
Department of Physics and Astronomy
University of Heidelberg

Bachelor Thesis in Physics
submitted by

Patrick Häussermann

born in Backnang (Germany)

2018

Integration of the Slurm workload manager into the
BrainScaleS monitoring platform

This Bachelor Thesis has been carried out by Patrick Häussermann at the
Electronic Visions Group in Heidelberg

under the supervision of
Prof. Dr. Christian Enss

and
Dr. Johannes Schemmel

Abstract

The neuromorphic system BrainScaleS implements physical models
of neural networks. At its core are twenty wafers, comprised of so-
called HICANNs that physically emulate adaptively spiking neurons and
plastic synapses. The BrainScaleS computing platform can be requested
by hundreds of experiments per day, making it necessary to schedule
and manage submitted workloads automatically. This is done using the
Slurm workload manager software that is widely used in HPC (High
Performance Computing). Slurm provides automatic scheduling and
execution of submitted jobs but also implements a framework to manage
available computing resources.

While most of the components of BrainScaleS are already part of an
existing monitoring platform, Slurm is not. This thesis aims to remedy
that and integrate Slurm into the existing monitoring platform. To this
end, existing configurations were revised and periodic queries to Slurm
and the cluster were implemented. These provide a wealth of informa-
tion which is analyzed and stored. The existing visualization solution
has been extended with the new data, providing insight into the status
of Slurm and the cluster. Further development of the changes already im-
plemented during the internship enables the display of status and usage
history of licenses representing user-allocatable hardware.

These changes enable the generation of comprehensive usage reports
and statistics and allow for a more proactive approach by identifying
possible optimizations of the cluster and software.

Zusammenfassung

Das neuromorphe System BrainScaleS implementiert physikalische
Modelle von neuronalen Netzwerken. Der Kern des Systems besteht aus
zwanzig Wafer, auf welchen sogennante HICANNs ein physisches Model
von adaptiv feuernden Neuronen und plastischen Synapsen implemen-
tieren. Dieses System wird öfters von hunderten Experimenten täglich
genutzt, was es nötig macht diese automatisch verwalten zu lassen. Dazu
wird der Slurm workload manager verwendet, eine Software welche im
High Performance Computing weite Verbreitung findet. Slurm ermöglicht
das automatische Starten und Verwalten von Experimenten, bietet aber
auch Funktionen um vorhandene Computerressourcen zu verwalten.
Slurm war bisher noch nicht Teil der bereits bestehenden Überwach-
ungsinfrastruktur. Diese Arbeit ändert dies. Es wird eine Lösung um-
gesetzt, welche es erlaubt Slurm, sowie auch den Cluster als ganzes zu
Überwachen. Dazu mussten viele der bestehenden Konfigurationen an-
gepasst werden. Zusätzlich werden nun regelmäßig Daten aus Slurm
abgefragt, analysiert und gespeichert. Diese Daten werden ebenfalls auf-
bereitet und grafisch dargstellt. Dies erlaubt tiefe Einblicke in den Status
von Slurm und den Cluster selbst. Änderungen die bereits während des
vorhergegangenen Praktikums gemacht wurden, konnten weiter ausgebaut
werden und erlauben nun auch die Darstellung von Status und Nutzungs-
verlauf der verwendeten Hardwarelizenzen. Die gemachten Änderungen
ermöglichen es nun ausführliche Statistiken und Berichte zu erstellen.

Contents

Contents i

1 Introduction 1
1.1 Motivation . 1
1.2 Cluster configuration . 2
1.3 Slurm workload manager . 3

1.3.1 Resource management 5
1.3.2 Automated HICANN init 6

1.4 Underlying technologies and formats 7
1.4.1 JSON data format . 7
1.4.2 Elasticsearch . 8
1.4.3 Logstash . 9
1.4.4 Filebeat . 9
1.4.5 Kibana . 9
1.4.6 Grafana . 9

2 Implemented changes and improvements 11
2.1 Metric aggregation . 11

2.1.1 Slurm exporter scripts 13
2.1.2 Epilog script . 17
2.1.3 Runtime measurements and scalability considerations . 17

2.2 Data processing . 19
2.3 Grafana Dashboards . 21

2.3.1 Slurm - Overview . 21
2.3.2 Slurm - Node Details . 22
2.3.3 Slurm - Job info . 22
2.3.4 Slurm - License status 22

3 Summary and outlook 31
3.1 Summary . 31
3.2 Outlook . 32

Bibliography 33

i

Glossary 35

A Configuration Files 36
A.1 filebeat configuration (excerpt) 36

B Additional tables 37
B.1 Script performance measurements 37
B.2 Gerrit change sets . 37

ii

Chapter 1

Introduction

1.1 Motivation
BrainScaleS, or NM-PM-1, is part the Human Brain Project and implements
neuromorphic computing in a non von Neumann architecture, using custom
neuromorphic hardware. As such, it takes inspiration from many fields of
science, such as physics, biology, mathematics and computer science. Like any
other large-scale experiment, it is dependent on long-term stability, relying on
the optimal functionality of the components used.

Whether in the laboratory or in simulations, without careful monitoring
of experiment conditions and parameters, problems can go unnoticed, having
serious impact on results or operations.

Since May 2016, more than 340,000 experiments1 were run on the Brain-
ScaleS computing platform and, like any other large-scale experiment, this
requires a way to manage the large amount of experiments and their associated
users. To achieve this and to ensure the fair and efficient distribution of
resources among users, BrainScaleS relies heavily on the Slurm workload man-
ager to manage and schedule all submitted jobs. These jobs range from
simple computing operations to complex simulations and experiments on neu-
romorphic hardware. Slurm is well-established software that is widely used in
high-performance computing, running on many of the world’s most powerful
supercomputers.

The number of jobs submitted is increasing rapidly, with more than 41,000
jobs in September 2018 alone. Without Slurm to manage resources and
schedule jobs, experimentation would come to a halt.

The aim of this bachelor thesis is to integrate Slurm into the existing
monitoring solution to provide a way to reliably monitor the status of Slurm
and the cluster itself. This can help to identify current problems or resource

1Internal usage report for September 2018, generated by E. Müller.

1

bottlenecks and predict and avoid future problems, keeping any unnecessary
Slurm downtime as low as possible.

1.2 Cluster configuration
At the core of BrainScaleS, is a custom-made wafer consisting of 384 HICANNs
(High-Input Count Analog Neuronal Network Chip). These HICANNs can be
considered silicon-based microelectronic analogs to the cells and connections
found in the human brain. Implementing the biological AdEx (Adaptive
exponential integrate-and-fire) model [1], each HICANN is able to implement
up to 512 neurons and ∼115.000 synapses.

