication
partners is used to centre the ordering function applied to the NeuronBlocks.
Figure 4.4 depicts the behaviour of the clustering.
The class provides a python interface which allows the setting of some parameters
to in�uence the placement.

• the order on a HICANN can be selected.

• to spiral using full HICANNs or to spiral for each Neuron Block 0 on all
HICANNs then NeuronBlock 1 on all HICANNs. and so forth.

• to use a spiral, or vertical ordering.

• to centre the spiral close to targets, sources or both types of populations.

• Weights to prioritise populations by their in- or out-degree to already placed
populations.

• to move sending, targeted or both types of populations from the
�place-later�-queue to the placement queue based on connections to placed
populations.

initalise The initialise call moves all NeuronPlacementRequests to a new
queue which will contain all requests, that do not connect to an already placed
population. This �unconnected�-queue is sorted by their degree and the last
element is moved tho the placement queue. A �rst ordering of the NeuronBlocks
is also conducted.

loop The NeuronPlacemenRequests are sorted by their degree to already
placed populations. The centre of placed communication partners for the next
NeuronPlacementRequest is calculated and the NeuronBlock queue sorted around
this location.
The Ordering function passed to std::sort is obtained by std::binding to a
virtual function that and can be overwritten by further derivations of the class.
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Figure 4.4: The ClusterByPopulationConnectivity strategy starts the spiral at
the centre of the wafer. It does disregard the availability of the NeuronBlocks

which will prevent scattering. To increase locality of the placements, future spirals
are centred at the average location of connected and already placed populations.
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finalise The list of unplaced Populations gets moved back to its original queue,
such that later steps will notice that not all neurons have been placed.

update_relations_to_placement The book keeping which population has been
placed on which NeuronBlock is handled in this function. Additionally populations
connected to the just placed population are moved from the �unconnected�-queue
to the placement queue.
further derivations from this class may also overwrite:

• sort_population_priority: sorts the NeuronPlacementRequests by the
degree to placed ones.

• add_first_population_to_priority_list: moves a single
NeuronPlacementRequest from the �unconnected�-queue to the
placement-queue.

• update_population_priority_list: it moves connected
NeuronPlacementRequests from the �unconnected�-queue to the
placement-queue.

• sort_neuron_blocks: sorts the NeuronBlocks for the next placement
request

• nb_order_function: de�nes an order for NeuronBlockOnHICANNs

• hicann_order_function: de�nes an order for HICANNs

• neuron_block_comparator_function: compares two NeuronBlockOnWafer

• center_of_partners: calculates the location of the partners for the next
NeuronPlacementRequest.

• degree_to_placed: calculates the degree of a placement request to placed
communication partners.

It is a dynamic placement strategy that, sorts the populations and
NeuronBlocks before every placement. The runtime is dominated by the
update_relations_to_placement:
O
(
placements ·

(
(popstargets+sources) · not placed · not placed

))
≤ O(Nrn3 · pops)

This is quite bad for larger numbers of populations. But usually there are less
than 100 populations which in turn contain larger amounts of neurons.
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4.3.2.6 ClusterByNeuronConnectivity

Changeset: 4728

This class is very similar to the ClusterByPopulationConnectivity 4.3.2.5 class,
in fact it is derived from it, but this class operates on neuron level instead of
population level.
During the initialise call all PlacementRequests are split into single neurons.
Thus the sorting and placement is done on neuron level rather than for full
Populations. This requires some more computations and requires to overwrite
some methods to work on neuron level, but it has advantages where stochastic
connectors are used, that do not connect all neurons between the populations.
additionally the following functions were written

• toBioNeuron: converts NeuronPlacementRequests to BioNeuron

• is_connected: checks if two BioNeurons communicate with each other

• getTargetNeurons: returns a vector of target neurons for a BioNeuron

• getSourceNeurons: returns a vector of source neurons for a BioNeuron

the complexity of this class is equal to that of the population clustering, but on
neuron level, thus O(Nrn4).

4.3.2.7 ConstrainedNeuronClusterer

Changeset: 5720 (WIP)

The ConstrainedNeuronClusterer is a further derivation of the
ClusterByNeuronConnectivity 4.3.2.6. It is still work in progress.
The idea behind this placement strategy is to keep the synapse driver chain length
within the constrained limits. To archive this the chain length is calculated after
every single neuron placement, and checked against the HICANNManager who loads
the calibration. This guarantees the validity after every placed neuron. As the
calculation of driver chain lengths is the most expensive part in this placement
strategy it is calculated only if required. This involves the chain length at targets
of the new placed neuron and, and all other sources targeting the new neuron. If
an overuse is detected, di�erent behaviours are triggered.

• If the new neuron produces a violation of the chain lengths restriction on
another HICANN it depends on the usage of the NeuronBlock the neuron
was placed on.

https://gerrit.bioai.eu/#/c/4728
https://gerrit.bioai.eu/#/c/5720
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� If it is alone on that NeuronBlock, there are no other sources. This
means that there are too many synapses emerging from this single
neuron to the neurons on other chips. Enlargements of the targeted
neurons are required. To archive this, the targeted neurons have to be
relocated.

