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Abstract

Learning experiments are in general time–consuming and computationally
expensive if executed on conventional computing machines. In contrast to
application–specific circuits on neuromorphic hardware like the BrainScaleS
system, which can emulate Spiking Neural Networks fast and efficient. A pos-
sible model for a learning experiment is called Spike-based Expectation Maxi-
mization (SEM) – A population of neurons tries to find the hidden cause of spike
patterns in an unsupervised manner. It is possible to transfer this approach to
Leaky-Integrate-and-Fire (LIF) neurons which make an implementation on
state-of-the-art neuromorphic hardware like the BrainScaleS system possible.
The most promising approach is to use a closed–loop operation mode which
enables real–time communication between the neuromorphic part and a host
computer, forming both systems into a hybrid system. We will present in this
thesis necessary mechanisms for SEM experiments which were implemented
and verified on the BrainScaleS system: Weight adaptation from the host com-
puter during emulation and a homeostatic rate adaptation using Sea-of-Noise
networks as an on–wafer spike source. These presented experiments are the
first using the closed–loop operation mode on the current hardware version
HICANN v4.

Zusammenfassung

Lernexperimente sind im allgemeinen zeitaufwendig und rechenintensiv,
wenn sie auf herkömmlichen Rechenmaschinen ausgeführt werden. Im Ge-
gensatz zu anwendungsspezifischen Schaltkreisen auf neuromorpher Hardwa-
re wie dem BrainScaleS System, welches feuernde neuronale Netze schnell und
effizient emmulieren kann. Ein mögliches Modell für solch ein Lernexperi-
ment heißt Spike-basierte Erwartungswertmaximierung (SEM) – eine Popula-
tion von Neuronen versucht die darunterliegende Struktur in Spikemustern zu
finden. Dieser Ansatz lässt sich auf Leaky-Integrate-and-Fire Neuronen über-
tragen, was eine Implementation auf dem BrainScaleS System möglich macht.
Der meist versprechende Ansatz ist es dabei einen closed–loop Operationsmo-
dus zu nutzen, welcher eine Echtzeit Kommunikation zwischen der neuromor-
phen Hardware und einem Kontrollcomputer ermöglicht und beide System zu
einem hybriden System kombiniert. Wir werden in dieser Arbeit nötige Me-
chanismen für die Durchführung von SEM Experimentn auf dem BrainScaleS
System präsentieren. Diese wurden auf diesem System implementiert und ge-
testet: Eine Gewichtsanpassung ausgelöst von einem Kontrollcomputer sowie
eine homeostatische Ratenanpassung mit einem Sea-of-Noise Netzwerk als ei-
ne auf dem System befindliche Spikequelle. Diese präsentierten Experimente
stellen zudem die ersten closed–loop Experimente auf der aktuellen Hardware
Version (HICANN v4) dar.
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1. Introduction

With approximately 1011 neurons, is the human brain one of the most complex
objects in the universe. The European Flagship project Human Brain Project has set
itself a goal of a comprehensive understanding of the human brain. Experts from di-
verse disciplines including neuroscience, physics, philosophy and computer science
work together to achieve the primary objectives of the project: Create and operate
a scientific research infrastructure for brain research, gather and organise data de-
scribing the brain, simulate the brain, build multi–scale theory and models of the
brain, develop brain–inspired computing & robotics (Amunts and Ebell [2017]).
TheElectronic Vision(s) Group from the Kirchhoff–Institute inHeidelberg is a part-

ner of this project in the subproject Neuromorphic Computing. The goals are to build
neuromorphic hardware to model a substantial part of the brain and to survey novel
computer paradigms. We use for this task very–large–scale integration (VLSI) to
create analog circuits which implement the Adaptive Exponential integrate and fire
neuron model (AdEx). The system is called BrainScaleS system and realises about
four million neurons and 880 million synapses on 20 wafers, each with 384 chips
which are called HICANN – High Input Count Analog Neural Network (Schem-
mel et al. [2010]). The time constants of the circuit components are several orders
of magnitude lower than the time constants of their biological counterparts. This
leads to an acceleration of the system by a speed–up factor of about 104 compared to
biology, allowing a study of temporal changes in neuronal networks which are not
feasible with conventional simulators.
A promising field of use for neuromorphic hardware are closed–loop setups. Con-

