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Training Deep Networks with Time-to-First-Spike Coding on the
BrainScaleS Wafer-Scale System

Artificial neural networks (ANNs) achieve impressive results in pattern recognition
tasks. Recently, a way of implementing ANN algorithms in spiking neural networks
(SNNs) was derived with the help of time-to-first-spike coding. This coding enables and
even encourages usage of established methods like error backpropagation on neuromor-
phic hardware. The goal of this thesis is to realise learning with time-to-first-spike coding
on the BrainScaleS (BSS) wafer-scale system, harnessing its power of fast and energy-
efficient analogue emulation. However, analogue circuits impair full control of neuron
parameters and introduce noise on spike times, both detrimental to the use of exact and
differentiable relations, as in the original approach. This work establishes a framework
that significantly adapts the original idea to the neuron model used on BSS. The afore-
mentioned challenges are cautiously addressed by investigations into the reproducibil-
ity of spike times on hardware, extensive software simulations, and implementation of
training with time-to-first-spike coding on hardware. This enables the demonstration
of high-speed visual data classification using fully hardware-emulated networks with ex-
tremely sparse response properties, thus paving the way towards larger-scale setups for
complex pattern recognition that may challenge the state of the art in terms of speed
and energy efficiency.





Training von Tiefen Netzwerken mithilfe von
Time-to-First-Spike-Kodierung auf dem BrainScaleS Wafer-Scale System

Künstliche neuronale Netzwerke (KNN) erzielen beeindruckende Ergebnisse bei Mus-
tererkennungsaufgaben. Kürzlich wurde mit Hilfe der Time-to-First-Spike-Kodierung ei-
ne Möglichkeit zur Implementierung von KNN-Algorithmen in spikenden neuronalen
Netzen abgeleitet. Diese Kodierung ermöglicht auf neuromorpher Hardware die Verwen-
dung etablierter Methoden, wie z.B. "Backpropagation of Error". Das Ziel dieser Ar-
beit ist es, das Lernen mit Time-to-First-Spike-Kodierung auf dem BrainScaleS (BSS)
Wafer-Scale System zu realisieren und dabei die Fähigkeit der schnellen und energie-
effizienten analogen Emulation zu nutzen. Analoge Schaltkreise beeinträchtigen jedoch
die vollständige Kontrolle der Neuronenparameter und verursachen das Rauschen von
Spikezeiten, was beides der Verwendung exakter und differenzierbarer Gleichungen, wie
im ursprünglichen Ansatz, abträglich ist. Diese Arbeit schafft einen Rahmen, der die
ursprüngliche Idee signifikant an das Neuronenmodell von BSS anpasst. Die genannten
Herausforderungen werden durch Untersuchungen zur Reproduzierbarkeit von Spike-
zeiten auf Hardware, umfangreichen Softwaresimulationen und der Durchführung von
Lernen mit Time-to-First-Spike-Kodierung auf Hardware sorgfältig angegangen. Dies
ermöglicht die Demonstration der visuellen Datenklassifizierung bei hohen Geschwindig-
keiten unter Verwendung vollständig hardwareemulierter Netzwerke mit extrem spärli-
chen Antworteigenschaften und ebnet so den Weg zu hochskalierten Umsetzungen für
eine komplexe Mustererkennung, die den Stand der Technik hinsichtlich Geschwindigkeit
und Energieeffizienz in Frage stellen kann.
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1 Introduction

Possessing a realistic model of one’s surrounding is of critical importance for survival
and reproduction. The resulting evolutionary pressure has consequently moulded our
brains into pattern recognition engines of unparalleled efficiency. It is thus only natural
to turn to the brain for inspiration on how to build artificial machines of comparable
capability.
In the field of machine learning, aspects of cortical circuitry and dynamics serve as in-

spiration for building artificial neural networks (ANNs) [Cireşan et al., 2010; Krizhevsky
et al., 2012]. Over the last decade, these have become the predominant class of algo-
rithms for solving pattern recognition tasks [LeCun et al., 2015]. Interestingly, neither
the idea of ANNs [Rosenblatt , 1958] nor the algorithms used for training these net-
works [Rumelhart et al., 1986] are new. It has much rather been the availability of
improved computing devices, especially graphics processing units (GPUs) for parallel
matrix multiplications, that has accelerated the simulation of such networks by orders
of magnitude, thus enabling their study and deployment at the necessary scale for be-
coming competitive against alternative solutions.

Compared to ANNs, spiking neural networks (SNNs) lie significantly closer to their
biological archetypes. Unlike ANNs, SNNs are dynamical systems operating in continu-
ous time. Furthermore, information exchange in SNNs is mediated by their name-giving,
all-or-none, singular events called spikes, in contrast to the floating-point precision arith-
metic employed by ANNs.

Such spiking networks form the computational architecture instantiated by most so-
called neuromorphic systems [Mead , 1990]. Over the past decades, many neuromorphic
platforms have emerged [Indiveri et al., 2011], and in particular, the BrainScaleS (BSS)
wafer-scale system developed in Heidelberg as part of [FACETS , 2010], [Schemmel et al.,
2010], and [Human Brain Project , 2013] stand out as particularly interesting candidates,
given their unique characteristics and capabilities. The BSS system uses a clever combi-
nation of analogue circuits for emulation of neuron dynamics and high-bandwidth digital
communication between neurons [Klähn, 2017], while at the same being energy-efficient
compared to traditional simulations [Müller , 2014]. The analogue emulation results in
a speed-up factor of 104, meaning that 10 s in biological time can be simulated in 1 ms
wall-clock time. Crucially, this acceleration factor does not depend on network size,
unlike for simulation times on classical CPUs, which typically scale quadratically with
the number of neurons in the simulated network.
The BrainScaleS system has previously been used for emulating networks that use

single-spike encoding schemes, such as in the case of neural sampling [Kungl , 2016; Dold
et al., 2017]. However, the emulation of deep, feed-forward, backpropagation-trained
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1 Introduction

networks has so far relied on the use of firing rates for encoding information [Schmitt
et al., 2017; Petrovici et al., 2017].

Rather than average firing rates, the timing of single spikes can also be used to trans-
mit information in feed-forward networks, thereby abolishing the wait time needed to
gather spike statistics as well as reducing energy consumption by reducing the number
of processed spikes. While other ideas for training spiking networks exist [e.g. Bohte
et al., 2002; Zenke and Ganguli , 2018; Gütig and Sompolinsky , 2006; Neftci et al., 2019],
the approach presented in [Mostafa, 2017] is particularly compelling for its use of deep
networks on big data sets that can make use of the size of BSS. In [Mostafa, 2017]
all information is embedded in spike times and the category assigned to a particular
input is determined by the neuron in the label layer that spikes first. The networks
in [Mostafa, 2017] are trained on the logical XOR and the Modified National Institute of
Standards and Technology (MNIST) data set [LeCun et al., 1998] and achieve respectable
classification results. The crucial ingredient for training the networks is an exact and
differentiable relation for the time-to-first-spike which enables the usage of traditional
machine learning algorithms such as error backpropagation [Rumelhart et al., 1986] for
training these networks. A key result of [Mostafa, 2017] is that classification is finished
even before most neurons in hidden layers get to spike.

Prior to the implementation of time-to-first-spike coded learning on BSS, however, a
number of specific challenges needed to be met. First, the neuron model used in [Mostafa,
2017] is different from the one instantiated on BSS, thus requiring significant adaptation
of the framework. Second, [Mostafa, 2017] notices a high dependence on individual
components and states explicitly that no neuron is redundant. While the analogue
nature of BSS enables high-speed and energy-efficient computation, this comes at a
price in the form of noise, partial unreliability and only incomplete control over neuron
parameters. Part of the aim of this thesis was to verify the suitability of Mostafa’s
approach for neuromorphic hardware with analogue components.

In this thesis, the capability of BSS to train SNNs with a time-to-first-spike coding
is demonstrated. The underlying theory is derived and tested extensively in software
simulations. Sufficiency of the spike time accuracy of the hardware is examined. Starting
from random initialisations, different networks are trained on BSS, including a proof-of-
principle classification of a reduced version of the MNIST data set.

The thesis is structured as follows. In Chapter 2, the training of an SNN as in [Mostafa,
2017] is introduced. In the process, I define the parameters and methods necessary for
training networks on hardware.
In Chapter 3, BSS is described. The focus will be on the constraints imposed by

the hardware that are in contrast to the model in [Mostafa, 2017], as well as potential
sources of error for the approach with time-to-first-spike coding.
In Chapter 4, I describe a model that answers the challenges detailed in the previous
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Chapter. Furthermore, an analysis of the expected behaviour of relevant quantities is
discussed.
In Chapter 5, the software implementation of the models is discussed. The data sets

used in training are described as well.
In Chapter 6, the models described in Chapter 4 are put to the test for their predictive

power for the time-to-first-spike, both for simulations in software and emulations on BSS.
In Chapter 7, trainings of SNNs in software are examined. Here the learning process

is described in detail and underlying concepts of the training are determined, with a
focus on the stability of learning. An important part of this Chapter is to incorporate
hardware-realistic features into the software simulations.

In Chapter 8, spiking networks are trained on BSS. The investigation contains sanity
checks of the training to ensure proper functionality and includes training to classify a
reduced MNIST data set. All networks are initialised with random weights and trained
exclusively on hardware.
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2 Training Integrate-and-Fire
Neurons with Time-to-First-Spike
Coding

The main finding in [Mostafa, 2017] is that pattern recognition for integrate-and-fire (IF)
neurons with time-to-first-spike coding is possible and allows for fast classification. The
concepts needed to train a spiking neural network (SNN) with this coding are introduced
in this Chapter.

2.1 Time-to-First-Spike Coding

input
layer

hidden
layer

label
layer

Figure 2.1: Network layout taken
from [Mostafa, 2017].

Mostafa uses layered networks with an in-
put layer, one or more hidden layers, and
the label layer, see Fig. 2.1 for an example.
A layer here is a population of neurons
that receive input from the previous layer
and pass their spikes to the next layer.
Patterns (Fig. 2.2) are passed as spikes
to the input layer, and the neurons prop-
agate the information modulated by the
strength of their connections, called the
synaptic weights. In the label layer, each
neuron is assigned one class. Information
is encoded in the time it takes a neuron to
spike, measured from the start of the inputs. This coding is called time-to-first-spike
coding.

The goal of training is to make that neuron spike first that is associated with the
correct class. An input is deemed misclassified if another neuron from the label layer,
one not assigned the correct class, spikes first. Thus, the training task is to learn to
spike with the correct class when presented with input.

Training means optimisation of degrees of freedom for best possible classification rate
or, equivalently, lowest error rate. For SNNs in [Mostafa, 2017] and in this thesis, the
degrees of freedom that are updated are synaptic weights.
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2 Training Integrate-and-Fire Neurons with Time-to-First-Spike Coding

Figure 2.2: 100 example patterns from
the MNIST [LeCun et al.,
1998] test set, see further
Section 5.2.

2.2 Energy and Gradient Descent

The energy is chosen so that smaller energy corresponds to a higher rate of classification.
With this choice of energy, the highest possible classification rate correlates with a local
minimum of the energy in the high-dimensional space of parameters. With an energy
E that fulfils this requirement (see Section 4.4), it is possible to train the network via
gradient descent.
Gradient descent calculates the updates ∆w to the synaptic weights w in direction of

steepest descent

∆w ∝ −∂E
∂w

. (2.1)

Because the energy is a function of each label neuron’s time-to-first-spike, a differentiable
relation for the time-to-first-spike is necessary. In a deep network, error backpropaga-
tion [Rumelhart et al., 1986] is used to calculate the updates for deeper layers.
The proportionality constant for Eq. (2.1) is called the learning rate η. The value of

η is important as it is responsible for the speed of learning. It plays a crucial role in
whether the learning succeeds, too. If η is too large, the weight updates are too large.
This may impede learning by making jumps that are too big. If η is smaller, learning
takes more steps. If the learning rate is too small, learning may be too slow to see the
learning success. In [Mostafa, 2017], an exponentially decaying learning rate is used to
aid the learning.

2.3 The Integrate-and-Fire Neuron Model

Computational units in the SNNs in [Mostafa, 2017] are integrate-and-fire (IF) neurons
with current-based (CuBa) synapses and an exponential synapse kernel. For a general
introduction into theoretical neuroscience and different neuron models, refer to [Petro-
vici , 2015; Dayan and Abbott , 2001; Gerstner and Kistler , 2002]. The IF neuron model
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2.4 The Time-to-First-Spike and its Derivative

describes neurons as simple units that add up (integrate) their input current I onto their
membrane V and emit a spike (fire) when the membrane crosses a threshold Vth. The
input is weighted by synaptic weights w.
The time evolution of the membrane voltage V k of IF neurons indexed with k is

governed by the differential equation

Cm
∂V k(t)

∂t
= Iksyn(t), (2.2)

with the membrane capacitance Cm.
Inputs are received in form of spikes that induce a synaptic current. The full synaptic

current is given by a weighted sum over the synapses from neurons i to the neuron k
with the respective weight wki:

Iksyn(t) =
∑
i

wkiκ(t− ti). (2.3)

Using the Heaviside θ function and the synaptic time constant τsyn, the exponential
synapse kernel has the form

κ(t) = θ(t) exp

(
− t

τsyn

)
. (2.4)

For the IF neurons, the capacitance is included in the weights for simplicity.
With the convenient initial condition of an inactive neuron prior to any input spikes

V (t̄) = 0 for t̄ ≤ tk∀k (2.5)

the differential equation (Eq. (2.2)) has the solution

V k(t) =
∑
i

wkiθ(t− ti)
(

1− exp

(
−t− ti
τsyn

))
. (2.6)

From the time evolution of the membrane voltage, the time-to-first-spike can be deter-
mined as a function of the input times and weights.

For an IF neuron, the membrane voltage is fixed for the refractory time τref after
an emitted spike. This refractory time is set to infinity in [Mostafa, 2017] in order to
prevent additional spikes and to stick with single spike coding.

2.4 The Time-to-First-Spike and its Derivative

The neuron elicits a spike when the membrane crosses the threshold, implicitly defining
the time-to-first-spike of neuron k as

tk s.t. V k(tk) = Vth (2.7)

7



2 Training Integrate-and-Fire Neurons with Time-to-First-Spike Coding

With the set
Ck = {i : ti < tk} (2.8)

the implicit equation can be written as

Vth =
∑
i∈Ck

wki

(
1− exp

(
−tk − ti

τsyn

))
. (2.9)

Solving for the time of the outgoing spike, the result is

e
tk
τsyn =

∑
i∈Ck wkie

ti
τsyn∑

i∈Ck wki − Vth
. (2.10)

With the variable transformation

z = exp

(
t

τsyn

)
(2.11)

the result can be simplified to

zk =

∑
i∈Ck wkizi∑

i∈Ck wki − Vth
. (2.12)

For this time-to-first-spike, the derivatives are

∂zk
∂wki

=
zi − zk∑
j wkj − Vth

1i∈Ck
∂zk
∂zi

=
wki∑

j wkj − Vth
1i∈Ck , (2.13)

where 1i∈Ck is equal to 1 if i ∈ Ck, i.e. ti < tk, and 0 otherwise.

2.5 Ensure Sufficient Spiking

Additional mechanisms might be needed to ensure training success. One mechanism
used in [Mostafa, 2017] is increasing the weight of the synapses to ensure spiking of each
neuron. A neuron or whole network without a spikes is called quiescent. Preventing
quiescent networks is important for approaches with time-to-first-spike coding, as the
spikes are needed to optimise the weights.
Because the neurons have infinite memory, from Eq. (2.6) it can be concluded that

for exactly one spike per presynaptic neuron, the following is a sufficient condition for
an output spike ∑

i

wki > Vth. (2.14)

8



2.6 Results in [Mostafa, 2017]

This is enforced by adding to the energy the term

∑
k

max

[
0, Vth −

∑
i

wki

]
. (2.15)

This term, which is called weight sum cost in [Mostafa, 2017], checks Eq. (2.14) for every
neuron and potentially increases the weights of that neuron.

A further mechanism is to add a L2 norm of the weights to the energy. The goal is to
prevent the network from being dependent on single inputs due to too large weights.

An additional step is to normalise the gradients before one uses them with the back
propagation for calculating the update. In [Mostafa, 2017], this normalisation is de-
scribed as ensuring the Frobenius norm of the gradients is not larger than some value.

2.6 Results in [Mostafa, 2017]

In [Mostafa, 2017], the approach is used on two problems, classifying the logical XOR
and classifying handwritten digits from the MNIST database (Section 5.2).

No training progress is shown in [Mostafa, 2017].

2.6.1 XOR

A setup like in Fig. 2.1 learns reliably. [Mostafa, 2017] reports that the network is able
to learn the non linear problem because for different input patterns the causal sets Ck
are different.

2.6.2 MNIST

Mostafa uses two network architectures for MNIST classification. One architecture has
one hidden layer with 800 neurons, the other architecture has two hidden layers with
400 neurons each. The networks are trained for 100 epochs, i.e. the complete training
set is gone through 100 times. A neuron that fires a starting spike to all neurons in all
layers at the start of an input improves accuracy. To increase the testing performance
and combat overfitting of the training set, [Mostafa, 2017] trains with both non-noisy
and noisy input.

The test error rate for MNIST is between 2.45% and 3.08% depending on the archi-
tecture and noise. This is several percent above a linear classifier1, but below the rates
of elaborate artificial neural networks [e.g. Cireşan et al., 2010].
[Mostafa, 2017] shows that the classification happens before the majority of hidden

neurons spike. On a system as BrainScaleS (BSS) this is intriguing, as the speed-up
(Chapter 3) accelerates classification further.

1Linear classification accuracy is tested with the class LogisticRegression of the module
sklearn.linear_model , see [Pedregosa et al., 2011].
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2 Training Integrate-and-Fire Neurons with Time-to-First-Spike Coding

The classification speed is enforced by favouring early spikes. According to [Mostafa,
2017], reducing the number of spikes nudges the network to use every spike in the best
possible way.
All of this makes the design suitable to implement on neuromorphic hardware, as is

noted in [Mostafa, 2017]. On a neuromorphic system, the parallel nature can be fully
exploited to have fast classification.
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3 The BrainScaleS Neuromorphic
Platform

The BSS platform is a mixed-signal accelerated neuromorphic system using a very-
large-scale integration (VLSI) design. Development started originally in Fast Analog
Computing with Emerging Transient States (FACETS) and BSS and continues currently
in the Human Brain Project (HBP).
In this Chapter, the relevant structures of the hardware and the physical modelling

approach [Schemmel et al., 2010] are described, starting with its smallest components
and ending with the full wafer module. The overview given here claims in no way to
be exhausting, and for more features as well as more comprehensive descriptions refer
to [HBP SP9 partners , 2014; Schemmel et al., 2010; Millner , 2012; Jeltsch, 2014; Müller ,
2014; Koke, 2017].