� If other neurons are present on this NeuronBlock, the new neuron causes
the violation. The new neuron has has to be relocated, it is put into
a waiting queue. If the neuron was also targeting itself, then then it is
also enlarged. If no other neurons could be placed on this NeuronBlock
and the neuron queue is empty the NeuronBlock is removed from the
placement opportunities and the waiting queue is put back to the neuron
queue.

• If other neurons targeting the new placement produce a violation at the new
neuron, the placed neuron might be to small or the sources are placed in an
unfortunate way to allocate L1Addresses that require more drivers during
decoding.

� If the size of the neuron is smaller than a full NeuronBlock it is
unplaced, enlarged and put back to the queue. This will result in a
new try for the same neuron on the same NeuronBlock.

� If the neuron can not be enlarged, the sources needs to be relocated.
The neurons size is restored to original value.

In the current state of the changeset it is possible that the algorithm runs into
loops that are not possible to solve. It requires tracking information to decide
when to give up on neurons and and warn the user. To speed up the procedure of
�nding the correct size, the possibility to resize all neurons of the same population
shall to be evaluated. It is promising as neurons of the same populations share the
same properties.
in the current state it is only suitable for smaller networks, or to notify the user
of expected synapse loss and advice them to use larger neurons.

4.4 Splitting external sources

Changeset: 4706

The external sources are placed similar to the clustered neurons, but are handled
after the neurons have been placed. For some sources where the rate is known
the sources already get split if the expected rate exceeds the rate of the FPGA or
HICANN.

https://gerrit.bioai.eu/#/c/4706
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So far external sources were not checked if they will violate hardware constraints
given by the required synapse drivers chain length. As the placement will have been
performed at this time the size of the targeted neurons shall not be changed. The
other possibility to reduce the synapse driver chain length is to use less addresses
on the L1Bus. To archive this the external sources are split and thus the synapse
driver chain length is reduced by using more primary synapse drivers at the cost
of more Layer1 routes.
The driver requirement is calculated from the placement results datastructure. If
a violation of the Driver requirement is recorded, the placement of the external
source is undone. Then the placement request is split into two equal halves and the
placement is tried again. This leads to a logarithmic backo� which is an acceptable
runtime increase.

4.5 New Merger Tree strategy

Changeset: 5789

Currently there are two merger tree Strategies. the �rst which is a one-to-one
mapping of the tree, and the second will con�gure the merger tree to bundle as
many neurons as possible by considering only the L1Addresses thus it will merge
up to 59 neurons together (some addresses are reserved).
In the latter case the synapse drivers chain length is often violated. As a precaution
for synapse loss due to chain length restrictions a new merger tree strategy was
written. It calculates the driver requirements during merging and splits mergers
again, when the con�guration would lead to synapse loss.
The expected �ring rate of neurons should also be considered during merging but
as it is not possible to guess the �ring by the topology of the network the user would
need to provide such information. So the recommended strategies are one-to-one
mapping if high �ring rates are expected and the new minimise-as-possible for
low �ring rates.

4.6 Hardware constraint calibration

Changeset: 4734 4903 4939 5077
Changeset: 4733 4857 4928 5253

To have hardware constraints available during placement and routing changes
to calibtic, the calibration library interface used in the wafer software, have
been made. The HICANN calibration now holds information on the values for

https://gerrit.bioai.eu/#/c/5789
https://gerrit.bioai.eu/#/c/4734
https://gerrit.bioai.eu/#/c/4903
https://gerrit.bioai.eu/#/c/4939
https://gerrit.bioai.eu/#/c/5077
https://gerrit.bioai.eu/#/c/4733
https://gerrit.bioai.eu/#/c/4857
https://gerrit.bioai.eu/#/c/4928
https://gerrit.bioai.eu/#/c/5253
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L1CrossbarSwitches, SynapseSwitches and SynapseDriverChainLenth. The
values are in�uenced by the strength of the L1Drivers and the time scaling of
the experiment. Slower executions would give the drivers more time to move the
electrons and thus allow more switches.
During place and route the HICANNManager loads these information from the
database. The values are cached to reduce IO- and computational-load.



5. Performance analysis

The main goal of this thesis is to improve the mapping performance archived by
marocco.

5.1 Measurement procedure

While it is expected, that the state of the hardware improves, it is not expected
to become a perfect wafer. Therefore I modelled an expected wafer to be
real-world-like. The benchmark suite was run on the model of a perfect wafer
and the model of a real-word-like wafer.
The model of a real-world wafer will pay attention to fabrication �uctuations and
the missing highspeed connection on the centring 16 HICANNs [28]. To simulate
fabrication �uctuations, 10% of the neurons are blacklisted on random. The
actual number might be di�erent, but scattered neuron blacklisting is expected as
the users require speci�c characteristics of the neurons. The missing highspeed
connections is simulated by by disabling neuron placement on the 16 centre
HICANNs. These HICANNs are con�gurable only via JTAG, which is annoyingly
slow and does not allow the transfer of spike data.
The default neuron size is set to 4, that means 4 hardware neurons (denmems)
are connected together to resemble a single bio-neuron. In this case perfect
wafer with 512 Neurons per HICANN and 384 HICANNs, can therefore hold a
maximum of 49152 bio-neurons. On the real-world-like wafer model 16 HICANNs
less are used and 10% of the neurons are blacklisted, so an approximate of