ventional closed–loop setups are well established in robotics where motor controllers
influence the behaviour of the robot based on the current state of its environment.
These controllers have some drawbacks – they are often computationally intensive
and are hard to tune. Bio–inspired controllers could solve these problems and also in-
tegrate learning features to make these platforms adaptable to new tasks (Perez-Peña
et al. [2017]). In the recent past, it was shown that self–driving robots which receive
sensory input from its surrounding through a spike–based visual system are feasible.
The data was then processed by IBMs TrueNorth system (Fischl et al. [2017]).
The BrainScaleS system supports different operation modes. One of these modes

is the closed–loop mode where we combine a host computer and the neuromorphic
hardware to form a hybrid system . The host computer receives information about
the behaviour of the neuronal network on the BrainScaleS system during emula-
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tion. Based on these information the host can influence the emulation by sending
spikes back to the system or adjust the synaptic weight of a connection between
neurons. Because of the massive speed–up of the neuromorphic part, this process is
challenging. The calculations on the host as well as the communications between
the two systems have to keep up with the acceleration – forming it into a real–time
system where the computations have to fulfil timing constraints. A possible applica-
tion for this closed–loop operation mode is a Spike–Based Expectation Maximization
(SEM) experiment: A group of neurons which are organised in different layers re-
ceive structured input in form of spike trains and try to find the hidden cause of these
presented spike patterns.
We will give a short introduction into this topic and will present in detail the

necessary mechanisms for such an experiment which where developed and char-
acterised in this thesis. These mechanisms are a homeostatic rate adaptation of a
neuron as well as a weight adaptation in the closed–loop operation mode. We will
conclude with an outlook of a closed–loop implementation of a SEM experiment on
the BrainScaleS system.
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2. The Neuromorphic System

In this chapter the BrainScaleS system will be introduced. All measurements during
this thesis have been carried out on the Neuromorphic Computing Platform NM–
PM1 located in Heidelberg. This platform uses VLSI analog circuits on intercon-
nected chips to emulate spiking neural networks. We will start with a description of
a single neuron like they are implemented on hardware and afterwards with a short
introduction to the BrainScaleS system itself.

2.1. Neuron Model

2.1.1. Leaky-Integrate-and-Fire model

Many different neuron models have been developed in the field of neuroscience.
Each with a different degree on biological accuracy and computational complexity.
Complex models like theHodgin–Huxleymodel describe the underlying ionic mech-
anisms which lead to a action potential very well, on the other hand is this model
described by four ordinary differential equations and it is computationally inten-
sive to analyse larger populations of neurons with this model. One of the simplest
neuron models with scientific relevance is the Leaky-Integrate-and-Fire model (LIF).
The model can be described by an ordinary differential equation.

Cm
du
dt
= gl (EL − u) + I syn + Iext (2.1)

Where u describes the membrane potential of a neuron, Cm the membrane capacity.
The terms Ûu ∝ I syn/ext represent the integration of the input and the Ûu ∝ −u the leaky
termwhich discharges the neurons membrane. The discharge current I results from
the conductivity gL and drives the membrane potential towards the resting potential
EL . The model itself introduces no spiking behaviour, this can be included with a
threshold rule.

u(tspike) = ϑ (2.2)

If the membrane potential is above a defined threshold, the neuron spikes. A spike
is then represented by a delta peak δ(t − tspike) and the membrane potential is kept
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at a resting potential % for a refractory period τre f .

u(tspike < t < tspike + τra f ) = % (2.3)

A spike will then be sent to all post connected neurons as synaptic input. This in-
put can be described by equation 2.4 where we distinguish between excitatory and
inhibitory synaptic input.

