
Department of Physics and Astronomy
University of Heidelberg

Bachelor Thesis in Physics
submitted by

Philipp Spilger

born in Heidelberg (Germany)

2018

Spike-based Expectation Maximization on the

HICANN-DLSv2 Neuromorphic Chip

This Bachelor Thesis has been carried out by Philipp Spilger at the

Kirchhoff Institute for Physics in Heidelberg

under the supervision of

Prof. Meier

Abstract Neuromorphic spike-based expectation maximization (NSEM) is an adaption of

the unsupervised learning method of spike-based expectation maximization (SEM) tailored

to implementation on neuromorphic hardware. A cause layer is able to infer salient features

in spike-trains presented by an input layer. The network combines a local STDP learning

rule with homeostatically stabilized stochastic neurons. Whereas SEM was introduced

with abstract stochastic neurons, NSEM extends the model to include LIF neurons with

exponential synapses, exponential STDP curves and stochastic weight updates to overcome

a possibly limited weight resolution in hardware. This thesis presents the implementation

of NSEM on the hybrid neuromorphic HICANN-DLS version 2 prototype chip developed in

the Human Brain Project. Correct functioning of all distinct building blocks of the network

is verified individually and in combination. The learning rules are fully implemented on the

plasticity processing unit (PPU), a general purpose processor embedded in the chip, using

a newly developed fractional number type for stochastic weight updates while keeping

encapsulation and parameterization in mind. Implementation of this type is described

and its performance evaluated. In addition, improvements to the process of providing

parameters to the PPU from the experiment-executing host computer are elaborated.

Zusammenfassung Neuromorphe Spike-basierte Erwartungsmaximierung (NSEM) ist ei-

ne speziell auf die Implementierung in neuromorpher Hardware angepasste Variante der

unüberwachten Lernmethode Spike-basierte Erwartungsmaximierung (SEM). Das Netz-

werk ist in der Lage, in, von einer Eingangsschicht, präsentierten Spikeabfolgen unbeaufsich-

tigt typische Muster zu erkennen. Dabei wird eine lokale STDP Lernregel mit homöostatisch

stabilisierten stochastischen Neuronen kombiniert. Während SEM mit abstrakten stochas-

tischen Neuronen formuliert wurde, erweitert NSEM das Modell auf LIF Neuronen mit

exponentiellen Synapsen, exponentiellem STDP und stochastischen Gewichtsanpassun-

gen, um deren mögliche limitierte Auflösung auf Hardware zu überwinden. Diese Arbeit

präsentiert die Implementierung von NSEM auf dem zweiten Prototypen der hybriden

neuromorphen Plattform HICANN-DLS, die im Rahmen des Human Brain Projects entwi-

ckelt wird. Die korrekte Funktionsweise von allen eigenständigen Bestandteilen des Netz-

werks wird einzeln und in Kombination überprüft. Die Lernregeln sind vollständig auf dem

Plastizitätsprozessor (PPU), einem Mehrzweck-Prozessor eingebettet auf dem Chip, unter

Ermöglichung von Parametrisierung und Kapselung, implementiert. Ein neu entwickelter

Datentyp zum Speichern von Bruchzahlen wird zur Implementation von stochastischen Ge-

wichtsanpassungen verwendet. Die Implementation ebendiesen Datentyps wird beschrieben

und die Leistungsfähigkeit untersucht. Darüber hinaus werden Verbesserungen der Parame-

terversorgung der PPU vom Experiment-ausführenden Computer detailliert beschrieben.

Contents

1. Introduction 9

2. Methods 13

2.1. Theory . 13

2.2. Neuromorphic Hardware . 17

2.3. Software and Experiment Control . 25

3. Results 35

3.1. Calibration . 35

3.2. Single synapse NSEM . 43

3.3. Homeostasis . 45

3.4. Homeostatically controlled neuron with NSEM synapse 47

3.5. Homeostatically controlled neuron inferring 5x5 pixel images 49

3.6. Winner-take-all network . 52

3.7. NSEM network separated bar classification 54

3.8. Performance . 57

3.9. Storage requirements . 60

3.10. Repository and Continuous Integration . 62

Discussion 65

Outlook 67

Bibliography 69

A. Parameter 71

A.1. Hardware Setup . 71

A.2. Calibration . 71

A.3. Experiment . 72

B. Software 77

B.1. NSEM and homeostasis plasticity rule API/implementation 77

B.2. Used Software . 80

Acknowledgments 81

7

1. Introduction

While conventional computers are geared towards fast and correct sequential calculation of

prewritten arithmetic operations, they are highly limited in parallel computational tasks.

The opposite is observed in spiking neural networks such as the brain, where lots of highly

interconnected units (neurons) form a massively parallelized network which is able to learn

by altering its connectivity. Neural networks are governed through differential equations

describing the time evolution of their neurons’ membrane potentials. Although numeric

simulation of these differential equations is possible, the computational resources scale with

the network size and depending on the network size can lead to a simulation time larger

than the equivalent biological time.

Hybrid neuromorphic hardware can solve this problem by instead of numerically calculating

the time evolution of neural networks physically emulating neural components in analogue

electronic circuitry obeying the same differential equations. This greatly improves scaling of

computational power, as the computational resources, i.e. number of emulating units scales

linearly with the number of neurons to be emulated. In addition, the emulation can be

modified such that the differential equations’ characteristic time constants are far shorter

than their biological counterparts. This speeds up the time of emulation and thereby allows

for rapid experiment throughput and for investigation of experiments otherwise not possible

due to too long run-time.

The High Input Count Analogue Neural Network - Digital Learning System (HICANN-

DLS) (S. Friedmann and J. Schemmel et al. 2017; S. A. Aamir and Y. Stradmann et al.

2018) version 2 prototype, developed in the scope of the Human Brain Project, is a hybrid

neuromorphic system with analogue neuron circuits and an embedded general purpose

processor designed for implementation of learning, i.e. alteration of network parameter.

Featuring spike-timing information measurement for each synapse, it allows for spike-timing

dependent plasticity (STDP). The analogue circuits time constants are 1000 times faster

than their biological counterparts.

Neuromorphic spike-based expectation maximization (NSEM) (Breitwieser 2015) is an un-

supervised learning scheme geared towards implementation on neuromorphic hardware.

Emerging from Neural Sampling (Buesing et al. 2011), it assumes the network operates on

samples of an underlying probability distribution. An online version of expectation maxim-

9

ization (EM) is performed, which enables the neurons to find hidden causes in their input

fields. It relies on local STDP and bias stabilization. A cause layer of stochastic LIF neur-

ons, applying the theory of LIF Sampling (Petrovici et al. 2016), receives structured input

from an input layer and is able to classify input pattern. Input pattern can either have

fixed labels (such as distinct images) or smoothly transition into each other (images of an

arbitrarily rotated bar). Each cause layer neuron will attain its receptive fields towards one

distinct label in the first case whereas the whole cause layer will equipartition the smooth

input space in the latter case. It describes a network comprised of two plasticity rules and

additional static parts, which are to exist side by side.

Each plasticity rule therefore is to be applied only to a subset of all synapses available

on the chip, which requires masking of execution of each algorithm. In addition, fulfilling

differing timing constraints while preventing interference requires scheduling of algorithm

execution on the sequential processor.

The main goal of this thesis is to implement NSEM on the HICANN-DLS version 2 pro-

totype and to improve masking, scheduling and parameter distribution to the embedded

processor.

10

Thesis Outline

This thesis is structured in the following way: Methods used and methods developed during

this thesis are presented in Chapter 2. First, the theoretical background is shortly presen-

ted. Then, the neuromorphic platform is described to a detail used in the following sections

and the NSEM adjustments are listed and their implementations explained. Subsequent,

software used, improvements and new developments emerged in the time course of this

thesis are explained in detail.

Chapter 3 collects calibration, experiment and PPU software performance results of meas-

urements conducted in this thesis. First, automated calibration of the correlation read-out

chain developed, building upon given instructions on how to conduct manual calibration,

is shown. In addition, neuron activation calibration and evaluation is displayed in this

section.

Afterwards the network implementation is evaluated individually for all parts of the net-

work. Starting with an implementation of the NSEM plasticity rule applied on a single

synapse, evaluation is continued with examination of the homeostasis rule’s ability to sta-

bilize neuron firing rates. The combination of these two parts is then first used for a

single-synapse and afterwards extended to an 5× 5-pixel input layer with one homeostatic-

ally stabilized cause layer neuron. Next, the winner-take-all network is considered for three

neurons and its ability to inhibit a neuron from firing in the refractory period of another

neuron’s spike is evaluated. All network parts evaluated isolated are finally combined to

form a NSEM network of three cause layer neurons and 25 input layer units. This net-

work is examined using a set of three separated input pattern to show that it is capable of

classifying randomly presented pattern without supervision.

Attaching, the software developments’ resource demands of PPU software developments is

investigated both for time as well as memory consumption. Additionally, the repository

structure of all experiment software developed and the continuous integration set in place

is explained.

All experiments in this thesis are performed with the HICANN-DLS version 2 prototype

neuromorphic system. Experiment control and result evaluation is executed on conventional

computing devices.

11

2. Methods

In this chapter, the theoretical network structure is outlined. Furthermore, the DLSv2

neuromorphic platform is described and afterwards, adaptions of the theoretical model

necessary for implementation on the neuromorphic hardware are outlined. Afterwards,

software parts developed are described in detail.

2.1. Theory

Spike-based expectation maximization (SEM) is an unsupervised method for learning spike-

based patterns. The theory of Neural Sampling and Expectation Maximization as well

as the combined network structure are shortly explained in the following as basis of the

subsequent sections. Each section leads to literature explaining the specific topic in more

detail.

2.1.1. Boltzmann machine

A Boltzmann machine (BM) (Hinton 2007) is a probabilistic model over binary random

variables (RV) Z = (Zi), called units. Being binary means, that each RV can be either

active (Zi = 1) or inactive (Zi = 0) with an intrinsic bias bi. Units are pairwise connected

via weights Wij , yielding the probability distribution

p(z) =
1

Z
· exp (−E(z)) (2.1)

with a normalization constant Z, such that
∑

z p(z) = 1 and the Energy E as

E(z) = −
∑
i,j

1

2
Wijzizj −

∑
k

bkzk. (2.2)

13

2.1.2. Generative model

A generative model is a probabilistic model with probability distribution p(y|θ) quantifying

how likely it is to generate an external data sample y given parameters θ (Bishop 2006,

Chapter 8). In the case of a BM, the parameters are the weights Wij . The samples y are

drawn from an unknown probability distribution p∗(y). The goal is to approximate p∗(y)

by p(y|θ) by finding θ that minimizes the Kulback-Leibner divergence (DKL) between the

two distributions:

θ̂ = arg min
θ

DKL (p∗(y)||p(y|θ)) (2.3)

As shown in (Breitwieser 2015, Chapter 2), inserting the definition of the DKL leads to

θ̂ = arg max
θ

〈ln p(y|θ)〉p∗(y) (2.4)

where ln p(y|θ) is the log-likelihood and θ̂ the maximum likelihood estimate.

2.1.3. Expectation Maximization

Expectation Maximization (EM) is a technique to find a (local) maximum likelihood solu-

tion for a probabilistic model with latent variables (Bishop 2006, Chapter 9). Latent

variables zk are not directly observed in the data but are merely part of the model and

therefore can only be inferred. An example for a latent variable is the angle of a rotated

stick in an image. In order to find the solution, two steps are alternatingly repeated. Given

a set of parameters θold, first evaluate the a-posteriori distribution

p(z|y, θold), (2.5)

called the expectation step (E-step). Then find a new set of parameters θnew by maximizing

Equation (2.6), therefore called maximization step (M-step).

θnew = arg max
θ

〈ln p(y|z|θ)〉p∗(y)p(z|y,θold) . (2.6)

The steps are then to be repeated with p(z|y, θnew). For further information see (Bishop

2006, Chapter 9) and (Dempster, Laird and Rubin 1977).

2.1.4. Neural Sampling

A BM with N RVs has 2N states. Exact inference is therefore impossible for large N and

approximation by sampling from the probability distribution is to be employed (Bishop

14

2006, Chapter 11). In Neural Sampling (Buesing et al. 2011), binary RVs are represented

by neurons with the relation that zk = 1 if the corresponding neuron spiked and is in the

refractory period and zk = 0 otherwise. If the neuron’s membrane potential uk suffices the

neural computability condition, that is it encodes the log-odds of the RV zk being active

or inactive given the state of all other RVs zk, the spiking activity corresponds to samples

from the underlying probability distribution p∗(z):

uk(t) = log
p∗(z = 1|zk(t))
p∗(z = 0|zk(t))

(2.7)

Therefore, each neuron has a logistic activation function.

2.1.5. LIF Neuron

The membrane potential dynamics of a leaky-integrate and fire (LIF) neuron follow the

differential equation depicted in Equation (2.8), adapted from (Gerstner and Kistler 2002,

Chapter 4), with the membrane capacitance Cm, the membrane time constant τm = Cm/gL,

the membrane potential of neuron k, uk, the leak conductance gL, the leak potential EL

and the input current I(t).

Cm
duk
dt

= −gL (uk − EL) + I(t)

⇔ τm
duk
dt

= − (uk − EL) +
I(t)

gL

(2.8)

A neuron is set to spike, if the membrane voltage is exceeds the threshold potential, uk >

Vthresh and in that case the membrane voltage resides at Vreset for the refractory time

τref. For current-based synapses, the input current I(t) as described in (Breitwieser 2015,

Chapter 2) is composed of

I(t) =
∑
i

wik
∑
tsi

exp

(
− t− t

s
i

τsyn

)
Θ(t− tsi) (2.9)

with the weight wik and the spike arrival times tsi of the i-th synapse of neuron k, the

synaptic time constant τsyn and the Heaviside function Θ. Each pre-synaptic spike adds a

linearly weighted exponentially decaying input current.

2.1.6. LIF Sampling

The theory of Neural Sampling can be extended from stochastic neurons to deterministic

leaky-integrate and fire (LIF) neurons (Petrovici et al. 2016). A LIF neuron subject to high

15

excitatory and inhibitory noise features a stochastic spike behavior with a logistic activation

function (Petrovici et al. 2016), that is the probability p(zk = 1|zk) of the neuron k to spike

relative to its maximally possible activity, is described in (Breitwieser 2015, Chapter 2) as

p(zk = 1|zk) = σ(ūk) = σ

(
ūk − ū0k

α

)
(2.10)

with the sigmoid function σ, the average membrane potential ūk of neuron k, the offset

voltage ū0k, where the activity is 1
2 and the slope α−1.

2.1.7. Spike-based expectation maximization

Expectation maximization applied to Neural Sampling is called spike-based expectation

maximization (SEM). A cause layer consisting of stochastic neurons receives input as Pois-

son spike-trains from an input layer. Using local spike timing dependent plasticity (STDP)

and homeostatic excitability modification, it can be shown, that the network performs EM

to find hidden causes in the input patterns, see (Habenschuss, Puhr and Maass 2013).

Figure 2.1 shows the network topology. The cause layer forms a BM and is composed of

Figure 2.1: The SEM network topo-

logy, adapted from (Breitwieser 2015).

A cause layer consisting of stochastic

neurons zk receives structured input as

Poisson spike-trains from input layer

neurons yi. The two layers are connec-

ted via weights Vik. The cause layer

forms a winner-take-all circuit by em-

ploying strong inhibitory weights Wkl

between cause layer neurons.

z1

zk

zK

inhibitory all-to-all

WTA circuit

stochastic neurons

Wik

cause layer

y1

yi

yN

input layer

Vik

stochastic neurons zk interconnected via strong inhibitory weights Wkl forming a winner-

take-all (WTA) circuit, where only one neuron fires at a time. The E-step is described by

evaluating the cause layer spikes to a given input, whereas the M-step is implemented as

local STDP updates. It can be shown then that the cause layer spikes sample from the

posterior distribution p(z|y, θ) with θ = b′,W,V consisting of the biases b′, the WTA

16

weights W and the input layer to cause layer weights V. For a proof see (Bill et al. 2015)

and for a detailed explanation see (Breitwieser 2015, Chapter 2). The variables yi describe

the eligibility trace of the input neuron i, that is, each time the input neuron fires, yi is

increased by 1 for the time interval τsyn equivalent to a rectangular PSP. (Bill et al. 2015)

then show, that the learning rule for Vik results in

dVik
dt

= η · zk(t) ·
(
yi(t)e

−(Vik+Vi0) − 1
)

(2.11)

with the learning rate η and the default hypothesis Vi0 = log(λi0) describing the null

cause, the case if no cause layer neuron is active and all input neurons spike with rate

νi0 = λi0/τsyn. The effective bias b′ changes on Vik updates. To account for that and for

possibly differing overall input pattern strength, homeostasis is applied on the cause layer

neurons so that each cause layer neuron’s activity is stabilized on a target activity mk with∑
kmk ≤ 1 (Habenschuss, Puhr and Maass 2013). The update rule for the homeostatic

bias is derived in (Bill et al. 2015) to be

dbhomk

dt
= ηb (mk − 〈zk〉 (t)) . (2.12)

2.2. Neuromorphic Hardware

This section describes the neuromorphic platform used for experiment conduction and

adaptions of the theoretical model outlined in Section 2.1 for implementation on that

platform.