512HwNrn
4HwNrn/BioNrn

· (384 − 16)HICANNs · (1 − 0.1 blacklisting) ≈ 42 394BioNrn can
be assigned. The actual number of 33530 available bio-neurons is extracted
from the logs, and is smaller than the calculated number, because the scattered
blacklisting blacklists only single hardware-neurons, that prohibit the assembly
of quad-neurons. Therefore not all whitelisted neurons are available to represent
bio-neurons.
The networks of the benchmark suite (sec. 3.3), are scaled up in a parameter
sweep over the network size. The following sizes were tested:

31
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• fullyVisibleBm: 10; 100; 200; 400; 600; 800; 1000; 1500; 2000; 2500; 3000;
3500; 4000; 4500; 5000; 5500

• ising: 901; 2101; 4101; 6901; 10501; 14901; 20101; 26101

• pfeilsNoise: 10; 100; 200; 400; 600; 800; 1000; 1500; 2000; 2500; 3000; 3500;
4000; 4500; 5000; 5500; 6000

• random10: 10; 100; 200; 400; 600; 800; 1000; 1500; 2000; 2500; 3000; 3500;
4000; 4500; 5000; 5500; 6000

• random30: 10; 100; 200; 400; 600; 800; 1000; 1500; 2000; 2500; 3000; 3500;
4000; 4500; 5000; 5500; 6000

• net6: 119; 179; 255; 455; 719; 1047; 1235; 1439; 2019; 2699; 3479; 4359;
6419; 8879; 11739

• rbm: 20; 100; 200; 400; 600; 800; 1000; 1200; 1400; 1600; 1800; 2000; 2500;
3000; 4000; 5000; 6000

The results are checked for validity with respect to the hardware constraints (sec.
2.2).
The following tables show the largest network, that was successfully mapped with
less than the stated number of synapse loss. The left half of the tables show
the largest networks restricted by the overall synapse loss, while the right half
shows network sizes selected by loss due to failed Layer1 routes. A Layer1 route is
considered failed if no VLine was allocated next to the targeted synapse array.
Additional sources of loss, like unavailable synapse drivers, restrictions to the
synapse-driver-chain-length and errors in the synapse array routing are counted
into the total loss.

5.2 Algorithms

5.2.1 Bug �xes

Tables 5.1 and 5.3 show the results of a software stack containing only a minimum
of my changes. For compatibility with new software dependencies a few of my
changes had to be included. Changes of other contributors were all included.
The bug �xes provided by me in changesets 4251, 4778, 5837, 5842, 5858, 6601
were included in the software stack used to generate tables 5.2 and 5.4.
Having a look on the perfect wafer without �xes 5.1 and with �xes 5.2, we see
some improvements provided by the bug �xes. Especially if higher synapse losses
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network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 2500 2500 2500

ising2d 4101 4101 4101 4101 4101 4101
pfeilsNoise 2500 2500 2500 2500 2500 2500
random10 1000 1500 2500 2500 2500 2500
random30 200 1000 1500 2500 2500 2500

net6 0 0 0 4359 4359 4359
rbm 0 0 0 3000 3000 3000

Table 5.1: On a perfect wafer using a software stack without most of my changes,
for compatibility some were required. The number is the amount of neurons that
can be routed with [0, 5, 10]% total loss on the left and the network sizes restricted
only by Layer1 routing on the right.
†: no larger network was tested

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 3000 3500 4500

ising2d 26101† 26101† 26101† 26101† 26101† 26101†

pfeilsNoise 3000 3500 4000 3000 3500 4500
random10 1000 1500 3500 3000 3500 4500
random30 200 1000 1500 3000 3500 4500

net6 0 0 0 4359 6419 11739†

rbm 0 0 0 3000 3000 4000

Table 5.2: On a perfect wafer with bug�xes (6601 5858 5842 5837 4251 4778)
applied. Colours compare to 5.1 Further changes will compare to this table.
†: no larger network was tested

are tolerated larger networks are possible. The ising network pro�ts a lot, and
can be scaled to the maximum step size tested in the benchmarks. This slight
improvements for networks without loss explains why most of the bugs were hidden
so far.
Looking at the real-world-like wafer for a run without bug �xes, as shown in
table 5.3, one sees that only small networks of around 200 neurons are possible.
Most of the time hardware constraints were violated at the end of the mapping,
that prevent larger networks to be accepted. The bug �xes do prevent invalid
con�gurations an allows the setup of networks 4 times the size. The results can
be found in table 5.4.
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network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 10 10 10 200 200 200

ising2d 0 0 0 0 0 0
pfeilsNoise 200 200 200 200 200 200
random10 200 200 200 200 200 200
random30 200 200 200 200 200 200

