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Abstract
Demonstrating Advantages of Neuromorphic Computation: The goal of neuromor-
phic computation is to develop a substrate that mimics the brain and reproduces
its capabilities in terms of efficient, adaptive and highly parallelized computation.
In this pilot study we demonstrate and quantify these advantages regarding emu-
lation speed, energy efficiency and robustness to noise. We use a prototype chip
of the BrainScaleS 2 neuromorphic system to implement a reinforcement learn-
ing experiment that uses a biologically plausible learning rule, reward-modulated
spike-timing-dependent plasticity, to learn to play a simplified version of the Pong
arcade video game by smooth pursuit. The neuromorphic chip contains physical
model neurons and synapses as well as a digital on-chip plasticity processing unit,
which we also use to simulate the virtual environment. Compared to biological
real-time, the chip operates with a 1000-fold acceleration, while consuming 57 mW
of power. Compared to an equivalent software simulation on a commercial processor,
our neuromorphic emulation is at least an order of magnitude faster and three
orders of magnitude more energy-efficient. We find that fixed-pattern noise, which
is inevitable in analog substrates, can be mitigated using learning, decreasing the
need for calibration: the learning rule implicitly adjusts synaptic weights so as to
compensate neuron parameter variations. At the same time, trial-to-trial variability
due to temporal noise is not a nuisance but rather used as a computational resource
for action exploration.

Zusammenfassung
Demonstration der Vorteile des neuromorphen Rechnens: Das Ziel des neuromor-
phen Rechnen ist es, ein Substrat zu entwickeln, welches das Gehirn nachempfindet
und seine Fähigkeiten in Bezug auf effiziente, adaptive und hoch parallelisierte
Informationsverarbeitung reproduziert. In dieser Pilotstudie demonstrieren und
quantifizieren wir die wesentlichen Vorteile des neuromorphen Rechnens bezüglich
Emulationsgeschwindigkeit, Energieeffizienz und Robustheit. Wir verwenden einen
Prototypen des neuromorphen Systems BrainScaleS 2 um ein Experiment zu im-
plementieren, welches verstärkendes Lernen mittels einer biologisch plausiblen
Lernregel, Reward-modulated Spike-Timing-Dependent Plasticity (R-STDP), ver-
wendet um eine vereinfachte Version des Videospiels Pong durch Verfolgung des
Balls zu lernen. Der neuromorphe Chip enthält physische Modellneuronen und
-synapsen, sowie einen Plastizitätsprozessor, welcher in dieser Arbeit auch dazu
dient, die virtuelle Umgebung zu simulieren. Im Vergleich zur biologischen Echtzeit
operiert der Chip mit einer 1000-fachen Beschleunigung und kommt mit einem
Leistungsbudget von 57 mW aus. Im Vergleich zu einer equivalenten Softwaresimula-
tion auf einem kommerziellen Prozessor ist die neuromorphe Emulation mindestens
eine Grössenordnung schneller und drei Grössenordnungen energieeffizienter. Wir
stellen fest, dass festes Musterrauschen, welches auf analogen Substraten unver-
meidbar ist, durch Lernen ausgeglichen werden kann: die Lernregel verändert die
synaptischen Gewichte implizit derart, dass neuronale Parametervariationen aus-
geglichen werden. Gleichzeitig wird Versuch-zu-Versuchsvariabilitaet, die aufgrund
von Rauscheffekten besteht, als eine Ressource für das Lernen verwendet, statt eine
Störung darzustellen.
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Note

Parts of the thesis at hand have been submitted to Frontiers in Neuromorphic Engi-
neering and are currently under peer-review. A pre-print is available (Wunderlich
et al., 2018).
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1Introduction

„The brain is just the weight of God,
For, lift them, pound for pound,
And they will differ, if they do,
As syllable from sound.

— Emily Dickinson

Curiosity drives humans to study and conceptualize the physical world. As a result,
scientific theories now explain physical phenomena on diverse temporal and spatial
scales: from the interaction of elementary particles on the shortest time scales
possible, to the formation of galaxy clusters over millions of years. However, the
physical system that predicates scientific inquiry and indeed, any inquiry at all,
remains largely elusive: the brain. Modern neuroscience has embarked on a journey
to change this; researchers acquire data and engage in modeling at a rapid pace.

A thorough understanding of the brain would enable the reproduction of its compu-
tational abilities and high-level functions, as is the declared goal of many researchers.
As of today, this objective remains unfulfilled. Traditional computers in the vein of
Turing and von Neumann, despite sometimes being abusively termed “electronic
brains” in their early days, operate in a fundamentally different way. The divide
becomes apparent when considering that computers are very bad at tasks that are
trivial and effortless to humans, such as natural language processing, while humans
must exert considerable effort to solve simple arithmetic problems. The human
brain is highly adaptive and robust to damages of its neural substrate (Feuillet et al.,
2007), while the critical parts of computers generally rely on the proper functioning
of every single one of its transistors. Besides this, the brain is strongly constrained in
terms of power consumption and space.

Although the development of traditional computers proceeds at an exponential
pace, as expressed by Moore’s law, there exists a wide consensus that the future of
computation will require the development of novel principles (Dean et al., 2018). It
is a natural approach to study the basis of computation found in the brain, thereby
laying the groundwork for such a paradigm shift. This requires the development of
models of neural computation, which need to be implemented on some substrate.
Commonly, the substrate is a digital computer that simulates models of neural
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networks; this approach, however, does not scale very well: simulations of large-
scale neural networks on state-of-the-art supercomputers or highly specialized digital
hardware achieve real-time simulation speed at best (Jordan et al., 2018; Albada
et al., 2018; Mikaitis et al., 2018). This makes simulations of biological learning
processes that happen on long time scales largely unfeasible.

Alternatively, neural networks can be implemented using the idea of physical model-
ing: neurons and synapses have physical representations that behave according to
temporal dynamics which mimic their biological counterpart. The corresponding
field of neuromorphic computing was pioneered by Carver Mead in the 1980s (Mead,
1989). Models of neurons and synapses can be implemented in electronic integrated
circuits – allowing for the manufacture of neuromorphic chips using well-established
CMOS technology (Veendrick, 2017). These models ideally retain enough biological
detail to be able to reproduce the functionality of biological neural networks, while
disregarding unnecessary detail. At the same time, the model dynamics can be ac-
celerated by orders of magnitude, allowing for the evaluation of long-term learning
processes.

In this work, we demonstrate and quantify the key advantages of the employed
neuromorphic approach in terms of power consumption, accelerated learning and
robustness to noise. To this end, we implement a reinforcement learning experiment
on a prototype neuromorphic chip with analog network emulation extended by a
flexible digital on-chip plasticity processor.

2 Chapter 1 Introduction



2Neuromorphic Computing

„What I cannot create,
I do not understand.

— Richard Feynman

In neuromorphic computing, researchers aim to develop computational substrates
that mimic the brain. The classical approach, developed by Carver Mead in the
1980s, is to physically implement models of neural networks in analog circuits using
Very Large Scale Integration (VLSI) which allows to create integrated circuits with
millions of transistors on a single chip (Mead, 1989). Specialized solutions born
of this approach, such as touch sensors (Synaptics Homepage 2019) or hearing aids
(Sonic Homepage 2019) based on analog neuro-inspired circuits, have achieved
substantial commercial success. Other solutions aim for a general computational
substrate based on analog electronic circuits, in order to provide researchers with
the possibility to flexibly implement models of spiking neural networks, such as
the Neurogrid project (Benjamin et al., 2014), a series of real-time neuromorphic
chips from the INI Zurich (Indiveri et al., 2011) and the accelerated large-scale
BrainScaleS hardware (Schemmel, Brüderle, et al., 2010). Besides this physical
modeling approach, there exists specialized digital hardware for the simulation of
neural networks, such as IBM’s TrueNorth (Merolla et al., 2014), SpiNNaker (Furber
et al., 2014) and Intel’s Loihi (Davies et al., 2018).

In the following, we review models of spiking neural networks and synaptic plasticity
and discuss how neuron models can be emulated in electronic circuits. Then, the
prototype chip that we use in this work, HICANN-DLSv2, is described.

2.1 Abstract & Physical Models

Neurons are thought to be the functional unit of the brain (the neuron doctrine),
with synapses mediating the connections between neurons. They can be both
mathematically modeled and implemented as physical models (Wulfram Gerstner,
Kistler, et al., 2014). Both approaches will be discussed in the following.
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2.1.1 Neurons & Synapses

Dendrites

Soma

Axon

Fig. 2.1: A biological neuron, adapted from Quasar, 2009.

Time

Membrane
potential

Fig. 2.2: The qualitative shape
of an action potential.
Taken from Chris73,
2015.

In Biology The description given in the following
largely follows Wulfram Gerstner, Kistler, et al.,
2014. A biological neuron is a specialized cell that
is electrically excitable. It can be divided into three
parts: its soma (cell body), its dendrites and its axon
(see Figure 2.1). The neuron’s dendrites branch out
from the soma and form synapses with other neu-
rons. The dendritic tree allows the soma to pick up
signals from a large number of synaptic partners
(generally in the order of 104). These signals can
either electrically excite or inhibit the neuron, which
is expressed in an increase or decrease of the mem-
brane potential (the electrical potential with respect
to the outside of the cell). The neuron has voltage-

gated and ligand-gated ion channels as well as ion pumps which serve to transport
charged particles in and out of the cell. While voltage-gated and ligand-gated ion
channels are activated by membrane potential fluctuations and neurotransmitters,
respectively, ion pumps use energy in the form of ATP to actively pump charged
particles in and out of the cell. The resting potential is the stable membrane potential
of the neuron in the absence of input from other neurons and is determined by the
interaction of these different mechanisms. It is generally in the order of −60 mV.

If the net excitation and therefore the membrane potential is large enough, the
ion channel dynamics will cause a rapid depolarization of the cell, causing the
cell body to elicit a voltage pulse called an action potential that travels along the
axon where synaptic contacts with other neurons’ dendrites are activated. After an
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Outside of the Cell

Inside of the Cell

Cm
gNa

VNa

gK

VK

gL

VL

Iext

Fig. 2.3: Circuit diagram of the Hodgkin-Huxley model, adapted from Krishnavedala, 2012.

action potential, the neuron is in a refractory state where the membrane potential
is hyperpolarized (i.e., below the resting potential) and the neuron is harder to
excite. This effect lasts for a time in the order of 1 ms. Refer to Figure 2.2 for the
stereotypical shape of an action potential.

The means by which neurons communicate are precisely these action potentials
which cause the release of different types of neurotransmitters at the synaptic sites,
leading to the opening of ligand-gated ion channels. By this mechanism, synapses
can have an excitatory or inhibitory effect on the post-synaptic neuron: the Post-
Synaptic membrane Potential (PSP) of the neuron is increased in the former and
decreased in the latter case. The strength or weight of the synapse is characterized
by the amplitude of the elicited PSP.

The shape of the action potentials is stereotypical and contains no information.
Rather, information is conveyed by the timing and frequency of the action potentials.
The action potentials are also called spikes.

Hodgkin-Huxley Model The classic Hodgkin-Huxley-Model (Hodgkin and Huxley,
1952; Wulfram Gerstner, Kistler, et al., 2014) is a mathematical model of action
potential generation by the dynamics of the ion channels in a neuron. It is a point-
neuron model in the sense that the spatial extent of neurons is not taken into account.
The idea is to view a neuron as an electrical circuit, with a capacitor Cm representing
the membrane and with electrical conductances modeling voltage-dependent ion
channels (see Figure 2.3). The model consists of four coupled Ordinary Differential
Equations (ODEs): one for the membrane potential V and three to model the

2.1 Abstract & Physical Models 5



interaction of three different ion channels with corresponding reversal potentials
(Sodium gNa and VNa, Potassium gK and VK, Leak gL and VL):

Cm
dV
dt = −gKn

4(V − VK)− gNam
3h(V − VNa)− gL(V − VL) + Iext(t) , (2.1)

dn
dt = αn(V )(1− n)− βn(V )n , (2.2)

dm
dt = αm(V )(1−m)− βm(V )m, (2.3)

dh
dt = αh(V )(1− h)− βh(V )h , (2.4)

where α∗(V ) and β∗(V ) are voltage-dependent opening and closing rates and Iext(t)
is a time-dependent external current. The different opening and closing rates enable
the model to reproduce dynamic action potential generation: sufficient external
excitatory input causes a positive feedback effect that causes a rapid up-swing of
the membrane potential (caused by rapid opening and closing of sodium channels)
followed by a down-swing (caused by slow potassium channel inactivation) and
a slow recovery from the hyper-polarization. Figure 2.4 depicts a single action
potential generated in the Hodgkin-Huxley model that is the result of a short, but
strong stimulation based on an injected current.

Fig. 2.4: Action potential in the Hodgkin-Huxley model after stimulation between t = 1 and
t = 2 with an expanded view in the right panel. From (Wulfram Gerstner, Kistler,
et al., 2014).