2.2.1. The DLS neuromorphic platform

The HICANN-DLS (S. A. Aamir and Y. Stradmann et al. 2018) (High Input Count

Analogue Neural Network - Digital Learning System) version 2 prototype chip (DLSv2)

is a hybrid neuromorphic system. The neuron membrane and synapses are emulated as

analogue circuits, whereas the system is digitally configurable and spikes are distributed

digitally. In addition, the Plasticity Processing Unit (PPU) (Friedmann 2013; S. Friedmann

and J. Schemmel et al. 2017), a general-purpose processor featuring the Power instruction

set architecture (IBM 2010) is embedded in the chip, enabling learning and alteration of

network parameters during run-time of experiments.

In the following, properties of the chip and its surrounding are collected. Further inform-

ation can be found in (S. A. Aamir and Y. Stradmann et al. 2018; S. Friedmann and J.

Schemmel et al. 2017).

17

The chip (and digital-to-analogue converters on the base board) can be configured from a

host computer via an Field-Programmable Gate Array (FPGA).

The prototype features 32 leaky integrate and fire (LIF) neurons with 32 current based

synapses each. The synapses have a digital strength resolution of 6 bit. Synapses are

driven by one synapse driver for each synapse row. Synapses can synapse driver wise be set

to be either excitatory or inhibitory. Figure 2.2 shows the logical layout of the synapses,

neurons and synapse drivers. Pre-synaptic spike events can be sent to a subset of synapse

Figure 2.2: Schematic logical layout of

the synapses as gray rectangles, the neur-

ons nk in red below and the synapse

drivers di in orange on the left of the

synapses. On DLSv2 each neuron has

32 synapses in its column. Each synapse

row is driven by a synapse driver which

can be set to be either excitatory or in-

hibitory for the whole row. A synapse

carries a 6 bit weight wik and a 6 bit la-

bel used for spike routing.

..
.

—
–

–
–

–

..
.

—
–

–
–

–

..
.

—
–

–
–

–

..
.

—
–

–
–

–

..
.

—
–

–
–

–

..
.

—
–

–
–

–

...– – – –—

...– – – –—

...– – – –—

...– – – –—

...– – – –—

...– – – –—d0

d1

d2

d3

d4

d31

n0 n1 n2 n3 n4 n31

drivers. Each spike carries a 6 bit label as does each synapse. Both are compared and a

weighted synaptic current pulse is generated if they match. This allows for arbitrary spike

routing to neurons. Pre-synaptic spike events can either be externally emitted or routed

from neurons by the FPGA to a subset of synapse drivers with an adjustable label. The

latter allows for recurrent networks.

Each synapse has a causal and an anti-causal correlation measure. The eligibility trace

measurement is digitized by a ramp-compare 8 bit analogue-to-digital converter (ADC),

the CADC (Correlation ADC). The CADC has 32 causal and 32 anti-causal channels for

parallel readout. Synapse rows are then multiplexed onto these channels. The causal

and anti-causal channels can be read-out simultaneously per row. The analogue eligibility

trace circuit features an accumulated nearest neighbor pair-based measurement. For each

pre- (causal) or post-synaptic (anti-causal), i.e. neuron spike, an exponential decay with

time constant τ
{c,a}
cor is started and read-out on the next post- (causal) or pre-synaptic

(anti causal) spike. Each read-out value is then added to the accumulated eligibility trace

capacitor.

Every neuron has a digital 10 bit output rate counter, which is optionally automatically

reset-able on reads and counts the neuron’s spikes since the last reset.

18

For experiment conduction, playback programs for the FPGA are constructed in a host

program. The playback program is then transferred to and executed from the FPGA.

It consists of a sequence of instructions and can be constructed from either wait instruc-

tions for temporal structuring of the experiment, spike fire events or reading or writing

configuration containers created using the hardware abstraction layer software framework

haldls (Electronic Vision(s) 2018). The haldls containers abstract chip and FPGA con-

figuration. To enable for example a neuron’s digital spike output, a write instruction

for the NeuronDigitalConfig is to be added to the playback program with the option

enable_digital_out set to true.

The PPU can access the whole chip configuration and features a weakly coupled 16× 8 bit

and 8× 16 bit vector unit with direct access especially to synaptic weights and correlation

measurements row-wise for the first and second 16 synapses. The vector unit can perform

(unsigned) integer and saturating fractional arithmetic operations.

Programs for the PPU are written in assembler, the C or C++ programming languages. They

are compiled and linked using a modified version of the gnu compiler collection (gcc) and

the binary utilities collection binutils with support for the custom vector unit. For more

information on the tool chain, see (Heimbrecht 2017) and (Spilger 2018). The processor

is equipped with 16 kB of memory, which can be read from and written to from the host

computer via the FPGA. Precompiled PPU programs can thereby be loaded, executed and

altered during playback program execution.

2.2.2. Neuromorphic SEM adjustments

The network setup depicted in Figure 2.1 is not directly transferable to the neuromorphic

system, since it implements key elements differently, e.g. the eligibility trace measurement

or the neuron model. Therefore the network is to be adjusted for hardware implementation

in order to account for those differences. In the following sections, the necessary adaptions

formulated in (Breitwieser 2015) are displayed.

2.2.2.1. Neurons

The neuron circuits on DLSv2 model LIF neurons. LIF neurons can be adjusted to behave

stochastically with a logistic activation function, see Section 2.1.6. Each neuron is therefore

connected to a strong inhibitory and an excitatory Poisson background source via two

synapses and the reset potential is set near the threshold potential in order for the noise

to introduce the maximal amount of stochasticity (Breitwieser 2015).

19

2.2.2.2. Synaptic weight translation

The theory assumes rectangular post-synaptic potentials (PSPs), whereas the emulation

features exponentially decaying PSPs. In order to translate the hardware weights wik back

to theoretical weights Wik, the area under the PSP is demanded to be equal to a rectangular

PSP with duration τon for the duration τon (Breitwieser 2015). The conversion then follows

Equation (2.13) on insertion of Equations (2.8) and (2.9) and is adapted from the derivation

for conductance based synapses presented in (Breitwieser 2015).

Wikτon
!

=
1

α

∫ τon

0
uPSP(t)

(2.9), (2.8)⇒Wikτon = wik
1

αgL
τsyn

(
1− e−

τon
τsyn

)
τon = τsyn ⇒Wik = wik

1

αgL

(
1− e−1

)
=: wik

1

ftheo→bio

(2.13)

ftheo→bio describes the constant conversion factor from theoretical weights to biological or

hardware weights. The scale factor α is the inverse slope of the activation function as

outlined in Equation (2.10).

2.2.2.3. Homeostasis

Instead of directly adjusting the bias from Equation (2.12) by adjusting the leak potential,

(Breitwieser 2015) show a conversion to a homeostasis with background sources, enabling

activity adjustment through employing current onto the membrane. The weight update

rule for the neuron k for each spike then follows as derived in (Breitwieser 2015) to be

∆whom
k = ηb

mk · ν
net

νpre , background source spike

−1, cause layer neuron spike
. (2.14)

with the learning rate ηb, the synaptic weight whom
k , average rate νtargetk = mk

νnet

νpre the

neuron is stabilized to, the background source mean rate νpre and the fraction mk of the

k-th neuron of the total network rate νnet.

2.2.2.4. Synaptic inter-layer update rule

The synaptic SEM weight update rule, see Equation (2.11) is to be adjusted to fit the ob-

servables present on the hardware. The presented adaptions are adopted from (Breitwieser

2015).

20

Homeostatically controlled neurons First, due to the multiplicative binary variable zk(t),

the original learning rule updates the weights only every cause layer spike. Since homeo-

stasis is employed on the cause layer neurons, the average activation 〈zk〉 = mk is restricted

to be constant leading to a simplification of Equation (2.11):

dVik
dt

= η ·
(
zk(t)yi(t)e

−(Vik+Vi0) −mkν
net
)

(2.15)

For a derivation see (Breitwieser 2015).

Pair-based nearest-neighbor correlation measurement The theoretical model assumes

box shaped correlation signals for each pre-synaptic spike and no dependence of the post-

synaptic activity. On the DLSv2 however, each pre-synaptic spike starts an exponential

decay which is stopped on occurrence of a post-synaptic spike and the remaining amplitude

is added to the causal correlation measurement. Therefore yi(t) and zk(t) are not inde-

pendent. In addition, instead of adding an exponential decay for every pre-spike, the decay

is reset on the occurrence of a post-synaptic spike. This leads to a systematic drift of the

measured correlation to lower values as expected with indefinite decay. (Breitwieser 2015)

shows, that the average nearest-neighbor eligibility trace corresponds to the theoretical

eligibility trace via

〈yi〉nnk
〈yi〉k

=
1

1 + τsynνik

[
1− exp

{
−
(

1 +
1

τsynνik

)
νikTISI

}]
(2.16)

with the average inter-spike interval (ISI) of the active cause layer neuron TISI , the actual

pre-synaptic spike rate νik and the synaptic time constant of the exponential eligibility trace

decay τsyn. Using Equation (2.11), this leads to a nearest-neighbor null cause hypothesis

rate derived in (Breitwieser 2015) of

λnni0 =
1

1 + 1
τsynνik

[
1− exp

{
−
(

1 +
1

τsynνik

)
νikTISI

}]
(2.17)

Analogously finding λnnik leads to a weight to an inferred rate conversion of

Vik = log
λnnik (νik)

λnni0
(2.18)

The adjusted update rule adopted from (Breitwieser 2015) is displayed in Equation (2.19).

dVik
dt

= η ·
(

(zkyi)(t)
1

λnni0
e−Vik −mkν

net

)
(2.19)

21

Accumulated update A weight update for every cause layer spike is not possible, because

the (mean) inter-spike interval is lower than the minimal duration of a weight update.

Moreover in the case of the homeostasis Equation (2.14), there’s no hardware event ac-

cessible for the PPU for pre-synaptic spikes disallowing updates at each spike event of the

background source.

Therefore, the weights are updated for an accumulation of spikes in a defined update

interval. In order to precalculate the target rate, updates with constant update period

Tupdate are chosen, leading to the accumulated weight update rule given in Equation (2.20).

∆whom
k,acc = ηb

(
mk

νnet

νpre
Tupdateν

pre − npostk

)
⇔ ∆whom

k,acc = ηb

(
mkν

netTupdate − npostk

) (2.20)

The number of cause layer spikes during the last period is denoted as npostk . The rate

counter of the neurons is used in the implementation, developed as part of this thesis, to

count the number of cause layer neuron spikes individually for each neuron. The target

average number of spikes ntargetk = mkν
netTupdate can be precalculated as it stays constant

during an experiment, leaving a rate counter lookup, a subtraction and a multiplication to

be performed for each weight update. Similarly, the SEM learning rule is adjusted to be

performed periodically with an update period of τupdate leading to Equation (2.21), derived

in (Breitwieser 2015).

∆Vik = η ·

(∑
l

(zkyi)l
1

λnni0
e−Vik − τupdatemkν

net

)
(2.21)

The accumulated correlation,
∑

l(zkyi)l, corresponds to a readout and reset of the accu-

mulating causal hardware measurement. Dynamically changing variables in this equation

are the correlation readout and the weight. All other values stay constant and are precom-

puted as a constant in the case of the regulatory (ητupdatemkν
net)-term and as a lookup

table for the 64 hardware weights in case of the exponential term, as proposed in (Breit-

wieser 2015). Each update therefore consists of readout of correlation and weight, weight

lookup for the exponential term, multiplication with the correlation value and subtraction

of the regulatory constant (Breitwieser 2015).

Stochastic weight updates The discretized synaptic hardware weights are mapped to

theoretical weights via a constant factor wstep:

Vik = wstepwik (2.22)

22

The weight updates ∆wik and ∆whom
k will mostly be a fraction of a hardware weight unit,

since the weight updates converge towards target weights. These small weight updates

will be performed as described in (Breitwieser 2015) by stochastically deciding to update a

hardware weight step depending on the fractional part of the weight update. This leads to,

on average, first order correct mean weights and especially correct learning rates as opposed

to choosing to round up all weight updates smaller than a hardware weight unit.

2.2.3. Neuromorphic SEM network implementation

Applying the adjustments from (Breitwieser 2015), outlined in the previous sections, the

theoretical network topology, depicted in Figure 2.1, is to be adapted. Figure 2.3 shows

the adjusted network topology as is implemented on the DLSv2 neuromorphic hardware

as part of this thesis. The adjusted network is called neuromorphic SEM (NSEM) in the

following and first introduced in (Breitwieser 2015). The neuromorphic SEM learning rule

refers to the learning rule for input- to cause-layer neurons, i.e. Equation (2.21).

In order to be able to lessen and increase the neuron activity, a homeostasis background

source is connected to an excitatory and an inhibitory synapse of each neuron, as the

hardware only allows for one type at a time for each synapse row. As alternative imple-

mentation, a homeostasis altering the leak potential directly additionally is developed. This

implementation however leads to unresolved hang-ups of chip or FPGA and is therefore

not further evaluated in the following.

The homeostatic and NSEM synaptic connection strength updates are fully performed on

the PPU. Opposed to the FPGA playback program, it allows for online learning including

decisions based on dynamic observables.

Input pattern and background spike sources are pregenerated and played back in the FPGA

playback program.

The WTA network behavior is implemented using the spike routing capability of the FPGA.

The cause layer neurons are all-to-all inhibitory connected strong enough so that only one

neuron is active at a time. This provides all neurons with the same probability to spike

again after the last active neuron’s refractory period.

Static configuration of the network topology, the spike-router’s routing as well as static

parameter calibration data such as neuron parameters are set via the FPGA in advance to

learning and image pattern presentation.

Stochastic weight updates, used in the homeostasis and the NSEM update rule imple-

mentation, need data types capable of storing fractional values and computing arithmetic

operations efficiently. The implementation developed is described in detail in Section 2.3.2.

23

z1

zk

zK

inhibitory all-to-all

connections for WTA behavior

using FPGA spike router

LIF neurons

hom

homeostasis background

sources

I

E

Poisson background sources

to introduce stochasticity

whom
k

cause layer

y1

yi

yN

input layer

wik

Figure 2.3.: Neuromorphic SEM network topology adjusted from the topology in Figure 2.1

for implementation on the DLSv2 hardware. The input pattern yi is presented by Poisson

spike trains to cause layer neurons zk with weights wik. The cause layer LIF neurons

are brought into stochastic regime by excitatory and inhibitory background spike trains.

The effective bias of the cause layer neurons is adjusted by homeostasis through adjusting

weights whom
k of an excitatory and an inhibitory connection to background sources. The

cause layer implements a WTA behavior by strong inhibitory all-to-all spike routing.

2.2.3.1. Time convention

The DLSv2 neuromorphic platform features time constants such as the neuron refractory

time constant in the order of 1 µs to 30 µs hardware time. This is in the order of O(1× 103)

faster than the biological domain. The digital clock frequency is 97.5 MHz for the setup

used. Therefore, a speedup factor of 975 is defined to convert the time constants to a

biologically comparable range. A FPGA or PPU digital cycle thereby corresponds to 10 µs

biological time. In the following, most times are presented in biological time using the

speedup factor in the following and are denoted by bio.