net6 0 0 119 455 455 455
rbm 0 0 0 200 200 200

Table 5.3: On a a real-world-like wafer with 10% blacklisting using a software
stack without most of my changes, for compatibility some were required. †: no

larger network was tested

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 10 10 10 800 1500 2000

ising2d 2101 6901 10501 2101 6901 10501
pfeilsNoise 800 1500 2000 800 1500 2000
random10 800 1500 2000 800 1500 2000
random30 600 1000 1500 800 1500 2000

net6 0 0 119 1235 4359 6419
rbm 0 0 0 800 1600 2000

Table 5.4: On a real-world-like wafer with 10% blacklisting with bug�xes (6601
5858 5842 5837 4251 4778) applied.
Colours compare to table 5.3
Further changes will compare to this table.
†: no larger network was tested

5.2.2 4706: splitting external sources

No changes in the performance can be measured, since external sources are not
used in the benchmark suite.

5.2.3 4189: feed left and right

This change also allows the usage of the neighbouring HICANNs for the signal
injection into the synapse array, this doubles the amount of VLines, but the
number of synapse drivers stays the same. To solve the competition between
the 32 VLines for the 14 synapse drivers the VLineUsage is evaluated to prevent
overallocation of the drivers and allow the backbone router to try to feed the
signal from the neighbouring HICANN. This will, in case of overallocation, cause
the routing to stop early. As a consequence the synapse loss by insu�cient
synapse drivers is shifted from the category of total to the category of Layer1-loss.



Algorithms 35

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 1500 1500 1500

ising2d 26101† 26101† 26101† 26101† 26101† 26101†

pfeilsNoise 1500 1500 1500 1500 1500 1500
random10 1000 1500 1500 1500 1500 1500
random30 200 1000 1500 1500 1500 1500

net6 0 0 0 4359 8879 11739†

rbm 0 0 0 1600 3000 3000

Table 5.5: On a perfect wafer with 4189. For this Changeset only the total
loss should be consulted for comparisons, as Synapse loss by unavailable Synapse
Drivers is shifted from total loss to L1-loss. Colours compare to 5.2
†: no larger network was tested

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 10 10 10 200 600 800

ising2d 0 6901 10501 0 6901 10501
pfeilsNoise 200 1000 1000 200 1000 1000
random10 200 800 800 200 800 800
random30 200 800 800 200 800 800

net6 0 0 119 2019 6419 6419
rbm 0 0 0 400 1200 1400

Table 5.6: On a real-world-like wafer with 10% blacklisting with 4189. For this
Changeset only the total loss should be consulted for comparisons, as Synapse
loss by unavailable Synapse Drivers is shifted from total loss to L1-loss. Colours
compare to table 5.4
†: no larger network was tested

Previously the VLines were marked as reached even if it was known, that there
will not be enough synapse drivers to inject the signal into the synapse array. So
for reasons of comparison the total loss should be observed in this case. Table 5.5
and 5.6 show the results of Change-Set 4189.
The results for the total loss on the real-world-like wafer are disappointing. but
can be explained by the irregular placement pattern. This leads to VLines being
extended longer than before, to feed a neighbouring HICANN. This uses more
synapse drivers on that speci�c side of the HICANN. Which then reduces the
score for following routes, until no score is archived. The scoring function is only
based on the VLineUsage, but not the amount of neurons that can be reached. So
for some sources the free side is not attractive enough because the score on the
blocked side is kept high by targeted HICANNs requiring the other side. They
usually have only a few neurons, that are targeted by just a few sources.
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Still this change allowed the deeper evaluation of the routing methods and lead
the �nding of most of the �xed bugs.

5.2.4 5789: synapse driver chain length aware merger tree

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 3000 3500 4500

ising2d 26101† 26101† 26101† 26101† 26101† 26101†

pfeilsNoise 2500 6000† 6000† 5500 6000† 6000†

random10 1000 1500 3500 3000 3500 4500
random30 200 1000 1500 3000 3500 4500

net6 0 0 0 4359 6419 11739†

rbm 0 0 0 3000 3000 4000

Table 5.7: On a perfect wafer with 5789.
Colours compare to 5.2
†: no larger network was tested

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 10 10 10 800 1500 2000

ising2d 4101 26101† 26101† 4101 26101† 26101†

pfeilsNoise 1000 2000 3500 1000 2000 3500
random10 1000 1500 2000 1000 2000 3500
random30 600 1000 1000 1000 1500 2000

net6 0 0 119 1235 4359 6419
rbm 0 0 0 800 1600 2000

Table 5.8: On a real-world-like wafer with 10% blacklisting with 5789.
Colours compare to table 5.4
†: no larger network was tested

The results of changeset 5789 are shown in table 5.7 and 5.8.
On a perfect wafer only the results of pfeil's noise network have changed.
The performance of the Layer1 routing is improved from 3500 neurons to 5500
neurons without loss on the Layer1 network. However the total performance is
decreased by one step in the parameter scan and starts at 2500 neurons instead
of 3000, but with a 5% loss up to 6000 neurons can be mapped, which is the
maximum that was tested during benchmark runs. The loss could be explained by
bundled signals requiring a driver chain length, that steals synapse drivers from
neighbouring periods. The VLineUsage does not track synapse driver chains.
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On the model wafer general improvements on the ising, pfeil's noise and
random network can be observed. The random10 networks was increased from 800
to 1000 neurons without any losses. Special note should also be on the ising

network, that was mapped twice the size without any losses, and could be mapped
with losses less than 5% to the maximum step of the benchmarks with 26101
neurons.

