
Department of Physics and Astronomy
University of Heidelberg

Bachelor Thesis

in Physics

submitted by

Marco Rettig

born in Heppenheim, Germany

May 2019

Characterizing the Event Interface of the
HICANN-X

This Bachelor Thesis has been carried out by Marco Rettig at the

KIRCHHOFF INSTITUTE FOR PHYSICS

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

under the supervision of

Dr. Johannes Schemmel

Abstract

In the course of this thesis, the Playback Executor HDL module of the HICANN-X event

interface was equipped with functions that enable the time-coordinated sending of events

to the HICANN as well as the chronological classification of the events returned by the

HICANN. In the main part of the thesis, the event drop rate and the jitter during transport

of event data through the event interface depending on the biological input event rate were

investigated using HDL simulations. The investigation revealed that the drop rate increases

at biological input event rates from 130 kHz. The variation of the time span for the transport

of event data from the Playback Executor to the SPL1 links in the HICANN is much smaller

than the accuracy of the membrane time constant of the neurons achievable through calibra-

tions. The influence of the event transport on the precision of spike experiments is therefore

negligibly small. The event losses can be traced back to an inefficient event packing in the

HICANN-X chip and can probably be significantly reduced by an additional event packing

in the L2 module of the FPGA.

Im Rahmen dieser Thesis wurde das Playback Executor HDL Modul des HICANN-X Event

Interfaces mit Funktionen ausgestattet, die das zeitkoordinierte Senden von Events zum HI-

CANN sowie die zeitliche Einordnung der vom HICANN zurueckgesendeten Events er-

moeglichen. Anschliessend wurden die Eventdroprate und der Jitter beim Transport von

Eventdaten durch das Event Interface in Abhaengigkeit der biologischen Input Eventrate

mittels HDL Simulationen untersucht. Die Untersuchung ergab, dass die Droprate bereits

bei biologischen Input Eventraten ab 130 kHz ansteigt. Die Schwankung der Zeitspanne

fuer den Transport von Eventdaten vom Playback Executor zu den SPL1 Links im HI-

CANN ist wesentlich kleiner als die mittels Kalibrationen erreichbare Genauigkeit der

Membranzeitkonstante der Neuronen. Der Einfluss des Event Transports auf die Genauigkeit

von Spike Experimenten ist somit vernachlaessigbar gering. Der Eventverlust ist auf inef-

fizientes Eventpacking im HICANN-X Chip zurueckzufuehren und kann durch weiteres

Eventpacking im L2 Modul des FPGA vermutlich deutlich reduziert werden.

1

Contents

1 Introduction 3
1.1 Neuromorphic Hardware . 3
1.2 Motivation . 3
1.3 Thesis Outline . 4

2 The Playback Executor 5
2.1 Function Specification . 5
2.2 Data Traffic Regulation . 6

2.2.1 Regulation of Downstream Data Traffic 6
2.2.2 Regulation of Upstream Data Traffic 8

2.3 Synchronization of HICANN and FPGA Time 11
2.4 Timing of Spike Events . 13

2.4.1 Timestamping of Fire Commands . 13
2.4.2 Reconstruction of Event Times . 14

3 Characterization of the Event Interface 16
3.1 Content of the Analysis . 16
3.2 Experimental Design . 17

3.2.1 Input Spike Train Generation . 17
3.2.2 Input Spike Train Modification . 18
3.2.3 Input Spike Train Conversion . 21
3.2.4 Determination of Drop Rates and Latencies 22

3.3 HDL Simulation Results . 24
3.3.1 Drop Rate . 24
3.3.2 Latencies and Jitter . 27

4 Discussion & Outlook 37
4.1 Summary . 37
4.2 Discussion of the Results . 37
4.3 Outlook . 38

Bibliography 40

2

1 Introduction

1.1 Neuromorphic Hardware

The human brain is characterized by an energy-efficient information processing, a high learning
ability and fault tolerance [1, 4]. The neuromorphic computing field of research is dedicated to
the investigation of its functioning and the development of a wide range of applications which
are based on a recreation of the brain’s neural networks. When implementing artificial neural
networks, two fundamental principles can be distinguished: The classical method is based on
simulating the behaviour of neurons and synapses on digital Von-Neumann computers using
numerical models. The Electronic Vision(s) group at the University of Heidelberg, in contrast,
follows an alternative approach by implementing a physical neuron model as analog electrical
circuits that allow for the emulation of neural networks [7]. The circuits are implemented as
very large scale integration circuits (VLSI) and mounted on microchips [2]. The HICANN-
X (High Input Count Analog Neural Network) chip represents the most recent version of the
neuromorphic hardware developed by the group and is currently in the manufacturing process.

1.2 Motivation

The HICANN-X chip is intended to enable the execution of neuroscientific experiments aimed
at investigating the learning processes of the human brain. In these experiments, individual
neurons on the chip are stimulated by electrical pulses sent by the user. The sharp increase
in the membrane voltage of a neuron during stimulation is also referred to as spike or event
and can trigger the stimulation of further neurons depending on the parameters selected in the
experiment. The spike behaviour of a neuron is largely determined by the spike or event times
of the other neurons which are connected to this neuron. It is therefore of central importance for
the execution and analysis of the experiments that the user can stimulate the selected neurons at
specified times and knows which other neurons were stimulated at which times by subsequent
spikes. Consequently, the event interface of the chip used for the communication between the
user and the neurons must allow the transport of the address data of individual neurons as well as
the data of their event times. A fundamental characteristic of the analog neuron implementation
is that they evolve autonomously in a continuous time domain so that their spike behaviour is not
reproducible. If the generated event data is not immediately processed by the event interface,
data losses may occur. As the spike behaviour of the neurons is accelerated by a factor of
≈ 103 compared to their biological equivalents, a large amount of events are generated in a
short time during the experiments. For this reason, the event interface must enable high data
transfer rates while minimizing data losses. In the ideal case, the time required to transport
event data to the neurons should remain constant regardless of the event rate. The major goal
of this thesis is to characterize the transport of event data through the event interface of the
HICANN-X chip by investigating the explained properties. Before that, however, the Playback

3

Executor HDL module of the interface is extended by missing functions that enable the time-
coordinated sending of events to the HICANN as well as the chronological classification of the
events returned by the HICANN. As the chip is still in the manufacturing process, the event
interface will be tested using HDL simulations.

1.3 Thesis Outline

In the following chapter the general functioning of the communication with the HICANN-X
chip via the Playback Executor HDL module as well as the functions of the module that are
relevant for the event transport through the event interface are explained. Chapter 3 deals with
the actual characterization of the event transport through the event interface. To this end, the
analyzed aspects and the approach followed in the investigation are first described. Thereafter,
the preparatory steps that are relevant for obtaining valid results as well as the calculation of
the quantities considered in the analysis are explained. In the last part of the chapter, the results
of the analysis are presented. Chapter 4 summarizes the content of this thesis before the results
of the analysis are discussed. Finally, possible further measures will be outlined which could
improve the event transport through the event interface.

4

2 The Playback Executor

2.1 Function Specification

Communication with the HICANN takes place via a specially designed FPGA (Field Pro-
grammable Gate Array) containing various interacting modules which are illustrated in Figure
1. The intended function of the Playback Executor is thereby to control the bidirectional data
transfer between the user and the chip. It will receive sequences of encoded index-data pairs
from the network, which need to be decoded and then either directly forwarded to the appro-
priate downstream module or modified beforehand. The decoded index of an index-data pair
thereby indicates which exact action is to be executed. Conversely, the downstream modules
will also deliver data to the Executor that originates from the HICANN. This data is to be en-
coded and forwarded to the network along with an index that provides information on the type
of the data. The Executor must be able to handle the simultaneous arrival of data from multiple
modules, taking different data priorities into account.

Figure 1: Integration of the Playback Executor into the FPGA communication infrastructure.