For assembly reasons, wafers are divided into 48 so-called ”reticles”, each
containing 8 adjacent HICANNs. Every reticle is assigned its own FPGA
(Field Programmable Gate Array) to handle communication with the rest of
the setup. It is also connected to an Analog Breakout PCB, which allows up
to 12 Analog Readout Modules to read out membrane voltage.

Wafers and support hardware like FPGAs, interface modules and power
supplies are housed in an assembly called a wafer module. In total there are
twenty such wafer modules distributed over five industry-standard 19” racks.
A schematic overview of such a wafer module is provided in figure 1.

Figure 1: Schematic wafer overview. Each reticle (red rectangle) contains 8
HICANNs which implement the physical model of neurons and synapses and is
assigned a dedicated FPGA for communication with the rest of the setup [2].

All wafer modules are supported by a number of additional systems, such
as networking devices and compute nodes. There are twenty such compute
nodes, each of which can process the bundled communication of up to 48
FPGAs. Three storage nodes provide highly-available disk storage for user
and experiment data. Figure 2 shows a picture of the current setup.

2

Figure 2: Photo of current NM-PM 1 setup. Wafer modules are located near the
top and bottom of the lateral racks. Networking devices can be seen above each wafer
module. Compute and storage nodes are situated in the center of the structure [2].

The current setup also utilizes all of the compute nodes for Slurm. This
way, otherwise unused or underutilized nodes can be allocated for experiments
and simulations. Using already existing hardware not only helps to increase
efficiency, it also allows to operate at a lower cost.

Including other systems assigned to Slurm, there are currently 31 such
nodes providing a total of 244 CPU cores and more than 750Gb of memory
for Slurm to manage.

1.3 Slurm workload manager

In order to run multiple experiments simultaneously and to ensure the fair and
efficient distribution of resources among users and experiments, a so-called job
scheduler is used. This job scheduler manages all submitted jobs, regardless
of whether they are started directly from the command line or submitted
through the web interface of the HBP Neuromorphic Computing Platform.
This online platform allows registered users to submit experiments which are
then executed on BrainScaleS or the ”SpiNNaker” multicore system, located
at the University of Manchester.

3

BrainScaleS uses a customized version of the free and open-source Slurm
workload manager. Slurm is focused primarily on Linux clusters and highly
scalable, running on many of the worlds most powerful supercomputers2. The
core of the software, the control daemon, is installed on the server hel. It is
responsible for scheduling and managing jobs and also handles the commu-
nication with connected nodes. These nodes are then assigned experiments
and other workloads for execution. Many systems of the Electronic Visions
network have a compute daemon installed and are thus part of the Slurm
cluster.

Jobs that are submitted by command line, i.e. started directly on hel, do
not necessarily have to be experiments, but may contain other workloads that
benefit from distributed computing, such as software compilation.

The architecture of a typical Slurm installation can be seen in figure 3.
The current configuration at the BrainScaleS project does not use a backup
daemon, but it does make use of the optional database backend.

This way, information about past and present jobs is saved to a MySQL
database (slurmdbd), also running on hel. Slurm provides a variety of com-
mands to access and query this database. This allows for the retrieval of
job information and the generation of reports and statistics. The optional
backup control daemon offers the possibility of running a second instance of
slurmctld, the core of the software. When installed on a different server,
this provides another instance to which jobs can be submitted and automatic
fail-over in case one of the main control daemon goes down.

Slurm also allows for the creation of partitions as a way to group and
organize different hardware or computational needs. Partitions are possibly
overlapping sets of nodes and can be understood as individual job queues,
each of which can have different constrains such as job length, resource usage
or users permitted. All jobs submitted must be assigned to at least one
partition. They are then allocated nodes from the corresponding set until
available resources (CPU cores, global licenses, etc.) within that partition
are exhausted. Jobs of low priority or those waiting for resources to become
available are queued.

There are currently 10 available partitions. The most important are listed
below:

experiment For running experiments on the BrainScaleS hardware.

simulation Used for running simulations. Can be used for ”BrainScaleS-
ESS”, the software simulator of the BrainScaleS system.

compile Special partition to offload software compile operations onto the
Slurm cluster.

2https://www.prweb.com/releases/2012/11/prweb10149109.htm, retrieved 22.10.2018

4

https://www.prweb.com/releases/2012/11/prweb10149109.htm

short Job runtime is limited to a maximum of 60 minutes.

dls/spikey/cube Partitions for accessing specialized hardware queues such
as ”Spikey”, the Heidelberg single-chip system.

Due to its open-source nature, Slurm provides additional plugins to extend
or provide certain functionalities. A plugin currently in use is the job submit
plugin, which is the first thing to run after a job is submitted or modified.
The purpose of this plugin is to automatically convert user-supplied hardware
parameters into the underlying licenses.

These licenses represent user-allocatable hardware needed for some ex-
periment runs, such as FPGAs for communication with the setup or ADCs
(Analog-to-Digital Converter) to read out and digitize membrane voltages. By
assigning a license to each hardware available, it is possible to include these
into the resources managed by Slurm.

Figure 3: Architecture of a typical Slurm installation as used for BrainScaleS. The
possibility for a backup control daemon is currently unused, but the optional database
daemon is active [6].

1.3.1 Resource management
The resource managed by Slurm is primarily the available computing power
of the cluster, but can also be available memory or the licenses mentioned
above. A node usually has enough computing power or memory to run
several experiments concurrently, though the exact number depends strongly
on the requirements of the experiment itself and the partition used. Different
partitions allocate a different amount of computing power and/or memory by

5

default. Licenses cannot be shared and are uniquely assigned to a single ex-
periment or user.

Scheduling and starting of jobs is done by customizable scheduling and
backfill algorithms. A quick scheduling attempt is done whenever a job is
submitted or finished. More comprehensive scheduling attempts, in which a
larger amount of jobs are considered, is done periodically [5].

Such a scheduling cycle attempts to get a lock on queued jobs and then
tries to get the resources needed. Scheduling is done top-down, starting with
the job of highest priority and going in descendant order. Once a job can not
get the resources needed, the loop keeps going but just for jobs requesting
other partitions [5].

Backfills are complex operations in which Slurm might allow jobs of lower
priority to start early, but only if doing so won’t affect the expected start
time of any job with higher priority. For that, the start time of all queued
jobs is periodically estimated and possible openings are filled with jobs whose
parameters or partition defaults would allow them to be slotted in. Allowing
jobs to be backfilled usually results in a significantly higher utilization as these
would otherwise be started in strict priority order.