Leaky Integrate-and-Fire Model The computational cost of simulating neurons can
be reduced by moving to the simplified Leaky Integrate-and-Fire (LIF) model, which
is a simple neuron model that preserves biologically meaningful properties (Wulfram
Gerstner, Kistler, et al., 2014). Because action potentials only convey information
by their existence or non-existence, they are reduced to events with no temporal
extent. This model is defined by a single differential equation that represents a
leaky membrane, while synaptic input can be modeled either by time-varying con-
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ductances gsyn
i (t) (conductance-based, COBA) or external currents Isyn

i (t) (current-
based, CUBA):

Cm
dV
dt = −gL(V − VL) +

K∑
i=1

gsyn
i (t)(V − Vi) COBA, (2.5)

Cm
dV
dt = −gL(V − VL) +

K∑
i=1

Isyn
i (t) CUBA, (2.6)

where the sum goes over the K synapses with reversal potentials Vi in case of COBA.
Spiking is not part of the ODE dynamics, as in case of the Hodgkin-Huxley model,
but is instead introduced by the condition

Neuron spikes at time t ⇔ V (t) > Vthresh (2.7)

with threshold voltage Vthresh. As soon as the threshold voltage is crossed, the
membrane potential is reset to the reset potential Vreset and held fixed for a time
period τref that models the temporal extent of the refractory state:

V (t) = Vreset if t ∈ [tf , tf + τref) , (2.8)

where tf is the time of the last spike before t. After the refractory period, the
membrane potential dynamics continue according to Equation (2.5) or Equation (2.6)
with V (tf + τref) = Vreset as the initial condition.

The synaptic input is a sum over the pre-synaptic spike times tf within which the
dimensionless synaptic interaction kernel εi(t) is weighted with the dimensioned
synaptic weight wi:

gsyn
i (t) =

∑
tf

wiεi(t− tf ) COBA, (2.9)

Isyn
i (t) =

∑
tf

wiεi(t− tf ) CUBA. (2.10)

The weights have dimensions of an electrical conductance in the case of COBA and
an electrical current in the case of CUBA. A common choice for the exponential
kernels εi(t) is a double-exponential normalized to one (Mihai Alexandru Petrovici,
2016):

εi(t) = θ(t) 1
τ syn

rise − τ
syn
fall

[
exp

(
− t

τ syn
rise

)
− exp

(
− t

τ syn
fall

)]
, (2.11)
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with rise and fall time constants τ syn
rise and τ syn

fall . A simpler and popular choice is
to neglect the rise time, τ syn

rise → 0, so that the synaptic input kernel becomes an
exponential function:

εi(t) = θ(t) 1
τ syn

fall
exp

(
− t

τ syn
fall

)
. (2.12)

The COBA and CUBA LIF model differ in their neuronal membrane dynamics. The
reversal potentials that are part of modeling gated ion channels in the case of
COBA limit the dynamic range of the membrane potential and lead to a non-linear
summing of PSPs, whereas the CUBA model linearly sums synaptic kernels and
therefore PSPs.

Physical Neuron Models The neuron models described above can be simulated on
a digital computer by integrating the respective differential equations. An alternative
approach is to implement a physical model of these equations, where the system
dynamics naturally evolve based on the same or sufficiently similar differential
equations. The Hodgkin-Huxley and LIF model have an equivalent representation
based on electronic circuits. VLSI implementations have been demonstrated for both
models (Yu and Cauwenberghs, 2010; Douence et al., 1999; Häfliger et al., 1997;
Schemmel, Meier, et al., 2004; Indiveri et al., 2011; Benjamin et al., 2014; Aamir,
Müller, et al., 2016; Aamir, Stradmann, et al., 2018). Due to its simpler nature the
LIF model can be implemented in a smaller area, allowing for more neurons per
chip. Some implementations, including the one that underlies the chip used in this
thesis, provide neuronal time constants that are orders of magnitude faster than the
biological counterpart (Schemmel, Meier, et al., 2004; Aamir, Müller, et al., 2016;
Aamir, Stradmann, et al., 2018).
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2.1.2 Synaptic Plasticity

Fig. 2.5: Spike-Timing-Dependent Plasticity (STDP): pre-before-post coincidences cause
LTP, while post-before-pre coincidences cause LTD. Figure from Sjöström and W
Gerstner, 2010; experimental data from Bi and Poo, 1998.

The ability to learn is a crucial part of biological neural networks. In general terms,
learning in neural networks refers to any adaptations that serve to improve network
function with respect to some learning objective. These adaptations can be mediated
by changes in the structure of the network and by changes in the properties of
network components (i.e., neurons and synapses). Changes in synaptic efficacy
and therefore in the coupling strength between neurons are a paramount part of
such learning processes. Permanent changes to synaptic efficacy are referred to
as Long-Term Potentiation (LTP) or Long-Term Depression (LTD), depending on
whether the change is positive or negative. These long-term synaptic changes are
thought to form the basis of memory formation and learning (Bliss and Collingridge,
1993).

The classic Hebbian theory of learning posits that “neurons wire together if they
fire together” (Hebb, 1949; Lowel and Singer, 1992). In this view, synapses are
strengthened (LTP) if pre-synaptic activity coincides with post-synaptic activity.
Accordingly, learning rules can be defined in terms of the pre- and post-synaptic
firing rates. The theory of Spike-Timing-Dependent Plasticity (STDP) takes this
further by describing synaptic plasticity on the level of individual spikes. It was
famously observed (Bi and Poo, 1998) that synaptic efficacy is increased (LTP) for

2.1 Abstract & Physical Models 9



pre-before-post occurrences (Hebbian learning) and decreased (LTD) for post-before-
pre occurrences (Anti-Hebbian learning). This effect has been observed in vivo in
rats, cats, humans and insects (Markram et al., 2011) and is commonly modeled
using an anti-symmetric exponential dependence of the weight change on the spike
time difference (see Figure 2.5). However, the empirical dependence is influenced by
neurotransmitter concentration. For example, elevated levels of Dopamine can turn
the post-before-pre part of STDP from LTD to LTP in hippocampal neurons, thereby
changing the sign of the STDP window (Pawlak, Wickens, et al., 2010; Wulfram
Gerstner, Lehmann, et al., 2018).

Plasticity mechanisms such as STDP can be part of neuromorphic models and
are important to model and investigate biologically plausible learning processes.
Each synapse of the prototype chip used in this thesis, HICANN-DLSv2, contains a
correlation sensor that can be used for STDP. The experimental results given later in
this thesis use these sensors for learning.

2.2 The HICANN-DLSv2 Neuromorphic Chip

HICANN-DLSv2 is the second prototype chip of the BrainScaleS 2 (BSS2) neuromor-
phic architecture (Friedmann et al., 2017). BSS2 is the successor of BrainScaleS 1
(BSS1), which is a wafer-scale neuromorphic system (Schemmel, Brüderle, et al.,
2010). In both cases, the general approach is to implement physical models of neu-
rons and synapses in electronic circuits using VLSI and CMOS technology. Compared
to BSS1, BSS2 is manufactured using a smaller process (65 nm vs. 180 nm) and
contains a number of additional features for on-chip plasticity and learning, such as
embedded plasticity processors. HICANN-DLSv2 contains 32 physical-model analog
neurons, 1024 dedicated synapse circuits and one plasticity-processing unit. The
chips within the envisioned large-scale BSS2 system will contain more neurons and
synapses and several plasticity processors connected with wafer-scale integration.

All experiments in this thesis were conducted on HICANN-DLSv2.
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2.2.1 Neurons & Synapses
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Fig. 2.6: Neural array on HICANN-DLSv2. Each neuron has a column of 32 synapses.
Synapse drivers inject labeled spike events into synapse rows, where each synapse
compares its label with the spike’s label and generates a pre-synaptic spike if they
match. Additionally, each synapse contains causal/anti-causal correlation sensors
(see inset zoom).

Neurons The 32 neurons on HICANN-DLSv2 are a physical implementation of the
CUBA LIF neuron model (Aamir, Müller, et al., 2016; Aamir, Stradmann, et al.,
2018). Each neuron contains an 8-bit spike counter that can be read out and reset
using the plasticity processing unit. Because neurons use the fast supra-threshold
dynamics of CMOS transistors, the neuronal dynamics are faster by three orders
of magnitude when compared to biological real time. Neuronal time constants in
biology are typically in the order of milliseconds, whereas they are in the order of
microseconds on HICANN-DLSv2. In this work, we always provide the real wall-
clock time constants and do not convert to the biological domain if not specified
otherwise.

Analog Parameter Storage The analog neurons described above require stable
current and voltage biases that can be parameterized to achieve different LIF model
constants (time constants and voltages). These analog parameters are provided by
a single capacitive memory array (abbreviated CapMem) that contains 16 current
and 8 voltage cells for each neuron individually and 16 current and 8 voltage
cells that affect all neurons globally (Stradmann, 2016). A detailed account of the
CapMem design can be found in Hock, 2014. Each cell within the CapMem can be
programmed using a 10-bit digital value. Voltage cells convert this digital value into
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a voltage across a capacitor by an elaborate programming scheme, while current
cells convert the digital parameter into a current bias. Both cell types are designed to
have a linear input-output relationship, which was verified empirically (Stradmann,
2016). Fixed-pattern noise causes the output of CapMem cells to vary across cells for
a given digital parameter (see the Noise paragraph for a description of the effects).

6 bit SRAM
address

6 bit SRAM
weight

6 bit 
DAC

co
m

-
p

ar
at

o
r

correlation
sensors

pre-synaptic
neuron
address (6 bit)

neuron dendritic inputs
A B post-synaptic event from neuron

causal and anti-causal
correlation readouts

Fig. 2.7: Synapse circuits on HICANN-DLSv2. Every synapse has a 6-bit weight, a 6-bit label
(address) and causal/anti-causal correlation sensors. Adapted from Friedmann
et al., 2017.

Synapses The 1024 synapses are arranged in a 32-by-32 array so that each neuron
can receive input from a column of 32 synapses (see Figure 2.6). Spikes are
injected into the array by row-wise synapse drivers that can be configured to have an
excitatory or inhibitory effect. The injected spikes carry 6-bit labels. When a spike is
injected into a row, every synapse of that row compares its label with the label of the
spike and generates a current pulse (corresponding to a pre-synaptic spike) traveling
“down” toward the neuron if they match (see Figure 2.7). The amplitude of this
current pulse is proportional to the 6-bit weight stored at the synapse (the temporal
length of the pulse is a global parameter and the same for all synapses). At the
neuron, this current pulse elicits an exponentially shaped post-synaptic current of
proportional amplitude on the neuronal membrane. Post-synaptic spikes are signaled
(back-propagated) to all synapses of the respective column. Synapses use this signal
in their correlation sensor (see Section 2.2.2).

Noise Due to their analog nature, neurons and synapses on HICANN-DLSv2 are
subject to both fixed-pattern noise and temporal variability. Fixed-pattern noise
refers to variability between chip components that is constant in time and caused by
process variations that lead to deviations from targeted parameters. For example,
two neurons on a given chip might exhibit different time constants for an equal set
of hardware parameters. This kind of variability can be reduced using calibration,
where parameters are tuned individually so as to compensate for variations. A
neuronal calibration to compensate fixed-pattern noise is available for HICANN-
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DLSv2 and was used in this thesis (Stradmann, 2016, see Section 4.2.1 for effects).
Temporal variability refers to effects that vary in time and have a continuous influence
on dynamic variables such as neuronal membrane potentials. It is typically caused by
cross-talk, thermal noise or unstable analog parameter storage. Temporal variability
leads to the trial-to-trial variation of high-level observations, e.g. firing rates (see
Section 4.2.1).

2.2.2 Correlation Sensors

Every synapse on HICANN-DLSv2 contains two analog correlation sensors that record
causal or anti-causal correlations of pre- and post-synaptic firing which can serve
to implement STDP using the plasticity processor (Wunderlich, 2016; Friedmann
et al., 2017). While the causal correlation sensor is sensitive to pre-before-post
occurrences, the anti-causal sensor records post-before-pre occurrences. Specifically,
the correlation sensors measure and accumulate the exponentially weighted temporal
distance between nearest-neighbor spike pairs, which allows the embedded plasticity
processor to model the empirically observed STDP curve shown in Figure 2.5, among
other forms of plasticity. The accumulated values are stored on two separate storage
capacitors corresponding to the two correlation sensors. In an idealized model, the
voltages on the storage capacitors are

a+ =
∑

pre−post
η+ exp

(
− tpost − tpre

τ+

)
(2.13)

and
a− =

∑
post−pre

η− exp
(
− tpre − tpost

τ−

)
, (2.14)

for the causal and anti-causal sensor, respectively, with decay time constants τ+

and τ− and scaling factors η+ and η−. These parameters are global parameters,
which are set as digital values by the user and converted to voltages to be used in
the sensor circuits using Digital-to-Analog Converters (DACs). The analog voltages
representing the accumulated correlation can be read out using 8-bit column-wise
Analog-to-Digital Converters (ADCs), so one row can be read out in parallel. The
digitized values can be used by the plasticity processor (see following section) to
calculate weight updates.
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2.2.3 Plasticity Processing Unit

General-purpose part

16 kiB memory

4 kiB instruction cache

Synapse array access unit

Vector
Control

Memories
Processor
Vector unit
IO unit

Vector
slice

VRF

Vector
slice

VRF

32 bit
128 bit

Fig. 2.8: Functional diagram of the PPU. The PPU has a general-purpose part and a cus-
tomized vector unit loosely coupled to the general purpose part that accelerates
plasticity computations using SIMD operations. Taken from Friedmann et al.,
2017.