5

Since the HICANN will be used to perform spike experiments where the timing of individual
spikes is of central importance, precise time tracking must be ensured. This requires a global
time counter as well as a mechanism for the synchronization of the HICANN and FPGA time.
The Executor must regularly send an update of the current system time to the user so that he can
classify all received data into a chronological order. The reduction of the transmission capacity
for payload data by sending system time updates is to be kept as small as possible while at
the same time a sufficiently accurate time tracking must be guaranteed. The modification of
index-data pairs sent by the network as mentioned in the previous section primarily affects the
so-called fire index-data pairs, which trigger the spiking of selected neurons on the HICANN.
They must be equipped with a current timestamp before forwarding, which is used to align the
latency of all fire signals. The spike data returned by the HICANN contain timing information
as well, which must be retained by the Executor until it can be forwarded to the network.

2.2 Data Traffic Regulation

For simplification, the direction of the data flow from the user to the HICANN is hereinafter
referred to as downstream and the reverse direction accordingly as upstream.

2.2.1 Regulation of Downstream Data Traffic

In the direction to the HICANN, the Executor only receives data from the Host ARQ. Each
data package is thereby tagged with an index, which corresponds to an instruction that is to be
executed. The instructions for downstream data can be classified into five different categories:

1. To_jtag instructions: They trigger a simple forwarding of the supplied data to the JTAG
interface. The latter transmits data to and from the ut_jtag_driver which operates the
JTAG TAP (Test Access Port) on the HICANN. Since the ut_jtag_driver is able to per-
form four different operations [6], the Executor must support an appropriate number of
instructions. In each case, the received index and data package (if provided) are forwarded
to the JTAG interface.

2. Exec_timing instructions: They initiate timing related processes inside the Executor. This
includes:

• A reset_time instruction: It initiates the reset of a sleep counter needed for the
wait_until instruction.

• A wait_until instruction: It causes the Executor to pause accepting new data pack-
ages from the Host ARQ until the sleep counter reaches a specified value. This
instruction is very important for generating spike sequences with defined waiting
times between individual fire commands.

6

• A systime_init instruction: It triggers the synchronization of the HICANN and
FPGA system time. As part of this synchronization, the Executor resets the FPGA
system time and sends a signal to the HICANN, which then resets the HICANN
internal time and sends a response signal back. The Executor then uses this re-
sponse signal to align both times. The exact implementation of the synchronization
mechanism is described in Chapter 2.3.

3. Exec_system instructions: They currently include one instruction that triggers the reset of
all modules downstream of the Executor including the HICANN.

4. To_l2 instructions: They trigger a forwarding of the supplied data to the L2 module and
comprise the previously mentioned fire instructions. These fire instructions contain infor-
mation about which neurons on the HICANN are to be stimulated and which of the four
SPL1 links in the HICANN is to be used for transmitting the fire signal to the respective
neuron. The implemented FPGA design allows to send up to three fire commands per
data package. The number of fire commands contained in a data package is communi-
cated to the Executor via the supplied index. As a result, three different indices and thus
three different fire instructions are required. Before the Executor forwards a received fire

data package to the L2 module, a current timestamp is attached to each fire command
contained in the package, which is used to minimize the jitter (i.e. variations of the signal
transmission times) on the way from the Executor to the HICANN. This is explained in
detail in Chapter 2.4.1.

5. To_omnibus instructions: They also trigger a simple forwarding to the omnibus tree on
the FPGA, which is used to send data to different modules or to read back data from
these modules. For this purpose, a data package with the target address of the relevant
module and a further bit that signals a read or write operation, is sent to the Executor.
In the case of a write operation, a second package with the actual data follows. The
Executor forwards the packages to the omnibus tree, which finally transports them to the
desired module. This transmission channel is used, for instance, to set up the highspeed
connection between the FPGA and the HICANN.

An overview of the described instruction types for downstream data is shown in Figure 2.

If the Host ARQ sends a data package destined for a module which currently cannot accept
new data because it is still busy with processing already received data, the Executor must refuse
to accept the new data package until the target module has free capacity again. Otherwise the
already received data would be overwritten by the new data and would thus be lost. This is
avoided by using so-called blocking ut-interfaces which are integrated between the Executor
and most of the adjacent modules. In addition to the idx and data bus for transmitting the
indices and data, these ut-interfaces also feature a valid and a next line which are used by the

7

Figure 2: Downstream instruction types.

involved modules to coordinate the data transfer: If the sender module wants to transmit data
to the receiver module, it sends a valid signal. If the receiver module can accept the data,
it communicates this by sending back a next signal. Only when this valid-next-handshake is
completed, the actual data is transmitted [5]. In the RTL code, the ut-interfaces are connected in
a way that the next signal of the interface between the Decoder and the Executor is triggered by
the next signal of the interface between the Executor and the corresponding downstream module.
This ensures that the Executor only accepts a new data package intended for a subsequent
module if the latter can receive further data.

2.2.2 Regulation of Upstream Data Traffic

In upstream direction the Executor receives data from three different modules. If several mod-
ules are sending data simultaneously, the Executor must give priority to one module, since it
can only forward one data package per clock to the Host ARQ. The JTAG interface and the om-
nibus tree on the FPGA exclusively transport data that originates from clocked and thus digital
modules. By using blocking ut-interfaces on the entire transport route from these modules to
the Executor, it can be ensured that even in case of a congestion no data is lost. In contrast, the
spike data is generated by neurons, which are implemented on the HICANN as analog circuits
and are therefore not controlled by a clock. If this spike data is not directly forwarded after its
generation, it is lost. Even the exclusive use of blocking ut-interfaces could not prevent this,
because in case of a congestion in the entire digital part of the transport route, the newly gen-
erated spike data would already be lost in the HICANN at the transition from the analog to the
digital area. The spike data, which is forwarded to the Executor via the L2 module, is there-
fore assigned the highest priority in order to minimize the probability of a congestion during
transport. The data arriving via the JTAG interface and the omnibus tree are treated secondarily.

8

However, they have the same priority relative to each other.

The data sent to the Host ARQ must be arranged in a chronological order. The data packages
themselves however do not contain any information about the time of their arrival at the Execu-
tor: Although the spike data is provided with a timestamp, that timestamp only documents the
time of the registration of a spike event at one of the four SPL1 links in the HICANN. Conse-
quently, the Executor must regularly send updates of the current system time to the Host ARQ
in addition to the payload data coming from the modules. The sequence in which the various
data are sent to the Host ARQ is determined using a finite state machine (FSM) in combination
with an arbiter, as illustrated in Figure 3.

Figure 3: Regulation of upstream data traffic.

If the JTAG interface and the omnibus are sending data at the same time, the arbiter determines
in which order the data is forwarded to the FSM. The arbitration happens according to the
round-robin method, i.e. the two modules alternately get access to the FSM and are therefore
treated equally. The FSM thus receives JTAG or omnibus data transmitted by the arbiter as well
as spike data (hereinafter referred to as event data) from the L2 module. When synchronizing
the HICANN and FPGA time, the latter also forwards the response signal returned by the HI-
CANN, which is used to adjust the system time counter.