3.1 The Analogue Circuits

The idea of physical modelling used on BSS is that neurons are implemented as ana-
logue circuits that emulate the behaviour of neurons. This is in contrast to traditional
neuron simulators on von Neumann architectures solving differential equations. Like
biological neurons, in both approaches the neurons react to input in the form of spikes
and, depending on the given input, elicit spikes themselves.
The circuits show the same behaviour as neurons because its components are chosen

in order for the circuit to be governed by the same differential equations. Due to the
electronic rather than biological nature, the time constants in the circuits are orders of
magnitude smaller, making the emulations faster by a speed-up of factor 104, compared
to biology. This means that 10 ms in the biological time domain can be emulated in 1µs
in the real-time domain1.
The neuron model implemented on the hardware are leaky integrate-and-fire (LIF)

neurons with conductance-based (CoBa) synapses. In fact, the neuron model on BSS
is the adaptive exponential integrate-and-fire (AdEx) model [Gerstner and Brette, 2009;
Brette and Gerstner , 2005], however this neuron model can be configured as LIF neu-
rons [Koke, 2017] as is done here. The LIF neuron and CoBa synapses are described in
Chapter 4.
The neural circuits are subject to variations in the production steps, causing circuit-

to-circuit variations in the parameters. These variations are called fixed-pattern noise.

1In this thesis, units are always implied to be in the biological domain if not stated otherwise.
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3 The BrainScaleS Neuromorphic Platform

Figure 3.1: Effect of calibration of the synaptic
time constant. While the measure-
ments of the synaptic time constant
of all neurons on a HICANN with-
out calibration (white) are spread out,
the distribution of the calibrated mea-
surement (blue) is narrowed down.
Plot taken from [Schmitt et al., 2017].
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The circuits can be adapted by settable analogue parameters which are stored on-chip
using analogue storage units called floating gates (FGs). The process of setting the
parameters introduces trial-to-trial variations [Koke, 2017; Kungl , 2016]. These noise
sources imply neuron-to-neuron variations as well as trial-to-trial variations for the same
neuron after rewriting the FGs. By calibration [Koke, 2017] this noise can be reduced
but not eliminated (Fig. 3.1).
All neuron parameters are set with analogue parameters, this includes the time con-

stants. In [Mostafa, 2017] single spikes were enforced by setting an infinite refractory
time τref. In simulations and emulations, this is equivalent to τref equal to the observed
time span. I choose this time span heuristically as 10τsyn = 100 ms. On hardware, how-
ever, this value is out of scope for τref. For smaller values, multiple spikes can occur for
a neuron (e.g. Fig. 7.18b) but with a large enough value of τref the relevant dynamics
happen before neurons are able to spike more than once. In this thesis, the parameter
is set to τref = 20 ms.

3.2 The HICANN Chip

The relevance of BSS is in part due to its size, as it combines a very large number of
neuronal circuits. The circuits are arranged in a structured fashion, and the next larger
structure above the analogue circuits is the high input count analog neural network
(HICANN) chip (Fig. 3.2a). One HICANN contains 512 neuron circuit, also termed
dendrite membranes (DenMems) in this context. The number of possible inputs per
circuit is limited by 224, but DenMems can be combined forming multi-compartment
neurons, up to 64 can be short circuited to allow for more inputs [Millner , 2012].
The strength of synaptic inputs is determined among others by digital 4-bit weights

set independently for each synapse, and an analogue parameter gmax scaling the effective
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3.3 The Wafer Module

(a) Detailed view of a single
HICANN chip. The two large
synaptic arrays at the top
and bottom are most promi-
nent, the neuron circuits are
located in between. Photo
taken from [Klähn, 2017].

host PC

wafer

reticle

HICANN

DNC

FPGA

neuron
circuits

synapse arrays

(b) Schematic view of the communication structure
of HICANNs with a host computer. The red
and blue lines are used by the L1 communica-
tion. The yellow lines is an example for a route
a spike could travel on the chip. For routes in
my network see the visualisation Fig. 8.1. Taken
from [Petrovici et al., 2014].

Figure 3.2: Photo of a HICANN chip and scheme of its communication structure on-
and off-wafer.

conductance. For training, only the 4-bit weights are rewritten.

3.3 The Wafer Module

The next structure is the wafer module. It is partitioned into 48 reticles that each con-
sist of 8 HICANNs and each have an associated field-programmable gate array (FPGA)
responsible for input and output, i.e. configuration and data extraction. In total, up
to 180 000 neural circuits and 40 000 000 synapses can be emulated on a wafer mod-
ule [Schemmel et al., 2010].
All of the HICANNs on one wafer module are not single chips but produced on the

exact same material. One reticle is produced with a single photolithographic mask.
Communication between reticles is enabled by a post-processing step connecting the
reticles [Zoschke et al., 2017].

All communication between neurons is solely through spikes. The spikes are conveyed
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3 The BrainScaleS Neuromorphic Platform

(a) A number of wafer modules make up
the BSS system.

(b) View of a single assembled module. For
operating the wafer, power supply is
needed as well as FPGAs and addi-
tional supporting infrastructure to in-
teract with a host computer.

Figure 3.3: The assembled wafer modules, photos taken from [Schmitt et al., 2017].

digitally but translated to an analogue signal prior to injection into the analogue neural
circuits, hence the name mixed-signal hardware for BSS.
HICANN-to-HICANN communications happen via the asynchronous layer-1 (L1).

For off-wafer communication, time-stamped spikes are transported via the synchronous
layer-2 (L2). The capabilities of the communication structures are detailed in [Klähn,
2017] and potentially spike loss can occur in each layer. In this work no spike loss is
observed due to the single-spike approach.
Two analogue readouts per HICANN can extract membrane voltage traces via analog-

to-digital converters (ADCs) to the host computer.
The interface allows high-level neuron descriptions while at the same time providing

access to calibration and mapping, the process of writing a network to the hardware.
The user facing interface for the hardware is PyHMF [Jeltsch, 2014], which is an

implementation of the python neural networks (PyNN) [Davison et al., 2008] applica-
tion programming interface (API). This interface allows a network-level description of
the system, abstracting away the lower-level parts of the configuration and hardware
handling. In order to handcraft the neuron placement on hardware, marocco is used
manually, everything else is left to the software.
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4 Derive, Define and Describe

In the previous chapter, the requirement of modifications of the approach in [Mostafa,
2017] for an implementation on BSS was shown. In particular, the algorithm presented
in Chapter 2 has to be adapted to LIF neurons, CoBa synapses have to be treated
correctly, and disturbances to an ideal model like spike-timing jitter and fixed-pattern
noise need to be addressed.

First, the problem of finding the analytic expression for LIF neurons with CuBa
synapses is described. Then, solutions in two special cases are derived. Afterwards, an
approximation for CoBa synapses is introduced. The following Section elaborates on
the choice of the energy. The Chapter ends with a substitution for the weight sum cost
of [Mostafa, 2017].

4.1 The Leaky-Integrate-and-Fire Neuron Model

The BSS wafer-scale system does not feature IF neurons but LIF neurons. Thus, an
analytical expression for the time-to-first-spike in LIF neurons is derived.
The main difference between a leaky IF neuron from a non-leaky IF neuron is the leak

term that pulls the membrane voltage towards the leak potential EL. Together with the
threshold voltage Vth this defines a fixed scale, that, without loss of generality, can be
chosen as Vth = 1 and EL = 0 for simplicity.

The decay back to the leak potential happens in an exponential fashion, determined
by the membrane time constant τm. This decay is combined with the synaptic current
Isyn, and thus the membrane voltage of a LIF neuron is governed by the differential
equation

τm
∂V

∂t
= −V +

Isyn

g
. (4.1)

The membrane time constant is given by the capacitance Cm and conductance g as
τm = Cm

g
. The input current is a weighted superposition of the spike kernel as before

Iksyn(t) =
∑
i

wkiκ(t− ti) (4.2)

=
∑
i

wkiθ(t− ti)e
− t−ti
τsyn . (4.3)

15



4 Derive, Define and Describe

Plugging the synaptic current into Eq. (4.1) gives the full CuBa differential equation

τm
∂V k

∂t
= −V k +

1

g

∑
i

wkiθ(t− ti)e
−
t−ti,r
τsyn . (4.4)

The homogeneous part of the equation is a simple declining exponential, thus the full
solution is given by solving

V k(t) = e−
t
τm

∫ t

ds Iksyn(s)
e

s
τm

gτm
. (4.5)

The integral is carried out to arrive at

V k(t) =
1

gτm
e−

t
τm

∑
i

wkiθ(t− ti)e
ti
τsyn

∫ t

ti

ds e−s
(

1
τsyn
− 1
τm

)
(4.6)

=
1

Cm

τmτsyn

τm − τsyn

∑
i

wkiθ(t− ti)
(
e−

t−ti
τm − e−

t−ti
τsyn

)
(4.7)

=
1

Cm

τmτsyn

τm − τsyn

∑
i∈Ck

wkiθ(t− ti)
(
e−

t−ti
τm − e−

t−ti
τsyn

)
. (4.8)

For simplicity I take a vanishing leak term and initial conditions as above, Vk(0) = 0.
Furthermore, I use the set Ck from above again, and single spike times. One can check
that for a slow membrane, the limit limτm→∞ = limg→0, one recovers both the differential
equation Eq. (2.2) and the membrane voltage Eq. (2.6) of the IF model.
The spike time tk defined by Eq. (2.7) is given by

Vth = V k(tk) =
1

Cm

τmτsyn

τm − τsyn

∑
i∈Ck

wkiθ(tk − ti,r)
(
e−

tk−ti
τm − e−

tk−ti
τsyn

)
. (4.9)

Because the spike time tk appears in two exponents with different coefficients, no explicit
formula for tk exists without loss of generality. Two special cases are chosen to derive
formulas for the spike time.

4.2 The Time-to-First-Spike and its Derivatives

It is instructive to show how the membrane voltage behaves for different values of τm.
Figure 4.1 shows the time evolution of the voltage for example values of τm. Time
evolutions of the membrane voltage are also called membrane or voltage trace.
The key to finding a relation for tk is to have a relation between the coefficients in the

two exponents, a relation between τsyn and τm. With the definition of the ratio

ρ := τm/τsyn, (4.10)
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Figure 4.1: Comparison of different membrane time constants.
Membrane traces for different values of τm ∈ {∞, 20ms, 10ms} (blue, orange and
green) and corresponding g, keeping all other parameters fixed, especially τsyn =
10ms. Apart from returning to the leak potential faster, the height of the trace is
reduced.

the two solvable cases are the ratios ρ = 1 and ρ = 2. Because Eq. (4.8) is symmetric in
τsyn and τm, a ratio of ρ = 2 is equivalent to the ratio ρ = 0.5 in this theoretical analysis.
The same is true for the design in [Mostafa, 2017], for which the two ratios are ρ = 0
and ρ =∞.
The formula for the time-to-first-spike for ρ = 1 with τm = τsyn is called equal-time

formula, and this name will be used to refer to it. In the other case with ρ = 2 and
τm = 2τsyn, the relation is called double-time formula.

4.2.1 ρ = 1, τm = τsyn and the Equal-Time Formula

Preparations

In the limit τm → τsyn, L’Hôpital’s rule gives

lim
τm→τsyn

V k(t) =
∑
i∈Ck

wik
Cm

θ(t− ti) lim
τm→τsyn

τmτsyn
e−

t−ti
τm − e−

t−ti
τsyn

τm − τsyn
(4.11)

L’Hôpital
=

∑
i∈Ck

wik
Cm

θ(t− ti)e
− t−ti
τsyn (t− ti). (4.12)

This is solved for the spike time tk of the neuron

Vth = V k(tk) =
∑
i∈Ck

wki
Cm

e−
tk−ti
τ (tk − ti) (4.13)
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4 Derive, Define and Describe

by reordering and scaling accordingly, with x = tk
τ
, to get

0 =
∑
i∈Ck

wki
Cm

e
ti
τ ti−

∑
i∈Ck

wki
Cm

e
ti
τ τ
tk
τ

+ Vthe
tk
τ (4.14)

= a+ bx+ cex, (4.15)

employing the following definitions

a :=
∑
i∈Ck

wki
Cm

e
ti
τ ti b := −

∑
i∈Ck

wki
Cm

e
ti
τ τ c := Vth. (4.16)

With the transformation y = x+ a
b
, Eq. (4.15) is rearranged to

0 = a+ bx+ cex (4.17)

= by + ceye−
a
b (4.18)

c

b
e−

a
b = −ye−y (4.19)

The equation
z = h · eh (4.20)

is solved by h = W (z) with the differentiable Lambert W function. For more on this
function, see below on Page 19. Using the Lambert function for z = c

b
e−

a
b and h = −y

one gets

W
(c
b
e−

a
b

)
= −y = −x− a

b
. (4.21)

Through rearranging, a formula for the time-to-first-spike is recovered.

tk = τx = τ
(
−W

(c
b
e−

a
b

)
− a

b

)
. (4.22)

The derivative of the LambertW function is determined by deriving both sides of
Eq. (4.20) wrt. z, resulting in

W ′(z) :=
dW
dz

(z) =
1

eW (z) + z
. (4.23)

Altogether, an analytical and differentiable relation for the time-to-first-spike was ob-
tained. This relation can now be differentiated.

Derivatives

The derivatives of this function are more complicated than in the design in [Mostafa,
2017]. To keep the equations simple, I use the chain rule and write down the derivatives
separately.
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4.2 The Time-to-First-Spike and its Derivatives

For the derivatives, a naming scheme has to be fixed. The presynaptic neurons are
indexed by i, the postsynaptic neuron by k. The time-to-first-spike of the postsynaptic
neuron is

tk = τ

(
−W

(
ck
bk
e
−ak
bk

)
− ak
bk

)
(4.24)

with specific variables ak, bk, and ck each depending on the weights wki, the presynaptic
spike times ti and the causal set Ck like

ak =
1

Cm

∑
i∈Ck

wkie
ti
τ ti bk = − τ

Cm

∑
i∈Ck

wkie
ti
τ ck = Vth. (4.25)

For each, I need the derivative wrt. to the weights wki and for the backpropagation also
wrt. ti. I arrive at

∂ak
∂ti

= +
1

Cm
wkie

ti
τ

(
1 +

ti
τ

)
1i∈Ck

∂ak
∂wki

=
1

Cm
tie

ti
τ 1i∈Ck (4.26)

∂bk
∂ti

= − 1

Cm
wkie

ti
τ 1i∈Ck

∂bk
∂wki

= − τ

Cm
e
ti
τ 1i∈Ck (4.27)

The derivatives of the spike time is best expressed by its differential. Using the definition
zk = ck

bk
e
−ak
bk this can be written as

dtk =

[
τ

bk

(
W ′(zk)zk

(
1− ak

bk

)
+
ak
bk

)]
dbk (4.28)

+

[
τ

bk

(
W ′(zk)zk − 1

)]
dak. (4.29)

The LambertW Function

In the framework (Section 5.1), the implementation of the LambertW function from
scipy.special.lambertw is used. That code itself is based on [Corless et al., 1996].
The defining equation (Eq. (4.20)) is multivalued. Because the spike times are real, as

are the weights and other parameters, narrowed down for real-valued arguments there
are 2 branches. Those two branches correspond to being left or right of the minimum in
Fig. 4.2a. Following the naming in [SciPy Documentation], the 0 branch is to the right
and real-valued for −1/e < z. The other branch, called -1 branch, is to the left of the
minimum and real-valued for −1/e < z < 0.

In Fig. 4.2b the function and its derivative are shown.
In the calculations above, I implied using the 0 branch. For the reasoning I first look

at the value of h = −y for a single input spike and then generalise to multiple spikes.
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4 Derive, Define and Describe

In the setting of one input spike, there is no sum in the fraction a
b
and I get

h = −y = −x− a

b
= −tk

τ
+
ti
τ
. (4.30)

The interpretation is the negative difference between the input spike and the output spike
in units of τ . This difference is maximal when the membrane voltage barely touches the
threshold. The maximum of Eq. (4.12) for one input spike happens at ti + τ . Thus, the
maximal difference is τ , and the minimal value for the negative difference is h = −1. If
the weight is larger, the difference is shorter, and therefore h > −1. This means, for one
input spike the used branch is always k = 0.
This result is valid for more than one spike. Assuming multiple input spikes, first,

I take an auxiliary spike with high enough weight at a short time before the output
spike time tk. For this setup, without any of the actual input spike, I know that I
have h > −1. Second, I now add all the excitatory spikes, reducing the time difference.
Now I remove the auxiliary spike. Because I know there is a spike happening, the
excitatory inputs must suffice to reach the threshold. In the end, I add all inhibitory
spike. The inhibitory spikes will increase the time difference, but not above τ or no spike
will happen. All of these changes can be made infinitesimally, and because of continuity
following from differentiability the solution will not leave the branch. The correct branch
for all calculations is 0.

4.2.2 ρ = 2, τm = 2τsyn and the Double-Time Formula

Preparations

Given Eq. (4.8), setting
τsyn =

τm
2

(4.31)

in the relation for V (tk) = Vth one recovers

0 = −Cm
τm − τsyn

τmτsyn
Vth+

∑
i∈Ck

wkie
ti
τm e−

tk
τm−

∑
i∈Ck

wkie
2
ti
τm e−2

tk
τm (4.32)

= c+ by + ay2, (4.33)

with the definitions

a = −
∑
i∈Ck

wkie
2
ti
τm b =

∑
i∈Ck

wkie
ti
τm c = −Cm

τm − τsyn

τmτsyn
Vth = −CmVth

τm
. (4.34)

The shorthand y := e−
tk
τm was introduced to make it clear that it is a quadratic equation

that is solved by

y =
−b±

√
b2 − 4ac

2a
, (4.35)
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(b) The LambertW function W (z) for its real
branches and the derivative of the used branch
0 given as in Eq. (4.23). The 0 branch is defined
for values larger than z > −1/e ≈ −0.4. The
−1 branch is defined for 0 > z > −1/e. The
LambertW is injective for real z with z > 0.

Figure 4.2: Plot of the LambertW function. Because the defining relation is solved by
the Lambert W function, the two plots are inverses of each other, as made
clear by the colours. To the right of the minimum in (a) is the same branch
as in the top half in (b).
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4 Derive, Define and Describe

giving the relation for the spike time as

tk = τm log

[
2a

−b±
√
b2 − 4ac

]
. (4.36)

Again, a differentiable relation for the spike time was obtained, and can be used to
calculate the derivatives.

Derivatives

With the same assumptions regarding the indexing of pre- and postsynaptic neurons,
the parameters are

ak = −
∑
i∈Ck

wkie
2
ti
τm bk =

∑
i∈Ck

wkie
ti
τm ck = −CmVth

τm
. (4.37)

There are two branches in Eq. (4.36). After a threshold crossing, the leak voltage will
lead to a second crossing at some later time. The crossing with the smaller time is the
one that should be used in Eq. (4.36).
Due to the positive weights needed for a spike, bk > 0, and ak < 0 is a reasonable

assumption. The logarithm in Eq. (4.36) is monotonic. The earlier solution will be the
one with the larger denominator. Therefore the − branch is the correct one.
Putting everything together, the time-to-first-spike can be calculated by

tk = τm log

[
2ak

−bk −
√
b2k − 4akck

]
. (4.38)

The derivatives of a and b are calculated to be

∂ak
∂ti

= −wki
τsyn

e
ti
τsyn 1i∈Ck

∂ak
∂wki

= −e
ti
τsyn 1i∈Ck (4.39)

∂bk
∂ti

= +
wki
τm

e
ti
τm 1i∈Ck

∂bk
∂wki

= +e
ti
τm 1i∈Ck , (4.40)

and the differential of the spike time can be written, with the help of xk :=
√
b2k − 4akck,

as
dtk =

[
τm
ak

+
2τmck

(bk + xk)xk

]
dak +

[
− τm
bk + xk

(
1 +

bk
xk

)]
dbk. (4.41)
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4.3 Conductance-Based Synapses and the Weight Scale Factor

4.3 Conductance-Based Synapses and the Weight
Scale Factor

Motivation

For a detailed motivation and history of CoBa synapses for neurons refer to the liter-
ature [Petrovici , 2015; Dayan and Abbott , 2001; Gerstner and Kistler , 2002]. Here it
is enough to show the different model, highlight the differences and explain the used
approximation.