In order to help manage hardware-licenses, several existing provisions like
the job submit plugin or prolog and epilog scripts are already in place.
These have been extended or reworked during the preceding internship to
provide features used for license management and automated init. A short
summary of the automatic initialization is provided in the next section.

1.3.2 Automated HICANN init

The automated initialization of HICANNs was the main goal of the preceding
internship and enables Slurm to automatically initialize HICANNs directly
adjacent to those used by an experiment. Some of the changes made are now
the basis for further work and improvements.

HICANNs or more precisely the connecting L1 bus lines have to be initial-
ized in software, since there are no provisions for that on the hardware side.
This leads to a random voltage on the L1 bus lines after power-up, which
can influence adjacent HICANNs used by other experiments. Initialization is
done using the same licenses used to exclusively allocate the FPGAs needed for
communication with the HICANNs. Each license represents one FPGA, i.e.
8 HICANNs. At the time of the internship only whole licenses and therefore
all 8 associated HICANNs could be initialized. By now, individual HICANNs
can also be initialized.

6

Changes made to the job submit plugin allow Slurm to determine HICANNs
adjacent to those used by an experiment and make the corresponding licenses
available as environment variable. Several scripts then use these env vars to
manage and initialize the licenses used. Management is done with help of
the same MySQL database used by Slurm. There, license name, status and a
timestamp are saved. The timestamp is updated whenever a license status was
changed. Licenses used by experiments are automatically set ”dirty”, while
initialized neighbours are set ”clean”.

Since the automated initialization is intended to save time, only licenses
that are marked ”dirty” or have a timestamp longer than 24 hours in the past
are initialized by default. The value of 24 hours was determined empirically
and represents a cutoff after which outside influences or voltage fluctuations
make it prudent to consider a license to be ”dirty”.

Users can overwrite the default behavior with the help of two new command
line parameters: These allow to either skip the init completely
(--skip-hicann-init), or force all neighboring HICANNs to be initialized,
regardless of their status (--force-hicann-init).

Revisions made while implementing the new management features resulted
in a much faster execution speed of the important prolog-script which is called
prior to every job or experiment. In a typical usage scenario, the new script is
about three times as fast as the old one. A table with detailed measurements
can be found in the appendix (Table B.1).

1.4 Underlying technologies and formats
This section provides a brief overview of the technologies and formats used for
the work done in this thesis. The basis for some of the implemented changes
and additions is a monitoring solution set up by Daniel Kutny as part of his
internship and bachelor thesis [3].

In order to expand the existing solution and include Slurm in the mon-
itoring, numerous changes to the existing programs and configurations have
been made. Some of the programs and data formats used are briefly explained
below, see [3] for a more detailed description of the installation.

1.4.1 JSON data format
JSON or JavaScript Object Notation is a human readable data format derived
from JavaScript and is often used for serializing and transmitting structured
data. This format is popular because it is light-weight and easy for people to
read and write.

7

A JSON object consists of a pair of curly brackets (braces) ”{” and ”}”,
which contain one or more unordered name-value pairs. Name and value
are separated by a colon character ”:”. Names and string values have to
be double-quoted, e.g. {"firstName": "John"}. Additional name-value
pairs are separated by a comma ”,”. Ordered lists (arrays) are supported
by surrounding comma-separated values or objects within square brackets.
Listing 1.1 shows a valid JSON object [4].

{
"firstName": "John",
"lastName": "Doe",
"Address": {

"Street": "253 Example Drive",
"City": "Metro City",
"State": "Nevada"
},

"active": true,
"membershipnumber": 357325,
"tags": ["admin", "editor", 99]

}

Listing 1.1: A valid JSON object showcasing the easy readability of this format.
Spaces and newlines between objects aren’t necessary but help readability.

All software explained in the following sections already supports the JSON
data format, either on the input/output side, or internally. This simplifies
many steps in data processing making it the most obvious choice.

1.4.2 Elasticsearch
Elasticsearch is the underlying software used for what is commonly called an
”Elastic Stack”. This is a popular logging and analytic platform and also the
basis for the current monitoring solution. It allows to reliably input and store
data from any source and any format. This data can be searched, analyzed and
visualized in real time. Although elasticsearch is only one of three programs
typically used in Elastic Stack, it is so popular that it has become synonymous
with the name of the stack itself.

Elasticsearch stores data in an unstructured way (”NoSQL”), meaning
that it is stored in a huge number of documents, rather than individual tables
and rules linking those tables together. This enables full-text search in where
every single document stored is searched for a given search phrase, similar to
a keyword search within a PDF or text document.

Input data and documents that have similar characteristics can be indexed
under a common name, allowing for a more narrowly constrained search.
This function is currently used to distinguish between different types of logs

8

that are entered into the database, e.g. wafer containing information about
wafer allocations, or the newly added slurmstats, slurmtop and jobinfo
pertaining to Slurm.

Although elasticsearch is not ideal for storing a continuous stream of name-
value pairs (”time series data”), it is extremely fast, even on such massive
scales seen at CERN [8]. Its speed and ease of use make it one of the most
widely used logging solution in IT environments.

1.4.3 Logstash
Logstash is another component of a typical ”Elastic stack” and can be thought
of as data processing pipeline. A configurable input listens for incoming data
to which a series of filters and conditions is applied. It is then output as JSON
document, typically to elasticsearch for indexing. Examples of such a pipeline
can be found in listing 2.4.

Logstash allows for arbitrarily complex processing pipelines which can
handle almost all data formats. However, such complex pipelines should
generally be avoided, if only for reasons of speed.

1.4.4 Filebeat
Filebeat is a daemon that can be configured to watch for file or directory
changes. New files or file entries are automatically forwarded to either logstash
for more advanced processing or directly into elasticsearch for storage. Filebeat
keeps track of files and lines already parsed and slows down or stops if it detects
a problem on the ingest side. This allows indexing to continue automatically
after a network failure or problem with the logstash pipeline.

1.4.5 Kibana
Kibana is the last of the three programs that make up a ”Elastic Stack”.
It is a browser-based tool for visualizing and real-time analysis of data in
elasticsearch. However, it is currently only used to manage elasticsearch.
Visualization is done by a more powerful tool, Grafana.

1.4.6 Grafana
Grafana is the main tool used to visualize data at the BrainScaleS. It is
web-based and structured as a series of dashboards that can be configured
to visualize data using a variety of plugins and graphs. These range from
simple tables and graphs to complex heat maps and carpet plots. A feature
that distinguishes Grafana from similar programs is the large amount of data
sources it supports. With Grafana it is even possible to directly query the
database used by Slurm, an option that was made use of in this bachelor
thesis.