24

2.3. Software and Experiment Control

This section describes software developed during this thesis and used in experiment con-

duction. Host software is developed in the framework of the hardware abstraction layer

haldls and the hardware coordinates halco. PPU software is developed using libnux, an

auxiliary library supplying helper functions and hardware access information to e.g. read

and write weights.

First, communication of learning rule parameters from the host to the PPU is described.

Then the implementation of a new datatype for storage of and computation with frac-

tional numbers on the PPU is explained. In addition, scheduling of tasks on the PPU and

masking of plasticity rules is outlined. Finally, an encapsulation of experiments in the host

software, extensions to ease processing of multiple spike trains and serialization of hardware

configuration are presented.

2.3.1. Host-PPU communication

The NSEM learning rule and the homeostasis rule are implemented as algorithms in PPU

executables. The program is precompiled and loaded into PPU RAM (random access

memory) via the FPGA. In order to prevent the need to recompile the PPU program at

every change in rule parameters, e.g. the update rate, the parameters are to be supplied to

a precompiled program. To achieve that, means to simplify Host-PPU communication are

developed as part of this thesis.

The parameters are supplied to the PPU program during run-time via write access of

PPU memory by the FPGA. The PPU binaries are linked to be in the ELF (Executable

and Linkable Format) binary file format. This format, in addition to the executable code,

stores information about position and size of global symbols, e.g. global variables or struc-

tures enabling direct access to the objects. As described in more detail in (Spilger 2018),

accessing the positional information in the ELF file allows for accessing objects in PPU

programs by name. In addition, converter functions from basic types to 32 bit word based

PPUMemoryBlock intervals are implemented allowing for direct external access to (unsigned)

integer, floating point and vector variables in running PPU programs.

The PPU program is set to wait on parameters to be supplied by the FPGA via write locks

implemented as infinite loop while(!signal) {} to be exited on a change of the global

variable signal, that is set to be 0 at program start.

As the PPU memory is 16 kB in size, precomputing parts of update rule parameters to be

used in the update loop will not be possible in the same program as the actual experiment

25

conduction because of memory limits. Because the learning rule’s parameters are real

numbers, this problem is enlarged by the need to use floating point parameter variables,

as the PPU does not feature hardware floating point support. Thereby, every floating

point operation is computed in software as opposed to call a dedicated instruction, which

leads to a large fraction (about 4 kB for all additive and multiplicative operations) of the

totally available memory consumed by software implementations of these operations. The

pregeneration of update rule internal parameters is therefore split out of the experiment

conduction program. The parameters are then directly inserted in the update rule’s symbol

area encoded in its internally used format (e.g. unsigned integer vector for the homeostasis’

learning rate) at the memory location, the linker decided to place the variable to.

To precompute the parameters, two approaches are possible. Either, the parameters are

precomputed on the host or the parameters are precomputed in a different PPU program

by supplying the rule-external parameters as e.g. floating point numbers and reading back

the internal representation to the Host after calculation on the PPU. While the latter

demands hardware usage and additional code to build and execute a parameter-generation-

only playback program, the rule-internal representation is obtained without additional

investment of resources on understanding the structure internal placement of the compiler.

Therefore, the parameter generation is split out into another PPU program to be executed

and evaluated before the actual experiment, in which the generated parameters are inserted.

The experiment program then is free of parameter translation functionality, which leads to

small enough programs to be executed.

Care needs to be taken about which parts of parameter structures to insert into the ex-

periment program. Especially values of variables such as pointers linking to other data

structures will (need to) differ from the parameter generation program to the experiment

conduction program. The reason for this is, that executable code portions are placed differ-

ently by the linker, if code is added or removed. Replacing pointer values might therefore

lead to malfunctioning code. An example of malfunctioning replacement would be changing

a pointer to a random seed, now referring to a zeroed portion of the memory, leaving the

corresponding random number generator to only produce zero as random number.

The structure-internal placement of variables to be excluded from insertion is to be found

out manually as there is currently no full understanding of the placement rule applied by

the compiler available. The approach used for the homeostasis and NSEM learning rule

structure is printing the structures memory area and linking portions to variables based on

known size and value, given they are beforehand set to distinguishable values.

26

2.3.2. Fractional arithmetics with stochastic evaluation

The weight update rules in Equations (2.20) and (2.21) lead to sub-hardware-resolution

weight updates as mentioned in Sections 2.2.2.3 and 2.2.2.4. Therefore, an efficient sub-

integer representation and back conversion to integer values is developed.

The correlation measurements and weights are accessed from the PPU via its vector unit,

yielding 16×8 bit vectors. Each vector entry corresponds to a weight or correlation value.

The vector unit of the PPU supplies builtin fractional arithmetics for 8 bit and 16 bit

wide values. These arithmetics however perform lossy arithmetic operations and don’t

provide means to adjust the resolution on demand. To overcome these limitations, a digit-

based fixed point fractional representation is developed. A digit-based fractional number

is composed of integer digits and fractional (i.e. sub-integer) digits, just as in the decimal

system, see Equation (2.23).

27.123 = 27︸︷︷︸
two integer digits

. 123︸︷︷︸
three fractional digits

(2.23)

Instead of the decimal base 10, the base 128 is chosen for the implementation. It can

be represented in an uint8_t byte and at the expense of loosing only one bit, carryover

detection for arithmetic operations is possible due to the unused upper bit.

The choice of the uint8_t type allows implementation using the vector unit’s 16 × 8 bit

unsigned integer vectors, which parallelizes arithmetic operations and speeds up computa-

tion. In the following, a fractional vector denotes the implementation storing 16 fractional

numbers using a 128 base.

Analogously to decimal fractional numbers, the fractional vector variables can be created

with an arbitrary number of digits. This allows for arbitrary precision to be adjusted in

7 bit steps. As the fractional vector is used in the homeostasis and NSEM learning rule

as sub-integer extension for 8 bit integer values, the implementation is restricted to allow

only one integer digit. This way, the fractional vector can be seen as an integer vector with

additional arbitrary sub-integer precision.

Using vectors as base digit type enables parallelized fractional computation. Each array of

16 digits is represented by a 16× 8 bit vector. To allow for carryover detection, this limits

the digit base to 7 bit for fractional digits.

Figure 2.4 shows the fractional representation of numbers with three fractional and one

integer digit.

27

Figure 2.4: The representation of fractional num-

bers using three fractional digits, depicted in or-

ange and one integer digit, depicted in blue. Each

row represents a fractional number. There are 16

numbers stored in parallel using the builtin vector

type to speed up arithmetic operations.

0 21 28 35

1 42 56 70

2 63 84 105

..
.

..
.

..
.

..
.

2.3.2.1. vector_fractional-API

The application programming interface (API) of this new vector_fractional type is dis-

played in Table 2.1. The C++ operators are used so that the type behaves like an internal

type from the user’s perspective. In addition to addition and subtraction operators, a

lossless multiplication with an integer vector is implemented, which divides the result by

128 and adds a sub-integer digit.

2.3.2.2. Stochastic down-conversion

Since the hardware weights can nonetheless only be set to 6 bit integer values, a down-

conversion is to be performed. The fractional representation could be converted to integer

by discarding the fractional part. This however leads to resolution loss and especially

on small weight updates wrong learning, i.e. the weight would be stuck at a value, if all

weight updates are smaller than 1, as discussed in Section 2.2.2.4. (Breitwieser 2015)

propose stochastically evaluating the fractional part of a weight update, as this leads to on

average correct learning rates and weight updates. This stochastic conversion to integer

is implemented for the vector_fractional type as a free function, as a random number

generator instance reference is to be supplied and would lead to an additional 16 byte

memory consumption of the type because of structure-internal alignment. The integer value

is computed by adding to each entry’s integer part a 1 with probability of the fractional

part of the entry. For parallel computation, an efficient random number generator using the

xorshift128 algorithm (xorshift implementation for 128 bit wide values) is implemented

with a down-conversion to 7 bit per entry.

2.3.2.3. Exponential precalculation

As described in Section 2.2.2.4 and proposed by (Breitwieser 2015), the exponential part of

equation (2.21) should be precomputed for all 64 possible weight values in order to speed

up the weight update computation.

28

member function specification

vector_fractional() Default constructor, no zero
initialization for increased cre-
ation speed

void set_entry(size_t entry, float) Set entry in vector to float
number, automatically con-
vert to fractional representa-
tion

vector uint8_t get_digit_integer() Get integer digits of all entries
vector uint8_t get_digit_fractional(size_t pos) Get fractional digits at pos of

all entries
void set_digit_integer(vector uint8_t) Set integer digits of all entries
void set_digit_fractional(size_t pos, vector uint8_t) Set fractional digits at pos of

all entries
vector_fractional<p> operator+(vector_fractional) Addition operator
vector_fractional<p> operator-(vector_fractional) Subtraction operator
vector_fractional<p>& operator+=(vector_fractional) Addition to operator
vector_fractional<p>& operator-=(vector_fractional) Subtraction to operator
vector_fractional<p> operator-() Sign change operator
vector_fractional<p+1> operator*(vector uint8_t) Multiplication with integer

vector operator, operation di-
vides through 128 and in-
creases precision by one digit
to counteract resolution loss

operator vector uint8_t () Convert to integer vector by
discarding fractional part, i.e.
rounding down

Table 2.1.: API of the vector_fractional type. The type is templated on the number of

fractional digits, i.e. its precision, p.

29

Therefore, a parallelized lookup table for the vector_fractional type using uint8_t type

as index is developed. Table 2.2 shows the API.

member function specification

vector_fractional_lookup() Default constructor
vector_fractional<p> lookup(vector uint8_t) Lookup all entries of the sup-

plied index vector and create a
vector_fractional instance with the
looked-up values

void set_entry(uint8_t index, float) Set lookup value at specified index

Table 2.2.: API of the vector_fractional_lookup lookup table. Lookup is parallelized

by providing a vector of indices as type vector uint8_t. In the case of the NSEM rule,

this would be the weights as directly read using the vector unit of the PPU. The lookup

table is templated on the number of entries (256 at max.) and the fractional precision, i.e.

number of digits, of its entries.

2.3.2.4. Usage example

The use of the fractional vector, the lookup table and the stochastic down-conversion is

exemplified for the implementation of the NSEM learning rule. Here, a NSEM plasticity rule

instance holds a lookup table of precision p for the exponential part of equation (2.21) and

a fractional vector instance of precision p+1 for the regulatory constant. Each update, the

lookup table is queried for the weights. The resulting fractional vector instance is multiplied

with the correlation measurement vector and the regulatory constant is subtracted. This

temporary fractional vector of precision p + 1 is then stochastically down-converted to

integer values, which are added to the old weights and set to the synapses. Listing 1 shows

a simplified excerpt of the NSEM plasticity rule implementation. The full implementation

is displayed in Listing 4.

2.3.3. Plasticity rule encapsulation and masked execution

The NSEM network features two plasticity rules, the NSEM rule and the homeostasis. To

allow reusing of the rule implementations, the rules are encapsulated in an object-oriented

manner. Each rule is comprised of a structure capable of initialization, setting parameters

and executing the update algorithm.

Additionally, an execution mask for the synapses is to be supplied for the learning rule.

The NSEM rule implemented as part of this thesis uses the masking and encapsulation

30

template <class rng, std::size_t precision>

class StochasticSEM {

rng* m_random;

vector_fractional_lookup<num_hw_weights, precision> m_exp_lookup;

vector_fractional<precision + 1> m_regulatory;

public:

vector uint8_t kernel(

vector uint8_t const& weights, vector uint8_t const& causal)

{

return weights + draw(

(m_exp_lookup.lookup(weights) * causal) - m_regulatory,

m_random);

}

};

Listing 1: Usage of the vector_fractional type, the lookup table and stochastic down-

conversion with the draw function in the NSEM plasticity rule implementation. The plas-

ticity rule instance holds a pointer to a random number generator instance used for the

stochastic down-conversion and a lookup table for the exponential part as well as a constant

fractional vector for the regulatory part of equation (2.21). The kernel member function

implements the update algorithm by first looking up the exponential part, the multiply-

ing with the correlation measurement, afterwards subtracting the regulatory constant and

finally performing a stochastic down-conversion to an integer vector.

31

framework already presented in (Spilger 2018). The rule is constructed of an algorithm

operating on vectors of synapses and a mask supplying information as to which part of the

synapse vectors to operate on. This is possible, as the NSEM rule is fully local, i.e. only

the weight and correlation measurement of a specific synapse is needed in order to update

this synapse’s weight.

To the contrary, the homeostasis rule logically operates on the neuron scale and has an

excitatory and an inhibitory synapse associated to every neuron to update. Masking of

execution therefore is implemented by supplying a neuron mask in the form of two 16-

entry binary vectors and information about the excitatory and inhibitory row to operate

on.

2.3.4. Update scheduling

The plasticity rule algorithms displayed in Equations (2.20) and (2.21) are to be performed

periodically with precise timing. Wrong timing implies wrong interpretation of the rates

measured in the homeostasis rule and the correlation measurement in the NSEM rule.

To guarantee precise timing of single rule execution and execution of tasks in parallel,

the earliest-deadline-first real-time scheduler developed in (Spilger 2018) is used. It al-

lows specification of timing requirements independent of the task to be performed and the

scheduling process it is executed in. In addition, requested timing can be evaluated after

execution to verify correct behavior.

2.3.5. Experiment Encapsulation

Each experiment consists of supplying parameters, executing the experiment, evaluating

and eventually saving results. To provide a common code-base for all single-playback-

program experiments, an ExperimentBase-class providing hardware access and experiment

functionality used in every experiment is developed. It provides a playback program builder,

helper functions such as for loading a PPU program from a file and inserting a load and

start instruction to a program builder or for applying calibration data. Every experiment

inheriting from the base class encapsulates instructions to create an experiment as a single

playback program. As from a users point of view, there’s no difference to higher order

experiments, i.e. experiments consisting of multiple single-playback-program experiments,

they share their interface with the single-playback-program experiments. An abstract ex-

periment interface is outlined in Listing 2. Encapsulation of experiments with a common

interface eases re-usability and combination of experiments. A real world example would

e.g. be specific calibration with an experiment afterwards dependent on the previous results,

which are inserted as calibration parameter there.

32

class ExperimentA {

public:

/// Provide initial parameters for experiment creation.

ExperimentA(parameters...);

/// Additional parameter settings.

void set_parameter(value_t value);

void get_parameter(value_t value);

/// Calibration settings.

void set_capmem(CapMem capmem);

void set_board(Board board);

void get_capmem(CapMem capmem);

void get_board(Board board);

/// Experiment execution, e.g.\ on hardware.

void execute();

/// Evaluate and get some experiment result.

result_t get_result();

/// Save results, parameters, calibration, etc.

void save(std::string filename);

};

Listing 2: Common experiment interface featuring parameter setting, calibration supply,

experiment execution, evaluation and saving of results. This allows for seamless combina-

tion of experiments, e.g. sequentially dependent on the previous experiment’s results.

33

2.3.6. Spike-train generation and combination

During the experiments performed in Chapter 3, multiple spike trains are to be processed

interleaved in the FPGA playback program. During playback program generation, instruc-

tions can only be added sequentially. Because the spikes correspond to multiple interleaved

spike-trains with different targets, efficient generation and combination is necessary. In ad-

dition to pre-synaptic spikes, also post-synaptic correlation signal trigger events are treated

as spikes and are to be combined. Therefore, an AbstractSpike type is developed that

can hold a variant from the set of PreSpike and PostSpike events. As an abstract spike

initially does not hold a spike target description but only a time, abstract spike-train gener-

ation is possible by only specifying timing information and supplying the target information

afterwards. This allows for pregeneration and reuse of generated spike-trains.

Using C++ standard library std::vector<AbstractSpike> and std::sort, spike-trains

with different type and target can then be concatenated or interleaved after individual gen-

eration. The two spike sources used in the experiments carried out of this thesis are regular

and Poisson spike-trains. A spike source thereby refers to a spike-train processed from the

playback program in the following. For these two spike-trains generator functions are im-

plemented yielding a vector of abstract spikes without target, enabling its specification

afterwards.

