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Experimental Control of a Spin-1 Bose-Einstein Condensate

To access the dynamics and internal degrees of freedom in a spin-1 system we
present experimental implementation schemes for initial conditions and read-out
methods to access the spin projections. For probing non-equilibrium dynamics
in spatially extended systems these are essential to identify the underlying pro-
cesses and relevant degrees of freedom. In our experimental system we employ a
quasi-one-dimensional Bose-Einstein condensate of 87Rb in the F = 1 hyperfine
manifold to tackle these questions. While the only transformations of a spin-1/2
systems are rotations around the three spatial directions, spin-1 particles possess
more degrees of freedom. To control their internal state this work provides a set
of methods to manipulate both the spinor amplitudes and phases. Furthermore,
to access all eight orthogonal spin-1 projections by Stern-Gerlach imaging along a
fixed direction different read-out schemes are presented. By applying these tech-
niques spinor phase rotations are implemented which enables controlling of the
spin length. This technique is then extended to the spatial domain for generating
spin waves. Finally, the read-out methods are applied to measure quadrupole
projections in long-time quench dynamics.

Experimentelle Kontrolle eines Spin-1 Bose-Einstein-Kondensates

Um Zugang zur Dynamik und den internen Freiheitsgraden eines Spin-1 Systems
zu erhalten, präsentieren wir Strategien zur Implementierung von Anfangszustän-
den und Auslesemethoden für Spinprojektionen. Diese sind essentiell um bei der
Untersuchung von Nichtgleichgewichtsdynamik in räumlich ausgedehnten Sys-
temen die zugrundeliegenden Prozesse und relevanten Freiheitsgrade zu iden-
tifizieren. Zur Untersuchung dieser Fragestellungen benutzen wir ein quasi-
eindimensionales 87Rb Bose-Einstein-Kondensat in der F = 1 Hyperfeinmannig-
faltigkeit. Während die einzigen Transformationen eines Spin-1/2-Systems Rota-
tionen um die drei Raumrichtungen sind, besitzen Spin-1-Teilchen eine größere
Anzahl an Freiheitsgraden. Zur Kontrolle deren interner Freiheitsgrade zeigt
diese Arbeit Methoden, um sowohl die Spinoramplituden als auch -phasen zu
manipulieren. Weiterhin werden Ansätze zur Messung aller acht orthogonalen
Spin-1-Projektionen durch Absorptionsabbildung mit vorheriger Stern-Geralch-
Separation der magnetsensitiven Zustände entlang einer konstanten Richtung
präsentiert. Durch Anwendung dieser Techniken werden Rotationen der Spinor-
phase implementiert, welche die Kontrolle der Spinlänge ermöglichen. Weiter-
hin wird diese auf ein räumlich ausgedehntes System angewandt, um Spinwellen
zu erzeugen. Zum Abschluss werden Quadrupolprojektionen in der Langzeitdy-
namik nach einer schnellen Parameteränderung gemessen.

i



Contents

1 Introduction 1

2 Theoretical Concepts 2
2.1 Spin-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Spin-1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 SU(2) Subspaces of Spin-1 Systems . . . . . . . . . . . . . . . 6

2.2 Interactions in 87Rb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Experimental Setup and Implementation of Spin-1 Techniques 10
3.1 Experimental System and Control . . . . . . . . . . . . . . . . . . . . 10
3.2 Spin Dipole Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Spin Quadrupole Rotations . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Readout of Qzz and Rotations around Q̂zz . . . . . . . . . . . 18
3.3.2 Readout of 〈Q̂xz〉 and 〈Q̂yz〉 . . . . . . . . . . . . . . . . . . . 22
3.3.3 Readout of 〈Q̂xy〉 and 〈Q̂y2−x2〉 . . . . . . . . . . . . . . . . . 24

4 Measurement of Quadrupole Rotations and Observables 27
4.1 Spinor Phase Evolution of Transversal Spin . . . . . . . . . . . . . . . 27
4.2 Preparation and Control of Spinwaves . . . . . . . . . . . . . . . . . . 37
4.3 Spin Dipole and Quadrupole Observables in Long-Time Dynamics . . 46

4.3.1 Mean-Field Theory . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Spin-Changing Collision Dynamics . . . . . . . . . . . . . . . 47
4.3.3 Experimental Setup and Read-out of Observables . . . . . . . 48
4.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusion and Outlook 56

A Additional Plots for Long-Time Dynamics 58

Bibliography 62

ii



1 Introduction

To study non-equilibrium dynamics [1] in a spatially extended system a high degree
of experimental control is required. Identifying the underlying processes necessitates
probing their response to the starting point of the dynamics. For this a versatile
implementation of initial conditions is required. Similarly important is the realisa-
tion of read-out schemes to access the relevant degrees of freedom. While ultracold
atoms provide an ideal framework for a precisely controllable system their atomic
spin introduces a rich internal structure. [2]
Here, we employ a quasi-one-dimensional Bose-Einstein condensate (BEC) of 87Rb

atoms whose F = 1 hyperfine manifold provides a spin-1 system. For low temper-
atures the short-range interactions are incorporated as s-wave scattering. To solve
these systems in the limit of large occupation numbers, and correspondingly small
fluctuations, often a mean-field approach is applied. This method either neglects the
fluctuations or treats them as perturbation. In spin-1 gases these have already been
studied extensively [3, 4]. Compared to a spin-1/2 system, here the larger spin pro-
vides a higher-dimensional phase space. To manipulate these additional degrees of
freedom experimentally, operations must be implemented which go beyond the spin
rotations known from spin-1/2 particles. Consequently, transformations of spin-1
particles are described by a larger number of operators, which are associated to the
quadrupole moment of the spin-1 particles. [5]
In our setup we apply Stern-Gerlach imaging which projects the spin onto the

atomic sublevel densities in quantisation direction. Consequently, to access all spin
projections we need to manipulate the system to map the quantities of interest to
these densities. Therefore, this work provides schemes to realise the read-out of
all eight orthogonal spin-1 operators. Further, techniques for controlling the spin
direction and length by adjusting the sublevel densities and phases are presented
and applied to implement different initial conditions. In order to provide a com-
prehensible report, chapter 2 will shortly discuss a theoretical description of the
system. Following, chapter 3 summarises the experimental details and techniques
for controlling and measuring spin-1 states. These methods are applied in chapter 4
to implement different spin lengths and control spin waves. Finally, an application
of the quadrupole read-out after long-time quench dynamics is presented.
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2 Theoretical Concepts

This chapter introduces the basic concepts of ultracold spinor gases. We will first
consider a general spin-1 system by discussing the properties due to its symme-
try. Then, a description of the experimental setup is described, which provides
the framework for the control and dynamics of the system that will be discussed
afterwards.

2.1 Spin-1
To understand the properties of a spin-1 system, let us start with a short review of
the more fundamental spin-1/2 particles. Later, we will see that similar concepts
can be applied to the spin-1 case. The wave function of a spin-1/2 object can be
specified in the form of a two-component spinor

Ψ1/2 = eiϑ


√
N↑ e

iϕL/2√
N↓ e

−iϕL/2

 . (2.1)

Here, ϕL is the Larmor phase, ϑ an overall phase, and the real amplitudes of both
spinor components are constrained by the normalisation N↑ + N↓ = 1. Since in an
experiment with only one single object ϑ cannot be measured its value does not
influence the state of the system. Thus, as N↓ = 1 − N↑ is fixed by N↑, a spin-1/2
particle only possesses two free parameters: ϕL and, by choice, N↑. These give rise
to a set of allowed transformations which are captured by the Lie group SU(2). It
contains the complex unitary 2× 2 matrices with unit determinant, which represent
length-preserving transformations of complex 2-vectors. Due to this property they
can also be considered as rotations of the spinor.
We make the usual choice of the quantisation axis being z. Then, the spin oper-

ators are given by Ŝi = σ̂i/2 (where we dropped ~) with the Pauli matrices

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, and σ̂z =

(
1 0
0 −1

)
. (2.2)

These satisfy the commutation relations of the Lie algebra of SU(2) [6][
Ŝi, Ŝj

]
= iεijkŜk, (2.3)

where εijk is the Levi-Civita symbol. Thus, the spin operators Ŝi generate the ele-
ments of SU(2). In other words, every possible rotation Û of a spin-1/2 state can be
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written as Û = exp
(
−i∑3

i=1 riŜi
)
in terms of the spin operators with scalar coeffi-

cients ri. This resembles the form of the time evolution operator for a Hamiltonian
composed of spin operators. To understand how this transforms the spin state it is
useful to apply the picture of a Bloch sphere, which represents the two-spinors on
the surface of a unit sphere. Here, the intersection points of the coordinate axes with
the sphere correspond to the eigenstates of the spin operators, i.e. a spin aligned to
the corresponding direction. In this picture the evolution operator rotates the state
around the axis r = (r1, r2, r3)T by the angle |r|. Explicitly, for r = (0, π/2, 0) an
Ŝx-eigenstate is rotated to the z-axis. Thus, a time evolution with a spin operator
corresponds to a rotation of the spin direction around the corresponding axis.
Extending the spin-1/2 spinor by another component allows the description of a

spin-1 system:

Ψ1 = eiϑ


√
N1 e

i(ϕS/2+ϕL)

√
N0

√
N−1 e

i(ϕS/2−ϕL)

 . (2.4)

Again, the real amplitudes are constrained by the normalisation N1 +N0 +N−1 = 1
and we will neglect the overall phase ϑ in the following, leaving two amplitudes and
two relative phases as free parameters. These additional variables also allow for a
larger set of possible rotation directions, which is given by SU(3). Instead of three
generators like in the case of SU(2), here there exist eight such operators, which will
be introduced in the following section.
Furthermore, by assuming that the wave function of N spins may be written

as product state, the normalisation of the spinor (2.4) can be modified to N =
N1 +N0 +N−1, thus allowing the representation of the multi-particle state of these
spins. This approximation will be used throughout this work.

2.1.1 Spin-1 Operators
For the experiments discussed in this work a Bose-Einstein condensate of 87Rb is
employed. To describe these alkali atoms the choice of spherical harmonics as basis
functions is sensible. Thus, in the following we will write its atomic states in terms
of the magnetic mF = 0,±1 levels of the F = 1 hyperfine manifold as |F,mF 〉.
Since these states provide a spin-1 system we can directly identify the entries of
the three-component spinor (2.4) with the magnetic sublevels of the atoms. Instead
of representing the complex amplitudes of these basis functions, another approach
is specifying the occupation of the corresponding modes in second-quantised form.
Here, Ψ̂i is the annihilation operator for the level i and n̂i = Ψ̂†i Ψ̂i the corresponding
number or density operator. Similar to the spin-1/2 case, also for spin-1 three dipole
operators can be derived [7]

F̂i = −iεijkĉjk, (2.5)
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where we use the Einstein summation convention for i, j = x, y, z. Analogous to
defining the elements of the operator matrices as ĉij = |φi〉 〈φj|, the spin operators
can also be described in terms of creation and annihilation operators ĉij = b̂†i b̂j.
These Cartesian expressions can be written in the spherical basis as [7]

|φx〉 = 1√
2

(|1,−1〉 − |1, 1〉) b̂†x = 1√
2
(
Ψ̂†−1 − Ψ̂†1

)

|φy〉 = i√
2

(|1, 1〉+ |1, 1〉) b̂†y = i√
2
(
Ψ̂†1 + Ψ̂†−1

)
|φz〉 = |1, 0〉 b̂†z = Ψ̂†0

(2.6)

To obtain the full set of SU(3) transformations in a spin-1 system, five additional
quadrupole operators are required [7]

Q̂ij = −ĉij − ĉji + 2
3δij ĉkk. (2.7)

Thus, we obtain eight linearly independent operators which are a full representation
of the SU(3) generators:

{ F̂x, F̂y, F̂z, Q̂xz, Q̂yz, Q̂xy, Q̂xx, Q̂yy } .

Additional to these, four more linear combinations { Q̂zz, Q̂y2−x2 , Q̂z2−y2 , Q̂x2−z2 }
are of interest. Using the notation Q̂i2−j2 := (Q̂ii− Q̂jj)/2, the most frequently used
expressions are listed in table 2.1.

Normalisation and Fluctuations
For characterising spin-1 states not only expectation values but also spin dipole
fluctuations are of interest. Their size is characterised by standard deviations ∆Fi =√
〈F̂i〉

2
− 〈F̂ 2

i 〉 of the corresponding operators. A useful quantity to analyse these is
the spin covariance matrix [9]

Tij = 1
2

〈[
F̂i, F̂j

]
+

〉
−
〈
F̂i
〉 〈
F̂j
〉
, (2.8)

with [·, ·]+ denoting the anticommutator. On the diagonal the matrix contains the
variances ∆2Fi of the three dipole operators. Thus, diagonalising the matrix allows
extracting the size of the standard deviations and fluctuation directions for any
state.
In the experiment the usual number of atoms is N ∼ 104, thus, due to the

corresponding spinor normalisation the maximal spin expectation values are also
of size N . However, when representing the fluctuations of states this will lead to
small standard deviations ∆Fi compared to the maximal size of expectation values
∆Fi/N ≤ 1/

√
N . Thus, when graphically representing the fluctuations for correct
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F̂x = 1√
2

 0 1 0
1 0 1
0 1 0

 F̂x = 1√
2

Ψ̂†0
(
Ψ̂1 + Ψ̂−1

)
+ h.c.

F̂y = i√
2

 0 −1 0
1 0 −1
0 1 0

 F̂y = i√
2

Ψ̂†0
(
Ψ̂1 − Ψ̂−1

)
+ h.c.

F̂z =

 1 0 0
0 0 0
0 0 −1

 F̂z = n̂1 − n̂−1

Q̂xz = 1√
2

 0 1 0
1 0 −1
0 −1 0

 Q̂xz = 1√
2

Ψ̂†0
(
Ψ̂1 − Ψ̂−1

)
+ h.c.

Q̂yz = i√
2

 0 −1 0
1 0 1
0 −1 0

 Q̂yz = i√
2

Ψ̂†0
(
Ψ̂1 + Ψ̂−1

)
+ h.c.

Q̂xy =

 0 0 −i
0 0 0
i 0 0

 Q̂xy = iΨ̂†−1Ψ̂1 + h.c.