For CoBa synapses, the synaptic current has a direct dependence on the membrane
voltage and the reversal potentials Erev:

Iksyn(t) =
∑
i∈Exc

wki(Erev,exc − V k(t))κ(t− ti)+∑
i∈Inh

wki(Erev,inh − V k(t))κ(t− ti).
(4.42)

The weights have dimension of a conductance, nS. They modulate the effect of the re-
versal potentials Erev. The reversal potentials are separated in excitatory and inhibitory
reversal potentials, and incoming spikes are associated with one of the two.

Plugging Isyn into Eq. (4.1) and grouping all voltage terms together, an equation simi-
lar to the CuBa differential equation can be obtained. Dividing by the total conductance

gtot(t) := gm +
∑
i∈Exc

wki
∑
r

κ(t− ti,r) +
∑
i∈Inh

wki
∑
r

κ(t− ti,r) (4.43)

results in

Cm

gtot(t)

∂V k

∂t
= −V k+

Erev,exc

gtot(t)

∑
i∈Exc

wki
∑
r

θ(t− ti,r)e
−
t−ti,r
τsyn +

Erev,inh

gtot(t)

∑
i∈Inh

wki
∑
r

θ(t− ti,r)e
−
t−ti,r
τsyn .

(4.44)

There exists no closed form solution to the membrane voltage of a LIF neuron with
CoBa synapses, to my knowledge, much less for the time-to-first-spike. Therefore, an
approximation is needed. Approximations are common for training of spiking neural
networks, see e.g. [Neftci et al., 2019].

Equation (4.44) looks a lot like the full differential equation for the CuBa model
Eq. (4.4), if it were not for the time dependent conductance and the separated inhibitory
and excitatory weights.

The assumption is now that the spike times in the CoBa model can be predicted to
a reasonable accuracy by using a CuBa model. In Section 6.2 the assumption for the
prediction is verified and in Section 7.5 the possibility of learning with a CoBa network
is shown.
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4 Derive, Define and Describe

The approximation is done by scaling the CuBa weights with the weight scale fac-
tor (WSF) α. The WSF has nothing to do with the weight sum cost in the design
in [Mostafa, 2017]. Formally, the assumption is that α can be chosen to satisfy

Erev,exc

gtot(t)
≈ α

g
≈ Erev,inh

gtot(t)
and

Cm

gtot(t)
≈ τm =

Cm

g
. (4.45)

This is equivalent to the transformation in the CuBa weights

w → w̃ = αw. (4.46)

The WSF has the unit of a voltage [α] =
[
wCuBa
wCoBa

]
= V . In experiments, the factor will

be measured in a similar scenario as its usage. In this way, a ratio of the conductances
can be incorporated.

Calculating the WSF

For all three cases of ρ, can be determined from recorded spikes.
Starting with infinite τm, ρ = 0, the relevant equation is Eq. (2.12):

zk =

∑
i∈Ck wkizi∑

i∈Ck wki − Vth
. (4.47)

With the transformation Eq. (4.46) the following is obtained

αk =
V zk∑

i∈Ck wki(zk − zi)
. (4.48)

In the ρ = 1 scenario, performing Eq. (4.46) on Eq. (4.15)

0 = a+ bx+ cex (4.49)

results in

0 = αkak + αkbkxk + cke
xk (4.50)

αk = − cke
xk

ak + bkxk
, (4.51)

with the definitions for ak, bk, and ck from Eq. (4.25).
For ρ = 2, a similar calculation starting from Eq. (4.33)

0 = c+ by + ay2, (4.52)

results in
αk = − ck

bkyk + aky2k
. (4.53)
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In practise, the WSF is determined by simulating or emulating a network and regis-
tering all spikes. Given these input and output spike times, the WSF can be calculated
with one of Eqs. (4.48), (4.51) and (4.53). The mean of the resulting WSF is the basis
for the training.

4.4 Improving Optimisation Based on a Superior
Energy

The networks are trained with gradient descent, which is based on the energy. Changing
the energy therefore likely changes the training, and, potentially, can both improve or
worsen the training in terms of convergence or stability. In this section, the energy is
investigated in order to find possible improvements to stabilise training.

The energy is composed of different parts. I will distinguish between the energy
and the total energy. The latter contains the former and additional terms intended to
improve training. In the design in [Mostafa, 2017] the energy is a cross entropy given by

E[z, j] = − log

[
exp(−zj)∑
i exp(−zi)

]
. (4.54)

Adding to that the L2 norm of the weights and the weight sum cost term gives the total
energy.

The difference between energy and total energy is important. In my plots I will show
the energy because the quantification of the classification is encoded in it.

Even for the ideal case, this energy will not decrease monotonically. First, because
the update uses a fixed step size given by the learning rate η. Second, the total energy
is optimised, and there is a trade off between the different parts of the energy.
The role the energy and total energy play has many names. Among those names are

energy, objective, and loss. They have in common that they are minimised.

4.4.1 Deducing the Energy from Classifying Entropy

In the present setting, the purpose of the energy is to quantify the difference between a
target distribution and a measured distribution. The former is determined by the correct
label of the input, the latter is the result of the network simulation. A possibility for
comparison is to define a target spike sequence, and use a L2 norm of the spike time
differences, see e.g. [Zenke and Ganguli , 2018].
Following [Mostafa, 2017], I measure the entropic difference of two probability distri-

butions given by the output values of the neurons. The output values of the neurons are
taken as an a priori undefined function f applied to the spike times tk.
Given a vector t with components tk and a function f , the kth component of a vector
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q after a softmax transformation is

qk =
exp f(tk)∑
i exp f(ti)

. (4.55)

q has the defining properties of a probability distribution, i.e. it is non-negative and
sums to 1. The correct probability distribution is determined by a one-hot encoding of
the label. A one-hot encoding of a label i is a vector with 0 in all components except at
the ith component, where it is 1.
Given an estimated probability distribution Q, I can use the cross entropy to quantify

the difference to the correct distribution P . The formula for a calculation is given by

H(P,Q) = 〈− logQ〉P = −
∑
i

Pi logQi (4.56)

The 〈. . . 〉P notation means the expectation value wrt. the probability distribution P .
Bringing the formulas together, the softmaxed cross entropy of network with label

layer tk and correct label j is

E[t, j] = − log

(
exp f(tj)∑
i exp f(ti)

)
= log

(∑
i

exp(f(ti)− f(tj))

)
(4.57)

In the previous equation, the function f of the spike time is not defined yet. Mostafa
used the softmaxed cross entropy of the negative of the exponential times

f(t) = − exp

(
t

τsyn

)
= −z. (4.58)

Putting this into Eq. (4.57), one recovers the energy from Eq. (4.54)

E[z, j] = − log

[
exp(−zj)∑
i exp(−zi)

]
. (4.59)

Mostafa calculates exclusively with the exponential times z to have simpler equations.
Using the actual times t, the energy is

E[t, j] = − log

 exp
(
− exp

(
tj
τsyn

))
∑

i exp
(
− exp

(
ti
τsyn

))
 . (4.60)

It is important to keep in mind, that an energy is chosen, and there is freedom in
doing so. As an example, for dimensional reasons a time constant is needed with every
occurrence of a spike time. This constant is not fixed, and for τsyn 6= τm two natural
time scales exist, requiring a choice.
There is no obvious reason to use the second exponentiation, and instead a change
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4.4 Improving Optimisation Based on a Superior Energy

from exponential times to linear times with a constant factor ξ is possible

f(t) = − exp

(
t

τsyn

)
→ f(t) = −ξ t

τsyn
. (4.61)

This leaves me with the energy

E[t, j] = − log

 exp
(
−ξ tj

τsyn

)
∑

i exp
(
−ξ ti

τsyn

)
 . (4.62)

This will not vastly change the extrema of the loss function. exp() is a strictly monotonic
function. Optimising one or the other function can lead to similar results. However,
whether the training succeeds and how fast the training proceeds depends on the details.
Given other terms in the loss function like weight regularisation, choosing one energy
over the other can make a difference.

4.4.2 Analysis of the Energy

The analysis of the behaviour of the energy is done in two ways to improve intuition.
First I look at the fraction as two separate terms, and later as one term. In Eq. (4.57), I
assume a generic f(t) that is strictly monotonically decreasing as both examples above
are.
The numerator can be simplified to −f(tj). This is minimised by decreasing tj, the

spike time of the labelled class because of the monotonicity of f . This is why Mostafa
uses the negative spike times as output values. Due to the monotonicity of the logarithm,
the denominator log [

∑
i exp f(ti)] is minimised my minimising the sum. As all the sum-

mands are strictly positive, each term should be minimal. Therefore, the denominator
is minimised by increased spike times for all spikes. Together, the energy is minimised
by decreasing the spike time for the correct neuron, and increasing all others, just as
intended.
The other way to think about it is in terms of

E[f, t, j] = log

[∑
i

exp(f(ti)− f(tj))

]
. (4.63)

Following the logic above, each difference f(ti)−f(tj)∀i 6= j is maximised, i.e. the correct
spike time is pushed forward, and the other spike times backward.
Consider the following concrete example to better understand the dynamics of this

energy. Assuming just two classes, the correct one being t0 and the wrong one t1. The
energy is

E[f, t0, t1] = log [1 + exp (f(t1)− f(t0))] (4.64)
= log [1 + exp (h(t0, t1))] . (4.65)
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The two cases of linear time and exponential time amount to

h(t0, t1) = −ξ t1 − t0
τ

(4.66)

and

h(t0, t1) = − exp(t1/τ) + exp(t0/τ) (4.67)

= exp(t0/τ)

(
1− exp

(
t1 − t0
τ

))
(4.68)

≈ exp(t0/τ)

(
−t1 − t0

τ
+O

(
t1 − t0
τ

2
))

. (4.69)

I did a Taylor approximation in the last step, which is accurate for spike times near each
other relative to τsyn.
Spike times close together is a valid assumption for a randomly initialised network.

From this calculation one can see that the two functions have similarities, see Fig. 4.3a.
However, the factor depending on the first spike time makes a big difference.
Furthermore, different behaviour for bigger time differences is expected. For this, I

look at the energy with exponential times, with j being the correct class.

E[t, j] = log

[∑
i

exp

[(
− exp

ti
τ

)
−
(
− exp

tj
τ

)]]
(4.70)

= log

[
1 +

∑
i 6=j

exp

(
−
(

exp
ti
τ
− exp

tj
τ

))]
(4.71)

Now I assume an advanced stage in the training where there already is good classification
for all inputs. Good classification implies good separation of the patterns, i.e. ti � tj∀i 6=
j. The relevant time constant for � is τsyn. From this follows exp ti

τ
� exp

tj
τ
and thus

exp
ti
τ
− exp

tj
τ
≈ exp

ti
τ
. (4.72)

For the energy follows

E[t, j] ≈ log

[
1 +

∑
i 6=j

exp

(
− exp

ti
τ

)]
. (4.73)

Minimising this term is done by increasing each ti. Due to the batching (Section 5.1),
i.e. averaging updates for different inputs at each training step, optimising this energy
will only reduce all weights. This effect takes place once the network has learned. It has
to be cancelled before the whole network becomes quiet. The effect can be also seen in
Fig. 4.3b. There, the energy is minimised solely by increasing the initial spike time. The
same energy can be achieved by a vastly smaller spike time difference when the initial
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(a) The energy is plotted against the spike
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duces the energy. The energies with
linear f are identical for different t0.
This is not the case for an exponential
f .
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(b) To emphasis the last point of Fig. (a),
the energy is plotted against the spike
time t0 for two spike time differences
t1 − t0. Again, for linear f the energy
does not depend on t0. For exponential
f , the energy is reduced by keeping the
same difference and only increasing t0.
Based on the intersection with the solid
orange line, the energy for a difference
of 5ms with t0 ≈ 20ms is equal to the
energy for a difference of 1ms at t0 ≈
40ms.

Figure 4.3: Energy of a two class system as in Eq. (4.64), plotted against the spike times
t0 and t1. Parameters are τsyn = 10 ms and ξ = 10 from Eq. (4.61).

spike is later.

4.5 Ensure Sufficient Spiking

In [Mostafa, 2017], the weight sum cost (Eq. (2.14)) ensures a spike for each neuron.
With a finite τm, this is not as simple. Even if the neuron was close to spiking at some
point, the membrane is pulled back to the leak voltage. An input after some time may
not elicit a spike. Without knowledge of the spike times, it is not possible to predict
from the weights whether a neuron will spike. Thus I need to replace the ad hoc weight
sum cost mechanism of Mostafa with a different ad hoc mechanism.
The most straight forward way is to check if neurons spike during training. If a quiet

neuron is detected one can then increase all the weights leading to that neuron. This is
as is done in [Mostafa, 2017], as there, too, only the weights of one specific neuron are
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4 Derive, Define and Describe

increased. However, this would spoil the dynamics. As was just (Section 4.4.2) shown,
the spike times tend to slowly shift to later times for training based on the energy of
exponential times-to-first-spike. During this shift, one neuron will be the first to not
spike at all. Increasing the weights of only that neuron will likely skew the dynamics
and reduce the accuracy.
Instead, increasing all the weights in that layer will make the neuron fire again while

keeping the dynamics more stable. On hardware, there might be some neurons in hidden
layers that might not be used in each pattern, thus it is possible to only apply the message
when the number of quiet neurons is larger than some threshold.
The value by which the weights are increased is also important. If it is too small, the

mechanism has no effect. If it is too high, the weights will become too large and spoil
the dynamics. I am using a small starting value that increases exponentially in case the
process had no effect. This is done by recording layerwise whether the mechanism was
applied in the previous step and multiplying the current rate by a factor where necessary.
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This Chapter introduces the software and training data used in this thesis. The frame-
work enables sharing the same training code for emulations and simulations. All features
implemented for simulations are also available for emulations thereby reducing the time
needed to implement new features.
I took over the code basis from Oliver J. Breitwieser at the beginning of my master

thesis. The code is located in the group repository server and accessible at https:
//openproject.bioai.eu/projects/model-tempodrom. It can also be reached via git
with git@brainscales-r.kip.uni-heidelberg.de:model-tempodrom.git.

5.1 The Software Framework

Training Algorithm

Prior to training, the network is set up according to the configuration in a parameter
file and the network is, if applicable, mapped to hardware. The actual training proceeds
in steps.

At the start of each step, random samples of the data are selected to create a mini-
batch. The inputs of those samples are concatenated with an idle period as a separator,
together forming a long input spike train. This input is fed into the computational
substrate which returns the output spikes. The elicited spikes are divided up to the
input patterns in the mini-batch they belong to.

For each pattern and its recorded spikes, the update is calculated based on the en-
ergy and gradient formula given in the parameter file. The updates are conditionally
normalised so that, for each layer, the L1 norm of that layers does not exceed a value
given in the parameter file. Conditionally means that values are reduced if they are too
big, but small values are left untouched. Afterwards, the updates in the mini-batch are
averaged, and for the batch the drive weight mechanism (Section 4.5) is calculated. The
resulting total update is applied to the weights.

At regular intervals the accuracy is checked to document the progress.
The gradients are calculated with Eqs. (2.13), (4.28) and (4.41). For an output spike

at tk, the set of causally influencing spikes Ck (Eq. (2.8)) is defined as the set of all
input spikes earlier than tk. Because the spike times are given to the algorithm by the
substrate, this set does not have to be calculated, unlike in [Mostafa, 2017] where a
dedicated algorithm determines Ck.
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5 Framework

Simulations and Emulations

The training algorithm is independent of the computational substrate. The substrate
returns spike times for given inputs and passes them to the training algorithm where
gradients and updates are calculated.
In this work, both simulations (Chapters 6 and 7) and emulations (Chapters 6 and 8)

are performed. The simulations use the NEural Simulation Tool (NEST) as a simula-
tor [Diesmann and Gewaltig , 2002], while the emulations on BSS are controlled with
PyHMF [Jeltsch, 2014].
PyHMF is an implementation of the PyNN API of version 0.7.5 . The NEST imple-

mentation of that PyNN version is 2.2.2 and was two orders of magnitude slower in
my experiments (no data shown) compared to a more recent version of NEST. The used
version of NEST is 2.14.0 . To enable emulations on hardware with PyHMF as well as
fast simulations in NEST this framework uses a wrapper for those two applications. The
wrapper makes changing the substrate possible with just one change in the parameter
file.
Additionally, a patch set [NEST Pull 1112 ] was used to solve an issue for τm = τsyn

simulations that was discovered in the thesis [NEST Issue 1087 ].

Auxiliary Tools

Parameter Files The software expects parameter files to be YAML Ain’t Markup Lan-
guage (YAML) files. For this thesis, the YAML files were often generated by YAML with
pre-Computed Common Parameters (YCCP) for parameter sweeps [YCCP repository ;
Breitwieser , 2015].

Network Generation Naturally, the network construction is automated depending on
the parameter file. In the parameter file the type of data (Section 5.2) is given along
with the configuration of the hidden layers in form of a list. Each list item defines the
number of neurons in that hidden layer, e.g. an empty list is translated to a shallow
network. The input and label layer are determined by the size of the input data and
number of classes in the data, respectively.

Parameter Noise To investigate the effect of fixed-pattern noise on hardware, noise
was introduced to the neuron parameters in the software simulations. This noise (Sec-
tion 7.5.3) is set when creating the networks. Noise is only added to those parameters
that have a noise level set in the parameter file. The value set for the parameter is its
noiseless value multiplied with a random factor sampled from a normal distribution with
mean 1 and standard deviation equal to the noise level from the file.

ADC Channel Double Use PyHMF allows recording voltage traces of neurons on
hardware (Chapter 3). The analogue voltage trace of the circuits is converted to a
digital signal by an ADC.
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5.2 The Data Framework

While examining voltage traces, an unpredictable double-usage of the same channel
of an ADC was discovered when recording more than one voltage at a time. This bug
produced the same trace for two different neurons. To prevent the problem, [Changeset
3720 ] was added for review. With this changeset, the occupied ADC channels are logged
and double-use throws an exception. The problem can be avoided by taking the voltage
trace of only one neuron at a time, and repeating the measurement for all neurons. This
is done automatically when recording voltages in the framework, including the repetition
for averaging (Fig. 6.8).