5.2.5 4641: class interface for placement

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 4000∗ 4000 4500

ising2d 14901 26101† 26101† 14901 26101† 26101†

pfeilsNoise 3000 3500 4000 4000 4000 4500
random10 800 1500 3500 4000 4000 4500
random30 800 1000 1500 4000 4000 4500

net6 0 0 0 8879 11739† 11739†

rbm 0 0 0 4000 4000 4000

Table 5.9: On a perfect wafer with 4641 and the new simple
byNeuronBlockEnumAndPopulationIDasc selected 4.3.2.4. Colours compare
to 5.2
Other Placement strategies are compared to this results, as it was
decided to be the new default strategy
∗: the technical maximum is 4096 Synapses for a fully connected network

†: no larger network was tested

The old placement strategy converted to a class and provided in 4641 does not
alter the results therefore the tables are not shown. This is expected behaviour,
as only the interface changed but the strategy stayed the same.
The simple placement strategy byNeuronBlockEnumAndPopulationIDasc 4.3.2.4
archives results for the total loss that are comparable between the perfect wafer
5.9 and the real-world-like wafer 5.10. The network size restricted by loss caused
during Layer1 is nearly twice the size on the perfect wafer. Actually it reaches
the step size with the largest network of the fullyVisibleBM that is expected
to be possible to route on a perfect wafer without loss on the Layer1 network.
With a default neuron size of 4, a NeuronBlock contains 16 bio-neurons. As there
are 256 VLines on a HICANN that each carry the signal of a full NeuronBlock
256VLines · 16BioNeurons/VLine = 4096BioNeurons can be routed via the L1
network to a single HICANN. The results on the modelled wafer su�er from a
lower neuron occupation on the Layer1 buses.
byNeuronBlockEnumAndPopulationIDasc was chosen to be the new default



Algorithms 38

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 2500 3000 3000

ising2d 14901 14901 14901 14901 14901 14901
pfeilsNoise 2000 2500 3000 2500 3000 3000
random10 1000 2500 2500 2500 3000 3000
random30 800 1000 1500 2500 3000 3000

net6 0 0 0 4359 6419 8879
rbm 0 0 0 2500 3000 3000

Table 5.10: On a real-world-like wafer with 10% blacklisted neurons with 4641 and
the new simple byNeuronBlockEnumAndPopulationIDasc selected 4.3.2.4.
Colours compare to table 5.4
Other Placement strategies are compared to this results, as it was
decided to be the new default strategy
†: no larger network was tested

placement strategy also because it is easier to predict by the user. Subsequent
placement strategies are compared to this algorithm.
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5.2.6 4580: cluster by population connectivity

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 4000∗ 4000 4500

ising2d 2101 26101† 26101† 2101 26101† 26101†

pfeilsNoise 3000 3500 4000 4000 4000 4500
random10 1000 1500 3500 4000 4000 4500
random30 800 1000 1500 4000 4000 4500

net6 0 0 0 3479 6419 11739†

rbm 0 0 0 4000 4000 4000

Table 5.11: On a perfect wafer with 4580 and
vertical+neighbour+11+targetsANDsources
Colours compare to 5.9
†: no larger network was tested

∗: the technical maximum is 4096 Synapses for a fully connected network

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 2500 2500 2500

ising2d 4101 6901 20101 4101 6901 20101
pfeilsNoise 2000 2500 2500 2500 2500 2500
random10 1000 2500 2500 2500 2500 2500
random30 800 1000 1500 2500 2500 2500

net6 0 0 0 2019 8879 8879
rbm 20 20 600 2500 2500 2500

Table 5.12: On a real-world-like wafer with 10% blacklisted neurons with 4580 and
vertical+neighbour+11+targetsANDsources
Colours compare to table 5.10
†: no larger network was tested

Di�erent settings for the cluster strategy has been tested. The default
spiral-neighbour-1T-1S-targetANDsource has been altered for each parameter
once.

