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ABSTRACT

The Electronic Vision(s) group designs neuromorphic chips that model the tempo-
ral behaviour of a neuron’s membrane potential as an analog circuit. In application,
analog neuron models lead to large accelerations in the order of ∼ 103 to ∼ 105 com-
pared to biological time. Therefore the communication infrastructure of the chip
needs to handle correspondingly large amounts of data. In the course of this thesis a
HDL Switch module was developed to overcome the macroscopic distances between
the on-chip event and configuration buses and the read-out links. The parametriz-
able module accepts data from a set of input connections and transfers it uniformly
to all output links. It is suitable for an arbitrary number of input and output connec-
tions. HDL simulation results confirm a significant improvement compared to the
currently implemented solution.

ZUSAMMENFASSUNG

Die Electronic Vision(s) Gruppe entwickelt neuromorphe Chips, welche das zeitliche
Verhalten des Membranpotentials eines Neurons als analoge Schaltung modellieren.
In der Anwendung führen analoge Neuronenmodelle zu großen Beschleunigungen
in der Größenordnung von ∼ 103 bis ∼ 105 im Vergleich zur biologischen Zeit. Da-
her muss die Kommunikationsinfrastruktur des Chips entsprechend große Daten-
mengen verarbeiten können. Im Rahmen dieser Arbeit wurde ein HDL-Switch-
Modul entwickelt, um die makroskopischen Abstände zwischen den chipinternen
Ereignis- und Konfigurationsbussen und den Ausleselinks zu überwinden. Das
parametrisierbare Modul übernimmt Daten von einer Reihe von Eingangsverbindun-
gen und überträgt sie gleichmäßig auf alle Ausgangsverbindungen. Es ist für eine
beliebige Anzahl von Ein- und Ausgangsanschlüssen geeignet. Die Ergebnisse der
HDL-Simulation bestätigen eine deutliche Verbesserung gegenüber der aktuell im-
plementierten Lösung.
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Chapter 1

Introduction

1.1 Neuromorphic Hardware

Neuromorphic computing represents a large interdisciplinary field of research. The
possible applications are diverse, ranging from medicine to artificial intelligence.
Aspiring to a deeper understanding of the processes within the human cortex, many
approaches towards recreating its structure and behaviour have been developed
over time. In general, two different strategies emerge when designing artificial neu-
ral networks. The first is recreating the evolution of a neuron’s membrane poten-
tial in simulation on a computer with a digital neuron model. The contrary ap-
proach however, is creating a physical neuron model. In the Electronic Vision(s)
group (BrainScaleS Research Project) as part of the Human Brain Project (Human Brain
Project) at the University of Heidelberg, the neurons as the brain’s constituents are
emulated as individual analog electric circuits (SCHEMMEL, FIERES, AND MEIER,
2008). The time continuous evolution of the neural network reaches an acceleration
factor between ∼ 103 to ∼ 105 as opposed to the biological real time. Observing
processes in the brain that in vivo require large time spans, is made possible within
small experiment runtimes. Neuromorphic networks developed within the Elec-
tronic Vision(s) group are realized as custom ASIC (Application-Specific Integrated
Circuit) neuromorphic chips.

As a successor of previously developed HICANN (High Input Count Analog Neural
Network) versions (SCHEMMEL ET AL., 2010), the most recent neuromorphic chip
designed in the Electronic Vision(s) group is called HICANN-X. Figure 1.1A shows a
schematic of the chip. Implementing an AdEx (AAMIR ET AL., 2017) neuron model,
the chip contains 128·103 synapses for a total of 512 neuron compartments. The
analog neurons evolve autonomously in a continuous time domain as opposed to a
digital neuron implementation that works with discrete time steps. The hardware
neurons’ speed-up allows the generation of large amounts of spike events in a short
time span. An essential characteristic of the analog neuron implementation is that
spike events are not reproducible and all spike data needs to be processed imme-
diately by the chip’s communication infrastructure. The HICANN-X connects to
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(A) Schematic of the
HICANN-X neuromor-
phic chip (SCHEMMEL,

2018).

(B) The HICANN-X chip (photo taken by R. Achenbach), cor-
responding to the schematic in (A).

FIGURE 1.1: The HICANN-X neuromorphic chip uses the AdEx neu-
ron model (AAMIR ET AL., 2017) to emulate neuronal behaviour
through analog circuitry. The neuron events are generated in the ana-
log core and read out and further processed in the digital logic core.

an FPGA (Field Programmable Gate Array) via eight links marked as HICL in the
schematics in figures 1.1A and 1.2. Data generated within the chip is further dis-
tributed via those links.

1.2 Motivation

The events generated on the HICANN-X can be categorized into two types. The
neuron blocks produce spike events as a result of neuron activity, which are trans-
ferred between the event routing block and the digital logic core in figure 1.2. Fur-
thermore, configuration buses also input their data into the digital logic core. The
several configuration buses are further collectively referred to as Cfg. The events
are generated on-chip with a certain traffic distribution. The highest rate at which
messages can be sent matches a clock frequency of 250 MHz. For further process-
ing, the data needs to be transported to several output channels marked as HICL
links in the schematic, that are spread out over macroscopic distances as indicated
in figure 1.1A. Overcoming large distances on hardware in a small time span gener-
ally demands for lower clock speeds or requires large currents which result in high
power consumption. Hence, distances that are covered in one clock cycle should
preferably be rather small. The overall goal of this thesis was the development of a
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FIGURE 1.2: Block diagram of the HICANN-X neuromorphic chip
(SCHEMMEL, 2018). The spike events generated in the analog net-
work core are distributed to the eight HICL links via the event router
and the digital logic core. The HICL channels further process the

spike event data.

module that evenly distributes the input messages to all available output links while
also splitting the covered distance into several localized buffer stages. Those allow
the short-time storage of messages and implement data transfer. In the following,
the developed module will be referred to as ’Switch’.