Randomly Initialised Weights In the network initialisation process, the weights are
usually set randomly. For each layer a mean and standard deviation σ are defined in
the parameter file, and from those the weights are sampled from a Gaussian truncated
at 2σ distance. Truncation of the Gaussian ensures that the values are within a specific
range. Values outside the range are resampled until they lie inside.

Noisy Inputs When training a network with Modified National Institute of Standards
and Technology (MNIST) data, there are 10 000 independent images that can be used
to quantify the test error. In contrast, the simple pattern (Section 5.2) data set includes
only four different patterns. To get a feeling for the stability against spike time noise,
for classification each pattern is shown several times with noise added to the input spike
times. This noise is again a truncated Gaussian with the standard deviation given in
the parameter file.

The same process is employed to produces a larger number of training images that
prepare the network for noisy test inputs.

Fixed-Precision Weights During learning with fixed-precision weights (Fig. 7.20) the
weights are saved as floating point values, but prior to writing them to a network they
are rounded to a precision determined from the parameter file.

There is no maximal weight fixed, therefore the number of used weights can vary
during training. To quantify the number of possibly used weights, the cardinality is
defined as the maximum weight divided by the weight precision.

5.2 The Data Framework

In this work, two main data sets are used, simple patterns and MNIST data. For
reproducibility, the data generation is described here.

Implementing new data sets in the framework is easy. After defining a function that
returns training and test data and setting some parameters, like the input layout used
for plotting example patterns in confusion matrices (e.g. Fig. 7.15), the data can be used
in any network as well as for automated generation of plots.

The data is presented to the network in form of early or late input spikes. Binarised
images can be transformed into spikes by equating black pixels with early spikes and
white pixels with late spikes for example. This choice is arbitrary, and in Section 8.1.3
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it is verified that training succeeds for inverted patterns with the opposite choice. The
effect of the time separation between early and late spike is investigated in Section 7.2.4.

XOR

In [Mostafa, 2017], the first results are presented for a network (Fig. 2.1) trained on the
logical XOR . Two boolean variables are given to the network and it should respond with
True if exactly one input is True , and False otherwise. With two input sources,
but four different patterns, this is a problem that is not linearly separable, and needs a
hidden layer to be solved.
In this work no networks were trained to classify XOR . The network is presented here

for completeness as it was used in [Mostafa, 2017]. During the thesis, some work was
done with XOR data, but it was decided early on that patterns are a more promising
test set for the BSS system.

Simple Patterns

The data set used in most simulations in this thesis is shown in Fig. 5.1b. It consists
of images of 7× 7 pixels and 4 classes of displayed patterns. The names of the classes,
stripes_h, stripes_v, x, and o, derive from a previous set shown in Fig. 5.1a.
The difference between the two sets is the number of black pixels in each image. The

balanced set has the same number of 21 black pixels in each image, while the number of
black pixels for the unbalanced set varies between 12 and 28. The same number of black
pixels implies the same number of early input spikes and prevents classification solely
by counting input spikes.
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stripes_h stripes_v

x o

(a) Unbalanced

stripes_h stripes_v

x o

(b) Balanced

Figure 5.1: Plots of the simple patterns set. The unbalanced version is only mentioned
in Chapter 8 and shown here to explain the names of the classes as displayed
above the corresponding image.

MNIST

0 1 4 6 7

Figure 5.2: Example digits of the downscaled MNIST data set inspired by [Schmitt
et al., 2017] used in Section 7.4. The labels corresponding to the displayed
image are shown above the images.

The Modified National Institute of Standards and Technology (MNIST) data set [Le-
Cun et al., 1998] consists of 28×28 pixel images of handwritten digits. The data is split
up in a training set with 60 000 images and a test set with 10 000 images. This data
is often used to test pattern recognition algorithms and the best algorithms get below
0.5% test error rate, see e.g. [Cireşan et al., 2010]. Example images of the full MNIST
data set can be seen in Fig. 2.2.
In this work, reduced versions of MNIST are used.
First, in Section 7.4 networks are trained on a version inspired by [Schmitt et al.,

2017]. The images are averaged to 10 × 10 pixels and binarised, and the subset of the
digits 0, 1, 4, 6, and 7 are used. Examples are shown in Fig. 5.2.
Then, MNIST was reduced further to fit the mapping currently in place in my code,
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i.e. to only have 49 inputs. To this end, the images were averaged and binarised to 9× 9
pixels, and the centre 7 × 7 was selected, discarding a one-pixel border that possesses
only little information. In this first try only the subset of the 0, 1, and 4 digits was used
for training because due to the subsampling (49 instead of 784 pixels) only a fraction of
the information is available. Due to the still little information in the images, only the
subset of the 0, 1, and 4 images was used. Example digits can be seen in Fig. 5.3.

0 1 4

Figure 5.3: Example digits of the most downscaled MNIST data set used in Section 8.2.
The labels corresponding to the displayed image are shown above the images.
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6 Predictability of Spike Times

In this Chapter, the validity of the formulas for the time-to-first-spike (Eqs. (4.24)
and (4.38)) as derived in Chapter 4 is shown by comparison with simulations and emula-
tions. Predicting the correct time-to-first-spike with a differentiable function suggest the
possibility of optimisation of an energy of the spike time like the energy (Section 4.4).
First, the precision of the equal-time (Eq. (4.24)) and double-time formula (Eq. (4.38))

for the ideal LIF neurons with CuBa synapses and with ρ = 1 and ρ = 2 respectively is
demonstrated. Afterwards, it is shown that the weight scale factor (WSF) approximation
(Section 4.3) for CoBa synapses has predictive power for software simulations. In this
process, I determine the WSF for the equal-time and double-time formulas. For the
hardware, the reproducibility of voltages and spike times is investigated first. In the
end, the WSF for the BSS is determined.

I need to choose parameters for the neurons to do simulations. In the derivation, I
used that most of the neuron parameters can be scaled away, and the results are inde-
pendent of those parameters. This independence holds to some degree for the software
simulations. On the hardware, however, the precision of the emulation varies for dif-
ferent parameter settings. To be consistent with the parameters throughout the thesis,
little change between the parameters is preferred. Thus for all experiments, I choose
parameters close to the ones used in the [online Guidebook ] for the BSS system. The
exact neuron parameters in this Chapter can be found in Listing 1.

6.1 Predicting the Time-to-First-Spike for LIF
Neurons in Software Simulations

The equal-time and double-time formulas were derived for CuBa synapses in Chapter 4
and the coincidence of the calculation and simulation is shown for different scenarios
and both ρ := τm/τsyn = 1 and ρ = 2.
In the figures in this Chapter, voltages are shown alongside the spikes for the sim-

ulation and the calculation. The voltages provide plausibility to the calculated spike
time. However, the voltage is not needed for the calculation and is not calculated during
training. The spike times are calculated by the Eqs. (4.24) and (4.38) in Chapter 4.

There is no reset mechanism for the calculated voltage trace. For the calculation of
the voltage, the threshold has no special meaning and the dynamics continue if there is
a spike.

The calculation and simulation are compared for three different scenarios. Using
multiple scenarios helps detecting mistakes, especially when using a factor to fit the
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Figure 6.1: Comparison of simulation and calculation for ρ = 1 and the equal-time
formula
In the top panel traces and output spikes are calculated according to Eqs. (4.12)
and (4.24), the bottom panel shows a software simulation (Chapter 5) for the
same parameters. In each panel, the membrane voltage is shown over time, with
the incoming spikes as arrows at the bottom and the output spikes as arrows on
top. The voltage and spikes are colour coded, so same colours belong together,
while different colours are different neurons (only 10 different colours are used,
neurons after that are shown in black). The threshold voltage Vth is shown in pink
in this Chapter. There is no reset mechanism after a spike in the calculation, thus
the membrane voltage continues after the output spike. On the other hand, in the
software simulation the neuron membrane is reset after a spike and clamped at the
reset voltage during the refractory time τref = 20ms. After τref when the voltage
is released the input from the spike has not subsided completely as a slight raise
of the voltage is visible.
In this scenario, one pre-synaptic neuron (violet) is strong enough to elicit a spike
in the post synaptic neuron (blue). The calculated spike time agrees with the
simulated one for several decimals.

results as the WSF in the other Sections. The different patterns are introduced in the
following.

The first pattern has one strong enough input spike to elicit an outgoing spike,
see Figs. 6.1 and 6.2. With only one spike in the set of causal spikes Ck (Eq. (2.8)), there
is no sum in the equal-time formula Eq. (4.24) and double-time formula Eq. (4.38).

The second pattern consists of multiple excitatory spikes. Each of the spikes is too
weak to elicit an outgoing spike individually, but the combines input produces an output
spike. The results are shown in Fig. 6.3.

The last pattern includes an inhibitory spike. Inhibitory connections are expected in
the networks, therefore it is important that the prediction works in this scenario as well.
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Figure 6.2: Similar to Fig. 6.1 but for ρ = 2 and the double-time formula.
The neuron parameters and input spike times are the same as in Fig. 6.1 except
for τm. The weights are adapted to create a similar setup. The difference in τm
can be seen in the slower decay in the upper panel, compared to Fig. 6.1. The
calculated spike is identical to the simulated.
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(a) ρ = 1, equal-time formula
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(b) ρ = 2, double-time formula

Figure 6.3: Similar to Figs. 6.1 and 6.2, but for different spike inputs.
Comparison of simulation and calculation for different scenarios shows the quality
of the calculation. Here four input neurons (violet, red, green and orange) are
used, each connection has the came excitatory weight in each plot. The calculated
and simulated spike times agree.

Fig. 6.4 shows the results.
The figures in this Chapter show that the prediction works. In fact, the simulated and

calculated spike times agree for many decimals. Because the formulas are differentiable
and the implementation is stable, optimisation of the energy based on the spike times is
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(a) ρ = 1, equal-time formula
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(b) ρ = 2, double-time formula

Figure 6.4: Comparison for mixed inhibitory and excitatory weights.
Setup like Fig. 6.3. The input neurons have different weights, including one in-
hibitory connection (green). Inhibitory connections are expected in the training,
thus the formulas have to predict correctly as well. The spike times from calcula-
tion and simulation agree.

likely (Chapter 7).
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6.2 Finding a Weight Scale Factor for
Conductance-Based Software Simulations

The synapses used on the hardware are conductance-based synapses. Because learning
on the hardware is my goal, my algorithm has to handle a CoBa network. In Chapter 4,
I assumed that the weight scale factor (WSF) allows to approximate the CoBa spike
times with CuBa equations. Here, the approximation is validated and I conclude that
the WSF approximation to CoBa neurons is useful to train a network. The actual
training is shown in Section 7.5.2.

The defining relation of the WSF (Eq. (4.45)) is a ratio of quantities changing for
different simulations. While introducing WSF, it was already mentioned (Section 4.3)
that the WSF should be calculated from simulations similar to those used in training.
This fits the factor better to the situations in which it is used. For given input and output
spikes, the WSF can be calculated by one of Eqs. (4.48), (4.51) and (4.53), depending on
ρ. I used the scenario (Fig. 6.7a) of mixed input spikes for ρ = 1 to determine the WSF
that is used for both ρ = 1 and ρ = 2 in this chapter. The calculated and simulated
spikes in this particular scenario align by definition due to the choice of WSF.

With the stated choice of WSF the calculated and simulated spike times in Figs. 6.5
to 6.7 differ by less than 0.4 ms for both ρ. Depending on the scenario, the perfect WSF
would be larger or smaller. This suggests that the chosen WSF is in the correct range
for many scenarios. Even for the fast spike in Fig. 6.5, the observed variation is less
than 3%.
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Figure 6.5: Prediction for neuron with CoBa synapses and one input spike.
Setup as in Figs. 6.1 and 6.2, but for neurons with CoBa synapses. The WSF
determined here and in the other plots from this Chapter can be found in Table 6.1.
With this WSF, the calculated and simulated spike time agree reasonably. The
accuracy is discussed in the text.

41



6 Predictability of Spike Times

time [ms]

-20

-10

V
m

[m
V
]

0 25 50 75 100
time [ms]

-20

-10

V
m

[m
V
]

(a) ρ = 1

time [ms]

-20

-10

V
m

[m
V
]

0 25 50 75 100
time [ms]

-20

-10

V
m

[m
V
]

(b) ρ = 2

Figure 6.6: As in Fig. 6.3 but for neurons with CoBa synapses. The same WSF as
in Figs. 6.5 and 6.7 is used. The spike times agree reasonably between
calculation and simulation as discussed in the text.
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(b) ρ = 2

Figure 6.7: Setup as in Fig. 6.4 but with CoBa synapses. The inhibitory and exci-
tatory inputs appear in separate terms for CoBa synapses, see Eqs. (4.44)
and (4.45). The calculated and simulated spike times agree reasonably as
discussed in the text.

6.3 Predictability on Hardware

The hardware was described in its general structure in Chapter 3. It was noted that
the analogue nature introduces different kinds of noise, thus an investigation into the
variability of spike times is warranted. In this Section I check the reproducibility of
voltage traces and spike times.
For small networks, the voltage evolution gives a basic understanding of the dynamics.

While the spike times carry a lot of information themselves, the general behaviour is
often easier understood with voltages traces. For the voltages to carry information they
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have to be reproducible, this is verified first.
It is important that the spike times are consistent as the training is jeopardised by

large variations. Thus, the noise of the analogue system (Chapter 3) could produce
problems, but here it is shown that the noise in manageable.

Once the reproducibility of voltages and spikes is established, the WSF for BSS can
be determined analogous to Section 6.2.

As discussed in Chapter 3, there are different sources of noise, for example the trial-
to-trial variability when setting the floating gate (FG) values. To distinguish noise due
to rewritten FGs from other sources like electronic jitter or delays, the two terms ‘job’
and ‘run’ are defined here to have specific meaning. With this I want to make clear the
life time of a set of FG values.

Definition 1. A run is defined as one execution of the PyNN command pynn.run() .
During the run, the response of the network to some input spike train defined beforehand
is recorded. Because the run is executed at once in one piece, the FG values stay the
same during it.

Definition 2. A job is defined as one executed script on the hardware, e.g. an entire
training process. At the start of a job, the FGs are set. Therefore different jobs have
different FG values. Within one job, the FG values are not rewritten. A job usually
includes multiple runs, which all share the same FG values. Between runs, digital settings
like the digital weights can be reconfigured without changing the FG values.

6.3.1 Reproducibility of Voltage Traces

Voltage traces will be most helpful at the beginning of the training right after the
initialisation, or at the end after the training. At those points they provide a benefit to
understanding the dynamics of both the training and the neurons itself.
In Fig. 6.8a a single recorded voltage trace is shown. There is variation visible that

is due to noise in the analogue circuit. For comparison, the input is repeated 20 times
within one run. All traces are shown overlain in Fig. 6.8b. Due to the noise the line
appears thick. Averaging as seen in Fig. 6.8c leads to a clear line. Especially the dynamic
after the early inhibitory input is displayed well.
For all plots of voltages the traces are the average over 20 repetitions. However, all

recorded spikes are displayed to see outliers and get an estimate of spike time distribu-
tion. The distribution is barely visible in Fig. 6.8, this is discussed in more detail in the
next Section.
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(c) The average is shown.

Figure 6.8: Voltage traces on the BSS.
Due to electric noise there are variations when recording a voltage trace on hard-
ware. Here, 20 repetitions of the same setup are recorded after each other in one
run. The traces are shown in different ways but with the same colour coding as
in Fig. 6.1. The noise is reduced by averaging and the dynamics are seen crisper.
In all coming plots the averaged traces are shown. There is no averaging for the
output spikes, all recorded spikes are shown. Thus they can be spread out, and
outliers might be visible.

6.3.2 Trial-to-Trial Variation of Spike Times

The classification as well as the training in my model is based on spike times. For a
classification to be reproducible and the training to work the spike times on hardware
must not vary too much. The variation of the spike times is examined in this Subsection.
In Fig. 6.8 very little variation in the outgoing spikes was visible. This is one of two

edge cases, also shown with statistics for multiple jobs in Fig. 6.9. Variations in the FGs
influence, among others, the difference Vth − EL that has to be crossed before a spike
happens. A larger difference increases the spike time for the same weights, because it
takes longer to increase the voltage to the larger difference.
Once the FGs are set, noise, delays and random variations cause only small variations

of the spike time in this case. The slope of the trace at the crossing is large and
relatively stable for variations. Because the slope decreases over time, variations in the
input spikes lead to larger variations in the output spike for later spike times. This
explains the positive correlation between mean spike time µt and standard deviation of
the times σt seen in Fig. 6.9b.
The other edge case happens when the crossing of the threshold is less steep at the

possible spike times. For the following argument I assume that FG variations mainly
change the difference Vth − EL between the threshold and leak voltage. With FGs
affecting also other values than the difference Vth − EL the argument stays the same.
The neuron needs to get over this voltage difference before a spike happens. In Fig. 6.10,
such a theoretical scenario and three qualitatively different thresholds are shown.
First, for the solid green line there is a large slope at the crossing. The spike happens

right after a strong input spike. On the hardware, little variation is expected for the
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runs in a job with these FG values.
The dotted brown threshold is similar. The crossing happens right after a strong input

spike, and the crossing is steep. The variation should be small in this case, too.
The middle case of the dashed grey threshold is different. Relative delays of spikes or

noise have a larger influence on the spike time as the slope at the crossing is very flat.
Larger variation is expected for the runs in a job with this set of FG values.

Combining these three cases, with increasing average spike time an increase of the
variation of the spike times for the runs in a job is followed by a decrease. Fig. 6.11d
shows data from the hardware of such a setting.

For the samples shown in Section 6.2, the largest deviation of the CoBa calculation
from the simulation is slightly smaller than the interquartile range (IQR) of the mean
spike times µt for the best-case scenario on hardware (Fig. 6.9b).
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(a) Voltage of an example job. Spikes come in
at the start that are strong enough to im-
mediately elicit a spike. The recorded out-
put spikes in this job are not visibly spread
out.
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(b) The standard deviation σ of the spike
times within one job is shown over the
mean µ of those spike times. Some out-
liers exist, but a small positive correla-
tion between µ and σ is visible. The me-
dian of the mean spike times µt ± IQR is
7.59ms+0.31ms

−0.24ms showing the positive corre-
lation.

Figure 6.9: Example trace and spike time distribution for a setup that allows direct
spiking.
The data comes from 80 jobs with 100 runs each. In 10 jobs the number of recorded
spikes was only between 28 and 38, but the average-variance combination of those
are not outliers. To repeat my definition, within a job all runs share the same FG
values. Between the jobs, the FGs get rewritten.
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Figure 6.10: Generic voltage trace to understand the dynamics when an output spike is
not fired directly.
For this simplified explanation, I assume the FGs predominantly affect the dif-
ference between threshold and leak voltage. Due to variance in the FG values,
the threshold can be in different parts of the ideal voltage trace (violet). Three
possible thresholds are shown. The solid yellow and dotted brown threshold are
crossed right after a strong excitatory input spike. The slope at those crossings is
large, so a small jitter or input delay leads to small variation in the output spike
time. For the dashed grey line however, a small variation will lead to a larger
variation in the output spike time. Therefore, the correlation between the mean
and standard deviation of the spike time is not expected to be only positive for a
setup like this.
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(a) Output spikes happen early, directly af-
ter an incoming spike. Little variation of
output spike time is visible.
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(b) Output spikes happen directly after last
input spike. Little variation of the output
spikes can be seen.
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(c) Output spikes happen between those of a
and b. The output spikes are visibly spread
out.
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(d) The standard deviation σ is shown over
the mean µ of the output spike times.
While there is a positive correlation at
first, σ reduces again as seen in a to c.
This is explained in Fig. 6.10. The me-
dian of the mean spike times µt ± IQR is
24.9ms+2.1ms

−0.8ms.