I syn = Iexc./inh. =
∑

i

g
exc./inh.
i (u − Eexc./inh.) (2.4)

2.1.2. Adaptive Exponential Integrate-and-Fire model

The neurons implemented on the BrainScaleS system are an extended version of
LIF neurons, namelyAdaptive Exponential Integrate-and-Fire (AdEx) neurons. In this
model the spike generation term 2.5 is added to the LIF equation 2.1.

Iexp = gL∆T exp
(
u − ET

∆T

)
(2.5)

Here ET acts similar to the threshold ϑ introduced in 2.2. If u crosses ET from
below, Iexp dominates the membrane dynamics. But in this case we do not have
a hard threshold which always leads to a spike. External input Iext can counteract
with a negative contribution and prohibit spiking. Furthermore we introduce the
adaptive variable w. The dynamics of w itself are also described by an ordinary linear
differential equation. The AdEx–model can then be described by:

Cm
du
dt
= gL(El − u) + gL∆T exp

(
u − ET

∆T

)
− w + I syn + Iext (2.6)

τw
dw
dt
= a(u − EL) + bτwρ − w. (2.7)

With the additional variable w, the AdEx–model is able to emulate firing patterns
like tonic spiking, adaptation or regular bursting. The time constant τw defines how
fast w decays to zero. The variable ρ is here the neurons own spike train. The
strength of the influence of w on the membrane potential can be adjusted with the
variables a and b. After a spike, the membrane potential is kept again at a resting
potential % for a refractory time τre f as introduced for the LIF – model in 2.3 and
w is set to w = w + b. For every spike the neuron receives from other neurons, the
current is increased. How much it is increased depends on the activation function.

4



In case of the BrainScaleS system this is an exponential activation as shown in 2.8.

I syn(t) = −
∑

i

g
syn
i (u(t) − Esyn) (2.8)

g
syn
i (t) = wi j

∑
ts

exp
(
−t − ts

τsyn

)
Θ(t − ts) (2.9)

Where gsyn
i is the conductance of the i-th synapse, wi j represents theweight between

neuron i and j, Θ(t) is the Heaviside function and Esyn the reversal potential. A
rigorous introduction into this topic and a detailed explanation of the effects on the
spiking behaviour of the parameters can be found in Petrovici [2015].

2.2. The BrainScaleS System

2.2.1. The HICANN�Chip

To simulate a neuron or in particular a network of neurons on an usual computing
architecture, the described differential equations 2.6 have to be solved numerically.
This becomes on usual van–Neumann architectures especially for larger networks
computationally expensive and time consuming. This is different on an architecture
like the BrainScaleS System. The system is a mixed–signal neuromorphic platform
with analog neuromorphic circuits implemented. The differential equation of the
AdEx model can then be represented by these electrical circuits which will evolve
according to the laws of physics. The central part of BrainScaleS system are theHigh
Input Count Analog Neural Network (HICANN) chips. On each chip are 512 neuron
circuits realized. Compared to biological neurons, the time constants of the circuit
components are several orders of magnitude smaller. This leads to a speed–up of 104
compared to biological time. The analog parameters of this model can be stored in
floating gate memory cells which are charged or discharged compared to a reference
voltage between 0 V and 1.8 V. The neurons receive spike input from two blocks
of synapses and are arranged in two rows of 256 neuron circuits. Each circuit can
receive spike input through two synaptic inputs. Each of those synaptic inputs is
connected to 220 synapses which transmit spike events. The synaptic strength of
those connections can be varied with digital weights. These digital weights have a 4
bit resolution and can represent 16 different possible weights. Each with a different
strength – a digital weight of 0 means no connection, 15 is the strongest connection.
There also exist two analog readout lines per HICANNwhich can be used to record
voltage traces of two different neurons with the analog to digtal converters (ADCs).
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2.2.2. The Wafer�Scale Hardware System