• The ordering function for sort NeuronBlocks:

� spiral ordering

� vertical ordering

• The centre for the order function was set to:

� consider all placed communicating populations
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network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 3000 3500 4500

ising2d 14901 26101† 26101† 14901 26101† 26101†

pfeilsNoise 2500 3500 4000 3000 3500 4500
random10 1000 1500 3500 3000 3500 4500
random30 200 1000 1500 3000 3500 4500

net6 0 0 0 2019 11739† 11739†

rbm 0 0 0 3000 3000 4000

Table 5.13: On a perfect wafer with 4580 and
spiral+target+11+targetsANDsources
Colours compare to 5.9
†: no larger network was tested

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 2500 3000 3000

ising2d 10501 26101† 26101† 10501 26101† 26101†

pfeilsNoise 2000 2500 3000 2500 3000 3000
random10 1000 2500 2500 2500 3000 3000
random30 600 1000 2000 2500 3000 3000

net6 0 0 0 2019 11739† 11739†

rbm 20 20 20 2500 3000 3000

Table 5.14: On a real-world-like wafer with 10% blacklisted neurons with 4580 and
spiral+target+11+targetsANDsources
Colours compare to table 5.10
†: no larger network was tested

� consider only placed targeted populations

� consider only placed sourcing populations

• The Sorting Priority for the PlacementRequests:

� 1T-1S: equal weigths to sources and targets

� 0T-1S: only calculate the degree by counting sources.

� 1T-0S: only calculate the degree by counting targets.

• A Setting to decide which populations are added to the priority queue for
the next placement:

� add targets and sources of just placed Populations

� only add sources of just placed Populations
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� only add targets of just placed Populations

Similar to the byNeuronBlockEnumAndPopulationIDasc 4.3.2.4 the vertical
ordering of connected populations is also able route the maximum step size of
the fullyVisibleBM without loss on the Layer1 network, refer to table 5.11. On
the expected Wafer 5.12 the performance is not reproducible, mainly because
of the blacklisted centre HICANNs, where long VLines could be used. The
disabling of the 16 centre HICANNs also interrupts the driver periodicity because
4 y-coordinates in the centre are missing, which leads to unevenly distributed
periods for the required Synapse Drivers.
The best results for the modelled wafer were acquired by a spiral ordering with
centring at the targets and given sources and targets the same priority and
adding both to the priority queue. The results for the modelled wafer are in 5.14
and for the perfect wafer in 5.13.
As the Clustering analysis is done on population level only networks with multiple
populations are able to pro�t by this placement strategy. This includes the ising,
rbm and the net6 network. For the �rst time on the expected wafer the rbm is now
able to be routed with 20 neurons without any loss. The ising and net6 networks
remain to be a�ected by some losses, but they can be scaled to larger sizes within
5% loss. The net6 su�ers from a high fan-in at some neurons, that require driver
chain length, that would violate the hardware constraints, and thus the total loss
remains high.

5.2.7 4728: cluster by neuron connectivity

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 3000 3500 4000†

ising2d 6901 26101† 26101† 6901 26101† 26101†

pfeilsNoise 3000 3500 4000 3500 4000 4500
random10 1000 1500 3500 3000 4000 4500
random30 100 1000 1500 3000 3500 4500

net6 0 0 0 6419 11739† 11739†

rbm 0 0 0 3000 3000 4000

Table 5.15: On a perfect wafer 4728 and spiral-neighbours-10-targetANDsource
Colours compare to table 5.9
†: no larger network was tested

With clustering by neuron connectivity the results are generally comparable to the
clustering by population connectivity.



Algorithms 42

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 2500 3000 3000

ising2d 4101 26101† 26101† 4101 26101† 26101†

pfeilsNoise 2000 2500 3000 2500 3000 3000
random10 1000 2500 2500 2500 3000 3000
random30 600 1000 2000 2500 3000 3000

net6 0 0 0 4359 11739† 11739†

rbm 20 600 800 2500 3000 3000

Table 5.16: On a real-world-like wafer with 10% blacklisted neurons with 4728 and
spiral-neighbours-10-targetANDsource
Colours compare to table 5.10
†: no larger network was tested

Results of the run on the perfect wafer are shown in table 5.15. The results of the
simple placement method are not regained, but pfeils and net6, perform better
than on the population based clustering algorithm, however the ising network
performs worse.
On the real-world-like wafer the behaviour is are comparable, the ising and net6

su�er from some early loss in the Layer1 network but can be scale to the maximum
step size with less than 5% loss. With di�erent parameters set through the python
interface 10501 neurons could be mapped in the ising network without loss on
the real-world-like wafer.
Notable is the high connectivity rbm network which can be mapped with less than
5% loss with up to 600 neurons and up to 800 neurons with less than 10% loss.

5.2.8 5720: synapse driver chain length aware placemnt

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 200 600 800† 600 800† 800†

ising2d 2101 10501 26101† 2101 10501 26101†

pfeilsNoise 3000 3500 4000 4000 4000 4000
random10 1000 1500 3500 4000 4000 4500
random30 800 2000 2000 2000 2500 2500

net6 719 2019† 2019† 2019† 2019† 2019†

rbm 200 800 800 800 1000† 1000†

Table 5.17: On a perfect wafer with 5720
Colours compare to 5.9
†: no larger network was tested
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network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 200 600 800† 800† 800† 800†

ising2d 2101 6901 14901† 2101 6901 14901†

pfeilsNoise 2000 2500 2500 2000 2500 3000
random10 1000 2500 2500 2500 2500 2500
random30 800 1000 2000 2500 2500 2500

net6 179 455† 455† 255 455† 455†

rbm 200 400† 400† 400† 400† 400†

Table 5.18: On a real-world-like wafer with 10% blacklisted neurons with 5720
(chain length aware placement)
Colours compare to table 5.10
†: no larger network was tested