Figure 6.11: Analysis of spike time variation as in Fig. 6.9 but for a setup as in Fig. 6.10.
Three example traces are shown to verify the theoretical consideration in Fig. 6.10.
The data comes from 71 jobs with each 100 runs.
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6.3.3 Finding a Weight Scale Factor for Neurons on Hardware

The procedure here is equivalent to the one in Section 6.2 but for emulations instead of
simulations. TheWSF is calculated from the recorded output spike via one of Eqs. (4.48),
(4.51) and (4.53) depending on ρ.
The parameters are the same as before, see Listing 1. An additional parameter that is

set on the hardware is gmax (Chapter 3). This parameter scales the weights, i.e. increasing
gmax increases the weights. As the WSF is determined for a fixed set of parameters, gmax

has to be chosen beforehand.
The network I want to train on hardware has 49 inputs, see Chapter 5, and approxi-

mately 20 of them spike at a time. With 16 available weights, the value of gmax has to
be set carefully to not limit the dynamic range of the neurons. gmax = 400 was chosen
heuristically to allow the neurons to use information from many sources, and not spike
based on only one input spike.
In Figs. 6.12 and 6.13 the comparison of calculation and emulation are shown for

ρ = 1 with the equal-time formula and ρ = 2 with the double-time formula. Running
the scenarios again with rewritten FGs results in comparable predictions.
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Figure 6.12: Comparison of calculation and emulation on hardware for ρ = 1 and gmax =
400.
Figure setup as in Fig. 6.1. For the used gmax more spikes are necessary to elicit
an output spike. The first inputs (green) come with a negative weight. The
average of 20 runs is shown, as discussed in Fig. 6.8. Rewriting the FGs leads to
results where the spike times agree similarly.

It is of course possible to redo the simulations for other parameters, and exemplary I
chose a second value for gmax = 1023, the maximal setting. This can be a suitable choice
for a smaller network that uses less spikes, for example. Figs. 6.14 and 6.15 show the
calculation and prediction for this setting.
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Figure 6.13: Comparison as in Fig. 6.12 but for ρ = 2.
The longer τm can be seen from the slower decay in the calculated voltage trace.

Table 6.1 shows the WSFs that were found in this Chapter. More than those WSFs
were used during the thesis. Thus, in experiments in Chapters 7 and 8 other WSFs are
used, see Appendices A.2 and A.3 for the exact parameters in each case.

For simulations (Section 6.2), the WSF could be chosen equal while on hardware, the
WSFs were chosen different. The WSF was introduced as a heuristic approximation,
and as long as the simulations work, this is no cause for concern.

I have shown the accuracy of the equal-time and double-time formula in this Chapter.
Furthermore, it was shown that introducing the WSF is a suitable method to approx-
imate the time-to-first-spike of CoBa neurons. Choosing the WSF in a correct range
allows for prediction of time-to-first-spike on hardware.

Simulated CoBa HW CoBa

ρ = 1 71.1
gmax = 400 0.00281

gmax = 1023 0.0125

ρ = 2 71.1
gmax = 400 0.00197

gmax = 1023 0.00836

Table 6.1: Table of WSF determined in this Chapter.
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Figure 6.14: Determining the WSF for ρ = 1 and gmax = 1023, the maximal setting.
Less spikes are needed to elicit the spike compared to Fig. 6.12. The green input
is inhibitory again.
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Figure 6.15: As Fig. 6.14 but for ρ = 2.
The longer τm leads to a slower decay of the voltage.
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7 Simulations of Spiking Networks

In this Chapter, I present results of the training of spiking networks of LIF neurons with
the equal-time (Eq. (4.24)) and double-time formula (Eq. (4.38)) derived in Section 4.2.
The predictive power of the formulas was shown in the previous chapter (Section 6.1),
the stated goal is to train network of LIF neurons. This training is investigated here,
with a focus on initialisation stability of the training.
The networks are trained to classify patterns (Section 5.2). These patterns consist of

black and white pixels. The black and white pixels are translated to early and late input
spikes respectively. Given those inputs, the networks learn to clasify the inputs.

Initialisation stability is tested by varying the random initialisation of weights.
Weights are randomly sampled from a truncated Gaussian with mean and standard
deviation (Chapter 5).

The random number generator (RNG) is initialised by a seed. Changing the seed
leads to different random weights. By varying the seed I can test dependence on the
initialisation. Unless otherwise specified, results in this Chapter are presented as sweeps
over multiple seeds. The evolution of energy and accuracy is then displayed as 0, 25,
50, 75 and 100 percentiles of the results of the individual trainings. For each sweep, the
parameter file for one seed is shown in Appendix A.2.

First, I explain the learning of the network step by step. This is helpful to understand
all training processes throughout this thesis.

Furthermore, an understanding of the setup is gained by changing individual param-
eters and analysing the results. The experiments are done for both equal-time and
double-time formulas.

The two formulas, as well as the formula from [Mostafa, 2017] in the present frame-
work, are then compared while varying the membrane time constant τm. A short ex-
cursion shows the general capability of the framework to classify the MNIST dataset
(Section 5.2).

The balanced pattern data set used in the other section is discussed in Section 5.2 as
well. In Section 7.1, it is shown that a shallow network is able to classify this data set.
Thus, it is strictly speaking not necessary to classify this data set in a deep layer. This
is still done, as evidence is obtained for the capability of the framework to train deep
networks of LIF neurons.

In the end I advance from the ideal CuBa setup with floating point precision weights
towards networks more similar to the hardware.
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7.1 Learning in a Spiking Network
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Figure 7.1: Evolution of energy of the linear spike times (top panel, logarithmic scale)
and accuracy (lower panel) during training.
A shallow network with ρ = 2 is trained via the double-time formula on balanced
patterns (Chapter 5). Both accuracy and energy are averaged over noised samples.
100% accuracy is achieved after around 15 steps while the decrease of the energy
slows down after 18 steps. The training converges in a stable manner, i.e. neither a
decrease in accuracy nor an increase in energy is seen. Both fast advance to a high
accuracy, low energy state and stability of learning are desired. The non-monotonic
changes in both the energy and accuracy stem from of the learning rate η being
finite. The membrane voltages during the training are plotted in Figs. 7.2a, 7.2b
and 7.3. For the parameters see Listing 3.

The training process is explained step by step to show how the network dynamics
change throughout the learning. The step by step explanation is done for an example
network with ρ := τm/τsyn = 2 (Section 4.2) that is trained via the double-time formula.
For simplicity the network is shallow, i.e. there is no hidden layer, to make the training
as transparent as possible.

The training process is shown in Fig. 7.1. The training succeeds, as can be seen from
the high accuracy and low energy at the end. The network learns in a few steps and
converges in a stable manner. Convergence stability means that the accuracy stays high
and the energy low once classification is correct.

The large decrease in the energy happens only once the accuracy is at 100%. As
long as one class is misclassified or has a low separation, the energy for that class is on
the order of 1. Even when the other classes have much smaller energy, the averaging
procedure does not change the order of magnitude due to the exponential definition of
the energy (Section 4.4.2). Once all classes are suitably separated, the energy reflects
the quality of the classification.
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(a) Before training
The weights are initialised ran-
domly, see Section 5.1. The ran-
dom weights lead to only slightly
different voltage traces for the dif-
ferent neurons. No output spikes
happen before the second input
spikes.
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(b) After training
By my definition that the first
spiking neuron determines the
class of the input, all inputs are
classified correctly. The sep-
aration of the spikes is clear,
more than one synaptic time con-
stant τsyn = 10ms. The clas-
sifying spike is elicited approxi-
mately one τsyn after the first in-
put spikes, well before the second
input spikes.

Figure 7.2: Voltage traces for different inputs in a shallow network, see Fig. 7.1.
Each panel has incoming spikes as arrows from below, outgoing spikes as arrows
from above added to the voltage traces in a colour coded fashion, cf. Fig. 6.1. Each
row shows the dynamics of the network for an input of the class that is named in
the panel (stripes_h, stripes_v, x, o). The colour of the class corresponds to the
neuron coding for that class. In later plots for larger networks, a hidden layer will
be shown as another column.
Listing 3 The transition of the voltage traces from (a) to (b) as seen in the training
Fig. 7.1 can be followed in Fig. 7.3.

Instead of the mean energy, using the median energy of the noisy samples could
display the process better. However, the median energy can be very low even if one
class is completely misclassified. Thus, the mean energy over different samples is used
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to display the training evolution.
The voltage trace at the end of training is seen in Fig. 7.2b. It shows correct and fast

classification. The separation of the input spikes is approximately τsyn and each neuron
spikes exactly once.
At initialisation there is no correct classification (Fig. 7.2a). The spikes happen late,

in the wrong order and at similar times. The voltage traces are similar to each other as
well. The process from the initialisation to the correct classification is displayed step by
step in Fig. 7.3.
During the learning, for each input class the membrane of the correct neuron is lifted

up, and at some point the time of spike jumps forward. Compare those jumps with
the energy evolution. The large decrease in the energy happens when the last spike has
jumped and has a good separation. Once that has happened, the neuron dynamics are
very similar to the final traces in Fig. 7.2b. This is also seen in the evolution of the
weights.
The weight evolution is displayed in Fig. 7.4 for individual weights. The weights reach

an equilibrium state and change little at the end of training. At the beginning there is
much change in the weights.
Both at the beginning and in the end there are many more excitatory than inhibitory

weights. There also are weights changing from inhibitory to excitatory state, and vice
versa.
The weight distribution does not have a clear trend This is the criterion I used for

initialising the networks. I checked whether the weights changed the order of magnitude
during training. If a clear trend was visible, I adapted the mean or standard deviation.
In general, the framework is stable towards initialisation and training succeeds without
fine tuning the initialisation.
In this Section, the learning process in a spiking network was explained.
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(a) Step 8: while the spike times are
similar to those before training,
the voltage traces have changed.
Especially for the x and o pat-
terns, the correct neuron has the
highest voltage already.
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(b) Step 10: the spike times are still
similar, but now for all cases the
correct neuron has the highest
potential between the two input
spike times. This shows that the
correct weights are increased.

-20

-10

V
m

[m
V
]

stripes_h

-20

-10

V
m

[m
V
]

stripes_v

-20

-10

V
m

[m
V
]

x

0 20 40
time [ms]

-20

-10

V
m

[m
V
]

o

(c) Step 15: two neurons spike early
with a good separation. The other
two neurons are close to spiking
earlier.
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(d) Step 18: all four inputs are clas-
sified correctly, and the output
spikes are early and with good sep-
aration. These traces are close
to those of the final result in
Fig. 7.2b.

Figure 7.3: Changes of the voltage traces during the training at different steps during
the training, from Fig. 7.2a to Fig. 7.2b. Listing 3
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Figure 7.4: Weight evolution during the training, Fig. 7.1.
Individual weights are plotted, starting from the random initial state. The weights
approach equilibrium values. There are inhibitory and excitatory weights. Because
the network is shallow there is only one panel for the weights from input to output.
The lines are colour coded for the neuron their synapses lead to, compare Figs. 7.2a,
7.2b and 7.3.
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7.2 Variations in the Learning Setting

It is shown that the training success is independent of the initialisation. I show the
benefit of training networks based on the energy of linear spike times as opposed to the
energy of exponential spike times as discussed in Section 4.4. The effects of variations
in the coding of the input spikes are investigated as well.

7.2.1 Dependence on Initialisation
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(a) ρ = 1, equal-time formula
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(b) ρ = 2, double-time formula

Figure 7.5: A network with 10 hidden units was trained for 100 different initialisations.
The networks were trained on the pattern data (Section 5.2). The random weights
are determined by a seed given in the parameter file. The 0, 25, 50, 75, and
100 percentiles are shown for both the energy and accuracy for both cases of ρ.
One example of the voltage traces for ρ = 2 can be seen in Fig. 7.6, and the
corresponding parameter file is Listing 7.

A dependence of the training success on the initialisation can be ruled out by varying
said initialisation. A general training algorithm should succeed independent from initial
weights.
Varying the seed of the RNG results in different random weights. A sweep of 100

seeds is shown in Fig. 7.5. The trained network is a deep network with 49 inputs, 10
hidden and 4 output neurons (49-10-4). It is trained to classify the patterns introduced
in Section 5.2. Both the equal-time and double-time algorithm learn fast and stable for
different initialisations.
An example voltage traces for one seed of the double-time sweep can be seen in Fig. 7.6.

The classification is correct and exhibits good separation. This is the first example of
classification with a deep network in this thesis.

57



7 Simulations of Spiking Networks

-20

-10

V
m

[m
V
]

V
m

[m
V
]

stripes_h

-20

-10

V
m

[m
V
]

V
m

[m
V
]

stripes_v

-20

-10

V
m

[m
V
]

V
m

[m
V
]

x

0 25 50 75 100
time [ms]

-20

-10

V
m

[m
V
]

0 25 50 75 100
time [ms]

V
m

[m
V
]

o

Figure 7.6: The membrane dynamics for an example of Fig. 7.5.
The parameters can be found in Listing 7, but particularly ρ = 2. The plot setup
is like Fig. 7.2 but for a two layer network. In the left column, the dynamics of
the hidden layer is shown. In the right column, the label layer, the correct neurons
spike first as can be seen from the colour scheme.

7.2.2 Comparison of Driving Weight Mechanisms

Apart from the spike time formulas I made other changes to the algorithm, especially
the driving weights mechanism (Section 4.5) and the energy (Section 4.4).
In Section 4.5 it was argued why the weight sum cost from [Mostafa, 2017] can not

be used for finite τm and has to be replaced.
The weight sum cost increases the weights of one neuron when its weights become too

small for a spike. The direct adaption is to increase the weights of neurons that do not
spike. I call this the old drive weight mechanism.
In the experiments I noticed that this mechanism can be improved. Increasing all

weights in one layer when a percentage of neurons does not spike shows enhanced sta-
bility, both convergence and initialisation stability. This mechanism is used throughout
the thesis to drive weights.
With the old mechanism, in many networks the accuracy collapsed after it had already

been trained. That is due to the other terms in the total energy. As explained in
Section 4.4, only the energy term depending on the spike times (Eq. (4.62)) optimises
the accuracy. Other mechanisms like the drive weights mechanism or the weight sum
cost can reduce the accuracy with lasting effects.
The behaviour of collapsing accuracies produced a large dependence on initials and

hyperparameters. This in turn was a complication for doing meaningful sweeps of pa-
rameters. The instability is solved in my framework and anecdotal evidence for the
problem is shown in Fig. 7.7.

58



7.2 Variations in the Learning Setting

0 100 200

10−3

100

en
er
gy

[1
]

0 100 200
training steps [1]

0

1

ac
cu
ra
cy

[1
]

(a) Starting from the same initials the new
mechanism leads to 100% accuracy and low
energy.
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(b) The combination of the gradient function
and energy from [Mostafa, 2017] and the
old drive weight mechanism does not learn
in a stable way. Both right before the sharp
rise and before the drop of the accuracy
weights are increased with the mechanism.

Figure 7.7: Direct comparison of the two drive weight methods, linear and exponential
energy and different gradient functions for an otherwise identical setup.
Both the energy for linear (blue) and exponential (orange) spike times is given.
The setup of the left plot is given by Listing 4, and the difference between the two
is Listing 5.

7.2.3 Energy of Exponential and Linear Time

The energy of exponential spike times (Eq. (4.60)) shows problematic behaviour (Sec-
tion 4.4.2). Optimising that energy results in shifting spikes to later times. For finite
τm spikes can only happen close to input spikes (Section 4.2.1). Thus shifting spikes to
later times is not always possible. The energy of linear spike times (Eq. (4.62)) does not
have this problem of shifting spikes back in time.
This convergence instability of the exponential energy can be seen in Fig. 7.8. While

the median of the seeds is trained well, overall there is a lack of stability compared to
Fig. 7.5. The learning is faster for linear energy as well (data not shown). The situation
is identical for ρ = 1 and the equal-time formula (not shown).
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Figure 7.8: Direct comparison with Fig. 7.5b for a training with the energy of exponen-
tial spike times.
Apart from the energy, the setup is identical and again training progress for 100
different seeds is shown. The majority of the 100 seeds learn, but less stable and
reliant. Both the energy for linear (blue) and exponential (orange) spike times are
shown. An example parameter is Listing 8.

7.2.4 Time Separation of the Input

In this Section I discuss the effects of changing the separation between the early and
late spikes.

There are two extreme cases. In the limit of tlate−tearly
τsyn

→ 0 there is no distinction
between late and early spikes. Thus no classification is possible. For tlate−tearly

τsyn
→∞, i.e.

no late spikes, only information from the early spikes is available for the classification.
This does not prevent classification, as it often takes place before the second input spike
(Figs. 7.2b and 7.6).

Experiments show that the learning is more stable when there is a second input
spike shortly after the first (Figs. 7.9 and 7.10). The pattern networks are trained and
tested with noisy samples (Chapter 5), with a truncated spread of 1 ms for each spike.
Therefore, if the non-noisy spikes have a separation of 6.5 ms, the separation of the
actual spikes is between 4.5 ms and 8.5 ms.

In the figures only the accuracy is displayed because the energy has no additional
relevance as I explain now. With finite τm, a spike can happen only close after an
input spike (Section 4.4.2). For large input separation, the separation of the output
spikes is thus either small when the output spikes happen after the same input, or the
separation is large if different inputs elicit the output spikes, compare Fig. 7.12. Due
to its exponential definition (Eq. (4.62)) the energy is thus either on the order of 1 or
several orders of magnitude smaller. The range in between is not accessible.
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Example voltages for ρ = 2 and the double-time formula for small and large separation
are shown in Figs. 7.11 and 7.12. The difference in the input separation is visible, also
compare to the usual separation in Fig. 7.6. The classifications are correct.
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Figure 7.9: Comparison of different separation of input spikes.
The training process for different separations is shown for 10 seeds and the double-
time algorithm. From left to right, the separation in terms of τsyn is approximately
0.65, 1.5 and 9.0. The red vertical lines are the times the drive weights algorithm
was active. The network learns most reliably for the separation slightly larger
than τsyn. For very small separations the learning becomes unstable. The smallest
separation is chosen as the first one where instabilities become visible, here for
0.65. An example parameter file can be found in Listing 9.
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Figure 7.10: For the equal-time algorithm and ρ = 1 the training is shown as in Fig. 7.9.
The separations in terms of τsyn are approximately 0.85, 1.5 and 9.0. For small
separation the learning is unstable as for ρ = 2. Here the training is also unstable
for large separation. The smallest separation is chosen as the first one where
instabilities become visible, here for 0.85.
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Figure 7.11: Response of the network for a separation of the input spikes of 6.5 ms.
With the double-time algorithm and ρ = 2 the network is able to correctly classify
the inputs. The classification is fast and the separation of the output spikes is
large. The parameter file of the setup is Listing 9.
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Figure 7.12: For a large separation of the input spikes close to 90 ms the voltage traces
are shown as in Fig. 7.11.
At the time the late spikes of the input are received the membrane voltage has
already decayed close to the leak voltage. Still, the network classifies the inputs
correctly. The parameter file is Listing 10.
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Figure 7.13: Fitness of different formulas for varying τm.
The average energy after training 1000 steps with the gradient function is dis-
played over τm in a log-log plot. Each data point is the average over the last 5
saved steps of the median energy for a sweep of 10 seeds. For the median energy
of a sweep look at e.g. Fig. 7.5. A low energy implies high accuracy and good
separation of the spikes. High energy implies that training was not fully achieved
or collapsed again. τsyn = 10ms, i.e. τm = 101ms corresponds to ρ = 1. ρ = 1
and ρ = 2 are marked by vertical lines, ρ = ∞ is approached for large τm. An
example parameter file is found in Listing 6.
The double-time formula learns correctly around its ideal case ρ ≈ 2. The equal-
time and Mostafa formula learn successfully throughout the whole range of τm.
At each of the three regarded values of ρ, the formula derived for that ratio has
among the best result (orange at the left vertical line, green at the right verticle
line, and blue towards the far right).