Q̂xx =

−
1
3 0 1

0 2
3 0

1 0 −1
3

 Q̂xx = 1
3 (2n̂0 − n̂1 − n̂−1) + Ψ̂†1Ψ̂−1 + Ψ̂†−1Ψ̂1

Q̂yy =

−
1
3 0 −1

0 2
3 0

−1 0 −1
3

 Q̂yy = 1
3 (2n̂0 − n̂1 − n̂−1)− Ψ̂†1Ψ̂−1 − Ψ̂†−1Ψ̂1

Q̂zz =


2
3 0 0
0 −4

3 0
0 0 2

3

 Q̂zz = 2
3 (n̂1 + n̂−1 − 2n̂0)

Q̂y2−x2 =

 0 0 −1
0 0 0
−1 0 0

 Q̂y2−x2 = −Ψ̂†1Ψ̂−1 + h.c.

Table 2.1: Spin-1 operators in the basis |F = 1,mF 〉. The first eight operators are
a representation of the linearly independent generators of SU(3). [8]
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experimental values their extent would not be visible. To avoid this, for graphs
showing the size of this quantity a much smaller value of N will be used.

Majorana Representation
A further useful insight into the properties of spin-1 systems is their representation
as two spin-1/2 particles. [2, 4] This way, the system can be pictured as two vectors
on a Bloch sphere. When these spins are pointing into the same direction their
vector addition results in a fully elongated spin-1 state along the corresponding
direction. Rotating one spin-1/2 direction while keeping the other constant results
in a reduced length of the vectorial sum which reaches zero for antiparallel alignment.
This resembles the reduction of the spin projection in the corresponding direction
until it reaches zero in all projections. Further, by considering the dipole fluctuations
of the single spin-1/2 states these can also be transferred to spin-1. The single 1/2-
components always exhibit fluctuations perpendicular to the direction in which their
spin vector is pointing. Consequently, for a fully extended spin-1 state composed of
two spin-1/2 vectors oriented along the same axis the fluctuations are also confined
to the perpendicular plane. In case of antiparallel spin-1/2 alignment this is equally
valid. However, in contrast to the fully extended spin projection in some direction,
here only the plane containing the fluctuations specifies a direction of the state.
When aligned to the appropriate axes, the former spin-1 states are eigenstates of
the dipole operators while the latter are eigenstates of the quadrupoles. To contrast
these quadrupole from the usual dipole components these states are also called polar,
nematic, or aligned. [10]

2.1.2 SU(2) Subspaces of Spin-1 Systems
As we have seen in the example of spin-1/2 particles, the action of the three spin
operators can be understood as rotations of the spin state around the Bloch sphere
axis corresponding to the respective operator. In spin-1 systems, however, matters
are more complex in the sense that there are more rotation axes and, due to the ad-
ditional degrees of freedom, a spin-1 state cannot be represented by a single point on
the surface of a Bloch sphere. Nevertheless, the symmetry of spin-1 particles allows
their generators of rotations, i.e. the dipole and quadrupole operators introduced in
the previous section, to be divided into triples { Ô1, Ô2, Ô3 }. Each of these satisfies
the spin-1/2 commutation relations

[
Ôi, Ôj

]
= iεijkÔk. For the spin-1 system the

following triples may be found [7]

{ F̂x, F̂y, F̂z }
{ Q̂xz, Q̂yz, F̂z }
{ F̂x, Q̂xz, Q̂xy }
{ F̂y, Q̂yz, Q̂xy }

{ F̂x, Q̂yz, Q̂z2−y2 }
{ F̂y, Q̂xz, Q̂x2−z2 }
{ F̂z, Q̂xy, Q̂y2−x2 }

6



Here, to obtain the commutator relations for the sets in the right column on has to
multiply each of the operators with a factor −1/2. As consequence each of these
subsets have the same properties as the spin-1/2 operators. To illustrate this, let us
exemplary consider a rotation in the third subgroup with the initial state being an
eigenstate of Q̂xz. Then, analogous to the Bloch-sphere picture for spin-1/2 rota-
tions, the time evolution with a Hamiltonian composed of Q̂xy will rotate the state
around the Qxy-axis. This eventually transforms the initial Q̂xz eigenstate to a F̂x
eigenstate. Thus, by applying these divisions to the spin-1 space allows understand-
ing the action of spin-1 operators as rotations in the corresponding subspaces. In
chapter 3 we will illustrate this further.

2.2 Interactions in 87Rb
In cold dilute gases with small atomic spin the interactions between ground state
atoms can predominantly be described by contact interactions. For a Rubidium
condensate the low-energy s-wave scattering allows a good approximation of these,
which means that in atomic collisions the total spin of the particles is conserved. [11]
The resulting second-quantised Hamiltonian Ĥ [4] of the F = 1 hyperfine manifold
of bosonic 87Rb in a trapping potential can be divided into three parts:

Ĥ =
∫

d3r
(
Ĥ0 + ĤB + Ĥint

)
. (2.9)

The single-particle term

Ĥ0 =
∑
i

Ψ̂†i (r)
(
~2∇2

2m + Vtrap(r)
)

Ψ̂i(r) (2.10)

contains the kinetic energy and the potential Vtrap confining the atoms. Because the
experiments are carried out in an external magnetic field the resulting shifts must
be taken into account. Capturing these,

ĤB = ~pF̂z(r) + ~q (n̂1(r) + n̂−1(r)) (2.11)

contains the linear and second-order Zeeman frequency shifts p and q, respectively
(they are discussed more extensively in section 3.1). Finally, to describe the inter-
particle scattering processes the bosonic exchange symmetry must be taken into
account. Therefore, two particle pair spin channels F = 0, 2 are relevant for spin-1
particles. Combined, these are described by

Ĥint =:
(
c0n̂

2(r) + c1
(
F̂ 2
x (r) + F̂ 2

y (r) + F̂ 2
z (r)

))
:, (2.12)

where : : denotes normal-ordering, n̂ = ∑
i n̂i is the total density operator, and

c0 = 4π~2

m

a0 + 2a2

3 , and

c1 = 4π~2

m

a2 − a0

3

(2.13)

7



are the density-density and spin-spin coupling constants, respectively, with m being
the atomic mass of Rubidium. Values for the s-wave scattering lengths aF for the
relevant boson pair spin channels F = 0, 2 can be found in [2]. Because in this
work we are interested in spin physics we assume the atoms to initially be motional
ground state and do not induce density excitations. Consequently, the net density
remains in a stationary state and we can drop the terms which only depend on n̂.
This also includes Ĥ0 because in the momentum space this can be reformulated
in terms of the total density n̂. Note also that due to the conservation of spin in
the s-wave scattering the Fz projection of the spin stays constant. Consequently,
the linear Zeeman shift does not influence the collisional spin dynamics. Thus, the
external-field dependent term setting the energy scale for the inter-particle dynamics
is the second-order Zeeman shift.

System Dimensionality and Single-Mode Approximation
The harmonic trap used in the experiment confines the atoms in transversal direction
to the lowest harmonic oscillator levels. Due to the anisotropy of the trap, however,
longitudinally the atoms occupy a much larger range of oscillator states. Thus, for
the following arguments we will assume a one-dimensional system along the x-axis.
To capture this spatial dependence, the field operators can be expanded in terms of
annihilation operators âmi of a particle in the magnetic state m and spatial mode i,
and the corresponding basis functions φmi(x) [4]

Ψ̂m(x) =
∑
i

âmiφmi(x). (2.14)

For three-dimensional systems that are much smaller than the spin-healing length
ξs = ~/

√
2m|c1|n in all directions, the single-mode approximation can be applied.

[12, 8] This approach fixes the sum in eq. (2.14) to one contribution in i and allows
to neglect the spatial dependence of the dynamics. Here, however, this approxima-
tion cannot be applied for the longitudinal direction. Nevertheless, when driving the
system on timescales shorter than the one of spin dynamics, we may neglect the in-
teraction effects and consider the system to be homogeneous. However, to estimate
the interaction time scales we have to take the dimensionality of the system into
account. This modifies the coupling constants such that c(1D)

1 = 2~(a2−a0)/(3ma⊥)
[13] with the transversal harmonic oscillator length a⊥ =

√
~/(mω⊥) in a trap with

corresponding angular oscillator frequency ω⊥. To estimate the energy scale associ-
ated to the spin-spin interactions we assume a mean field shift c(1D)

1 n(1D) resulting
from a generic mean-field treatment. Inserting the usual trap frequency (see sec-
tion 3.1) and peak density n1D ≈ 350 µm−1 leads to a dynamical time scale of
∼ 200 ms. Thus, for all processes that are much faster than this the system can be
assumed to be homogeneous. Since the time evolutions considered in chapter 3 are
shorter than 10 ms this condition is well satisfied.

8



Bogoliubov Approximation and Mean-Field Dynamics
To further analyse the collisional dynamics we expand the spin-dependent part of
Ĥint (with F̂ 2 = F̂ 2

x + F̂ 2
y + F̂ 2

z as short-hand notation of the spin-spin interaction
term)

: F̂ 2 : = 2
(
Ψ̂†0Ψ̂†0Ψ̂1Ψ̂−1 + Ψ̂†1Ψ̂†−1Ψ̂0Ψ̂0

)
+ 2 (n̂0 (n̂1 + n̂−1)− n̂1n̂−1)

+ : n̂2
1 + n̂2

−1 :
(2.15)

Here, the first two terms describe spin-changing collisions (SCCs) which redistribute
atoms between the hyperfine levels and the remaining terms introduce energy shifts
of the corresponding levels. By applying the Bogoliubov approximation Ψ̂i = Ψi +
δΨ̂i, which assumes operators to be complex fields with only a small non-commuting
contribution, the Hamiltonian can be evaluated in the mean-field framework. [13]
Thus, neglecting the fluctuations, the operators can be replaced by their expectation
values. Note however, that this treatment is only applicable if the population of the
corresponding mF levels is large such that the fluctuations are small.
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3 Experimental Setup and Implementation
of Spin-1 Techniques

3.1 Experimental System and Control

After discussing the structure of spin-1 systems and a short overview over the mech-
anisms driving dynamics in atomic gases of 87Rb we now turn to the experimental
system and accessing the spin-1 degrees of freedom. The platform employed in this
work consists of a quasi-one-dimensional BEC of 87Rb atoms whose F = 1 hyperfine
manifold provides the spin-1 system studied here. First, this chapter will give a short
overview of the experimental system before providing schemes for implementing the
readout of different spin-observables and various rotations in the spin space.

Overview
Each experimental cycle starts with collecting atoms in a three-dimensional magneto-
optical trap (MOT) by loading from a two-dimensional MOT. Afterwards, the
atomic cloud is compressed, followed by polarisation gradient cooling and evap-
oration in a time-orbiting magnetic potential. [14] Finally, a 1030 nm laser, far
red-detuned to the D1 and D2 transitions of 87Rb, is switched on, which induces
dipole forces that provide a trapping potential. For the process of transferring the
atoms from the magnetic trap two such beams are crossed and the magnetic fields
are ramped down. Next, by decreasing the laser power another step of evaporative
cooling lowers the temperature of the cloud below the critical temperature of the
Bose-Einstein condensation transition. Afterwards, one of the laser beams is ramped
down and the atoms expand in the optical potential of the remaining beam. This
waveguide confinement is approximately harmonic with frequencies ω⊥ ≈ 2π×250 Hz
in the radial and ωx ≈ 2π×2.2 Hz in the longitudinal direction. The resulting cloud
of condensed atoms has a size of about 250 µm longitudinally and 1 µm transversally
(see fig. 3.1). Alternatively, the second beam can be kept at full power to confine the
atoms in a crossed dipole trap which effectively increases the longitudinal frequency
to ωx ≈ 2π × 50 Hz.
Thus, the trapping and cooling cycle described above, which lasts for about 37 s,

produces a BEC of ∼ 70 000 87Rb atoms in the |F = 1,mF = −1〉 hyperfine state of
their 52S1/2 ground state. This is the starting point for all experiments performed
throughout this work.
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Figure 3.1: Schematic overview of the waveguide trap geometry.

Level Structure of the 87Rb Groundstate [15]
In small magnetic fields the coupling between the nuclear spin I = 3/2 of this Ru-
bidium isotope and its single 5s valence electron with spin S = 1/2 give rise to
two hyperfine manifolds F = 1, 2. These are separated by ωHFS ≈ 2π × 6.835 GHz
and their magnetic sublevels exhibit a linear Zeeman splitting of p = µBgFmFB in
magnetic bias fields B = |B|. Here, µB is the Bohr magneton and gF=1 = −1/2 and
gF=2 = 1/2 are the Landé g-factors for the F = 1 and F = 2 levels, respectively.
Resulting from this splitting a Larmor precession of the spin direction in the plane
orthogonal to B at angular frequency p arises. The experimentally accessible states
and their energetic shifts is schematically shown in fig. 3.2a). Additionally to the
linear Zeeman shift, expanding the Breit-Rabi formula to quadratic contributions
in the magnetic field q = (gJ − gI)2µ2

B/(16~2ωHFS)B2 gives rise to the much smaller
second-order Zeeman shift. A transformation to the co-rotating Larmor frame re-
moves the linear shift and reveals the detuning of the side modesmF = ±1 compared
to the zero modemF = 0. This second-order Zeeman splitting (see fig. 3.2b) controls
the energetic detuning of the collisional spin dynamics.

Experimental Control: MW and RF Pulses
Engineering initial states or selecting various spin observables requires coupling the
different hyperfine levels. Experimentally, this is achieved by applying oscillating
magnetic fields in the microwave (MW) or radio frequency (RF) regime at fre-
quencies of about 6.8 GHz or 600 kHz, respectively. Because the Rabi frequencies
associated with these couplings are much larger than the frequency splittings rele-
vant for spin dynamics the collisional spin interactions can be neglected here. On
the apparatus there exist two types of antennas for generating the required fields: a
single copper loop for MW fields and coils for RF signals.
First, let us focus on how MW signals affect the internal states of the atoms.

Due to the geometry of the antenna the MW fields consist of a superposition of
all polarisations, albeit not with equal intensity. By operating the experiment at
constant bias fields in the range B ≈ 0.9 G, the application of MW fields allows
selective pairwise coupling between one of the F = 1 and one of the F = 2 states.
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(a) Splitting of F = 1 and F = 2 manifolds in an external magnetic field.

(b) Second-order Zeeman shift of the F = 1 states in the co-rotating Larmor frame.