2.3.7. Serialization of haldls-Containers

Every hardware configuration is abstracted as a container in the haldls hardware ab-

straction software layer. Each container corresponds to a configurable feature of the neur-

omorphic system. To allow storage and reuse of configuration present during run-time, seri-

alization of all containers present in haldls using the serialization library cereal (Grant

and Voorhies 2017) is implemented in this thesis. This directly enables loading and saving

of configuration in human-readable JSON (Crockford 2018) or more space saving binary

format, depending on the application. Possible applications include calibration data in-

sertion or transfer of static configuration between encapsulated experiments, described in

Section 2.3.5.

34

3. Results

First, calibration of the correlation measurement and the neuron activation necessary for

experiment conduction is explained and results are presented.

In the following, the implementation of the parts of the network described in figure 2.3 will

be examined individually and in conjunction with each other. First, the NSEM learning

rule, see equation (2.21), will be studied for a single synapse with artificially generated

pre- and post-synaptic spikes. Then, the homeostasis implementation, outlined in section

2.2.2.3, is tested. Connecting these two parts, the single synapse learning rule is then com-

bined with homeostatically controlling the post-synaptic neuron’s firing rate. Subsequently,

the combination of 5 × 5 synapses equipped with the NSEM learning rule connected to a

homeostatically stabilized post-synaptic neuron will be evaluated on inferring the input

rates of presented images. Afterwards, the winner-take-all network is inspected isolated

in combination with the homeostasis. Finally, the full model is implemented as a set of

three neurons in a winner-take-all network with 5× 5 learning NSEM synapses. A set of

three separated input pattern is presented to the network and its capability of performing

classification is investigated.

Additionally, the performance both in time and in memory consumption of the PPU-based

plasticity rules and the vector_fractional type is evaluated.

All following measurements are conducted using the same setup, i.e. combination of chip,

FPGA and base board, which are documented in table A.1 in the appendix A.1.

3.1. Calibration

The analogue circuits are subject to fixed pattern variation and temporal noise. To calib-

rate the analogy neuron parameters, they are set through digitally configurable Capacitive

memory (Capmem) cells providing analogy voltages or currents (Hock et al. 2013). The

calibration data to each chip is stored in the database dls2calib and can be accessed via

a python interface. The database is used for neuron calibration and yields bias current

and neuron time constant calibration settings given a chip ID and requested target values

in wall-clock-time. Conversion to biological time therefore is done as described in 2.2.3.1.

35

More information on the database structure, calibration procedure and results is found in

(Stradmann 2016). The calibration data used is obtained from (Billaudelle 2018) using an

automated calibration procedure1.

As described in Section 2.2.2.1, in order to bring the neurons to a stochastic firing regime,

the leak potential is to be adjusted to an activity of optimally p = 1
2 , i.e. the neuron fires

with half its maximal firing rate when stimulated with excitatory and inhibitory noise.

In addition to neuron calibration, the correlation measurement is to be calibrated. The pair-

based nearest-neighbor adaption described Section 2.2.2.4 assumes exponentially decaying

correlation signals with time constant τsyn. To transform measured correlation to the

theoretical regime, the amplitude and time constant are to be measured and adjusted.

In the following, the additionally needed calibration steps are discussed in detail.

3.1.1. Correlation

The correlation measurement is read out by the correlation ADC (CADC). The voltage of

the correlation storage capacitor is read out via a source follower in between the CADC

and the capacitor (S. Friedmann and J. Schemmel et al. 2017). Both the CADC as well as

the source follower have mismatch and need to be calibrated. To calibrate the correlation

measurement, first the CADC is therefore to be calibrated to a desired voltage range. Then,

the source follower is to be adjusted for linearity and desired range. Last, the correlation

amplitude and time constant are to be measured and adjusted. The calibration procedure

conducted follows (Wunderlich 2016).

3.1.1.1. CADC and Source follower

The CADC is a ramp-compare ADC. A periodic analogue linear ramp with offset is com-

pared to the to be measured signal. Each period, a digital counter is started and stopped

on comparator flip. The counter value thereby linearly digitizes the analogue value.

On DLSv2, the ramp amplitude (ramp_slope) and offset (ramp_01) are adjustable via

DACs on the base board (Wunderlich 2016). They are however not independent from each

other, so the amplitude and offset value are to be adjusted alternatingly approaching the

desired bounds (Schreiber 2018).

Additionally, there are two bias parameters ramp_bias and v_bias adjusting the slope and

the spread of channels (Schreiber 2018).

1This calibration is under code review at the time of writing this thesis and is found under the change set
number 4419 in the repository dls2calib-routines.

36

Given an input interval [Ul, Uu], the optimization goal for the ramp amplitude and offset

is, that all CADC channels should not saturate at either end of the interval, be linear in

between and use the maximally possible digital value range.

For the process of finding suitable ramp and offset parameters for given interval boundaries,

an automated calibration program is developed as part of this thesis. This allows for

potentially aligning different board-chip setups to perform the experiments conducted on

another setup without the need to manually calibrate the CADCs. Although there also

have been developed automated optimization programs for the bias parameters, the values

are tuned manually, as the automated optimization did not converge reliably.

The reference input for the measurements is generated connecting an unused 2.5 V 10 bit

DAC on the base board via external cables to debug pins connected to all CADC channels,

prohibiting values above 1.25 V because of presumed damage to the CADCs (Schreiber

2018).

Figure 3.1 shows the resulting automated calibration for the CADC for given boundary

voltages of Ul = 0.21 V and Uu = 0.92 V. This calibration is used in the following for all

correlation measurements. Smaller lower and larger upper bounds (not displayed) lead to

increased spread towards the boundaries and especially imply saturation of some channels.

As this again reduces the usable dynamic range, these bounds were discarded.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
DAC voltage [V]

0

50

100

150

200

250

C
AD

C
 v

al
ue

 [L
SB

]

CADC channels
Mean
Lower calibration bound (0.21V)
Upper calibration bound (0.92V) Figure 3.1: CADC input

sweep over all 64 channels

after calibration of ramp_01

and ramp_slope for spe-

cified boundary voltages.

The parameters found are

documented in Table A.2.

With the calibrated CADC, the source follower linearity can be measured by adjusting

the reset potential of the correlation circuit, as shown in (Wunderlich 2016), which is

the potential to which the correlation curve is drawn at a post-synaptic spike. The reset

potential is provided by a 1.2 V board DAC. The optimization goals are linearity and large

input range. The source follower can be adjusted by changing v_coroutbias. Manual

37

calibration yields the CADC digital value to source follower input dependence depicted

in Figure 3.2. For experiments, the reset potential is set towards minimal digital null-

offset, around 1.1 V in Figure 3.2, to maximize the usable digital range without losing

low-correlation information.

Figure 3.2: v_reset

sweep with optimized

v_coroutbias. The fluctu-

ations are suspected to come

from crosstalk of switching

regulators on the FPGA

board residing on the base

board. The parameters

found are documented in

Table A.2.
0.6 0.7 0.8 0.9 1.0 1.1 1.2

v_reset [V]

0

50

100

150

200

250

C
AD

C
 v

al
ue

 [L
SB

]

Causal channels
Acausal channels
Mean

Both the CADC response in Figure 3.1 and the source follower response in Figure 3.2 show

noise, that is determined to vary in time for the setup used in this thesis, see Table A.1.

On all setups with this crosstalk with fnoise ≈ 600 kHz (wall-clock time) from the switching

regulators (ABB Ltd 2013) on the FPGA board, is measured at the output side of the DAC

used for sweeping, whereas for the one setup (Flyspi ID B291698), that does not feature the

noise in the CADC measurements also no crosstalk is measured, suggesting a connection

between the crosstalk and the noise in CADC measurements. The cause for the crosstalk

however remains to be identified.

3.1.1.2. Causal Correlation

In order to translate correlation measurements on hardware to the theoretical measure-

ments in Equation (2.21), the exponential decay amplitude and time constant are to be

measured.

The causal decay is measured as described in (Wunderlich 2016) by sending a pre-synaptic

spike and triggering the post-synaptic spike after a time ∆t. This yields the value of the

decay ∆t after start. By sweeping the time difference, the course of the decay is recorded.

The post-synaptic spike is triggered by a pre-synaptic spike to an excitatory synapse driver,

while the synapse driver of the synapse to be measured is disabled to not trigger a neuron,

38

i.e. post-synaptic, spike. The neuron is set to bypass_exc-mode, which bypasses the

neuron circuit and is used to ensure each pre-synaptic spike on the excitatory synapse

driver triggers a post-synaptic spike of the neuron.

This recording scheme allows to measure correlation of a single synapse or of multiple

synapses by simultaneous stimulation, as at least only one synapse driver is needed to

be excitatory to trigger neuron spikes and all other 31 synapse drivers’ synapses can be

measured, which greatly accelerates the measurement. Figure 3.3 shows the exponential

decay for a single causal correlation sensor measurement. An exponential function of the

0 20 40 60 80 100
t [msbio]

0.0

0.5

1.0

1.5

2.0

C
AD

C
 v

al
ue

 [L
SB

/s
pi

ke
 p

ai
r]

Exponential fit, = 2.27 [LSB], = 23.76 [msbio]
Single synapse measurement (neuron 18, synapse row 0)

Figure 3.3: Causal correlation

exponential decay of one syn-

apse. The measurement is

averaged 10 times and each

run 100 spike pairs are emit-

ted. The parameters used are

shown in Table A.3.

form

f(∆t) = η · exp

(
−∆t

τ

)
+ o (3.1)

is fitted to the data for each synapse, where η is the amplitude, τ the time constant of the

decay and o the constant offset.

The time constant does not differ significantly between the simultaneous-stimulation and

the single-synapse measurement (not displayed). However, the amplitude increases system-

atically with the number of synapse drivers used for stimulation. The reason for this is

unclear. Figure 3.4 shows a violin plot of the individual dependencies from amplitudes of

32 synapses of one row to the number of simultaneously stimulated synapse drivers. The

setup for different numbers of parallel measured synapse drivers thereby only differs in the

number of rows receiving pre-synaptic spikes.

For single-synapse experiments, the single-synapse calibration is used for best accuracy,

whereas for multi-synapse experiments, the calibration measuring half the synapse drivers

is used to include the systematic amplitude drift and prevent overflow in the correlation

measurement. Figure 3.5 shows the amplitude and time constant distribution for all 1024

39

Figure 3.4: Violin plot, dis-

playing the minimal, max-

imal and mean value in com-

bination with the value dis-

tribution, of the amplitudes

of 32 synapses of the second

synapse driver in depend-

ence of the number of paral-

lel measured (i.e. fed with

spikes) synapse driver’s syn-

apses relative individually to

the measurement of only one

synapse driver. The amp-

litude relative to only one

synapse driver stimulated in-

creases with the number of

synapse drivers to about 50 %

for 31 synapse drivers.

0 5 10 15 20 25 30
synapse drivers

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Am
pl

itu
de

 r
el

at
iv

e
to

 o
ne

 s
yn

ap
se

 d
ri

ve
r

synapses measuring half of the synapse rows in parallel. In experiments involving several

NSEM synapses, the mean of the specific subset of synapses used is used as amplitude and

time constant measurement.

The amplitude and the time constant can be adjusted globally via the parameters syn_v_store

and syn_v_ramp respectively, see (Wunderlich 2016). Additionally, there are two bit cal-

ibration adjustments available locally per synapse (S. Friedmann and J. Schemmel et al.

2017). (Wunderlich 2016) shows, that the time constant spread can be reduced by about a

factor of 1.7 to 2.1 (mean absolute deviation), whereas the amplitude spread can be reduced

by a factor of around 1.4 to 1.7 by optimizing the calibration bits.

For the experiments conducted however, the calibration bit setting is left untouched at time

calibration 0 and amplitude calibration 1 for all synapses, because there was no directly

usable optimization solver available for the parameter optimization. The highest amplitude

setting of 0 is by design not intended to be used (Wunderlich 2016), which is the reason

for choosing the second highest setting of 1.

Instead or in addition to reducing the fixed pattern noise by using the calibration bits,

the author proposes a different countermeasure to align the correlation measurements as

a future improvement of the NSEM learning rule implementation. Equation (2.21) shows,

that both the time measurement and amplitude measurement can be combined in a single

40

2 4 6 8
 [LSB/spike pair]

0

25

50

75

100

125

150
O

cc
ur

re
nc

e

= 2.76, = 1.03 [LSB]

10 15 20 25 30 35 40
 [msbio]

0

50

100

150

O
cc

ur
re

nc
e

= 21.29, = 4.12 [msbio]

Figure 3.5.: Amplitude and time constant distribution for all 1024 synapses. The correlation

parameter used are displayed in Table A.3.

multiplicative factor of the correlation read-out. Therefore, a multiplicative 8 bit calibration

factor is suggested for each synapse, leading to an additional PPU memory consumption

of maximally 1 kB, if all synapses are to be used and an additional multiplication to be

performed at each weight update. Therefore, the precision of the correction is expected

to yield smaller spread than is achievable by using only the calibration bit settings. This

method’s memory consumption however increases linearly with the number of synapses on

a chip. The succeeding chip version features 512× 256 synapses and the same PPU main

memory size of 16 kB but can access the significantly larger FPGA memory at the expense

of a high access time (Müller 2018). As the learning rule described in Equation (2.21)

can be updated with a period of several seconds biological time, accessing the calibration

coefficients stored on the FPGA memory with partial prefetching might be possible without

significantly enlarging the learning rule’s update period.

3.1.2. Neuron Activation

The neuron’s threshold, reset and leak potential is not covered by the calibration described

in (S. A. Aamir and Y. Stradmann et al. 2018). The calibration database however yields

an approximate voltage to digital Capmem-value conversion.

The reset potential is global for all neurons and is set to 0.6 V (340 LSB), the threshold is

adjusted to be at 0.8 V (458 LSB). These settings are a trade off between signal to noise

ratio and a reset potential near the threshold, as demanded by Section 2.1.6. The reset

and threshold settings are fixed for all measurements involving background noise to bring

the neurons in a stochastic firing regime.

Then, the activation, the fraction of the neuron’s spiking activity relative to the max-

imal neuron spiking activity, is measured by applying excitatory and inhibitory Poisson

41

background noise and measuring the dependency of the activation on the leak potential.

Figure 3.6 shows the activation in dependence of the leak potential for a background noise

rate of νbg = 100 Hzbio and a weight of wbg = 45 LSB of one excitatory and inhibitory

noise synapse. The inverse slope α of the logistic fit corresponds to the inverse slope in

300 350 400 450 500 550 600
Leak potential [LSB]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

at
io

n
p

Figure 3.6.: Activation of all neurons except neuron 25 for chip 30 listed in Table A.1, which

showed erratic behavior. The Poisson background noise rate is 100 Hzbio, the background

noise synapses have a weight of 45 LSB. For each activation, a logistic fit is performed,

displayed as gray dashed line. The individual activations are normalized on the amplitude

of their fit.

Equation (2.10) and linearly influences the hardware weight to theory weight conversion,

described in Equation (2.13). For experiments involving three neurons, neurons with similar

slope and maximal spike rate are chosen and the leak potential is individually set to reside

at p = 1
3 to be near the target mean activity in a cause layer consisting of three neurons,

where each neuron is set to spike with an equal fraction of the maximal network rate

νmax
net .

42

3.2. Single synapse NSEM

To test the PPU-based NSEM learning rule, a single synapse is investigated in an artificial

environment. The pre- and post-synaptic spike trains are provided similarly to the single

synapse correlation measurement in Section 3.1.1.2. The synapse under investigation is

located in a synapse row with disabled synapse driver, to prevent it from triggering post-

synaptic neuron spikes. The post-synaptic spike-train is inserted by an additional excitatory

synapse leading to a on-to-one spike-response of the neuron set to bypass_exc-mode.

The post-synaptic spike train is set to be regular with a firing rate of νk = 30 Hzbio to mimic

the response of a neuron with τref = τsyn = 30 msbio that is firing with almost (90 %) of it’s

maximum firing rate as will be the case in the WTA circuit if said neuron ”wins”. The

pre-synaptic spike train is set to be Poisson with mean firing rates ranging from 10 Hzbio

to 100 Hzbio to mimic the input-layer spike trains of images presented later.