The FSM comprises an Idle, a Time and a Data state. After a system reset and when no
upstream data is present at the Executor, the FSM is in the Idle state. As soon as at least one
of the three input modules is sending data, a transition to the Time state is made. In this state,
the Executor sends either the full current system time or a system time differene. The latter
is determined by means of a separate counter which is reset during a system reset and at each
transition of the FSM from the Data to the Idle state and thus indicates the time span between
the last completed data transfer and the transmission of the new data package. The counter is
eight bits wide and can therefore measure a time difference of up to 255 FPGA clocks. Unless
this maximum value is reached, the system time difference is sent instead of the full system time

9

as it occupies a smaller number of bits. At the software level, it can be added to the previous
system time value to obtain the absolute time of transmission of the new data package. If the
counter however has reached the maximum value or no data package has been transferred to the
Host ARQ since the system reset, the full system time is sent. As soon as the Decoder/Encoder
initiates the transfer of the system time update by sending the next signal, the FSM switches to
the Data state. In this state, the data packages sent by the arbiter and the L2 module are for-
warded to the Decoder/Encoder taking their priority into account. Under normal circumstances,
one data package is sent every FPGA clock until no more data is available. Consequently, the
system time at the software level can be updated by a simple incrementation each time a new
data package is received, without having to rely on interim system time updates from the Ex-
ecutor. This keeps the transmission capacity for payload data at a maximum. If not only the
L2 module but also the JTAG interface or the omnibus are sending data to the Executor, the
event data is always forwarded first due to its higher priority. If the L2 module permanently
sent event data, the arbiter data would be held back until the event data stream stops (i.e. until
the L2 module does not send any event data for at least one clock). In order to avoid very long
waiting times of the arbiter data, an event_ratio was introduced, which allows to regulate the
ratio of event data to arbiter data. For this purpose, an event_ratio counter is incremented after
each forwarded event data package. When the value of this counter corresponds to the specified
event_ratio, the event data stream is interrupted for one clock to transmit an arbiter data pack-
age. The counter is then reset and the event data stream is further processed. If no arbiter data
is available at the time of reaching the event_ratio, the counter is also reset and the event data
stream is further processed without interruption. For the currently used FPGA configuration an
event_ratio of 255 was selected. Once the data packages of all modules have been forwarded
(i.e. there is no data at any of the input ports for at least one clock), the FSM returns to the Idle

state.

In case of a very long coherent event data stream towards the Executor, a congestion above
the Executor can occur. It is then no longer possible to send a data package every clock. When
at the software level a data package is received again after an interruption due to a congestion,
the system time is only increased by one, although the actual system time in the Executor may
already have advanced by several clocks. With increasing congestion length the software and
hardware system times would diverge further and further. For this reason, a transition of the
FSM from the Data state back to the Time state was inserted: Whenever the Executor wants
to send data in the Data state (encode.valid), but the Decoder/Encoder cannot receive data due
to a congestion (!encode.next), the FSM moves back to the Time state and sends a system
time update at the next opportunity, before it returns to the Data state and continues with the
forwarding of event data. This keeps the software and hardware system times synchronous,
which, however, reduces the transmission capacity for payload data and leads to an increase in
the event droprate. The described state transitions of the FSM are shown again in Figure 4.

10

Figure 4: State transitions of the upstream finite state machine.

2.3 Synchronization of HICANN and FPGA Time

The Executor and the digital part of the HICANN are clocked by separate clocks with different
frequencies. Both are equipped with counter modules, which are incremented at each clock and
thus generate their own system time. In order to ensure an exact timing when stimulating the
neurons and to be able to trace their spike behaviour, however, a global system time must be
defined from which the FPGA and HICANN system times can be derived. Since communica-
tion between the Executor and the Host ARQ happens according to the FPGA time, the latter
was selected as the global system time. To determine the HICANN time at a given FPGA time
and vice versa, both times must be synchronized. The synchronization process which is trig-
gered by the systime_init instruction described in Chapter 2.2.1 is shown in Figure 5a: Before
synchronization (t < t0), both system times are in an unknown, arbitrary relation to each other.
When the Executor receives the synchronization command from the Host ARQ in the form of
the corresponding index at time t0, it resets the FPGA time and sends a signal towards the HI-
CANN. This signal arrives at the HICANN at time t1, which then resets its system time and
sends a response signal back. Shortly after the reset, the HICANN time is yet smaller than the
FPGA time, as the latter was already restarted at time t0. But unlike the FPGA clock, which has
a frequency of only 125 MHz, the HICANN clock runs with a frequency of 250 MHz. Assum-
ing identical signal transmission times ∆t from the Executor to the HICANN and the way back,
both system times must match exactly when the response signal arrives at the Executor at time
t2, since the FPGA time has been running twice as long, but only half as fast as the HICANN
time. If now the FPGA time is halved, this corresponds to a displacement of its reset time from
t0 to t1, which thus is identical for both system times. Consequently the HICANN time is from
now on exactly twice as large as the FPGA time, which allows for an easy conversion.

11

Figure 5: Synchronization of HICANN and FPGA time.

If, on the other hand, the signal transmission times for both ways are different, HICANN
and FPGA time will not be identical at time t2. As it turned out during the implementation of
the synchronization process, the signal transmission time from the Executor to the HICANN
is smaller than for the opposite direction (Figure 5b). In this case, the HICANN time lies
above the FPGA time at time t2. In order to still obtain a time ratio of exactly two directly
after synchronization, half of the difference ∆t3 between the HICANN time and the unmodified
FPGA time (tsync) must be added to the halved FPGA time (tsync/2). During implementation a
difference of ∆t3 = 10 FPGA clocks could be determined. For the adjusted FPGA time at time

12

t2 therefore applies:

tad j
FPGA =

tHICANN

2
=

tsync

2
+

tHICANN − tsync

2
(1)

=
tsync

2
+

∆t3
2

(2)

=
tsync

2
+5 (3)

2.4 Timing of Spike Events

2.4.1 Timestamping of Fire Commands

The transmission time of a fire data package from the Executor to the HICANN depends on
the data traffic density as well as on the number of fire commands contained in the data pack-
age. To be able to stimulate the neurons in the HICANN independently of these factors with
the time intervals specified via the wait_until instruction, all fire commands of a data package
are equipped with a timestamp in the Executor before forwarding (Figure 6). This timestamp
contains the lower eight bits of the current FPGA time converted to HICANN time. Compared
to the full FPGA time, this saves 34 bits per fire command, allowing the fire data package to
be transported much faster to the HICANN via one of the highspeed lines. When the package
arrives at one of the L2 links in the HICANN at time tL2

receive, the provided timestamp is used
to determine the time tExec

send at which it was submitted at the Executor. To this submission time,
a configurable timespan ∆tspec is added. This yields an earliest time tL2

release at which the fire

commands contained in the package are forwarded to the corresponding SPL1 link [8]:

tL2
release = tExec

send +∆tspec (4)

If the transport time of the package from the Executor to the L2 links in the HICANN is below
∆tspec, tL2

receive will be smaller than tL2
release. In this case, the fire commands contained in the

package are held back until tL2
release is reached. Otherwise they are directly forwarded because

tL2
release is already exceeded at their arrival. The timespan between leaving the Executor and

forwarding at one of the L2 links in the HICANN is therefore the same for all fire commands
regardless of the abovementioned factors, as long as their transport time is less than ∆tspec.
∆tspec can thus be used to determine to which extent the jitter on the way from the Executor to
the L2 links in the HICANN should be reduced: The larger ∆tspec is chosen, the lower the jitter
will be, but the smaller will also be the maximum data transfer rate, since fewer fire commands
per time unit can be transported due to the longer delay at the L2 links.

13

Figure 6: Timestamping of fire commands.

2.4.2 Reconstruction of Event Times

To be able to trace the spike behaviour of the neurons, their event data is also timestamped on
the way to the Executor when arriving at the SPL1 links in the HICANN. In favour of the data
transfer rate, the timestamp again contains only the lower eight bits of the current HICANN
time. The time at which the timestamp is attached is hereinafter referred to as event time tevent

and is of central importance for the analysis of the performed spike experiments. When an event
data package arrives at the software level at time treceive, the event times of the contained events
can be reconstructed using treceive and the attached timestamps. The reconstruction can be un-
derstood with the help of Figure 7: The left side of Figure 7a shows as an example the lower
bits of an event time in FPGA time. The lower seven bits thereby correspond to the converted
timestamp, since the highest bit of the original timestamp is omitted during conversion from
HICANN to FPGA time. While the timestamped event data package is transported from the
SPL1 link in the HICANN to the software level, the lower bits of the system time change by ∆t
(Figure 7a on the right). If now the lower seven bits of treceive are replaced by the bits contained
in the timestamp, the progress of the system time is undone, resulting in the event time again.