Figure 3.2: a) Schematic display of the F = 1, 2 linear Zeeman splitting in 87Rb
using the notation |F,mF 〉. Due to small deviations of the electronic and nuclear
g-factors from gJ = 2 and gI = 0 there is a small difference in the F = 1 and F = 2
splitting. b) Level scheme in the rotating Larmor frame with second-order Zeeman
shift q.
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Tuning the MW frequency to resonance with a certain transition the other levels
experience a far off-resonant coupling with a detuning of ca. 0.6 MHz induced by
the linear Zeeman shift. Thus, the transfer amplitudes for these other couplings are
negligible. Nevertheless, transitions which are degenerate with respect to the linear
Zeeman shift (e.g. |1,−1〉 ↔ |2, 0〉 and |1, 0〉 ↔ |2,−1〉) this argument does not
hold and the second transition is only detuned by a frequency proportional to the
second-order Zeeman shift. Here, care must be taken that the other coupling does
not disturb the desired effect of the MW pulse.
In contrast to MW coupling, RF fields drive transitions between the magnetic

sublevels within a hyperfine manifold. Section 3.2 will discuss this type of coupling
in detail.

Imaging the Atoms [16]
In each cycle after the evolution period an imaging sequence extracts the atomic
densities in the three magnetic sublevels with spatial resolution along the longitudi-
nal direction. Following the experimental period with a delay of a few ms a strong
quadrupole field is applied for the duration of 3 ms. This results in a Stern-Gerlach
separation of the sublevels in the magnetic gradient field along the quantisation axis.
During the pulse the confining dipole trap is switched off such that after the pulse
the atoms expand freely for 1 ms. This leads to a spatial separation of the different
magnetic sublevels. Directly following this time-of-flight period the cloud is imaged
by high-intensity absorption imaging. To distinguish the two hyperfine manifolds
two measurements are taken which extract the atomic absorption during illumina-
tion with 15 µs long imaging pulses. The first one consists of D2 light resonant to the
F = 2 → F ′ = 3 transition which measures and removes the F = 2 atoms. Then,
after about 1 ms another pulse mixes the previous imaging light with re-pumper
light resonant to F = 1 → F ′ = 2 to address the F = 1 manifold. Finally, two
reference pictures are taken to infer the exact size of the absorption and remove
the camera offset. Consequently, by inference from the absorption this technique
extracts the local atom numbers pixel for each magnetic sublevel separately.

Conclusions
Summarising the experimental capabilities of this ultracold atom system, the spin
state of the particles can be precisely controlled. Further, Stern-Gerlach imaging
allows accessing the magnetic sublevel densities 〈n̂i〉 by projection along the quan-
tisation axis. Coherences 〈Ψ̂†i Ψ̂j〉 for j 6= i, on the other hand, which appear in
many spin operators like F̂x, F̂y, or Q̂xy cannot be accessed directly. Nevertheless,
applying rotations around different axes of the spin space enables the access to a
larger set of observables by mapping the quantity of interest to densities in the
three magnetic sublevels. Implementing these rotations and mappings for a number
of spin operators for the F = 1 system will be addressed in the following.
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3.2 Spin Dipole Rotations
Transferring the method from the manipulation of spin-1/2 systems, rotations around
the three spin axes Fx, Fy, and Fz are possible in the SU(3) spin space in an equiv-
alent manner. As described in chapter 2 the corresponding spin dipole operators F̂i
are the generators of rotations in this space of expectation values Fi.
To enable these operations experimentally, the three magnetic sublevels are cou-

pled with each other via oscillating RF fields. These oscillate in a plane perpen-
dicular to the magnetic bias field which is oriented orthogonal to the longitudinal
direction of the cloud (x-y-plane in fig. 3.1) at a frequency matching p. The result-
ing Hamiltonian in the rotating Larmor frame can be derived by considering two
independent two-level systems with identical resonant Rabi frequencies ΩRF. While
the RF-frequency can be adjusted very well to match the linear Zeeman shift, an im-
portant type of residual detuning is the energetic shift of the side modes mF = ±1
by δ such that mF = 0 is not centred in the F = 1 manifold any more. In the
|1, 0〉 ↔ |1,−1〉 system this introduces the detuning +δ while in the other one
(|1, 1〉 ↔ |1, 0〉) the detuning from resonance is −δ. Writing both contributions as
a matrix in the usual basis yields

ĤRF(ϕ) = ~√
2

 −δ e−iϕΩRF 0
eiϕΩRF 2δ e−iϕΩRF

0 eiϕΩRF −δ


= ~ΩRF

(
cos(ϕ)F̂x − sin(ϕ)F̂y

)
+ 3

2
√

2
~δQ̂zz,

(3.1)

where ϕ denotes the phase of the RF signal. Usually, the detuning for the coupling
pulses is predominantly given by the second-order Zeeman shift δ = q. Thus, for
short pulses with usual experimental Rabi frequency ΩRF = 2π × 17 kHz the Q̂zz

term introduced by the detuning can be dropped.
As we have seen in section 2.1.2 the three spin dipole operators { F̂x, F̂y, F̂z } form

a SU(2) subspace, which means a spin-1 particle whose evolution is described by
a Hamiltonian involving only the dipole operators behaves like a spin-1/2 system.
Thus, analogous to such a system, the time evolution of a spin-1 state under one
of these operators rotates the wave function within the corresponding subset of
states with constant spin length. However, to understand the physical meaning
of these rotations we want to observe their action on the spin expectation value
F = 〈Ψ|F̂ |Ψ〉 with F̂ :=

(
F̂x, F̂y, F̂z

)T
rather than the transformation of the

corresponding spinor |Ψ〉. To reduce the notational complexity, in the following
only rotations around Fy will be considered, although it should be noted that this
argument can be generalised to any axis. Evolving an arbitrary state |Ψ〉 under the
Hamiltonian Ĥ = ΩRFF̂y for a time t = θ/ΩRF rotates the spin expectation vector
in the following way (see fig. 3.3a):

e−iθF̂y |Ψ〉 7→ Ry(θ)F . (3.2)
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Here Ry(θ) resembles the transformation matrix for a rotation around the y-axis
by an angle θ in real 3-dimensional space. As such the transformations generated
by the spin dipole operators have the property to conserve the spin length while
allowing an arbitrary change in the spin direction.

Graphical Representation of a Spin-1 System
Similar to the visualisation of a spin-1/2 spinor on the surface of the Bloch sphere
the spin-1 vector F , because its length is limited to a maximum of the particle
number, can also be represented inside such a sphere. However, there exists a crucial
difference: in the former case the full spin-1/2 wave function is represented while
the latter only fixes three expectations values of the state. For spin-1/2 the polar
and azimuthal angle suffice to fully specify all degrees of freedom of the system. In
contrast, a spin-1 particle possesses more than three free parameters such that it is
not uniquely defined by the components of F . Furthermore, unlike the Bloch sphere
picture that only utilises the surface, for spin-1 F can also accesses the entire volume
of the sphere. Thus, to clarify the difference between a Bloch sphere representation
and plotting the spin expectation value, let us use the term “spin sphere” whenever
referring to a representation of spin expectation values. To allow a more explicit
visualisation of the spin states additional to F also the dipole fluctuations of the state
are shown. These are calculated by diagonalising the spin covariance matrix (2.8)
for the corresponding spin-1 state. The spatial extent of the standard deviations are
shown by an ellipsoid whose half axes are given by the eigenvectors scaled by the
corresponding eigenvalues.
The picture introduced above allows the interpretation of complex dynamical

effects which can be formulated in terms of spin dipole operators as rotations in the
spin sphere. Figure 3.3 illustrates the behaviour of a spin-1 system under evolution
with different operators. In the experiment a specific transversal rotation axis can
be chosen by setting the phase ϕ accordingly (see eq. (3.1)). Thus, the RF-rotations
allow well-controlled rotations in the spin sphere.

Experimental Application of Spin Dipole Rotations
As we have seen, spin-1 states can be rotated around the Fi axes arbitrarily, such
that initial states of any spin direction may be prepared. x- and y-rotations can be
implemented via RF coupling while z-rotations can be achieved by Larmor precession
in the external magnetic field. Then, after evolving the system with a specific
Hamiltonian the quantity of interest needs to be extracted. Section 3.1 described
that the only experimentally accessible observables in the system are the atomic
densities ni of the magnetic sublevels. This allows the direct measurement of Fz,
however, to access the coherences contained in the other spin projections the state
needs to be rotated first. Here, the same techniques which allow the generation of
arbitrary spin directions in initial states also enable the access to these projections
as observables. Prior to the imaging sequence, the preferred spin axis can be rotated
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(a) (b) (c)

Figure 3.3: Visualisation of different rotations in the spin sphere of expectation
values. For the states discussed here the dipole expectation value F is marked with
a black dot. Additionally, the red ellipsoid shows the directions and amplitudes of
the corresponding fluctuations for an atom number of N = 10. Its half axes are
calculated from the eigenvectors and eigenvalues of the spin covariance matrix (2.8).
a) θ = π/2 rotation of an aligned z-spin to the transversal plane by a rotation
with F̂y. b) Time evolution of the state |Ψ〉 = 1/2 (1, 1− i, −i)T with F̂z (Larmor
rotation around external magnetic field) in the transversal plane by θ = 3π/4. The
state has spin length |F | = 0.5 which is preserved throughout the transformation. In
rough approximation the initial fluctuation ellipsoid resembles a disk tilted around
the y-axis which rotates along with the RF-rotation. c) θ = π/2 evolution with ĤRF
(eq. (3.1)) for ϕ = π/4.
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to the z-direction, allowing its readout via sublevel densities. Note however, that
due to fluctuations in the external magnetic field the error on the absolute angle
of the read-out direction in the x-y-plane grows with time. Thus, after long times
a projection axis cannot be imaged with a reproducible relative angle to the initial
state preparation direction. Instead, for multiple fast pulses in short succession their
relative phases can be controlled with high stability.
Mathematically, the read-out of a rotated projection direction can be represented

as time-evolving the state |Ψ〉 of interest with the operators required to generate the
desired rotations. Let us exemplary consider the readout of a spin aligned to the
x-axis. Corresponding to the operation displayed in fig. 3.3a, the desired read-out
mapping is implemented by a θ = −π/2 rotation with F̂y. Thus, writing down the
expectation value extracted in z-direction by the imaging subsequent to the rotation
scheme results in

〈Ψ|e−iπ2 F̂y F̂zei
π
2 F̂y |Ψ〉 = 〈Ψ|F̂x|Ψ〉 (3.3)

shows that the observable extracted by this readout scheme indeed is F̂x. As be-
fore, this technique can be generalised to read out any direction by extracting the
correct order of operator application and corresponding angles by consideration of
the rotations in the spin sphere.
Concluding, we have seen that in a time-evolution the action of spin-1 dipole

operators, which build a SU(2) subspace, are rotations of the spin direction while
preserving the length. To visualise these transformations, the spin sphere was intro-
duced, which allows the full representation of all associated SU(2) transformations.
Implementing these operators via RF-pulses thus allows the preparation of initial
states with arbitrary spin directions. Further, these techniques can be applied to
map any spin direction to the quantisation axis z. The corresponding spin observable
F̂z is directly accessible via Stern-Gerlach absorption imaging.

3.3 Spin Quadrupole Rotations
In the previous section we investigated the dipole operators, which are routinely
applied in experiments on spin-1/2 systems. However, as discussed in section 2.1
a spin-1 particle possesses additional degrees of freedom which are associated with
the spin quadrupole operators Q̂ij. Thus, they are of similar importance as the spin
dipoles for the control and read-out of spin-1 systems. Generally, accessing these
operators requires a different approach than the one presented for the transversal
spin projections. Since the quadrupoles contain coherences between different sub-
levels these are probed by coupling them among each other. Here, multiple RF- and
MW-pulses as well as time evolutions in the external magnetic field are required for
the read-out.
A useful insight into the spin system is the realisation that the SU(3) subdivision

into SU(2) groups discussed in section 2.1.2 allows the treatment of a small set of
observables analogous to a spin-1/2 system. Thus, to read out certain quadrupoles,
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first a rotation in a subspace containing the operator of interest is performed which
maps the observable to a dipole direction. Utilising the RF techniques described in
the previous section, this dipole, in turn, can be mapped to the quantisation axis
for imaging. Consequently, most quadrupole operators can be extracted via this
two-step scheme. At first, however we want to consider direct implementations of
quadrupole operators before turning to the manipulation of complete subspaces.

3.3.1 Readout of Qzz and Rotations around Q̂zz

The only quadrupole operator not containing two-level coherences is

Q̂zz =


2
3 0 0
0 −4

3 0
0 0 2

3

 . (3.4)

Thus, this observable can be measured in the z-basis by extracting the densities via
Stern-Gerlach imaging without the requirement for prior rotations.
On the other hand, implementing rotations with this operator requires a new ap-

proach. Considering the form of the coupling matrix (3.4) the action of this operator
results in an energy shift of the sublevels without driving population transfers. In
general, as long as the coupling period is sufficiently short any collisional spin-spin
dynamics can be neglected. Thus, at large external fields the second-order Zeeman
shift, which generates an additional phase evolution of the side modes mF = ±1,
can be utilised to implement this operator. Here, MW dressing can reduce the time
required to implement these coupling pulses by energetically shifting the zero mode
mF = 0.
First, we want to consider the energetic shift of the levels in an external mag-

netic field B. By transforming to a frame co-rotating with the Larmor precession,
the linear Zeeman shift generated by the B-field can be dropped in the effective
Hamiltonian of the system. To understand this, we apply an approach analogous to
the transformation used for obtaining interaction picture operators [17]. Here, the
idea is to remove the action of a solvable part of the Hamiltonian to focus on the
more complex, “interacting” part. Consequently, ĤB from eq. (2.11) is divided into
the linear and second-order Zeeman contributions ĤB,0 = ~pF̂z and Ĥ′B = ~qF̂ 2

z ,
respectively. The former part induces the Larmor precession, thus, to transform to
the co-rotating frame an evolution

ÛL = eiĤB,0t/~ (3.5)

with inverted sign is applied. In the Larmor frame a Schrödinger picture state
ΨS that includes the time evolution with ĤB as time dependence is written as
|ΨL〉 = ÛL |ΨS〉. From this, the Schrödinger equation in the rotating frame can be
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derived as

i~
∂

∂t
|ΨL〉 = i~

(
∂

∂t
ÛL

)
|ΨS〉+ ÛL

(
i~
∂

∂t
|ΨS〉

)
= ÛL

(
−ĤB,0 + Ĥ

)
|ΨS〉

= Ĥ′BÛL |ΨS〉 = Ĥ′B |ΨL〉 ,
(3.6)

where we used
[
ĤB,0, Ĥ′B

]
= 0 because the Hamiltonians exclusively contain powers

of F̂z. Thus, the time evolution in the rotating frame is given by just the second-order
Zeeman contribution Ĥ′B. Experimentally, this transformation to the co-rotating
frame corresponds to evolving the phase ϕ from eq. (3.1) of RF (and MW) couplings
with the Larmor frequency p.
At this point, the remaining second-order Zeeman shift introduces an equal energy

offset for both side modes mF = ±1. Its Hamiltonian can also be written in terms
of the Q̂zz operator