To build larger networks, several HICANN chips are connected with each other.
In conventional chip production single chips are cut out of a silicon wafer, in this
case the whole wafer is kept in tact and all HICANNs are connected with each other
on top of the wafer. This process is called wafer–scale integration. The whole Brain-
ScaleS system consists of 20 wafers, each with 384 HICANN chips. Repeaters on the
wafer can recover spike signals and send them to other neurons on the wafer. Exter-
nal spikes which are sent to a HICANN chip are controlled by Field Programmable
Gate Arrays (FPGAs). One FPGA regulates eight HICANNs – 48 FPGAs per wafer
manage the communication between host computer and wafer. Figure 2.1 shows
a simplified overview of the system. The FPGAs receive information about the ex-
periment like configuration data from the host computer and configures the wafer
system correspondingly. The user defines the networks topology with the PyNN
language. The PyNN API enables the use of a high–level of abstraction to describe
the neuronal network for the experiment. A binary representation of this network
(PyHMF container) will be used from the mapping tool marocco which maps the
network onto hardware. The output after this mapping process is also a binary –
the StHAL container. The access to the hardware is then done with the hardware
abstraction layer backend HALbe. A more precise introduction into this topic can
be found in Jeltsch [2014].
The BrainScaleS system supports three different operationmodes (seeMüller [2014]).

The first is the batch mode where single experiments are emulated on the hardware.
External spike input is calculated before emulation and buffered in the FPGAs which
can store 312 Mega Events (MEv) where one spike corresponds to an event. In the
interactive or iterative mode several sequential experiments are emulated. The sys-
tem is configured in the first step but the hardware resources stays allocated the
whole time because of dependencies of the sequential experiment steps. The last
mode is the closed–loop operation mode. In this mode the system interacts with an
external environment with a direct communication to the host. This last operation
mode is used in this thesis and will be explained in more detail in Chapter 3.3.

6



Figure 2.1.: Scheme of a simplified overview of the BrainScaleS system. On each
wafer are 384 HICANN chips realized which are connected with each
other. One FPGA handles eight HICANN chips, each with a con-
nection to a FPGA communication PCB. The host computers are con-
nected via a switch with the 48 FPGAs. Furthermore the membrane
voltages of a neuron can be readout with one of the 60 analog readout
modules.
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3. Methods

This chapter will start with a short introduction into the topic Spike–Based Expec-
tation Maximization. Afterwards the principles of real–time computing and closed–
loop experiments will be explained and how these experiments can be performed
on the BrainScaleS system. Finally, we will discuss necessary mechanisms for Spike
Based Expectation Maximization in a closed–loop setup: homeostasis and Sea–of–
Noise networks to introduce stochastic.

3.1. Spike Based Expectation Maximization

The goal in a Spike–Based Expectation Maximization (SEM) experiment, is to find
the hidden cause in patterns which neurons receive as input in form of spike trains
in an unsupervised manner. We will start with an explanation of the used model –
A Restricted Boltzmann Machine. Subsequently, we will look into a method how
this type of model can be trained and how it can be implement with spiking neural
networks.

3.1.1. Boltzmann Machine

ABoltzmannMachine is a probabilisticmodel over binary random variablesZ=(Z1, Z2, ...).
These Variables are represented by interconnected units, in our case neurons, with
an intrinsic tendency to be active (Zi=1) or inactive (Zi=0). This intrinsic tendency
is represented by a bias bi. The interconnection between the units is realized with
weights Wi j . The probability distribution for a state z with the normalization con-
stant Z is given as

p(z) = 1
Z
· exp

[∑
i, j

1
2

ziWi j z j +
∑

k

bk Zk

]
. (3.1)

Z =
∑

z

exp

[∑
i, j

1
2

ziWi j z j +
∑

k

bk Zk

]
(3.2)
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If we define an energy E we can simplify our probability distribution

E(z) = −

[∑
i, j

1
2

ziWi j z j +
∑

k

bk Zk

]
(3.3)

p(z) = 1
Z

e−E(z). (3.4)

In a Restricted Boltzmann Machine (RBM), units are organised into a stack of layers,
each having no internal connection and only neighbouring layers are connected to
each other. For a two layer RBM we can write the energy function as shown in
equation 3.5 below.