HICANN-DLSv2 contains a Plasticity Processing Unit (PPU), which is a general-
purpose 32-bit processor implementing the PowerPC-ISA 2.06 instruction set with
custom vector extensions (Friedmann et al., 2017, see Figure 2.8). This processor has
access to parts of the chip’s neural network: it can read and write synaptic weights
and labels, read and reset correlation sensors, read and write neuron parameters,
read neuronal rate counters and inject spikes into the synapse array. The access to
the synaptic array is implemented using dedicated fully-parallel access ports, so that
synaptic parameters can be processed in an efficient row-wise vectorized fashion
using Single Instruction Multiple Data (SIMD) instructions.

The inclusion of the PPU into HICANN-DLSv2 is critical, as it allows to flexibly
implement a broad range of plasticity rules using neural network observables. This is
an important capability as (synaptic) plasticity is an active area of research and future
findings can be easily accommodated using the PPU. In this way, HICANN-DLSv2
provides a flexible substrate for researching plasticity in spiking neural networks.

The PPU is clocked at 98 MHz, has access to 16 KiB of main memory, has a 4 KiB
instruction cache while vector registers have a width of 128 bit and can be processed
in slices of eight 16-bit or sixteen 8-bit slices.
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2.2.4 Software

HICANN-DLSv2 is configured using an FPGA which is in turn programmed using the
host computer via a USB connection. The preliminary software stack that was used
for rapid prototyping and debugging of HICANN-DLSv2 is called FRICKEL-DLS and is
written in C++ with Python bindings. This is the software stack that was used for the
main experiment in this thesis. It can be used for container-based configuration of
the chip, including the loading of PPU programs.

PPU programs can be written in assembly and higher-level languages such as C or
C++ and compiled using a customized GCC compiler (Electronic Vision(s), 2017;
Stallman and GCC Developer Community, 2018). A software library called LIBNUX

provides components necessary for compilation (e.g. CRT0 startup routines) as well
as code to access functional units on the chip (e.g. synapses). Programs on the PPU
can be debugged using the GNU debugger using custom remote debugging software
extensions developed partially in the scope of this work (see Section 5.2).
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3Reinforcement Learning

„Nature has placed mankind under the
governance of two sovereign masters, pain and
pleasure. It is for them alone to point out what
we ought to do, as well as to determine what we
shall do.

— Jeremy Bentham
Introduction to the Principles of Morals and

Legislation

Feelings of pleasure and pain are fundamental to the being of humans and animals
and decisively drive their behavior, as is widely recognized by philosophers and
psychologists alike (Thorndike, 1911; Bentham, 1780). The theory of reinforcement
learning (RL) formalizes how rewarding (or punishing) environmental feedback
can lead a behaving agent to change its behavior, generally so as to increase the
future expected reward. In their seminal textbook (Sutton and Barto, 1998), Richard
Sutton and Andrew Barto write

Reinforcement learning is learning what to do—how to map situations
to actions—so as to maximize a numerical reward signal.

RL is therefore a very general framework that can be used to model ongoing, goal-
driven learning in real-world or simplified environments. In this chapter, we review
the basics of RL in abstract terms, study a simple class of RL problems (multi-armed
bandits), consider biological aspects of RL and describe efforts to model RL in
spiking neural networks. The experiment on BrainScaleS 2 that is described in a
later chapter implements RL in a spiking neural network and can be seen as solving
several multi-armed bandit problems. In describing RL, we largely follow Sutton
and Barto, 1998.
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3.1 Abstract Reinforcement Learning

The fundamental component of a reinforcement learning problem is the environment,
in which a learning agent inhabits certain states and in which it can execute actions
that may lead to state transitions and can incur a reward. In contrast to other
types of supervised learning, the learning entity receives evaluative, not instructive
feedback and must find the appropriate actions to take on its own. In other words, it
must develop a policy that defines how to choose (context-dependent) actions solely
based on the rewarding or punishing, and potentially delayed, feedback from the
environment.

If a model of the environment is available, the agent may use planning methods
to develop a behavioral strategy. The model needs to specify the state transitions
and rewards, both of which are generally stochastic and given in the form of a
probability distribution. RL problems are commonly framed as Markov Decision
Problems (MDPs), where the states compose a Markov chain, so that only the current
state is relevant to the agent. The agent may use dynamic programming methods
such as policy or value iteration to compute an optimal policy in a MDP. In these
methods, the agent iteratively evaluates and improves its current policy using the
MDP model and is guaranteed to converge to the optimal policy (Sutton and Barto,
1998). The policy evaluation is performed by estimating the state-value function
which assigns an expected return (future reward) to a state given the current policy.
Each iteration improves the agent’s state-value estimate and then uses this estimate
to improve its policy so as to perform actions that lead to higher-value states, given
the state transition model.

Such dynamic programming methods require the full probability distributions speci-
fied by the model. If no model is available, the agent may use its own experience
as samples in place of an explicit probability distribution, allowing the agent to
empirically evaluate its current policy and improve it based on the sample-averaged
experience. This is the basis of so-called Monte-Carlo methods which operate off-line
in the sense that data acquisition and policy update occur in separate phases: the
agent samples the MDP using its current policy until a terminal state is reached and
then uses the acquired data to evaluate and update its policy. The policy evaluation
is done by maintaining an estimate of the action-value function that assigns an ex-
pected return to a state-action pair given the current policy. Each iteration improves
this estimate and allows the agent to pick higher-value actions without an explicit
state transition model.

Temporal Difference (TD) methods are similar to Monte-Carlo methods in that they
require no explicit model and use samples to evaluate the current policy, but differ
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in that they do not separate stepping through MDP states and evaluating the policy.
Instead, they update the action-value function (and in most cases, the policy itself)
while the MDP is still running (has not reached a terminal state) using the difference
between empirical and expected reward. In practice, TD methods usually converge
faster than Monte-Carlo methods (Sutton and Barto, 1998). The basic TD method
formulation uses single state transitions (i.e., each update only considers the current
state transition and the corresponding reward), but can be amended using eligibility
traces which allow to credit previously visited states with an unexpected change in
reward and can speed up convergence.

A general concern in model-free methods such as Monte-Carlo or TD methods is the
exploration-exploitation trade-off. This trade-off arises because the agent needs to
explore the action space to find high-return actions and states to which the agent is
initially oblivious. At the same time, the agent should exploit its existing knowledge
(given in form of the state- or action-value function) to behave in such a way as to
acquire as much reward as possible. A simple way to deal with this trade-off are
ε-greedy policies, which take the best action with probability 1 − ε and a random
action with probability ε, as discussed in the next section.

Another class of methods to solve RL problems is given by policy gradient methods,
which do not require state- or action-value functions, but directly improve a given
policy by updating the policy’s parameters using gradient ascent on the expected
return. This technique will be described in detail and applied to a simple class of RL
problems, multi-armed bandits, in the following section.
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3.2 Multi-armed Bandits

Fig. 3.1: A one armed
bandit. Taken
from Open Cli-
part, 2013.

Multi-armed bandits represent a class of simple RL prob-
lems where the agent inhabits a single state and can
choose from multiple actions which yield different re-
wards (contrary to a one-armed bandit, where only one
action can be chosen). The goal of the agent is generally
to maximize its future payoff. Considering this simplified
scenario allows to introduce basic concepts of RL such
as the exploration-exploitation trade-off using a concrete
class of problems.

Consider a k-armed bandit, with the set of actions being
A = {a0, . . . , ak−1}, the set of rewards being R ⊂ R and
the reward distribution given an action a ∈ A being r(a) :
R → [0, 1]. For each action, the environment provides

reward by sampling from the reward distribution corresponding to the chosen action.
In the following, we will discuss two methods to learn agent behavior that aim to
maximize payoff.

3.2.1 Action-Value Methods

In action-value methods, the idea is to have a function that provides the expected
return when executing actions in a given state. Denoting the agent’s action choice as
A, the expected reward when choosing action a ∈ A is

q(a) := Er [R | A = a] , (3.1)

where q(a) is called the action value. It is state-independent, because multi-armed
bandits have only a single state in their basic formulation. If the action values
are known to the agent, it can simply choose the action with maximum value in
each trial, thereby trivially maximizing its payoff. If the action values are initially
unknown to the agent, it may engage in explorative interaction with the environment
and thereby construct estimates Q(a) of the real action values as sample averages:

Q(a) = Sum of rewards received when executing a
Number of times a was executed

=
∑N
i=0Ri · 1Ai=a∑N
i=0 1Ai=a

, (3.2)

where the sum goes over all N trials, Ri is the reward in trial i and 1Ai=a is the
indicator function that is 1 if action a was chosen in trial i and 0 otherwise. A
practical implementation would be a running average that requires constant memory
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and constant time to update the estimated value when acquiring new samples. By
the law of large numbers, the estimated value Q(a′) of action a′ will converge to the
real value q(a′) as the number of times action a′ is sampled goes to infinity, assuming
that the problem is stationary (i.e., reward probabilities don’t change).

ε-greedy Policy The exploration-exploitation trade-off now becomes apparent: as
the agent becomes more and more confident in its action value estimates, there
is less to be gained by sampling actions with low estimated value. Clearly, the
agent has to balance exploration of actions, which improves the value estimates,
and exploitation, which serves the purpose of maximizing payoff. A simple method
to balance exploration and exploitation is the ε-greedy policy which chooses the
highest-value action with probability 1− ε and a random action with probability ε.
For ε > 0, the estimated action values converge to the real values and the policy
choosing the action with highest value eventually becomes optimal. However, this
is only an asymptotic guarantee. The exact choice of ε that is suitable for a given
multi-armed bandit depends on the number of actions and the reward distribution.
In general, a higher ε will lead to faster discovery of high-value actions but will be
inferior to low ε policies in the long term. A possible mitigation would be to decay ε
over time (Sutton and Barto, 1998).

Action Value Initialization A relevant parameter is the choice of the initial action
values Q(a) that represents an initial bias of the agent. If a full sample average as in
Equation (3.2) is chosen, this bias is relevant only before an action is chosen and
disappears thereafter. However, if a running average that incorporates the initial
value is used, the bias will persist for some time depending on the averaging window.
A possible choice is an optimistic initialization, where action values are initialized
with values that are high relative to the rewards provided by the environment. In a
(ε-)greedy policy, this will encourage choosing actions multiple times until the agent
is confident that its optimism was unrealistic.

3.2.2 Policy Gradient Methods

In policy gradient, the idea is to adjust the parameters of a policy using stochastic
gradient ascent on the expected return. A common choice for the agent’s action-
choice policy π is a soft-max function in terms of action preferences θ(a) ∈ R which
define the relative likelihood of actions:

π(a) = exp(θ(a))∑
a′ exp(θ(a′)) . (3.3)
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The soft-max function ensures that π(a) > 0∀a ∈ A and
∑
a′ π(a′) = 1, so π can be

interpreted as a discrete probability distribution over the set of actions. In each trial,
the agent samples an action from π.

The goal of the agent is to maximize the expectation value of the reward,

Eπ[R] =
∑
a′

π(a′)q(a′) , (3.4)

where q(a) are the actual action values of the multi-armed bandit as before. One
method to achieve this would be to perform gradient ascent with respect to the
action preference values θ(a):

θ(a)← θ(a) + α
∂E[R]
∂θ(a) . (3.5)

However, the action values q(a) and therefore the gradient ∂E[R]
∂θ(a) are a priori unknown

to the agent.

As we will see in the following, the agent can perform stochastic gradient ascent
without explicit knowledge of the action values, where the average weight updates
are proportional to the gradient in Equation (3.5). The idea is to turn the gradient of
an expectation value (Equation (3.5)) into an expectation value, allowing to sample
the random variable in each update step, so that the average update matches the
expectation value.

∂Eπ[R]
∂θ(a) = ∂

∂θ(a)
∑
a′

π(a′)q(a′) (3.6)

= ∂

∂θ(a)

[∑
a′

π(a′)q(a′)− C
∑
a′

π(a′)
]
, (3.7)

with a “nutritious zero” ∂
∂θ(a)

∑
a′ π(a′) = 0 as

∑
a′ π(a′) = 1 that allows to introduce

a fixed reward baseline C ∈ R,

= ∂

∂θ(a)

[∑
a′

π(a′)(q(a′)− C)
]

(3.8)

=
∑
a′

[
(q(a′)− C)∂π(a′)

∂θ(a)

]
(3.9)

=
∑
a′

[
(q(a′)− C)π(a′) 1

π(a′)
∂π(a′)
∂θ(a)

]
(3.10)

=
∑
a′

[
(q(a′)− C)π(a′)∂ log π(a′)

∂θ(a)

]
, (3.11)
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where we have used the identity (log f)′ = 1
f f
′,

= Eπ
[
(q(A)− C)∂ log π(A)

∂θ(a)

]
(3.12)

= Eπ,r
[
(R− C)∂ log π(A)

∂θ(a)

]
(3.13)

The baseline C does not affect the average weight update (because it is multiplied
with a zero-mean quantity) but allows to reduce the variance by only capturing
fluctuations around the baseline reward (Sutton and Barto, 1998). A common choice
that approximates the optimal choice to this end is C = R̄, where R̄ represents the
agent’s estimate of Eπ[R] which can be implemented, for example, using a running
sample average (Greensmith et al., 2004).