Ĥ′B = ~q (n̂1 + n̂−1) = ~q
Q̂zz

2 + const. (3.7)

by introducing an energy offset of 2/3 ~q to all sublevels which can be neglected
as overall phase. Thus, eq. (3.7) shows that an external magnetic field implements
exactly the rotation of a spin state with Q̂zz when considering the spin-1 system in
the Larmor frame.
Additional to this method, Q̂zz can also be implemented by shifting the energy

of the mF = 0 level via off-resonant MW dressing. [18] This can be achieved by, for
instance, coupling the levels |1, 0〉 ↔ |2, 0〉 with a MW frequency being red-detuned
by δ to the transition. Considering an off-resonant two-level Rabi coupling between
the aforementioned sublevels, the resulting Hamiltonian in the Larmor frame of an
external magnetic field is given by

Ĥ′B = ~
(
q + Ω2

MW
2δ

)
Q̂zz

2 + const., (3.8)

where ΩMW is the corresponding MW Rabi frequency. Consequently, the time re-
quired for Q̂zz rotations can be decreased by applying MW dressing. Thus, limiting
the off-resonant transfer amplitude to 10−3 and assuming a typical experimental
Rabi frequency of ΩMW ≈ 9 kHz, the additional MW-dressing allows an increase of
the coupling frequency to about 3.5 q.
To develop a better understanding of the time evolution with this operator let us

consider the example of a fully elongated spin in the transversal plane, e.g. an F̂x
eigenstate with full length: Ψ ∼

(
1/2, 1/

√
2, 1/2

)T
. Using the spinor notation

Ψ =

 Ψ1
Ψ0

Ψ−1

 =


√
n1 e

iϕ1

√
n0 e

iϕ0

√
n−1 e

iϕ−1

 (3.9)
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(a) Initially fully elongated spin in x-
direction with ϕS = 0

(b) Decreased spin length after spinor phase
rotation to ϕS = π/2

(c) At ϕS = π the state is a tilted polar
state (see text) with zero spin length

(d) For larger spinor phases (ϕS = 3π/2)
the spin projection extends to negative val-
ues of Fx

Figure 3.4: Evolution of an fully elongated spin in x-direction under second-order
Zeeman shift (in the Larmor frame) displayed in the spin sphere. The red ellipsoids
show the fluctuations of the corresponding states in all spatial directions (computed
via eq. (2.8)) for N = 10 atoms. Complementary, the centre of the fluctuation ellip-
soid (black dot) marks the spin dipole expectation value. The evolution of the state
is shown in steps of π/2 in the spinor phase. Initially (a), the fully elongated spin in
x-direction (ϕS = 0) shows small fluctuations transversal to the spin direction. By
increasing the spinor phase to ϕS = π/2 (b) the dipole projections (“spin length”)
reduces while the fluctuations quickly transform to contain the largest contributions
in a plane titled by 45◦ around x against the transversal plane. For ϕS = π (c) the
spin length vanishes and the fluctuations lie entirely in the tilted plane. Thus, this
resembles a fully aligned state. Continuing the phase evolution beyond this point
(ϕS = 3π/2), the spin projection extends to negative x-direction (d). Afterwards,
the state will continue its oscillation; first arriving at a fully elongated spin antipar-
allel to x at ϕS = π before arriving at the initial state again for ϕS = 4π. During
the whole evolution the spin projection in y- and z-directions remain zero.

20



with normalisation n2 = n2
1 + n2

0 + n2
−1 these states are characterised by sublevel

amplitudes n1 = n−1 = n/4 and n0 = n/2. Recalling the coupling matrices of
the linear and second-order Zeeman shifts, we also see that the magnetic field acts
symmetrically on the side mode phases: ϕ±1 = ϕq ± ϕL, where ϕq = qt and ϕL =
pt. Next, by applying the mean-field approximation for large occupations ni (see
section 2.2) to replace the field operators Ψ̂i by the spinor fields Ψi from eq. (3.9)
the expectation values of the for the transversal spin operators can be calculated to
be

Fx = sin (ϕL) cos (ϕS/2)
Fy = cos (ϕL) cos (ϕS/2) .

(3.10)

Here, we normalised the expectation values with n to a maximum of 1 and use the
Larmor phase ϕL = (ϕ1 − ϕ−1)/2 that characterises the phase evolution under the
linear Zeeman shift. Further the spinor phase ϕS = ϕ1 + ϕ−1 − 2ϕ0 is introduced
to quantify the relative phase evolution between zero and side modes. [8] From
the definition of these two representations of the spin-1 phases it is clear that the
Larmor contribution ϕL is evolved exclusively by the linear Zeeman shift, while the
spinor phase ϕS only depends on the second-order effect via ϕS = 2qt. Finally, from
eq. (3.10) we see that the Larmor phase induces a rotation of the spin expectation
value in the transversal plane as is expected for the spin precession in an external
magnetic field. Furthermore, the spinor phase evolution driven by Q̂zz induces an
oscillation of the total spin length |F⊥| =

√
F 2
x + F 2

y = n|cos(ϕS/2)|.
In fig. 3.4 different stages in the spinor phase evolution are shown inside the spin

sphere. Here, since the state is chosen to have full spin length in the plane, the
initial spinor phase is zero. By evolving ϕS in steps of π/4 in the co-rotating Larmor
frame the spin length decreases along the initial spin axis x. During this evolution
the initial coherent fluctuation disk starts to extend also in the diagonal plane until
the fluctuations form a disk again within this plane for ϕS = π/2. At this point
the spin length has also reduced to zero. These two properties are main features
of a tilted polar state, which will be addressed in more detail below. Continuing
the phase evolution further builds up a negative spin projection along x. As we
have seen from the spin expectation values this oscillation will continue further and
returns to the initial Fx eigenstate for ϕS = 4π.
Experimentally, not only a fully elongated spin state but also the polar state

Ψ ∼ (0, 1, 0)T can be accessed by fast coupling pulses. Besides a vanishing spin
length this state possesses fluctuations only in the x-y-plane (fluctuation disk). Spin-
dipole rotations, as can be seen in fig. 3.3, rotate not only the expectation value
F but also the fluctuation eigenvectors. From this we can understand that the
state displayed in fig. 3.4c corresponds to such a polar state whose fluctuation disk
is rotated around the x-axis. The corresponding spin-dipole rotations around a
transversal axis drive population transfers between zero and side modes via terms
like Ψ̂†0(Ψ̂1 + Ψ̂−1). This couples the zero with the side modes, which consequently
drives population transfers between the levels. Explicitly evaluating the process,
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rotating the polar state by an angle ϑ builds up the side mode population according
to n±1 ∼ sin2(ϑ)/2. Starting from this tilted polar state we can again investigate a
subsequent spinor phase evolution. From Inserting the new normalisation condition
into the calculation leading to eq. (3.10) the spin length for this new scenario can
be obtained as

|F⊥| = |sin (2ϑ) sin (ϕS/2)|. (3.11)

In this equation ϕS specifies the spinor phase accumulated after preparation of the
initial state. The dependence on this phase is given by a sine because the tilt of the
polar already introduces a phase offset ϕS = π. This results from the prefactor of
the spinor side modes introduced by the spin-dipole rotation.
Thus, by starting from both an elongated transversal spin or a polar state a spin

with controlled amplitude can be implemented. The change in spin length is driven
by a spinor phase evolution due to the second-order Zeeman shift in an external
magnetic field. Later, we will implement both of these methods to generate specific
spin lengths.

3.3.2 Readout of 〈Q̂xz〉 and 〈Q̂yz〉

The next quadrupoles we want to consider are Q̂xz and Q̂yz. These, in contrast
to Q̂zz, contain coherences between all magnetic sublevels and are similar to the
transversal dipole operators F̂y and F̂x. Since the treatment of the second pair of
operators is completely analogous to (F̂x, Q̂yz), here the discussion is limited to these
two operators. To illustrate their connection, let us consider

F̂ (θ) := eiθ/2
√

2
Ψ̂†0

(
Ψ̂1 + Ψ̂−1

)
+ h.c.. (3.12)

For θ = 0 this is the dipole operator F̂ (0) = F̂x and for a phase of π it becomes the
quadrupole F̂ (π) = Q̂yz. Since Ψ̂0 appears in each of the terms the prefactor eiθ/2 can
be linked with the phase of themF = 0 component. This relative phase accumulation
between the zero and side modes is equivalent to a spinor phase evolution by ϕS = π.
At the end of the previous section we have seen that this corresponds to the action of
Q̂zz, i.e. the second-order Zeeman shift. Thus, one expects to obtain the quadrupole
observable Q̂yz if first evolving the spinor phase by π and afterwards mapping the
dipole direction F̂x to the quantisation axis z (see fig. 3.5). Explicitly, these scheme
can be verified by calculating

〈Q̂xz〉 =
〈
ei
π
2 (n̂1+n̂−1)ei

π
2 F̂xF̂ze

−iπ2 F̂xe−i
π
2 (n̂1+n̂−1)

〉
, (3.13)

Here, the equivalent expression for Q̂xz is obtained by replacing F̂x → F̂y in eq. (3.13).
We see that by building on spinor phase rotations from section 3.3.1 and mappings
of spin dipoles to the readout direction from section 3.2 even more observables of
the spin-1 system become accessible.
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Figure 3.5: Schematic sequence for the experimental implementation of Q̂yz or
Q̂xz read-out. After the evolution period the system is held in a constant external
magnetic field to generate a spinor phase evolution by ϕS = 2qτq. This step maps
the quadrupole to the transversal dipole operators. Thus, by a subsequent RF π/2-
pulse their projections are extracted by imaging the sublevel densities and inferring
Fz. After this mapping scheme the extracted value resembles a measurement of
projection onto the corresponding quadrupole.
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3.3.3 Readout of 〈Q̂xy〉 and 〈Q̂y2−x2〉
Now we turn to operators which, require a different approach for reading out their
expectation values. Here, the observables of interest have the form

Q̂xy =

0 0 −i
0 0 0
i 0 0

 and Q̂y2−x2 =

 0 0 −1
0 0 0
−1 0 0

 , (3.14)

which shows that these operators only contain coherences between the side modes
mF = ±1. Recalling the spin dipole rotations from section 3.2, these can be im-
plemented by coupling different sublevels via oscillating magnetic fields. Further,
by removing the central line and column from the matrices we see that these op-
erators are essentially the x and y Pauli matrices from eq. (2.2). Thus, in analogy
to a spin-1/2 system, the couplings which need to be implemented are those of a
two-level system. Here, this system is composed of only the mF = ±1 levels, thus
the zero mode is not allowed to be coupled to any of the other levels. Consequently,
the usage of an ancilla level in the F = 2 manifold is required to either shelve the
one level or allow direct two-level coupling of the side modes. This again allows for
two schemes: applying MW or RF pulses to achieve mixing of the spin side modes.
First, we consider MW-coupling to access the coherences. The pulse sequence

implementing this readout (see fig. 3.6a) first transfers the total |1,−1〉 population
to |2, 0〉 by a MW π-pulse. Then, another coupling implements the π/2-mixing of
|2, 0〉 ↔ |1, 1〉, before reversing of the initial population transfer. Here, by interpret-
ing the π/2 mixing pulse in the spin-1/2 picture, this process can be regarded as
a spin rotation. Thus, this shows that by changing the phase of the mixing pulse
(i.e. tilting the rotation axis) by π/2 we can switch between readout of Q̂xy (corre-
sponding to σ̂x) and Q̂y2−x2 (corresponding to σ̂y). Furthermore, this approach also
provides information about the quantities which have to be extracted in this scheme.
As for the usual spin mappings from the transversal directions to the z-axis the rel-
evant quantity is the z-spin in the mF = ±1 subsystem. Here, this corresponds to
the usual spin Fz.
Explicitly, these sequences can be proven by extending the spherical basis we

usually apply to describe the F = 1 manifold by the state |2, 0〉: (a, b, c, d)T =
a |1, 1〉+ b |1, 0〉+ c |1,−1〉+ d |2, 0〉. With this, the Hamiltonians Ĥ1 of the transfer
|1, 1〉 ↔ |2, 0〉 and Ĥ2 of the mixing pulse can be represented as

Ĥ1 = 1
2


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 and Ĥ2(ϕ) = 1
2


0 0 0 0
0 0 0 0
0 0 0 eiϕ

0 0 e−iϕ 0

 , (3.15)

where ϕ is the relative MW phase between the first and second pulse in the rotating
Larmor frame. Using this and also extending the quadrupole matrices to this basis,
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(a) Pulse sequence for MW-mixing. (b) Pulse sequence for RF-mixing.

Figure 3.6: MW- and RF-pulse sequences for the read-out of Q̂xy and Q̂y2−x2 . The
circled numbers mark the chronological order of the pulses. In both cases the phase
of the π/2 mixing pulses determines which of the quadrupole operators is extracted
(see text). a) First, a MW π-pulse transfers the population from the level |1,−1〉 to
|2, 0〉. Then, a π/2-pulse induces mixing with |1, 1〉 before the same π-pulse transfers
the population back to |1,−1〉. b) Initially, the zero mode atoms are shelved in |2, 0〉
by a MW π-pulse. Subsequently, a RF π/2-pulse mixes the side modes.
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the following relations can be verified:
〈
Q̂xy

〉
=
〈
eiπĤ1ei

π
2 Ĥ2(π2 )eiπĤ1F̂ze

−iπĤ1e−i
π
2 Ĥ2(π2 )e−iπĤ1

〉
,

〈
Q̂y2−x2

〉
= −

〈
eiπĤ1ei

π
2 Ĥ2(0)eiπĤ1F̂ze

−iπĤ1e−i
π
2 Ĥ2(0)e−iπĤ1

〉
.

(3.16)

Thus, these quadrupole coherences can be extracted by direct MW-coupling of the
corresponding sublevels, where the phase of the MW-pulses selects between the two
operators.
Instead of MW-coupling also a RF pulse can be used to mix the side modes.

