
Department of Physics and Astronomy

University of Heidelberg

Bachelor Thesis in Physics

submitted by

Markus Kreft
born in Berlin (Germany)

March 2019





Structural Plasticity for Feature Selection in Auditory

Stimuli on Neuromorphic Hardware

This Bachelor Thesis has been carried out by Markus Kreft at the

Kirchhoff-Institute for Physics

Heidelberg University

under the supervision of

Dr. Schemmel and Prof. Meier





Abstract
This thesis presents an approach to processing auditory stimuli with recurrent neural
networks implemented on the HICANN-DLS neuromorphic hardware prototype.
Auditory stimuli consist of many spike channels. For typical acoustic signals, however,
only certain spike channels corresponding to particular frequency bands hold relevant
information. While the employed HICANN-DLS chip has limited resources, especially
in terms of possible synaptic connections, the implementation of structural plasticity, a
constant rewiring of synapses, is possible.
In an attempt to select the relevant channels of auditory stimuli, a structural plasticity
rule is realized that chooses one of multiple inputs provided to each synapse based on
pre-postsynaptic spike-time correlation. In experiments performed with artificial stim-
uli constructed to mimic correlation patterns found in auditory stimuli, a preference of
synapses to couple to strongly correlated inputs was observed. An increased coupling to
channels with high correlation was also demonstrated for stimulation with actual auditory
stimuli from a dataset of spoken digits. Correlation in these channels coincides with high
information on the digits.

Zusammenfassung
Diese Arbeit präsentiert einen Ansatz zur Verarbeitung auditiver Stimuli mit Rekurrenten
Neuronalen Netzwerken auf dem neuromorphen Hardware Prototypen HICANN-DLS.
Auditive Stimuli besitzen eine hohe Anzahl von Spike Kanälen. Bei typischen akusti-
schen Signalen beinhalten allerdings nur einige zu bestimmten Frequenzbereichen gehö-
rende Kanäle relevante Information. Die Ressourcen des verwendeten HICANN-DLS Chips
sind, insbesondere im Hinblick auf die Anzahl realisierbarer synaptischer Verbindungen,
begrenzt. Er ermöglicht jedoch die Implementierung von Struktureller Plastizität, einer
ständigen Neuordnung der Synapsen.
In einem Versuch, bei auditiven Stimuli die relevanten Kanäle auszuwählen, wurde eine
Strukturelle Plastizitätsregel eingesetzt, die in jeder Synapse einen von mehreren verfüg-
baren Eingängen basierend auf der Korrelation von prä- und postsynaptischen Spikezeiten
auswählt. In Experimenten mit künstlichen Stimuli, die ähnliche Korrelationsmuster wie
auditive Stimuli aufweisen, wurde eine Präferenz der Synapsen beobachtet, an stark kor-
relierte Kanäle zu koppeln. Bei Stimulation mit auditiven Stimuli aus einem Datensatz
gesprochener Ziffern wurde ebenfalls eine erhöhte Koppelung an Kanäle mit hoher Kor-
relation demonstriert. In diesen Kanälen tritt starke Korrelation zusammen mit einem
hohen Informationsgehalt über die gesprochenen Ziffern auf.
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1 Introduction

Computation in the human brain is achieved by a large network of interconnected units
that can process, store, and transmit information. The dynamics of such systems are
extremely complex and far from being fully understood [Yuste et al. 2014]. Even simple
models designed to capture the basic properties of spiking neural networks (SNNs), most
prominently the creation of action potentials that lead to neural spikes, show highly com-
plex dynamics [Gerstner et al. 2014; Cessac 2008]. Such SNNs however have the potential
to be computationally more powerful than more abstract artificial neural networks (ANNs)
[Maass 1997]. Therefore they are an object of interest for future computing systems. A
way to gain understanding of the network behavior is through experimental study of their
dynamics. While simulation on conventional computers is possible, the parallel architec-
ture of models leads to long simulation times and high power consumption. A scalable and
low-power alternative is the emulation of the network dynamics on neuromorphic hard-
ware.
The BrainScaleS hybrid platform [Schemmel et al. 2010] is a specialized hardware system
for such emulation. It implements synapses and neurons in analog electrical circuitry while
the network configuration is defined digitally. In addition to low power consumption, here
the choice of analog hardware components results in a considerable shortening of the em-
ulation run-time compared to its biological equivalent.
In this thesis a prototype hardware chip for the next generation platform with enhanced
features is used. The High Input Count Analog Neural Network with Digital Learn-
ing System (HICANN-DLS) version 2 features an on-chip processor for implementation
of synaptic plasticity [Friedmann et al. 2017]. This allows the network configuration to
change over time based on plasticity rules. Such adaptation of the network is considered
to play a major role in human learning [Hebb 1949; Hughes 1958].

This thesis deals with the processing of auditory stimuli by spiking neural networks im-
plemented on the HICANN-DLS version 2. The hardware chip is configured in a way that
allows later use in an liquid state machine (LSM) setup [Maass et al. 2002; Maass et al.
2004], where a recurrent network receives external input spikes from a preprocessing step.
It processes the input in a non-linear way and provides output that can then be separated
by a linear classifier for classification tasks. Such a setup with a simulated SNN containing
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1 Introduction

hundreds of neurons has been used for isolated word recognition [Verstraeten et al. 2005].
In the network implemented in this thesis, the synaptic connections between neurons are
subjected to a variant of spike-timing dependent plasticity (STDP). This has been shown
to stabilize the network activity [Stöckel et al. in prep.]. The network recurrence allows
to control the distance to the critical point between a phase where activity rapidly dies
out and a phase of activity amplifying over time [Cramer et al. in prep.(a)]. This has the
potential to enables high computational power [Beggs et al. 2012].
The generation of input spikes from sound signals is inspired by the human auditory sys-
tem. Within the human ear in the cochlea sound waves are transformed into neural spike
trains that serve as input channels to the human brain. Activity in these channels depends
on the frequency bands present in the stimulus. Spike times show correlation patterns,
both within a single channel and between different channels. The correlation is caused
by resonance effects of the basilar membrane that is responsible for spike creation in the
inner ear.

In the human auditory system there exist thousands of input channels to the brain. Typical
auditory stimuli however do not exhaust the full available frequency range and therefore
not all of these channels are relevant to the stimulus. The HICANN-DLS hardware pro-
totype used in this thesis has only a low number of 32 neurons that can receive external
spikes from 32 inputs. It however incorporates an address event coding system that allows
to feed multiple spike trains on each input. The integrated on-chip processor can select
which of the possible inputs are transmitted to the neurons. This can be used to imple-
ment structural plasticity.
Structural plasticity in general describes mechanisms that change a networks internal con-
nections over time [Lamprecht et al. 2004; Butz et al. 2009]. When providing each input
of the chip with multiple spike trains and subjecting the network to a structural plas-
ticity rule that can change the event coding addresses, spike trains with certain features
depending on the plasticity rule can be selected. Since this also results in less connections
to spike trains not showing the desired features, potentially less noise is introduced and
resources can be conserved.