Changeset 5720 introduces a dynamic placement strategy derived from the neuron
clustering algorithm provided in 4728. If the synapse driver chain length of 3
is not su�cient the a�ected neurons are either enlarged or relocated. In tables
5.17 and 5.18 notable changes are the improvements on the high degree networks
(fullyVisibleBm, net6, rbm).
The enlarged neurons will occupy more space and reduce the number of neurons
per NeuronBlock, this reduces the Layer1 occupancy, which causes more buses to
be used and in turn reduce the in Layer1 performance, but it allows to reduce the
synapse driver chain length, which is required for the high degree networks.
The time required by the dynamic placement has no upper boundary, because the
same neuron might be relocated again and again, which causes larger networks
to timeout. But it demonstrates, that the high degree networks are now routable
with network sizes of around 200 neurons, which is at least an increase of 10 times
the size for the rbm.

5.3 Bundled result analysis

Here a patch stack containing the improvements, and 5789 and 4728 is analysed.
The ClusterByNeuronConnectivity is set to prioritise only the targeted neurons.
The results on a perfect wafer can be found in table 5.19 and the model wafer is
shown in table 5.20. ising, pfeil's and net6 were run with more steps to test
the software towards full wafer usability.
Impressive is the result for the ising which is very archives a size of 32901
bio-neurons, 98% of the placeable bio-neurons 33530 are placed and successfully
routed.
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network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 3000 3500 4000†

ising2d 44601 48901† 48901† 44601 48901† 48901†

pfeilsNoise 3000 7000 7500 5500 7000 8500
random10 1000 1500 3500 3000 4000 4500
random30 100 1000 1500 3000 3500 4500

net6 0 0 0 6419 27179 32039†

rbm 0 0 0 3000 3000 4000†

Table 5.19: On a perfect wafer with 5789 and 4728 and
spiral-neighbours-10-targetANDsource
Colours compare to table 5.9
†: no larger network was tested

network no loss <5% <10% no L1-loss <5% <10%
fullyVisibleBm 0 0 0 2500 3000 3000

ising2d 32901 33262† 33262† 32901 33262† 33262†

pfeilsNoise 3000 6000 7500 5000 7000 8500
random10 1000 2000 3000 3500 4500 4500
random30 600 1000 2000 2500 3000 3000

net6 0 0 0 4359 14999 14999
rbm 20 600 800 2500 3000 3000

Table 5.20: On a real-world-like wafer with 10% blacklisted neurons with 5789 and
4728 and spiral-neighbours-10-targetANDsource
Colours compare to table 5.10
†: no larger network was tested



6. Summary

network buggy �xed improved buggy �xed improved
fullyVisibleBm 0 0 200∗ 10 10 200∗

ising2d 4101 26101† 44601‡ 0 2101 32901‡

pfeilsNoise 2500 3000 3000 200 800 3000‡

random10 1000 1000 1000 200 800 1000+

random30 200 200 800+ 200 600 800+

net6 0 0 719∗ 0 0 179∗

rbm 0 0 200∗ 0 0 200∗

Table 6.1: The maximum network that was mapped without any loss on a perfect
wafer left, and on a real-world-like wafer right.
Without most of my changes: buggy (sec. 5.2.1), with bug �xes: �xed (sec.
5.2.1), and with improvements. The superscript indicates which changeset was
the �simplest� to produced the result
†: no larger network was tested ‡: bundled stack 5.3 ∗: constraint aware placer 5.2.8 +: simple

placer 5.2.5

The place and route software marocco has been �xed and improved. It is now more
tolerable towards real world hardware with blacklisting. A real-world-like wafer
was modelled which includes 10% random blacklisting and disabled placement
on 16 centring HICANNs on which the highspeed interface is unavailable.
The performance analysis was carried out on both the perfect wafer and the
real-world-like wafer. Noticeable improvements are archived on the both wafer
models, see table 6.1.
The ising model can be scaled to span over nearly the full wafer on both models
(90% on the perfect wafer and 98% of the available hw-quad-neurons (or 66%
of the hw-neurons including blacklisted) on the real-world-like wafer). On the
real-world-like wafer most networks can be scaled up lossless to the size that is
also possible as on a perfect wafer. The higher the connectivity in the network,
the smaller is the maximum network size that can be mapped without loss.
Pfeil's noise network can be scaled to 3000 neurons, a random network with
10% connectivity to 1000 neurons, a random network with 30% connectivity only
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to 800 neurons. Networks with higher connectivity can pro�t from the still under
development changeset 5720. It resizes and relocates neurons on demand, which
solves issues of the synapse driver chain length requirements. A fullyVisibleBm