9

Chapter 2

Implemented changes and
improvements

This chapter describes the changes and additions made that allow for the
inclusion of Slurm into the existing monitoring solution. A flowchart showing
the interactions between the software used to monitor Slurm can be found in
figure 4.

Most configurations or scripts are only shown as excerpts as some of these
span several hundred lines of code. Files can either be found in the appendix or
are available on the internal gerrit code collaboration tool. A table containing
all Change-IDs can be found in the appendix, section B.2.

To collect and process the information gathered by Slurm, several new
scripts were written. Data aggregation is described in the following section,
while the scripts themselves are covered in section 2.1.1. In order to visualize
the collected information, it has to be processed first. For that purpose it is
forwarded by filebeat to the server monviz where it is processed by logstash.
This is explained in section 2.2. After processing it is automatically indexed
into elasticsearch. Finally, Grafana accesses elasticsearch and MySQL to
visualize this data. The new dashboards created for this purpose, as well
as the information displayed is explained in detail in section 2.3.

2.1 Metric aggregation
While the existing solution uses the well-established syslog format for input
into logstash, this is not sufficient here. The amount of information generated
by the newly added scripts, as well as the type of data gathered would make
a complex logstash configuration necessary. To avoid writing such a highly
specialized processing pipeline, especially in consideration of robustness and
easy expandability, all data gathered by the new scripts is directly formatted
as JSON documents. Since logstash already works internally with JSON, a

11

helvetica.kip.uniheidelberg.de

monviz.kip.uniheidelberg.de

manage & interact

slurm

store & retrieve

slurmdb
Database

forward

watch

filebeat

srun

squeue

sdiag

Monitoring StorageHBPHost1

Elasticsearch

process

Logstash

Visualization

Grafana

manage

Kibana

compute nodes

retrieve

exporter scripts

epilog script

Interact

query

Figure 4: Flowchart showing the programs and their interactions that allow the
monitoring of Slurm. Dotted rectangles represent different systems.

few basic filter operations are sufficient to process the new documents. This
additional input format required changes to all configuration files as well as
a new logstash pipeline. However, the necessary restructuring of the logstash
pipeline has the advantage that additional data sources can be configured by
simply adding a new if-then block for data processing.

12

Monitoring of Slurm and its connected nodes is done with the help of two
exporter scripts, slurmstats.sh and slurmtop.sh. Both periodically query
the local Slurm installation using Slurm-specific commands.
A third script already in use has been extended. This epilog-script is auto-
matically executed by Slurm at the end of a job run. It now logs additional
details about the job from within it was called.

All scripts write to files in /var/log/elasticsearch, with the filename
depending on the type of script:

slurmstats.json Output from the main script. Contains information about
the health of the cluster, current activity and details about the job queue.

slurmtop.json Primarily statistical information such as job numbers and
user information.

jobinfo.json Output from epilog.sh, containing selected information about
the job it was started from.

The directory is monitored by filebeat and all logs are forwarded to logstash
for processing before they are indexed into elasticsearch. To distinguish the
new JSON-formatted data from already occurring inputs into logstash, filebeat
now tags forwarded data from these three files with additional fields (see
Listing A.1). Logstash then decides on the presence of these fields which filter
and processing routine is applied to the incoming data (section 2.2).

2.1.1 Slurm exporter scripts
Both exporter scripts are designed to be run via cron. While the first script
is designed to run every minute, the second should only run hourly, as it
contains some fairly time-consuming database queries. This might otherwise
needlessly slow down the Slurm installation in times of high load.
The scripts can be run under any user, as long as it is permitted to execute
Slurm commands like sdiag and has sufficient rights to write the output data
to directories watched by filebeat.

The scripts are structured to make a series of queries to different Slurm
functions, the output of which gets parsed, processed and formatted before it
is written to disk. This is the simplest and most robust way to collect infor-
mation, as it uses Slurm’s own functions to extract data. This is helped by
the fact, that some of the commands used allow output in a format that is
either already similar to JSON, or easily parsable.

All information is collected in separate JSON objects (see 1.4.1) but output
as a single document. This separation helps readability and makes it easier

13

to expand functionality if necessary. Additionally, all calls to Slurm are made
in such a way, that erroneous or empty replies do not impact the execution
of the rest of the script, or invalidate the JSON output. Listing 2.1 shows
an excerpt from the first script in which a very simple operation queries and
formats aggregated node information.

To minimize overhead, most of the numerical data (e.g. scheduler statistics
or load information) is combined into JSON arrays, which will then be split
into individual fields by logstash (see section 2.2). Similarly, only non-zero
values are output for node and partition information. This can shrink document
size considerably during nighttime or times of low activity.

All scripts have a modular structure and are commented in great detail.
This makes them easy to understand and expand in the future.

output aggregated cpu and node states as array to
minimize overhead.
Array has to be split up and assigned to fields by logstash
__get_cluster_info() {

local temp
get CPU and Node states which are in the form
"idle/allocated/down/total".
Use another "/" to separate the CPU and Node part.
This way...
temp="$(sinfo -h -o%C/%F)"

if [["${temp}"]]; then
... we can simply replace all "/" with comma to build the
whole JSON array
loadinfo="[${temp//"/"/,}]"

fi
}

[...]

__get_node_info
cluster load
if [[${loadinfo}]]; then

payload+="\"loadinfo\": ${loadinfo}"
fi

Listing 2.1: An excerpt from the first script showing a very basic example to get
aggregated information.

14

Slurmstats script

The first script collects most of the data displayed in Grafana. It is responsible
for retrieving and outputting information about the Slurm installation itself
as well as all connected nodes and the job queue.

Calls to squeue are used to get a list of all current jobs and their status
(running, pending, etc.). This output gets parsed and the total of each state
is calculated. After that, squeue is called two more times, but with different
parameters each time. This provides important information about currently
running jobs and the size and shape of the job queue.

Queries to sinfo allow for the retrieval of the current status, CPU load
and memory usage of all connected nodes. Another call is made to collect
the same information in aggregated form, providing an overview of the whole
cluster.

The last metrics are collected by calling sdiag which outputs general
diagnostic information for Slurm. The output mainly consists of internal
statistics such as current scheduler length or cycle duration, but also contains
information about the total number of jobs submitted, started, completed
or canceled so far. These values are important for assessing the health of
the Slurm cluster as they directly reflect the performance of Slurm and its
scheduler. This can also help with troubleshooting and optimizing performance.
All of these stats reset daily at midnight UTC.