OUTPUT LINKS x8

EVENTS x4 Cfg

FIGURE 1.3: Schematic of an application of the Switch on the
HICANN-X chip. The module is used in the digital logic core. Four
event buses transport the spike events from the chip’s neuron block
and another channel transfers the configuration payload. These five
channels serve as input links for a row of buffer stages (marked blue),
which transfer data along the chain. The data needs to be evenly dis-
tributed to the eight output links for further processing. These links
represent the HICL links in figure 1.2. When transferring data from
the input to the output links, the outputs are prompted sequentially

until a free link can accept and process the data.

Current Solution Consider the setup shown in figure 1.3 which represents the cur-
rently used solution for this problem. The input and output links are only connected
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via a chain of buffer stages. Any message arriving at the inputs needs to travel se-
quentially along the entire chain until the next free output link is able to process it.
However, a sequential prompting of readout links causes high duty cycles, which
means large time spans between the generation of an event at the input links and
its processing by an output link. While providing a valid solution, the network as
shown in figure 1.3 has significant structural disadvantages leading to an uneven
distribution of data and a blocking of input links. These issues will be discussed in
chapter 4. To compensate for those, an improved structure is required.

Developing a New Switching Network While the main objective for developing
a new switching network still is to overcome the distance induced limitations when
processing data, another aspect is the demand for an even use of the hardware re-
sources. Referring to the links that form the Switch’s outputs, a fair distribution
should allow the handling of a large amount of data. An equal use of all links needs
to be guaranteed for using the outputs to their full capacity. Load balancing is one
of the essential tasks of the neuromorphic chip’s communication infrastructure, so
an improvement of the switching network can help towards an overall performance
gain. Maintaining flexibility for an arbitrary number of input and output links al-
lows a usage for multiple different applications. Hence, a newly developed network
needs to be parametrizable. Another factor that needs to be considered is the space
to be occupied on hardware. Therefore, the network’s size should be adaptable as
well.
As an internship project, a suitable switching network was developed by extend-
ing the already existing structure. The network was visualized and simulated using
Python in KANZLEITER, 2018. Its analysis showed a remarkable performance gain
compared to the currently implemented solution. Since the Python framework only
provides a software simulation that is not applicable to the hardware, the newly de-
veloped network structure was adapted in this thesis and implemented in RTL.

1.3 Thesis Outline

In the course of this thesis, the implementation of the switching network and its
analysis will be covered. Chapter 2 first gives an overview on the submodules re-
quired to build the Switch, such as the so-called ut-interface as connector and the
Shifter module that implements the buffer stages. The Shifter’s internal structure
and the temporal behaviour will be focused on as they influence the Switch’s per-
formance significantly. The last section in chapter 2 focuses on the Switch module,
its parameters, the connection pattern that determines the network’s shape and its
implementation.
Following the general module specifications, the next chapter contains a description
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of the testing environment which is required for simulation. Chapter 4 then explains
the experimental setup for the simulation and the analysis plots for different band-
width conditions. The simulation results can also be found in chapter 4. The last
chapter serves as a summary and puts the project results into perspective for future
application.
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Chapter 2

The Switch Module

The overall intention of this thesis is the development of an efficient switching net-
work for neuromorphic hardware. As mentioned above, the network is meant to
form a connection between a set of input and output links, both of which should
be parametrizable in size. The components that make up the Switch work as buffer
stages that allow the sending and receiving of payload and are further referred to
as nodes. For establishing a network structure each node is linked to either its next
neighbouring nodes in the network or to an input or output channel. The complete
process of connecting the nodes is explained in section 2.4.2. As an example, a visu-
alization for a possible network configuration is shown in figure 2.1.

n0

n1 n2

n3 n4 n5

n6 n7 n8 n9 n10

IN
PU

T
LI

N
K

S

OUTPUT LINKS

FIGURE 2.1: Visualization of a network for 4 input and 5 output links
using 11 nodes. Links without arrows represent dummy connections

that don’t support data transfer (section 2.4).
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This chapter focuses on the constituting elements and their implementation as well
as the structural characteristics of the Switch. The last section explains the Switch’s
implementation.

2.1 Module Overview

The Switch itself is the project’s top level module that connects the nodes to form a
network. Within the Switch, the nodes are implemented as so-called Shifter module
and the connections as ut-interface. The Switch itself is designed for both synthesis
on an FPGA that connects to the HICANN-X neuromorphic chip as well as on-chip
implementation in future HICANN versions.

2.2 ut-Interface

The ut-interface serves the purpose of interconnecting the Shifter instances to to their
next neighbours. At the same time it provides the signals that are necessary for data
transfer. In total it contains four signals:

• valid: signalizes if the corresponding Shifter holds valid data

• next: communicates if the Shifter is able to accept data

• idx: provides information about the payload’s origin

• data: contains a message

In the following, the data signal and the index will collectively be referred to as pay-
load.
Using the valid and next signal, the payload transfer is realized as a handshake be-
tween the involved Shifters as explained in section 2.3.2. As the sending and re-
ceiving sides of the Shifter use the same interface, the declaration of port directions
must be adaptable. Being written in SystemVerilog, the ut-interface allows the user
to bundle several signals of different directions.
The directions are specified in two modports which are referred to as slave and
master which is shown for an arbitrary example module in figure 2.2.
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EXAMPLE
MODULE

data, idx
valid

next

data, idx
valid

next

ut_if.slave ut_if.master

FIGURE 2.2: Usage of the ut-interface modports to specify the signal
directions. For the slave modport, the valid signal and the payload
are declared as inputs, the next signal as an output. For the master

modport the directions are reversed.

The declaration of the Shifter’s ports as slave or master is shown in the schematic in
figure 2.3A which will be explained in the next section.