If, however, the event data arrives at the SPL1 links shortly before a rollover of the lower
seven bits of the system time (Figure 7b on the left), more significant bits (highlighted in red)
will also have changed at time treceive. In principle, arbitrary more significant bits of the system
time register can change, depending on the bit constellation at time tevent. In this case, replacing
the lower seven bits with the timestamp is not sufficient to reconstruct tevent. Then the rollover
must also be undone by changing the more significant bits (i.e. all bits above the seventh bit)
so that the number formed from them is one smaller than before the change. Whether this ad-
ditional operation is required can be determined by comparing the timestamp with the number
formed by the lower seven bits of treceive: If the timestamp is smaller (see Figure 7a), it is suf-
ficient to replace the lower seven bits. If it is larger (see Figure 7b), a rollover must inevitably

14

have occurred, which must also be corrected accordingly.

However, the reconstruction using this comparison only works correctly as long as ∆t is
smaller than ∆tcrit = 128 FPGA clocks. At longer time spans, which can occur in case of a
congestion between the SPL1 links in the HICANN and the Host ARQ, at least one bit above
the seventh bit will always change. If then in addition the timestamp is smaller than the number
formed from the lower seven bits of treceive (see Figure 7c), the comparison erroneously yields
that no rollover has occurred. Consequently, only the lower seven bits of treceive are replaced. In
order to avoid these faulty reconstructions, the more significant bits of tevent and treceive would
also have to be compared. But since the event data packages do not contain any information
about the more significant bits of the event time, this is not possible. For this reason, a large
congestion between the SPL1 links and the Host ARQ should be avoided if possible.

Figure 7: Reconstruction of event times.

15

3 Characterization of the Event Interface

The Executor was the last missing component of the FPGA communication infrastructure. Its
implemented functions now enable in particular the time-coordinated sending of fire commands
to the HICANN as well as the reception of the returned event data and their classification into a
chronological sequence. This allows to investigate to what extent the event interface consisting
of the FPGA communication infrastructure and the digital part of the HICANN fulfills the
criteria which are relevant for performing spike experiments. This investigation is dealt with in
this chapter.

3.1 Content of the Analysis

The goal of the analysis is to gain an exact knowledge of how the droprate and jitter of the sys-
tem consisting of the FPGA communication infrastructure and the digital part of the HICANN
behave at different input spike rates, spike distributions and values of ∆tspec (see Chapter 2.4.1).
In particular, the maximum data transfer rate that can be achieved with a negligible droprate
and jitter is to be determined. For this purpose, all FPGA modules and the relevant digital part
of the HICANN are tested using HDL simulations. For the tests, input spike trains are gener-
ated at the software level, which contain a large number of fire times in ascending order. These
input spike trains are then modified according to a certain system in order to adapt them to the
specific hardware properties of the FPGA communication infrastructure (see Chapter 3.2.2).
At the times tsend contained in the modified input spike trains, spikes are then submitted in the
form of fire data packages (see Chapter 3.2.3). Each spike i is thereby assigned a different
neuron address, which corresponds to the position of tsend, i in the modified spike train. The
route of the fire data packages through the simulated system is shown in Figure 8: Arriving at
the Decoder/Encoder, they propagate through the FPGA communication infrastructure and via
the highspeed connection to the HICANN. On the HICANN they pass through the L2 module
and the routing interface between the L2 module and the SPL1 level. Behind the SPL1 links
they are looped back and timestamped (see Chapter 2.4.2) when passing the links again at time
tevent. Then they propagate back through the system and arrive at the software level again at
time treceive.

By comparing the number of sent and received spikes the droprate can be determined (see
Chapter 3.2.4). Since the received spikes also contain the neuron address assigned to them
during submission in addition to the timestamp, it is moreover possible to check which spikes
were lost on the way. Furthermore, each received spike i can be assigned its submission time
tsend, i, its event time tevent, i and its reception time treceive, i. From these times it is possible to
determine the time spans needed to pass through the corresponding sections of the system (see
Chapter 3.2.4). By comparing the time spans of different spikes of the same spike train and by
comparing the average time spans of spike trains with a different (mean) spike rate, it is finally
possible to make statements about the jitter behaviour.

16

Figure 8: Event tracing.

3.2 Experimental Design

3.2.1 Input Spike Train Generation

For the tests input spike trains with Poisson-distributed ISIs (Inter Spike Intervals) are generated
in order to keep the input spike sequences as divers as possible. For comparison purposes spike
trains with uniform ISIs are generated as well. In both cases, the structure of a spike train is
determined by indicating the (mean) spike rate and the number of spikes. The selected spike
rates should cover a broad spectrum and should also contain high rates, which lead to a full
utilization of the highspeed connection. In this way it can be determined whether the highspeed
connection itself or other sections of the system represent the bottleneck of the communication
infrastructure. Since each fire data package contains exactly eight further bits in addition to the
timestamps, neuron and l1 addresses, up to four bytes are required to transmit the data for one
spike. As the maximum data transfer rate of the highspeed connection is 1 GB/s, it can already
be saturated from a critical spike rate of

RRT
crit =

1 GB/s
4 B

= 250 MHz. (5)

However, it must be taken into account that the spike behaviour of the neurons implemented on
the HICANN is accelerated by a factor of 103 compared to their biological equivalents. Since
the future spike experiments will investigate the behaviour of the neurons on a biological time
scale, the spike times of the input spikes will be formulated in biological time. For this reason,
the spike times and spike rates defined in this analysis are also based on the biological time
scale. The following applies when converting the spike rates from real time to biological time:

RBio =
RRT

1000
(6)

The critical spike rate in biological time is thus 250 kHz. Accordingly, the biological spike rate
for the tests will be increased from 5 to at least 250 kHz in 5 kHz steps.

For the jitter analysis a maximum number of spikes per spike train of 214 - 1 = 16,383 is

17

defined, which results from a maximum admissible neuron address length of 14 bits (see Figure
6). In this way, confusions in the allocation of submission and reception times of the spikes
due to repeatedly assigned neuron addresses are avoided. For an easier automation of the test
execution, the number of spikes of a spike train n is chosen in such a way that for each spike
train the same time is needed to send the contained spikes, independent of its spike rate. For n,
the following applies:

n = RBio ∗ tBio = RRT ∗ tRT (7)

The duration tBio is determined by specifying the number of spikes ncrit of the 250 kHz spike
train. For this a value of ncrit = 12,500 was chosen which leads to a duration of:

tBio =
ncrit

RBio
crit

=
12,500
250 kHz

= 0.05 s (8)

The number of spikes as a function of the biological spike rate is therefore:

n(RBio) = RBio ∗0.05 s (9)

For the droprate analysis, the number of spikes per spike train is also determined using
equation (7). It may also exceed the specified maximum value of 16,383 since the allocation of
submission and reception times is irrelevant for determining the droprate. Accordingly, higher
input spike rates may also be chosen. Although it can be assumed that at higher input spike
rates than the critical spike rate the droprate will increase significantly, the biological spike rate
is varied up to 500 kHz in order to illustrate the development of the droprate.

3.2.2 Input Spike Train Modification

The Executor is clocked by the FPGA clock and thus accepts data packages only at positive
edges of the clock signal, i.e. every 8 ns (real time) or 8 µs (biological time). The spikes can
therefore not be sent exactly at the generated spike times, but only at times that correspond to a
multiple of the duration of a clock cycle. In order for the time spans calculated during the anal-
ysis to reflect the actual duration of the transport of the fire data packages through the simulated
system, their submission times contained in the spike trains must be adjusted accordingly. For
this purpose, each submission time is rounded down to the next smaller multiple of the duration
of a clock cycle in biological time. This step is hereafter referred to as discretization and is
shown in Figure 9 for the first spikes of a fictitious Poisson input spike train. Each spike is
labelled with an index i, which corresponds to the position of its spike time in the original spike
train.