This implementation of structural plasticity is used here to select highly correlated in-
put channels in artificial stimuli that are constructed with different temporal and spacial
correlation. In addition, a dataset of spoken digits is used as an example for an actual
auditory stimulus. In chapter 2 the model implementation, the stimulation paradigm, and
information theoretic methods for evaluation are presented. Results from the conducted
experiments are given in chapter 3 and discussed in chapter 4.
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2 Methods

The experiments presented in this thesis are conducted on the HICANN-DLS mixed-signal
neuromorphic hardware chip. It implements biologically inspired neuron and synapse
models in analog electrical circuitry. The chip is stimulated with signals of different
correlation in time and between neurons. A structural plasticity rule acts on the external
network connections to allow the selection of a preferred correlation pattern. Experiments
are conducted both with artificial and biologically realistic stimuli.
Below a short biological background is provided, followed by a description of the hardware
chip. Section 2.3 gives a detailed description of the implemented neurons, synapses and
network model, as well as the plasticity rules. In section 2.4 the stimuli used to drive
the network are specified. Information theoretic methods for evaluation are described in
section 2.5.

2.1 Biological Principles

In the following a short overview of the most relevant aspects of spiking neural network
models is given. A comprehensive introduction to the topic can be found in [Gerstner
et al. 2014]. Computation in the human brain is achieved by a large network of cells,
the neurons. They propagate pulses of electrical charges which allows for processing of
information.
A neuron typically consists of three main parts, the dendrites, the soma, and the axon, as
schematically drawn in figure 2.1. Dendrites act as inputs to the neuron by transmitting
signals coming from other neurons. The soma, the central unit of the neuron, can process
these signals in a non-linear way. Generated output is then taken through the axon
to neighboring neurons. The axon can stretch over macroscopic distances in the brain
enabling non-locally connected networks.
The signal processing in the soma is based on the collection of charges that build up a
potential over the cellular membrane. Ion channels in the membrane allow certain charge
carriers to cross. If no input is received by a neuron the membrane is in a resting state of
constant polarization caused by the surrounding environment. The membrane dynamics
can be modelled at different levels of abstraction by differential equations describing the
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2 Methods

Figure 2.1: Schematic illustration of two neurons j and i connected by a synapse. The dendrites and
axon of the presynaptic neuron are marked, the triangle highlights the position of the soma. A chemical
synapse connects the pre- and postsynaptic neurons and shows a synaptic cleft. Figure taken from
[Gerstner et al. 2014]

membrane potential. In most models, once external charges are built up and a threshold
potential is reached, the neuron membrane shows a steep depolarization followed by a
phase of hyperpolarization. If such an action potential is emitted, the neuron is said to
fire a spike.

The connections between the axon of one neuron and the dendrites of other neurons
are called synapses. They mostly occur in form of chemical synapses. The axon of the
presynaptic neuron ends very close to the dendrite of the postsynaptic neuron leaving only
a small gap in between, the synaptic cleft (figure 2.1). If an action potential arrives at
the cleft, neurotransmitters are released. These allow the passage of certain ions through
the channels in the membrane of the postsynaptic neuron, where a postsynaptic potential
can build up. As a result the presynaptic electrical pulse is transmitted from one neuron
to another.
The synaptic weight characterizes the strength of a synaptic connection. It depends on
the amount of neurotransmitters released in the synapse and the type and number of
ion channels activated in the postsynaptic neuron. If a presynaptic spike increases the
postsynaptic membrane potential, a synapse is said to be excitatory, if it leads to a decrease
of the potential it is called inhibitory.

In the human brain synaptic connections are not fixed, but change over time. This is an
important part of learning and summarized by the term plasticity.
There are different processes that lead to a change in synaptic weights. The spike-timing
dependent plasticity (STDP) mechanism [Bi et al. 1998], used here in a modified version,
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PPU, digital control and IO

ADC

Synapses

Neurons

Analog memory

Figure 2.2: Photograph of a HICANN-DLS version 2 prototype chip. The digital components, neurons,
and the synapse array are highlighted. Figure adapted from [Stöckel et al. in prep.].

is based on Hebb’s Postulate [Hebb 1949]. There, a synaptic weight is adapted depending
on the temporal correlation of pre- and postsynaptic neuron spikes. The general idea is
that if a neuron takes part in invoking a postsynaptic spike of another, their connection is
important for information propagation and should be developed in the future [Toyoizumi
et al. 2007].
However, plasticity also incorporates the restructuring of a network by rewiring connec-
tions. This change in the network topology is termed structural plasticity. It can invoke
reconnection of neurons based on different properties like neuron activity, current synap-
tic weight or temporal spike correlations. Structural plasticity usually acts on a longer
time scale compared to typical STDP rules and is responsible for long term change of the
network [Lamprecht et al. 2004; Butz et al. 2009; Deger et al. 2017].

2.2 Hardware

The HICANN-DLS version 2 prototype chip used in this thesis implements 32 LIF neurons
(see 2.3.1) and a total of 1024 synapses. It is technically specified in [Friedmann et al.
2017] and [Aamir et al. 2018]. In the following a brief introduction to the basic components
and working principles is given. A comprehensive overview can be found in [Stöckel 2017].

The chip has a mixed signal architecture with analog and digital parts, the most prominent
components are highlighted in figure 2.2. Neuron membranes and synapses are emulated
in analog electrical circuitry. The relevant capacitor time constants are decreased by a fac-
tor of approximately 1000 compared to the biological model parameters, which results in
a corresponding time speed-up of the emulation compared to the biological time domain.
The network configuration and spike distribution is implemented digitally. The chip can
be configured from a host computer through an on-board field-programmable gate ar-
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Figure 2.3: Schematic overview of the synapse array: Green triangles on the left correspond to the
synapse drivers transmitting the presynaptic input, blue triangles at the bottom represent the neurons.
Synapses are indicated by circles at the intersection of vertical and horizontal lines. The black arrows
from the left represent external input, the arrows at the bottom represent the spike readout. Recurrent
spike routing is visualized by the red dashed lines. Figure taken from [Stöckel et al. in prep.].

ray (FPGA) clocked at 96 MHz. It has full read and write access to the neuron and
synapse configuration and handles the recording and pass through of spikes. Analog val-
ues for model parameters are provided by a total of 17 digital-to-analog converters (DACs).
Details on these parameters can be found in [Aamir et al. 2016].
Because of the implementation of neurons in independent analog circuits with individu-
ally configurable parameters the system is prone to manufacturing variations [Aamir et al.
2018]. Even if two parameters are set to the same digital value, their actual behavior may
differ due to transistor mismatch. This fixed pattern noise can be reduced by calibration.
Additional trial-to-trial variations arise from the configuration of parameter storage but
have been found do be much smaller.

Synapses are implemented current based in a 32×32 array as schematically shown in figure
2.3. Input spikes are received by the 32 synapse drivers. These are provided in discretized
time steps every 100 FPGA cycles. At each time step binary information, whether a spike
is to be sent or not, is provided to all 32 inputs as a spike mask. Each driver routes the
spikes to all synapses in a row. These convert the spikes to current pulses and send them
along the column to the respective neuron at the bottom. Each synapse driver can be
configured to be either excitatory or inhibitory. Thus all synapses in a row can either
supply excitatory or inhibitory presynaptic input to the neurons.
The synaptic weights are configurable with 6 bit accuracy ranging from 0LSB to 63LSB
and correspond to the electrical current of a transmitted pulse. A global scaling factor
allows to adjust all weights simultaneously by changing the length of the current pulses.
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Figure 2.4: Causal and anti-causal correlation measurements provided by the dedicated analog circuitry
of the HICANN-DLS chip that are accessible to the PPU. The red graph shows the average of 1024
single measurements, error bars indicate the standard deviation.