2.3 Shifter

The Shifter module represents a buffer stage between the input and output channels,
which allows the short-term storage of data. It also implements the functionality of
payload transfer and steers the data flow within the Switch. Consequently, it defines
the network’s dynamics. This section gives an overview over the Shifter’s internal
structure and further explains the process of payload transfer.

shift_prev

client_out

cl
ie

nt
_i

n

shift_next

ut.slave

ut.m
aster

ut.master

ut.slave

(A) Each Shifter is assigned two
incoming connections called
client_in and shift_prev to
receive payload from. For send-
ing payload it possesses to two
outgoing connections called
client_out and shift_next.

priority_out

priority_in

arbiter

arbiter

client_in shift_prev

client_out shift_next

FIFO

(B) The schematic shows the internal structure of the
Shifter depicted in (A). It shows the arbiter for the input
connections which chooses one link per clock for receiv-
ing payload. The payload can then be accepted into the
Shifter’s two-stage FIFO and sent to one of the output
clients. At this point the arbiter selects the corresponding

output connection.

FIGURE 2.3: Schematic of the Shifter’s top level connections and its
internal structure.
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2.3.1 Internal Structure

On the top level, each Shifter connects to four ut-interfaces, two of which serve as
inputs, the other two as outputs. According to that, input ports are declared as
ut_if.slave and output ports as ut_if.master. As can be seen in figure 2.3A, the
incoming connections are called client_in and shift_prev while the outgoing con-
nections are referred to as client_out and shift_next. Concerning all following
network schematics, the client_in and shift_next connections will be represented
by a node’s horizontal connections and client_out and shift_prev by the vertical
connections as shown in figure 2.3A.
Internally, a two-stage FIFO allows the module to store up to two messages (figure
2.3B). Within one clock cycle, each Shifter is allowed two transactions, which depend
on its FIFO’s state. The first transaction is receiving data from one of the incoming
ut_if.slave connections, client_in or shift_prev. To carry out the transfer an in-
put client’s request must be accepted. This is only possible with a non-full FIFO.
The second possible transaction is sending valid payload to one of the ut_if.master
connections, client_out or shift_next. Given that the FIFO is not empty, a transfer
request can be sent to the selected client. The system of requesting and accepting
a transfer is called valid-next-handshake and is discussed in the following section.
The selection of a client to use as handshake counterpart is marked as arbiter in
figure 2.3B and is explained in section 2.3.3.

2.3.2 Handshake

Transferring payload between two Shifters always requires a completed valid-next-
handshake. Consider the case of two connected Shifters, one as sender and one as
receiver. Given that the sender’s FIFO holds valid payload and hence is not empty,
it can request a transfer of its payload to the receiving Shifter by raising its valid-flag
to a value of 1. In case that the receiver’s FIFO is not full, it can accept the payload
and raises the next-flag for the sender. Afterwards the handshake is completed. For
further transfer of the message to one of the receiver’s output clients, the two-stage
FIFO causes a propagation delay of one clock cycle.

2.3.3 Arbitration

One of the Switch’s essential characteristics should be an even distribution of pay-
load. To achieve that it is crucial not to disadvantage any of the Shifter’s clients,
since within one clock cycle each Shifter can send and receive only one message
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CLOCK

valid

next

payload A B C D

FIGURE 2.4: Examples for three supported types of transactions. The
first one shows an immediate transfer of the payload. The second
example covers the process if the receiver’s FIFO is full until the next
clock cycle and the third one shows the back-to-back transfer of two

different messages.

each. Consequently, an arbitration is needed for the two input and two output con-
nections as marked in figure 2.3B. For that purpose, a priority for one input and
one output client is set at the beginning of each clock cycle. The general concept is
remembering the partner for the last payload transaction and setting the priority to
the other client respectively. Subsequently, the Shifter will invoke a handshake for
the two prioritized connections which yields two cases. In the first case the hand-
shake is completed as described in section 2.3.2. As a result, the priority will be
set to the other client for the next transfer. In case of an incomplete handshake, the
non-priority port will be considered within the same clock cycle. This situation can
be caused by a missing next-response in a handshake with an output client or if the
prioritized input client stores no valid payload.
In figure 2.5, the arbitration is described as pseudo code for the input and output
clients, respectively.

The arbitration process guarantees an alternating pattern for transferring payload.
Considering the Switch as a whole, this method not only distributes the payload
evenly through the whole network, but also prevents the favouring of any of its in-
put links. This is essential as for some network structures it could result in some of
the input links being blocked.

n0

n1

FIGURE 2.6: Schematic of a network for nin = 2, nout = 1 and nnodes =
2. The two incoming connections to the nodes link to the inputs while

n1 is connected to an output link.

Consider the network displayed in figure 2.6 without any arbitration process. We
assume that the input link connected to the node n1 produces new data each clock
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1 function p r i o r i t y _ o u t ( prio_out ,
c l i e n t _ o u t , s h i f t _ n e x t ) :

2

3 r e t v a l = prio_out
4 i f ( pr io_out ==0)
5 i f ( c l i e n t _ o u t . next )
6 r e t v a l = 1
7 e lse i f ( s h i f t _ n e x t . next )
8 r e t v a l = 0
9

10 e lse
11 i f ( s h i f t _ n e x t . next )
12 r e t v a l = 0
13 e lse i f ( c l i e n t _ o u t . next )
14 r e t v a l = 1
15

16 re turn r e t v a l

(A) The priority prio_out defines the or-
der of clients for the Shifter’s payload
transfer request. Its value for the next
transfer is dependent on its previous
value as well as the client which the
Shifter transfers payload to. The next pri-
ority value is returned as retval with a
value of 0 representing the client_out

and a value of 1 the shift_next port.

1 function p r i o r i t y _ i n ( prio_in ,
c l i e n t _ i n , sh i f t_ pre v , f u l l ) :

2

3 r e t v a l = pr io_ in
4 i f ( pr io_ in ==0 && ! f u l l )
5 i f ( c l i e n t _ i n . va l id )
6 r e t v a l = 1
7 e lse i f ( s h i f t _ p r e v . va l id )
8 r e t v a l = 0
9

10 e lse i f ( pr io_ in ==1 && ! f u l l )
11 i f ( s h i f t _ p r e v . va l id )
12 r e t v a l = 0
13 e lse i f ( c l i e n t _ i n . va l id )
14 r e t v a l = 1
15

16 re turn r e t v a l

(B) The priority prio_in defines the order
in which the Shifter responds to the in-
put clients in case they hold valid pay-
load and the Shifter’s own FIFO is not
full. The FIFO’s state is represented by
the variable full. analog to case (A), the
next prio_in value depends on the client
which the Shifter receives payload from.
The next priority value is returned as ret-
val with a value of 0 representing the
client_in and a value of 1 representing

the shift_prev port.