To maximize the weight resolution in the according rate range under investigation, the null-

cause rate is set to be 10 Hzbio, whereas the weight conversion factor in Equation (2.22)

is chosen such that the maximally possible hardware weight of 63 LSB corresponds to a

weight value, an input neuron firing with 100 Hzbio would induce. The learning rate is set

to 5× 10−5, the update time period is fixed to be τupdate = 4 sbio.

Figure 3.7 shows the inferred input rates, calculated from the learned hardware weights

via Equations (2.18) and (2.22) for an experiment duration of Texp = 8000 sbio for input

rates νik of 10 Hzbio, 40 Hzbio, 70 Hzbio and 100 Hzbio together with the causal correlation

measurement. In addition to the expected inferred input rates from the inserted pre-

synaptic spike trains, the target rate given the average measured correlation is depicted.

While the inferred rates deviate slightly from the input rates, they clearly wiggle around

the target rate given from the measured mean correlation. This shows, that the learning

rule algorithm given a certain correlation infers the correct input rates. Several measure-

ment (not displayed) of the same setup using slightly different calibration values for the

correlation measurement, namely the offset, amplitude and time constant, showed large

changes of the inferred input rates around the inserted ones, especially for high input rates,

as small changes in the correlation measurement lead to high changes in the inferred rates

there. It is therefore suspected, that given a better correlation calibration, the inferred

input rates would match the inserted input rates even closer.

43

0 2000 4000 6000 8000
t [sbio]

20

40

60

80

100

In
fe

rr
ed

 r
at

e
ik
 [H

z b
io

]

(a) Inferred input rate. The gray dashed line

refer to the actual input rates. The gray dotted

lines represent the expected inferred input rates

given the mean correlation measurements from

Figure 3.7b.

0 2000 4000 6000 8000
t [sbio]

50

100

150

200

C
au

sa
l c

or
re

la
tio

n
[L

SB
]

(b) Correlation measurement. The mean value

for each input rate is depicted as gray dotted

line.

Figure 3.7.: Inferred rates (Figure 3.7a) and causal correlation (Figure 3.7b) trace. The

four different input rates 10 Hzbio, 40 Hzbio, 70 Hzbio and 100 Hzbio, displayed as gray dashed

lines, are measured and displayed in blue, orange, green and red respectively. The weight

trace is translated to inferred input rates in Figure 3.7a using Equations (2.18) and (2.22).

The stochastic weight updates are clearly visible especially for the two higher input rates.

Here, as the target rate is approached, the weight updates become smaller and the weight

changes only after several update cycles. The correlation and learning rule parameters used

are collected in Table A.4.

44

3.3. Homeostasis

The homeostasis is tested isolated by controlling a neuron’s target rate, that is initially non-

spiking. A regular and a Poisson homeostasis background source are compared in terms

of spread and accuracy in reaching the target rate. Additionally, the effect of applying

background noise with differing rate is evaluated to investigate the homeostasis’ capability

to adapt to changes in the neuron’s excitability.

To mimic the setting used later for learning, the refractory period and synaptic time con-

stant are set to 30 msbio, the membrane time constant is set to 1 msbio. The target rate is

set to 10 Hzbio, which is slightly smaller than 1
3ν

max
net given the time constants used for a

network consisting of three neurons. The update time period is set to 4 sbio, the background

source rate to 200 Hzbio and the learning rate to ηb = 0.0156.

Figure 3.8 shows the rate and weight time course for neuron 1 using synapse driver 0 as

excitatory and synapse driver 1 as inhibitory row. Information on the setup are found in

Table A.1. As expected, the excitatory weight is increased until the rate reaches the target

value. The rate then is stabilized through small changes in the excitatory weight.

t [sbio]
0

5

10

15

k
[H

z b
io

]

Measured mean rate
Target rate

0 1000 2000 3000 4000 5000
0

20

40

60

W
ei

gh
t [

LS
B

]

Excitatory synapse
Inhibitory synapse

Figure 3.8: Neuron spike-rate

and hardware weight time course

of homeostasis applied on neuron

1 of chip 30 using a Poisson back-

ground source. The target rate

is set to be 10 Hzbio. The rate

is obtained by storing the rate

counter readout. As expected,

the target rate is reached by only

applying excitatory input to the

membrane.

To see the regulatory effect of the homeostasis on varying neuron excitability, excitatory

background is applied using 10 synapses with hardware weight wik = 10 LSB subject to the

same spike-source. Three different Poisson spike-trains with the rates 50 Hzbio, 200 Hzbio

and 25 Hzbio are applied continuously for a third of the experiment time each. The learning

rule parameter are set as before. Figure 3.9 shows the neuron’s spike-rate and homeostasis

weight time course. The neuron is stabilized around the target rate for all three excitability

settings. On positive change in the excitability, i.e. from 50 Hzbio to 200 Hzbio background

45

rate, the neuron’s rate instantaneously increases and is pulled back down to the target

rate by the homeostasis by changing the homeostasis weight to negative, i.e. inhibitory

values. Analogously, on decreasing excitability at the transition from 200 Hzbio background

to 25 Hzbio background rate, the neuron’s rate drops and the homeostasis again stabilizes

its rate through now applying excitatory input to the membrane.

t [sbio]
0

10

20

30

k
[H

z b
io

]

Measured rate
Target rate

0

100

200

bg
 [H

z b
io

]

Excitatory background source rate

0 1000 2000 3000 4000 5000

50

0

50

W
ei

gh
t [

si
gn

ed
-L

SB
]

Excitatory synapse
Inhibitory synapse

Figure 3.9.: Neuron spike-rate and hardware weight time course of homeostasis applied on

neuron 3 of chip 30 using a Poisson background source with varying background excitation.

The target rate is set to be 10 Hzbio. The rate is obtained by storing the rate counter

readout. The background excitation is applied through 10 excitatory synapses with fixed

weight wik = 10 LSB subject to the same spike-source. At background excitation change,

the rate jumps towards higher values on a change to a higher rate and to lower values

on a change to a lower rate. The homeostasis is able to again stabilize the rate after the

excitation changes. The weight trace shows the seamless switch from the excitatory to the

inhibitory homeostasis synapse in the case, the neuron exceeds the target rate because of

high background excitation.

In order to compare Poisson and regular homeostasis background sources, the rate dis-

tribution for both sources is examined after stabilization. Figure 3.10 shows the rate

distribution after stabilization of a homeostatically controlled neuron with either Poisson

or regular homeostasis background source. While both sources yield an average rate not

significantly differing from the target rate of 10 Hzbio, the regular source’s rate distribution

is far broader than the Poisson source’s distribution, that is clearly centered around the

46

target rate. Therefore, the Poisson background source is used for all following measure-

ments. This finding is contrary to the result found in (Breitwieser 2015, Chapter 5), where

in simulation the regular background source outperforms the Poisson source in learning.

The different behavior is to be investigated in the future.

0 5 10 15 20 25
k [Hzbio]

0

50

100

150

200

O
cc

ur
re

nc
e

Poisson source, = 9.9 Hzbio, = 2.2 Hzbio
Regular source, = 9.8 Hzbio, = 7.3 Hzbio

Figure 3.10: Neuron spike-rate distribu-

tion of a neuron stabilized by homeostasis

to a target rate of 10 Hzbio for a regu-

lar and a Poisson homeostasis background

source. The rates are obtained by stor-

ing the rate counter readout. While for

both background sources, the mean rate

of 9.8 Hzbio for regular and 9.9 Hzbio for

Poisson is near the target rate, the regu-

lar source rate distribution is more than

three times wider than the Poisson source

distribution and does not feature a clear

maximum around the target rate.

3.4. Homeostatically controlled neuron with NSEM synapse

Similar to the single synapse NSEM learning rule experiment described in Section 3.2, a

single synapse equipped with the NSEM learning rule is examined. Instead of artificially

providing the post-synaptic neuron’s spike-train, the neuron is now stabilized using the

homeostasis inspected in Section 3.3.

The neuron target spike rate is set to 28 Hzbio, to align the spiking behavior to the case,

where several neurons are connected via a winner-take-all network with a similar νnetk .

The refractory time period as well as the synaptic time constant are set to 30 msbio, the

membrane time constant is set to 1 msbio. The update time period for both the homeostasis

and the NSEM rule is set to 4 sbio to arrange for sufficient averaging in the correlation as well

as the rate counter measurement. The homeostasis background rate is set to a 200 Hzbio

Poisson source.

Figure 3.11b shows the correlation time course. The inferred input rates are depicted in

Figure 3.11a.

Comparing the correlation measurements to the ones depicted in Figure 3.7b, the cor-

relation, especially for the higher values, is systematically higher for the homeostatically

47

0 2000 4000 6000 8000
t [sbio]

20

40

60

80

100

In
fe

rr
ed

 r
at

e
ik
 [H

z b
io

]

(a) Inferred input rate. The gray dotted lines

represent the expected inferred input rates given

the mean correlation measurements (mean from

1024 sbio to 8092 sbio) from Figure 3.7b.

0 2000 4000 6000 8000
t [sbio]

0

50

100

150

200

C
au

sa
l c

or
re

la
tio

n
[L

SB
]

(b) Correlation measurement. The mean value

for each input rate is depicted as gray dotted

line.

Figure 3.11.: Inferred rates (Figure 3.7a) and causal correlation (Figure 3.7b) trace. The

four different input rates 10 Hzbio, 40 Hzbio, 70 Hzbio and 100 Hzbio, displayed as gray dashed

lines, are measured and displayed in blue, orange, green and red respectively. The weight

trace is translated to inferred input rates in Figure 3.7a using Equations (2.18) and (2.22).

The correlation and learning rule parameters used are collected in Table A.6 in the ap-

pendix.

48

controlled case than for the artificial post-synaptic spike train case. In the homeostatically

controlled case, three synapse drivers experience spike input, while in the artificial case,

only two synapse drivers do. This can be explained by taking into account the observations

made in Section 3.1.1.2, that the amplitude of the correlation measurements increases with

the number of synapse drivers receiving spike input. In order to account for that, the

correlation calibration used for the NSEM learning rule is scaled accordingly by a factor of

1.1 read out of Figure 3.4.

It should be noted, that neuron target rates lower than the 28 Hzbio set lead to a higher

post-synaptic rate variation which largely affects the correlation measurement spread (not

displayed). This leads to vanishing differences of the mean correlations between the higher

three rates examined and thereby destroys the separation between the different rates. Since

in the winner-take-all circuit, one neuron’s activity however will typically dominate per

presented pattern, post-synaptic firing rates are close to the maximum activity νmax
net =

1
τref

.

3.5. Homeostatically controlled neuron inferring 5× 5 pixel

images

As described in Section 2.2.1, each neuron on the DLSv2 has 32 synapses associated via

which it can receive synaptic input. Therefore the quadratic input image with the maximal

resolution is a 5 pixel× 5 pixel image. The NSEM learning rule is therefore tested for input

pattern on 25 synapses with a homeostatically controlled neuron with a target rate of

33 Hzbio. As described in Section 3.1.1.2, the average time constant and amplitude of the

correlation measurement is used in computation of the λnni0 constant in Equation (2.21) and

the correlation scale factor.

The images presented are chosen to be a one pixel wide stick, that is rotated to 0◦ and

90◦. The stick is seen as a pixel value of 1, corresponding to a rate of 70 Hzbio of the input

spike train. Background pixels are set to a input rate of 10 Hzbio, the null cause rate of

the NSEM rule is set to 15 Hzbio. The background pixel rate being below the null-cause

rate increases the contrast in inferred weights, as the background pixels are drawn more

towards zero weight. For further information about the contrast enhancing by increasing

the null-cause rate, see (Breitwieser 2015, Section 5.4.3).

The refractory time period as well as the synaptic time constant are set to 30 msbio, the

membrane time constant is set to 1 msbio. The update time period for the NSEM rule is

set to 4 sbio and for the homeostasis set to 1 sbio. The homeostasis background rate is set

to a 250 Hzbio Poisson source.

49

Figure 3.12 shows the inferred rates after 5000 sbio experiment execution for a stick of

rotation angle 0◦ and 90◦ in comparison with the actual input rates.

While the input pattern are clearly visible in the inferred rates, the absolute rates deviate

from the actual input rates. This is suspected to arise from the correlation fixed pattern

noise, because the average correlation time constant and amplitude are used for both the

calculation of plasticity rule parameters and the back conversion of hardware weight values

to inferred rates.

50

x [px]

y
[p

x]

10

20

30

40

50

60

70

80

90

100

ik
 [H

z b
io

]

(a) Input rate of horizontal stick.

x [px]

y
[p

x]

10

20

30

40

50

60

70

80

90

100

ik
 [H

z b
io

]

(b) Input rate of vertical stick.

x [px]

y
[p

x]

10

20

30

40

50

60

70

80

90

100

ik
 [H

z b
io

]

(c) Inferred rates for horizontal stick input pat-

tern.

x [px]

y
[p

x]

10

20

30

40

50

60

70

80

90

100

ik
 [H

z b
io

]

(d) Inferred rates for vertical stick input pattern.

Figure 3.12.: Actual and inferred input rates for a horizontal and a vertical stick input

pattern. The stick corresponds to 70 Hzbio input rate, the background to 10 Hzbio. The

supplied pattern is clearly visible in the inferred rates although the absolute rates inferred

deviate from the actual input rates. This is suspected to originate from the variation

in correlation amplitude and time constant around the mean used for the plasticity rule

parameters and the back conversion from weight values to inferred rates. The parameters

used are collected in Table A.7.

51

3.6. Winner-take-all network

As outlined in Section 2.2.3, the cause layer winner-take-all behavior is established through

strong recurrent inhibitory all-to-all connections. Each cause layer neuron’s spikes are

routed to a number n of synapse drivers with a constant spike label. Each cause layer

neuron’s synapse in these synapse rows share the same weight, allowing thereby to adjust

the inhibitory strength through setting the weight or changing the number of synapse

drivers used.

To evaluate the performance of the network, three cause layer neurons are homeostatically

stabilized at 7 Hzbio, which in sum is roughly 70 % of the maximally possible network rate

of νmax
net = 33 Hzbio given the refractory time period and synaptic time constant are set to

30 msbio. A full list of parameters used is found in Table A.8. The spikes of all cause layer

neurons are recorded and added to a time-sorted list, agnostic of the neuron, the spike

belongs to. Using this sorted list of spikes, the inter-spike interval (ISI), the time between

consecutive spikes, is computed. It is expected, that the winner-take-all circuit leads to

inhibition of spikes of all neurons in the network during the refractory time period of the

previous spike’s neuron.

Figure 3.13 shows the inter-spike interval distribution of 2500 sbio measurement duration

using n = 3 synapse drivers for the inhibition. Figure 3.14 shows a raster plot of the three

neurons’ spikes together with notion of each spike’s refractory period and synaptic time

constant. It is expected, that refractory periods don’t overlap.

The inter-spike interval distribution shows inhibition for times below the refractory and

synaptic time constant, as expected from the inhibitory connections. The raster plot shows,

that for most spikes, no other spike occurs within the refractory period. When performing

the experiment multiple times, the inter-spike interval distribution however sometimes does

not feature this distinct minimum in the refractory and synaptic time constant range. The

reason for this is not fully understood.

To verify, that the spike-routers delay does not have a significant effect, it is measured using

two neurons, A and B, with external simultaneous excitatory stimulus. Both neurons are

set to bypass_exc-mode, in order to have a one-to-one relation between stimulus and

neuron’s spikes. A’s spikes are routed excitatory B. In this setting, B then spikes twice for

each external excitatory stimulus, once via the external stimulus and once via the routed

stimulus from A. The time difference between the successive spikes then is the delay of

the spike router. Figure 3.15 shows the distribution of the spike routers delay for all

combinations of emitting and receiving neuron for an average of 10 pre-synaptic spikes for

each combination.

52

0 10 20 30 40 50 60 70 80 90
Inter-spike interval [msbio]

0

500

1000

1500

2000

2500

3000

O
cc

ur
re

nc
e

Figure 3.13.: Inter-spike interval distribution for three homeostatically controlled neurons

at νk = 7 Hzbio with refractory and synaptic time constant of 30 msbio and n = 3 inhibitory

all-to-all connection synapses with weight wkl = 63 LSB each. As expected, the occurrence

of inter-spike-intervals between tISI = 0 msbio and tISI = 30 msbio is significantly lower than

for larger tISI.