However, from eq. (3.1) we can see that this coupling, via the perpendicular spin
dipole operators, also generates mixing with the mF = 0 mode. To avoid this, the
population of the zero mode can be shelved to |2, 0〉 for the duration of the RF
coupling. Thus, following the MW π-pulse resonant to |1, 0〉 ↔ |2, 0〉 a RF π/2-
pulse is applied to mix the side modes (see fig. 3.6b for the full pulse scheme). In
this case, however, because the RF-mixing also involves the zero mode the spin-1/2
picture of a two level system is not applicable here. Consequently, instead of F̂z
another quantity must be extracted from the densities after the mapping scheme:
ρ0 = n0 − (n1 + n−1), or in operator form

ρ̂0 := 2n̂0 − 1 =

−1 0 0
0 1 0
0 0 −1

 . (3.17)

Furthermore, also the phases of the RF-pulse must be chosen differently than pre-
viously: −π/4 for Q̂xy and π/2 for Q̂y2−x2 .
To check the equivalence of this method and the quadrupole expectation values

it is useful to first introduce the projector onto the side modes

P̂±1 :=

1 0 0
0 0 0
0 0 1

 , (3.18)

which effectively describes the shelving by removal of the mF = 0 population from
the F = 1 manifold. Neglecting the small F̂z term in eq. (3.1) we can now calculate

〈
Q̂xy

〉
=
〈
P̂±1e

iπ2 ĤRF(−π4 )ρ̂0e
−iπ2 ĤRF(−π4 )P̂±1

〉
,

〈
Q̂y2−x2

〉
=
〈
P̂±1e

iπ2 ĤRF(π2 )ρ̂0e
−iπ2 ĤRF(π2 )P̂±1

〉
.

(3.19)

Thus, this scheme allows the read-out of the same quantities as the MW-only
method.
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4 Measurement of Quadrupole Rotations
and Observables

So far, the concept of rotations in spin-space has been discussed. Here, measure-
ments implementing these methods for either state preparation or read-out are pre-
sented. Utilising the dynamics in an external magnetic field, the spinor phase evolu-
tion of states with different transversal spin lengths is observed. The results obtained
there, in turn, are applied to engineer a spin wave in space. Furthermore, follow-
ing a quench in of the side-mode detuning after long-time evolution quadrupole
observables are measured to investigate the loss of spin length at late times.

4.1 Spinor Phase Evolution of Transversal Spin
In an external magnetic field a spin-1 system is subject to first and second-order
Zeeman shifts p and q, resulting in an accumulation of Larmor and spinor phase,
respectively. As we have seen in section 3.3.1 the spinor phase evolution of states
in the transversal plane results in an oscillating spin length. Meanwhile, in the
experiment the Larmor precession is taken into account by evolving the phase of the
RF-pulses at the corresponding frequency. For short evolution times. In principle,
this should allow the readout of not only the spin length but also the direction in
the transversal plane. However, we will see that fluctuations in the magnetic field
strength hinder this extraction.
To experimentally probe the spin length oscillations induced by changes in the

spinor phase via the second-order Zeeman shift two different initial conditions are
used. Starting from a fully elongated spin in x-direction the oscillation of spin length
with evolution time is extracted. In a second measurement, zero-length states with
different rotation angles are transformed by a spinor phase rotation of constant
duration.

Spinor Phase Evolution of an Elongated Spin
We start with the case of an initially fully elongated transversal spin. For this ex-
periment, ca. 56 000 atoms are loaded into the crossed dipole trap. Compared to
the elongated waveguide potential introduced in section 3.1 the longitudinal confine-
ment is increased to minimise the effect of spatial magnetic field gradients. First, an
elongated transversal spin is produced from the initial BEC in |1,−1〉 by a RF π/2-
rotation. Because the initial Larmor phase cannot be extracted experimentally the
absolute rotation axis of the first pulse is unknown. However, due to the rotational
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Figure 4.1: Schematic overview of the pulse sequence for observing the spinor
phase rotation of an elongated spin oriented perpendicular to the B axis. The first
RF pulse rotates the initially fully polarised spins from the z-axis to the x-y-plane.
Subsequently, the spinor phase evolves for a certain amount of time tevo due to
the second order Zeeman shift. Finally, before readout another RF-pulse maps a
transversal spin direction to the quantisation axis for Stern-Gerlach readout during
the imaging sequence. Here, the relative phase between the two RF-pulses allows
the selection of the readout direction (see text).

symmetry around the magnetic field axis only the relative phase between initial
and read-out direction in the transversal plane is of interest for the spin dynamics.
Thus, the initial rotation axis can be defined as Fy to fix a coordinate system for
the following discussion.
After the first RF-coupling of duration τRFπ/2 = 14.3 µs, the system evolves for the

time interval tevo in an external magnetic field of B = 0.884 G (see fig. 4.1 for the full
experimental sequence). Starting with the spinor phase ϕS = ϕ1 + ϕ−1 − 2ϕ0 = 0,
during the evolution time the state picks up the phase ϕS = 2qtevo (see section 3.3.1).
In the experiment the system is evolved for up to tevo = 18 ms and afterwards a
second RF-pulse enables the extraction of the transversal spin. Here, by controlling
the relative phase ϕ between the two RF-signals the read-out direction is set (see
eq. (3.1)). In the co-rotating Larmor frame the introduction of this phase shift
rotates the read-out axis by an angle ϕ around the z-axis. Thus, ϕ = 0 corresponds
to the extraction of Fx and ϕ = π/2 accesses Fy.
After mapping to the z-basis the transversal spin projection is inferred from the

atom numbers Nm in the magnetic sublevels mF . Values for Nm are extracted
by associating each Stern-Gerlach-separated cloud of atoms to the corresponding
sublevel and summing the atom numbers obtained for each pixel in this region.
Then, the normalised z-projection is obtained with Fz = (N1−N−1)/(N1+N0+N−1).
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Figure 4.2: After initialisation of a fully elongated transversal spin and subse-
quent spinor phase evolution for the period tevo the spin length projected on equally
sampled transversal directions is extracted. Here, the spinor phase evolution is im-
plemented by a second-order Zeeman shift of q ≈ 2π× 55.9 Hz. Across the set of all
realisations with the same tevo the maximum length is extracted and plotted against
evolution time (grey dots). The solid curve displays the best fit of eq. (4.1) with
amplitude, phase, and frequency as free parameters. Within its errors the phase
extracted by the optimisation is zero but the oscillation frequency from the second
order Zeeman shift by about 3 Hz.

For the first analysis procedure the maximal spin length is extracted from the set
of realisations prepared with the same evolution time tevo. Figure 4.2 shows these
values as function of tevo.
To describe the transversal spin length, a function of the from

|F⊥|(t) = |A cos (qefftevo + ϕ)| (4.1)

is used. To compare the oscillation in the spin length with the expectation from the
Hamiltonian (3.7) the parameters of eq. (4.1) are extracted by a fit to the data (solid
line in the upper plot of fig. 4.2). The phase offset extracted by the optimisation is
ϕ = (0.03± 0.04)π. This agrees the expectation of a vanishing value when assuming
an initial spin length of |F⊥| = 1. While in section 3.3.1 the spin length is predicted
to oscillate with q ≈ 2π× 56.2 Hz, the fit value qeff = 2π× (52.9± 0.6) Hz is smaller
by ∆q ≈ 2π × 3.3 Hz. This deviation may be introduced by mean field shifts of
the magnetic sublevels. Equation (2.15) shows that when writing the spin-spin
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interaction in terms of the field operators five terms arise which only contain sublevel
populations. All of them contain the side mode populations but only two depend
on mF = 0. Assuming the sublevel densities of a fully elongated transversal spin
n1 = n−1 = n0/2 (see section 3.3.1) and taking into account the prefactors of the
spin-spin energy a larger shift for the side modes may be expected in a mean-field
approximation. This shift, due to the negative sign of c1 will reduce the frequency
of the spinor phase evolution, which would result in a reduced qeff. Additional to
the reduction in frequency, also the oscillation amplitude A = 0.96± 0.02 shows a
deviation from the full modulation amplitude expected for the spin length |F⊥| = 1.
This may originate from a decay in the oscillation amplitude with time. However,
the fit residue in fig. 4.2 does not indicate a clear trend supporting this scenario.
Thus, also a reduced but constant spin length is compatible with the data. While
the former case is not captured by the spin dynamics presented here, a reduced
amplitude is explainable by a deviation of the RF-pulse duration from the exact
time required for a π/2-pulse. Here, an error of ∼ 2.5 µs would explain the measured
amplitude.
In the experiment the second RF-pulse was generated with 12 equally spaced

phases between ϕ = 0 and ϕ = 11π/12. This should allow the read-out of spin
projection directions rotated by ϕ with respect to the Fx-axis in the transversal
plane. Figure 4.3 shows the spin projections for the different read-out phases. Each
scan of the phase was repeated five to ten times for every evolution time. Here, the
projections are displayed colour-coded for each phase (x-axis of plot) and repetition
(y-axis of plot). For the shortest time tevo ≈ 1.48 ms, corresponding to ϕS ≈ 0.33 π,
a sinusoidal modulation of the spin length with the readout direction is visible. This
confirms the existence of a well-aligned spin along a fixed direction. However, the
initial state was aligned to the Fx-axis which would corresponds to measuring the
maximal value at an angle 0. Instead, the readout corresponds to a polar angle
of θ = (0.68± 0.01)π. Here, the offset phase was estimated by a fit to the fringe
obtained from all read-out phases ϕ while averaging the data for each ϕ over the first
five repetitions. This phase shift may be induced by a residual magnetic field offset
which can be estimated with ∆B = θ/(ptevo)B ≈ 0.3 mG. However, this offset would
reduce the modulation amplitude of MW-Rabi couplings which is not compatible
with experimental observations. Thus, ∆B must be smaller than this value and
consequently the phase shift in the read-out direction is not entirely induced by a
magnetic field offset. Because over short time periods the read-out direction can be
reproduced very well, which excludes the RF-electronics as source of this offset. As
remaining possibility this leaves small drifts in the magnitude of the magnetic field
on the time scale of ∼ 1 ms.
Furthermore, for the sixth repetition of the first evolution time this fringe phase

changes. This is caused by a small adjustment of the magnetic field (see discussion
of fig. 4.6). Here, by observing a Ramsey fringe for a coupling of |1,−1〉 ↔ |2, 0〉 the
magnetically induced shift of the former state can be measured. From the detuning
of the transition frequency to the splitting at B = 0.884 G the accumulated drift in
B is quantified and counteracted by adjusting the current trough a set of bias field
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coils accordingly.
The changes in the fringes for larger tevo show that with increasing hold time the

variations of the spin lengths from one experimental realisation to another increase.
Because over a time scale of tevo . 1/(2q) the spin length oscillation agrees well
with a variation of constant amplitude (see fig. 4.1) it can be assumed that the
oscillation of the spin projection along the Fx-axis is still valid. Instead, short-
term fluctuations in the magnetic field strength scramble the transversal readout
direction. Thus, the varying B induces a slightly different linear Zeeman shift than
assumed by the experimental control. Consequently, the RF-signal accumulates a
phase error which results in a tilted read-out axis.

Control of Spin Length via Spinor Phase Evolution of a Tilted Polar
State
The second experiment utilising spinor phase evolutions with Q̂zz minimises the
influence of magnetic field fluctuations by keeping the evolution times as short as
possible. Here, the experiments are carried out with ∼ 72 000 atoms in the elongated
waveguide potential described in section 3.1. Nevertheless, the inference of the spin
projections is performed analogously to the previous measurement. Starting from a
state with zero spin length an elongated spin is created by a spinor phase evolution
of ϕS = π, as already introduced in section 3.3.1. Experimentally, first a polar state
Ψ = (0, 1, 0)T is prepared by two MW π-transfers |1,−1〉 → |2, 0〉 → |1, 0〉 (see pulse
sequence in fig. 4.4). Since this state only accumulates an overall phase under Q̂zz,
next the side modes are populated by a RF-coupling of duration tRF. Equivalently,
this can be interpreted as a rotation of the polar state around a transversal axis
by an angle θRF (see fig. 3.4c for a visualisation of θRF = 45◦). Afterwards, the
evolving spinor phase generates spin length in the direction of the initial tilt axis.
Analogous to the previous measurement multiple transversal spin projections are
extracted by a second phase-locked RF-pulse. Here, the initial tilt axis is defined
as the x-direction and the read-out projection addressed by the second RF-pulse is
specified by the polar angle ϕ in the transversal plane, where ϕ = 0 specifies the
initial x-direction.
First let us investigate the prediction of the spin length along the x-axis after the

application of this procedure. This value can be calculated by an application of the
RF-pulses described above to the polar state |Ψ〉. Since the initial rotation angle
θRF is scanned in this measurement, we explicitly take the first RF rotation into
account when calculating the time evolution:〈

F̂x
〉

(θRF) = 〈Ψ|eiθRFF̂xei
π
2
Q̂zz

2 F̂xe
−iπ2

Q̂zz
2 e−iθRFF̂x|Ψ〉 = − sin (2θRF) . (4.2)

Here, the angle θRF = ΩRFtRF with RF Rabi frequency ΩRF = 2π× (17.5± 0.2) kHz
is experimentally controlled by the coupling time of the initial RF pulse.
Applying the same analysis as previously, the maximum spin length across all

readout directions in the transversal plane (shown in fig. 4.5) is evaluated. Here,
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Figure 4.3: Spin projections (colour-coded) after spinor phase evolution of dura-
tion tevo by the second-order Zeeman shift in an external magnetic field. For each
graph the vertical axis specifies the phase of the second RF-pulse and horizontally
the number of the experimental repetition is indicated. Scanning the phase of the
read-out pulse rotates the projection direction in the transversal plane. This gener-
ates the fringe structure in vertical direction of the first plot (tevo = 1.48 ms), which
is compatible with a well-defined spin direction, as expected for a coherent prepa-
ration procedure. Due to a non-zero offset of the magnetic field the maximal spin
length does not coincide with the initial spin direction Fx (read-out phase zero).
With increasing evolution time a variation of the spin length is visible, which is
induced by the spinor phase evolution (see fig. 4.2). However, for increasing tevo the
fringe structure becomes increasingly scrambled. The origin for this are fluctuations
in the magnetic field amplitude which lead to fluctuations in the read-out phase
and thus a varying spin projection direction in the transversal plane. White data
points correspond to realisations which were filtered out due to exceptionally large
deviations in the total atom number or malfunctions in the experimental control.
For tevo = 4.44 ms only five fringes were recorded.
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Figure 4.4: Schematic overview of the MW and RF pulse sequences for measuring
the transversal spin of a rotated polar state with subsequent spinor phase evolution
by ϕS = π. The MW pulses initialise the atoms in the polar state |1, 0〉, which is
then rotated by the angle θRF around an axis perpendicular to B. Evolving this
state with a second order Zeeman shift in an external magnetic field for a period
τq = 2π/(2q) generates spin length in the transversal plane. For read-out t different
spin projections is mapped onto the quantisation axis by another phase-locked RF
π/2-pulse.