Performing stochastic gradient ascent consists of sampling Equation (3.13) and up-
dating parameters according to Equation (3.5). Using π as defined in Equation (3.3)
and the derivative of the soft-max function, the gradient can be explicitly written
as

∂Eπ[R]
∂θ(a) = Eπ,r

[
(R− R̄)(1A=a − π(a))

]
, (3.14)

where 1A=a is one if and only if the agent’s action choice variable A is equal to a.
The stochastic gradient ascent update rule based on Equation (3.5) becomes

θ(a)← θ(a) + α(R− R̄)(1A=a − π(a)) . (3.15)

For a given action choice and assuming the reward is higher than the average reward,
this update rule increases the likelihood of that choice and decreases the likelihood
of all others. The opposite is true if the reward is lower than the average reward.
This method of solving multi-armed bandits is prone to get stuck in local minima of
the expected reward, as is common for stochastic gradient ascent.
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3.3 Biological Aspects
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Fig. 3.2: Major dopamine pathways in the brain. Taken from NIDA and Quasihuman, 2012.

It is a basic observation that animal behavior is influenced by rewarding or punishing
stimuli (Guttman, 1953; Moritz and Eberhard E Fetz, 2011; E E Fetz and Baker,
1973). The psychologist Edward Thorndike expressed this in his influential law of
effect (Thorndike, 1911):

Of several responses made to the same situation, those which are accom-
panied or closely followed by satisfaction to the animal will, other things
being equal, be more firmly connected with the situation, so that, when
it recurs, they will be more likely to recur; those which are accompa-
nied or closely followed by discomfort to the animal will, other things
being equal, have their connections with that situation weakened, so
that, when it recurs, they will be less likely to occur. The greater the
satisfaction or discomfort, the greater the strengthening or weakening of
the bond.

This phenomenon was empirically researched by Thorndike and later by B. F. Skinner
in terms of operant conditioning and classical conditioning. In operant conditioning, a
voluntary behavior is associated with a rewarding or punishing consequence whereas
in classical conditioning, an involuntary response and a stimulus are associated. A
widely known form of classical conditioning was researched by Ivan Pavlov: dogs

24 Chapter 3 Reinforcement Learning



were conditioned to react to the ringing of a bell by starting to salivate (Pavlov,
2010).

The dopaminergic system is thought to be the neural structure that supports rein-
forcement learning; indeed, the administration of dopamine antagonists (substances
which block dopamine) to animals prevents learning action sequences that lead
to food rewards (Montague et al., 2004). Dopamine neurons, meaning neurons
which release dopamine at their synaptic sites, are found in the Substantia Nigra
(SN) and the Ventral Tegmental Area (VTA) (see Figure 3.2). Neurons in the VTA
mainly project to the nucleus accumbens and the prefrontal cortex, whereas neurons
in the SN project to the dorsal striatum. The former pathway is considered to be
relevant for reward-based learning, while the latter is implicated in motor function
(Wise, 2004). Importantly, the firing of dopamine neurons will lead to a spatially
homogeneous increase of dopamine concentration in the targeted areas, due to the
fact that dopamine diffuses over several microns before reuptake and that regions of
high dopamine innervation have densely packed dopamine release sites (Dunnett
et al., 2004). The activity of dopamine neurons therefore acts as a spatially diffuse
neural signaling mechanism.
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Fig. 3.3: Dopamine neurons encode predicted
reward (see text). Taken from W
Schultz et al., 1997.

Dopamine neurons were prominently
found to encode a reward prediction er-
ror by their phasic activity, akin to the
Temporal Difference (TD) error used
in abstract reinforcement learning (W
Schultz et al., 1997; Hollerman and
Wolfram Schultz, 1998; Bayer and Glim-
cher, 2005). Single dopamine neuron
recordings in monkeys revealed that an
unpredicted reward elicits a burst of ac-
tivity (see Figure 3.3, top panel). After
learning, if the reward was coupled with
a conditioned stimulus (CS) that occurs
some time before the reward, this burst
of activity occurs upon presentation of
the CS but not at the time of the actual
reward (middle panel). If the CS is pre-
sented but the reward is absent, a dip in
the activity of the dopamine neuron is
observed (bottom panel). In this sense,
dopamine encodes a reward prediction
error. However, the similarity to the
TD error used in reinforcement learn-
ing is limited. For example, the phasic

dopamine response is insensitive to temporal translations of the reward, which is
not the case with the TD error, and dopamine neurons seem to also encode reward
uncertainty via their tonic activity (Fiorillo et al., 2003; Fiorillo et al., 2005; Hart
et al., 2015).

At the same time, dopamine receptor activation modulates spike-timing dependent
plasticity (Pawlak and Kerr, 2008; Brzosko et al., 2015; Edelmann and Lessmann,
2011) and in this way relates reinforcing stimuli to synaptic plasticity and thereby
learning processes. In the following section, we will discuss models of how a diffuse
reward signal like that conveyed by Dopamine can influence synaptic plasticity in
spiking neural networks so as to increase future reward.
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3.4 Modeling in Spiking Networks

Reinforcement learning can be modeled in spiking neural networks using synapse-
local learning rules amended with a global factor that models dopaminergic neuro-
modulation. In the following, we will discuss two classes of learning rules. The first
is R-MAX (Frémaux and Wulfram Gerstner, 2015), which is derived using stochas-
tic gradient-ascent on the expected reward. The second is R-STDP (Frémaux and
Wulfram Gerstner, 2015), which is motivated heuristically but can be related to
R-MAX.

3.4.1 The R-MAX Learning Rule

The approach taken in the R-MAX class of learning rules is to apply policy gradient
methods (see Section 3.2.2) to stochastically spiking neuron models (Xie and Seung,
2004; Pfister et al., 2006; Baras and Meir, 2007; Florian, 2007; Urbanczik and
Senn, 2009; Vasilaki et al., 2009; Fremaux et al., 2010). The learning goal is
generally to reproduce a spatio-temporal pattern of post-synaptic spikes for a given
pre-synaptic spike train, so reward is contingent on the precise spike times. For a
given stochastic neuron model, the expected reward E[R] is given by integrating
the reward over all possible neuronal outputs and their respective likelihood. The
gradient of the expected reward with respect to a given synaptic weight, ∂E[R]

∂wij
, can

then be calculated in order to obtain a (stochastic) gradient ascent learning rule.

R-MAX for Spike Response Model with Escape Noise In the following, we will
derive a R-MAX learning rule for the spike response model (SRM) with escape noise
(Wulfram Gerstner, Kistler, et al., 2014), largely following Pfister et al., 2006. The
SRM can be seen as a generalization of the LIF model. Consider a post-synaptic
neuron i that is connected to N pre-synaptic neurons with synaptic weights wij
where j = 0, . . . , N − 1. Let xj denote the set of spike times of pre-synaptic neuron
j and x = {x0, . . . , xN−1} denote the set of all pre-synaptic spike trains.

In the SRM, neuron i has a membrane potential ui(t) and an instantaneous spiking
probability ρi(t) = g(ui(t)), where g is a non-linear function. The membrane
potential given a pre-synaptic stimulus ui(t | x) is composed of the leak potential
uleak, the post-synaptic potentials (PSPs) evoked by pre-synaptic spikes ε(t) and
refractory terms η(t) that depend on the post-synaptic spike times yi:

ui(t | x) = uleak +
N−1∑
j=0

wij
∑

t
pre
f
∈xj

ε(t− tpre
f ) +

∑
t
post
f
∈yi

η(t− tpost
f )θ(t− tpost

f ) , (3.16)
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where θ(t) is the Heaviside function. Common choices for ε(t) and η(t) are a double-
exponential and an exponentially decaying negative term, respectively.

The inhomogeneous Poisson process defined by ρi(t) allows to calculate the probabil-
ity of post-synaptic spike times yi (where yi is the set of post-synaptic spikes caused
by neuron i) in a time interval from t = 0 to t = T (Pfister et al., 2006):

P (yi | x) =

 ∏
t
post
f
∈yi

ρi(tpost
f | x, yi)

 exp
(
−
∫ T

0
ρi(s | x, yi)ds

)

= exp
(∫ T

0
(log(ρi(s | x, yi))γi(s)− ρi(s | x, yi)ds)

)
, (3.17)

where γi(t) =
∑
t
post
f
∈yi

δ(t− tpost
f ) is the Dirac-delta spike train based on spike times

contained in yi. Using P (yi | x) and a reward function R(yi), the expected reward is

E[R | x] =
∑
yi

P (yi | x)R(yi) . (3.18)

Analogously to the derivation of policy gradient in Section 3.2.2, the derivative of
this quantity with respect to synaptic weight wij is given by

∂E[R | x]
∂wij

= E
[
(R(Yi)− C)∂ logP (Yi | x)

∂wij

]
(3.19)

where Yi is the random variable underlying realizations yi and C ∈ R is an arbitrary
baseline. This gradient can then be used in stochastic gradient ascent, where the
agent uses samples of Equation (3.19) to calculate weight updates. The baseline
C can reduce the variance of these gradient estimates, with an empirical reward
average C = R̄ that estimates E[R] being a reasonable approximation of the optimal
choice (Fremaux et al., 2010; Greensmith et al., 2004). This allows the gradient esti-
mates to capture the fluctuations of reward around the average reward, decreasing
gradient variance and thereby the magnitude of individual gradient updates.

The derivative of the log-likelihood with respect to synaptic weight, ∂ logP (yi|x)
∂wij

, can
be seen as an eligibility trace eij that captures deviations from the average spiking
behavior:

eij := ∂ logP (yi | x)
∂wij

=
∫ T

0

d log ρi(s | x, yi)
dui

[γ(s)− ρi(s | x, yi)]
∑

t
pre
f
∈xj

ε(s− tpre
f )ds , (3.20)
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with

E[eij ] =
∑
yi

P (yi | x)∂ logP (yi | x)
∂wij

= ∂

∂wij

∑
yi

P (yi | x) = 0 . (3.21)

The quantity eij is called an eligibility trace because it captures the role of synapse
ij in producing non-average spiking behavior and thereby quantifies the eligibility
of synapse ij for reward-based changes. In our formulation of stochastic gradient
ascent, we then use samples of episodes of length T to calculate weight updates:

∆wij = α(R− R̄)eij (3.22)

with learning rate α. Taking the expectation value of ∆wij reveals that these weight
updates capture the covariance of reward and eligibility trace:

E[∆wij ] ∝ E[(R− R̄)eij ]

= E[Reij ]− R̄E[eij ]

≈ E[Reij ]− E[R]E[eij ]

= Cov(R, eij) . (3.23)

This learning rule can therefore be understood as correlating reward R and the
eligibility trace eij , which in turn quantifies the participation of a given synapse in
producing the post-synaptic spike train and deviations from expected post-synaptic
activity. To calculate the eligibility trace, we require the post-synaptic neuron’s
membrane potential and its “activation function” ρi(t), which are two quantities that
are presumably not available at the synaptic site.

3.4.2 The R-STDP Learning Rule

In the following section, R-STDP is introduced: a learning rule that uses only synapse-
local information and can be understood as correlating reward and synaptic activity
broadly similar to R-MAX. R-STDP is a heuristically motivated learning rule of the
form

∆wij = α(R− C)eSTDP
ij (3.24)

where eSTDP
ij is a STDP-based eligibility trace, α ∈ R is a learning rate and C ∈ R a

reward baseline (Frémaux and Wulfram Gerstner, 2015). The eligibility trace is a
low-pass filter of the outcome of classic, unsupervised STDP:

d
dte

STDP
ij = −

eSTDP
ij

τe
+ STDP , (3.25)

where STDP denotes the addition of spike time coincidences with a positive contribu-
tion of pre-before-post coincidences and a negative contribution of post-before-pre
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coincidences. The idea of R-STDP is therefore to modulate the outcome of unsuper-
vised STDP with a reward-dependent term.

This learning rule has been used in a number of publications, for example, to
reproduce spatio-temporal spike patterns for a given input (Farries and Fairhall,
2007; Florian, 2007; Legenstein, Pecevski, et al., 2008; Fremaux et al., 2010), to
solve a water-maze navigation task (Vasilaki et al., 2009), to reproduce classical
conditioning (Izhikevich, 2007), to reproduce the seminal biofeedback experiment
by Fetz & Baker (Legenstein, Pecevski, et al., 2008) and to improve the classification
performance of a convolutional spiking network (Mozafari et al., 2018).