FIGURE 2.5: Pseudo code representation of the arbitration process
within the Shifter.

cycle. If there is no specified arbitration process and the node n1 always prefers its
client_in-connection, node n0 gets no opportunity to forward its data. Therefore
the input link connected to that node is blocked as long as the other link produces
data.

2.4 The Switch Module

The Switch as the project’s top level module implements the network of Shifters.
Following a certain connection pattern, it adapts the results found during the in-
ternship previous to this thesis (KANZLEITER, 2018). The first part of this section
explains the required parameters for the Switch, the second part focuses on the con-
nection pattern that leads to an efficient network and lastly, the algorithm for the
network generation is discussed in detail.
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2.4.1 Parameters

The defining factors for the Switch’s size and shape are the parameters that need to
be specified before synthesis. The number of input links nin limits the number of
rows in the finished network. The number of output links nout defines the number
of columns. These two parameters can be adapted to allow the module’s use for dif-
ferent applications. The third parameter is the number of nodes nnodes. It determines
the network’s size and defines its shape and also scales the occupied space on hard-
ware. For nnodes the allowed values range between a minimum nmin and a maximum
value nmax. The minimum node number fulfills the requirement that each input and
output need to be connected to a node in the network. Since one node always links
to one input and one output at the same time, the minimum node number that is
necessary is

nmin = nin + nout − 1. (2.1)

When generating the network for a maximum number of nodes, connecting the last
Shifter of the incomplete first row to the last Shifter in the next row replaces a node
in the upper right corner.

nmax = nin · nout − 1 (2.2)

An example for the minimum and maximum node configurations are displayed in
figure 2.7.

n0

n1

n2 n3

(A) Minimal node configuration with nnodes =
nmin = 4. nmin guarantees to link all inputs

and outputs to a node in the network.

n0

n1 n2

n3 n4

(B) Schematic for the maximum number of
nodes nnodes = nmax = 5. Connecting the last
Shifter of an incomplete row to a Shifter in the
next row replaces a node in the upper right
corner. This connection can always be made

for the maximum node number.

FIGURE 2.7: Schematics of the minimum and maximum node config-
urations for an example network with nin = 3 and nout = 2.
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2.4.2 Connectivity

To form the network structure each Shifter connects to up to four ut-interfaces in to-
tal according to figure 2.3A. First, the Switch’s input and output links are connected.
The inputs link to the first element in each row while the outputs link to the Shifters
in the last row. The restrictions for nnodes in the above section guarantee those con-
nections, even for the smallest configuration with nmin.
Furthermore if possible, a Shifter port should be connected to the Shifter’s corre-
sponding next neighbour in the network. In case a Shifter is the last instance in its
row, the shift_next port can also be linked to the client_in port of a Shifter in the
next row. This is only allowed if the current Shifter’s row is not full. Examples for
that can be found in figures 2.8D to 2.8F on the following page.
All Shifter ports that are still unconnected will be linked to dummy ut-interfaces,
which do not transfer any payload and for that purpose have clamped signals. Dum-
mies used instead of input clients have their valid-signal fixed to zero, while for in-
terfaces used instead of output clients, the next-signal is set to zero respectively. This
prevents the interaction via a handshake.
Considering these rules, the simplest network possible yields an L-shaped structure.
This case is shown in figure 2.8D. The minimum node number is required so that
each input and output link can be connected to a Shifter in the network.
When increasing the number of nodes nnodes, the Shifters are added diagonally to the
minimal network. Therefore the Switch’s shape ranges between an L-shape for nmin

and a rectangular shape for nmax.
Since the tests during the internship demonstrated that the node in the upper right
corner is never used, it is omitted and not instantiated in this module. An example
of the shape for nmax is shown in figure 2.8F.
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n0

(A) Special case of nin =
nout = nnodes = 1. The
input and output link are
both connected to the same
Shifter. Since the single
Shifter has no neighbour-
ing partners, the other two
ports need to be assigned

dummy interfaces.

...n0 n1 nN

(B) In this case the first
node connects to an input
and an output link since all
Shifters are arranged as a
single row. It is linked to
the input and the first out-
put channel, the difference
to (A) being the existence
of at least one neighbouring
Shifter in the horizontal.
Each Shifter in this network
is assigned a dummy inter-
face as shift_prev connec-

tion.

:

n0

n1

nN

(C) This structure is the op-
posite arrangement to the
network shown in (B). It
consists of a single column,
where all Shifters are as-
signed dummy interfaces
as their shift_next port.
The difference for the du-
plex node compared to (A)
are the vertically neigh-

bouring Shifters.

n0

n1 n2

(D) The smallest possible
network for more than one
input and output is shown
here. Since the first row
with n0 is not entirely filled,
its shift_next port can be
assigned as input connec-
tion for a Shifter in the next

row.

n0

n1 n2 n3

n4 n5 n6

(E) Visualization of a
slightly larger network. As
the Shifter in the top row
can only serve as input
to its closest Shifter in the
next row, n3 is assigned a
dummy interface instead.
As it is the last instance in
a full row, the shift_next
port connects to a dummy

as well.

n0 n1

n2 n3 n4

n5 n6 n7

(F) The network represents
the maximum number of
nodes for nin = nout = 3.
Each Shifter in the top row
is assigned a dummy inter-
face as shift_prev connec-
tion. The same applies to
the Shifters in the last col-
umn and their shift_next

ports respectively.