Each synapse is additionally configurable with a 6 bit decoder address. All spikes sent into
the network are marked with an equivalent address. A synapse only transmits a spike if
the spike address matches its decoder address. By sending spikes of different spike trains
marked with different addresses one by one to a driver, the network can receive multiple
inputs during a single experiment.
The FPGA is furthermore able to route spikes originating from the neurons back into
the network as indicated by the red dashed lines in figure 2.3. This allows to configure
recurrent networks by sending the internal spikes back into the network with a certain
decoder address and configuring a fraction of synapses with the corresponding address.

The adaptation of synaptic weights, which corresponds to synaptic plasticity, is performed
by the plasticity processing unit (PPU), an on-chip embedded processor. It not only has
read and write access to the synaptic weights and decoder addresses but it can also read
the pre-post spike correlation sensors of each synapse.
The PPU incorporates a vector extension allowing for parallel processing of 16 synapses
at a time. It can act on 128 bit vectors with fractional saturation arithmetic. The PPU
features the IBM Power instruction set architecture and is programmable with C code,
while the vector unit is programmed with inline Assembler which makes machine code
instructions directly accessible.
The correlation measurements are done by a dedicated analog circuit. For each synapse,
analog accumulation rates, weighted with exponentially decaying time differences, are
summed up and digitized by an 8 bit analog-to-digital converter (ADC). The correlation
pairs are selected according to a reduced symmetric nearest neighbor pairing rule [Morri-
son et al. 2008]. The selection is done for causal and anti-causal correlations separately.
Exemplary correlation measurements are depicted in figure 2.4.
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2.3 Model

In this section the network model implemented on the HICANN-DLS is described. The
neuron and synapse equations are given in section 2.3.1, followed by the plasticity rules in
section 2.3.2. Section 2.3.3 provides an overview of the experimental procedure.

2.3.1 Neurons and Synapses

The leaky integrate-and-fire (LIF) model is an abstract model of neuron dynamics that
captures the creation of a postsynaptic spike. A neuron’s membrane is modeled by a
capacitor circuit described by the time constant τmem and conductance gleak = Cm/τmem.
A charge leaking term characterized by the leak potential uleak represents ion channels in
the membrane. The membrane potential ui of neuron i obeys the differential equation

τmem
dui

dt = − [ui(t)− uleak] + Ii(t)
gleak

. (2.1)

The current Ii(t) serves as input and is attained from the sum of the currents of all
presynaptic partners Iij(t) to neuron i. These currents are initiated by the arrival of the
k-th spike, sent on input j at time tkj , at neuron i after the synaptic delay dsyn and follow
the differential equation

τsyn
dIij

dt = −Iij(t) +
∑

k

wij · sw · δ
(
t− tkj − dsyn

)
, (2.2)

which is characterized by the synaptic time constant τsyn and a translation factor sw. The
synaptic weight wij specifies the strength of the connection between the presynaptic input
j and neuron i. A value of sw > 0 would correspond to an excitatory synapse, while
sw < 0 implies an inhibitory synapse.

Neuron i fires a spike when the membrane potential reaches the threshold value uthresh:

u(tki ) ≥ uthresh, (2.3)

where tki denotes the k-th firing time. After firing, the membrane potential is fixed to the
reset potential ureset for a time duration of one refractory period τref .
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2.3 Model

2.3.2 Plasticity

Two different plasticity rules operating on different time scales are implemented. Both
alter synapses based on the correlation measurements of pre- and postsynaptic spikes.
STDP adapts the synaptic weights, while structural plasticity can change the synapse
decoder address which allows the network to choose spikes from different inputs.

Spike-Timing Dependent Plasticity

Spike-timing dependent plasticity (STDP) is a process that changes synaptic weights based
on the timing of the spikes of pre- and postsynaptic neurons. A common kernel uses an
exponential weighting of the time difference between these pre- and postsynaptic spikes
[Gerstner et al. 2014] which is provided on hardware by the dedicated sensors described
in section 2.2.
The update rule developed in [Stöckel et al. in prep. Cramer et al. in prep.(a)] contains
three terms. Synaptic weights wij(t) between neurons i and j are updated in discrete time
steps Tstdp according to:

wij(t+ Tstdp) = wij(t) + λstdpf−
(
s

[t,t+Tstdp)
i , s

[t,t+Tstdp)
j

)
+ λwwij(t) + bij(t). (2.4)

The term s
[t,t+Tstdp)
i denotes the spikes of neuron i in the time interval [t, t+ Tstdp). The

function f− translates pre- and postsynaptic spike pairs to exponentially decaying weight
terms

f−
(
s

[t,t+Tstdp)
i , s

[t,t+Tstdp)
j

)
=

∑
∆t∈NN(tk

i <tk
j )

η− exp
(
−∆t
τ−

)
, (2.5)

with the time constant τ−. The sum runs across all nearest-neighbor (NN) spike time
differences ∆t = tki−tkj for which the presynaptic spike time is larger than the postsynaptic.
Sample measurements of f− are plotted in figure 2.4. The factor λstdp characterizes the
strength of STDP and is chosen to be negative. This way anti-causal spiking of pre-
and postsynaptic neurons (the presynaptic neuron fires after the postsynaptic neuron)
decreases the synaptic weights.
A constant drift term λw < 0 pushes the synaptic weights further down.
The offset bij is drawn from a uniform random distribution

bij ∼ unif(−bamp, bamp) + 〈b〉, (2.6)

with a positive bias 〈b〉 > 0 and amplitude bamp. The bias is chosen such that the network
can develop a balanced state and over time reach constant weights. It also enables non-zero
fixed points even for zero initialized weights.

9



2 Methods

Structural Plasticity

Structural plasticity describes the change of the internal network structure defined by the
connections between neurons over time. The structural plasticity rule implemented in
this thesis allows the network to choose from different inputs during an experiment by
adapting the synapse decoder addresses based on causal spike-time correlation.
With a period of Tstruc = 500 · Tstdp the PPU prunes the synapse addresses aij(t):

aij(t+ Tstruc) =

aij(t), if f+
(
s

[t,t+Tstdp)
i , s

[t,t+Tstdp)
j

)
≥ cij

dij , otherwise.
(2.7)

The causal correlation f+ is defined analogously to f− (equation 2.5), but the sum runs
over all spike pairs where the presynaptic spike occurs before the postsynaptic one. Only
if f+ is greater than or equal to a random value cij the respective address is kept. The
reference values is drawn from an uniform distribution that is capped by the pruning
threshold cth:

cij ∼ unif(0, cth). (2.8)

A value of cth = 7 bit results in maximal pruning of synapses, since the 8 bit correlation
measurements are shifted by one bit. If a correlation measurement is lower than cij , the
address is reset to dij , a randomly selected addresses on which the network receives exter-
nal input.
Random values are generated directly on the PPU using a Xorshift random number gen-
erator [Marsaglia 2003].