Using the empirical reward average as baseline, C = R̄, R-STDP becomes sensitive
to the covariance of reward and synaptic activity:

E[∆wij ] ∝ E[ReSTDP
ij ]− R̄E[eSTDP

ij ]

≈ E[ReSTDP
ij ]− E[R]E[eSTDP

ij ]

= Cov(R, eSTDP
ij ) . (3.26)

The balance of the depressing and potentiating parts of the STDP window were
found to be largely irrelevant for learning (Fremaux et al., 2010). The choice of the
reward baseline C, however, is critical. This is laid out in the following.

Relating R-STDP and R-MAX With the choice C = R̄, R-STDP and R-MAX can be
related in the sense that they are both covariance-based learning rules which capture
the correlation of reward and a Hebbian measure that depends on the pre- and
post-synaptic activity at a given synapse. A notable difference is that the R-MAX
eligibility trace averages to zero by definition, E[eij ] = 0, which ensures that the
average weight changes are insensitive to baselines C 6= R̄ and E[∆wij ] = Cov(R, eij)
independent of C. This is not the case for R-STDP, where E[eSTDP

ij ] 6= 0 in general,
which means that the choice of C is critical: adding a constant offset C = R̄+ C0,
C0 ∈ R causes a reward-independent term in the expected weight change:

E[∆wij ] ∝ Cov(R, eSTDP
ij ) + C0E[eSTDP

ij ] . (3.27)

Therefore, in a reward-based learning task, offsets C0 6= 0 generally prevent learning
in the case of R-STDP, but not in R-MAX, as empirically demonstrated in Fremaux
et al., 2010. This is because a constant offset causes an unsupervised reward-
independent bias in the weight changes, leading to divergent behavior.

This observation has ramifications in the case of several learning tasks that should
be learned in parallel (e.g., if there exist multiple input patterns which should
elicit different network responses). In this case, R-STDP requires a task-specific
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reward-average C = R̄task in order to learn while R-MAX does not, for the same
reasons as stated above. If the reward-average were task-unspecific, Equation (3.26)
would not hold and a unsupervised bias would be introduced. Failure of R-STDP to
learn under this circumstance was empirically demonstrated in Fremaux et al., 2010.
Therefore, R-STDP requires task-specific rewards in order to remain a unbiased
covariance-based learning rule.

For our experiment on HICANN-DSLv2, we use the R-STDP learning rule because
it requires quantities that are readily available at each synapse (i.e. the correlation
measures (see Section 2.1.2)) and the update rule can be efficiently calculated using
the PPU.
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4Experimental Results

„Ever tried. Ever failed.
No matter. Try again.
Fail again. Fail better.

— Samuel Beckett

HICANN-DLSv2, as described in Section 2.2, provides an accelerated neuromorphic
substrate for the implementation of spiking neural networks and is especially well
suited for learning experiments. This section describes one of the first functional
learning experiments on the chip. In the experiment, the emulated network learns
via reinforcement learning in a virtual environment that is simulated on the PPU. This
allows the experiment to run on the chip fully autonomously, i.e., without external
off-chip communication. The aim of this section is to describe the experimental setup,
provide the measurement results as well as to analyze and interpret the obtained
data.

The virtual environment resembles the classic Pong arcade video game. Using all
of its 32 neurons and 1024 synapses, the chip learns to map ball positions to target
paddle positions. Because it is rewarded for proper aiming, the chip learns to
trace the ball by smooth pursuit. It does so by trial-and-error learning: trial-to-trial
variations of neuronal firing rates mediated by noise in the analog neurons lead to
action exploration and drive learning.

The experiment demonstrates that all chip components can function in concert: it
uses all neurons and synapses, all spike counters, all correlation sensors and the
PPU. By comparing it to a software simulation of the involved neural network, we
demonstrate that the neuromorphic emulation is at least an order of magnitude
faster and three orders of magnitude more energy-efficient. Besides this, we find
that temporal variability, usually regarded as a nuisance, takes on a functional
role: it mediates action exploration and drives learning. The deterministic software
simulation is unable to learn properly without injected noise, as it lacks the trial-to-
trial variability of spike rates required for trial-and-error learning.

Crucially, we find that fixed-pattern noise, which expresses itself for example in
variability of neuronal parameters, is implicitly compensated by the learning process.
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This is important as parameter variability is unavoidable when using analog circuits.
Our experiment demonstrates that calibration efforts can be largely supplanted by
learning. We show that the learned weight matrix is adapted to the characteristics of
the physical substrate: the learning process adapts synaptic weights in such a way as
to compensate for the difference in excitability of the post-synaptic neuron.

4.1 Experimental Setup

Host PC FPGA
USB

HICANN-DLSv2

Required only for Setup

PPU Neural
Network

Weight Updates

Firing Rates,

Correlation

·Environment 
   Simulation
·Plasticity

Prototype
Chip

FPGA
Board

1.5mmA B

Fig. 4.1: A: HICANN-DLSv2 (foreground) and prototyping board (background). B: The host
computer communicates with the FPGA via USB. The FPGA in turn configures the
HICANN-DLSv2, which executes the experiment fully autonomously.

The physical experimental setup consists of a HICANN-DLSv2 chip mounted on a
prototyping board (see Figure 4.1 A). The chip is accessed and configured via the
FPGA, which in turn is accessed by the host computer using a USB connection. In
the experiment described here, the FPGA has no function beyond chip configuration
and reading out results from the chip’s memory, as the experiment runs on the chip
fully autonomously once it is configured. The PPU simulates the virtual environment
and calculates weight updates based on firing rates and synaptic correlation of the
on-chip neural network (see Figure 4.1 B).

4.1.1 Learning Task

Virtual Environment The virtual environment is a simplified version of the Pong
video game. It consists of a two-dimensional playing field with three closed (reflect-
ing) walls, a ball and a paddle positioned along the open side. Upon experiment
initialization, the ball is positioned in the middle of the playing field and proceeds to
move with a fixed velocity ~v toward a random direction.

The paddle is controlled by the neural network, i.e., the network output is interpreted
as a target paddle position along the open side. It moves toward its target position
with constant velocity vp. If the ball hits the paddle, it is reflected; if the paddle does
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Fig. 4.2: A: The playing field is discretized into 32 columns. The two-layer neural network
transmits the ball position to the action units (the chip’s physical neurons) via a
uniform spike train, where the transmitting input unit identifies the column of
the ball. The action unit firing the most spikes dictates the column towards which
the paddle moves. Reward is provided depending on how well ball column and
target column match (see reward window depicted at the bottom). In the depicted
situation the ball is in column 8 and therefore, input unit 8 transmits a spike train.
As the winning output neuron, i.e., target paddle column (3) and ball column (8)
don’t match at all, reward is zero.

not catch the ball, the game is reset (i.e., ball and paddle positions are set to the
starting position and a new random direction is determined). Reward is provided at
each time step to the network depending on its aiming accuracy.

Learning Task Mechanics The goal of the learning task is to map ball positions
to target paddle positions. The playing field is discretized into 32 columns along
the axis on which the paddle moves (see Figure 4.2). A two-layer neural network
consisting of an input and an output layer receives the ball position as input and
defines the target paddle position using the activity of its output neurons. The output
neurons are the actual 32 hardware neurons, while the “virtual” input neurons
provide spike input to the output neurons. Each column corresponds to an input
unit: if the ball is in column k, input unit k transmits a uniform spike train towards
the output units. Initially, all input units are connected to all output units; initial
weights are drawn from a Gaussian distribution (see Table 4.1).

The spikes from the input unit will cause some pattern of spiking activity in the
output units. We denote the number of spikes of the output units as ρi where
i ∈ {0..31}. The output unit with the highest amount of elicited spikes defines the
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target column of the paddle, j = argmaxi ρi. The environment then provides reward
R ∈ [0, 1] depending on how well the ball column k and the paddle column j match:

R =

1− |j − k| · 0.3 if |j − k| ≤ 3 ,

0 otherwise.
(4.1)

See Figure 4.2 for a visualization of the reward window defined by this equation.
This means that the network receives zero reward if its aim is off by more than three
columns and non-zero reward otherwise, with a maximum reward of one if the
columns perfectly match. The non-zero reward window matches the paddle length,
i.e., the network receives reward only when it aims the paddle such that it would be
able to catch the ball, with off-center aiming being rewarded less.

In terms of reinforcement learning, the learning problem consists of 32 32-armed
bandits (see Section 3.2), as each state defines a 32-armed bandit.

4.1.2 Learning Rule

Player Lost?

Yes

No

Send Input
Spiketrain

Determine
Winning Neuron

Compute
Reward

Apply
Plasticity

Update 
Environment

Reset 
Environment

BSS2 Neuromorphic Chip

Embedded Processor (PPU)

Spiking Neural Network,
Including Local STDP Traces

Fig. 4.3: Flowchart of the experiment loop running
fully autonomously on HICANN-DLSv2.

The PPU calculates weight up-
dates using a specific learning
rule, namely R-STDP as described
in Section 3.4.2. It maintains an
expected reward R̄k (an exponen-
tially weighted moving average)
for every possible state, i.e., ev-
ery possible discretized ball posi-
tion k with k ∈ {0..31}. This ex-
pected reward is subtracted from
the instantaneous reward R to
yield the neuromodulating factor
R − R̄k. The expected reward
needs to be state-specific, as in-
dicated by the index k, in order to
avoid inappropriately biasing the
weight changes (Fremaux et al.,

2010, see Section 3.4.2). For a given synaptic weight wmn, this factor is used to-
gether with the digitized causal correlation value A+

mn (see Section 2.1.2) and the
learning rate β to calculate the weight update:

∆wmn = β ·
(
R− R̄k

)
·A+

mn . (4.2)
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The digitized correlation values have been offset-corrected and right shifted by
one bit in order to reduce noise. Upon receiving a reward, this weight update is
calculated and applied for all synapses.

The expected reward R̄k is updated to provide an exponentially weighted moving
average over the last rewards:

R̄k ← R̄k + γ
(
R− R̄k

)
, (4.3)

where the parameter γ controls the influence of previous iterations.

An entire experiment iteration consists of environment simulation and calculating
and applying weight updates: see Figure 4.3 for a visualization and Figure 4.4 for
pseudo-code.
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Result: One iteration (time step) of simulated pong with one paddle action
controlled by BSS2.

begin
UpdateEnvironment() ;
if PlayerHasLost() then

ResetEnvironmentSimulation();
end
j ←GetColumnContainingBall();
SendSpikeTrainFromInputNeuron(j);
i← GetWinningOutputNeuron();
switch |i− j| do

case 0 do R← 1;
case 1 do R← 0.7;
case 2 do R← 0.4;
case 3 do R← 0.1;
otherwise do

R← 0;
end

end
if IsTheFirstIteration() then
〈R〉j ← R;

end
S ← R− 〈R〉j;
〈R〉j ← R̄+ 0.5 · S;
for m← 0 to 31 do

for n← 0 to 31 do
wmn ← wmn + β · S ·A+

mn;
end

end

end

Fig. 4.4: Pseudo-code of single experiment run (visually depicted in Figure 4.3).
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4.1.3 Learning Progress

In order to quantify learning progress, we use two quantities which are both based
on reward but differ in their interpretation. The mean expected reward

〈R̄〉 = 1
32

31∑
i=0

R̄i (4.4)

is the average over all 32 expected rewards. It can be interpreted as an average
aiming accuracy, quantifying how well the network centers the paddle below the
ball.

As the paddle spatially extends over the whole reward window, it is able to catch the
ball in a given state even with an expected reward of less than one. Therefore, we
also consider the performance in playing pong:

P = 1
32

31∑
i=0
dRie , (4.5)

where Ri is the last reward received in state i and d·e denotes the ceiling function.
This quantity can be interpreted as the percentage of states where the agent is able
to catch the ball.

4.1.4 Hyperparameter Optimization

Prior to obtaining the experimental results given in this thesis, we used a hyperparam-
eter optimization procedure to find proper parameters for the neurons and synapses.
During this optimization, we kept parameters concerning the game dynamics, the
initial weight distribution and the input spike train fixed. We used a Bayesian pa-
rameter optimizer within the SCIKIT-OPTIMIZE software package (Head et al., 2018).
We took 30 random, initial data points and proceeded to perform 300 iterations
with each evaluated parameter set being determined by the FOREST_MINIMIZE opti-
mization algorithm (default parameters: maximizing expected improvement, extra
trees regressor model, 10000 acquisition function samples, target improvement of
0.01). Each data point consisted of the mean expected reward obtained after 50000
experiment iterations. All neuronal and synaptic parameters were globally (not indi-
vidually) subject to the optimization, i.e., all neuronal time constants and voltages
(τmem, τref, τsyn, vleak, vreset, vthresh) as well as the time constant and amplitude of the
causal correlation sensors (η+, τ+).

The result of this hyperparameter optimization was a common set of parameters
for all neurons and synapses (see Table 4.1). These parameters were given in the
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pre-calibration domain, i.e., in terms of microseconds. The calibration translated
these values to hardware parameters.