18

Figure 9: Spike train discretization.

However, at high input spike rates not all spikes will be submitted at the times contained in
the discretized spike train. This is for two reasons:

1. The Executor can accept and forward a maximum of three fire commands per clock cycle.
If, after the discretization, more than three spikes share the same submission time, the
excess spikes will inevitably be submitted at later times.

2. The highspeed connection is operated from the FPGA side with a frequency of 125 MHz
(real time). From the maximum data transfer rate of the highspeed connection it follows
that per clock cycle a data volume D of

D =
1 GB/s

125 MHz
= 8 B (10)

can be transferred to the HICANN and thus on average only two spikes per clock cycle
can be forwarded from the Executor to the highspeed connection. Though there are buffer
stages integrated between the Executor and the highspeed connection, so that short-term
exceedances of this average number do not affect the submission times. A longer overrun,
however, causes a congestion from the highspeed connection to the Executor, which can
then no longer accept new spikes every clock cycle. Then subsequent spikes will be
delayed.

For spike trains with uniform ISIs, these delays will only occur above an input spike rate of
two spikes per clock cycle, which is equivalent to the critical biological spike rate of 250 kHz.
Since, for the jitter analysis, the (mean) biological spike rate is only varied up to 250 kHz, the
uniform spike trains will not be subject to any delays. The Poisson spike trains, on the other
hand, can show sporadic biological spike rates above 250 kHz already at average spike rates of
less than 250 kHz. They may well be subject to delays, which distort the calculated time spans.
To prevent this, the spike distributions of the discretized input spike trains are modified in such
a way that no delays occur at high spike rates.

19

With this modification different approaches can be pursued, which differ on the one hand in
which spikes are modified. The following two options can be considered:

1. A maximum of two spikes per clock cycle is admitted. The times of all other spikes will
be modified.

2. Temporarily up to three spikes per clock cycle are admitted. By specifying a maximum
admissible number of spikes within a certain period it is ensured, however, that related to
this period on average a maximum of two spikes per clock cycle are submitted. The times
of those spikes which are still within the specified period, but would increase the average
spike rate to over two spikes per clock cycle, will be modified.

The first option has the disadvantage that the variability of the ISIs of Poisson spike trains with
high spike rates will be partly lost, because sporadic spike rates of more than two spikes per
clock cycle are suppressed. Therefore, the second option was chosen to determine the spike
times to be modified for this analysis. From the size of the buffer stages between the Executor
and the highspeed connection, a maximum admissible number of 16 spikes within eight con-
secutive clock cycles was derived.

Furthermore, there are several ways to modify the affected spikes:

• Reduction: The affected spikes are removed from the spike train. This causes some spikes
to be lost before submission, but apart from the deviations due to the discretization, the
submission times of the remaining spikes correspond to the originally determined times.

• Cascading: The affected spikes are shifted to later submission times. Thus no spikes will
be lost before submission, but the distribution of the spikes within the spike train becomes
more and more homogeneous. In the worst case, the Poisson spike train corresponds to a
uniform spike train after modification, which has lost its entire structure.

All modification variants result in biological spike rates of more than 250 kHz being reduced
to an average of 250 kHz. With the spike trains modified via the Cascading method, however,
more spikes are sent over a longer period at this reduced rate, since no spikes are removed dur-
ing modification, but only shifted to later times. If there are losses when passing through the
system, these losses will be higher than with the spike trains modified via the Reduction method,
since the same loss rate is maintained over a longer period. Thus the Cascading variant loses
its advantage of a lower spike loss, but still has the disadvantage of a higher structural loss. For
this reason the Reduction method was chosen for modifications within this analysis.

The detailed modification procedure is shown in Figure 10 for the first spikes of the dis-
cretized fictitious spike train. The numbers above the spike indices indicate the number of
spikes already contained in the 64 µs interval at the respective time. First of all it is ensured that

20

a maximum of three spikes share the same submission time. If there are more than three spikes,
those three spikes are retained whose times in the original spike train lay before the times of the
other spikes. All other spikes are removed. In the second step, the number of spikes contained
in the interval is reduced to 16. Of the remaining spikes, those 16 spikes are retained whose
times in the original spike train lay before the times of the other spikes. All other spikes are
removed.

Figure 10: Spike train modification.

3.2.3 Input Spike Train Conversion

The Executor can only further process the received data correctly if the data is sent in the form
of the defined instructions (see Chapter 2.2.1). Consequently, the modified spike trains must
be converted into sequences of different instructions. The adherence to the defined submission
times is realized with the help of the wait_until instruction. First a reset_time instruction is
generated, which causes a reset of the sleep counter of the Executor. In order to send a spike i
at the time tsend, i, a wait_until instruction is generated before the actual fire instruction, which
contains the submission time converted to clock cycles. When the Executor receives this in-
struction, it will only accept the subsequent fire instruction when its sleep counter, which is
incremented at every positive edge of the clock signal, has reached the communicated time.

During the generation of the fire instructions, each spike is assigned a neuron and SPL1
address. The neuron address is selected in such a way that it corresponds to the position of the
submission time send, i of the respective spike in the modified spike train, in order to be able to
determine spike specific time spans for the jitter analysis. The SPL1 address is assigned peri-
odically from zero to three. To be able to send several spikes at the same time, their neuron and
SPL1 addresses are grouped together in a single fire instruction (see Figure 6). The index of the
instruction is selected according to the number of contained spikes (see Chapter 2.2.1).

When sending spikes at consecutive clock cycles it must be taken into account that the Ex-
ecutor can only accept one instruction per clock cycle. Thus, one clock cycle will inevitably

21

elapse between the acceptance of two consecutive fire instructions so that no wait_until instruc-
tion must be inserted in-between. This would cause the second fire instruction to be accepted
with a delay of one clock cycle.

The conversion of the already discretized and modified fictitious spike train into a corre-
sponding sequence of instructions is shown in Figure 11. The order in which the instructions
are accepted by the Executor is indicated by the numbers on the left hand side of the instruction
block. For an easier identification of the single instructions, descriptive names are used instead
of the instruction indices.

Figure 11: Spike train conversion.

3.2.4 Determination of Drop Rates and Latencies

The spikes contained in an unmodified input spike train can get lost during modification of
the spike train and during transport through the system. For a more differentiated analysis,
a separate droprate is determined for each loss type. In both cases the number of lost spikes
is related to the number of spikes before the loss so that comparisons between different spike
rates can be made. The relative droprate Rmod, rel

d , which indicates the spike loss due to the
modification of a spike train, is:

Rmod, rel
d =

ninit −nsend

ninit
(11)

Here ninit corresponds to the number of spikes contained in the original spike train and nsend to
the number of spikes contained in the modified spike train. Accordingly, the relative droprate

22

Rtrans, rel
d , which describes the spike loss during transport through the system, is:

Rtrans, rel
d =

nsend −nreceive

nsend
(12)

Thereby nreceive corresponds to the number of spikes which were received again at the software
level. From these two rates the total relative droprate Rtot, rel

d can be determined using:

Rtot, rel
d = Rmod, rel

d +(1−Rmod, rel
d)∗Rtrans, rel

d (13)

=
ninit −nreceive

ninit
(14)

With the help of the available timing information (see Figure 8), the following latencies ∆ti
can be calculated for each spike i that neither got lost during the modification of the input spike
train nor during the transport through the system:

• ∆tExec/SPL1, i: The time span between its acceptance by the Executor after a successful
valid-next-handshake between the Decoder/Encoder and the Executor and its registration
at one of the SPL1 links in the HICANN.

• ∆tSPL1/Exec, i: The time span between its registration at one of the SPL1 links in the HI-
CANN and its acceptance by the Decoder/Encoder after a successful valid-next-handshake
between the Executor and the Decoder/Encoder.