1500.00 1500.25 1500.50 1500.75 1501.00 1501.25 1501.50 1501.75 1502.00
t [sbio]

N
eu

ro
n

Figure 3.14.: Raster plot of the three neurons at 1500 sbio. Each spike is depicted as a blue

dot. For each spike, the refractory period is depicted as red horizontal bar. At the end of

each refractory period, a vertical red line is placed to better compare with the occurrence of

subsequent spikes from other neurons. As expected, the occurrence of spikes within another

spikes refractory period is low compared to the occurrence of larger inter-spike-intervals.

53

Figure 3.15: Averaged spike

router delay distribution for

10 pre-synaptic spikes for all

combinations of emitting and

receiving neuron. The distribu-

tion shows a maximal delay of

1.65 msbio.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Delay [msbio]

0

50

100

150

200

250

O
cc

ur
re

nc
e

The spike router delay ranges between 1.1 msbio and 1.65 msbio. The high peak for low

values in the ISI distribution in Figure 3.13 therefore can be explained through the spike

router delay. During the delay period of a routed spike, other neurons are not inhibited by

that spike and can therefore also spike.

3.7. NSEM network separated bar classification

The setup described in Section 3.5 is used and combined with the WTA spike routing

of Section 3.6 for three cause layer neurons. The network therefore implements the full

network described in Section 2.2.3. All times are presented in biological time using the

conversion from 2.2.3.1.

To evaluate, whether the network can find hidden causes in input pattern presented, i.e.

distinguish between them, a set of three exclusive input pattern, non-overlapping bars is

used. The input pattern are displayed in Figure 3.16.

The experiment duration is 10 000 sbio. Because this duration with the amount of spikes

to be sent in the network yields playback programs too large for execution as a whole, the

experiment is split into parts of 1000 sbio duration. The size limit of a FPGA playback

program is determined to be around 91 MB, but smaller than 92.4 MB. After each part,

the weights of the homeostasis and NSEM synapses are read out and used as starting point

for the next part. This allows arbitrary learning durations.

There exists a known issue2 with enabling the spike-router and read requests in the same

playback program. Routed spikes corrupt answers to read requests. Therefore the weights

2This issue #2375 is to be found in https://brainscales-r.kip.uni-heidelberg.de/projects/

fpga-flyspi-boilerplate/work_packages.

54

https://brainscales-r.kip.uni-heidelberg.de/projects/fpga-flyspi-boilerplate/work_packages
https://brainscales-r.kip.uni-heidelberg.de/projects/fpga-flyspi-boilerplate/work_packages

x [px]

y
[p

x]

10
20
30
40
50
60
70
80
90
100

ik
 [H

z b
io

]

x [px]

y
[p

x]

10
20
30
40
50
60
70
80
90
100

ik
 [H

z b
io

]

x [px]

y
[p

x]

10
20
30
40
50
60
70
80
90
100

ik
 [H

z b
io

]

Figure 3.16.: Input pattern of non-overlapping bars. The bar corresponds to 70 Hzbio input

rate, the background to 10 Hzbio to enhance the contrast.

are read out with an additional playback program after each experiment part, in which the

spike-router is disabled to read uncorrupted weight values.

The update time period is set to 1 sbio for the homeostasis and to 4 sbio for the NSEM rule.

The homeostasis background rate is set to a 250 Hzbio Poisson source, the target rate is

10 Hzbio. To enhance contrast, the null-cause rate is set to 15 Hzbio. Images to be presented

are drawn randomly from the three images in Figure 3.16. Each image is presented for 0.5 s

without pause. A full list of parameters used is found in Table A.9.

Figure 3.17 shows the inferred rates after 10 000 sbio combined experiment duration for

the three cause layer neurons. The receptive fields show nearly exclusive classification

of input pattern, i.e. a one-to-one relation between input pattern and specialized neuron.

The receptive fields are sorted the same way as the input pattern in Figure 3.16. As the

neurons decide randomly, which is going to specialize on which presented input, this order

is not fixed. For further information see (Breitwieser 2015, Chapter 5). Figure 3.18 shows

the corresponding raster-plot of the cause layer neurons’ spikes after 9500 sbio of learning.

During presentation of each input pattern, one cause layer neuron spikes with a significantly

higher rate than the others.

55

x [px]

y
[p

x]

10
20
30
40
50
60
70
80
90
100

ik
 [H

z b
io

]
x [px]

y
[p

x]

10
20
30
40
50
60
70
80
90
100

ik
 [H

z b
io

]

x [px]

y
[p

x]

10
20
30
40
50
60
70
80
90
100

ik
 [H

z b
io

]

Figure 3.17.: Receptive fields of the three cause layer neurons after learning for 10 000 sbio.

The presented images are the horizontal bars depicted in Figure 3.16. Each receptive field

shows strong specialization of each neuron for one input pattern.

N
eu

ro
n

9500 9502 9504 9506 9508 9510
t [sbio]

La
be

l

Figure 3.18.: Raster-plot of the cause layer neurons’ spikes after 9500 sbio of learning (top)

together with the image labels presented (bottom). The presented images are the hori-

zontal bars depicted in Figure 3.16. For each presented pattern, one neuron spikes with a

significantly higher rate than the others.

56

3.8. Performance

This section presents time measurements of the homeostasis and NSEM rule implementa-

tion on the PPU as well as of the vector_fractional implementation. All measurements

are conducted 10 times successively using the time register of the PPU, which counts clock

cycles. The time difference varies between the consecutive measurements due to branch

prediction of the processor. The maximal and minimal time measured are presented in the

following and can be seen as a worst-case and best-case approximation for use in actual

experiments. The measurements presented are carried out with PPU programs compiled

with the gcc compile-time optimization flag -O2.

3.8.1. vector_fractional arithmetics

As described in Section 2.3.2, the arithmetics for the fractional vector type are implemented

analogously to decimal arithmetic operations. Is is therefore expected, that the computa-

tion time increases with the precision of the fractional vectors, i.e. the number of fractional

digits. Table 3.1 shows the time consumption for the arithmetic operations for a precision

range of 0 to 4 7 bit fractional digits. In the case of no fractional digits, the algorithm

transforms to the integer vector operations and can therefore be used as reference.

Number of fractional digits 0 1 2 3 4
Operation Min. (max.) time consumption [msbio]

operator+(vector_fractional) 0.9 (1.2) 2.0 (3.0) 3.5 (5.2) 6.5 (7.7) 8.8 (10.2)
operator-(vector_fractional) 0.9 (1.2) 2.0 (3.1) 3.5 (4.6) 6.8 (8.2) 8.9 (10.3)
operator+=(vector_fractional) 0.9 (1.1) 2.2 (3.4) 3.0 (4.1) 5.2 (6.4) 6.4 (7.7)
operator-=(vector_fractional) 0.9 (1.1) 2.2 (3.4) 3.0 (4.1) 5.2 (6.4) 6.5 (7.7)
operator-() 0.7 (1.0) 2.0 (2.3) 3.3 (3.7) 6.3 (7.9) 8.0 (9.7)
operator*(vector uint8_t) 1.3 (1.5) 2.8 (3.4) 6.0 (6.9) 8.0 (8.8) 9.9 (10.8)

Table 3.1.: Time consumption measurements of vector_fractional arithmetic operations

for 0 to 4 fractional digits precision.

It can be clearly seen from comparing e.g. the + with the += operation, that saving a

vector_fractional instance from registers to memory significantly consumes time at

higher precision. Therefore plasticity rule algorithms are to be optimized to the least

amount of temporarily created objects. The operators += and -= show a monotonically

increasing dependency of the time consumption to the number of fractional digits as ex-

pected, because each additional digit adds two arithmetic operations, one at the digit’s

position and a carryover operation. The sign change, +, - and multiplication operator are

also expected to show a monotonically increasing dependency of the time consumption to

57

the number of fractional digits. Opposed to the += and -= operators, temporary objects

need to be created during this operations and therefore the absolute time consumption is

higher.

3.8.2. vector_fractional_lookup

The time for a lookup of a vector of indices in vector_fractional_lookup is displayed

in Table 3.2. As expected, the time consumption increases with the number of fractional

digits, as for each digit, the 16 entries of an additional vector are to be looked up. The

time consumption for 2 and 3 fractional digits results in the same duration. The reason for

this is unclear, but may be explained through differing compile-time optimization between

the two cases.

Number of fractional digits 0 1 2 3 4
Operation Min. (max.) time consumption [msbio]

lookup(vector uint8_t) 2.5 (2.7) 3.0 (3.1) 3.8 (4.0) 3.8 (4.0) 9.0 (9.3)

Table 3.2.: Time consumption measurements of the vector_fractional_lookup lookup

operation for 0 to 4 fractional digits precision.

3.8.3. Random number generator for stochastic down-conversion

The stochastic conversion from a vector_fractional instance to an integer vector, de-

scribed in Section 2.3.2.2 needs a random number generator for digits, i.e. 16-entry 7 bit

integer vectors. The time consumption of the implementation using the xorshift128 al-

gorithm is 0.8 msbio (1.3 msbio) per vector of 7 bit wide random numbers. For each fractional

digit in a vector_fractional instance, one random number vector from the random num-

ber generator is needed. The time consumption for random number generation therefore

scales linearly with the number of fractional digits. An alternative implementation us-

ing four calls of xorshift32 needs 1.4 msbio (1.8 msbio) per vector of 7 bit wide random

numbers. The xorshift128 implementation is therefore more than 20 % faster than the

xorshift32 implementation.

3.8.4. Homeostasis

The homeostasis implementation uses fractional vectors of precision 2 to store the target

rate and of precision 1 to fit the 10 bit wide measured rate from the rate counters. The

internal structure and the API of the homeostasis plasticity rule is displayed in Listing 3.

58

The rate counters are read individually per neuron. Table 3.3 shows the time consumption

of rate acquisition from the rate counters and conversion to vector_fractional values,

the time consumption of the update algorithm, i.e. Equation (2.20) and the combination

of the two parts, i.e. the time consumption for a full update cycle. All 32 neurons are

processed at once.

Operation Min. (max.) time consumption [msbio]

read-out rates 9.3 (9.9)
weight update 22.3 (25.5)
read-out rates and do weight update 31.6 (32.0)

Table 3.3.: Time consumption measurements of the homeostasis update algorithm for all

32 neurons.

The measured time consumption shows a maximally possible update rate of about 1
32msbio

≈
30 Hzbio for the homeostasis. Because the rate counters measure the number of occurred

spikes since the last reset, the update period should be significantly higher than the average

firing rate of the neurons in order to average over the mean period of several spikes. In

the experiments conducted, rates of about 40 spikes during an update cycle show sufficient

averaging, see Section 3.3. A fast update execution is nonetheless important as it allows

combination with other more time consuming plasticity rules to be executed alternatingly

without significant processing time consumption. The combined maximal duration of read-

ing rate counters and updating weights is faster than adding the isolated measurements.

This may be explained by different branch prediction of the processor in the combined

case.

3.8.5. NSEM plasticity rule

The NSEM learning rule is templated over the fractional precision of the calculations. Its

internal structure, API and implementation is displayed in Listing 4. It uses the masking

mentioned in Section 2.3.3. As shown in (Spilger 2018), the time consumption is therefore

expected to scale linearly with the number of synapse vectors to update, because for each

synapse vector in the mask, the same fully local update algorithm is called. For DLSv2,

at most 64 synapse weight vectors are to be updated. Therefore, the time consumption

for updates of all 64 vectors as worst-case approximation are depicted in Table 3.4 for a

fractional precision of 1 to 3 digits. For comparison with the single arithmetic operation

time consumption depicted in Table 3.1, the time consumption is additionally measured

for one synapse vector. Aside from that, the table shows the time consumption of reading

and writing a weight vector as well as reading and resetting a correlation measurement as

59

reference, i.e. lower bound of the possible execution time. This measurement is scaled up

to 64 synapse vectors for comparison.

Operation Min. (max.) time consumption [msbio]
64 vectors 1 vector

NSEM update (1 digit fractional precision) 1110 (1112) 17.4 (19.5)
NSEM update (2 digits fractional precision) 1597 (1600) 25.1 (27.0)
NSEM update (2 digits fractional precision) 1747 (1749) 26.6 (28.1)
weight and correlation read and write / reset 257 (273) 4.0 (4.3)

Table 3.4.: Time consumption measurements (parts of) of the NSEM update algorithm for

all 1024 synapses and one synapse vector in comparison with the necessary hardware access

time.

Comparison between the time consumption for the update of one synapse vector to 64

synapse vectors shows a linear scaling with the number of synapse vectors updated. (Breit-

wieser 2015) shows in simulation, that update periods of up to 10 sbio don’t affect the

capability to correctly infer input rates. The experiments conducted in Chapter 3 use an

update period of 4 sbio and confirm on hardware, that the maximal time consumption of

a full chip measurement of about 1.75 sbio for three fractional digits is low enough to be

usable.

3.9. Storage requirements

As explained in Section 2.2.1, the PPU has 16 kB of memory available for both executable

code and data storage. Therefore, parts of PPU programs are to be optimized for small

size requirements. Knowing the memory consumption of objects also allows formulating

memory-limit constraints. This section therefore describes storage consumption of the

homeostasis and NSEM plasticity rules and the vector_fractional implementation.

3.9.1. vector_fractional

The vector_fractional type stores 16 fractional numbers in parallel. Each number is

composed as described in Section 2.3.2 of an 8 bit integer digit and an arbitrary number of

7 bit fractional digits. The memory consumption of a vector_fractional instance with

precision p in byte is therefore given as

memory(p) = 16 · (1 + p) · 8 bit (3.2)

60

Each fractional digit thereby only uses 7 bit of 8 bit because of carryover detection.

3.9.2. vector_fractional_lookup

The lookup table needs one byte per entry and digit precision. Memory consumption of a

lookup table with n entries and fractional precision p is therefore given as

memory(n, p) = n · (1 + p) byte. (3.3)

Because of 32 bit addressing on the PPU, this is to be padded to full 4 byte.

3.9.3. Homeostasis

The homeostasis plasticity rule stores the learning rate individually as 8 bit value per

neuron. Measured rates are stored in a fractional vector with one fractional digit, the

target rate is stored in a fractional vector with two fractional digits. Additionally a pointer

to a random number generator instance is stored, which adds 4 byte. Because the vector

instances need to be aligned to 16 byte to be accessible from the vector unit, this adds up

to 16 byte to the memory consumption. Memory consumption for a homeostasis plasticity

rule therefore is 208 bytes. The plasticity rule API and internal structure can be found in

Listing 3. The measured rates could in principle be hold on the stack, but were chosen to

be a member variable, because this easily allows the update algorithm to be performed for

several excitatory and inhibitory rows with independently measuring the rates only once.

3.9.4. NSEM plasticity rule

The NSEM plasticity rule internal structure, API and implementation are shown in List-

ing 4. The NSEM plasticity rule is templated on the number p of fractional digits used in

computation of the exponential factor in Equation (2.21). This factor is then multiplied

with an 8 bit integer correlation measurement yielding a p + 1 fractional vector. The rule

therefore holds a lookup table of precision p with 64 entries, one for each possible weight

value. The regulatory factor is then of precision p + 1 and is to be subtracted from the

temporary variable of the exponential factor multiplied with the correlation. The NSEM

plasticity rule in addition holds a pointer to a random number generator instance, a vector

mask and a container storing correlation offset values, adding 12 byte, which are again to be

aligned to 16 byte because of the vectors stored. The memory consumption of the plasticity

61

rule therefore is given by

memory(p) = 64 · (1 + p)︸ ︷︷ ︸
lookup table

+ 16 · ((p+ 1) + 1)︸ ︷︷ ︸
regulatory term

+ 16︸︷︷︸
pointers

byte (3.4)

The correlation container in addition holds a 8 bit offset value per synapse, i.e. 1024 byte

for the whole chip. As described in (Spilger 2018), the mask information consumes 1 byte

for the synapse vector address and 16 byte of binary mask information per synapse vector.

For the whole chip, this amounts to 64 byte + 1024 byte in the worst case. If full synapse

vectors are to be updated however, the binary mask vector is not stored, reducing to 1 byte

per full synapse vector.