We conducted this procedure on three different chips in order to test the transfer-
ability of results. All results given in the following section have been acquired using
the first parameter set resulting from an optimization on chip #1, if not specified
otherwise.
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Used Hyperparameters

Symbol Description Value

Neuromorphic hardware BrainScaleS 2 (2nd prototype version)
N Number of action/output neurons (LIF) 32
NS Number of state/input units 32
Nsyn Number of synapses 32 · 32 = 1024
Nspikes Number of spikes from input unit 20
TISI ISI of spikes from input unit 10 µs
w Mean of distribution of initial weights (digital value) 14
σw Standard deviation of distribution of initial weights 2
L Length and width of quadratic playing field 1
‖~v‖1 L1-norm of ball velocity 0.025 per iteration
vp Velocity of paddle controlled by BSS2 0.05 per iteration
rb Radius of ball 0.02
rp Length of paddle 0.20
γ Decay constant of reward 0.5
β Learning rate 0.125

NEST version (software simulation) 2.14.0
NEST timestep 0.1 ms
CPU (software simulation, one core used) Intel i7-4771

Set #1 Set #2 Set #3
(standard)

τmem LIF membrane time constant 28.5 µs 18.4 µs 24.8 µs
τref LIF refractory time constant 4 µs 14.3 µs 13.8 µs
τsyn LIF excitatory synaptic time constant 1.8 µs 2.4 µs 1.4 µs
vleak LIF leak voltage 0.62 V 0.56 V 0.87 V
vreset LIF reset voltage 0.36 V 0.36 V 0.30 V
vthresh LIF threshold voltage 1.28 V 1.31 V 1.21 V
η+ Amplitude of correlation function a+ (digital value) 72 114 70
τ+ Time constant of correlation function a+ 64 µs 80 µs 60 µs

Tab. 4.1: Parameters used in the experiment. The different parameter sets are the result
of optimizing parameters on three different chips. If not mentioned otherwise,
results were obtained using set #1. Abbreviations used in table: LIF: Leaky
Integrate-and-Fire; ISI: Inter-Spike Interval.
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4.1.5 Software Simulation

Using the commonly used NEST v2.14.0 SNN simulator (Peyser et al., 2017) and
Python, we implemented a software simulation of the experiment. This allowed
us to compare the speed and energy efficiency of the neuromorphic emulation to
this particular software simulation. We set the LIF parameters of the simulated
neurons to be the target parameters of the emulated neurons. In contrast to the
neuromorphic emulation, these simulated neurons are completely identical and
behave in a deterministic way.

We used the IAF_PSC_EXP integrate-and-fire neuron model, which uses exponential
post-synaptic currents and current-based synapses. Using the NOISE_GENERATOR

module in NEST, we could optionally inject Gaussian current noise into each neuron.
The causal correlation values were calculated in Python using the spike times
provided by NEST, with the amplitude and time constant chosen to match the mean
values on HICANN-DLSv2. All hyperparameters (game dynamics, learning rate) were
chosen to match the emulation. Synaptic weights were scaled to a dimensionless
quantity and discretized so as to provide a neuronal activation function (output spike
rate vs. synaptic weight) similar to the ones observed on HICANN-DLSv2. The last
step is necessary as there is no calibration routine that translates LIF model weights
to hardware weights. In contrast to the neuromorphic emulation, where all synapses
are updated in every iteration, the software simulation calculated weight updates
only for those synapses which actually transmitted spikes. This is because the
correlation values for all other synapses are zero in a perfect software simulation.

The source code has been made publicly available (Wunderlich, 2019).
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4.2 Experimental Results

4.2.1 Fixed-Pattern Noise and Temporal Variability

This section characterizes the impact of fixed-pattern noise and temporal variability
on different components of the experiment. See Section 2.2.1 for a definition of
fixed-pattern noise and temporal variability.
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Fig. 4.5: A: Membrane potential of a single neuron on HICANN-DLSv2 in two trials, where
the same spike train as used in the experiment is delivered in each trial. One trial
elicits two spikes, the other three. B: Activation function of a single neuron, i.e.,
number of output spikes (mean and standard deviation) as function of synaptic
weight when transmitting the spike train used in the experiment. The dashed
vertical line denotes the firing threshold weight.

Spike Rates The input spike train transmitted to the output neurons is a fixed,
uniform spike train and spikes arrive with little to no timing jitter. Despite this fact,
the number of spikes elicited by the post-synaptic neuron varies between repetitions
of the same experiment. This is due to temporal variability in neurons. See Figure 4.5
A for membrane traces where an identical input spike train causes two spikes in one
trial and three in another. This variability leads to noisy activation functions (number
of output spikes as a function of synaptic weight for the given spike train). One
exemplary activation function is shown in Figure 4.5 B. It is precisely this variability
of firing rates that causes action exploration in the experiment, as the population of
output neurons exhibits different firing patterns over many trials.
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Fig. 4.6: Calibrated and uncalibrated parameter distributions over all 32 neurons for the
membrane time constant (A), synaptic time constant (B) and refractory time
period (C). The blue vertical line shows the target values.

Neuron Parameters In addition to the temporal variability of a single neuron, the
population of all neurons exhibits a fixed pattern of variability in neuron parameters.
The neuronal calibration (Stradmann, 2016) is able to compensate this variability to
some degree by setting hardware parameters on a per-neuron basis and can be used
to translate target LIF time constants to hardware parameters. No calibration for LIF
voltages was available, but the variability among these parameters is rather minor
compared to the time constants (Stradmann, 2016). The impact of the calibration
on the time constant distribution over all neurons is shown in Figure 4.6, where the
uncalibrated state is defined using the average calibrated hardware parameter for all
neurons. The target values are the same as in the main experiment (see Table 4.1).
Variability in neuron parameters leads to variable neuronal activation functions in
terms of slope and offset (i.e. excitability, an example activation function is depicted
in Figure 4.5 B).

The impact of the calibration is strongest in case of the membrane time constant.
This is because the target membrane time constant is at the edge of the specification
where neurons are especially sensitive. The uncalibrated state of neuron parameters
as defined here will be used in the following to investigate the effects of an imperfect
calibration on learning performance.
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Fig. 4.7: Violin plot of the characteristic curves of all 1024 causal correlation sensors.

Correlation Sensors For a given set of global parameters, each of the 1024 correla-
tion sensors provides a different correlation curve due to fixed-pattern noise (see
Figure 4.7). As mentioned in Section 2.1.2, each individual correlation sensor has
four calibration bits which can be used to offset the effect of fixed-pattern noise to
some degree. However, we did not find a calibration of the correlation sensors to be
necessary for learning in this experiment.
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4.2.2 Learning Performance
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Fig. 4.8: Mean expected reward and Pong performance as learning progresses for both
HICANN-DLSv2 and the software simulation (with and without injected noise).
We plot mean and standard deviation for ten different randomly initialized weight
matrices. A: HICANN-DLSv2 uses its intrinsic hardware noise to learn. B: The
software simulation without noise is unable to learn beyond chance level. Injecting
Gaussian current noise into each neuron with zero mean and σ = 100 pA enables
action-exploration and thereby learning. The noisy software simulation converges
faster than HICANN-DLSv2 because the idealized simulated scenario contains
no fixed-pattern noise and Gaussian current noise does not reflect the temporal
variability present on HICANN-DLSv2.
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This section demonstrates the capability of HICANN-DLSv2 to solve the learning
task using hardware noise for action exploration. Figure 4.8 shows the progress of
learning over 105 iterations for both HICANN-DLSv2 and the software simulation
with and without injected noise. Both measures, the mean expected reward and the
Pong performance, are used to quantify learning. We performed ten experiments
with a different randomly initialized weight matrix in each case, the results are
given in Figure 4.8. In case of the software simulation, we conducted separate
measurements without noise and with injected Gaussian current noise with zero
mean and a standard deviation of σ = 100 pA (injected independently into each
neuron).

Temporal Variability on HICANN-DLSv2 Drives Learning On HICANN-DLSv2, the
trial-to-trial variations of neuronal firing rates for the given parameters are sufficient
to drive learning and to solve the learning task (see Figure 4.8 A). This is in contrast
to the deterministic software simulation without noise (see Figure 4.8 B), where
the absence of an action exploration mechanism prevents learning performance
beyond the mean expected reward expected for a uniformly random agent which is
〈R̄〉rand ≈ 0.10. The small, ongoing fluctuations in case of the software simulation
without noise are due to the fact that the winning neuron is selected randomly if
several neurons fire the same number of spikes. Injecting current noise into each
neuron enables action exploration and thereby learning, leading to a converged
performance level roughly similar to HICANN-DLSv2. The simulation with injected
noise converges faster and to a higher level of Pong performance. This is due to the
fact that the simulation starts from a balanced, completely unbiased state, contains
no fixed-pattern noise and that the Gaussian current noise is not a good model of
the temporal variability present on HICANN-DLSv2.

In Figure 4.8 A , we show that learning on HICANN-DLSv2 is reproducible, with little
variation in convergence. As might be expected, the converged Pong performance
is larger than the mean expected reward. This means that the agent aims slightly
off-center on average but is still able to catch the ball.
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Fig. 4.9: Weight matrix after learning, aver-
aged over the ten trials depicted in
Figure 4.8. Elements on and near
the diagonal dominate, which is the
goal of the learning task.

LearnedWeight Matrix The goal of the
learning task is to map ball positions to
target paddle positions as good as pos-
sible. In terms of the neural weight ma-
trix, this means the initial all-to-all con-
nectivity should be ideally reduced to a
one-to-one mapping of states to actions,
which corresponds to a diagonal matrix
in our case. Indeed, Figure 4.9 shows
that learning on HICANN-DLSv2 leads
to a diagonally dominant weight matrix.
Weights on the first off-diagonals are
also strengthened, because these corre-
spond to rewarded actions, albeit with a
reward of less than one. The noticeable
pattern of vertical lines in the weight

matrix is caused by neuronal fixed pattern noise: one column in the weight matrix
corresponds to one neuron and the learning process adapts weights so as to com-
pensate for the excitability of the respective neuron. This leads to different weight
patterns for each neuron and suggests that synaptic fixed-pattern noise plays a lesser
role.

Temperature Dependence We found a notable temperature dependence of learning
performance at the given parameters when continuously performing experiments
while controlling the ambient temperature using a Binder model KT 53 temperature
cabinet (see Figure 4.10). This is likely due to the fact that the neurons are operated
at a point in parameter space where the membrane time constant is most sensitive
to variations in the corresponding hardware parameter. In other words, changes as
small as a single LSB in the hardware parameter controlling the membrane time
constant will have a significant impact on neuron behavior (see the calibration curves
in Stradmann, 2016). Changing the temperature while holding all parameters fixed
likely causes a systematic variation of the DAC ramp used by the capacitive memory
to convert digital hardware parameters to analog voltages. This change is then
amplified by the supra-linear calibration curves which provide the LIF time constants
as a function of digital hardware parameters (see Stradmann, 2016).

The digital hardware neuron parameters are converted to analog values using a
chip-internal DAC (see Section 2.2). The DAC functions using a voltage ramp
which is controlled by a current generated on the prototype board, which is in turn
parameterized by three parameters for DACs on the prototype board (CAPMEM_IBUF,
CAPMEM_IBIAS, CAPMEM_IREF). We found that temperature-induced performance
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Fig. 4.10: Mean reward obtained after 50000 iterations while sweeping ambient tempera-
ture using a temperature cabinet. We plot the setpoint of the temperature cabinet
over time because direct temperature measurements were not available.

loss can be compensated by changing the CAPMEM_IREF parameter on a scale of a
few LSB which supports the above hypothesis. Most of the following experimental
results were obtained under controlled temperature conditions using the Binder
model KT 53 temperature cabinet set to 26 ◦C. Future experiments could mitigate
this issue by moving into less sensitive areas of the neuronal parameter space.
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4.2.3 Learning Is Calibration

In this section we show that the learning process implicitly compensates variability
in neuronal parameters by correlating neuronal excitability with learned synaptic
weights. Furthermore, we show that shuffling the assignment of output unit to
physical neuron after learning leads to a loss in performance, as this represents an
undoing of the learned calibration. We demonstrate that continued learning can
recover performance from this state.
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Fig. 4.11: Learning adapts weights in such a way as to compensate for variations in neu-
ronal excitability, leading to a correlation of learned weights (corresponding
to unrewarded actions, i.e., the far off-diagonal weights) and neuronal firing
threshold weights. Weights are plotted with slight jitter for better visibility.

Compensation of Neuronal Excitability Fixed-pattern noise leads to variability in
neuron behavior, even when the calibration is used. At a high level, this means that
the spiking threshold weight (see Figure 4.5 B) is different across neurons. Each
neuron in the experiment has at least 25 synapses which correspond to unrewarded
actions and should therefore ideally be pushed below the spiking threshold weight.
We determined the spiking threshold weight for each neuron, when using parameters
as in the main experiment. This enabled us to find that those weights depicted
in Figure 4.9 which correspond to unrewarded actions and the respective firing
threshold weights are correlated with a Pearson’s r of r = 0.76 (see Figure 4.11),
which demonstrates the ability of the learning process to implicitly compensate
differences in neuronal excitability.
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Fig. 4.12: Top: Baseline reward distribution for a single weight matrix obtained after 50000
experiment iterations (mean and standard deviation for each reward). Middle:
Shuffling physical neuron assignment leads to heavy loss in reward. Bottom:
Starting from the shuffled state, learning can recover performance.