7.3 Equal-Time, Double-Time and Mostafa Formula
for Varying τm

The three formulas, equal-time, double-time, and Mostafa, are derived for one exact
ratio ρ := τm/τsyn (Chapters 2 and 4). An interesting question is what happens when
the ratio in a simulation is changed. The expectation is that each formula works at least
in a range around its ideal ratio. The result is seen in Fig. 7.13.
The double-time formula shows the expected behaviour. However, the equal-time and

Mostafa formula in my framework show training success at all τm. Around every ideal
case, ρ = 1, ρ = 2, and ρ = ∞, the respective gradient formula has among the optimal
success.
In case of correct classification and a separation of 1 τsyn between the output spikes,

the energy is approximately 6 · 10−5. An energy around this values thus shows sufficient
classification. Energies below this order of magnitude do not point to better classification
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per se.

7.4 Classifying Reduced MNIST in a Deep Network

I trained my algorithms on the reduced MNIST data set (Section 5.2). The aim of the
thesis is to train spiking networks with time-to-first-spike coding on analogue hardware
(Chapter 8). Thus, this part of the thesis is proof-of-principle and not aimed towards
parameter tuning and perfect classification rates.
Furthermore, as a simulator I used NEST, as opposed to an event-driven simulator as

in [Mostafa, 2017]. An event driven simulator calculates the spike times directly, NEST
simulates the membrane voltage at every step, which is slower. Simulations took a long
time, and therefore no parameter sweeps were done. It is very likely that the results can
be improved significantly by finding better parameters.
I present results for a reduced MNIST data set inspired by [Schmitt et al., 2017] and

described in Chapter 5. The network has a hidden layer with 15 neurons. Training was
done for the double-time formula (Fig. 7.14) and the equal-time formula (Fig. 7.16a.
Learning improves the accuracy and after training it is at 90% for the double-time
formula.
The confusion matrix after training (Fig. 7.15) indicates the individual accuracy of

the classes. For this training, the diagonal is prominent, suggesting good classification.
This is furthered when looking at example voltage traces, Fig. 7.17.
The voltage plot is already crowded, the relevant information is extracted by only

showing the spikes in a raster plot. A comparison of spike times before and after training
is Fig. 7.18. While the spikes happen close to each other prior to training, the correct
neurons spike first after training. There is a clear separation, furthermore some neurons
spike twice.
The experiments in this Section show applicability of my framework for the task of

classifying MNIST digits. In [Schmitt et al., 2017], the accuracy was 97% for the pure
software model and 95+1

−2 % for the model on hardware at the end of the in-the-loop
training.
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Figure 7.14: Training results for reduced MNIST in a deep network.
Training results for a 100-15-5 network learning with the double-time algorithm is
shown for 4 seeds like in Fig. 7.5. Because the MNIST data is separated in training
and test data, accuracy for both test data (blue) and training data (orange) is
displayed. The energy is calculated from the test data.
At the end the accuracy for both training and test data is at 90%. An example
parameter file is given in Listing 16.
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Figure 7.15: Confusion matrix of the double-time network for reduced MNIST.
Classification is displayed for Listing 16. A confusion matrix is a breakdown of the
accuracy. The matrix displays the classification results (columns) of the inputs
(rows) in a colour map. A perfect classification would show as an identity matrix.
Example images of the inputs are shown in front of the rows. This plot allows
finding potential systematics in misclassification. The diagonal is prominent,
which corresponds to good classification (between 0.88 and 1.00). There is no
systematic in the off-diagonal elements.
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(a) Training process for 4 seeds is shown.
At the end both accuracies are at 70%.
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(b) The confusion matrix has a less prominent
diagonal compared to the result for ρ = 2.
The correct classifications are between 0.49
and 0.82.

Figure 7.16: Results for the equal-time algorithm and ρ = 1 like Figs. 7.14 and 7.15.
Example parameters can be found in Listing 17.
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Figure 7.17: Voltages of the double-time network for reduced MNIST after training.
Plot like Fig. 7.2 for Listing 16 that was also shown in Fig. 7.15. The classifications
for the shown examples are all correct and the separation is large.
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(a) Spike times of the randomly initialised
network. All neurons spike right after
the late input spikes.
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(b) Spike times after training. The cor-
rect output neuron spikes first in the
shown examples. Some neurons spike
twice, seen best when it is the high-
lighted neuron.

Figure 7.18: Raster plot of the double-time network for reduced MNIST.
For examples from the input classes the spike times of both layers are shown in
a raster plot before and after training. The hidden layer is shown as orange dots,
the label layer as blue dots. The neuron corresponding to the correct class is
highlighted by the grey bar. Its spikes are shown as black dots. For comparison,
the times of the input spikes are 1.5ms for early spikes (black pixels of the input
patterns; very left of each plot) and 20ms for late spikes (white pixels of the input
patterns; vertical grey line).
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7.5 Integrating Features of the Hardware into the
Learning

The simulations up to now are done for ideal neurons with CuBa synapses and float-
ing precision weights. Before studying training on the hardware, I investigate training
networks with features of the hardware.

I begin by discretising weights and show training success for as few as 7 available
weight values. Next, using CoBa synapses with an appropriate WSF instead of CuBa
synapses allows networks to learn nonetheless. At the end, networks of neurons with
fixed-pattern noise are trained to success.

7.5.1 Training Neurons with Limited Weight Precision

On the hardware the weights are set digitally with 4 bit values allowing for 16 different
weights. My framework allows to round the weights to a specified precision before writing
them to the network (Section 5.1).

In Fig. 7.19 a sweep is shown where the precision was set to 0.1 pA. The learning
happens fast and stable. For the different seeds, the cardinality (the number of used
weights, cf. Chapter 5) of the weights between input and hidden layer was 2 or 3. The
cardinality of the weights between hidden and label layer was between 3 and 7.

The discrete nature of the weights can be seen in the energy where plateaus are
visible. The weight evolution of one example seed (Fig. 7.20) shows the reduced number
of available weights as well. For ρ = 1 and the equal-time algorithm the results are
similar.
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Figure 7.19: Training of a network with digital weights for ρ = 2 and 10 different seeds.
The weights are rounded to a precision of 0.1 pA. Between the first layers the
highest weight is 0.3 pA, 3 different weights are used. The numbers are 0.7 pA
and 7 between the other layers. The learning proceeds fast and stable. The faint
red lines are the times the drive weights mechanism is used. The transparency is
scaled with the number of seeds. An example parameter is in Listing 11.
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(a) float precision weights
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Figure 7.20: The weight evolution (see Fig. 7.4) of both the float precision and rounded
weights is shown for one seed, Listing 11.
The float precision is kept during training. Before updating the synapses, the
weights are rounded. The precision of the weights in this case is 0.1 pA. The
synapses to the hidden layer have 4 different weights (absolute value). The
synapses to the label layer have 6 used weights.
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7.5.2 Training Neurons with Conductance-Based Synapses

The formula for the spike time for neurons with CuBa synapses can be derived be-
cause there is a closed-from solution for the membrane voltage. For neurons with CoBa
synapses that are used on the hardware there is no closed-from expression. In the
derivation (Chapter 4) I introduced an approximation using the CuBa formulas and the
weight scale factor (WSF). I showed the quality of the approximation for spike time in
Chapter 6. In this Section I show that the training succeeds as well.

For ρ = 2 and the double-time formula the training process (Fig. 7.21) is very similar
to CuBa synapses. The equal-time formula learns slower but just as stable. Towards the
end of training there is little change, pointing to an equilibrium state. This is enforced
in the weight evolution (Fig. 7.22), where little change is visible at the end. From these
plots it can be concluded that networks with CoBa synapses can be trained.
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Figure 7.21: Training results for neurons with CoBa synapses.
The results shown are for both algorithms and 10 seeds each. Compared to
Fig. 7.5, the double-time algorithm learns just as good in the CoBa case. The
equal-time algorithm learns slower with CoBa synapses, but reaches a similar
result. Example parameter are in Listings 12 and 13.
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Figure 7.22: Weight evolution for learning with CoBa synapses and ρ = 2, see Listing 12.
Only the evolution of the statistics of the weights is shown to provide a clearer
plot. In both panels the 0, 25, 50, 75, and 100 percentiles of the weights are shown.
The learning is stable and the weights approach an equilibrium. The weights here
have a different unit, sievert instead of ampere, and are much smaller numerically.

7.5.3 Training Neurons with Fixed-Pattern Noise

The neuron parameters on the hardware are set with analogue values (Chapter 3). These
values are not set to an exact value but in a range with some random deviation, creat-
ing so called fixed-pattern noise. The formulas, however, are derived for exact neuron
parameters. Here I show the tolerance to fixed-pattern noise.
The equal-time formula has a higher tolerance than the double-time formula

(Fig. 7.23). The noise is applied neuron-wise to the threshold Vth, leak voltage EL

and the two time constants τm and τsyn, and leads to inter-neuron differences of those
variables (see Fig. 7.24). For the equal-time formula, 20% noise is compensated and the
training succeeds. Example voltage traces can be seen in Fig. 7.24. The double-time for-
mula is less capable to train the noisy neurons. Because the time constants are affected
as well, this was suspected from Fig. 7.13.
For ρ = 2 and the double-time formula noise below 15% is not a problem, and the

training succeeds. However, I chose the plot for 15% noise. At least 7 of the 10 seeds
successfully train, the faint line is only the 0 percentile. This just means that at some
noise level some combinations will be too far away from the ideal values to allow train-
ing, while other combinations still work. This is also the expectation for the hardware
(Chapter 8). Some jobs will work and some will not, because sometimes the FG values
will be too far off.
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(a) equal-time with 20% noise
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Figure 7.23: Training networks with fixed-pattern noise.
10 seeds are used for both formulas. The noise affects the time constants and
potentials of the neurons, cf. Chapter 5 and Listings 14 and 15. For both algo-
rithms the training is slower and less stable. The double-time formula can train
with 10% and less noise.
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Figure 7.24: Effect of noise on membrane voltages.
Voltage evolution like in Fig. 7.2 for equal-time with 20% noise, see Listing 14, is
shown. The noise affects the time constants, leakage and threshold voltage. The
inter-neuron differences of the leakage is seen in the asymptotic voltages of the
hidden neurons for example. The variations in the threshold can be seen in the
difference between the potentials of the yellow and green neurons at the time of
spikes.
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In Sections 6.3.2 and 6.3.3, I showed predictability of spike times on hardware. In
Chapter 7, I showed I can train spiking networks of leaky integrate-and-fire neurons. I
also incorporated specifics of the hardware like fixed-pattern noise, CoBa synapses and
digital weights into training (Section 7.5). In this Chapter, I train networks on hardware.
All results in this Chapter are trained exclusively on hardware, i.e. starting from with a
random weights initialisation.
Writing floating gates on hardware makes each job different (see Chapter 3 and Defi-

nitions 1 and 2). A number of jobs did not train to 100% accuracy. Due to fixed-pattern
noise on neuron parameters this is expected as explained in Section 7.5.3, but needs to
be investigated further.

The Weight Scale Factor, used wafer rack, and other settings can be found in Ap-
pendix A.3. Note that WSFs presented in Chapter 6 are newer values, with more data
backing them. Experiments presented in this Chapter were executed before the detailed
measurements in Section 6.3.3 were conducted and therefore use older WSFs. The values
are detailed in Appendix A.3.

Except for Section 8.1.1, all data is from deep networks with one hidden layer. The
deep networks have 20 hidden neurons and a network layout 49-20-4, and 49-20-3 for
Section 8.2. For the latter, a visualisation of the mapping with the help of [Boell , 2018]
is shown in Fig. 8.1.

Figure 8.1: Visualisation of the mapping of the network
in Section 8.2 according to [Boell , 2018]. The
network is of shape 49-20-3 with the 20 hidden
neurons on the HICANN shown in dark blue
(HICANN 271). The label layer is the top-
most area, HICANN 239. The inputs are dis-
tributed over 4 HICANNs (322, 323, 299, 301),
indicated by the red triangles. The routes (see
Fig. 3.2b) between the HICANNs are shown as
coloured lines.
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The networks in this Chapter were optimised based on the energy of exponential spike
times (Section 7.2.3). Accordingly, that energy is shown in the training plots.
Improvement by optimising the linear energy is expected and planned. General suit-

ability of the linear energy was proven (data not shown).
In addition to the equal-time and double-time formulas, I used the Mostafa formula

in my framework, i.e. with the drive weights mechanism from Section 4.5. Section 7.3
showed that the Mostafa formula worked well for finite τm as well. To provide trans-
parency, I provide a tuple of (ρ, formula, parameter File) for every figure in this Chapter.
A quantitative analysis of the effectiveness of the different formulas should be done, but
wasn’t due to time constraints.

8.1 Training Patterns on Hardware

Patterns are used as an example data set that the network can solve. The high number
of inputs allows for compensation for single faulty neurons. The model is defined in
Chapter 5 and is the same as trained in the majority of Chapter 7.
The patterns used for training in this Chapter are balanced. This means the different

classes have the same number of black pixels, equivalent to the same number of early
spikes (Chapter 5). Unbalanced patterns (Chapter 5) can also be trained but training
is less stable (data not shown).

8.1.1 Patterns in a Shallow Network

As in Chapter 7, learning in a shallow network is presented first. The training evolution
in Fig. 8.2 shows a positive trend for the accuracy and a negative trend for the energy.
The accuracy stays close to 100% and recovers after small drops.
An example voltage trace (Fig. 8.3) shows early and correct classification, and distinct

separation. Inter-neuron variations due to fixed-pattern noise is visible.
This result shows that learning on hardware is possible in general and 100% accuracy

can be reached for this data set. The next step is to train a deep network.
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8.1 Training Patterns on Hardware
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Figure 8.2: Training a shallow network on hardware.
(ρ = 1, equal-time formula, Listing 19), the meaning of this tuple is explained in
the text. The training is shown as in Fig. 7.1, but with the exponential energy
(Section 4.4). The accuracy rises to close to 100%. Two times the accuracy is
reduced, but quickly rises again. There is a negative trend for the energy, but with
distinct fluctuations. The fluctuations also happen when the accuracy is nearly
constant.

-20

-10

V
m

[m
V
]

stripes_h

-20

-10

V
m

[m
V
]

stripes_v

-20

-10

V
m

[m
V
]

x

0 20 40 60 80 100
time [ms]

-20

-10

V
m

[m
V
]

o

Figure 8.3: Voltage traces after training (Fig. 8.2), shown as in Figs. 6.8 and 7.2.
As explained in Chapter 5 the traces for different neurons are taken concurrently,
for the accuracy thus look at the training evolution or potentially a confusion
matrix. The separation of spikes can be extracted from a raster plot.
The inputs are classified correctly, and there is a large separation. The inter-neuron
variation of the leakage (compare values for late times) and threshold (compare
membrane voltage at time of spike, especially yellow and blue) are visible.
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8 Emulations on Hardware

8.1.2 Patterns in a Deep Network

Training evolution for a deep network is shown in Fig. 8.4. Compared to the shallow
network (Fig. 8.2) the process is slower with more fluctuations, and the energy at the
end of training is larger.
A larger energy points to less separation. This is confirmed by Fig. 8.5. There is little

separation between the spikes. Yet the confusion matrix (Fig. 8.6) shows the same high
accuracy as seen in the training evolution (Fig. 8.4).
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Figure 8.4: Training a deep network on hardware.
(ρ = 1, equal-time formula, Listing 18). The network achieves 100%, but slower
than before. During the recorded period collapses in the accuracy are reversed.
Thus the classification at the end of the training is high, see Figs. 8.5 and 8.6. The
energy fluctuates, with a negative trend.

In Section 7.2.1 sweeps for different seeds were done to show initialisation stability
of my algorithm. The same seed results in different initialisations on hardware for
different jobs due to the FGs (Section 3.1). Figure 8.7 shows a sweep for five different
initialisations from five consecutive jobs. Consecutive means the data comes from a
sequence of jobs, and the results are not hand-picked to only good data.
The accuracy rises fast and stays at 100% for the rest of training. The mean energy

at the end suggests distinct separation
An example one of the five jobs confirms this suggestion (Figs. 8.8 and 8.9). Clas-

sification spikes happen around the time of the second input spike and there is indeed
clear separation, even for the voltages. The confusion matrix is diagonal with entirely
vanished off-diagonals (not shown).
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8.1 Training Patterns on Hardware
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Figure 8.5: Example inputs of Fig. 8.4 are shown in a raster plot like Fig. 7.18.
For each input, the correct output neuron spikes first with small but visible sepa-
ration.
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Figure 8.6: Confusion matrix of a deep network on hardware.
Plotted like Fig. 7.15 is the job from Fig. 8.4. The confusion matrix is close to a
unity matrix, i.e. close to perfect classification. With 50 examples for each class,
see Listing 18, there are only four misclassified inputs.
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Figure 8.7: Training results of a deep network for five consecutive runs.
(ρ = 2, Mostafa formula, Listing 20). The results are displayed like the sweeps in
the earlier plots, cf. Fig. 7.5. There is no need to set different seeds, as setting the
FGs provides a random setup. The accuracy rises to 100% fast and stays there.
In fact, all but the 0 percentile are close to 100%, i.e. after 100 training steps four
of the five results are at perfect classification at all times. The energy is smaller
compared to Fig. 8.4. There is a negative trend in the energy.
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Figure 8.8: Raster plot after training of a deep network.
The classification spike is correct for each input and has distinct separation sepa-
ration. The training process is shown for five jobs with the same setup in Fig. 8.7.
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Figure 8.9: Voltage traces for one of job of Fig. 8.7 plotted as Fig. 8.3.
Classification is early, correct and with a good separation. The sequence of spikes
is seen better in Fig. 8.8.
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8 Emulations on Hardware

8.1.3 Inverting the Patterns

In Chapter 2 the input time coding was introduced. This coding translates black pixels
to early input spikes and white pixels to late input spikes. This definition is arbitrary
and the training should work for inverted attribution of spike times.
The training of a network with inverted patterns can be seen in Fig. 8.10. For clarity

I interchanged black and white pixels and left the spike times unchanged, compare
Fig. 8.11 with Fig. 8.6.
Training succeeds and the classification is distinct (Fig. 8.10b). While the accuracy

collapses to 0% around 300 steps during training the network recovers to 100%. For the
last 200 steps the accuracy stays close to 100%.
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(a) The accuracy rises to 100% and
the network recovers from a full
collapse of the accuracy.
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(b) The classification spikes (black)
are correct and early, with a good
separation from the subsequent
spikes (blue).