The following listing shows output from the first script. For reasons of
brevity only a few of the 31 hosts are shown. The large arrays at the end of
the file contain all of the aforementioned diagnostics and load information in
compacted form to minimize overhead. These arrays have to be split up and
assigned to individual fields by logstash.

{"timestamp": "2018-11-02T15:57:01+0100", "AMTHost1": {"state":
"idle"}, "AMTHost3": {"state": "idle"}, "AMTHost11":
{"state": "down*"}, "AMTHost12": {"state": "idle", "load":
2}, "AMTHost13": {"state": "idle"}, "AMTHost14": {"state":
"mixed", "mem": 3740}, [...]

"partition": {"dls": 1}, "jobqueue": {"completed": 2, "running":
1}, "pendingjobs": {"simulation": 1}, "schedinfo":

[3,0,161,161,128,31,0,28,1806,1905,52,0,2,0,1,1,918,918,918,1,1,1],
"loadinfo": [2,210,32,244,1,26,4,31]}

Listing 2.2: Sample output (abridged) from the first script. This script gathers
node and partition information as well as scheduler and load statistics.

15

Slurmtop script

This script collects accounting information and statistical data. It is meant to
be run only once per hour as it contains some fairly time consuming queries.
This is sufficient, since all statistics created only report daily or monthly
trends.

The script starts off by using sreport to display the top 5 users (by CPU
hours used) of the day. It then uses this information to query the job count,
i.e. the amount of jobs started by each of these users. Similar statistics are
generated for month-to-date.

Additionally, for each of the top 5 users the distribution of allocated CPU
cores is determined. Once on a per-job basis, but also on basis of total CPU
hours spent. This is done since these two stats can differ – running the most
jobs does not necessarily mean that the most CPU hours are consumed. A
similar report showing the distribution of CPU cores among all jobs is also
generated. These statistics allow to determine the average amount of CPU
cores requested by jobs and the resulting CPU hours used. This can help to
adjust partition defaults to more reflect real requirements. See figure 7 and
11 for examples of these statistics.

Finally, the total number of jobs started for the current month is determined.
Depending on the date, this can be an extremely time-consuming query and
is therefore further restricted to run only once at 4 am.

Data gathered by this script is shown in listing 2.3. It is mainly statistical
in nature and is meant for the generation of detailed usage reports or to get
an overview of cluster usage and utilization. However, this data, together
with the data collected by the first script, can also help to optimize certain
parameters concerning scheduling or partition defaults.

{"timestamp": "2018-10-31T04:10:01+0100", "cpuusage": {"0-1": [0,
0], "2-3": [41, 144], "4-7": [1, 0], "8-15": [27, 6], "16+":
[0, 0]}, "today1": {"name": "jgoeltz", "hours": 144, "jobs":
18}, "today2": {"name": "vis_jenkins", "hours": 7, "jobs":
51}, "month1": {"name": "jgoeltz", "hours": 6492, "jobs":
1002}, "month2": {"name": "vis_jenkins", "hours": 1961,
"jobs": 5028}, "month3": {"name": "bcramer", "hours": 1486,
"jobs": 3373}, "month4": {"name": "fkungl", "hours": 742,
"jobs": 314}, "month5": {"name": "bq402", "hours": 622,
"jobs": 8199}, "cpuutil": [223,128,0,625,0,976], "jobsmtd":
52070}}

Listing 2.3: The second script outputs daily statistics, such as CPU allocations of
jobs, load information, user and job statistics as well as accounting information.

16

2.1.2 Epilog script

The epilog-script is already in use by Slurm and had to be extended to collect
data allowing the display of license usage history. Previously it was only used
for logging and network configuration.

When called at the end of a job run, it now executes squeue to query details
about its own Job-ID ($SLURM_JOB_ID). Information currently gathered includes
runtime, user, the command or script executed and licenses used. This can be
easily extended to include further parameters if required.

Similar to the exporter scripts the output of squeue gets parsed, formatted
as JSON document and written to a file indexed into elasticsearch. This
enables display of licenses usage history and other details about past jobs. By
connecting Grafana to the existing MySQL installation, it is now also possible
to query and display the license status in real time.

It is worth noting, that unlike the other two scripts, the epilog-script
is not meant to be run periodically. It is part of a series of scripts that
are automatically called by Slurm at set points during job execution. This
epilog-script is called just before a job terminates [7].

2.1.3 Runtime measurements and scalability considerations

In order to estimate the scalability of the current solution, the runtime of
all three scripts was measured. These measurements are provided in table
1 and were made using the Linux time command. The first two scripts
slurmstats.sh and slurmtop.sh, are the exporter scripts used to periodically
query and format data from Slurm. The third script, epilog.sh is automati-
cally called by Slurm at the end of every job to output additional data about
the job it was started from.

Averages were calculated over a total of 20 executions of each script.
Minimum and maximum values emphasize the impact of load fluctuations
caused by other programs. The median is provided to give a better idea of
values that can be expected without these disturbances.

In light of future expansions with potentially hundreds of wafers, con-
siderations about the scalability of the current metric aggregation should be
made as well. Although the two exporter scripts were designed with speed
in mind and the epilog script revised accordingly, script runtime can possibly
improved further. However, runtime is generally load-dependent and while
hel the server running Slurm is quite powerful, there are a large number
of other processes and users which can influence script execution. This can
overshadow any possible speed improvements.

17

Script execution is generally very fast. The script started every minute,
slurmstats.sh, takes on average only 336 ms to finish. Additional fine-
tuning of the data parsing and formatting done might help to further speed
up runtime. The second script, slurmtop.sh contains some time-consuming
database queries and as such, expected runtime is much longer than the first
script. Since this script is only run every minute, the average runtime of
∼17 seconds is within reason. This cannot be improved much further, as the
limiting factor are the database queries. The epilog.sh script has an average
runtime of only 17 ms. This is good, because it is the only script that is not
scheduled to run, but is executed on demand by Slurm. Depending on the
workload, this script is potentially called several times a second.

In terms of data generated, not all three scripts are affected by scaling
up the amount of wafers. In general, the data output of only two scripts
scales (linearly) with the amount of wafers or compute nodes available, namely
the slurmstats.sh and epilog.sh script. The third script, slurmtop.sh,
outputs only statistical information and is thus unaffected by any kind of
scaling. To be a little more precise, only the amount of compute nodes that
are managed by Slurm (see figure 3 for a typical Slurm architecture) influences
the data generated by the new scripts directly.