2.3.3 Network Initialization

The network model parameters used in the experiments in this thesis and their respective
uncertainties are listed in table 5.1 in the appendix. Since STDP is used to stabilize the
network no calibration is employed. In accordance with Dale’s principle [Dale 1934], a
number of Ninh synapses per neuron is randomly set to be inhibitory while the rest is
excitatory.

The coding address system is used to configure a recurrent network of varying degree.
All spikes originating from the neurons themselves are routed back to the synapse drivers
encoded with a fixed address (see red dashed lines in figure 2.3). The number of synapses
per neuron that transmit spikes with addresses other than this internal one is denoted by
kin. The choice of kin decides the degree of network recurrence. A value of kin = 0 results in
a highly recurrent all-to-all connected network completely decoupled from external input,
while kin = 32 yields a pure feedforward network.
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For an experiment, the network is initialized with a certain kin. The recurrent synapses are
not subjected to structural plasticity and therefore keep the network at a constant degree
of recurrence. All weights are initiated with a value of 0LSB and decoder addresses of the
synapses sensitive to external input are chosen at random with a uniform distribution.
A full network stimulus contains 128 input channel, four spike trains for each of the 32
inputs. These are encoded with the addresses 0 to 3. Spikes of each address are sent into
the network one after another in a rotating fashion.
While the network is stimulated with such external spikes, the synapses are subjected
to STDP and structural plasticity allowing the network to adapt and select from the
differently encoded spikes. A total of 100 structural plasticity updates are performed
leading to an experiment duration of 100 · Tstruc. After each pruning step the synapse
array that holds the weights and decoder addresses of all synapses is saved.

Each experiment is conducted 10 times with different statistical seeds for the involved ran-
dom processes. Results from the network analysis are averaged over these 10 independent
trials, the standard deviation provides corresponding errors.

2.4 Stimuli

Two types of network stimuli are used. A dataset of spikes generated from recordings
of spoken digits is used as an auditory stimulus. The creation of these spikes is based
on biological models of the human auditory system. The dataset is briefly described in
section 2.4.3.

The second type of stimuli are created with artificial correlation patterns that aim to
reflect the correlations found in auditory stimuli. They are used to test the performance
of the plasticity rules.
The spike generation is based on Poisson statistics. This is inspired by the spike creation in
the auditory models [Boer 1980; Meddis 1986]. Two different correlation patterns between
the auditory spikes can be distinguished. The spatially correlated stimulus captures the
correlation between the spike times of different input channels and is described in section
2.4.1. The temporally correlated stimulus shows correlation between the spike times in a
single spike train (section 2.4.2). The parameters characterizing each stimulus are listed
in table 5.1 in the appendix.

2.4.1 Spatially Correlated Stimulus

The spatially correlated stimulus exhibits a correlation between the different input chan-
nels that is constant in time. The probability for spikes in all channels with the same
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Figure 2.5: Spikes of a spatially correlated sam-
ple stimulus with mean firing rate f = 13.4 Hz.
Black dots represent spikes in a given channel at a
given time. The four stimuli of different correlation
strength get sent into the network with different
decoder addresses. With increasing ρ spikes tend
to fire more synchronized.
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Figure 2.6: Spikes of a temporally correlated sam-
ple stimulus with an amplitude scaling of A = 10 θ.
Black dots represent spikes in a given channel at
a given time. The four stimuli with different am-
plitudes of the sine modulation get sent into the
network with different decoder addresses.

correlation are calculated from the cumulative distribution function (CDF) of a normal
distribution X ∼ N (µ, σ2) with mean µ = 0 and standard deviation σ given by the corre-
lation parameter ρ. This parameter determines the correlation strength of these channels.
A spike is sent if the value is smaller than the acceptance probability:

CDF(X) < p. (2.9)

As a result the stimulus has a fixed correlation between spikes of all input channels at
each point in time.
In different experiments the frequency f of the stimulus is varied. This is achieved by
changing the probability p with which spikes are accepted. A higher probability leads to
more spikes and therefore a higher frequency.

A full network stimulus consists of four spike masks with different correlation strengths,
that are sent into the network with the four different encoder addresses 0 to 3. An equal
spacing of ρ ∈ {0.0, 0.3, 0.6, 0.9} is chosen. Figure 2.5 shows an excerpt of the spikes in a
sample stimulus created with the actual model parameters used in the experiments.

2.4.2 Temporally Correlated Stimulus

The temporally correlated stimulus shows a temporal correlation separately for each input
channel. The spike probability is modulated with a sine function with fixed offset θ. The
frequency ν of the sine is chosen to be around one tenth of the inverse neuron refractory
period and varied between input channels with a normally distributed jitter with ampli-
tude ∆ν = 0.1 ν. In addition, a constant normally distributed phase shift ϕ is introduced
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Figure 2.7: Full spike trains of a single spoken digit
in the used dataset. Black dots represent spikes in
a given channel at a given time. The different
inputs are created by HCs located along the BM.
High spike rates are a result of large membrane
resonances.
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Figure 2.8: Down sampled spike trains of a spoken
digit from the used dataset as they are sent into
the hardware chip. Spikes are re-binned into spike
routing time steps. Black dots represent spikes in
a given channel at a given time.

for every input channel. Together, this avoids synchronous input on all channels and
therefore reduces spatial correlation.
The strength of correlation is changed by scaling the amplitude of the sine with a factor
ρ. When the amplitude of the sine becomes to high, probabilities could become negative.
To avoid this, stimuli are cut off at zero. For high amplitudes the modulation pattern
therefore is not actually a sine but shows sinusoidal peaks at constant intervals.
A spike is sent at time step i, if a random value X ∼ unif[0, 1) is smaller than the modu-
lation probability:

X < max {0, A · ρ · sin (2π · (ν + ∆ν) · (i+ ϕ)) + θ} . (2.10)

Here, A is an additional scaling of the sine amplitude. It changes the number of spikes in
the maxima of the sine to influence the firing rate of the stimulus.
A full stimulus is composed of four differently correlated spike masks with
ρ ∈ {0.0, 0.25, 0.5, 1.0}. A section of a sample stimulus is shown in figure 2.6.

2.4.3 Auditory Stimulus

As an example for actual auditory stimuli a dataset of spikes generated from recordings
of spoken digits is used [Cramer et al. in prep.(b)]. The dataset uses biologically inspired
basilar membrane (BM) and hair cell (HC) models to generate neural spike data from
audio files. A more detailed description of the models can be found in [Cramer 2016]. In
the following a very brief overview of the involved steps is given.

Sound waves cause variations in pressure in the inner ear, leading to oscillations of the BM
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with perpendicular velocity v⊥. The elasticity of the BM results in a spatial frequency
separation [Boer 1980]. Different stimulus frequencies correspond to different resonance
regions. The resulting translation of frequencies to regions of the membrane can be quan-
tified by the equivalent rectangular bandwidth (ERB) concept [B. C. J. Moore 2003] which
models each frequency selective segment of the BM by a rectangular filter.