the data is fitted with

|F⊥|(t) = A |sin (2ΩtRF + ϕ)| , (4.3)

which is derived from eq. (4.2) such that Ω matches the RF Rabi frequency if
the model provides a good description. The amplitude A = 0.994± 0.007 and
phase ϕ = (0.00± 0.01)π of the best fit show a perfect agreement with expected
behaviour. Here, this resembles a fully modulated oscillation at A = 1 starting
from an initial state without spin length (vanishing offset phase ϕ = 0 of the sine
function). Further, the fit residue in fig. 4.5 shows no long-time trend, confirming
that a spinor phase evolution by π (π/2-rotation with Q̂zz) allows a well-controlled
adjustment of the transversal spin length. However, comparing the frequency Ω =
2π × (16.91± 0.02) kHz obtained from the fit with the Rabi frequency ΩRF used in
the experiment reveals a deviation of ∆Ω ≈ 2π× 0.6 kHz. Because the value of ΩRF
was estimated from the duration of a π/2-pulse a drift of ΩRF over a period of less
than τRFπ/2 cannot be excluded. For example, a reduction of the RF-voltage amplitude
by 2 % over this time period may already explain the difference ∆Ω. Thus, the most
plausible cause for the deviation of the fit frequency seems to be a fast change in the
RF Rabi frequency, leading to an over-estimation of its value from the experimental
parameters.
As before, additional to the spin length also its transversal orientation can be

extracted. Figure 4.7 (top) shows two exemplary fringes from equivalently prepared
states projected along 12 different transversal directions. From these sinusoidal fits
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Figure 4.5: A polar state is first rotated by different angles θRF around a transversal
axis and then its spinor phase is evolved by π. The upper plot shows the maximal
transversal spin length across a set of spin projections with equally spaced read-out
phase for each initial rotation angle θRF. As solid line the best fit of eq. (4.3) is
displayed. The corresponding frequency Ω = (16.91± 0.02) kHz lies close to the
expected value of the RF Rabi frequency ΩRF ≈ 17.5 kHz. In the lower half the
residue of the fit is displayed.
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the phases are extracted and phase jumps ≥ π between consecutive realisations are
removed by adding ±2π to reduce the step size. Plotting the phases in chronological
order of their measurement in fig. 4.6 (top) shows many positions where the value
suddenly changes while staying approximately constant before and after the jump.
These sudden phase changes coincide with control measurements of the magnetic
offset field (vertical dashed lines in the plot). At these points the magnitude of
the field is measured and adjusted when required. This confirms the observation
from before that the residual magnetic field changes from the adjustment procedure
introduce significant Larmor phase errors in the RF-pulses. Due to small changes in
the Larmor frequency the relative phase of the RF-rotations, even after an evolution
time of just about 4 ms, cannot be reproduced reliably over a long time of data
taking. Thus, reading out absolute spin directions in the Larmor frame is not
possible for such evolution times.
Even though no long-term stability of the read-out direction can be provided

the magnetic field seems to be sufficiently stable to allow the read-out of relative
direction in subsequent realisations over a time scale of a few minutes. Thus, fitting
these fringes with a sinusoidal function of free amplitude provides another method
to infer the spin length of the state. Averaging over all spin lengths obtained from
equal experimental realisations and plotting the result in fig. 4.7 (centre) shows
the same periodic structure as the evaluation of the maximum across the complete
experimental sample (fig. 4.5). Applying the same function (4.3) as before, the phase
and amplitude of the transversal spin length oscillation is extracted by a fit. Here,
the offset phase ϕ = (0.015± 0.018)π agrees with a value of zero expected for the
initially vanishing spin length. However, the normalised spin length of 0.91± 0.01
is smaller than the full amplitude of 1. This value corresponds to a spinor phase
accumulation of π from a polar state rotated by 45◦ against the transversal plane (see
eq. (3.11)). The reduction of the oscillation amplitude originates from fluctuations
in the measurement. Constrained by the extraction method, no normalised spin
values outside of the interval [−1, 1] can be measured. Thus, fluctuations for spin
values close to the bounds of this interval favour a reduced absolute value of the
spin projection. Consequently, for large amplitudes almost any source of fluctuations
reduces the inferred spin length, inducing a diminished amplitude of the fits. Here,
the main source of fluctuations is the magnetic field, scrambling the Larmor phase,
and thus tilting the read-out direction. Independent from these error sources, the
RF Rabi frequency extracted from the periodicity of the fit should not be influenced
by these error sources. However, the resulting value Ω = 2π × (16.83± 0.03) kHz
shows a small deviation of 2π × 0.08 kHz from the value obtained by the previous
analysis. This discrepancy, although exceeding the standard error interval of the
fits, is still small enough to be attributed to the scatter of the read-out direction,
which limits the reliability of the amplitude extraction from the fringes.
In this section we experimentally showed that the time evolution in a constant

magnetic offset field induces a spinor phase evolution which transforms spin length
in the transversal plane to alignment. Here, the fully aligned state, i.e. a zero spin
length state with fluctuations confined to a plane, is the polar state titled by 45◦
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Figure 4.6: After preparing a polar state which is tilted by different angles against
the transversal plane the spinor phase of the state is evolved by π to transform
the initial alignment to spin length. The upper plot shows the fringe phase from
a sinusoidal fit (vertical dashes resemble the fit uncertainty) to 12 spin projections
measured by rotating read-out directions in the transversal plane (see fig. 4.7 for
exemplary fits). The y-axis (shared with the lower plot) shows the chronological
number of the fringe; the whole plot corresponding to a total measurement time
of about 1 d. Missing data points correspond to fringes where too many single
realisations were discarded to allow reliable fitting. Here, single shots are filtered out
due to malfunctions in the experimental control or large atom number fluctuations.
The positions of phase steps correspond to points where the magnetic field offset
was adjusted to counteract drifts. A value proportional to the current offset on
the magnetic field coils is shown in the lower plot. At each vertical dashed line
the magnetic field strength was measured and, if required, adjusted via the current
offset.
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against the transversal plane. By analysing the oscillation frequency a deviation
from the magnetically induced second-order Zeeman shift becomes apparent. This
difference may be attributed to mean-field shifts which depend on the total density
as well as the momentary spin state.

4.2 Preparation and Control of Spinwaves
Spin Wave in the Orientation of the Fluctuations
Next, we want to apply the concept of the spinor phase evolution in external mag-
netic fields to understand controlling initial spin states. More precisely, here a spin
wave is considered. Here, contrary to a spatially oscillating spin projection in this
case the direction of fluctuations is varying over the spatial extent of the system.
To implement this scenario we initially start form a polar state with vanishing spin
length and dipole fluctuations only in the transversal plane. Thus, a direction can
be defined by its normal vector, which, in the following, we will call fluctuation or
alignment direction.
The experiment is conducted with ∼ 67 000 atoms in the elongated waveguide

trap. First, all atoms are transferred to the mF = 0 mode by two MW transfers
(see fig. 4.8a for the whole preparation scheme) to initialise the polar state. Next,
a partial Ramsey sequence is implemented by two RF π/10-pulses on a fraction of
the total population. Defining the initial rotation axis as Fy, the first pulse tilts
the polar state against the transversal plane. This transfers a small fraction of the
zero mode population to the side modes. In the external magnetic field these two
mF = ±1 levels then accumulate a Larmor phase. This corresponds to the precession
of the fluctuation direction around the magnetic field axis B. To generate a spatially
dependent phase shift, the magnetic offset field is superimposed with a small spatial
gradient field pointing along the longitudinal trap direction. In a frame co-rotating
with the Larmor precession induced by the constant offset field this leads to a linear
accumulation of Larmor phase with position x along the atomic cloud. Consequently,
this results in a precession of the fluctuation direction in space. Additional to the
Larmor phase accumulation the side modes also experience a spinor phase evolution
while being held in the magnetic offset field. Since the strength of this offset field
is much larger than the amplitude of the gradient field, the spinor phase can be
assumed to be constant over the extent of the trap. As we have seen in the previous
sections 3.3.1 and 4.1, applying this phase evolution to a tilted polar state induces
an oscillation in the transversal spin length. Thus, we expect to not only obtain a
spin wave in the fluctuation direction but also in the transversal orientation of the
spin-dipole components. Thus, the second RF π/10-pulse also tilts the transversal
spin away from the plane, resulting in a reduction of the perpendicular amplitude
by the fraction 1− cos(π/10) ≈ 0.05.
Because the Hamiltonians of the linear and second-order Zeeman shifts commute

the processes of Larmor phase accumulation in the gradient field and spinor phase
evolution in the offset field can be treated separately. Here, we first discuss the
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Figure 4.7: A polar state is tilted by angles θRF against the transversal plane
and subsequently a spinor phase evolution of π transforms the initial alignment to
spin length. By sampling 12 equally spaced RF-phases for the read-out mapping
of the transversal spin projections to the z-axis different directions are extracted
(see fig. 4.3 and the corresponding discussion). In the upper panels two exemplary
sinusoidal fits to fringes obtained from sampling the polar angle of the projection
direction in the transversal plane are shown. The spin amplitudes extracted by this
method are used as estimator for the spin length and are plotted against the initial
rotation angle θRF in the central panel. The solid line displayed here is the best fit
of eq. (4.3) to the data. Corresponding residues are shown in the lower panel. The
vertical lines mark the 1σ error interval of the spin length plotted in the central
panel. Its size is extracted from the standard deviation of the mean value across a
set of equal fringe measurements.
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Figure 4.8: Pulse sequence of RF and MW couplings used to generate a spinwave
consisting of a polar state with spatially varying tilt axis against the transversal
plane (top). To create this spatial variation a Ramsey sequence with π/10 instead
of /π/4-pulses is used. Here, during the Ramsey interrogation time tRamsey = 100 ms
a spatial magnetic field gradient of B′0 is applied in longitudinal trap direction (bot-
tom), inducing a linearly increasing accumulation of Larmor phase along the trap.
After closing the sequence with the second RF-pulse this phase results in a spatially
oscillating tilt angle of the initially state. Additionally, due to a spinor phase evo-
lution during the Ramsey interrogation time a fraction of the spin alignment of the
tilted polar state is transformed to spin length (see discussion in the text).
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spatial Larmor precession of the fluctuation direction in a frame co-rotating with
the constant offset field. This process can easily be evaluated numerically. Here, all
RF-pulses are chosen to rotate around Fy. Corresponding results are displayed by
fig. 4.9a in form of atomic density profiles. These show the densities expected after
mapping the transversal spin-dipole directions Fx and Fy to the z-axis. Both cases
show oscillating densities in all modes, corresponding to the precessing fluctuation
direction. During the accumulation of Larmor phase this direction is aligned to B.
However, by completing the Ramsey sequence with the second RF π/10-pulse the
precession axis is tilted around the y-direction. Consequently, the projection of the
largest tilt angle appears in the read-out of Fx. Here, the signature of a large tilt
is an increased density in the zero mode. Due to the normalisation the oscillation
takes place with the same phase in all mF -levels and because RF-rotations act
symmetrically on the side modes there are no density differences between mF = ±1,
thus Fz = 0. Resolving the read-out mapping from the perpendicular plane (i.e.
rotating the Fz projection value back to Fx or Fy) this means that the transversal
spin projection F⊥ is zero over the whole cloud. This is consistent with the vanishing
spin expectation values Fx, Fy, and Fz of the initial state because only length-
preserving spin-dipole rotations were executed.
However, comparing this calculation with measured data (fig. 4.9b) shows signifi-

cant differences: the oscillations in the mF = ±1 levels do not occur with the same
phase and indicate a non-vanishing spin length. As discussed already, this build-
up of transversal spin length originates from the spinor phase evolution during the
Ramsey interrogation time. Due to the Larmor phase accumulation in the magnetic
gradient field this spin rotates around the z-axis in space. Correspondingly, fig. 4.9c
shows the spatial modulation of transversal spin length along the trap for a single
realisation. There, the population of the side modes by the first RF-pulse enables
the growth of a spin dipole expectation value along the initial rotation axis. Due to
the magnetic field gradient applied during that period also the spin dipole compo-
nent picks up the same spatial modulation in the Larmor phase. Consequently, the
spin projection along a transversal direction shows an oscillation at an amplitude
corresponding to its length. However, due to the second RF-pulse the amplitude
extracted here is reduced by about 5 % compared to the actual transversal length.
Additionally, superimposed to this Larmor evolution there is the constantly accu-
mulating spinor phase which leads to an oscillation of the spin amplitude in time.
By estimating the expected spin length from the experimental parameters we now

want to compare the measurement with the mechanism of spinor phase evolution
during the Ramsey interrogation time. Fitting the spatial fringes in the spin pro-
jection (see fig. 4.9c for exemplary data) for many realisations allows estimating the
spin length of the wave as average over the fit amplitudes: |F⊥| = 0.183± 0.004.
Here, the uncertainty corresponds to the error of the mean estimated from the stan-
dard deviation across the full set of realisations. This value we now want to compare
to the spin length expected from a spinor phase evolution over a period equal to
the experimental duration. For simplicity, we neglect the gradient field because it
is much smaller than the constant offset field of B = 0.884 G (see below for an esti-

40



0 50 100 1500

0.1

0.2

0.3

0.4

0.5

Position [µm]

N
or

m
. D

en
si

ty

Sublevel Densities in x−Projection

0 50 100 1500

0.1

0.2

0.3

0.4

0.5

Position [µm]

N
or

m
. D

en
si

ty

Sublevel Densities in y−Projection

mF=1
mF=0
mF=−1

(a) Calculated atomic densities for map-
ping of spin projections Fx and Fy to the
z-axis.

50µm

(b) Absorption picture of one experi-
mental realsiation of a spinwave.

0 50 100 150−0.4

−0.2

0

0.2

0.4

Position [µm]

N
or

m
. S

pi
n 

Pr
oj

ec
tio

n

Exemplary Fit to Spin Projetion Over the Cloud

(c) Experimentally extracted transver-
sal spin projection with sinusoidal fit.