Although the masks memory consumption scales linearly with the number of synapses, this

is assumed to pose no up-scaling problem, as the FPGA-memory access via the PPU in

future chips allows preloading parts of the mask information during the remaining time of

the update period. In addition, the plasticity rule scheme developed in (Spilger 2018) is

agnostic of the mask implementation, which allows to improve the mask implementation

without changing the plasticity rule’s implementation.

The vector_fractional member variable storing the regulatory term holds the same value

in every entry. In the future, this unnecessary overhead could be reduced to only hold the

digit values and creating a temporary vector_fractional instance splatted with these

values every update cycle.

The memory consumption evaluation presented show, that the memory limit allows for

multiple plasticity rules implemented to be executed concurrently.

3.10. Repository and Continuous Integration

The source code to all experiments presented in this thesis can be found in the git repository

model-hw-nsem3. The build flow is set up using a customized version of the Waf (Nagy

2018) build tool, symwaf2ic, which is used for all software projects developed in the group.

In addition to building both the host and the PPU executables, Doxygen (Heesch 2018)

source code documentation generation is implemented in the build flow.

To enable continuous integration (CI) of both the program build step as well as experiment

3To directly clone the repository, follow ssh://git@gitviz.kip.uni-heidelberg.de/model-hw-nsem.

git. The source code can also be viewed in a web browser under https://brainscales-r.kip.

uni-heidelberg.de/projects/model-hw-nsem/repository. The commit reproducing all experiments
described in this thesis is ec3961da7cebb00bd24f1ff94f06f94c92664a61. Additionally used software is
found in table B.1.

62

ssh://git@gitviz.kip.uni-heidelberg.de/model-hw-nsem.git
ssh://git@gitviz.kip.uni-heidelberg.de/model-hw-nsem.git
https://brainscales-r.kip.uni-heidelberg.de/projects/model-hw-nsem/repository
https://brainscales-r.kip.uni-heidelberg.de/projects/model-hw-nsem/repository

execution and result evaluation, a daily executed CI job4 is implemented as part of this

thesis using the group’s Jenkins (Jenkins 2018) CI server. The job builds the executables,

generates documentation, executes hardware tests, static code analysis for C++-code and

the experiments (with larger step-size in sweeps in order to reduce hardware occupation

time) described in this thesis. The code documentation as well as the experiment results

are automatically published in the Web-GUI of the server.

This allows for easy detection of code degradation due to changes in software dependencies

and periodically is supposed to replicate experiment results.

Source code for the host lies under src/cc/<topic>/, PPU program code is found in

src/ppu/<topic>/. Every (logical) experiment can be executed by a shell script residing

under experiment/, every experiment’s evaluation resides under evaluation/.

4The CI job’s results are found under https://brainscales-r.kip.uni-heidelberg.de:11443/job/hw_
model-hw-nsem/.

63

https://brainscales-r.kip.uni-heidelberg.de:11443/job/hw_model-hw-nsem/
https://brainscales-r.kip.uni-heidelberg.de:11443/job/hw_model-hw-nsem/

Discussion

This thesis implements an neuromorphic adaption of spike-based expectation maximization

on the HICANN-DLS version 2 prototype neuromorphic hardware featuring LIF neurons

using the embedded general purpose processor PPU for learning rule update computa-

tion.

Building on the work of (Breitwieser 2015), the therein developed neuromorphic spike-based

expectation maximization (NSEM), an adaption of spike-based expectation maximization

geared towards implementation on neuromorphic hardware is implemented step-by-step on

the neuromorphic hardware.

The network is comprised of a homeostatically stabilized winner-take-all cause layer con-

sisting of stochastically firing LIF neurons receiving structured input encoded in spike-train

rates from an input layer. It implements the concept of Expectation Maximization. Using

a local STDP learning rule, the cause layer neurons’ synapses are capable of inferring the

spike-train input rate and the cause layer neurons can detect hidden causes in the input

space in an unsupervised manner. The spiking behavior of the cause layer thereby con-

stitutes the Expectation step, whereas the plastic synapses implement the Maximization

step.

Adjustable implementation of the network requires that learning rule parameter are provided

after compilation of PPU programs. In addition, computationally expensive factors are to

be precomputed and stored on the PPU. Because of limited weight resolution on the hard-

ware, and weight updates are additionally to be stochastically rounded. In order to fulfill

these requirements, learning rule parameter communication to the PPU is improved, an ar-

bitrary precision fractional number representation on the PPU is developed using its vector

unit for acceleration and stochastic rounding to integers is implemented on that type.

The new hardware abstraction layer haldls is used in implementing host-computer parts

of the network and experiments. Task scheduling is used on the PPU to allow for mul-

tiple plasticity rules (NSEM and homeostasis) to run simultaneously with different update

cycles. Masking of the learning rules is implemented, which means the execution of the

plasticity algorithms are restricted to an adjustable subset of all synapses. This plasticity

rule execution masking is thereby implemented independent of the algorithm. In addition,

65

semi-automated calibration of the neuron activity for stochasticity and measurement of

the parameters characterizing the exponentially decaying synapses’ correlation measure-

ment are implemented and successfully applied to experiments.

Each part of the NSEM network is shown to be working. A single synapse equipped with

the NSEM local plasticity rule infers correct input rates. The implemented homeostasis ad-

justing the weight of excitatory and inhibitory background sources is capable of stabilizing

neurons to a given target rate (below νmax
ik) and to counteract changes in the excitabil-

ity of the neurons. In combination, a neuron is shown to learn input rates of 5 × 5-pixel

input pattern already with averaged correlation calibration. Unfortunately, fixed pattern

variations in the correlation measurement of each synapse carry over to the inferred rates.

Finally, the complete network combining the NSEM local plasticity rule and a homeostat-

ically controlled winner-take-all cause layer consisting of three neurons is shown to be able

to classify simple non-overlapping 5× 5-pixel input pattern.

The performance analysis of the PPU learning rule implementation shows that usable

update time periods of the NSEM plasticity rule in the order of seconds are reachable.

Additionally, the vector_fractional type, used for sub-integer calculations of weight

updates, shows the expected dependence of time consumption to precision for arithmetic

operations. The memory consumption evaluation shows that it is possible to use several

plasticity rules concurrently within a single PPU program.

In summary, it is thereby shown that the adaptions made in NSEM in (Breitwieser 2015)

are applicable on the DLSv2. More generally, the DLSv2 is capable of emulating complex

networks consisting of multiple different parts. The plasticity rule masking and scheduling

on the PPU developed in (Spilger 2018) work in a real-world experiment. Furthermore,

this implies that future systems composed of multiple chips can distribute parts of larger

networks on a granularity smaller than a chip, i.e. execute multiple different network parts

with differing plasticity on the same chip. Moreover, the haldls software layer (Electronic

Vision(s) 2018) is shown to be suitable as basis for development and implementation of the

experiments conducted.

To allow for combination and extension of the experiments conducted, each experiment

is encapsulated in with a common interface allowing for combination and extension. The

plasticity rule implementations for the PPU are developed with combinability, paramet-

erization and restriction of execution in mind to enable extension and reuse in following

experiments, outlined below.

66

Outlook

The NSEM learning rule application to the HICANN-DLS version 2 prototype and the

capability of the platform and software environment to emulate a complex neural network

has been shown in this thesis.

In the future, the ability of the implementation to classify more complex and in particular

overlapping input pattern is the straight-forward next step to verify experiment wise. In

addition, the time evolution of learning is to be investigated. Spike data is already available

for the whole experiment duration. Especially the convergence rate of the classification can

be analyzed. As during an experiment with enabled spike-router, no valid container data,

e.g. weights, can be read during execution, their time course is to be recorded differently.

A possible solution would be to split the experiment in multiple short time periods (e.g.

100 sbio) and to read out the weights at end of each part and thereby measure the time

evolution of the weights.

A per-synapse correlation calibration factor could be implemented to counteract the fixed

pattern variance. This could be compared to using averaged parameters in terms of con-

vergence time or the ability to discern more complex, overlapping input pattern.

The measured temporal noise in the correlation measurements and calibration of the CADC

is to be investigated. Also the behavior when using internal bias supply compared to the

external supply with the DACs on the base board should be evaluated as this might reduce

the crosstalk of the switching regulators.

Debugging the hang-ups of the homeostasis implementation, which alters the leak potential

directly would permit comparison to the discussed implementation. Especially the adjust-

ment range is expected to be higher with directly adjusting the leak and is to be compared

to the current working implementation.

The Host-PPU communication of partial structures relies on knowing the internal place-

ment of member variables. Instead of manually finding out these information, a method to

automatically extract relative addresses of member variables is to be developed. For that,

each structure-member’s address relative to the structure’s address is to be extracted, e.g.

using std::addressof. However since C++ does not directly implement reflection, iteration

over all variables is still to be done manually at the moment. There exist compile-time re-

67

flection libraries that after registering allow automatic iteration over structure members.

For multi-platform experiments, in this case the host computer and the PPU, a messaging

library with a common communication format for chip configuration is to be developed to

easily distribute task information from one platform to the other. A long-term goal therefore

is to port the API of the haldls containers to the PPU programs. Since the implementation

however will differ because of different endianness and resources available, conversion of the

containers between the platforms is to be developed. One idea proposed by (Müller 2018)

is to use the developed serialization of the host’s haldls containers with a common format

to communicate container data cross-platform. This could also be expanded to multi-chip

setups for inter-chip communication of configuration data.

The haldls playback creation only allows for time sequential adding of instructions. Ex-

periments with multiple logically different events, i.e. different read, write or spike events

however are simplified through grouping together the creation of similar events. The play-

back program creation process should therefore allow non-sequential adding of instructions.

Arbitrary insertion would allow users to focus on logical clustering of instruction creation

during experiment build. The already implemented temporal overlay of (different) spike-

trains is therefore to be extended to be implemented for all playback program instructions.

This would allow a more intuitive experiment creation from the author’s point of view.

A simple example usage scenario is specifying some readout instructions at defined times

during experiment execution and afterwards overlay these with a pregenerated spike-train.

The haldls software layer is however not supposed to supply this form of logical abstrac-

tion. A layer to be developed in the future building on top of haldls would greatly benefit

from non-sequential playback program generation.

In the long term, an abstraction for PPU based offloading of plasticity computation is to

be developed and integrated in a high level neural network API, e.g. PyNN (Davison et al.

2008). Especially the question how to retain as much performance and flexibility as possible

while abstracting the actual implementation is to be answered.

While the network presented consists of two layers, an input and a hidden later, (Guo et al.

2018) present an approach with multiple hidden layers. This hierarchical SEM consists of

several WTA-networks, stacked on top of each other. Each layer extracts more and more

complex features from the input data, while still being unsupervised. This network could

be implemented with different layers distributed over larger/multiple chips.

68

Bibliography

ABB Ltd (2013). 12V PicoTLynxTM 6A: Non-Isolated DC-DC Power Module. Website.

url: https://www.geindustrial.com/products/embedded-power/tlynx.

Bill, Johannes et al. (Aug. 2015). ‘Distributed Bayesian Computation and Self-Organized

Learning in Sheets of Spiking Neurons with Local Lateral Inhibition’. In: PLOS ONE

10.8, pp. 1–51. doi: 10.1371/journal.pone.0134356. url: https://doi.org/10.

1371/journal.pone.0134356.

Billaudelle, Sebastian (2018). Personal communication.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science

and Statistics). Berlin, Heidelberg: Springer-Verlag. isbn: 0387310738.

Breitwieser, Oliver (2015). ‘Towards a Neuromorphic Implementation of Spike-Based Ex-

pectation Maximization’. Masterthesis. Heidelberg University.

Buesing, Lars et al. (2011). ‘Neural Dynamics as Sampling: A Model for Stochastic Com-

putation in Recurrent Networks of Spiking Neurons’. In: PLoS computational biology

7.11, e1002211–e1002211. issn: 1553-734X. doi: 10.1371/journal.pcbi.1002211.

Crockford, Douglas (2018). JavaScript Object Notation (JSON). Website. url: https:

//www.json.org/.

Davison, Andrew et al. (Feb. 2008). ‘PyNN: A Common Interface for Neuronal Network

Simulators’. In: Frontiers in neuroinformatics 2, p. 11. doi: 10.3389/neuro.11.011.

2008.

Dempster, A. P., N. M. Laird and D. B. Rubin (1977). ‘Maximum Likelihood from Incom-

plete Data via the EM Algorithm’. In: Journal of the Royal Statistical Society. Series

B (Methodological) 39.1, pp. 1–38. issn: 00359246. url: http://www.jstor.org/

stable/2984875.

Electronic Vision(s) (Nov. 2018). ‘electronicvisions/haldls 20181106 pspilger’. In: doi: 10.

5281/zenodo.1478481.

Friedmann, Simon (2013). ‘A new approach to learning in neuromorphic hardware’. PhD

thesis. Heidelberg, Univ., Diss., 2013.

Gerstner, Wulfram and Werner M. Kistler (2002). Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge University Press. doi: 10.1017/CBO9780511815706.

Grant, W. Shane and Randolph Voorhies (2017). cereal - A C++11 library for serialization.

Website. url: http://uscilab.github.io/cereal/.

69

https://www.geindustrial.com/products/embedded-power/tlynx
https://doi.org/10.1371/journal.pone.0134356
https://doi.org/10.1371/journal.pone.0134356
https://doi.org/10.1371/journal.pone.0134356
https://doi.org/10.1371/journal.pcbi.1002211
https://www.json.org/
https://www.json.org/
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.011.2008
http://www.jstor.org/stable/2984875
http://www.jstor.org/stable/2984875
https://doi.org/10.5281/zenodo.1478481
https://doi.org/10.5281/zenodo.1478481
https://doi.org/10.1017/CBO9780511815706
http://uscilab.github.io/cereal/

Guo, S. et al. (2018). ‘Hierarchical Bayesian Inference and Learning in Spiking Neural

Networks’. In: IEEE Transactions on Cybernetics, pp. 1–13. issn: 2168-2267. doi: 10.

1109/TCYB.2017.2768554.

Habenschuss, Stefan, Helmut Puhr and Wolfgang Maass (2013). ‘Emergence of Optimal

Decoding of Population Codes Through STDP’. In: Neural Computation 25.6. PMID:

23517096, pp. 1371–1407. doi: 10.1162/NECO_a_00446. eprint: https://doi.org/

10.1162/NECO_a_00446. url: https://doi.org/10.1162/NECO_a_00446.

Heesch, Dimitri van (2018). Doxygen. Website. url: http://www.stack.nl/~dimitri/

doxygen/index.htm.

Heimbrecht, Arthur (Mar. 2017). ‘Compiler Support for the BrainScaleS Plasticity Pro-

cessor’. Bachelorthesis. Heidelberg University.

Hinton, G. E. (2007). ‘Boltzmann machine’. In: Scholarpedia 2.5. revision #91076, p. 1668.

doi: 10.4249/scholarpedia.1668.

Hock, M. et al. (Sept. 2013). ‘An analog dynamic memory array for neuromorphic hard-

ware’. In: 2013 European Conference on Circuit Theory and Design (ECCTD), pp. 1–4.

doi: 10.1109/ECCTD.2013.6662229.

IBM (2010). Power ISATM version 2.06 revision b.

Jenkins (2018). Website. url: https://jenkins.io.

Müller, Eric (2018). Personal communication.

Nagy, Thomas (2018). Waf. Website. url: https://waf.io.

Petrovici, Mihai A. et al. (Oct. 2016). ‘Stochastic inference with spiking neurons in the

high-conductance state’. In: Phys. Rev. E 94 (4), p. 042312. doi: 10.1103/PhysRevE.

94.042312. url: https://link.aps.org/doi/10.1103/PhysRevE.94.042312.

S. A. Aamir and Y. Stradmann et al. (2018). ‘An Accelerated LIF Neuronal Network Array

for a Large-Scale Mixed-Signal Neuromorphic Architecture’. In: IEEE Transactions on

Circuits and Systems I: Regular Papers, pp. 1–14. issn: 1549-8328. doi: 10.1109/

TCSI.2018.2840718.

S. Friedmann and J. Schemmel et al. (Feb. 2017). ‘Demonstrating Hybrid Learning in

a Flexible Neuromorphic Hardware System’. In: IEEE Transactions on Biomedical

Circuits and Systems 11.1, pp. 128–142. issn: 1932-4545. doi: 10.1109/TBCAS.2016.