The HCs are placed along the BM. They translate the membrane oscillations into neu-
ral spikes with a transmitter based model. The propagation of transmitter molecules is
modelled by differential equations allowing for a complete mathematical description [Med-
dis 1986; Meddis 1988]. Importantly, the transmitters are released through a permeable
membrane into the cells synaptic cleft. While the membrane permeability depends on the
momentary perpendicular velocity v⊥ of the BM, the cells spiking probability is assumed
to be linearly related to the amount of transmitters in the cleft. Thus, strong membrane
oscillations generate high spike rates. Correlation between different spike channels results
from the similar behavior of the BM at neighboring HCs.

The dataset is based on sound recordings of digits from “zero” to “nine” spoken by 12
different speakers. The model uses 3500 HCs linearly spaced along the BM in a region
corresponding to frequencies from 1 Hz to 20 kHz.
The spikes of all 3500 channels for a single digits are shown in figure 2.7. It shows a region
of high spike activity in certain spike channels. This is a result of the sensitivity of the
BM to different frequencies of the sound waves. The uncorrelated background spiking in
the beginning and end of the stimulus is due to thermal movement of the hairs in the
HCs. This effect is also the reason for the offset θ in the temporally correlated stimulus.
Because the effect is independent of the input sound waves, θ is also chosen to be constant
for all correlation strengths.

For the purpose of this thesis the 3500 spike channels are downsampled to 128 inputs by
simply choosing every 27th channel. These are split into four groups by the order of their
position on the BM that are encoded with different addresses. The spikes are re-binned
into spike routing time steps. Spike trains of multiple digits by different speakers are sent
one after another in a random order for the duration of the experiment Texp. The down
sampled input spikes of a single digit are shown in figure 2.8.

2.4.4 Stimulus Characterization

To demonstrate the correlation features of the stimuli the correlation coefficient matrices
(Pearson product-moment correlation coefficients [Pearson et al. 1895]) between all input
channels and the auto-correlation of individual channels are calculated.
The discrete correlation function Cxy(k) of lag k between two spike trains x and y of length

14



2.4 Stimuli

0 32 64 96 128

input channel

0

32

64

96

128

in
p

u
t

ch
an

n
el

10−4

10−3

10−2

10−1

100

co
rr

el
at

io
n

co
effi

ci
en

t

(a) Cross-correlation matrix

0.0 0.1 0.2 0.3 0.4

lag (s)

0.00

0.01

0.02

0.03

0.04

0.05

au
to

co
rr

el
at

io
n

ρ = 0.0

ρ = 0.3

ρ = 0.6

ρ = 0.9

(b) Autocorrelation

Figure 2.9: Correlation measures for the spatially correlated stimulus. The stimulus shows constant
cross-correlation between neighboring channels of same correlation strength that increases with ρ but
no autocorrelation within single channels.
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Figure 2.10: Correlation measures for the temporally correlated stimulus. The stimulus shows auto-
correlation within each channels but no cross-correlation between channels.
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Figure 2.11: Correlation measures for the auditory stimulus. Both types of correlation are observed in
certain channels.
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Figure 2.12: Integrated cross-correlation matrix
for all channels of the auditory stimulus. The coef-
ficients of each channel with all other channels are
summed up.
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Figure 2.13: Integrated modulus of the autocor-
relation function for each input channel of the au-
ditory stimulus. The offset is due to the use of the
modulus.

n with means µx and µy is defined by

Cxy(k) = 1
n

n∑
i=1

(xi+k − µx) · (yi − µy). (2.11)

The spike trains are zero padded at the ends such that they always overlap. The autocor-
relation function of x is defined as Cxx(k).

Figures 2.9 through 2.11 visualize these measures for the three different stimuli.
The spatial stimulus shows cross-correlation between the different input channels depen-
dent on the correlation parameter ρ. This becomes clear from the correlation coefficient
matrix depicted in figure 2.9a. Groups of 32 neighboring channels exhibit roughly con-
stant cross-correlation. The coefficients indicate a stronger correlation between channels
with higher correlation parameter ρ. Figure 2.9b shows the autocorrelation of single spike
trains with different spatial correlation. For any finite lag the value immediately drops to
zero, the stimulus does not show any autocorrelation.
The temporally correlated stimulus in turn shows no cross-correlation. The off-diagonal
elements of the correlation matrix are low for all temporal correlation parameters (figure
2.10a). However, the autocorrelation has periodic oscillations that increase in amplitude
for higher ρ (figure 2.10b).
To calculate the correlation measures of the auditory stimulus a series of spike trains of
multiple digits is used. Both types of correlation are observed. The off-diagonal coeffi-
cients in figure 2.11a show increased correlation for certain intermediate channels. In figure
2.11b the autocorrelations for two exemplary channels with low and high correlation are
plotted.

To summarize the correlation per channel the integrated cross-correlation (sum of rows of
the correlation matrix) is plotted in figure 2.12. The same is done for the autocorrelation
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by integrating the modulus of the autocorrelation over all lags (figure 2.13). Both distri-
butions show a broad peak at higher input channels corresponding to lower frequencies in
the stimulus.

2.5 Information Theoretic Measures

In the auditory stimulus the input channels exhibit differently pronounced correlation (sec-
tion 2.4.4). However, for future processing of the digits it is also relevant how informative
each channel is on the spoken digits. This is analyzed with measures from information
theory. The mutual information (MI) between the spikes of each input channel and the
labels of the spoken digits quantifies the amount of information each channel provides on
the digits.
In the following a short introduction to the information theoretic measures used for eval-
uation is given. General definitions can be obtained from [Cover et al. 2006]. More details
on the use of information theoretic measures for analyzing neural systems can be found in
[Wibral et al. 2015].
Spikes of a single spike train are considered to be distributed according to a stationary
random distribution. By sampling the spike patterns over time, their probability distribu-
tion can be constructed from the unique counts in the sampling. Such distributions can
be analyzed with standard measures from information theory.
Subsequently, a stationary random process X of length n composed of random variables
Xi, i ∈ [1, n] is assumed. Realizations of such a process are denoted with lowercase letters
xi and the set of all possible outcomes is given by Xi. The probability of a specific outcome
is indicated by p(xi).

The information entropy H of a discrete random variable X quantifies the average amount
of information contained in X. Its value can be calculated by

H(X) =
∑
x∈X

p(x) log2

( 1
p(x)

)
, (2.12)

where the use of log2 generates results in binary digits (bits).

If the outcome of X is already known, the conditional entropy H(Y |X) describes the
additional information gained from observing a random variable Y . It is calculated by the
weighted sum of the entropy H(Y |X = x) of X taking a specific value x, over all possible
values for x

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x), (2.13)
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and can be rewritten to

H(Y |X) =
∑
x∈X

∑
y∈Y

p(x, y) log2

(
p(x)
p(x, y)

)
, (2.14)

with p(x, y) being the joint probability distribution. It can also be understood as the
amount of information contained in Y , that is not accessible from X directly.