Figure 4.9: Density profiles and a spin projection for a spinwave in the fluctua-
tion direction of a polar state tilted against the transversal plane. The preparation
scheme for the spin wave is given in fig. 4.8. a) Calculated spatial density profiles
of all mF -levels for linearly position dependent accumulation of Larmor phase in a
system with constant total density. The spinor phase evolution during the Ramsey
interrogation time is neglected here. In this case, the tilted polar state accumulates
a spatially increasing Larmor phase, leading to an oscillating density distribution
along the extent of the system. However, because the densities oscillate with the
same phase in all modes this indicates that no transversal spin builds up. The
two plots resemble the read-out of the cloud along the Fx (top) and Fy-direction
(bottom). b) Absorption image of the spinwave with colour-coded atomic densities.
From top to bottom the three clouds resemble the mF = 1, 0,−1 components af-
ter mapping of a transversal direction to the z-axis with subsequent Stern-Gerlach
splitting of the atoms. c) Exemplary spin profile extracted from the transversal spin
projection (points) along the longitudinal trap axis. The solid line shows the best
fit of sinusoidal function which is used to extract the amplitude of the transversal
spin.
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mation of the gradient field magnitude). As evolution time we need to consider the
duration tRamsey = 100 ms between the Ramsey pulses. The RF-pulse mapping of the
transversal spin projection to the z-axis directly follows the second π/10 pulse, thus
no evolution after the Ramsey sequence takes place. Also the RF-pulse durations
τRFπ/2 = 14.3 µs are much smaller than tRamsey and can be discarded in the analysis
of the spinor phase. Both the first Ramsey pulse and the read-out are assumed to
rotate around and project onto the Fx-direction, respectively. Then, by neglect-
ing the tilt of the dipole expectation vector induced by the second Ramsey pulse
this procedure corresponds to the spin manipulation presented in section 3.3.1. As
mentioned before, this approximation leads to a ∼ 5 % overestimation of the actual
transversal spin length. An expression for the spin projection was derived previously
which describes the transversal spin length

|F⊥| =
∣∣∣∣sin (2θ) sin

(
ϕS

2

)∣∣∣∣ (4.4)

for this example, where θ = π/10 is the initial tilt angle of the polar state and
the spinor phase ϕS = 2qtRamsey is accumulated during the Ramsey interrogation
period. By keeping the time tRamsey fixed, fig. 4.10 shows the spin length variation
as function of the side mode detuning qeff. As we have already seen in section 4.1
the main contribution to this splitting is given by the second-order Zeeman shift q
but there the actual frequency was reduced by about 3 Hz compared to this value.
Thus, for the spinwave we expect to find an amplitude corresponding to a side
mode splitting qeff close to q which matches the experimental value of ca. 0.183.
Figure 4.10a shows two possible values qeff/(2π) for this scenario: about 54.5 Hz and
55.5 Hz. Compared to the first experiment presented in section 4.1 here the atom
number is higher but the density is lower due to the weaker confinement in the
waveguide potential as compared in the crossed dipole trap. Previously, the shift in
the side mode detuning was explained by mean-field shifts. Other experiments (not
included here) show that to arrive at about the same mean-field shift in the crossed
dipole trap as in the waveguide potential at the current experimental conditions the
atom number must be reduced to less than ∼ 20 000. Thus, here we expect the
actual detuning to be smaller than q by about a factor of & 56 000/20 000 than in
the previous measurement. This estimation arrives at qeff & 2π × 55.1 Hz which is
compatible with the value qeff ≈ 2π × 55.5 Hz obtained from fig. 4.10a.
From the picture of the spinor phase evolution we understand that the spin length

measured in the experiment has the same periodicity as the Larmor phase modula-
tion. Thus, we can further use the frequency obtained from the fits to the spatial
spin projection profile (fig. 4.9c) to infer the magnetic field gradient applied during
the Ramsey interrogation time. To obtain the accumulated Larmor phase as func-
tion of the position x along the cloud we integrate over the ramp of the magnetic
gradient field (see fig. 4.8, bottom):

ϕL(x) = p̃
∫ tend

0
dt B′(t)xt = p̃B′0x

(
tgrad + tramp

2

)
, (4.5)
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Figure 4.10: Calculation of the transversal spin amplitude for two spin waves.
The estimations are carried out by assuming a spinor phase evolution of an initial
state for a fixed time. The result is plotted against different side mode detunings qeff
showing a range of frequencies below the second-order Zeeman shift q ≈ 2π×56.2 Hz
(dashed vertical line). For each scenario the measured spin amplitude is diplayed
as horizontal line. a) Calculation for a spin wave prepared from a polar state tilted
by an angle π/10 against the transversal plane. The spin amplitude resulting after
the spinor phase evolution period of tRamsey = 100 ms is reduced by ca. 5 % to
account for the second RF-pulse in the preparation scheme (see text and fig. 4.8).
b) Spin length for spinor phase evolution for tgrad = 107.50 ms of a fully elongated
transversal spin. For the preparation scheme of the corresponding measurement, see
fig. 4.11.
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where p̃ = p/B is the linear Zeeman shift per magnetic field strength. Inserting the
experimental parameters tgrad = 80 ms and tramp = 10 ms the accumulated phase
difference over the cloud ϕL(`)− ϕL(0) = k` can be equated with the wave number
of the spin wave k = 2π× (9.1± 0.2) mm−1 estimated from the fits to experimental
data. From this we obtain an estimation of the magnetic field gradient applied for
the preparation of this spin wave: B′0 = (96± 2) µG/100 µm.

Spin Wave in the Transversal Spin-Dipole Orientation
In another experiment a spin wave is prepared from ∼ 36 000 atoms in the waveg-
uide potential by first generating a fully elongated spin in the transversal plane by
rotating the initial z-spin using a RF π/2-pulse. As before, subsequent evolution in
a magnetic gradient field induces a spatially varying accumulation of Larmor phase
across the trap. Finally, utilising a mapping of the perpendicular spin to the z-basis
a projection of the transversal spin is imaged. In this measurement the time delay
tdelay = 107.50 ms between the two RF-pulses is chosen such that it is a multiple of
spinor phase evolution periods: qtdelay ≈ 6. Applying two gradient fields of different
amplitudes B′1 = (52± 2) µG/100 µm and B′2 = (215.4± 0.9) µG/100 µm results in
two waves of correspondingly different wavelength (see fig. 4.11b for exemplary plots
of the spatial variation of a transversal spin projection for both cases). These values
are extracted from the data by using similar evaluation methods as above. From
the time profile of the magnetic gradient field (see fig. 4.11a) we obtain the spatial
dependence of the Larmor phase ϕL(x) = p̃B′ixtgrad analogously to eq. (4.5). By
inserting tgrad = 100 ms the field gradients are obtained from the wavenumbers ki
extracted by the fits to the spin projection profiles.
Independent from the spatial frequency, the normalised amplitudes of the spin

waves, because the spinor phase evolution only depends on the constant offset
field, are both equal within the estimated errors: |F⊥,1| = 0.69± 0.01 and |F⊥,2| =
0.690± 0.006. However, although the evolution period was chosen to minimise the
influence of the spinor phase evolution by accumulating an integer multiple of 2π the
spin wave amplitudes extracted in the measurement deviate significantly from the
full length of |F⊥| = 1. Once more, this confirms the observation from section 4.1
and the evaluation of the previous fluctuation direction wave that the spinor evolu-
tion frequency is less than q. Plotting the expected spin length oscillation for the
current experiment against the side mode splitting qeff in fig. 4.10b shows two values
smaller than q that are compatible with the spin length measurements. Since the
relative density distribution between the sublevels (fully elongated transversal spin)
is identical with the first measurement in section 4.1 the estimation of the mean-
field shifts expected for this system are similar to that case. However, sine the other
experiment was carried out with larger atom numbers trapped in a much stronger
confinement (crossed dipole trap), here the shifts are expected to be smaller than
before. Thus, qeff ≈ 2π × 54.3 Hz is the most plausible estimation of the side mode
detuning for this experiment.
Summarising, we have seen that by utilising small transversal magnetic field gradi-
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(b) Exemplary spin projection profiles for different magnetic field gradients.

Figure 4.11: a) RF-pulse sequence for generation of Larmor-phase modulated spin
wave of a transversal spin. After tilting the initially fully elongated spin to the
transverse plane a spatial magnetic gradient field is applied for the duration tgrad =
100 ms to induce a spatially varying Larmor phase in the frame co-rotating to the
offset field. Afterwards the atoms are imaged by mapping the transversal spin to the
quantisation axis with subsequent Stern-Gerlach read-out. b) Exemplary sinusoidal
fit to two Larmor-phase modulated spin waves generated in two gradient fields of
different magnitude.
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ents spin waves with different wavelengths and amplitudes can be generated. These
parameters are induced by a position-dependent accumulation of Larmor phase and
an approximately spatially homogeneous spinor phase evolution. Not only for waves
starting from an elongated transverse spin but also for tilted polar states both mech-
anisms are important. To calibrate the spin amplitude an additional delay period
can be inserted between executing the initial RF-rotation and the application of the
field gradient to adjust the total amount of accumulated spinor phase. The exact
value for this delay, although in first approximation it can be estimated from the
second-order Zeeman shift, has to be determined experimentally. The reason for the
additional shift seems to originate from mean-field shifts which depend on the total
density and the spin state which is being prepared.

4.3 Spin Dipole and Quadrupole Observables in
Long-Time Dynamics

Changing the focus from the preparation of spin states to the read-out of opera-
tors, here measurements are presented that access different quadrupole observables.
For these experiments we are not interested in the evolution on timescales shorter
than the inter-particle dynamics. Instead, the evolution periods accessed in these
measurements lie one order of magnitude above this scale. In particular, here the
evolution following a quench in the side-mode detuning is of interest.

4.3.1 Mean-Field Theory

To understand the changes induced by quenching the side-mode detuning we want
to extend the discussion of the Hamiltonian introduced in section 2.2 to the ground
states for different experimental parameters. For this, first the field operators are
expanded into spatial modes (see eq. (2.14)). Then, assuming the atomic cloud forms
a condensate in the spatial mode with wavenumber k = 0, for the corresponding Fock
operators the Bogoliubov approximation is applied. This allows replacing all zero
momentum modes by their corresponding k = 0 mean-field wave functions. Finally,
to diagonalise the resulting Hamiltonian the Bogoliubov transformation is applied
to rotate the spatial modes to the eigensystem. For a more detailed discussion of
this treatment, see [4, 19, 13].
From the eigenenergies the calculation of the groundstates for the side mode

detuning q is possible. Note here that the spin-spin coupling constant c1 of the
87Rb F = 1 hyperfine manifold is negative, thus inducing ferromagnetic interaction.
For the following experiments two ground state phases are of interest: the polar
phase and the symmetry-broken easy plane ferromagnetic phase. In the former,
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constrained by q > 2n|c1|, the ground state is the polar state

Ψ =

0
1
0

 , (4.6)

which, as we have already seen, has no spin length and only fluctuations in the
transversal plane. Here, in the limit of large zero-mode population the dispersion
relation

ωk =
√

(εk + q) (εk + q + 2nc1) (4.7)

of the side modes can be derived. Proceeding to lower values 0 < q < 2n|c1|, we
arrive at the easy-plane ferromagnetic phase where the ground state is given by

Ψ = 1
2


√

1− q̃√
2 (1− q̃)√

1− q̃

 . (4.8)

It has a q-dependent spin length |F⊥| =
√

1− q̃2 confined to the transversal plane,
where q̃ = −q/(2n|c1|). [4]

4.3.2 Spin-Changing Collision Dynamics
At the magnetic offset fields of B ≈ 1.44 G the second-order Zeeman shift intro-
duces a side-mode detuning q > 2n|c1|, which means that the mean-field ground
state of the system lies in the polar phase. Consequently, after preparing a po-
lar state |Ψ〉 = (0, 1, 0) no dynamics takes place. However, when the side mode
detuning qeff is suddenly changed to a value in the interval (0, 2n|c1|) (easy-plane
ferromagnetic phase), the corresponding mean-field ground state changes as well
(see section 4.3.1). This already suggests that due to quench-induced modification
of the energy spectrum (4.7) the polar state will not remain stationary any more.
In fact, this equation shows that for qeff in this phase unstable modes exist. These
solutions of eq. (4.7) possess complex energies which induce an exponential growth
of their population during time evolution. Since they arise from the spin-changing
collision (SCC) term Ψ̂†0Ψ̂†0Ψ̂1Ψ̂−1 +h.c. in the interaction Hamiltonian (2.12), tuned
into resonance by the adjustment of qeff, their effect is a redistribution of population
from mF = 0 to mF = ±1. Although the Bogoliubov approximation is strictly
applicable only for vanishing side mode occupation, experiments show that this re-
distribution drives the system to large side mode population on the order of the total
atom number. This process generates transversal spin excitations at and below the
most unstable Bogoliubov momentum k. This growth takes place on timescales
of ∼ 300 ms while in the following 3 s a redistribution of the excitations at small
spatial frequencies follows. This situation of transversal spin excitations at an ap-
proximately constant spin length is compatible with the mean-field ground state
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(4.8) of the symmetry-broken easy-plane ferromagnetic phase, which is degenerate
for all transversal directions.
Although this state should correspond to the stationary ground state, with in-

creasing evolution time the spin length slowly decreases. This observation, although
not captured by the microscopic mean-field theory outlined in section 4.3.1, may be
explained by a redistribution of spin-dipole populations to quadrupole excitations.
To investigate this, in the following measurements not only spin dipole operators
but also quadrupole observables are extracted.