FIGURE 2.8: Visualization of the distinction between different cases
when connecting the Shifters to form the desired structure. Concern-
ing all of the above networks, the input links are always connected
to the Shifters in the first column and the output links to the ones in
the last row. For all cases a dummy interface is assigned to the last
node in the network as shift_next connection and to the first node

as shift_prev connection.
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2.4.3 Implementation

Summarizing the above section, the different kinds of ut-interface connections can
be divided into five categories:

• input links

• output links

• connections between neighbouring nodes

• input dummy interfaces

• output dummy interfaces

For each of these, an array of ut-interfaces is instantiated. Within the network all
connections are numbered as shown in figure 2.9.

n0

n1 n2

n3 n4 n5

n6 n7 n8 n9 n10

0

1 2

3 4 5

6

7 8

9 10 11 12

13

14

15

0

1

2

3

0 1 2 3 4

0

1

0

input links

output links

input dummies

output dummies

linking neighbouring nodes

FIGURE 2.9: Indexing system for a network with nin = 4, nout = 5 and
nnodes = 11. The colours represent the different ut-interface arrays.
The connection numbers are used to assign an element of one of the
five arrays to the corresponding ports. Hence, the numbers are used

as array indices.

The first step for generating the Switch is determining the individual Shifter’s posi-
tion within the network. This specifies the types of connections needed. The differ-
ent cases are shown in figure 2.8. In general, the algorithm checks which of the five
categories applies for each port. Determining the distinct cases was one of the most
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challenging tasks during the development of the module. An example for that is the
comparison between figures 2.8A to 2.8D. In these plots, the node on the bottom left
needs to connect to an input and an output link. The difference between the plots
are the other two connections as in some cases an input dummy and/or an output
dummy or no dummy at all is needed. These kinds of distinctions need to be made
for all Shifters.

To fully create the network, a SystemVerilog generate loop instantiates a Shifter for
each index. By if-statements the Shifter’s position is analyzed. Depending on that,
four indices are calculated to assign each port to an element of one of the five inter-
face arrays. This process leaves the Switch without unconnected ports.
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Chapter 3

Testbench

A fundamental task when designing a RTL module is testing it and verifying the
desired behaviour in simulation. In the field of digital design this is done using a
testbench. Written in a Hardware Description Language, it is used to create a test-
ing environment that is specific to a certain module and allows for different aspects
to be validated. The testbench’s main functionality is to emulate the input signals
and read out the outputs. Most simulation tools also provide several features for
debugging the code, as they facilitate the observation of the individual module con-
stituents such as the ut-interfaces and Shifters for the Switch.
The following sections provide an overview over the features implemented in the
testbench.

3.1 Emulation of Input Data

When simulating a RTL module, the goal is to verify its behaviour under different
conditions and to comprehend possible malfunctions. To achieve expressive results,
the testing environment should not only approximate the real application as close
as possible but also allow simulation runs for a variety of parameters. In case of the
Switch, the customizable parameters are nin, nout and nnodes, which remain constant
after compilation. The testbench then instantiates the module which creates the net-
work structure and connects it to artificial input and output links. A schematic of the
testbench setup is shown in figure 3.1. Since the transfer of payload is the Switch’s
main functionality, a data flow from the inputs to the outputs must be invoked. The
generation of test data is implemented in the testbench, as well as the capability of
the outputs to receive data. The payload generation process will be explained in
section 3.1.2. To control the inserted amount of data, some restrictions for the input
bandwidth are introduced in the following section.
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FIGURE 3.1: Testbench setup for the Switch module which is marked
as device under test (DUT). The generation of event data is emulated
by the input drivers depending on the weights w and the activation
probability p. The output clients represent the links that accept and
process data in a certain time span depending on the input weights.
The number of occupied output links as well as stalling input links

are monitored for each clock cycle.

3.1.1 Bandwidth

An important aspect of the Switch is the congestion of output connections that re-
ceive messages of a certain width. Until a message is fully processed, the output
is not accessible for new data. When reproducing this behaviour in simulation, af-
ter each payload transfer to an output, it will be set to a non-responsive state for a
certain amount of time. Corresponding to the message’s origin, the duration of the
output’s busy state equals a fixed weight in clock cycles. Each input link is assigned
a weight wi in a randomized process and produces valid data with an activation
probability pi per clock. The average bandwidth inserted into the Switch therefore
equals

Nin =
numin−1

∑
i=0

pi · wi. (3.1)

Assuming each output processes a weight of one per clock, this yields an output
bandwidth Nout of

Nout = nout. (3.2)
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3.1.2 Input Data Generation

Setting the bandwidth Nin to a fixed value before compilation determines the activa-
tion probabilities p for the following simulation run. The radomized generation of
weights and all calculations are executed at elaboration time. To simulate incoming
events on the HICANN-X chip, the inputs’ valid flags are controlled in the testbench.
Each clock cycle, an input i’s valid-flag is raised with a probability pi. The corre-
sponding input remains in a valid state until its payload is accepted into the net-
work. In case the valid-state lasts for more than one clock cycle, the input is logged
as stalling. After the valid-state ends, another random choice for the valid-signal is
made based on pi.
The stalling input occurrences are counted each clock cycle and a stalling input’s
index is noted to verify that the stalling events are distributed evenly across all in-
puts.

3.2 Recording Output Data

An important quality of a switching network is the fair use of all output links. This
guarantees the best possible use of the available bandwidth. To monitor the output
occupancy, the number of outputs in a busy-state is logged for each clock cycle.
After the experiment’s runtime, all tracked data is written into text files for further
analysis.
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Chapter 4

Analysis

In order to devise a new Switch architecture that satisfies the constraints described
in 1.2 several node positioning and connection patterns were designed during the
internship (KANZLEITER, 2018). Comparisons showed the best results for the layout
which was then adapted in this thesis. For the development process during the
internship, a software framework was set up in Python to visualize the structure
and to simulate the dynamics. This chapter explains the experimental setup for the
Python simulation and briefly summarizes the relevant results. Furthermore, the
RTL implementation of the Switch is analyzed.