Undoing and Recovering Learned Calibration As shown above, learning leads to a
weight matrix which is adapted to the variability of the physical substrate. This point
is emphasized by the following experiment: we randomly shuffle the assignment of
physical neurons to logical output units, while keeping the learned logical weight
matrix fixed. This leads to a state where the weight matrix is maladapted to
the physical substrate and can be likened to the thought experiment of physically
exchanging neurons on the chip. We can then evaluate the previously learned weight
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matrix, without learning, and proceed with learning to see if we can recover from
this maladapted state.

We first consider a weight matrix after 50000 learning iterations, without using
neuronal calibration. We then evaluate this weight matrix 100 times by determining
the reward distribution after performing 1000 iterations with learning switched off,
where the reward distribution refers to the set of the most recent reward received
in each of the 32 states. This leads to the reward distribution shown in the top
panel of Figure 4.12, with a mean expected reward and Pong performance of
〈R〉 = 0.73± 0.05 and P = 0.85± 0.06, respectively.

Then, we randomly shuffle the assignment of physical and logical neurons 100 times
and measure the resulting reward distribution as before, i.e., with learning switched
off. This leads to the reward distribution shown in the middle panel of Figure 4.12,
with a mean expected reward and Pong performance of 〈R〉 = 0.37± 0.09 and
P = 0.47± 0.11. The expectation of a significant drop in performance subsequent to
the random shuffling is therefore confirmed.

Finally, we switch learning on for each of the 100 random permutations, proceed
with 50000 experiment iterations and measure the resulting reward distribution after
learning. The resulting reward distribution is shown in the bottom panel, the mean
expected reward and Pong performance are 〈R〉 = 0.67± 0.07 and P = 0.81± 0.09,
respectively. Evidently, the learning process is able to recover performance starting
from the maladapted state represented by the middle plot.

These findings demonstrate that learning compensates for fixed-pattern noise and
support the notion that learning itself constitutes a form of calibration.

4.2.4 Learning Is Robust

A major concern when using analog neuromorphic neurons is fixed-pattern noise
and its effect on the robustness of learning processes. A commonly used method
is to calibrate neurons individually toward target values, so as to compensate for
variations. This approach inevitably makes a trade-off between the accuracy of the
calibration data and the computational resources invested into obtaining them and
has to be done for each chip individually. Therefore, it is of interest to test the
impact of an absent calibration on learning performance in the experiment, which
we investigate in this section.

Impact of the Calibration of Time Constants The neuronal calibration (Stradmann,
2016) adjusts the hardware parameters determining the LIF time constants (τmem,
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Fig. 4.13: Learning performance in the calibrated and uncalibrated state. We performed 100
experiments with 50000 iterations each and plot the reward distribution (mean
and standard deviation) as well as mean expected reward and Pong performance.

τsyn, τref) individually per neuron in order to achieve as little variability as possible,
while providing the targeted mean value. The impact of this calibration on the
distribution of the empirical parameter distribution, when using the target values of
the main experiment, is shown in Figure 4.6.

We define the uncalibrated state as the state where the average of the calibrated
hardware parameters is used for all neurons and the calibrated state as the state
where the individual values are used. Using this definition, we compare learning
performance in both cases. The results are given in Figure 4.13: learning is possible
in both scenarios, albeit with a drop in mean expected reward when omitting the
calibration (around 17 %). In the calibrated state, mean expected reward and Pong
performance are 〈R̄〉 = 0.79± 0.05 and P = 0.93± 0.05. In the uncalibrated state,
they are 〈R̄〉 = 0.65± 0.08 and P = 0.80± 0.09.

This shows that the experiment does profit from calibration but substantial learning
success can be reached without it.

4.2.5 Learning Is Transferable

This section is concerned with the transferability of hyperparameters (neuronal and
synaptic parameters) across different chips. We show that parameters can indeed
be transferred, with little variation in learning performance. This implies that the
used setup (hardware and learning rule) is robust enough such that the costly
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hyperparameter optimization has to be executed only once for several realizations
of the chip.
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Fig. 4.14: Violin plot of mean expected reward on different chips, using different sets
of parameters which were obtained using the hyperparameter optimization on
different chips. These results suggest that hyperparameters can be transferred
across chips.

Transferring Parameters Across Chips All of the results presented so far were
obtained using chip #1 and one specific parameter set, which is given as set #1
in Table 4.1. These parameters are the result of a hyperparameter optimization
procedure (see Section 4.1.4). We proceeded to perform the same optimization
procedure using two further chips, chip #2 and chip #3, yielding three parameter
sets in total. Then, we tested each of the three parameter sets on every chip by
conducting 200 experiments in each of the nine cases. We used the individual
calibration of each of the chips to transfer neuronal parameters. The results are
shown in Figure 4.14: learning results are similar in all cases, slight deviations due
to process variations were to be expected.

This suggests that other chips can be used as drop-in replacements for each other
and that it generally suffices to perform hyperparameter optimization on a single
chip.
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4.2.6 Speed and Energy Efficiency

HICANN-DLSv2 operates with a speed-up factor of 103 compared to biological real-
time and is specialized for emulating spiking neural networks (SNNs), in contrast to
general-purpose processors. We compared the speed and energy efficiency of the
experiment running on HICANN-DLSv2 to the software simulation running on an
off-the-shelf CPU.
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Fig. 4.15: On HICANN-DLSv2, a single experiment iteration takes around 400 µs, where
network emulation takes around 220 µs and plasticity calculations take 180 µs. In
contrast, the software simulation needs 1.2 ms to simulate the SNN if no noise
is injected (4.3 ms if noise is injected) and around 50 ms to calculate the weight
changes.

Speed The software simulation (see Section 4.1.5) ran on a single core of a Intel
i7-4771 CPU and used NEST v2.14.0 (Peyser et al., 2017) to simulate the SNN, while
using Python to calculate weight updates and the virtual environment. Due to the
small size of the network, distributing the simulation across more cores does not
lead to a faster SNN simulation. In order to provide a conservative comparison, we
consider the time spent in NEST’s state propagating simulation routine (the Simulate
routine) and the time spent in the Python code separately. The NEST software
simulation of the 200 ms of SNN activity takes 4.3 ms if the NOISE_GENERATOR

module is used to inject current noise into each neuron; if no noise is injected,
the simulation takes 1.2 ms. The other calculations take around 50 ms. In contrast,
one experiment iteration on HICANN-DLSv2 takes around 0.4 ms (see Figure 4.15).
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This time is approximately equally divided among neural network emulation and
plasticity calculations.

An experiment with 50000 iterations takes 25 s on HICANN-DLSv2 and 40 min in
the software simulation. This includes a constant overhead of 5 s for applying the
calibration, configuration and chip setup on the neuromorphic hardware.

On HICANN-DLSv2, causal correlation traces are calculated locally at each synapse in
an analog fashion. This means that adding more synapses does not incur additional
computational cost – in contrast to the software simulation, where eligibility traces
have to be digitally calculated using spike times. In our case, the eligibility traces
were calculated manually outside of NEST, i.e., the above comparison does not even
include the time required to obtain these traces.

For both HICANN-DLSv2 and the software simulation, the time required to calculate
the virtual environment updates are negligible compared to plasticity calculations.

Energy Consumption We determined a lower bound of 24 W (no noise) and 25 W
(with noise) for the power consumption of the SNN software simulation by measuring
the current drawn by the CPU using its EPS 12V power supply cable both during
NEST’s numerical simulation and when idling. As the SNN simulation contained
in a single iteration takes 1.2 ms (no noise) and 4.3 ms (with noise), the energy
consumption for a single iteration is at least 29 mJ (no noise) and 106 mJ (with
noise).

The power drawn by HICANN-DLSv2 was measured to be 57 mW by measuring
the current drawn by the 1.2 V and 2.5 V lines supplying the chip on the prototype
board, which is consistent with the measurement found in Aamir, Stradmann, et al.,
2018. This does not consider the power drawn by the FPGA, as the FPGA is only
used for the initial configuration and has no functional role during the experiment.
Therefore, an entire iteration taking 0.4 ms consumes around 23 µJ. This implies
that HICANN-DLSv2 is at least three orders of magnitude more energy-efficient than
the software simulation.

We confirmed that both the speed and energy measurements do not depend on
learning progress by performing measurements at the beginning of the experiment
and when using a diagonal weight matrix.
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4.3 Web-based Live Demo

The described experiment is highly amenable to live demonstration, as learning
converges in a matter of tens of seconds of wall-clock time. Framing the learning task
using the Pong arcade game provides an intuitive and visually appealing aspect. In
order to provide a convenient and portable interface to demonstrate the experiment,
we developed a web-based live demonstration system.

Fig. 4.16: Screenshot of the web-based demo interface.

The experiment backend is written in Python using the Flask web framework and
uses the web server integrated in Flask. We use the socket.io real-time engine to
provide event-based communication between the web server and the browser. When
an experiment is running, the experiment backend continually sends data points to
all connected clients. Visualization is done via the PixiJS graphics engine and we
show the firing rates, Pong playing field, weight matrix, a learning progress plot
(mean expected reward or Pong performance vs. number of iterations) and the
elapsed hardware time.

The graphical user interface (shown in Figure 4.16) provides the user with the
possibility to start and reset the experiment, as well as to artificially slow down the
experiment. The slow-down factor (2x, 10x, 100x) is implemented using a simple
waiting period after each iteration. The fastest possible setting (2x) omits the waiting
period, i.e., iterations are performed as possible. In this case, the speed is around
1200 iterations per second and every 200th iteration is plotted. Full real-time live
streaming of the experiment is not possible, as asynchronous access of the FPGA to
the PPU memory was found to be unreliable. Switching between slow-down factors
is possible during the experiment, allowing the user to follow the game dynamics or
to speed up learning.
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An “expert menu” is accessible to the user by pressing the E key. This menu allows
the user to choose the color theme, to set a technical parameter (CAPMEM_IREF)
to allow for compensation of temperature variations, to choose between plotting
modes (mean expected reward or Pong performance) and to toggle an automatic
reset after a user-specified number of iterations.
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5Software Development

Within the scope of this thesis, the software around HICANN-DSLv2 (see Sec-
tion 2.2.4) was significantly extended in order to provide access to chip functionality
from the PPU, as used in the main experiment. Apart from this, we developed a
debugging interface to the PPU that can be used with the GNU debugger.

The main experiment code is contained in the MODEL-HW-PONG repository main-
tained on the group’s OpenProject project management server.

5.1 Extending PPU Functionality

In the main experiment, the PPU requires access to synapse correlation sensors,
synapse weights and neuron rate counters and needs to trigger the synapse drivers
to send spikes. Therefore, the PPU software library LIBNUX was extended to provide
these features:

• The files CORRELATION.H and CORRELATION.C provide functions to reset or read
out synapse correlation sensors of a given row into vector registers.

Listing 5.1: Function Signatures in correlation.h:

1 void reset_all_correlations ();
2 void reset_correlation ( uint8_t row);
3 void get_correlation (
4 vector uint8_t * first_causal_half ,
5 vector uint8_t * second_causal_half ,
6 vector uint8_t * first_acausal_half ,
7 vector uint8_t * second_acausal_half ,
8 uint8_t row);
9 void get_causal_correlation (

10 vector uint8_t * first_half ,
11 vector uint8_t * second_half ,
12 uint8_t row);

• The files COUNTER.H and COUNTER.C provide functions to reset, configure
(clear on read, fire interrupt) or read out neuron rate counters.
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Listing 5.2: Neuron Counter Configuration Struct:

1 typedef struct {
2 bool fire_interrupt ;
3 bool clear_on_read ;
4 } neuron_counter_config ;

Listing 5.3: Function Signatures in counter.h:

1 uint32_t get_neuron_counter ( uint8_t neuron );
2 void reset_neuron_counter ( uint8_t neuron );
3 void reset_all_neuron_counters ();
4 void enable_neuron_counters ( uint32_t enable_mask );
5 uint32_t get_enabled_neuron_counters ();
6 void configure_neuron_counter ( neuron_counter_config config );
7 neuron_counter_config get_neuron_counter_configuration ();
8 void clear_neuron_counters_on_read (bool value);
9 void fire_interrupt (bool value);

• The file SYN.H provides functions to set and get weights of a given synapse row
from/into vector registers.

Listing 5.4: Function Signatures in syn.h:

1 void get_weights ( vector uint8_t * first_half ,
2 vector uint8_t * second_half ,
3 uint8_t row);
4 void set_weights ( vector uint8_t * first_half ,
5 vector uint8_t * second_half ,
6 uint8_t row);

• The files SPIKES.H and SPIKES.C provide functions to send single spike packets
or a uniform spike train. Spike packets can trigger several synapse drivers at
once using a 32-bit row mask and contain a 6-bit synapse label.

Listing 5.5: Neuron Counter Configuration Struct:

1 typedef struct {
2 uint32_t row_mask ;
3 uint8_t addr;
4 } spike_t ;

Listing 5.6: Function Signatures in spikes.h:

1 void send_spike ( spike_t * sp);
2 void send_uniform_spiketrain ( spike_t * single_spike ,
3 uint32_t number ,
4 uint32_t isi_usec );
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• The files RANDOM.H and RANDOM.C provide 32-bit random numbers from an
XOR-shift based pseudo-random number generator.