This is because the first script (slurmstats.sh) outputs information like
status and CPU load of every connected node. As such, the script generates
marginally more data the more nodes are connected.

The epilog.sh only indirectly generates more data. More wafers generally
means more experiments or more wafers used per experiment and, since this
script outputs information at the end of every experiment, it generates more
data the more experiments are carried out.

In case of the first script affected by scaling, slurmstats.sh, more nodes
managed by Slurm means more status information of connected nodes is
output. Such an entry consists of the node name, its state, CPU load and
memory usage but is generally only 60 bytes in size.

Calculating the additional data generated for a hypothetical cluster with
ten times the amount of compute nodes currently used (310 vs 31), yields:
1440 script executions per day×310 nodes×60 Byte per node×30 days ≈ 800
Mb of data per month. For a cluster utilizing over 300 computing nodes, this
is negligible in terms of both storage and network bandwidth.

The epilog.sh script outputs roughly 350 byte of information per job.
Scaling up the current amount of jobs similar to the example above, this gives
roughly 15,000 jobs per day. As such, 15000 jobs per day×350 Byte per job×
30 days ≈ 160 Mb of data are generated each month. About one-fifth the
amount of slurmstats.sh.

18

Therefore, neither the amount of data generated nor the script runtime
should pose a problem for the scalability of the current solution.

Script Runtime (ms)
Average Min Max Median

slurmstats.sh 336±15 261 470 374
slurmtop.sh 17183±828 15169 26705 16272
epilog.sh 17±1 12 29 15

Table 1: Runtime measurements for n = 20 script executions as measured by the
Linux time command.

2.2 Data processing
Log files from all three scripts are forwarded by filebeat to logstash for proc-
essing. During processing, the timestamp of the log entry is adopted as
the internal timestamp used by elasticsearch. This ensures that all indexed
documents use the correct timestamp, even in case of intermittent network
outages or problems preventing files from being indexed temporarily.

Other filter operations are dependent on the source of the data. From
which script the data originated is determined by the presences of optional
fields tagged on by filebeat ({"slurmstats": true}, {"slurmtop": true}
or {"jobinfo": true}). These field names correspond to the filename the
data was read from.

Since all scripts already output and write JSON-formatted data, processing
can be kept relatively simple. It mostly consists of assigning elements of arrays
to individual fields. This is done because most scheduler and load statistics
are consolidated into a few big arrays to reduce overhead, see listing 2.2 for
an example. Every field created this way then also has to be assigned a type,
e.g. integer or string. Therefore, assigning an element to a field requires
two operations. This is no problem however, as these kind of operations are
extremely fast and the number of elements is manageable (∼ 60).

Output, or more precisely, the name under which the document is indexed
into elasticsearch also depends on the source of the data. It follows the scheme
”fieldname-YYYY.MM.dd”, where fieldname is either one of the three field
names mentioned above, or wafer in case none of the fields are present (as is
the case for input from some already existing data sources). YYYY.MM.dd
represents the four-digit year, two-digit month and two-digit day notation.

19

This naming convention follows elasticsearch’s best practices and allows to
restrict search queries to indices representing certain days or time periods.

Listing 2.4 shows a sample logstash pipeline using operations that are used
in the actual configuration file.:
Logstash listens for input from filebeat and if the input document contains a
field slurmstats, a filter is applied. In this example, the date from the field
timestamp is read and used as the internal indexing timestamp of elasticsearch.
The field is then removed and the whole document is output to elasticsearch.
The index (here: slurmstats or wafer) under which it is saved depends on the
type of log, as determined by the presence of the slurmstats field.

a sample logstash configuration

listen for input from filebeat
input { beats { port => "5044" } }

apply filters
filter {

apply only to data containing a field named "slurmstats"
if [slurmstats] {

set elastic date to timestamp the entry was written
date {

"match" => ["timestamp", "yyyy-MM-dd'T'HH:mm:ss+ZZ",
"yyyy-MM-dd'T'HH:mm:ss+Z", "ISO8601"]

}
remove field "timestamp"
mutate { remove_field => ["timestamp"]
}

}
}

output to elasticsearch. Index depends on the type of log
output {

if [slurmstats] {
field present, save as slurmstats
elasticsearch { index => "slurmstats -%{+YYYY.MM.dd}" }

} else {
field missing, different type of log, default to wafer
elasticsearch { index => "wafer -%{+YYYY.MM.dd}" }

}
}

Listing 2.4: A simple logstash configuration showing a pipeline to process incoming
log files depending on the presence of a field (here: Slurmstats).

20

2.3 Grafana Dashboards

Several new dashboards have been added to visualize the wealth of newly
available data and tying into work done during the preceding internship,
additional dashboards also show license status and job information. Dashboards
in Grafana are customizable web pages to which panels can be added. These
panels are used to visualize data from different sources and range from simple
tables and graphs to complex heat maps and carpet plots.

Most of the panels that were added have additional information about the
associated metric or parameter, which can be viewed by hovering over the
little ”i” in the upper left corner of the graph. The following sections provides
an overview over all added dashboards.

2.3.1 Slurm - Overview

The first dashboard (figures 5 through 9) displays details about the status
of Slurm. It is designed to make important data and metrics visible at first
glance.

The top row shows information regarding the health of Slurm and the
cluster. Gauge-style graphs show the total resource utilization (CPU cores
and memory available) of the cluster. Other panels show node states, the
current job queue length as well as several parameters regarding the status of
Slurm itself.

The second row (figure 6) displays more detailed information about the
job queue, including graphs showing the partition usage over the last 3 hours
and details about the partitions used by currently running jobs or requested
by jobs queued.

Activity and usage statistics are displayed on the third row. Activity
(measured by jobs submitted) is displayed using a third-party plugin ”carpet
plot”. Each bin represents a 15-minute average of jobs submitted. Several
tables display the top 3 users of the day and top 5 month-to-date with the
amount jobs submitted and CPU hours consumed. Another table shows in-
formation about the total of jobs submitted, completed or canceled.

The last row (figure 9) displays several graphs of specific diagnostics infor-
mation regarding the scheduling and backfill operations done by Slurm. These
provide insight into the state of the installation as they contain statistics that
directly reflect the performance of Slurm and its scheduling algorithm. They
can also help to adjust configuration parameters or queue policies for optimal
performance.

21

2.3.2 Slurm - Node Details
The second dashboard (Figure 10) displays detailed information about all
connected compute nodes. A simple ”traffic light” provides information about
the status of each node (green – idle, yellow – allocated, red – down).