and an rbm can be scaled to 200 neurons without any synapse loss, and the
benchmark network net6 can be scaled to 179 neurons on the real-world-like wafer
and to 719 neurons an a perfect wafer.
The fact that the networks start to lose synapses by Layer1 later than by the total
loss, indicates, that there are to few synapse drivers available.
My �xes and improvements are especially useful on the real-world-like wafer, where
the network size could be increased depending on the network topology by a factor
greater than four and up to �fteen.
On the way to archive this results the calibration database is extended to hold
information on hardware restrictions, which are loaded during mapping to generate
valid results. This is also a step towards hardware agnostic routing which will be
useful in translating the library to the next generation of hardware.
A new MergerTree algorithm was written to minimise the required Layer1-buses
while still maintaining the synapse driver chain length constraints given for the
hardware. The increased Layer1 occupation reduces the bus allocation which
prevents congestion and keeps more buses available for other sources. In cases
where only a few neurons per NeuronBlock require synapses the bundling reduces
the number required synapse drivers at the target.
Changes on the design of the neuron placement architecture allow the user to
choose either from a prede�ned placement strategy or de�ne their own strategy.
The old strategy was converted and remains available to the users. New linear
placement strategies and strategies that cluster by connectivity of populations
and neurons were written and are available to the user.



7. Outlook on Further improvement

possibilities

7.1 Synapse Driver allocation

After applying my changes the main source contributing to the total synapse loss
is the competition of 16+16 VLines for 14 Synapse Drivers. The synapse driver
period at the target is determined by the DNCMerger the signal emerges from. To
change the DNCMerger of a signal the placement algorithms has to calculate the
driver period and chain length requirements at in advance, and use a di�erent
NeuronBlock or DNCMerger mapping in case of Synapse Driver collisions. To
archive this in the placement algorithms a function for period precalculation has
to be written, and the MergerTrees-routing will be required during placement.
Synapse drivers chaining in�uences the neighbouring periods, so also a
preallocation class has to be written and used during placement.

7.2 L1 crossbars and switches

If the L1-drivers were better characterised it would be possible to calculate the
electric load on them and decide which switches would be allowed to use. For
example it might be allowed to use 2 Switches into the Synapse Arrays if no
Crossbar would be used. Further use cases can be imagined. Aside from better
knowledge of the L1-drivers this would require a class used during L1-routing,
which would keep track of the electric load and switches. It would also require
changes to the current implementation of the L1Crossbar restrictioning (4251).

7.3 Synapse Driver chain length

A neuron build by the top and bottom neuron can have 2 synapses per hemisphere.
Therefore to increase the number of synapse more bits have to be decoded by the
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Synapse Drivers, which are a rare resource, as explained earlier. It is possible to
chain up to three Synapse Drivers, which will threefold the number of synapses.
To use more Synapse Drivers the signal would need to be routed multiple times
around the targeted Synapse Array, which allows the use of multiple VLines, and
thus more primary Synapse Drivers, but on the same period (except if there is a
change by one to the neighbouring HICANN, which will produce problems with
the chaining).
Extending the Neuron horizontally is a �cheaperälternative to multiple target
de�nitions during routing. A �rst implementation of a resizing placement
algorithm has been provided in 5720, but the current implementation is still
slow. It still requires better notekeeping during backtracking, and could pro�t
by assuming the same driver requirements for all neurons of the same population.

7.4 L1 congestions

Congestion of the Layer1 network have been reduced by providing better placement
methods (4641 4580 4728), and bundling more signals (5789). But the backbone
can not extend past the edges of the wafer, this requires the use of a detour.
If there are also targets in the vertical column where the detour is started, the
current implementation cannot ful�l both needs, the need for a large extension of
the detour and the need to be on the correct side for the Synapse Drivers.
Simple methods would place the detour earlier in cases where the driver and
extension requirements are not met. A more advanced option would be to
adopt methods of the Re�ned-Single-Trunk-Steiner-Tree algorithm described in
[10] which has a time complexity of O(n log(n)). Another extension is a dynamic
routing with backtracking and dynamic costs. would allow all routes to �nd their
ideal way, and then set

7.5 Parallelism

The Synapse routing can be parallelised in a simple way by using HICANN
granularity. As it currently makes up a notable part of the mapping process it
would be worth a look.

7.6 Modularity

Currently it is only possible to de�ne one strategy for each step, that is used during
the whole mapping process. It would be nice to be able to de�ne the placement
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strategy for each population on its own. A network might consist of di�erent parts,
that can pro�t from di�erent strategies.

7.7 Hardware agnostics

Future chips (BrainScaleS-2) also require mapping software, but will have di�erent
topologies on Layer1 network, MergerTree network an neuron con�gurations. The
mapping software shall be able to load these values from a database and �nd a
solotion to the mapping problem.

7.8 FPGA like routing

In a discussion with C. Pehle [25], he mentioned the path�nding algorithm, which
at �rst tries to route all signals without removing the resources from the graph,
to get an estimation of hot areas, and assign costs to these resources, that are
in subsequent calls more expensive to take. After multiple iterations the routing
shall settle on a solution.

7.9 Multi wafer routing

The current implementation of marocco can only act on a single wafer, but the
hardware is designed to provide a wafer crossing Layer2 network, which would
allow the use of 20 wafers for a single experiment.
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