Listing 5.7: Function Signatures in random.h:

1 uint32_t xorshift32 ( uint32_t * seed);

• The files TIME.H and TIME.C provide a function to sleep a given number of
clock cycles.

Listing 5.8: Function Signatures in time.h:

1 void sleep_cycles ( uint32_t cycles );

5.2 GNU Debugger Interface

Fig. 5.1: The GNU debug-
ger mascot.

In software development, debuggers are a vital tool to
investigate program behavior at runtime: the regular pro-
gram flow can be interrupted using break points and as
soon as a break point is hit, the program control is handed
over to the debugger. The developer can then examine
and manipulate the contents of the memory and processor
registers, look at the stack trace as well as step through
the code. This is a critical component of the software
development process, especially when dealing with fully

custom hardware such as the PPU.

We developed an interface to the GNU debugger (Free Software Foundation, 2018a,
GDB) that allows the user to debug PPU programs. The PPU represents a remote,
embedded system. GDB contains a remote serial protocol that can be used to debug
remote systems (Free Software Foundation, 2018b). In this case, GDB connects to a
server that implements this protocol in order to send user input and receive state
information. When debugging an embedded system without an operating system,
the program must be linked together with a so-called debugging stub that includes an
interrupt handler (called when interrupts of a specific type occur) which performs
the operations required for debugging (i.e., which processes the user-specified
commands).

Therefore, interfacing the PPU to GBD requires two components:

1. The debugging stub that is linked together with PPU programs and
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Fig. 5.2: Communication diagram of the GDB PPU debugger. The newly developed compo-
nents are the PPU GDB server and the PPU stub.

2. a server on the host computer that mediates communication between the
interrupt handler on the PPU and GDB (see Figure 5.2).

The first component was developed by the author of this thesis while the second
component was developed by Philipp Spilger who also documented the server as
well as the debugging work flow (Philipp Spilger, 2018). Therefore, we will focus
on the debugging stub in the following.

PPU Debugging Stub We describe the header-only PPU debugging stub that is part
of Changeset No. 3955 (internal code review). After including it into a program, the
user can simply call the breakpoint method to set breakpoints. This method executes
the trap instruction (an instruction causing a software-based interrupt), with a nop
(no operation) before so as to work around a hardware bug where the instruction
after trap is executed otherwise:

Listing 5.9: Breakpoint method in ppu-stub.h

1 static inline __attribute__ (( always_inline )) void breakpoint (void)
2 {
3 // clang - format off
4 asm volatile (
5 "nop\n" // needed , because otherwise , the instruction

after trap is executed , when trap.
6 "trap"
7 ); // Always trap
8 // clang - format on
9 }

The trap execution will cause the PPU to save the Program Counter (PC) and the
Machine State Register (MSR) to the Status Restore Registers (SRRs) 0 and 1,
respectively and then jump into the program interrupt handler:
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Listing 5.10: Program interrupt handler in ppu-stub.h

1 void __attribute__ (( naked)) isr_program (void)
2 {
3 save_registers ();
4 handle_exception ();
5 load_registers ();
6 asm volatile ("rfi"); // Return From Interrupt
7 }

The naked attribute was introduced to gcc in changeset 3959 (internal code review)
and simply prevents the compiler from creating a function prologue and epilogue
which would normally serve to save and restore registers. In our case, we require all
registers to be exactly in the state they were upon trapping and therefore use this
attribute to prevent compiler generated instructions from tampering with register
contents. The save_registers function saves all General and Special Purpose Registers
(GPRs/SPRs) to memory in order to expose the contents to the user.

After saving the registers to memory, the interrupt handler calls handle_exception.
This is the main part of the stub and communicates with the PPU GDB server using
two memory buffers for input and output. Different commands from the server can
trigger the stub to

• continue execution, either at the instruction after the trap or at an arbitrary
location,

• to get all or single registers (SPRs, GPRs, VRs),

• to set single registers (SPRs, GPRs, VRs),

• to step through the code and

• to flush the instruction cache for newly set memory.

The main memory can be read and set by the PPU GDB server directly and in principle
this does not require assistance from the PPU stub. However, a notable workaround
concerns the instruction cache of 4 KiB. By specification, the PPU instruction cache
should be invalidated if the corresponding location in memory is altered (Friedmann,
2013). However, this was found not to be the case. Additionally, the data cache
block invalidate instruction that is part of the PowerPC ISA v2.06 is not available on
the PPU. Therefore, in order to flush the instruction cache corresponding to a given
memory location, the stub replaces the instruction at the given location plus 4 kB by
a branch instruction that jumps right back into the stub. The stub then branches to
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the modified instruction, which immediately returns to the stub that then restores
the proper memory content. In this way, the direct-mapped instruction cache is
forced to reload the instruction at the given location. This workaround is critical
when stepping through the code and when setting break points using the PPU GDB
server as instructions have to be replaced at runtime.

The fact that instructions have to be replaced at runtime can itself be seen as
a workaround for the absence of a hardware break point register, which would
normally enable the user to load addresses which trigger an interrupt. In order to
allow for convenient debugging, the following hardware generations should include
a properly invalidated instruction cache and ideally, also hardware breakpoints.

The stub restores all SPRs and GPRs each time it is exited (i.e., when stepping or
continuing) in load_registers and executes the return from interrupt (rfi) instruction
which restores the PC from SRR0 and MSR from SRR1. Note that the described
debugger is useful to debug PPU programs. Entire experiments, which generally
include a playback program on the FPGA that interacts with the chip, cannot be
debugged because the FPGA is required for the PPU GDB server in our case. Such
an integration could be the subject of future work. Another currently present
limitation is that branch instructions of the debugged program cannot be stepped
over. This would require detecting (and possibly predicting) branches, determining
the branched-to address and replacing the instruction at that address with a trap
instruction. Implementing this functionality will be subject of future work as well.
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6Discussion

This work demonstrates that HICANN-DLSv2 is a functional neuromorphic substrate
by concertedly using all components of the chip, short of anti-causal correlation
traces and inhibitory synapses, in a reinforcement learning experiment. We thereby
show the advantages of the neuromorphic approach that HICANN-DLSv2 represents
— specifically in terms of speed, energy efficiency, flexible synaptic plasticity and the
robustness of learning.

Speed and Energy Efficiency of HICANN-DLSv2 We determined HICANN-DLSv2 to
be at least an order of magnitude faster and three orders of magnitude more energy-
efficient than an equivalent software simulation with the standard NEST v2.14.0
simulator (see Section 4.2.6). These are conservative comparisons by construction,
as we compare complete iterations on HICANN-DLSv2 to only the numerical SNN
simulating part of the software simulation (native in NEST), which includes neither
the calculation of causal correlation traces nor the calculation and application
of weight changes which is done in our custom Python script. Due to the small
size of the simulated network, the software simulation operates around 100 times
faster than real-time. This is in contrast to the case of large SNNs, where software
simulations and even specialized digital-neuromorphic systems generally achieve
only real-time operation (Jordan et al., 2018; Albada et al., 2018; Mikaitis et al.,
2018). The neuromorphic approach behind HICANN-DLSv2, however, affords a
1000-fold speed-up factor that is independent of network size. Eligibility traces
are calculated in an analog fashion and locally at each synapse, which means that
scaling up network size does not incur additional computational cost with regards
to obtaining correlation values. Therefore, we expect its advantages in terms of
speed and energy efficiency to become even more apparent when moving to larger
networks.

Learning Robustness We found that the emulated model does not require calibra-
tion of neuronal time constants to learn (see Section 4.2.2). The mean expected
reward drops from 〈R̄〉 = 0.79± 0.05 to 〈R̄〉 = 0.65± 0.08 in the uncalibrated state.
This drop in learning performance comes as no surprise, as an initially balanced
neuronal activity is desirable in order to provide even chances for action exploration
and the absence of the calibration has a strong influence on the distribution of
neuronal time constants (see Section 4.2.1). It is remarkable that no compensation
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of neuronal fixed-pattern noise is necessary to provide a good learning result when
individual neuron activity is the main driver of learning. Future experiments could
further alleviate the need for a calibration by using a population coding scheme,
where neuronal variability could average out, as well as by using more systematic
action exploration mechanisms that do not rely on the intrinsic noise of individual
neurons.

Noise as Computational Resource Action exploration and therefore learning is
driven by the trial-to-trial variability of neuronal firing rates (i.e., firing rates vary
from trial to trial when keeping the uniform input spike train fixed, see Section 2.2.1).
The propensity to this neuronal behavior likely stems from the fact that comparatively
long membrane time constants are used where the LIF time constants are a supra-
linear function of the hardware parameters, which amplifies parameter deviations
(Stradmann, 2016). For the given Inter-Spike Interval (ISI) of the input spike
train (see Table 4.1), long membrane time constants make sense to be able to
integrate incoming PSPs. The trial-to-trial variability is generally not desirable and
chips are designed with the aim of keeping such effects to a minimum. Still, it is
important to note that the presented model can not only deal with this type of noise
gracefully, indeed, it benefits from it by utilizing it for action exploration. Solving
more complicated learning tasks will likely require more systematic mechanisms for
action exploration. The action exploration mechanism used in this experiment is
prone to be disturbed by unbalanced neuronal activity. It is precisely for this reason
that some states are not perfectly learned (i.e., R̄ < 1) as in those cases the correct
neuron is drowned out by the incorrect neurons: due to an imbalance in neuronal
excitability the exploration mechanism can only slowly move away (if at all) from
the suboptimal solution.

Transferability By performing the hyperparameter optimization procedure and
testing its results among three different chips, we were able to verify that the
obtained hyperparameters can be transferred across chips and that learning results
can be reproduced (see Section 4.2.5). However, we found that chip #1 has a slight
edge and performs better compared to chips #2 and #3 in all cases. This is due to
process variations which led to the capacitive memory functioning better on the first
chip. Being able to transfer hyperparameters across chips is an important point, as
optimizing hyperparameters (also referred to as “learning to learn”, Bellec et al.,
2018) can be a computationally costly and time consuming procedure. Further, we
conclude that chips can be drop-in replacements for each other.

Limitations of the study In this study, we used a prototype chip that is down-
scaled with respect to the full future chips that will be part of BSS2. The limited
number of neurons constrains the complexity of neural network models that can
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be implemented on HICANN-DLSv2. However, the results in terms of speed and
energy efficiency will be carried over to a wafer-scale implementation. Because
neurons and synapses are emulated in dedicated circuits the emulation speed is
independent of the size of the network. As each chip will have its own PPUs in
a wafer-scale setup, the plasticity calculation will not limit the emulation. For
the same reason, the power consumption scales linearly with the number of used
chips, i.e. with the size of the emulated network. The presented model contains a
shallow two-layer neural network — in the future, deeper networks will allow for
more complex input transformations. For example, reward-based Hebbian learning
in recurrent neural networks has been demonstrated (Miconi, 2017; Hoerzer et
al., 2014; Legenstein, Chase, et al., 2010) and could be implemented in future
experiments. The simplicity of the network model is also a merit because it allowed
us to focus on the neuromorphic hardware aspects of the experiment and to analyze
the results without extra complications from the model. The virtual environment
used in this experiment is computationally extremely simple and was therefore
simulated using the embedded processor. Future experiments might require complex
simulations; in this case, it would be appropriate to perform the simulation externally
— for example on FPGAs, on a microcontroller or on the host — and provide
reinforcement signals to the PPU. Note that the PPU is not designed as a virtual
environment simulator but as a platform to implement flexible plasticity rules using
the available observables.

Conclusion and Outlook We have demonstrated that HICANN-DLSv2 is a func-
tional neuromorphic substrate and delivers on its promises of accelerated learning
and power-efficient SNN emulation. This thesis lays the groundwork for future
reinforcement learning experiments which will tackle more complex learning tasks
using larger and more structured neural networks. The neural network models
that can be realized on HICANN-DLSv2 are constrained in size. However, the next
generation neuromorphic chip contains 512 neurons with 256 synapses each, en-
abling the implementation of larger networks 1. It has two embedded processor
with appropriately scaled vector units, a more flexible neuron model based on
the multi-compartment Adaptive-Exponential (AdEx) Integrate-and-Fire model and
synapses with features for Short-Term Plasticity (STP). Additionally, Poisson-like
input stimuli can be realized using on-chip Pseudo-Random Number Generators
(PRNGs), allowing for controllable noise which can be used for LIF-based neural
sampling (Mihai A. Petrovici et al., 2016) or to implement an action exploration
mechanism. On a larger time scale, future chips will be integrated on wafer-scale
similar to the BrainScaleS 1 system (Schemmel, Brüderle, et al., 2010) which will
enable the implementation of even larger networks.

1The next generation chip was in its design phase during the writing of this thesis.
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The wafer-scale BSS2 system will allow the implementation of large, deep and
biologically inspired neural networks that can interact with complex environments.
Because of the acceleration factor, researchers will be able to evaluate learning
processes that take years of biological time in a matter of hours. With this study,
we have paved the way for biologically inspired artificial intelligence on a novel
computational substrate that is a physical model of the human brain.
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