These measures allow to define the mutual information (MI). The MI specifies the amount
of information directly shared between two random variables

I(X;Y ) = H(X)−H(X|Y ). (2.15)

It quantifies the information contained in X minus the additional information contained
in X, provided knowledge of Y , leaving the information contained directly in both X and
Y without knowledge of the respective other. Inserting the above yields

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log2

(
p(x, y)
p(x) p(y)

)
. (2.16)

This formula also shows that I(X;Y ) is symmetric in X and Y . The MI is calculated
using the PyInform Python module, a wrapper for the Inform C library [D. G. Moore
et al. 2017].
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3 Results

The artificial stimuli are used to establish a baseline for the network behavior and the
performance of the structural plasticity rule under differently correlated inputs. The
results are given in section 3.1. The data obtained from stimulation with actual auditory
stimuli is presented and analysed in section 3.2.

3.1 Artificial Stimuli

Experiments are conducted for different network recurrence degrees kin and different spike
rates. In the following, a pair of these parameters is referred to as a configuration. Con-
figurations are swept to demonstrate different network characteristics.

3.1.1 Address Development

For the artificially correlated stimuli a simple evaluation of the network response can
be performed by examining the addresses chosen by the synapses. If synapses show a
preference for a certain decoder address after the network was stimulated and subjected to
the plasticity rules, it can be interpreted as a preference of the network for the correlation
strength sent with the corresponding address. This can be quantified by a preference
measure for each address.
The number of synapses transmitting spikes with an external spike address i is denoted
by Ni. The preference Pi for address i is defined as the share of Ni in all synapses that
are sensitive to external input Next = kin ·N :

Pi = Ni

Next
. (3.1)

Since the addresses are pruned in every structural plasticity update, Pi changes over the
course of an experiment.

The time development of this preference measure throughout the experiment is plotted in
figure 3.1a for the spatially correlated stimulus. The figure shows sample configurations
which highlight different characteristics observed in the whole sweep of configurations.
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Figure 3.1: Time development of the address preference. The configurations shown capture the
characteristic difference in observed network behavior. The presented data was recorded with a pruning
threshold of 6 bit.
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At very high recurrences the network does not show a preference for any of the stimuli.
For all addresses, the share fluctuates around an equal, constant value.
Towards lower recurrences corresponding to overall higher coupling to the external input,
the share of addresses splits up over the course of the experiment. The network starts to
show a preference for address 3 which receives input with the highest correlation strength.
This effect is particularly strong at intermediate frequencies and network recurrences. The
split between addresses shows an asymptotic convergence to a maximal value.

The same graphs are shown for the temporally correlated stimulus in figure 3.1b. Again,
multiple configurations are used to capture the qualitative behavior. The spike rate is
controlled by scaling the amplitude A of the temporal modulation. Even though this also
increases the correlation between the inputs of different addresses, the relative amplitude
between channels ρ is kept constant for the whole sweep of A.
The overall development of the address share over time is comparable to the spatial stim-
ulus. At high network recurrences only a small split between addresses is visible, which
changes at lower recurrences with stronger coupling to the external input. Generally, the
split seems to happen slightly faster for the temporal stimulus. The data is also less noisy
as evidenced by the smaller errors.

3.1.2 Impact of Pruning Threshold

To analyse the impact of the pruning threshold cth (section 2.3.2) on the address preference
data is recorded for multiple thresholds in each configuration. For clearer presentation only
the address with highest correlation is considered. It can be seen from figure 3.1 that this
address alone is a good indicator of the networks ability to choose from the correlated
input. Figure 3.2 therefore shows the development of the share of synapses with decoder
address 3 for different pruning thresholds. Again, configurations are shown that represent
the observed characteristics.
The pruning threshold shifts the frequency where the largest split happens. While for
high spike frequencies around f = 30 Hz the highest split is achieved with cth = 7 bit, for
lower rates a threshold of cth = 5 bit shows the best split performance. Values lower than
cth = 4 bit were not recorded because addresses would start to jump randomly in every
plasticity update (also see section 3.1.4).
Similar behavior is observed for the temporally correlated stimulus (see the change of blue
and green graphs in figure 3.2b). Here, a threshold of cth = 7 bit results in a low ability
to couple to the highest correlated input across all observed spike rates.

The connection between the pruning threshold and the frequency of the highest preference
split can be explained by considering the correlation traces used in the pruning rule. At
lower spike frequencies there is generally less correlation per time in the stimulus which
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Figure 3.2: Time development of the preference for the highest correlated input compared between
multiple pruning thresholds for multiple configurations.
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Figure 3.3: Address preference averaged over the last 10 structural plasticity updates swept for dif-
ferent network configurations. The synapse pruning threshold is cth = 6 bit. The crosses mark the
configurations for which the time development is shown in the previous figures.

results in lower correlation traces. Thus, when keeping the threshold fixed, more synapses
are pruned than at higher frequencies. Reducing the pruning threshold counteracts this
effect, the largest split happens at lower frequencies for lower thresholds.

3.1.3 Configuration Sweep

To systematically analyze the behavior for different configurations the networks preference
at the end of an experiment is summarized by averaging the address share over the last 10
structural plasticity updates. This is calculated for each of the four addresses and plotted
in a color mesh plot in figure 3.3. A pruning threshold of cth = 6 bit was used, which
generally provided good performance at intermediate frequencies. The configurations for
which the time development was shown in the previous figures are marked with a cross.
Network configurations are swept for the spatial stimulus from the lowest possible recur-
rence kin = 32 to a maximum recurrence of kin = 6 in steps of 2. For higher recurrences
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Figure 3.4: Time development of the number of changing decoder addresses Nch in a structural
plasticity update. A single configuration of the spatial stimulus with frequency f and recurrence kin is
shown. The pruning threshold is 6 bit.

the network did not become stable. The plot shows a broad maximum of preference for
the highly correlated address at intermediate recurrences and spike rates (figure 3.3a).
For the temporally correlated stimulus such a sweep is shown in figure 3.3b. Here, network
recurrences are swept from kin = 14, much lower values did not produce stable results.
The plot also shows an area of high address share split, but it is generally located at higher
recurrences towards the feedforward network.

This shows that there are ranges of parameters for which the network is able to select
spatially respectively temporally correlated input.

3.1.4 Address Stability

Another measure that characterizes the development of the network connectivity under a
given plasticity rule is the overall stability of synaptic connections.

The fraction Nch/Next of external decoder addresses that change in a structural plasticity
update is plotted in 3.4 for a single configuration of the spatially correlated stimulus. It
demonstrates an example of how this ratio develops over time. A comparison between
different configurations and pruning thresholds is depicted in figure 3.5. Error visualiza-
tion is omitted for cleaner presentation. The standard deviation of all configurations is
comparable to that shown in figure 3.4.