• ∆tExec/Exec, i: The time needed for a complete traverse of the system, i.e. the time elapsed
between the corresponding valid-next-handshakes of the Decoder/Encoder and the Ex-
ecutor.

For the calculation, however, it must be taken into account that the transmission times tsend con-
tained in the modified spike trains refer to the value of the sleep counter of the Executor (see
Chapter 3.2.3), whereas the event times tevent and the reception times treceive refer to the value
of the system time counter. Although both counters are clocked by the FPGA clock, they are
reset at different times and thus generate different time bases. To be able to calculate the time
spans correctly, however, all three times must be expressed in a common time base. For this
purpose, it is ensured that the same time ∆toffset = 605 clock cycles elapses between the reset
of the system time counter and the sleep counter at all tests of this analysis. Using ∆toffset the
times can be transformed into a common time base.

The time spans are calculated in biological time. For this ∆toffset as well as the event and
reception times are converted from FPGA time to biological time. For ∆tBio

Exec/SPL1, i thus applies:

∆tBio
Exec/SPL1, i = tBio

event, i − tBio
send, i −∆tBio

o f f set (15)

= tevent, i ∗8− tsend, i −4,840 µs (16)

23

As the event and reception times refer to the same time base, ∆toffset is not required for calcu-
lating ∆tBio

SPL1/Exec, i:

∆tBio
SPL1/Exec, i = tBio

receive, i − tBio
event, i (17)

= (treceive, i − tevent, i)∗8 (18)

The time span for a complete traverse of the system ∆tBio
Exec/Exec, i corresponds to the sum of the

other two time spans:

∆tBio
Exec/Exec, i = ∆tBio

Exec/SPL1, i +∆tBio
SPL1/Exec, i (19)

= tBio
receive, i − tBio

send, i −∆tBio
o f f set (20)

= treceive, i ∗8− tsend, i −4,840 µs (21)

3.3 HDL Simulation Results

3.3.1 Drop Rate

In the first part of the analysis the behaviour of the drop rate depending on the biological input
event rate at different values of ∆tspec (see Chapter 2.4.1) was investigated for input spike trains
with uniform ISIs (hereafter referred to as linear spike trains) as well as for input spike trains
with Poisson-distributed ISIs.

Figure 12 shows the development of the relative drop rate Rmod, rel
d , which indicates the

event loss due to the modification of the spike trains, and the relative drop rate Rtrans, rel
d , which

describes the event loss during transport through the system, for linear (left) and Poisson spike
trains (right) at ∆tspec = 55.

Figure 12: Drop rate development for ∆tspec = 55.

Both linear and Poisson spike trains lose events on the way through the system from a bi-

24

ological event rate of 130 kHz. From this rate on Rtrans, rel
d increases almost linearly with the

event rate for both spike train types. For both types, the maximum value of Rtrans, rel
d is about

46 %. This value is reached at 250 and 300 kHz respectively, and is kept constant from then
on. This behaviour can be traced back to the modification of the input spike trains: During
modification, events are removed from the spike trains before transmission, so that a maximum
of three events are contained in one clock cycle and a maximum of 16 events are contained in
eight consecutive clock cycles (corresponding to 64 µs in biological time). This leads to modi-
fications of the linear spike trains from event rates above 250 kHz, whereas Poisson spike trains
are already modified at slightly lower mean event rates (see Chapter 3.2.2). From a certain mean
biological event rate, which is hereafter referred to as saturation rate and which, for linear spike
trains, is 250 kHz, for Poisson spike trains is approximately 300 kHz, each 64 µs interval of the
modified spike trains will contain 16 events. Since the same spike train length (i.e. the same
number of 64 µs intervals) was selected for all input event rates (see Chapter 3.2.1), the total
number of transmitted events per spike train is also constant from this saturation rate onwards.
Apart from the distribution of the events within the individual 64 µs intervals, the modified spike
trains are thus identical from the saturation rate onwards, which also results in identical drop
rates Rtrans, rel

d . As the total number of events contained in a modified spike train is constant
from the saturation rate onwards, but the number of events contained in the unmodified spike
trains still increases with the input event rate (see Chapter 3.2.1), the drop rate Rmod, rel

d must
inevitably increase.

The drop rate behaviour at different values of ∆tspec is shown in Figure 13. With the linear
spike trains the drop rates behave almost identical for all tested values of ∆tspec. This also
applies to Poisson spike trains up to a value of ∆tspec = 60. At higher values, however, event
losses during transport through the system already occur from a mean biological event rate of
65 kHz.

25

Figure 13: Drop rate development for different values of ∆tspec.

26

3.3.2 Latencies and Jitter

In the second part of the analysis, the time spans required to propagate through the different
sections of the system and their variation at different biological input event rates and differ-
ent values of ∆tspec were investigated. The analysis thereby focuses on input spike trains with
Poisson-distributed ISIs.

Figure 14 shows the spread of the measured time spans depending on the mean biological
input event rate at ∆tspec = 55. On the left side the development of the ∆tBio

Exec/SPL1 latency is
illustrated, which corresponds to the time span between the transmission of an event by the Ex-
ecutor and its registration at one of the SPL1 links in the HICANN in biological time. The right
plot shows the ∆tBio

Exec/Exec latency, which indicates the biological time needed to completely tra-
verse the system. In each plot the median (Q0.5), the spread of the central 70 % of the measured
values as well as the spread of the lower and upper 15 % of the measured values are displayed.

Figure 14: Latency and jitter development for ∆tspec = 55 (Poisson spike trains).

The median of the ∆tBio
Exec/SPL1 values remains constant at 256 µs from 5 to 75 kHz and

then increases slightly to a value of 296 µs at 250 kHz. A deviation of the central 70 % of the
measured values from the median can only be observed from approximately 100 kHz. Even at
250 kHz, the central 70 % of the values are still within 264 and 344 µs. The spread of the upper
15 % of the measured values increases massively between 130 and 135 kHz, but changes only
slightly before and afterwards. This means either that from biological event rates of 135 kHz
onwards individual events are delayed on their way from the Executor to the SPL1 links in the
HICANN for a very long time or that their time spans have been determined incorrectly. This
aspect will be discussed in detail later on.

The median of the ∆tBio
Exec/Exec values increases only slightly from 488 to 512 µs until 110

kHz. It then increases faster up to a value of 744 µs at 250 kHz. At small biological event rates
almost no spread of the measured values is recognizable. The spread of the central 70 % of
the measured values increases only slightly until 125 kHz, but significantly between 125 and
135 kHz and moderately afterwards. For the spread of the upper 15 % of the values, a strong

27

increase can be observed in the range from 115 to 190 kHz. At 250 kHz, the central 70 % of the
measured values range between 664 and 1,120 µs. The difference between the minimum and
maximum value at 250 kHz is 1,168 µs.

Based on the figure, the following minimum time spans for passing through the different
sections of the system can be determined:

• ∆tBio
Exec/SPL1, min = 256 µs (32 clock cycles)

• ∆tBio
SPL1/Exec, min = 224 µs (28 clock cycles)

• ∆tBio
Exec/Exec, min = 480 µs (60 clock cycles)

However, ∆tBio
Exec/SPL1, min and thus also ∆tBio

Exec/Exec, min depend on the selected value for ∆tspec,
since the latter determines how long the events are held back at the L2 links in the HICANN
when propagating from the Executor to the SPL1 links in the HICANN (see Chapter 2.4.1).

The Figures 15 to 20 show the ∆tBio
Exec/SPL1 and ∆tBio

Exec/Exec latencies of individual events of
input spike trains with mean biological event rates in the range between 120 and 135 kHz, in
which the spread of the latencies increases most. For comparison the latencies at 5 and 250
kHz are shown as well. The figures also illustrate which events of the spike trains were lost
during transport through the system and how many events were removed during modification of
the spike trains. This allows to derive correlations between the latency and the occurring event
losses. The figures will also be used to explain the massive increase in the spread of the upper
15 % of the ∆tBio

Exec/SPL1 values between 130 and 135 kHz.