Utilization history for the last 3 hours and gauge-style graphs showing
current cpu load and memory utilization provide good insight into the current
workload of each node. This could be used in conjunction with data from the
first and third dashboards to identify partitioning bottlenecks where there are
not enough nodes associated with frequently used partitions.

2.3.3 Slurm - Job info
This dashboard contains information and statistics pertaining to recently
completed jobs (Figure 11). Graphs at the top show the distribution of
allocated CPU cores of past jobs. Once on a per-job basis and once on basis
of total CPU hours used. This allows, for example, to gauge the CPU usage
of typical experiments and adjust default values accordingly.

The table below displays information about the last 15 jobs completed. It
shows the most important parameters such as JobID, username, runtime and
licenses by directly displaying the retrieved JSON object. This can easily be
expanded to show other information available.

2.3.4 Slurm - License status
The last dashboard implemented (Figure 12) shows the init-state of all licenses.
Usage history of licenses is shown in tabular form as well as a graph. This
dashboard is complete but is still waiting for a live data feed that will become
available with an already planned upgrade of Slurm.

Display of license status follows the same rules as the query for ”dirty”
licenses done by the automatic HICANN init: Licenses are considered ”dirty”
i.e. in need of initialization, if they are either marked as such or their initial-
ization date lies more than a day in the past (see subsection 1.3.2).

22

23

Figure 5: The first row is designed so that the health of the Slurm cluster can be
assessed immediately.

24

Figure 6: The second row shows detailed information about the current job queue
and partition usage.

25

Figure 7: Activity display and ”top-style” user statistics. Activity is measured by
jobs submitted, averaged in 15 minute bins. Displayed user statistics are for the day
so far as well as month-to-date.

26

Figure 8: Internal statistics of Slurm, such as scheduler, backfill and job queue
information.

27

Figure 9: Internal statistics of Slurm, such as scheduler, backfill and job queue
information. Continued.

28

Figure 10: Sample view from the second dashboard displaying node information.
For reasons of clarity only 2 of 31 nodes are shown here. Displayed are the status,
utilization history as well as current CPU load and memory usage.

29

Figure 11: Sample view from the fourth dashboard, showing the distribution of
CPU cores for past jobs. The table below shows basic information about recently
completed jobs. This dashboard is still somewhat of a work-in-progress.

30

Figure 12: View of the last dashboard. It shows usage history and the current
initialization-status of licenses. A graphical representation of usage history is still in
the works and not shown here.

Chapter 3

Summary and outlook

3.1 Summary

In this thesis, Slurm, the workload manager responsible for scheduling all
experiments carried out on the BrainScaleS system, was integrated into the
existing monitoring solution. This makes it possible to directly monitor and
determine the health of the cluster and can help to detect any problems that
might interfere with or prevent experiments to run. This data can be used to
optimize Slurm parameters.

The integration of Slurm was realized by adding and extending several
scripts and revising most existing configuration files. Two new modular scripts
periodically query the installed Slurm instance for information. The output
of these scripts is then parsed, processed and formatted before it is written to
disk. A third script which is already in use by Slurm was extended to query
and log details about the job from where it was called.

The switch to a new data format allows for easier post-processing of
the collected information and makes these scripts easy to understand and
extend. All data obtained is processed and indexed into elasticsearch, making
it available for search and visualization and permitting the generation of
reports and statistics. Several new Grafana dashboards have been developed
to convey this wealth of information. Data ranges from simple user statistics
and utilization graphs to detailed diagnostic output reflecting the health of the
cluster. This can provide valuable insight for optimization or troubleshooting.

Runtime measurements of the newly added and revised scripts show, that
these pose no problem regarding the scalability of the implemented solutions.
Additional considerations and calculations regarding the scaling of wafers and
data generated by these scripts show, that even a ten-fold increase in wafers
and computing nodes generates less than 1 Gb of additional data each month.
A negligible amount in terms of both storage and network bandwidth required.

31

3.2 Outlook
Integration of Slurm into the existing monitoring system should only be seen
as the first step towards an optimal and fail-safe configuration. With possible
future expansions and an ever increasing number of users and experiments,
it is becoming increasingly important to configure Slurm optimally. This
work has created a solid basis for this. The data collected provides valuable
insight into the health of Slurm and the cluster. By making all this data
available in elasticsearch, much more detailed usage statistics and reports can
be generated.

It also enables a more pro-active approach by fine-tuning Slurm and system
parameters. Usage history and job information also provide insight into the
requirements of experiments typically carried out, allowing to adjust partition
defaults or scheduling parameters to better reflect these requirements. This
can help to increase utilization of the cluster.

Although it is a robust implementation, there are a few things that can
be improved further. This is particularly true for the epilog-script used to
gather job information.

For future data collection, the optional elasticsearch plugin provided by
Slurm could be used [9]. This would be a better solution to the epilog.sh-
script, outputting much more data. By integrating directly into Slurm, this
plugin would also provide a faster and more efficient way to collect job data.
However, due to additional security measures of the current monitoring plat-
form, this plugin would have to be modified first.

To expand available information to include jobs that have already been
completed, future work could parse and process the complete database used
by Slurm. This would make any information since the introduction of Slurm
available.

The implemented solution offers a high degree of scalability, certainly
beyond the point at which the current cluster and Slurm architecture has
to be reconsidered as well. In such a case, the possibility for a backup
control daemon should be utilized. It might then also become prudent to
host the database on a separate system. Scripts could then be moved and
executed on the server hosting the backup Slurm control daemon (and possibly
the database) and would therefore be largely free of interference from other
programs. In addition, both exporter scripts mostly request and output
aggregated information, as such, scaling up the amount of wafers has no
significant impact on either runtime or the amount of data generated by these
scripts.

32

Bibliography

[1] Naud R, Marcille N, Clopath C, Gerstner W. Firing patterns in the
adaptive exponential integrate-and-fire model, Biological cybernetics, 99(4-
5), 335-47.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798047/

[2] Davison, A. P., Müller, E., Schmitt, S., Vogginger, B., Lester, D., & Pfeil,
T. (2016). HBP Neuromorphic Computing Platform Guidebook, Release
2018-10-24 (2012d53), 2018.
https://electronicvisions.github.io/hbp-sp9-guidebook/,
retrieved 28.10.2018.