Figure 8.10: Training inverted pattern on hardware.
(ρ = 2, Mostafa formula, Listing 21). Inverting the patterns exchanges the black
and white pixels in the patterns (see the example patterns in Fig. 8.11). For the
network it amounts to exchanging the early and late input spikes.
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Figure 8.11: Confusion matrix after training for inverted patterns.

8.2 Reduced 7×7 MNIST on Hardware

The patterns used before are a good example data to establish the fundamentals of the
algorithm. The MNIST data set (Chapter 5) is an established benchmark where the
images are not derived from one perfect image. In MNIST the training and test images
are different data.
The 28 × 28 original images are adapted in size to fit the already mapped networks

and thus averaged to 7× 7 pixels (Chapter 5). To counter reduced level of detail in the
images, only the subset of the 0, 1, and 4 digits are used. This is simplified from the
original data set, but the network still classifies data it has not been trained with.
The training increases the accuracy fast and proceeds in a convergent stable manner

(Fig. 8.12). The energy reduces promptly at the beginning and fluctuates around a
plateau during training.
The confusion matrix after training (Fig. 8.13) is nearly perfect, for 150 tested images

only two images were misclassified. In the example voltage traces (Fig. 8.14) correct
classification and clear separation is visible.
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Figure 8.12: Training of a deep network to classify 7× 7 digits.
(ρ = 2, Mostafa formula, Listing 22). The accuracy rises fast and stays close to
100%. Only the accuracy of the test data is shown. The energy shows a negative
trend with a lot of fluctuations.

0 1 4

0

1

2

0.98 0.02 0.00

0.00 1.00 0.00

0.00 0.02 0.98

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.13: The confusion matrix of Fig. 8.12 as in Fig. 7.15.
As 50 images per class were used for testing (Listing 22) only 2 images of 150 are
misclassified.
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Figure 8.14: Voltages of Fig. 8.12 at the end of training, like in Fig. 8.3.
Classification is correct with visible separation. The inter-neuron variations of
the parameters is also visible.
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9 Summary

In this thesis, deep networks were trained on the BrainScaleS (BSS) wafer-scale system
with time-to-first-spike coding inspired by [Mostafa, 2017]. This presented a challenge
due to the analogue nature of the BSS system and significant enhancements of the initial
ansatz were needed to achieve learning on hardware.

The networks were set up in a layered fashion (Chapter 2) and trained to recognise
patterns. The patterns were binarised images of black and white pixels, that were
translated to early and late input spikes for the first layer, respectively. The weights
were updated through gradient descent of the energy based on the spike times in the
label layer (Section 4.4). The goal was to have the neuron in the label layer associated
with the given class spike first. For error backpropagation in deep networks, gradient
descent required differentiable relations for the spike times, which were extended in this
thesis to work for LIF neurons as well.

At first, the theoretical foundation were looked at. Differentiable formulas for the
time-to-first-spike of neurons with finite membrane time constant were derived under
particular parametrisations, termed the equal-time (ρ := τm/τsyn = 1) and double-time
(ρ = 2) formula (Section 4.2). This analytical derivation was followed by an approxima-
tion of conductance-based (CoBa) synapses to current-based (CuBa) synapses by means
of the weight scale factor (WSF) (Section 4.3). It became apparent that the energy used
in [Mostafa, 2017] for gradient descent could be improved to further stabilise training
(Sections 4.4 and 7.2.3). The approximation and energy analysis included predictions
that were then proven in the subsequent Chapters 6 and 7.

In Chapter 6, a quantitative analysis of the prediction for neurons with CuBa synapses
was done (Section 6.1) alongside a quantitative analysis of the reproducibility of spike
times on hardware (Section 6.3.2). The analysis for the prediction with CoBa synapses
including the WSF was done in a qualitative manner (Section 6.2). This sufficed because
the prediction error even in the worst case was lower than the variation of spike times
on hardware for the best case.

Then, example networks were trained with the formulas derived in this thesis (Sec-
tion 7.1). It was shown that the weights get updated such that the correct label neuron
spikes distinctly ahead of all others, and the weights approach an equilibrium (Sec-
tion 7.1). Independence of the training results on the initial weight configuration was
confirmed (Section 7.2.1) and increased stability due to the use of linear spike times in
the energy (Section 4.4) was substantiated (Section 7.2.3). This benefit was predicted
in Chapter 4 and, additionally, increased convergence speed could be seen. Although
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9 Summary

after training classification was often independent of late input spikes (Figs. 7.2b, 7.6,
7.11 and 7.12), they played an essential role during training.
In Section 7.3 it was shown that the double-time formula relied on the ratio ρ = τm/τsyn

of time constants (Section 4.2) to be close to its ideal ratio of ρ = 2 while the equal-time
formula and the formula from [Mostafa, 2017] work in a broad range of ρ. It is surprising
that the framework established in this work enables the formula from [Mostafa, 2017] to
reliably train networks with finite membrane constant. The effectiveness of the Mostafa
formula in spite of limited predictive capability (data not shown) could not be explained
and needs to be investigated further.
Preceding the learning on hardware, it was shown that the algorithm can incorporate

specific features of the hardware such as limited precision weights, CoBa synapses and
fixed-pattern noise on neuron parameters (Section 7.5).

The general capability to train networks to classify the MNIST data set was shown
in a reduced setting (Chapter 5) inspired by [Schmitt et al., 2017], but the classification
rate was below state-of-the-art algorithms on the full data set [e.g. Cireşan et al., 2010]
and also below comparable designs on the full data set [Mostafa, 2017]. However, there
was no time for an intensive investigation of this subject.
In [Mostafa, 2017] ideas for improving the classification for MNIST are given, like an

exponentially decaying learning rate, optimisation of the input separation, a lot more
training steps (more than one order of magnitude) and an additional input that signals
the start of a pattern to all layers. These mechanisms seem to make a big difference
for the MNIST data set but they are not necessary to train the patterns introduced
in Chapter 5, hence they were not implemented in the framework due to time constraints.

In [Mostafa, 2017] it is noted that no training with dropout was possible, as every single
hidden layer neuron was important for classification and removing any neuron affected
the output spike times. With its trial-to-trial variability, a robust implementation on
analogue neuromorphic hardware is difficult. Thus a framework that is able to train a
network starting from random initials is remarkable. In Section 8.1, it was shown that
training a network to classify patterns succeeds for both shallow and deep networks with
robustness to the initialisation.
Furthermore, a network can be trained to classify a reduced subset of MNIST digits

presented with 7 × 7 pixels (Section 8.2). The classification happens in 4µs wall-clock
time (40 ms biotime) and each neuron spikes at most once. Fewer spikes improve the
energy efficiency of the hardware and the classification speed is noteworthy as well.
In [Schmitt et al., 2017] patterns were presented for 90µs wall-clock time (900 ms bio-
time), thus the time-to-first-spike coding is more than 20 times faster.
Findings from other Chapters like increased stability due to the different energy (Sec-

tion 7.2.3) and an improved WSF (Section 6.3.3) have not been included in experiments
of Chapter 8 yet and potentially improve the results on hardware. Moreover, the size of
the current network does in no way use the hardware to the full extent and scaling up
the network is already in progress.
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10 Outlook

Training spiking networks with time-to-first-spike coding on analogue hardware is a new
approach. Questions regarding improvements in learning on hardware that could not be
addressed in the time scope of this thesis are discussed here.

While an analysis of the quality of prediction was done for different scenarios, an ad-
ditional quantitative investigation with randomly generated input spike patterns would
provide a solid basis for comparison of different hardware neurons. The gained statis-
tics of prediction and weight scale factor (WSF) for neurons on different high input
count analog neural network (HICANN) chips can explain potential systematic training
differences for changing hardware setups.

With a working framework on hardware that achieves similar results as the simu-
lation, it becomes more important to get closer to the classification results in software
from [Mostafa, 2017]. Implementing the addenda from [Mostafa, 2017], a decaying learn-
ing rate, a start spike to all layers and optimised separation (Chapter 9), is the next
step. New simulations with these features can improve classification, that is, reduce the
error-rate for classifications on the test set as well as increase the training stability. The
presented framework is set up in such a way (Chapter 5) that optimising mechanisms
for simulations can directly be used for emulations on hardware, too.

An investigation and more thorough comparison of the three gradient formulas is in
order. In the thesis (Section 7.3), the ratio ρ = 2 is identified as a point where all three
gradient formulas work. Evaluating the training process in detail allows for adaptions
of the gradient formulas to stabilise training.

On hardware, an immediately available action is to repeat training with improved en-
ergy (Section 7.2.3) and a well-founded WSF (Section 6.3.3). Optimising hyperparam-
eters like batch size (Chapter 5), learning rate, and hardware parameters will improve
convergence speed and robustness. This is easiest done by sweeps over the relevant
parameters. Sweeping, in turn, will benefit from analysis and potential optimisation
of the runtime of training on hardware. This includes acceleration of both the python
code used for training and the sophisticated software stack developed by the group with
ongoing progress [Meehan, 2019].
This thesis lays the groundwork for a quantification of the success rate of training

on hardware. As pointed out in Section 7.5.3, a fraction of networks not succeeding to
train on hardware is expected. However, the suspected reason, i.e. variations in floating
gate (FG) values, for limiting the success of training must be investigated. If a failure-
predictor, e.g. a lack of precision in the prediction of spike times, can be determined,
irredeemable emulations can be restarted or better yet reconfigured to work properly.
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10 Outlook

Executing several consecutive emulations without rewriting the FGs makes it possible to
reuse the same FG values. This allows for investigations of trial-to-trial variability with
unchanged FG values and initial weights as well as stability with respect to different
initial weights. FG stability over time has been investigated for different tasks [Millner ,
2012; Kononov , 2011; Klähn, 2017] and is sufficient for repeated emulations.

By scaling up the network and training on larger data sets, more complex tasks can
be tackled. The first step is to scale up to [Schmitt et al., 2017], serving as a fitting
comparison due to its implementation on BrainScaleS (BSS). The network therein
is approximately twice as large as the biggest network realised on hardware in this
thesis, both in terms of inputs and neurons. The next achievable goal is to obtain good
classification results on the full MNIST [LeCun et al., 1998] dataset on hardware.

My extension of the formula in [Mostafa, 2017] realises energy-efficient and fast pattern
recognition on neuromorphic hardware. In fact, new possibilities have been opened up
for use cases that were not pursued because error backpropagation was not available for
spiking neural networks.
This thesis is fundamental research, but using improved realisations of the frame-

work on neuromorphic chips allows a principled deployment of fast and energy-efficient
spike-based solutions to pattern recognition problems. Notably, the high speed of the
classification makes this technology interesting for detectors in particle accelerators. At
the very high luminosity regimes of modern colliders, detector setups routinely generate
several orders of magnitude more information than can be saved to disk, rendering the
efficient identification of interesting collision data one of the most mission-critical as-
pects of detector readout control. Consequently, fast event classification in early trigger
systems is a topic of active development, to which the presented setup might deliver
important contributions.
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Appendix

A Parameters

For transparency I disclose all parameter sets used for the simulations in Chapters 6 to 8.
For a detailed understanding, looking at the code1 online at https://openproject.
bioai.eu/projects/model-tempodrom or at the git repository git@brainscales-r.
kip.uni-heidelberg.de:model-tempodrom.git can be helpful.
The parameters are either dimensionless or in the NEural Simulation Tool (NEST)

default units.

A.1 Parameters for Chapter 6

All data in Chapter 6 including the data from hardware (except Section 6.3.2) was
acquired anew with code from the commit
248da05fec83c08b3e5ac324b9b205890418cd3c .
Section 6.3.2 was done with code from the commit

d8c3f337f1380d6db2c4d9c16fb1987037354606 .

params = {’V_rest’: -20.,
’V_diff’: 10.,
’E_ex_factor’: 8.,
’E_in_factor’: -8.,

5 ’tau_syn’: 10.}
params[’tau’], params[’time_per_step’], params[’tau_ref’]\

= np.array((1., 10., 2.)) * params[’tau_syn’]
params[’C_m’] = 0.2
params[’V_th’] = params[’V_rest’] + params[’V_diff’]

10 params[’E_ex’], params[’E_in’] = params[’V_rest’] + \
np.array((params[’E_ex_factor’],

params[’E_in_factor’])) * \
params[’V_diff’]

neuronparams = {
15 ’C_m’: params[’C_m’],

’E_L’: params[’V_rest’],
’I_e’: 0.0,
’V_m’: params[’V_rest’],
’V_reset’: params[’V_rest’],

20 ’V_th’: params[’V_th’],
’t_ref’: params[’tau_ref’],
’g_L’: params[’C_m’] / params[’tau_m’],
’tau_m’: params[’tau_m’],
’tau_syn_ex’: params[’tau_syn’],

25 ’tau_syn_in’: params[’tau_syn’],
’E_ex’: params[’E_ex’],
’E_in’: params[’E_in’],
}

Listing 1: Parameter used in Chapter 6. τm and gmax are different for the different
scenarios, as are the input weights and spike times.

A.2 Parameters for Chapter 7

I tried to use similar initials for the simulations. Changing only few parameters aids un-
derstanding of those changes. The master file is given in Listing 2, the other parameters
are shown as diff s to this file.

1An account is needed to view the code this way. If you do not have an account but are interested,
contact the group or me directly.
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10 Outlook

All simulations shown in Chapter 7 were redone with the current code, and can thus be
repeated with the commit
fe4245b406b4fae86f38d77d2f501cf116d64fed .
cache:

E_ex_factor: 8.0
E_in_factor: -8.0
V_diff: 10.0

5 V_rest: -20.0
batch_number: 8
cm: 0.2
digitalise_weights_digits: 6
num_snapshots: 200

10 save_every_x_batches: 1
tau_m: 20.0
tau_ref: 20.0
tau_syn: 10.0
time_per_step: 100.0

15 tmp_factor_for_rounding: 1
config:

data: patterns_bal
eval_level:
- save_process

20 - plot_process
- save_voltages
- plot_voltages
gradient_function: 2
input_popsize: 1

25 network_layout:
- 10
network_layout_depth: 1
neurons: iaf_psc_exp_ps
objective: time

30 sim_infinite_tau_m: true

simulator: nest
eval_data:

early: 1.5
late: 20.0

35 noisy_samples: true
num_samples: 50
truncated_spread: 0.5

input_data:
early: 1.5

40 late: 20.0
noisy_samples: true
num_samples: 50
trainingOrTesting: training
truncated_spread: 0.5

45 net:
initials:
- random
params:

C_m: 0.2
50 E_L: -20.0

E_ex: 60.0
E_in: -100.0
I_e: 0.0
V_m: -20.0

55 V_reset: -20.0
V_th: -10.0
g_L: 0.01
t_ref: 20.0
tau_m: 20.0

60 tau_syn_ex: 10.0

tau_syn_in: 10.0
weights_mean:
- 0.03
- 0.175

65 weights_std:
- 0.1
- 0.1

rates:
absolute_regulizer: 0.0

70 drive_weights: 0.001
drive_weights_factor: 1.5
drive_weights_old: 0.0
drive_weights_thresh: 0.1
l2_regulizer: 0.0

75 learning: 0.1
norm_grad_frob: 0.0
norm_grad_l1: 0.0
norm_grad_l2_colwise: 0.0
norm_grad_lsup: 0.0

80 norm_update_l1: 10.0
update_wsc: 0.0

simulation:
loglevel: M_ERROR
numpy_seed: 85412

85 pattern_separation_time: 100.0
resolution: 0.01
resolution_decimals: 2

Listing 2: Parameter file used as a master file for the simulations. The meaning of some of the
parameters is given in Chapter 5.

@@ -8,3 +8,3 @@
digitalise_weights_digits: 6

- num_snapshots: 200
+ num_snapshots: 100

5 save_every_x_batches: 1
@@ -25,3 +25,3 @@

network_layout:
- - 10
+ - null

10 network_layout_depth: 1
@@ -46,3 +46,3 @@

initials:
- - random
+ - rand

15 params:
@@ -62,6 +62,6 @@

weights_mean:

- - 0.03
+ - 0.015

20 - 0.175
weights_std:

- - 0.1
+ - 0.01

- 0.1
25 @@ -72,5 +72,5 @@

drive_weights_old: 0.0
- drive_weights_thresh: 0.1
+ drive_weights_thresh: 0.35

l2_regulizer: 0.0
30 - learning: 0.1

+ learning: 0.02
norm_grad_frob: 0.0

Listing 3: Parameter file used for Figs. 7.1, 7.2a, 7.2b, 7.3 and 7.4, given as a difference to
Listing 2.

@@ -46,3 +46,3 @@
initials:

- - random
+ - rand

5 params:
@@ -72,3 +72,3 @@

drive_weights_old: 0.0
- drive_weights_thresh: 0.1
+ drive_weights_thresh: 0.35

10 l2_regulizer: 0.0

Listing 4: Parameters of Fig. 7.7a compared to Listing 2.
@@ -22,3 +22,3 @@

- plot_voltages
- gradient_function: 2
+ gradient_function: 0

5 input_popsize: 1
@@ -28,3 +28,3 @@

neurons: iaf_psc_exp_ps
- objective: time
+ objective: time_exp

10 sim_infinite_tau_m: true

@@ -69,5 +69,5 @@
absolute_regulizer: 0.0

- drive_weights: 0.001
+ drive_weights: 0.0

15 drive_weights_factor: 1.5
- drive_weights_old: 0.0
+ drive_weights_old: 1.5

drive_weights_thresh: 0.35

Listing 5: Parameter difference between Figs. 7.7a and 7.7b.
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@@ -8,5 +8,5 @@
digitalise_weights_digits: 6

- num_snapshots: 200
- save_every_x_batches: 1

5 - tau_m: 20.0
+ num_snapshots: 100
+ save_every_x_batches: 10
+ tau_m: 30.000000000000032

tau_ref: 20.0
10 @@ -19,5 +19,3 @@

- save_process
- - plot_process
- - save_voltages
- - plot_voltages

15 + - discard_output
gradient_function: 2

@@ -47,2 +45,3 @@

- random
+ initials_nonRandFactor: 1.0

20 params:
@@ -56,5 +55,5 @@

V_th: -10.0
- g_L: 0.01
+ g_L: 0.00666666666666666

25 t_ref: 20.0
- tau_m: 20.0
+ tau_m: 30.000000000000032

tau_syn_ex: 10.0
@@ -83,3 +82,3 @@

30 loglevel: M_ERROR
- numpy_seed: 85412
+ numpy_seed: 2177

pattern_separation_time: 100.0

Listing 6: Example parameter file for the comparison of the gradient formulas, see further
Fig. 7.13

@@ -9,3 +9,3 @@
num_snapshots: 200

- save_every_x_batches: 1
+ save_every_x_batches: 2

5 tau_m: 20.0
@@ -19,5 +19,2 @@

- save_process
- - plot_process
- - save_voltages

10 - - plot_voltages
gradient_function: 2

@@ -47,2 +44,3 @@
- random

+ initials_nonRandFactor: 1.4
15 params:

@@ -83,3 +81,3 @@
loglevel: M_ERROR

- numpy_seed: 85412
+ numpy_seed: 2177

20 pattern_separation_time: 100.0

Listing 7: Example parameter file for a sweep with 100 seeds, see Fig. 7.5.
@@ -9,3 +9,3 @@

num_snapshots: 200
- save_every_x_batches: 1
+ save_every_x_batches: 2

5 tau_m: 20.0
@@ -19,5 +19,2 @@

- save_process
- - plot_process
- - save_voltages

10 - - plot_voltages
gradient_function: 2

@@ -28,3 +25,3 @@
neurons: iaf_psc_exp_ps

- objective: time
15 + objective: time_exp

sim_infinite_tau_m: true
@@ -47,2 +44,3 @@

- random
+ initials_nonRandFactor: 1.4

20 params:
@@ -83,3 +81,3 @@

loglevel: M_ERROR
- numpy_seed: 85412
+ numpy_seed: 2177

25 pattern_separation_time: 100.0

Listing 8: Example parameter file for comparison of the energies, see Fig. 7.8.