4.1 Python Simulation Analysis

4.1.1 Python Simulation Setup

The analysis in KANZLEITER, 2018 provides the background information for under-
standing the following discussion. Therefore the main results will be summarized
briefly. Additional to the implementation of a Python simulation framework for
visualizing the Switch’s connection scheme, the network dynamics were analyzed.
Observing the temporal evolution of the output links’ busy states provided infor-
mation on the overall usage of the available output bandwidth Nout. Assessing the
occurrences of a stalling effect at the inputs when generating valid data, helped un-
derstanding structural disadvantages. In order to prove the efficiency gain for the
newly developed Switch, it was compared to the currently implemented solution.
The testing parameters for both cases were set to nin = 5 and nout = 8 to resemble
a potential application on the HICANN-X chip (figure 1.3). The comparison coun-
terpart to the minimum network with nnodes = 12 (figure 4.1A) was determined in a
series of tests. Parameter sweeps for nnodes yielded nnodes = 22 (figure 4.1B) as most
efficient solution for the given nin and nout.
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n0

n1

n2

n3

n4 n5 n6 n7 n8 n9 n10 n11

(A) Network structure for the currently implemented solution with nnodes = 12.
The nodes are connected as a chain which provides only one possible path for data
being forwarded to the outputs. As a result, the occupancy of the outputs strongly

depends on the inputs’ weights.

n0 n1

n2 n3 n4

n5 n6 n7 n8

n9 n10 n11 n12 n13

n14 n15 n16 n17 n18 n19 n20 n21

(B) Newly developed structure with nnodes = 22. As most nodes are connected to
four active partners(no dummies), more than one path to the outputs is created.

This results in a significant efficiency gain.

FIGURE 4.1: Visualization of the currently implemented solution (A)
and the newly developed structure (B) with nin = 5 and nout = 8.
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4.1.2 Python Simulation Results

4.1.2.1 Current Solution: nnodes = 12

When analyzing the minimal network for three different bandwidth scenarios, it
was obvious that with increasing input bandwidth the Switch’s performance wors-
ened as a result of the network structure. The analysis plot for a bandwidth of
Nin = 2 · Nout is shown in figure 4.2A. The ut-interface that serves as shift_prev-
connection for the duplex node n4 in the corner (figure 4.1A) causes a bottleneck.
As there is only one possible path to forward the input payload to the output links,
each message inevitably passes through this connection. As each output is set to
a busy state while processing a message, any following payload will be forwarded
horizontally towards the next output link. Since the longest possible duration of
an output’s busy state equals the maximum weight wmax (section 3.1.1), the highest
possible number of occupied output links also matches the highest weight.
For input bandwidths smaller than wmax, the impact of this structural issue on the
performance is rather small. For bandwidths larger than wmax, this causes more
stalling occurrences at the inputs while not using the full output bandwidth. Over-
all, an output bandwidth of at least

N = nout − wmax (4.1)

remains idle, independent of the input traffic.

4.1.2.2 New Structure: nnodes = 22

In contrast, the performance increase when observing the nnodes = 22 network in
figure 4.2B is significant. The spatial layout and the connection pattern assure more
than one possible path for the payload propagating through the network. In the case
of a stalling in the vertical direction, the payload can be distributed horizontally at
an earlier time. Input links that would have been blocked in the smaller network
configuration can now insert their payload into the Switch. The horizontal distri-
bution also allows the use of all output links without changing the overall highest
weight. Replacing the current solution with a bigger, more complex network enables
a usage of the output bandwidth very close to 100%. Any gain in the percentage of
stalling inputs when increasing the input traffic is justified as the margin of output
bandwidth left is already small.
Concluding, the network architecture developed during the internship provides an
enormous efficiency gain which was proven through the analysis.
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(A) nnodes = 12

(B) nnodes = 22

FIGURE 4.2: Comparison of the Python simulation results for the cur-
rent solution and the newly designed Switch for nin = 5 and nout = 8.
Each plot contains the percentage of stalling input links in blue and
busy output links in red. The corresponding usage ratio is scatter-
plotted for each clock cycle, respectively. Additionally, a mean value

for the observed quantity is plotted as a dashed line.
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4.2 HDL Simulation Analysis

Having found an improved network structure during the internship, its correspond-
ing RTL implementation needs to be tested. In order to obtain comparability, all fur-
ther mentioned tests are explained by means of a network with nin = 5, nout = 8 and
nnodes = 22. The testbench discussed in section 3 supplies the testing environment
for the Switch and produces text files containing all relevant data for later evalua-
tion. In the following, the general testing parameters are listed and the evaluation
process is explained. The last two sections in this chapter are dedicated to the anal-
ysis and further comparison to the internship results.

4.2.1 HDL Simulation Parameters

For creating expressive test results that are comparable, the runtime was set to the
same value of t = 10000 clock cycles for all simulation runs. As the testbench logs the
relevant data for each clock cycle, this results in stable mean values, as the data is
averaged over the total runtime. The second parameter remaining constant through-
out the experiments is the weight array with w = [3, 3, 3, 3, 6], so the dependency
of the network’s efficiency on the input bandwidth can be quantified. The weights
were chosen to resemble a possible case in the HICANN-X as well. The four smaller
weights represent the spike events generated in the on-chip neuron block and the
weight w4 = 6 resembles the configuration bus which produces data less often.
The input traffic for the simulation is controlled by the activation probabilities p
as mentioned in section 3.1.1. The customized bandwidths Nin determine the activa-
tion probabilities p for the following analysis which are calculated to fulfill equation
(3.1):

• Low bandwidth:

Nin = Nout
2

p = [0.26, 0.26, 0.26, 0.26, 0.13]

• Medium bandwidth:

Nin = Nout

p = [0.53, 0.53, 0.53, 0.53, 0.26]

• High bandwidth:

Nin = 2 · Nout

p = [1, 1, 1, 1, 0.53]
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4.2.2 Evaluation Software

The evaluation of the data and the plot generation are conducted in a Python script
which reads the testbench’s output files. In each clock cycle, the testbench records
the number of occupied output links as well as the number of stalling inputs. For
both quantities, the corresponding link’s numbers/indices are noted as well.
Analog to the evaluation of the pure Python simulation in figure 4.2, the percentage
of stalling inputs and busy outputs is analyzed for the HDL implementation in the
following sections.