2579164.

Schreiber, Korbinian (2018). Personal communication.

Spilger, Philipp (Aug. 2018). ‘On parameterization and debugging of PPU programs’. In-

ternship. Heidelberg University.

Stradmann, Yannik (2016). ‘Characterization and Calibration of a Mixed-Signal Leaky

Integrate and Fire Neuron on HICANN-DLS’. Bachelorthesis. Heidelberg University.

Wunderlich, Timo (Aug. 2016). ‘Synaptic Calibration on the HICANN-DLS Neuromorphic

Chip’. Bachelorthesis. Heidelberg University.

70

https://doi.org/10.1109/TCYB.2017.2768554
https://doi.org/10.1109/TCYB.2017.2768554
https://doi.org/10.1162/NECO_a_00446
https://doi.org/10.1162/NECO_a_00446
https://doi.org/10.1162/NECO_a_00446
https://doi.org/10.1162/NECO_a_00446
http://www.stack.nl/~dimitri/doxygen/index.htm
http://www.stack.nl/~dimitri/doxygen/index.htm
https://doi.org/10.4249/scholarpedia.1668
https://doi.org/10.1109/ECCTD.2013.6662229
https://jenkins.io
https://waf.io
https://doi.org/10.1103/PhysRevE.94.042312
https://doi.org/10.1103/PhysRevE.94.042312
https://link.aps.org/doi/10.1103/PhysRevE.94.042312
https://doi.org/10.1109/TCSI.2018.2840718
https://doi.org/10.1109/TCSI.2018.2840718
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1109/TBCAS.2016.2579164

A. Parameter

A.1. Hardware Setup

Type Identifier

Board name Fantasio (v2 Board)
Chip ID 30
FPGA Flyspi ID B291656

Table A.1.: Hardware setup used for all measurements.

A.2. Calibration

Parameter Value [LSB]

ramp_slope 2470
ramp_01 2333
ramp_bias 2900
v_bias 1700
syn_corout_bias 700
syn_v_reset 3750

Table A.2.: CADC and source follower parameter results of calibration used for all meas-

urements.

71

Parameter Value

neuron 18
synapse driver 0
syn_v_store 1500 LSB
syn_v_ramp 900 LSB
amp_calib 1
time_calib 0
pulselength 8

Table A.3.: Correlation parameter used in single-synapse calibration measurements.

A.3. Experiment

Parameter Value

neuron 18
synapse driver 0
syn_v_store 1500 LSB
syn_v_ramp 900 LSB
amp_calib 1
time_calib 0
pulselength 8
update period τupdate 4 sbio
post-synaptic rate νpost 30 Hzbio
initial weight 0 LSB
experiment duration Texp 8096 sbio
weight conversion factor wstep 0.02365
learning rate η 5× 10−5

correlation amplitude η 2.2824 LSB/spikepair
correlation time constant τsyn 24.339 msbio
correlation offset o 25 LSB
fractional digits exponential factor 4

Table A.4.: Parameter of single synapse NSEM learning rule experiment.

72

Parameter Value

global synaptic strength syn_v_bias 1000 LSB
update period τupdate 4 sbio
target rate νk 10 Hzbio
experiment duration Texp 5000 sbio
learning rate ηb 0.0156
membrane time constant τm 1.0 msbio
exc./inh. synaptic time constant τsyn 30 msbio
background source rate νbg 200 Hzbio
reset potential 0.6 V
leak potential 0.5 V
threshold potential 0.8 V

Table A.5.: Parameter of single neuron homeostasis experiment.

Parameter Value

experiment duration Texp 8096 sbio
NSEM synapse initial weight 0 LSB
NSEM weight conversion factor wstep 0.0233
NSEM learning rate η 5× 10−5

NSEM fractional digits exponential factor 3
NSEM update period τupdate 4 sbio
NSEM synapse driver 0
homeostasis target rate νk 28 Hzbio
homeostasis learning rate ηb 0.0156
homeostasis background source rate o 200 Hzbio
homeostasis update period τupdate 4 sbio
neuron 18
syn_v_store 1500 LSB
syn_v_ramp 900 LSB
correlation amp_calib 1
correlation time_calib 0
correlation amplitude η 2.497 LSB/spikepair
correlation time constant τsyn 23.76 msbio
correlation offset o calibrated per experiment run
pulselength 8
global synaptic strength syn_v_bias 1000 LSB
membrane time constant τm 1.0 msbio
exc./inh. synaptic time constant τsyn 30 msbio
reset potential 0.6 V
leak potential 0.5 V
threshold potential 0.8 V

Table A.6.: Parameter of single synapse NSEM with homeostatically controlled neuron

experiment.

73

Parameter Value

experiment duration Texp 5000 sbio
NSEM synapse initial weight 0 LSB
NSEM weight conversion factor wstep 0.019
NSEM null-cause rate νi0 15 Hzbio
NSEM learning rate η 5× 10−5

NSEM fractional digits exponential factor 3
NSEM update period τupdate 4 sbio
homeostasis target rate νk 33 Hzbio
homeostasis learning rate ηb 0.0156
homeostasis background source rate o 250 Hzbio
homeostasis update period τupdate 1 sbio
neuron 8
syn_v_store 1500 LSB
syn_v_ramp 900 LSB
correlation amp_calib 1
correlation time_calib 0
correlation amplitude η 2.43 LSB/spikepair
correlation time constant τsyn 21.3 msbio
correlation offset o calibrated per experiment run
pulselength 8
global synaptic strength syn_v_bias 1000 LSB
membrane time constant τm 1.0 msbio
exc./inh. synaptic time constant τsyn 30 msbio
reset potential 0.6 V
leak potential 0.5 V
threshold potential 0.8 V

Table A.7.: Parameter of 25 synapses NSEM with homeostatically controlled neuron ex-

periment.

74

Parameter Value

experiment duration Texp 5000 sbio
homeostasis target rate νk 7 Hzbio
homeostasis learning rate ηb 0.0156
homeostasis background source rate o 100 Hzbio
homeostasis update period τupdate 4 sbio
neuron 22, 26, 29
number of inhibitory synapse drivers 3
inhibitory synapse weight 63 LSB
pulselength 8
global synaptic strength syn_v_bias 1000 LSB
membrane time constant τm 1.0 msbio
exc./inh. synaptic time constant τsyn 30 msbio
reset potential 0.6 V
leak potential using activation calibration to

1
3 of maximal activation

threshold potential 0.8 V

Table A.8.: Parameter of three neuron winner-take-all network.

75

Parameter Value

experiment duration Texp 10 000 sbio
NSEM synapse initial weight 0 LSB
NSEM weight conversion factor wstep 0.019
NSEM null-cause rate νi0 15 Hzbio
NSEM learning rate η 5× 10−5

NSEM fractional digits exponential factor 3
NSEM update period τupdate 4 sbio
homeostasis target rate νk 10 Hzbio
homeostasis learning rate ηb 0.0156
homeostasis background source rate o 250 Hzbio
homeostasis update period τupdate 1 sbio
neuron 8, 11, 14
syn_v_store 1500 LSB
syn_v_ramp 900 LSB
correlation amp_calib 1
correlation time_calib 0
correlation amplitude η 2.43 LSB/spikepair
correlation time constant τsyn 21.3 msbio
correlation offset o calibrated per experiment run
pulselength 8
global synaptic strength syn_v_bias 1000 LSB
membrane time constant τm 1.0 msbio
exc./inh. synaptic time constant τsyn 30 msbio
reset potential 0.6 V
leak potential using activation calibration to

1
3 of maximal activation

threshold potential 0.8 V

Table A.9.: Parameter of 25 synapses NSEM three neuron classification network.

76

B. Software

B.1. NSEM and homeostasis plasticity rule API/implementation

constexpr size_t num_slices = dls_num_columns / sizeof(vector uint8_t);

/**

* \brief Homeostasis plasticity rule.

*

* The rule operates on either one or two synapse rows and can be excitatory and

* inhibitory. The rate counters for each enabled neuron are compared to a

* target rate issueing weight updates to align them.

* The actual target rate therefore depends on the update period.

* Stochastic fractional weight updates are used to allow for sub integer weight

* settings and updates.

*/

template <class rng>

class homeostasis {

rng* m_random;

vector uint8_t m_eta[num_slices];

vector_fractional<1> m_rate[num_slices];

vector_fractional<2> m_rate_target[num_slices];

vector uint8_t get_weight_update(size_t slice_num);

public:

/// Initialize homeostasis rule.

homeostasis(rng& random);

/// Set rule parameters for one neuron.

void set_parameters(uint8_t neuron, uint8_t eta, float rate, float factor);

/// Read rate counter values.

void get_rates();

/// Update excitatory and inhibitory synapses with beforehand measured rates.

void do_update(vector uint8_t const mask[num_slices],

uint8_t synapse_row_excitatory,

uint8_t synapse_row_inhibitory);

/// Update excitatory and inhibitory synapses with measured rates.

void run(

77

vector uint8_t const mask[num_slices],

uint8_t synapse_row_excitatory,

uint8_t synapse_row_inhibitory);

};

Listing 3: Homeostasis API and internal structure.

namespace PlasticityRules {

namespace VectorRules {

/// NSEM plasticity rule using fractional vectors with stochastic draws to improve weight resolution.

template <class rng, size_t precision>

class StochasticSEM {

rng* m_random;

correlation* m_correlation;

vector_fractional_lookup<num_hw_weights, precision> m_exp_lookup;

vector_fractional<precision + 1> m_regulatory;

public:

/// Create NSEM plasticity rule instance.

StochasticSEM(rng* random, correlation* cor);

/// Create SEM plasticity rule instance with rule parameters.

StochasticSEM(float eta, float weight_step, float correlation_step, float lambda,

float m, float tau_update, rng& random, correlation& cor);

/// Set exponential term parameters.

void set_exp_lookup(float eta, float weight_step, float correlation_step, float lambda);

/// Set regulatory term parameters.

void set_m(float eta, float weight_step, float m, float tau_update);

/// Update algorithm implementation

vector uint8_t kernel(vector uint8_t const& weights, vector uint8_t const& causal);

/// Apply update algorithm operating masked on hardware values.

void vector_rule(vector_synram_address const index, vector uint8_t const& mask);

};

template <class rng, size_t precision>

vector uint8_t StochasticSEM<rng, precision>::kernel(vector uint8_t const& weights,

vector uint8_t const& causal) {

// Use -= here, because it does not create an additional temporary fractional vector.

return weights + draw((m_exp_lookup.lookup(weights) * causal) -= m_regulatory, m_random);

}

template <class rng, size_t precision>

void StochasticSEM<rng, precision>::vector_rule(vector_synram_address const address,

78

vector uint8_t const& mask)

{

// Accquire hardware weight values.

vector uint8_t weights;

asm volatile(

"fxvinx %[weights], %[dls_weight_base], %[address]\n"

: [weights] "=kv" (weights)

: [dls_weight_base] "b" (dls_weight_base),

[address] "r" (address)

:

);

// Accquire offset corrected causal correlation measurements.

vector uint8_t causal = m_correlation->get_and_reset_causal(address);

// Calculate new weights.

vector uint8_t new_weights = saturate_weight(kernel(weights, causal));

// Write calculated weights to hardware masked.

asm volatile(

"fxvcmpb %[mask]\n"

"fxvsel %[new_weights], %[weights], %[new_weights], %[cond_gt]\n"

"fxvoutx %[new_weights], %[base], %[address]\n"

: [new_weights] "+&kv" (new_weights)

: [weights] "kv" (weights),

[mask] "kv" (mask),

[base] "b" (dls_weight_base),

[address] "r" (address),

[cond_gt] "I" (__C_GT)

:

);

}

} // namespace VectorRules

// Plasticity rule for arbitrary mask using Mask

template <class Mask, class rng, size_t precision>

using StochasticSEM = MaskWrapper<VectorRules::StochasticSEM<rng, precision>, Mask>;

namespace Tagged {

// Plasticity rule for arbitrary mask using TaggedMask

template <class Mask, class rng, size_t precision>

using StochasticSEM = MaskWrapper<VectorRules::StochasticSEM<rng, precision>, Mask>;

} // namespace Tagged

} // namespace PlasticityRules

79

Listing 4: NSEM implementation.

B.2. Used Software

Repository / Description Commit-ID / Identifier

singularity container /containers/stable/2018-11-02_1.img

gcc 7dec54439682a47e9c4380f79bbc93c697e1e053

waf 4dfe8ff9a36aa4f7e19cf6c5795eb674f0dcab2f

libnux ed3f1176e03dd3da5e583af4b571c241a2148f12 (CS 3813)
haldls 848d38d0be20a8534509e8d23bd69d664705ec05 (CS 3985),

752031ceb0a2d6a319dca540299094aee4bcfc21 (CS 4832)
halco d72eccbfcef010e723b78f0c675c6e2ded20d23f (CS 4547)
dls2calib 93b3872d5be1d78193ba5eed32e847a8775aa977

dls2calib-routines f4e1d1f792953707049da977c45b1ae9bf7a3f99 (CS 4419)

bitter aa18d4a73a994a7e8590addbc40f6dc34a439b24

flyspi-rw_api 475f99bbf2f5bd4d5b065bd39ed9704e273ec748

hate a31b694b47eef9bcdb2a04b088d86850cfe4b436

lib-boost-patches 5d74d1ddd3fa2e1da534c753e6fa58931fb8aed4

lib-rcf 2431b98495483d08d699ced28f631a8e4c51038b

logger 8355792fd3e591d08381575fcf5c4b2547b5fe3d

pygccxml 8ae9e19ae00c4152fa5a381eb9e663561c07345f

pyplusplus 064993baaea33e81c93655d79d9a1a6204b4acd0

pyublas feaf60f2f920e30d588837dd6b0715eef23ed550

pywrap 158e5bb2b70f8c3f9b7d45e431c6105cb4dc301d

rant acd5a3cd94fe91fa942e1da727e47025f00208c8

uni e9135459841741e446e17f514e048fff74a8441f

ztl 2934a12003c14e08643cf2b4b3cbe7553e860f08

Table B.1.: Software used. Unmerged changes are identified via the change set (CS) number

additionally to the commit hash.

80

Acknowledgments (Danksagungen)

Professor Meier für die Betreuung meiner Arbeit.

Meinen Eltern für die Unterstützung und die Aufrechterhaltung eines bedingungslosen

Zuhauses.

Oliver für die umfassenden Theorieerklärungen, die Hilfe bei Implementationsfragen, das

unentwegte Verlangen nach ‘mehr Plots’ und alles andere.

Eric für das Streben nach besserem Code und einen bemerkenswerten Infrastruktursupport.

Christian für die langen Software-Diskussionen und die Hilfe jederzeit beim regelmäßigen

Debuggen.

Yannik für all die Fehlersuche-Hilfe.

Sebastian für die Kalibration (der Neuronenschaltungen) des Chips in 30 Minuten (!) und

das Teilen der Erfahrung in der Chipbenutzung.

Korbinian für die Hilfe bei der Inbetriebnahme eines neuen Setups, das Lehren von SMD-

Löten, die Informationen zum CADC und die Hilfe bei Fragen um die Boards.

Aron für lange Sitzungen vor dem Oszilloskop.

Timo für Erklärung der Korrelationskalibration und die fruchtbaren Diskussionen über

Theorie und Implementation.

Christian, Eric, Oliver und Yannik für das Korrekturlesen dieser Thesis.

Der Electronic Vision(s) Gruppe für eine tolle (Arbeits-)Athmosphäre und dem Container

für das regelmäßige gute Grillen.

81

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die an-

gegebenen Quellen und Hilfsmittel benutzt habe.

83

	Introduction
	Methods
	Theory
	Neuromorphic Hardware
	Software and Experiment Control

	Results
	Calibration
	Single synapse NSEM
	Homeostasis
	Homeostatically controlled neuron with NSEM synapse
	Homeostatically controlled neuron inferring 5x5 pixel images
	Winner-take-all network
	NSEM network separated bar classification
	Performance
	Storage requirements
	Repository and Continuous Integration

	Discussion
	Outlook
	Bibliography
	Parameter
	Hardware Setup
	Calibration
	Experiment

	Software
	NSEM and homeostasis plasticity rule API/implementation
	Used Software

	Acknowledgments