@@ -19,5 +19,2 @@
- save_process

- - plot_process
- - save_voltages

5 - - plot_voltages
gradient_function: 2

@@ -33,3 +30,3 @@
early: 1.5

- late: 20.0
10 + late: 8.0

noisy_samples: true
@@ -39,3 +36,3 @@

early: 1.5

- late: 20.0
15 + late: 8.0

noisy_samples: true
@@ -47,2 +44,3 @@

- random
+ initials_nonRandFactor: 1.4

20 params:
@@ -83,3 +81,3 @@

loglevel: M_ERROR
- numpy_seed: 85412
+ numpy_seed: 2177

25 pattern_separation_time: 100.0

Listing 9: Example parameter file for variations of the time of the later spike time, see Figs. 7.9
and 7.11.
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@@ -19,5 +19,2 @@
- save_process

- - plot_process
- - save_voltages

5 - - plot_voltages
gradient_function: 2

@@ -33,3 +30,3 @@
early: 1.5

- late: 20.0
10 + late: 90.0

noisy_samples: true
@@ -39,3 +36,3 @@

early: 1.5

- late: 20.0
15 + late: 90.0

noisy_samples: true
@@ -47,2 +44,3 @@

- random
+ initials_nonRandFactor: 1.4

20 params:
@@ -83,3 +81,3 @@

loglevel: M_ERROR
- numpy_seed: 85412
+ numpy_seed: 2177

25 pattern_separation_time: 100.0

Listing 10: Example parameter file for variations of the time of the later spike time between
Fig. 7.11 and Fig. 7.12.

@@ -7,5 +7,5 @@
cm: 0.2

- digitalise_weights_digits: 6
+ digitalise_weights_digits: 1

5 num_snapshots: 200
- save_every_x_batches: 1
+ save_every_x_batches: 2

tau_m: 20.0
@@ -19,5 +19,2 @@

10 - save_process
- - plot_process
- - save_voltages

- - plot_voltages
gradient_function: 2

15 @@ -47,2 +44,3 @@
- random

+ initials_nonRandFactor: 1.4
params:

@@ -83,3 +81,3 @@
20 loglevel: M_ERROR

- numpy_seed: 85412
+ numpy_seed: 2177

pattern_separation_time: 100.0

Listing 11: Example parameter file for training with digital weights, compared to Listing 2.
For the sweeped training see Fig. 7.19, for the weight evolution see Fig. 7.20.

@@ -9,3 +9,3 @@
num_snapshots: 200

- save_every_x_batches: 1
+ save_every_x_batches: 2

5 tau_m: 20.0
@@ -19,5 +19,2 @@

- save_process
- - plot_process
- - save_voltages

10 - - plot_voltages
gradient_function: 2

@@ -27,3 +24,3 @@
network_layout_depth: 1

- neurons: iaf_psc_exp_ps
15 + neurons: iaf_cond_exp

objective: time
@@ -47,2 +44,3 @@

- random
+ initials_nonRandFactor: 1.4

20 params:
@@ -62,7 +60,7 @@

weights_mean:
- - 0.03
- - 0.175

25 + - 0.0003
+ - 0.00175

weights_std:
- - 0.1
- - 0.1

30 + - 0.001
+ - 0.001
rates:
@@ -83,3 +81,3 @@

loglevel: M_ERROR
35 - numpy_seed: 85412

+ numpy_seed: 2177
pattern_separation_time: 100.0

Listing 12: Example parameter file with ρ = 2 for training CoBa synapses, compared to
Listing 2. For the sweeped training see Fig. 7.21, for the weight evolution see
Fig. 7.22. The WSF used in the training is 73.59.

@@ -10,3 +10,3 @@
save_every_x_batches: 2

- tau_m: 20.0
+ tau_m: 10.0

5 tau_ref: 20.0
@@ -19,3 +19,3 @@

- save_process
- gradient_function: 2
+ gradient_function: 1

10 input_popsize: 1
@@ -44,3 +44,3 @@

- random

- initials_nonRandFactor: 1.4
+ initials_nonRandFactor: 2.5

15 params:
@@ -54,5 +54,5 @@

V_th: -10.0
- g_L: 0.01
+ g_L: 0.02

20 t_ref: 20.0
- tau_m: 20.0
+ tau_m: 10.0

tau_syn_ex: 10.0

Listing 13: Example parameter file with ρ = 1 ms for training CoBa synapses, compared to
Listing 12. For the sweeped training see Fig. 7.21. The WSF used in the training
is 69.18.
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@@ -9,4 +9,4 @@
num_snapshots: 200

- save_every_x_batches: 1
- tau_m: 20.0

5 + save_every_x_batches: 2
+ tau_m: 10.0

tau_ref: 20.0
@@ -19,6 +19,3 @@

- save_process
10 - - plot_process

- - save_voltages
- - plot_voltages
- gradient_function: 2
+ gradient_function: 1

15 input_popsize: 1
@@ -47,2 +44,3 @@

- random
+ initials_nonRandFactor: 2.5

params:
20 @@ -56,7 +54,13 @@

V_th: -10.0

- g_L: 0.01
+ g_L: 0.02

t_ref: 20.0
25 - tau_m: 20.0

+ tau_m: 10.0
tau_syn_ex: 10.0
tau_syn_in: 10.0

+ params_noise:
30 + E_L: 0.2

+ V_th: 0.2
+ tau_m: 0.2
+ tau_syn_ex: 0.2
+ tau_syn_in: 0.2

35 weights_mean:
@@ -83,3 +87,3 @@

loglevel: M_ERROR
- numpy_seed: 85412
+ numpy_seed: 2177

40 pattern_separation_time: 100.0

Listing 14: Example parameter file for ρ = 1 with fixed-pattern noise, compared to Listing 2.
The noise is applied to the time constants, the voltage and threshold. For the
sweeped training see Fig. 7.23, for the membrane voltage see Fig. 7.24.

@@ -9,3 +9,3 @@
num_snapshots: 200

- save_every_x_batches: 1
+ save_every_x_batches: 2

5 tau_m: 20.0
@@ -19,5 +19,2 @@

- save_process
- - plot_process
- - save_voltages

10 - - plot_voltages
gradient_function: 2

@@ -47,2 +44,3 @@
- random

+ initials_nonRandFactor: 1.4
15 params:

@@ -61,2 +59,8 @@
tau_syn_in: 10.0

+ params_noise:
+ E_L: 0.15

20 + V_th: 0.15
+ tau_m: 0.15
+ tau_syn_ex: 0.15
+ tau_syn_in: 0.15

weights_mean:
25 @@ -83,3 +87,3 @@

loglevel: M_ERROR
- numpy_seed: 85412
+ numpy_seed: 2177

pattern_separation_time: 100.0

Listing 15: Example parameter file for ρ = 2 with parameter noise, compared to Listing 2.
The noise is applied to the time constants, the voltage and threshold. For the
sweeped training see Fig. 7.23.

@@ -5,3 +5,3 @@
V_rest: -20.0

- batch_number: 8
+ batch_number: 25

5 cm: 0.2
@@ -9,3 +9,3 @@

num_snapshots: 200
- save_every_x_batches: 1
+ save_every_x_batches: 100

10 tau_m: 20.0
@@ -16,3 +16,3 @@
config:

- data: patterns_bal
+ data: mnist_small

15 eval_level:
@@ -20,4 +20,2 @@

- plot_process
- - save_voltages
- - plot_voltages

20 gradient_function: 2
@@ -25,3 +23,3 @@

network_layout:
- - 10
+ - 15

25 network_layout_depth: 1
@@ -36,2 +34,3 @@

num_samples: 50
+ trainingOrTesting: testing

truncated_spread: 0.5
30 @@ -41,3 +40,3 @@

noisy_samples: true
- num_samples: 50

+ num_samples: 0
trainingOrTesting: training

35 @@ -47,2 +46,3 @@
- random

+ initials_nonRandFactor: 1.4
params:

@@ -62,7 +62,7 @@
40 weights_mean:

- - 0.03
- - 0.175
+ - 0.01
+ - 0.15

45 weights_std:
- - 0.1
- - 0.1
+ - 0.005
+ - 0.075

50 rates:
@@ -72,5 +72,5 @@

drive_weights_old: 0.0
- drive_weights_thresh: 0.1
+ drive_weights_thresh: 0.25

55 l2_regulizer: 0.0
- learning: 0.1
+ learning: 0.005

norm_grad_frob: 0.0
@@ -83,3 +83,3 @@

60 loglevel: M_ERROR
- numpy_seed: 85412
+ numpy_seed: 2177

pattern_separation_time: 100.0

Listing 16: Example parameter file for reduced MNIST training with ρ = 2, compared to
Listing 2.
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@@ -10,3 +10,3 @@
save_every_x_batches: 100

- tau_m: 20.0
+ tau_m: 10.0

5 tau_ref: 20.0
@@ -20,3 +20,5 @@

- plot_process
- gradient_function: 2
+ - save_voltages

10 + - plot_voltages
+ gradient_function: 1

input_popsize: 1
@@ -33,3 +35,3 @@

noisy_samples: true
15 - num_samples: 50

+ num_samples: 200
trainingOrTesting: testing

@@ -46,3 +48,3 @@
- random

20 - initials_nonRandFactor: 1.4
+ initials_nonRandFactor: 2.5

params:
@@ -56,5 +58,5 @@

V_th: -10.0
25 - g_L: 0.01

+ g_L: 0.02
t_ref: 20.0

- tau_m: 20.0
+ tau_m: 10.0

30 tau_syn_ex: 10.0
@@ -62,7 +64,7 @@

weights_mean:
- - 0.01
- - 0.15

35 + - 0.007
+ - 0.025

weights_std:
+ - 0.003

- 0.005
40 - - 0.075

rates:

Listing 17: Example parameter file for reduced MNIST training with ρ = 1, compared to
Listing 16.

A.3 Parameters for Chapter 8

Possible formulas for the training are the one from [Mostafa, 2017], called Mostafa
formula, and my equal-time and double-time formulas, derived in Chapter 4.
The WSFs used in this Chapter are not the same ones I presented data for in Chapter 6.
This is due to older settings, and because I acquired new data for Chapter 6. For ρ = 1,
the WSF that was used is 0.00332064 V compared to 0.00281 V in Chapter 6. For ρ = 2,
the used WSF is 0.00353232 V compared to 0.00197 V earlier.
All emulations are done on the BrainScaleS (BSS) system in rack 37, except for Listing 19
which was done on the system in rack 33.
In the experiments, neurons on hardware are large neurons comprising 10 dendrite mem-
branes (DenMems) (Chapter 3).
The experiments in this Chapter use different versions of my code. The used version is
given as the git commit SHA. Because experiments use software to access hardware as
described in Chapters 3 and 5, the nmpm_software module used for executing the code
is given as well.
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cache:
E_ex_factor: 8.0
E_in_factor: -8.0
V_diff: 10.0

5 V_rest: -20.0
batch_number: 8
cm: 0.2
digitalise_weights_digits: 3
num_snapshots: 100

10 save_every_x_batches: 10
tau_m: 10.0
tau_ref: 20.0
tau_syn: 10.0
time_per_step: 100.0

15 tmp_factor_for_rounding: 1
config:

data: patterns_bal
eval_level:
- save_process

20 - plot_process
- save_voltages
- plot_voltages
gradient_function: 1
input_popsize: 1

25 network_layout:
- 20
network_layout_depth: 1
neurons: iaf_cond_exp

objective: time_exp
30 sim_infinite_tau_m: true

simulator: pyhmf
eval_data:

early: 1.5
late: 20.0

35 noisy_samples: true
num_samples: 50
truncated_spread: 0.5

input_data:
early: 1.5

40 late: 20.0
noisy_samples: true
num_samples: 50
truncated_spread: 0.5

net:
45 initials:

- rand
params:

C_m: 0.2
E_L: -20.0

50 E_ex: 60.0
E_in: -100.0
I_e: 0.0
V_m: -20.0
V_reset: -20.0

55 V_th: -10.0
g_L: 0.02

t_ref: 20.0
tau_m: 10.0
tau_syn_ex: 10.0

60 tau_syn_in: 10.0
weights_mean:
- 3.0
- 3.0
weights_std:

65 - 2.0
- 2.0

rates:
absolute_regulizer: 0.0
drive_weights: 0.0001

70 drive_weights_thresh: 0.5
l1_norm_update: 10.0
l1_norm_update_final: 0.0
l2_regulizer: -0.003
learning: 0.05

75 threshold_frob: 0.0
threshold_frob_final: 0.0
update_wsc: 0.0

simulation:
loglevel: M_ERROR

80 numpy_seed: 85412
pattern_separation_time: 100.0
resolution: 0.01
resolution_decimals: 2

Listing 18: Parameter file with ρ = 1 and equal-time formula, see Figs. 8.4 and 8.6.
Code of git commit 8c25fbe0491bb87efcd9393714aa824961c0cd03
nmpm_software/2019-01-14-1

@@ -25,3 +25,3 @@
network_layout:

- - 20
+ - null

5 network_layout_depth: 1
@@ -62,6 +62,4 @@

- 3.0
- - 3.0

weights_std:

10 - 2.0
- - 2.0
rates:

@@ -69,3 +67,3 @@
drive_weights: 0.0001

15 - drive_weights_thresh: 0.5
+ drive_weights_thresh: 0.35

l1_norm_update: 10.0

Listing 19: Parameter file with ρ = 1 and equal-time formula, given as difference to Listing 18.
Results shown in Figs. 8.2 and 8.3. BSS in rack 33 was used here.
Code of git commit 88138ed67b20ced35be7c1984104af87fb6552d6
nmpm_software/2019-01-07-1

@@ -10,3 +10,3 @@
save_every_x_batches: 10

- tau_m: 10.0
+ tau_m: 20.0

5 tau_ref: 20.0
@@ -22,3 +22,3 @@

- plot_voltages
- gradient_function: 1
+ gradient_function: 0

10 input_popsize: 1
@@ -55,5 +55,5 @@

V_th: -10.0

- g_L: 0.02
+ g_L: 0.01

15 t_ref: 20.0
- tau_m: 10.0
+ tau_m: 20.0

tau_syn_ex: 10.0
@@ -69,3 +69,3 @@

20 drive_weights: 0.0001
- drive_weights_thresh: 0.5
+ drive_weights_thresh: 0.35

l1_norm_update: 10.0

Listing 20: Parameter file with ρ = 2 and Mostafa formula, given as difference to Listing 18.
Results shown in Figs. 8.8 and 8.9, and for an average of five consecutive runs in
Fig. 8.7.
Code of git commit 9b36f63198f833924ec74cdb797a09a317a3e322
nmpm_software/2019-01-14-1
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@@ -10,3 +10,3 @@
save_every_x_batches: 10

- tau_m: 10.0
+ tau_m: 20.0

5 tau_ref: 20.0
@@ -16,3 +16,3 @@
config:
- data: patterns_bal
+ data: patterns_bal_inv

10 eval_level:
@@ -22,3 +22,3 @@

- plot_voltages
- gradient_function: 1
+ gradient_function: 0

15 input_popsize: 1

@@ -55,5 +55,5 @@
V_th: -10.0

- g_L: 0.02
+ g_L: 0.01

20 t_ref: 20.0
- tau_m: 10.0
+ tau_m: 20.0

tau_syn_ex: 10.0
@@ -69,3 +69,3 @@

25 drive_weights: 0.0001
- drive_weights_thresh: 0.5
+ drive_weights_thresh: 0.35

l1_norm_update: 10.0

Listing 21: Parameter file with ρ = 2 and Mostafa formula, given as difference to Listing 18.
Results shown in Figs. 8.10a, 8.10b and 8.11.
Code of git commit 28bac7762106ad7b5229581f371a4ea3dca0294c
nmpm_software/2019-01-24-1

@@ -10,3 +10,3 @@
save_every_x_batches: 10

- tau_m: 10.0
+ tau_m: 20.0

5 tau_ref: 20.0
@@ -16,3 +16,3 @@
config:
- data: patterns_bal
+ data: mnist_smallest

10 eval_level:
@@ -22,3 +22,3 @@

- plot_voltages
- gradient_function: 1
+ gradient_function: 0

15 input_popsize: 1
@@ -36,2 +36,3 @@

num_samples: 50
+ trainingOrTesting: testing

truncated_spread: 0.5
20 @@ -42,2 +43,3 @@

num_samples: 50
+ trainingOrTesting: training

truncated_spread: 0.5
@@ -55,5 +57,5 @@

25 V_th: -10.0

- g_L: 0.02
+ g_L: 0.01

t_ref: 20.0
- tau_m: 10.0

30 + tau_m: 20.0
tau_syn_ex: 10.0

@@ -69,9 +71,11 @@
drive_weights: 0.0001

- drive_weights_thresh: 0.5
35 - l1_norm_update: 10.0

- l1_norm_update_final: 0.0
+ drive_weights_factor: 1.5
+ drive_weights_thresh: 0.35

l2_regulizer: -0.003
40 learning: 0.05

- threshold_frob: 0.0
- threshold_frob_final: 0.0
+ norm_grad_frob: 0.0
+ norm_grad_l1: 0.0

45 + norm_grad_l2_colwise: 0.0
+ norm_grad_lsup: 0.0
+ norm_update_l1: 10.0

update_wsc: 0.0

Listing 22: Parameter file with ρ = 2 and Mostafa formula, given as difference to Listing 18.
Results shown in Figs. 8.12 to 8.14.
Code of git commit 127f0d9460733debb489ea29dbbdfa5c645b6496
nmpm_software/2019-01-24-1
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