Configurations with low recurrences that show no split between addresses in figure 3.1
generally have unstable addresses that change frequently during the whole experiment.
These are also more noisy, as visible from the jumpy lines.
Configurations that have a visible split exhibit significantly less address changes. Here, the
number of jumps drops in the first few structural plasticity updates and then stays at a
constant value (see 3.4). The pruning threshold impacts the timescale of this stabilization
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Figure 3.5: Time development of the decoder address stability for different configurations. The number
of addresses changed after each structural plasticity update is compared between multiple pruning
thresholds. Data is averaged over all recorded trials, errors are omitted for cleaner visualization.
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Figure 3.6: Correlation strength of the spike masks of the auditory stimulus. The integrated cross-
correlation measure from section 2.4.4 is used. A similar assignment of correlation to addresses results
from the integrated autocorrelation. The auditory channels are distributed across the inputs by sending
32 neighboring channels on a fixed address. With this distribution each input receives both strongly and
weakly correlated spikes, from which the synapses can choose by selecting the corresponding addresses.

since it controls the number of synapses that can be pruned. For a high threshold, the
final number of jumps is reached after very few updates, while more updates are needed
for a lower threshold. This is especially pronounced in the temporally correlated stimulus
(e.g. configuration with A = 30 θ, kin = 32 in figure 3.5b).
Naturally, the threshold also impacts the overall number of jumps across all configurations.
A high threshold results in many address changes since synapses are pruned for a large
range of correlation measurements. For cth = 7 bit, potentially all synapses could be
pruned. Correspondingly, a low threshold results in less address jumps. This is however
not necessarily wanted, because the network should maintain the ability to jump away
from uncorrelated input.

3.2 Auditory Stimulus

The auditory stimulus has a fixed spike frequency. Because of the findings in section 3.1.2
the pruning threshold is not expected to have an impact on the network recurrence for
which highest correlation preference is achieved. Therefore, a fixed value of cth = 6 bit is
used for all experiments with the auditory stimulus. This value generally provided good
results for the artificial stimuli.

The 128 auditory channels of the stimulus have to be distributed across the chip’s inputs
and the available addresses. Because of the finite spike routing time, the number of ad-
dresses per input is limited (see discussion in chapter 4).
When sending 32 neighboring spike trains of the auditory stimulus on a fixed address at a
time, the chip’s 32 inputs each receive spikes of 4 different correlation strengths. As shown
in figure 3.6, each input receives spikes with both high and low correlation. The addresses
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Figure 3.7: Time development of the preference for correlated input of the auditory stimulus. The
available addresses of each synapse are ordered by the correlation of the corresponding input channels.
The graphs show the fraction of external synapses that are sensitive to the i-th highest correlation, i.e.
i = 1 corresponds to synapses coupling to the strongest available correlation.

27



3 Results

chosen by the synapses however loose their direct mapping to a fixed correlation strength.
Yet, a correlation preference measure comparable to that of the artificial stimulus can be
constructed.
For evaluation, the external addresses of every synapse are ordered according to the cor-
relation strength of the corresponding spike trains they transmit. This allows to calculate
the number Ni of synapses that chose the address with the i-th highest correlation. The
fraction of these synapses in all external synapses is the preference for the i-th highest
available correlation:

Pi = Ni

Next
. (3.2)

Figure 3.7a shows the development of this preference measure. Here, addresses are sorted
with respect to the integrated cross-correlation of the corresponding input channels as
determined in section 2.4.4. Figure 3.7b shows the same with addresses sorted by the
integrated autocorrelation.
For both correlation patterns, configurations with different network recurrences are shown.
There is no significant preference visible at high recurrence, especially, the distribution
does not evolve over time.
Similarly to the artificial stimuli there is a large split between the correlation preference for
intermediate recurrence. The network prefers such addresses that transmit input channels
with high correlation. This is true for both temporal and spatial correlation. For the
feedforward case, the split is slightly reduced, indicating less preference.

3.2.1 Input Channel Address Distribution

The performance of feature selection of relevant channels in the auditory stimulus is eval-
uated by analysing the total number of synapses realized for every input.
Each synapse driver receives input of four different channels that it transmits to 32
synapses. The external synapses can choose between these four input channels by se-
lecting the respective addresses. The share of synapses with an address corresponding to
each channel Nch in all external synapses characterizes the total strength of coupling to
the channels.

The time development of this distribution between channels after each structural plasticity
update is plotted in figure 3.8. Channel numbers are mapped to corresponding position
on the basilar membrane for a more general presentation.
The figure shows that the final distribution is reached relatively fast after the random
initialization with an equal share in addresses. This allows to sample the distribution not
only from the multiple trials, but also over time. Such a distribution of the average over
the last 50 structural plasticity updates is plotted in figure 3.9 for multiple kin.
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Figure 3.8: Time development of the share of synapses sensitive to each input channel of the auditory
stimulus. Input channels are mapped to corresponding positions of the HCs on the BM. Data for a
network recurrence of kin = 24 and a pruning threshold cth = 6 bit is shown. The final distribution is
reached relatively fast after a few structural plasticity updates.

The integrated correlation measures from section 2.4.4 are drawn for comparison. In
addition, the MI between each input channel si (the stimulation spike trains) and the
corresponding label l of the digits is plotted. This gives a measure for the amount of
information on the digits that is contained in each channel.
All graphs show a broad peak at around 2.5 cm on the BM. There is an additional small
peak at a lower BM position in the MI that is not present in the correlation measures.
The address distribution is to noisy to make a clear statement about such a peak in
the network’s address choice. Thus, it can not be stated definitely whether the network
only couples preferably to high correlation, or if other features of the stimulus, that are
informative on the digits, are recognized.
The network recurrence degree kin has a slight impact on the distinctiveness of the peak
in the distribution. Towards high recurrence, it vanishes and overall noise increases as
indicated by the larger errors.
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Figure 3.9: Distribution of synapses sensitive to each input channel of the auditory stimulus. Input
channels are mapped to corresponding positions of the HCs on the BM. Data is sampled from the last
50 structural plasticity updates as well as being averaged over all recorded trials. For comparison the
MI between input channels and digit label and the integrated correlation measures of the inputs are
shown. All distributions show a peak at around 2.5 cm.
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4 Discussion and Outlook

In the experiments conducted as part of this thesis, feature selection with structural plas-
ticity on the HICANN-DLS chip was successfully demonstrated. The chip received multiple
spike trains on each of its inputs. The synaptic decoder address was used to select which
of the spikes is transmitted by a synapse. The correlation based structural plasticity rule
could select one of the available addresses in discrete pruning intervals. Performance was
evaluated by analysing the fraction of realized decoder addresses that receive highly cor-
related input. The use of artificial stimuli allowed to establish a baseline for the networks
capability to couple to correlated stimuli when subjecting synapse addresses to a corre-
lation based pruning rule. The model’s ability to couple stronger to input channels with
higher correlation, both in time and between input channels was demonstrated.

The temporally correlated stimulus shows correlation of spike times in single input chan-
nels. This correlation can be measured directly with the correlation traces of the synaptic
connections in the network when the postsynaptic neuron is activated to spike. Since these
correlation measurements are used to adapt the decoder addresses of the synapses, the
network quickly arrives at its final distribution of the share of addresses. In the spatially
correlated stimulus the correlation is between different input channels. Spikes of multiple
of these channels are routed into the same neuron. If these spikes are capable of invok-
ing a postsynaptic spike, there will be correlation between pre- and postsynaptic spikes.
Thus, high correlation of spike times of different input channels can lead to an increase in
the correlation measurements of the synaptic connections involved. However, as multiple
synapses are involved and neurons also receives spikes from uncorrelated channels, the
capability of the network to select the correlated input is slower compared to the direct
correlation in single channels of the temporally correlated stimulus (figure 3.1).