[3] Daniel Kutny. Development of a Modern Monitoring Platform for the
BrainScaleS System, 2017

[4] Internet Engineering Task Force (IETF). The JavaScript Object Notation
(JSON) Data Interchange Format,
https://tools.ietf.org/html/rfc8259, retrieved 22.10.2018

[5] Morris Jette, Tuning Slurm Scheduling for Optimal Responsiveness and
Utilization,
https://Slurm.schedmd.com/SUG14/sched_tutorial.pdf, retrieved
22.10.2018

[6] The Slurm development team. Slurm workload manager - Official
documentation, https://Slurm.schedmd.com/

[7] The Slurm development team. Slurm workload manager - Prolog and Epilog
Guide, https://Slurm.schedmd.com/prolog_epilog.html

[8] F.Stagni, A. Casajus Ramo, L. Tomassetti, Z. Mathe. Evaluation of
NoSQL databases for DIRAC monitoring and beyond,
http://cds.cern.ch/record/2011172/files/LHCb-TALK-2015-060.
pdf, retrieved 23.10.2018

[9] Sánchez Graells, Alejandro, Integration of a job completion accounting
system in a HPC environment by extending a workload manager,
https://upcommons.upc.edu/handle/2117/79252

33

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798047/
https://electronicvisions.github.io/hbp-sp9-guidebook/
https://tools.ietf.org/html/rfc8259
https://Slurm.schedmd.com/SUG14/sched_tutorial.pdf
https://Slurm.schedmd.com/
https://Slurm.schedmd.com/prolog_epilog.html
http://cds.cern.ch/record/2011172/files/LHCb-TALK-2015-060.pdf
http://cds.cern.ch/record/2011172/files/LHCb-TALK-2015-060.pdf
https://upcommons.upc.edu/handle/2117/79252

Glossary

cron Cron is a time-based job scheduler found in most Linux distributions. It
is suitable for scheduling repetitive task such as daily backup operations
or repeated script runs. Entries in the configuration files used by cron
are referred to as cron jobs. 13

daemon A daemon is a program or process that runs in the background and
is dormant when not required. 4, 9, 32

environment variable An environment variable (or env var) is a named
object set for the current user-environment on linux. It consists of a
name and value and can be used by one or more programs and scripts.
7

FPGA A FPGA (Field-programmable Gate Array) is an integrated circuit
which can be reprogrammed to desired application or functionality re-
quirements after manufacturing. 2, 6

MySQL MySQL is the most popular open-source database and the basis for
many modern applications and websites. 4, 7, 11, 17

35

Appendix A

Configuration Files

A.1 filebeat configuration (excerpt)

- type: log
enabled: true
paths:

- /var/log/elasticsearch/slurmstats.json
fields:

slurmstats: true
fields_under_root: true
json.keys_under_root: true
json.add_error_key: true

- type: log
enabled: true
paths:

- /var/log/elasticsearch/slurmtop.json
fields:

slurmtop: true
fields_under_root: true
json.keys_under_root: true
json.add_error_key: true

- type: log
enabled: true
paths:

- /var/log/elasticsearch/jobinfo.json
fields:

jobinfo: true
fields_under_root: true
json.keys_under_root: true
json.add_error_key: true

Listing A.1: Excerpt of the filebeat configuration file (filebeat.yml). These changes
allow tagging and forwarding of the new data gathered.

The remaining configuration files and scripts are too long to be shown
here. They can either be found on the internal gerrit code collaboration (see
section B.2 for a list of changes)tool or directly in the relevant directories on
monviz and hel.

36

Appendix B

Additional tables

B.1 Script performance measurements

Average runtime (ms)
of licenses New Old Speedup (%)
1 1,02±0,05 2,21±0,13 216
5 1,51±0,09 7,14±0,46 472
48 1,41±0,07 13,43±0,63 952
144 1,47±0,05 18,69±0,88 >1200

Table 2: Runtime comparison between unoptimized (old) and optimized (new)
prolog.sh-script. Averages are calculated for n = 10 script executions.

B.2 Gerrit change sets

Change-ID Commit

I01b3c43b7dba7764677b27a67add729d835d990c Added python script to automatically generate licenses
from hwdb by parsing db.yaml

I406a00989d55079fd49bed7859b6253bb1db5b11 Substantial Speed improvements to prolog/epilog
scripts.

I2250e154f0760ebf699ba8a11da5fa66cf762a1f Added functionality to track license status via
Slurmdbd.

Ife9de24cd7844cbb3add13bdb4cd50163c0b1348 First support for automated HICANN init

I7e5b1d63f0f5b2b673549c71aedb1d7d5246be1b Added wrappers for cardinal direction checks.

Iffe01b8f7b4cbebffb36d0b3b6d99931cd4af631 Slurm Exporter Scripts

37

https://brainscales-r.kip.uni-heidelberg.de:9443/#/c/config-Slurm/+/4049/
https://brainscales-r.kip.uni-heidelberg.de:9443/#/c/config-Slurm/+/4050/
https://brainscales-r.kip.uni-heidelberg.de:9443/#/c/config-Slurm/+/4051/
https://brainscales-r.kip.uni-heidelberg.de:9443/#/c/visions-Slurm/+/4323/
https://brainscales-r.kip.uni-heidelberg.de:9443/#/c/hwdb/+/4480/
https://brainscales-r.kip.uni-heidelberg.de:9443/#/c/config-slurm/+/4906/

Statement of Originality

I certify that this thesis, and the research to which it refers, are the product
of my own work. Any ideas or quotations from the work of other people,
published or otherwise, are fully acknowledged in accordance with the standard
referencing practices of the discipline.

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen
Hilfsmittel als die angegebenen benutzt habe. Die Stellen der Arbeit, die
anderen Werken dem Wortlaut oder dem Sinn nach entnommen sind, habe
ich in jedem einzelnen Fall unter Angabe der Quelle als Entlehnung kenntlich
gemacht. Diese Versicherung bezieht sich auch auf die bildlichen Darstellungen.

Heidelberg, den 14. November 2018.
(Signature)

38

	Contents
	Introduction
	Motivation
	Cluster configuration
	Slurm workload manager
	Resource management
	Automated HICANN init

	Underlying technologies and formats
	JSON data format
	Elasticsearch
	Logstash
	Filebeat
	Kibana
	Grafana

	Implemented changes and improvements
	Metric aggregation
	Slurm exporter scripts
	Epilog script
	Runtime measurements and scalability considerations

	Data processing
	Grafana Dashboards
	Slurm - Overview
	Slurm - Node Details
	Slurm - Job info
	Slurm - License status

	Summary and outlook
	Summary
	Outlook

	Bibliography
	Glossary
	Configuration Files
	filebeat configuration (excerpt)

	Additional tables
	Script performance measurements
	Gerrit change sets