28

At 5 kHz (Figure 15) the ∆tBio
Exec/SPL1 latency of all events is at the minimum value of 256

µs. Apart from three events, the ∆tBio
Exec/Exec time span also varies between its minimum value

of 480 and 488 µs, whereby a regular variation pattern can be seen: All events which were
assigned the SPL1 addresses zero or one require exactly one clock cycle more for covering the
distance from the SPL1 links in the HICANN to the Executor than those events which were
assigned the SPL1 addresses two or three. Since spike train modifications are only made at
significantly higher event rates, all generated events are transmitted. During transport no events
are lost either.

Figure 15: Latencies per event for a 5 kHz Poisson spike train (∆tspec = 55).

29

At 120 kHz (Figure 16), variations in both latencies can already be clearly observed. How-
ever, the variations of the ∆tBio

Exec/SPL1 latency are lower and more homogeneous than those of the
∆tBio

Exec/Exec latency. With the latter, outlier groups of values around 700 µs have formed across
the spike train. A single event even has a ∆tBio

Exec/Exec latency of 808 µs. So far no events have
been lost.

Figure 16: Latencies per event for a 120 kHz Poisson spike train (∆tspec = 55).

30

At 125 kHz (Figure 17) the spread of the ∆tBio
Exec/SPL1 values has hardly changed compared to

120 kHz. With the ∆tBio
Exec/Exec values, on the other hand, even more outlier groups have formed,

which partly contain events with latencies of over 800 µs. One group already contains events
with latencies around 1,100 µs. Two events from this group were dropped during transport. This
already indicates a threshold value for ∆tBio

Exec/Exec, from which event losses occur.

Figure 17: Latencies per event for a 125 kHz Poisson spike train (∆tspec = 55).

31

At 130 kHz (Figure 18) the spread of the ∆tBio
Exec/SPL1 values remains unchanged at a low

level. The number of events with ∆tBio
Exec/Exec latencies over 800 µs has increased significantly,

along with more events exceeding the 1,100 µs mark. The event losses during transport have
clearly increased, with drops occurring only in clusters of events with ∆tBio

Exec/Exec values over
1,100 µs. This value thus emerges as the threshold value for event losses. Furthermore, a first
event was removed during modification of the spike train.

Figure 18: Latencies per event for a 130 kHz Poisson spike train (∆tspec = 55).

32

At 135 kHz (Figure 19) the number of drops has again increased significantly. Individual
events already exhibit a ∆tBio

Exec/Exec latency of about 1,300 µs. At these high latencies, four
∆tBio

Exec/SPL1 values (marked by a circle) appear, which cause the massive increase in the spread
of the upper 15 % of the ∆tBio

Exec/SPL1 values shown in Figure 14.

Figure 19: Latencies per event for a 135 kHz Poisson spike train (∆tspec = 55).

As the minimum time span ∆tBio
SPL1/Exec, min between the registration of an event at one of the

SPL1 links in the HICANN and its forwarding from the Executor to the Decoder/Encoder is
224 µs, there should be ∆tBio

Exec/Exec values above 1,500 µs belonging to the four high ∆tBio
Exec/SPL1

values. But since the highest ∆tBio
Exec/Exec latencies lie below 1,400 µs, either the high ∆tBio

Exec/SPL1

values or their associated ∆tBio
Exec/Exec values must have been determined incorrectly. While the

times used to calculate the ∆tBio
Exec/Exec values are completely known, the event times tevent used

to calculate the ∆tBio
Exec/SPL1 values must be reconstructed because only their lower seven bits

are known. As already explained in Chapter 2.4.2, the reconstruction may result in incorrectly
reconstructed event times if the time span between the registration of an event at one of the SPL1
links in the HICANN and its forwarding from the Executor to the Decoder/Encoder reaches the
critical value ∆tBio

SPL1/Exec, crit = 128 clock cycles. The minimum latency ∆tBio
Exec/SPL1, min and

∆tBio
SPL1/Exec, crit yield a critical time span ∆tBio

Exec/Exec, crit , from which erroneously reconstructed

33

event times can occur:

∆tBio
Exec/Exec, crit = ∆tBio

Exec/SPL1, min +∆tBio
SPL1/Exec, crit (22)

= 256 µs+128∗8 µs (23)

= 1,280 µs (24)

This value is only valid for ∆tspec = 55. For other values of ∆tspec, ∆tBio
Exec/SPL1, min and thus

also ∆tBio
Exec/Exec, crit will change. The calculated value of 1,280 µs is reached for the first time at

135 kHz. The explanations in Chapter 2.4.2 also imply that an incorrectly reconstructed event
time is at least 128 clock cycles, i.e. 1,024 µs (biological time) greater than the true event time.
Consequently, the ∆tBio

Exec/SPL1 latency calculated from an incorrectly reconstructed event time
will also be at least 1,024 µs greater than the true latency and thus lie in ranges above 1,280 µs.
The massive spread of the upper 15 % of the ∆tBio

Exec/SPL1 values from biological input event rates
of 135 kHz onwards is thus caused by erroneous values which result from a false reconstruction
of the event times due to ∆tBio

SPL1/Exec latencies over 127 clock cycles.

34

At 250 kHz (Figure 20) numerous ∆tBio
Exec/Exec latencies are above 1,280 µs. Accordingly,

significantly more incorrect ∆tBio
Exec/SPL1 latencies occur. Meanwhile, the rate of events dropped

during transport has increased to about 42 %. In addition, a region with very few values has
formed between the ∆tBio

Exec/Exec latencies up to about 1,000 µs and those from about 1,200
µs upwards. The spread of the correct ∆tBio

Exec/SPL1 values has increased as well: They vary
predominantly between 256 and 344 µs, with outliers of up to 448 µs. 646 events were removed
during modification of the spike train. Due to a rearrangement of the event indices after the
modification, the impression arises as if the last 646 events of the spike train had been removed.
However, they were actually removed at various positions of the original spike train, as shown
in Figure 10.

Figure 20: Latencies per event for a 250 kHz Poisson spike train (∆tspec = 55).

35

Figure 21 illustrates the latency and jitter development at different values of ∆tspec. As
expected, the medians of the ∆tBio

Exec/SPL1 latencies and thus also those of the ∆tBio
Exec/Exec latencies

shift to larger values with increasing ∆tspec. The increase of the medians at low event rates is
thereby greater than at high event rates, so that the median curve as a whole becomes flatter.
Consequently, the dependence of the latencies on the input event rate decreases with larger
∆tspec, but with the disadvantage of higher minimum latencies. The spread of the correctly
determined ∆tBio

Exec/SPL1 values (i.e. all values ∆tBio
Exec/SPL1 < Q0.85) decreases with larger ∆tspec.

Since ∆tBio
Exec/SPL1, min increases with larger ∆tspec, the critical value ∆tBio

Exec/Exec, crit also increases
according to equation (22). Consequently, this critical value is reached at slightly higher event
rates, so that incorrectly calculated ∆tBio

Exec/SPL1 values only occur at slightly higher event rates
as well.

Figure 21: Latency and jitter development for different values of ∆tspec (Poisson spike trains).

36

4 Discussion & Outlook

4.1 Summary

The major goal of this thesis was to characterize the transport of event data through the FPGA
communication infrastructure between the Host ARQ and the HICANN-X chip. For this pur-
pose, the dependence of event data losses and the variation of the transmission time on the input
event rate were to be investigated.

This investigation required the prior implementation of a Playback Executor HDL module,
which controls the data traffic to and from the HICANN and generates a global system time
enabling a time-coordinated sending of input event data to the HICANN as well as the forward-
ing of event data returned by the HICANN to the software level and its classification into a
chronological sequence.