The threshold for pruning of synaptic decoder addresses allows to control the frequency
for which optimal performance is achieved. Higher stimulation frequencies result in overall
more activity per time and therefore higher correlation measurements for correlated input.
To allow synapses to be pruned in such cases, a higher pruning threshold is required
(figure 3.2a).
The pruning threshold also impacts the total amount of synapses that can be pruned in a
plasticity update. Hence, it allows to tweak the responsiveness of the network to dynamic
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input. Especially for the temporal stimulus the number of jumps stabilizes much faster
for a higher pruning threshold, as the network is more responsive (figure 3.2a).
The actual value that is compared to a synapse’s correlation measurement to decide if the
synapse is pruned is chosen from a uniform random distribution. The pruning threshold
just defines the maximum value of this distribution. Therefore, synapse pruning is to a
large degree a random effect that introduces a form of noise in the address development.
A clearer impact of the pruning threshold might be seen when comparing correlation
measurements to a constant value globally selected for all synapses, which will have to be
tested in future experiments. This would additionally reduce the number of random values
that need to be calculated in each plasticity update and allow the pruning to happen more
quickly.

By sweeping across a number of different network configurations it was shown that the
optimal performance of correlation selection is achieved for a whole range of network
recurrences and stimulation frequencies. The latter allows to use stimuli with different
frequencies. Together with the knowledge gained above on the relation of the frequency
to the pruning threshold, the setup can be tuned to stimuli with a range of different time
scales.
The freedom to choose the network recurrence and the stimulation frequency while main-
taining the capability of feature selection allows to control the computational power of the
network. This is of interest for the second task analysed in this thesis.

As a step towards speech recognition with the HICANN-DLS chip the structural plastic-
ity rule was used for feature selection from several provided input channels of auditory
stimuli. Such stimuli were shown to exhibit both types of correlation patterns analysed
above (figure 2.12 and 2.13). This is due to the spatial frequency separation of the BM
involved in spike creation.
Furthermore, correlation coincides with high information on the label of the digit spoken,
as measurable by the MI between spike activity and labeling vector. To understand this,
the statistical spike probability of the HCs in the auditory model has to be considered.
Without external stimulation the hairs of the HC are subject to thermal fluctuations that
invoke random spikes following a Poisson distribution which is uncorrelated. An external
stimulus however extrudes the BM at regions corresponding to frequencies relevant to the
stimulus. This increases spiking rate of HCs in these regions which makes the correspond-
ing channels informative on the input. Such channels now show correlation in spike times
because the spike distribution is no longer just Poissonian.
With the results from the previous experiments in mind this explains the capability of the
setup to preferably select auditory input channels with high information content on the
digits (figure 3.9).
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A relevant aspect to consider is the distribution of input channels across the synapse
drivers. For an arbitrary stimulus not every synapse necessarily has the same chance to
couple to strongly correlated input channels and some synapses would have to couple to
inputs with low correlation. For the specific distribution of auditory channels used in this
thesis this is not a problem. Figure 3.6 shows that every chip input receives high and
low correlation. In general, the problem could be circumvented by distributing channels
redundantly across the chip’s inputs. If each spike train is provided to multiple synapse
drivers on different addresses every synapse could potentially select the correlated input.
This would however reduce the number of different input channels that can be used.
Cochlea implants with eight channels allow humans with an hearing impairment to un-
derstand speech with reasonable accuracy, with more channels seeming to increase per-
formance [Croghan et al. 2017]. While the computational power of the employed network
with only 32 neurons is significantly reduced compared to the human brain that processes
inputs from the cochlea implants, for the rather simple task of classifying ten different
digits, a low number of channels may still lead to good performance and allow for higher
redundancy. This will have to be analysed in future experiments with an LSM setup
(see below).

One way to increase the number of different inputs, either to improve redundancy or to
allow for a more biologically realistic setup with more HCs, would be to raise the number
of addresses from which the synapses can choose. However, more spikes would need to be
send into the network on a single input. This would increase the time interval in which
the network receives spikes belonging to the same input channel, leading to a decrease
of the stimulation frequency. Therefore, the correlation per time drops which decreases
temporal resolution of the correlation trace measurements and potentially effects synaptic
pruning. The magnitude of this effect and the maximal number of addresses per input
channel that still allows for correlation preference remain to be analysed.
A countermeasure would be to decrease the time between two spikes sent into the network.
While this stimulation bin width (see table 5.1) would optimally be chosen infinitely small,
the chip’s spike input frequency is limited by the FPGA’s clock rate. The hardware design
is however expected to allow a reduction of the bin width by a factor of two in future
experiments, doubling the effective number of input channels.

In an LSM setup for classification tasks the recurrent network is considered as a “liquid”
capable of processing the inputs in a non-linear way by projecting them into the high-
dimensional liquid space [Maass et al. 2002; Maass et al. 2004]. The outputs of a well
designed liquid are expected to be linearly separable so information can be extracted with
a simple linear classifier. Thus, the performance of an LSM setup can be evaluated by the
classification accuracy of the linear classifier.
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4 Discussion and Outlook

In the experiments conducted here, the network recurrence degree kin remains as a con-
trol parameter to tweak performance since no significant impact on feature selection was
found for a range of recurrences. It has been shown that kin can influence the networks
distance to the critical point between phases of amplifying spiking activity and rapid ac-
tivity decline [Cramer et al. in prep.(a)]. This has the potential to impact the network’s
computational power and therefore the performance of the setup in a classification task,
which should be analysed in future experiments.
The use of a higher number of addresses per synapse could also impact the classification
and requires further investigation. To gain better understanding of the mechanisms gov-
erning the network, more extensive tools from information theory could be used to analyse
the information flow between inputs, outputs, and neurons.
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5 Appendix

Parameter Symbol Value
Membrane capacitance Cm (2.38± 0.02) nF
Time constant τmem (1.6± 1.0) ms
Threshold potential uthresh (551± 22) mV
Leak potential uleak (350± 100) mV
Reset potential ureset (318± 18) mV
Refractory period τref (4.87± 0.45) ms
Synaptic time constant τ exc

syn (3.70± 0.49) ms
τ inh

syn (2.81± 0.35) ms
Synaptic delay dsyn (1.9± 0.1) ms
Weight conversion sw (8.96± 0.13) µA
Causal correlation time constant τ+ (7.3± 0.7) ms
Anticausal correlation time constant τ− (6.8± 1.2) ms
Causal correlation amplitude η+ 0.068± 0.022
Anticausal correlation amplitude η− 0.071± 0.023
STDP correlation scaling λstdp −1/64
Drift parameter λw 1/128
Range of random variable bamp 15/16
Bias of random variable 〈b〉 3/16
Number of neurons N 32
Number of inhibitory neurons Ninh 6
Initial weight winit

ij 0LSB
STDP update period Tstdp 1.09 s
Structural plasticity update period Tstruc 9 min
Experiment duration Texp 15 h
Stimulation bin width Tstim 4.2 ms
Temporal modulation frequency ν 24 Hz
Temporal jitter amplitude ∆ν 2.4 Hz
Stimulus offset θ 9.6 Hz

Table 5.1: List of model parameters. Times are given in the biological equivalents. Errors indicate the
standard deviation. Hardware model parameters are taken from [Cramer et al. in prep.(a)]
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