4.2.3 HDL Simulation Results

A goal of this analysis is to identify how the tendency of a stalling at the input links
changes with a rising data traffic, as well as observing the change in output occu-
pancy. Consequently, the evaluation involves three different bandwidth cases as
listed in section 4.2.1. The following page contains the HDL simulation results in
figures 4.3A, 4.4A and 4.5A compared to the Python simulation results in figures
4.3B, 4.4B and 4.5B.
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(A) HDL Simulation

(B) Python Simulation

FIGURE 4.3: Comparing the results for nin = 5, nout = 8, nnodes = 22
for the HDL Simulation and the Python Simulation. The plots show

the time course for a low Bandwidth case with Nin = Nout
2

Low Bandwidth: The data traffic applied to the Switch’s inputs cannot completely
saturate all eight output links. As observed in plot 4.3A, the simulation yields a
very low mean number of stalling inputs nstall = 0.029. Hence, most data that is
generated can be accepted into the Switch instantly. The average occupancy of the
output links is at nbusy = 0.475 which results from the overall low input bandwidth.
However, the plot confirms that the new network architecture allows the use of all
eight output links even for a low bandwidth. That verifies an even distribution of
the payload without any structural issues causing constrictions.



30 Chapter 4. Analysis

(A) HDL Simulation

(B) Python Simulation

FIGURE 4.4: Comparing the results for nin = 5, nout = 8, nnodes = 22
for the HDL Simulation and the Python Simulation. The plots show

the time course for a saturating Bandwidth case with Nin = Nout.

Saturating Bandwidth: On average, the bandwidth inserted per clock cycle satu-
rates the output links. Plot 4.4A shows a slight increase in nstall for the now higher
bandwidth. As the input bandwidth is only an average value, it is possible that in
some cases the outputs are oversaturated which can result in a higher number of
stalling inputs. However the average is still quite low at nstall = 0.164. The output
occupancy is at nbusy = 0.827 which shows a significant increase.
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(A) HDL Simulation

(B) Python Simulation

FIGURE 4.5: Comparing the results for nin = 5, nout = 8, nnodes = 22
for the HDL Simulation and the Python Simulation. The plots show

the time course for a high Bandwidth case Nin = 2 · Nout.

High Bandwidth: While according to the plot in figure 4.5A the amount of stalling
inputs is at nstall = 0.504, the mean output usage is at an average of nbusy = 0.953.
Therefore at most times, the outputs are fully saturated and no further payload can
be processed. Hence, the high average number of stalling input links is justified and
a fair distribution of data within the network is confirmed.
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Table 4.1 summarizes the average percentages of the stalling inputs and busy out-
puts for the different bandwidth experiments.

low BW medium BW high BW
stalling inputs nstall

nin
0.029 0.164 0.504

busy outputs nbusy
nout

0.475 0.827 0.953

TABLE 4.1: Percentages of stalling inputs and busy outputs for simu-
lation runs of the RTL Switch with three different input bandwidths.

Overall, the Switch guarantees an efficient use of the available output bandwidth
and meanwhile provides a fair acceptance of data from all input links without block-
ing for the majority of the time. The most important difference to the minimum
node configuration is the noticeable gain in output occupancy when increasing the
amount of data fed into the Switch. This helps to use the hardware to its full capac-
ity.

4.2.4 Comparing Python and HDL Results

When comparing the Python simulation to the HDL simulation, a few minor dif-
ferences occur. One example are the rather sparse distribution of the data points in
the Python simulation plots compared to the HDL simulation as a result of the dif-
fering runtimes. In the HDL simulations, more data points were collected and the
individual lines for a certain number of stalling inputs or busy outputs appear more
distinct. Furthermore, the variations in the data distribution are due to the slightly
different implementation of the nodes. During the internship, the arbitration was
randomized in each clock cycle for both, input and output clients which differs from
the arbitration used in the HDL Shifter module (section 2.3.3).
Overall, the results are similar for the Python and HDL simulations, confirming that
the HDL module performs as intended.
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Chapter 5

Discussion & Outlook

5.1 Summary

The general aim of this thesis was designing and implementing a highly parametriz-
able HDL module that provides a structure of buffer stages to evenly distribute input
payload to the output channels. Most importantly, it should show improvements in
output usage and reduce the stalling effect at the input links compared to the cur-
rently implemented network.

Currently Implemented Network The main limitation of the currently implemented
network is of structural nature. The node that is linked to an input as well as an out-
put channel creates a bottleneck for the whole network. It restrains the usage of the
output links and overall reduces the throughput and the network’s efficiency.

Development of the new Switch The individual components providing the tem-
poral dynamic behaviour were implemented in HDL before constructing the Switch
with those submodules. The structure for the new Switch was based on the intern-
ship results. Conducting controlled tests was made possible by designing a specific
testbench for the Switch module. Analyzing test data quantified the efficiency and
allowed a comparison to the Python simulations.

5.2 Discussion of the Evaluation Results

So far, the constructed network was tested in HDL simulations, using the testbench
with the simulation tool ModelSim. The tests validate a correct functionality that
fulfills the requirements stated in section 1.2. In this thesis a network with nin = 5,
nout = 8 and nnodes = 22 was analyzed in detail.

A general goal for all of the Switch’s applications is to minimize the ratio of stalling
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input links per clock. Consider a digital neural network modelling neuronal be-
haviour through simulation. In some cases the network produces a large amount of
spike event data. When distributing those events through a Switch, a stalling effect
at the input links is inevitable. In the case of a purely digital neural network, the sim-
ulation can simply be paused until all data is handled by the Switch and only then
the neurons evolve further. Scaling with the number of stalling input links for this
kind of network is the effective runtime since the generation of data is slowed down
by interrupting the network’s evolution. This is only possible since the simulation
would in this case work with discrete time steps.