4.3.3 Experimental Setup and Read-out of Observables
For these experiments ∼ 35 000 atoms are loaded into the waveguide potential and
transferred to themF = 0 level via MW transfers (see fig. 4.12). Next, any remaining
atoms in the side modes are removed by a Stern-Gerlach gradient pulse. To initiate
the SCC dynamics, the mF = 0 level is shifted to a larger energy by MW-dressing.
Here, the signal generator is set to a frequency blue-detuned by δ ≈ 2π×182 kHz to
the transition |1, 0〉 ↔ |2, 0〉 which induces an AC-Zeeman shift qMW = ΩMW/(4δ)
on |1, 0〉, where ΩMW ≈ 2π× 10.11 kHz is the Rabi frequency of the aforementioned
MW-coupling. Suddenly switching on this off-resonant Rabi coupling induces the
quench qeff = q → qeff = q − qMW which is tuned such that the final value is
qeff ≈ n|c1|. Under these conditions the system evolves for the period tevo before
extracting the observables. In the following measurements read-out schemes for
three different operators are applied: F̂x, Q̂yz, and Q̂xy. These are carried out
as described in the respective subsections of chapter 3. For the read-out of the
spin dipole the usual RF-mapping to the z-axis is applied. By evolving the atoms
without dressing before the mapping pulse, i.e. evolving the spinor phase by π at
large qeff = q ≈ 2π × 149 Hz, allows the access of Qyz. Finally, to extract Qxy

the side modes are mixed by transferring |1, 1〉 → |2, 0〉 with subsequent MW π/2-
coupling to |1,−1〉. Note however, that the observables Q̂yz and Q̂xy described here
are connected to another set of operators Q̂xz and Q̂y2−x2 via a π/2-phase shift in
the mapping or mixing pulses (see chapter 3). As we have seen in the previous
measurements the phase of the pulses relative to the Larmor phase of the system
is scrambled by magnetic field fluctuations. Thus, the quantities accessed here
are always projections along a superposition of these operator pairs (Q̂yz, Q̂xz) and
(Q̂xy, Q̂y2−x2). Nevertheless, to minimise notational complexity they will be referred
to as initially introduced above.
To tune the side-mode offset to qeff ≈ n|c1| an additional characterisation mea-

surement is carried out. There, for different MW-detunings δ the atoms are held for
tevo = 4 s before extracting the population of the side-modes. As function of δ the
occupation numbers show a clear resonance with a width of about 4 Hz (see fig. A.2),
which should correspond to the range of qeff in the easy-plane ground state phase
where unstable Bogoliubov modes around the polar state exist. Due to density-
dependent mean-field shifts of the subelevels and off-resonant MW-coupling to the
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Figure 4.12: Pulse sequences for the readout of different observables after long-
time dynamics following a quench in the side-mode detuning to qeff ≈ n|c1|. First,
the atoms are prepared in the polar state |Ψ〉 = (0, 1, 0)T . Then, a quench of
the energetic side-mode shift tunes SCCs into resonance, which induces a build-up
of transversal spin at the beginning of the evolution period tevo. Afterwards three
different observables are extracted: a) F̂x, b) Q̂yz with τq = 2π/(2q), and c) Q̂xy.
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other F = 1 and F = 2 states during the dressing period the actual detuning qeff
deviates form the estimation ∼ 2π× 9 Hz provided above. Thus, the correct setting
is estimated by the centre of the resonance feature in the side mode population.
Based on this method, all values of qeff given in the following are distances to the
left edge (first point with a side mode population much larger than zero) of the
corresponding resonance feature for the respective measurements.

4.3.4 Results
Fx and Qyz Read-Out
To analyse the measurements, here the observables are extracted spatially resolved
along the longitudinal trap direction. For a central region of ca. 120 µm, where the
total density is approximately constant (see fig. A.1) we extract the quantities de-
tailed below. Across all experimental realisations with equal parameters histograms
are built up from locally measured values for each pixel in this central region. Here,
we first extract the transversal spin Fx, whose distributions are shown in fig. 4.13, for
a quench to qeff ≈ 2π× 1.5 Hz (see fig. A.2 for the SCC resonance feature). Initially,
the histogram resembles a narrow Gaussian centred around zero as is anticipated
for the polar state. Then, the distribution quickly broadens (0.5 s) and develops a
double-peaked structure (2 s). This feature is present until the last evolution time
of 8 s accessed in the measurement, while the maxima of the peaks slowly move
towards the middle. This double-peaked feature is compatible with the distribu-
tion expected from spin projections along a fixed direction of a randomly oriented
transversal spin with approximately fixed length. To extract the mean amplitude
〈Fx〉 of this spin and its fluctuations σ the histograms are fitted by a distribution
p(Fx) ∼ 1/

√
1− (Fx/ 〈Fx〉)2 convolved with a Gaussian of standard deviation σ to

capture the fluctuations in the spin length. Evaluating the histograms where such a
fit was sensible shows that the spin amplitude decreases from an initial value of 0.6
at 2 s over the whole period of evolution times to a final length of 0.4 at 8 s. However,
over the whole sample the fluctuations stay approximately constant at σ ≈ 0.1.
To investigate if this reduction in the length might be explained by an evolution

of the spinor phase also the alignment of the state is measured. As we have seen
in section 4.1 a fully elongated transversal spin is transformed to a polar state
tilted by 45◦ against the transversal plane. This state resembles a Q̂xz or Q̂yz

eigenstate, depending on the initial spin orientation along Fy or Fx, respectively.
Consequently, to access the appropriate quadrupole projections we apply the read-
out scheme introduced in section 3.3.2 to access Qyz. Figure 4.14 displays the results
obtained for this observable after executing the same quench as before. Initially, the
histograms show a narrow Gaussian, which again is compatible with the polar state.
Similar to the Fx-data also the quadrupole histograms feature a fast broadening
within the first second of the evolution. However, here no double-peak structure
builds up. Instead, for all times the histograms remain nearly Gaussian around
Qyz = 0. Thus, no clear excitations of the Qyz-length can be identified. Over time,
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Figure 4.13: Initially, a polar state is prepared. Then, following a quench in the
side mode detuning to qeff ≈ 2π× 1.5 Hz the atoms are held at this value for a time
tevo before the transversal spin (here denoted as Fx) is extracted. The first histogram
shows a narrow Gaussian distribution centred around zero spin projection, which
resembles the expectation for the polar state. Induced by SCC dynamics within
∼ 0.5 s this distribution quickly broadens and afterwords transforms to develop a
clear double-peaked structure at 2 s. This qualitative feature stays present in most
distributions until the last evolution time tevo = 8 s measured here. Where appli-
cable, this structure is approximated by the probability distribution for measuring
a randomly oriented spin projected onto a constant direction (see text). Best fits
of this model are displayed as red solid line. The extracted spin amplitude shows a
slow reduction while maintaining approximately constant fluctuations in the length
over time (see text).
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Figure 4.14: After preparation of a polar state the side mode detuning is quenched
and the atoms are held at these conditions for an evolution time tevo (equivalent
to fig. 4.13). Afterwards, the quadrupole projection Qyz is extracted. As expected
for the initial polar state the first distribution resembles a narrow Gaussian centred
around zero. Similar to Fx in fig. 4.13 the distribution quickly broadens within
0.5 s but no double-peaked structure develops. Instead, for all evolution times the
histograms remain approximately Gaussian around zero. Consequently, unlike for
Fx no quadrupole length excitations of sufficient size can be extracted from the data.
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the standard deviation of the distributions declines from ca. 0.3 at 0.5 s to 0.2 at 8 s.
This suggests that the SCCs generate a state of strongly increased fluctuations in
this quadrupole. Consequently, because the Qyz-distributions do not show a double-
peaked structure, this measurement can exclude a simple spinor phase rotation as
reduction process of the transversal spin observed in fig. 4.13.

Qxy Read-Out
For this measurement the experiment is carried out analogously to before but the
final side mode detuning after the quench is qeff ≈ 2π × 2.5 Hz (see fig. A.3 for the
SCC resonance). Instead of analysing the Qyz quadrupoles, here Fx and Qxy are
extracted from the data. In fig. 4.15 the Fx-distributions show a similar build-up
of the double-peaked structure as observed before in fig. 4.13. Also the initial and
final positions of the double-peak maxima show no significant change to before.
Similar to Qyz from before also Qxy (fig. 4.16) shows an initially localised Gaussian
around Qxz = 0 like expected for the polar state. Next, the histograms quickly
broaden after the quench while maintaining their single-peaked structure centred at
zero. Although the shape of the distribution at 2.5 s may suggest two peaks close to
the centre they are not pronounced enough to unambiguously be identified as such
across all times. Further, also here the standard deviation of the Qxy-distribution
reduces from about 0.3 at 0.5 s to ca. 0.2 at 8 s. This leads to a similar conclusion
as above: while the SCC dynamics largely enhances the quadrupole fluctuations no
clear length-excitations of sufficient size can be identified.
Concluding, these measurements show that dynamics following the quench affects

the quadrupoles mainly in the size of their fluctuations. Furthermore, a transfer of
excitations from the transversal spin to Qyz or Qxy which may explain the reduction
of the spin length over time is not clearly observed. However, the simultaneous de-
crease of the transversal spin and fluctuations of the quadrupoles suggests a common
mechanism driving this evolution.
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Figure 4.15: Initially, a polar state is prepared. Then, following a quench in the
side mode detuning to qeff ≈ 2π × 2.5 Hz the atoms are held at this value for a
time tevo before the transversal spin (here denoted as Fx) is extracted. Analogous to
fig. 4.13, from an initially narrow Gaussian centred around zero a broad distribution
with double-peaked structure builds up.
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Figure 4.16: Equivalently to fig. 4.15, initially a polar state is prepared, the side
mode detuning is quenched, and the atoms are held for an evolution time of tevo under
these conditions. Subsequently, the quadrupole projection Qxy is extracted. Similar
to fig. 4.14 the initial Gaussian distribution of the polar state quickly broadens and
stays approximately single-peaked around zero over time. Although for tevo = 2.5 s
a slightly double-peaked structure can be identified on top of the broad distribution,
in general no clear length excitations can be extracted from the data.
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5 Conclusion and Outlook

This work presents methods to experimentally control the degrees of freedom of a
spin-1 system. On the one hand the populations of the magnetic sublevels can be
controlled by RF- and MW-pulses, on the other changes of the phases are imple-
mented by time evolutions in an external magnetic field. Here, the Larmor and
spinor phase are controlled by the linear and second-order Zeeman shift, respec-
tively. Using these techniques, spinor phase rotations can be implemented, which
transform spin to alignment and vice versa, i.e. the spin length is changed. This
method is then applied to generate spin waves with different amplitudes.
Furthermore, by performing rotations of the spin state prior to the measurement

the spin-1 dipole and quadrupole projections can be mapped to magnetic sublevel
densities for read-out. Subsequently, these are measured by a Stern-Gerlach sepa-
ration of the different components followed by absorption imaging. To access the
quadrupoles, on the one hand a measurement scheme for read-out of the Qxz and
Qyz projections via a spinor phase rotation by π and subsequent mapping of the
transversal spin projections to Fz is provided. On the other hand, Qxy and Qy2−x2

can be measured by mixing of the mF = ±1 levels with a π/2 Rabi-pulse followed by
a mapping of the spin projections as before. For long-time dynamics these schemes
are applied to investigate the theoretically unexpected loss of spin length. Here, the
temporal evolution in both the dipole as well as quadrupole observables suggests an
overall decay of coherences, which will be subject of further studies.
To expand the measurement capabilities of the current setup, the methods pre-

sented here may be combined with shelving techniques similar to the spin-sensitive
in-situ imaging described in [11]. MW-pulses can be used to transfer a part fo the
F = 1 population to the F = 2 manifold. Here, their phase control allows retaining
or manipulating the relative phases of the different magnetic sublevels. By choos-
ing these phases appropriately, in the different hyperfine manifolds a subsequent
RF-pulse maps orthogonal spin projections to the z-axis for read-out. Thus, these
methods can be extended to allow the extraction of both quadratures simultaneously.
Also the possibility for a spatially selective addressing of spins is shortly elaborated

here. As we have seen in chapter 3 MW- and RF-pulses can be applied to globally
address the spin states. For extending these to allow for local addressability a
steerable focused laser beam is used to select a small region of the trap. By detuning
the laser from a transition locally confined AC-Stark shifts of the atomic levels can
be implemented. This shift, in turn, allows to select (deselect) the addressed region
of the cloud in MW-pulses by setting their frequency to resonance in the addressed
(non-addressed) region. Furthermore, local Larmor and spinor phase evolutions can
be directly implemented by generating an effective magnetic field at the position
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of the focused laser by utilising the vector stark shift. [20] Further, by modulating
the laser intensity this allows a spatially confined coupling of the magnetic sublevels
analogous to RF-pulses, i.e. the implementation of spin rotations [21]. Thus, these
techniques offer the same possibilities for spin manipulations as discussed in this
work but with additional local control. In particular, this also allows spatially
modulating the projection direction in the read-out procedure.
Further, a different imaging approach may additionally enhance the capabilities

of the setup. Here, dispersive birefringent imaging provides a direct spin-dependent
atom-light interaction in the imaging process. [22, 11] By accessing the phase shift
experienced by light interacting with the atoms the spin projection onto the prop-
agation direction of the probe light may be inferred. Additionally, because this
technique does not remove the atoms from the trap it provides a non-destructive
imaging tool.
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A Additional Plots for Long-Time Dynamics
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Figure A.1: Initially a polar state is prepared, the side mode detuning is quenched
to qeff ≈ 2π × 1.5 Hz, and the atoms are held at these conditions for an evolution
time up to 8 s. The lines in the plot resemble the total densities in the waveguide
potential after the different times. The range between the vertical dashed lines
resembles the region evaluated in section 4.3.4.
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Figure A.2: Spectroscopy signal of the SCC dynamics in section 4.3.4 for the read-
out of Fx and Qyz. Initially a polar state is prepared, the side-mode detuning q
is quenched to different values, and the side mode population is extracted after an
evolution time of 4 s. Here q is calculated as described in section 4.3.3. Due to
mean-field shifts and off-resonant coupling between the different F = 1 and F = 2
levels the values of q shown in the plot deviate form the actual side mode detuning
qeff. The resonance feature visible here corresponds approximately to values of qeff
between 0 and 2n|c1|. In the experiments of section 4.3.4 the final quench value
q = 2π × 8.5 Hz (qeff ≈ 2π × 1.5 Hz) is used.

59



6 7 8 9 10 11 12
0

1000

2000

3000

4000

5000

6000

7000

8000

q/(2π) [Hz]

S
id

e
 M

o
d

e
 P

o
p

u
la

ti
o

n

Figure A.3: Spectroscopy signal of the SCC dynamics in section 4.3.4 for the read-
out of Fx and Qxy. Initially a polar state is prepared, the side-mode detuning q
is quenched to different values, and the side mode population is extracted after an
evolution time of 4 s. Here q is calculated as described in section 4.3.3. Due to
mean-field shifts and off-resonant coupling between the different F = 1 and F = 2
levels the values of q shown in the plot deviate form the actual side mode detuning
qeff. The resonance feature visible here corresponds approximately to values of qeff
between 0 and 2n|c1|. In the experiments of section 4.3.4 the final quench value
q = 2π × 9 Hz (qeff ≈ 2π × 2.5 Hz) is used.
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