For the investigation, the modules of the FPGA communication infrastructure and the rel-
evant digital part of the HICANN were tested using HDL simulations, as the real HICANN-X
chip was still in the manufacturing process. In the course of the simulations, events were handed
over to the Executor module in the form of fire instructions at specified times tsend. From there,
they propagated through the FPGA communication infrastructure and via the highspeed con-
nection to the HICANN. On the HICANN, they were looped back after traversing the routing
interface between the L2 module and the SPL1 level and provided with a timestamp when pass-
ing the SPL1 links again at the time tevent. Then they propagated back to the Executor module
and were forwarded to the software level at the time treceive. Based on the number of sent and
received events, the event drop rate was determined. Using the timestamps contained in the
received event data, the times tevent could be reconstructed, which enabled the calculation of
different latencies. The determined drop rates and latencies for different input event rates were
then compared. The influence of the parameter ∆tspec, which is intended to reduce the jitter
during transport of event data to the HICANN, was investigated as well.

4.2 Discussion of the Results

For input spike trains with uniformly distributed ISIs as well as for spike trains with Poisson-
distributed ISIs, events were dropped during transport through the system from a (mean) bio-
logical input event rate of 130 kHz upwards for ∆tspec values up to and including 60 HICANN
clock cycles. At larger ∆tspec values, the event drop rate for Poisson input spike trains already
increased from 65 kHz upwards. In all cases, a relative drop rate of about 46 % was measured at
a biological input event rate of 250 kHz. This means that the highspeed connection between the
FPGA and the HICANN is not the bottleneck of the communication infrastructure, as expected,
but another HDL module.

37

In the course of the jitter analysis a very low dependency of the ∆tBio
Exec/SPL1 latency (i.e. the

time span between the transmission of an event at the Executor and its registration at one of the
SPL1 links in the HICANN) on the input event rate was determined. In contrast, both the mean
∆tBio

Exec/Exec latency and the spread of individual ∆tBio
Exec/Exec values increase significantly from

biological input event rates around 120 kHz upwards. Thereby a threshold value of ∆tBio
Exec/Exec

≈ 1,100 µs was identified, from which events are lost. At input event rates where this threshold
value is reached, the ∆tBio

Exec/SPL1 latencies are only slightly larger than at low event rates. Conse-
quently, event losses must inevitably be caused by high ∆tBio

SPL1/Exec latencies, i.e. long transport
times from the SPL1 links in the HICANN to the Executor. If the delays on this way are too
large so that the critical time span ∆tBio

SPL1/Exec, crit = 1,024 µs is reached, faulty ∆tBio
Exec/SPL1 values

will occur due to incorrectly reconstructed event times tevent. As the event times are of central
importance for the execution and analysis of spike experiments, false reconstructions must nec-
essarily be avoided. An event transport without event losses and incorrectly reconstructed event
times is guaranteed for the tested design of the communication infrastructure up to a biological
input event rate of 125 kHz, provided that the selected ∆tspec does not exceed a value of 60.

The investigation of the latency and jitter development at different values of ∆tspec showed
that the greater ∆tspec is chosen, the lower will be the dependence of the average latencies on
the input event rate as well as the spread of individual ∆tBio

Exec/SPL1 values. This enables a more
precise stimulation of the neurons on the HICANN. Although a larger ∆tspec value causes an
increase of the minimum latencies, the resulting longer duration of a spike experiment is negli-
gibly small. For this reason, ∆tspec should be chosen as large as possible, whereby a value of 60
should not be exceeded, since otherwise the drop rate can already increase at biological input
event rates of less than 125 kHz.

In order to estimate the influence of the event transport on the achievable accuracy of spike
experiments, it is sufficient to consider the ∆tBio

Exec/SPL1 latency, as only this latency directly af-
fects the temporal precision of the neuron stimulation. The largest spread of correct ∆tBio

Exec/SPL1

values was measured at a mean biological input event rate of 250 kHz and is 192 µs. The spread
of the mean 70 % of the measured values at 250 kHz is 80 µs. In contrast, the achievable ac-
curacy of the membrane time constant τm, which significantly influences the spike behaviour of
the neurons, is in the order of 1 ms [3]. The error caused by variations in the ∆tBio

Exec/SPL1 latency
is therefore negligibly small.

4.3 Outlook

A further analysis identified the switch of the Transport Layer on the FPGA as potential bot-
tleneck of the communication infrastructure. In upstream direction, the switch receives event

38

data from the eight UTs of the Link Layer and forwards it through a single channel to the event
interface (Figure 22). Via this channel, double and triple packed events (i.e. event messages
containing data from two or three different events) can also be forwarded. The event packing
(i.e. the merging of several event data into a single event message) currently happens exclu-
sively in the HICANN between the SPL1 level and the L2 switch, which distributes the event
messages to the UTs on the HICANN. During the analysis, however, an event packing could
only be observed in very few cases. At mean biological input event rates of more than 125
kHz, where more than one event per clock cycle is transmitted to and from the HICANN via the
highspeed connection, the FPGA switch also receives more than one event message per clock
cycle due to the inefficient event packing. However, since the switch can only forward one event
message per clock cycle to the event interface, congestions in the individual switch nodes will
inevitably occur, causing the nodes to block subsequent event messages from the UTs. The UTs
are connected to the PHYs of the Physical Layer via non-blocking ut-interfaces and therefore
cannot pause accepting further event messages. This causes the event messages contained in
the UTs to be overwritten by subsequent messages and thus leads to event losses.

The event losses inside the Link Layer of the FPGA due to the inefficient event packing in
the HICANN can probably be significantly reduced by implementing so-called event compres-
sors between the switch nodes and the UTs (Figure 22). The event compressors improve the
event packing by merging the single and double packed events received from the UTs into dou-
ble and triple packed events if they cannot directly be forwarded to the corresponding switch
node. An additional event compressor between the switch and the event interface prevents event
losses due to delays between the Executor and the Decoder/Encoder. The event compressors
should be designed in such a way that they only modify event data while forwarding all other
data unchanged to the switch nodes. In the ideal case, event losses up to biological input event
rates of 250 kHz can be avoided. This upper limit results from the maximum data transfer rate
of the highspeed connection.

Figure 22: Event compressor integration.

39

References

[1] https://www.humanbrainproject.eu/en/silicon-brains/.

[2] https://www.kip.uni-heidelberg.de/vision/previous-projects/facets/neuromorphic-
hardware/.

[3] S. A. Aamir et al. An accelerated lif neuronal network array for a large scale mixed-signal
neuromorphic architecture, 2018.

[4] A. Gruebl and A. Baumbach. F09/F10 Neuromorphic Computing. University of Heidel-
berg.

[5] L. S. Kanzleiter. A parametrizable switch for neuromorphic hardware. Bachelor thesis,
University of Heidelberg, 2018.

[6] M. Rettig. Verification of a parameterizable jtag driver module. Project internship report,
University of Heidelberg, 2019.

[7] J. Schemmel, J. Fieres, and K. H. Meier. Wafer-scale integration of analog neural networks,
2008.

[8] A. Schmidt. Design und charakterisierung einer routing-schnittstelle fuer neuromorphe
hardware. Bachelor thesis, University of Heidelberg, 2017.

40

Acknowledgements

I would like to express my gratitude to

• Prof. Dr. Karlheinz Meier and Dr. Johannes Schemmel for giving me the opportunity
to be part of the Electronic Vision(s) group and to carry out my bachelor’s thesis on this
topic.

• Vitali Karasenko for the comprehensive and patient supervision throughout my internship
and bachelor’s thesis.

• Mitja Kleider for his support while struggling with the simulation tools.

• Oliver Breitwieser for the inspiring suggestions regarding the visualization of my results.

• Timo Wunderlich for proofreading my thesis.

• The whole group for the welcoming atmosphere.

41

Statement of Originality

I certify that this thesis, and the research to which it refers, are the product of my own work.
Any ideas or quotations from the work of other people, published or otherwise, are fully ac-
knowledged in accordance with the standard referencing practices of the discipline.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.

Heidelberg, May 16, 2019
.......................................

(signature)