In case of the HICANN-X chip, this is not applicable because neurons are emulated
by analog circuits that are continuously evolving. Analog neural networks are de-
prived of the opportunity to interrupt their development temporarily, so a stalling
at the input links results in dropping the corresponding spike events. This leads to
a loss of information, which is why the experiment’s precision scales with the num-
ber of stalling inputs. Furthermore, one of the HICANN-X’s central characteristics
is the large acceleration compared to the biological time, which induces high data
traffic within the neural network. This speed-up however can only be fully taken
advantage of if the communication infrastructure is capable of processing the re-
sulting large amount of data. Within the scope of this thesis an exemplary network
was observed for three different input bandwidth cases in particular. The number of
stalling inputs was monitored as well as the output occupancy.

Low Bandwidth Results The very low input traffic in this experiment does not
require the full output bandwidth and payload can be processed by only using a
few output channels in each clock cycle. The average output occupation ratio is at
47.5%. Since the amount of payload generated each clock cycle is rather small, it
should be accepted into the network instantly. An average value for the stalling
inputs per clock cycle of 2.9% confirms the expected behaviour.
A further observation in the analysis plot in figure 4.3A is a jitter of both quantities
that were measured. Since the data generation at the inputs is randomized, it can
result in irregular behaviour on a short time scale. This causes temporary stalling
effects within the network and leads to fluctuations of the number of stalling inputs
or occupied outputs. By averaging over a long runtime, this behaviour is taken into
account.

High Bandwidth Results The opposite scenario to the low bandwidth case was
oversaturating the output links with a very high input traffic. A large amount of
data is fed into the network which on average requires more than the available out-
put bandwidth to be processed within one clock cycle. In theory, the ideal outcome
for this case would be an output utilization of 100%, which the Switch approximates
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very well in simulation with 95.3%. As mentioned above, the input event genera-
tion is randomized and causes fluctuations of the output occupancy as well, which
explains the average value not reaching 100%. However, for the majority of the time
the outputs are used to full capacity. As a result, the stalling effect will be noticeably
larger than for a low input traffic, which is justified by the high output usage. In
this case the high number of stalling inputs and the corresponding drop rate for an
analog neural network is inevitable.

Saturating Bandwidth Results Assuming that for an application in a chip’s com-
munication infrastructure, the available output bandwidth is chosen in respect to
the expected input traffic, the saturating bandwidth case will likely be applicable for
most of the time. Hence the case with Nin = Nout is investigated as well. Since that
case portrays the border between saturating and oversaturating all output links, the
behaviour of stalling input events in a bandwidth margin around Nin

Nout
= 1 is ob-

served. The corresponding plot can be found in figure 5.1.
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FIGURE 5.1: Dependency of the stalling input ratio on the input band-
width. The stalling input ratio is plotted for a range of input band-
widths around the optimum saturating bandwidth of Nin = Nout.

The data for this plot was accumulated in HDL simulations.

As expected, the number of stalling inputs stays lower than 20% for rising band-
widths up to Nin = Nout. This corresponds to an average smaller than one stalling
input link in this particular network configuration with nin = 5. Since the genera-
tion of input data is randomized for the HDL simulation, the behaviour of the Switch
strongly depends on the event distribution. It is possible for the network to be tem-
porarily oversaturated or to not be utilized to capacity. Therefore, the network’s
utilization is not entirely predictable, but the ratio being lower than 20% signifies no
stalling at any inputs for the majority of the experiment’s runtime.
Considering the value for Nin = 1.1 · Nout, the results indicate a stalling at some of
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the input links for most of the time. This also matches the expectations since on av-
erage the input traffic would slightly oversaturate the output links.
The overall desired curve in this plot would resemble a value of zero stalling inputs
up until Nin = Nout, followed by a sharp edge indicating a rise of stalling input links
as soon as the output links are oversaturated on average. Since the event generation
is randomized for the HDL simulation and not periodic on a HICANN-X chip as
well, this behaviour can not fully be reproduced.
To compensate for that, the user can however adapt the output bandwidth by taking
into account the according plot as found in figure 5.1 for the corresponding network
parameters. Considering both the maximum acceptable drop rate and the highest
possible input traffic, a value for Nout can be chosen accordingly if possible. For
a stalling input ratio very close to zero, choosing a setup with Nin = Nout

2 is rec-
ommended. For any input bandwidth higher than Nin = Nout a larger amount of
dropped events can be expected.
An approach towards reducing the amount of dropped data would be introducing
elastic buffer stages placed at the inputs. Neuronal events could be stored for a
short amount of time instead of being discarded immediately if a stalling effect oc-
curs. This is only relevant for spike event data generated in the chip’s analog neuron
block as it is not reproducible. The configuration buses mentioned in figure 1.3 do
not drop any data, they simply stall until the Switch is capable of processing their
payload.

Overall the simulation tests confirm significant improvements for the throughput
and especially the output occupancy. Furthermore the expectations based on the
internship’s pure software analysis were met since the resulting plots yield very
similar results.

5.3 Outlook

While the project’s results confirm a successful development of an efficient network,
the new design has only been tested in HDL simulations up until now. Hence, the
next step towards commissioning the Switch are thorough hardware tests.
To further broaden the Switch’s functionality, a few changes to the module could be
implemented in the future. A first approach could be a higher level of connectivity
per node. This would be implemented by increasing the number of allowed input
and output connections per Shifter to three or more. As a result, diagonal connec-
tions would emerge. The arbitration would need to be modified for this case as well.
Establishing more possible paths, the payload could be distributed quicker into the
horizontal direction.
Another feature for maintaining the usability of the Switch for various use cases is
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the option of a routing system. The feature could be enabled for transporting pay-
load from the input clients to a specific output link as destination. Disabling this
option would again result in treating all output links equally.
The Switch module will be included in the next generation chip and can already be
used on the FPGA connected to the HICANN-X.
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Acronyms

ASIC Application-Specific Integrated Circuit. 1

DUT Device Under Test. 20

FPGA Field Programmable Gate Array. 2, 8

HDL Hardware Description Language. 27–33, 36

HICANN High Input Count Analog Neural Network. 1, 8, 21, 23, 27, 34, 36

RTL Register Transfer Level. 4, 19, 23, 27, 32
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