E(v,h) = −
∑
i, j

viWi j h j −
∑

i

aivi −
∑

j

b j h j (3.5)

In the two layer case, the first layer is called the visible layer (v), the second layer the
hidden layer (h). The bias of the visible units is called ai here. For the expectation-
maximization algorithm we also need the conditional probability, which is for v
given h defined as

p(v|h) =
∏
i=1

p(vi |h) (3.6)

3.1.2. Expectation Maximization

A method to find maximum likelihood solutions for models with hidden variables
is the expectation-maximization algorithm. Given a certain distribution f (x) and a
data set, the likelihood function represents the likeliness of different parameters of
f (x). Wewant to maximize the likelihood function with respect to the parameters θ.
This algorithm consists of two steps. The first step – the Expectation Step – uses the
current parameters θcur which are initialized randomly to evaluate the a–posteriori
distribution p(z|y, θcur). In the maximization step we want to find a new set of
parameters θnew. This is done by finding the expectation of the complete-data log
likelihood for some general θ. The new parameters θnew are the parameters which
maximizes the log likelihood.

θnew = argmax
θ

∑
z

p(z|y, θcur) ln p(y, z|θ) (3.7)

These two steps are repeated until convergence of the log likelihood or the param-
eters. This is the basic idea behind the EM–algorithm, for an introduction into this
topic see Bishop [2006].
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It can be shown that using a form of spike timing dependent plasticity (STDP) neu-
rons can perform a stochastic version of expectation-maximization [Nessler et al.
[2009]]. This is called Spike Based Expectation Maximization. The topology for such
an experiment can be seen in Figure 3.1. Stochastic neurons (blue) receive input in
form of spike trains from the input layer (red). The stochastic neurons are strongly
inhibitory connected with each other which leads to a winner-take-all (WTA) cir-
cuit. In a WTA circuit only the neuron with the highest activity spikes, other neu-
rons are suppressed due to strong inhibitory connections within this layer.

The cause layer of the described model defines a Boltzmann Machine, therefore
the prior is as described in Section 3.1.1 given by Equation 3.1.1 The input variables
yi are independent given the state of the latent variables:

p(y|zi, θ) =
∏

i

p(yi |zi, θ). (3.8)

As described before, only one neuron zk should be active and explain the pattern
which is shown to the network. This is achieved by strongly inhibitory weights
Wkl , therefore the variables yi given the state of zk are independent. The full joint
probability is given by

p(y, z|θ) =
h(y)

Z
exp[

1
2
zTWz + yTVz + bTz]. (3.9)

h(yi) is a helper function with terms which are not important for inference. For the
maximization step we need an update rule for the weights Vi j between input layer
and cause layer. We calculate the gradient of the average complete log-likelihood.

∂

∂Vik
〈ln p(y, z|θ)〉p(z |y,θ). (3.10)

This leads to the following update rule:

d Vik

dt
= η · zk(t) · (yi(t)e−(Vik+Vi0) − 1) (3.11)

In a strict mathematically derivation of the update rule (see Breitwieser [2015]),
we can see that the bias depends on these updated weights bk ∝ Vik . Therefore
all neurons have to adjust their effective bias and keep track of all corresponding
synaptic weights Vik . The patters have also to be normalized, to avoid advantages of
some patterns. Another possibility is tomaintain a target frequency of the cause layer
neurons in a homeostatic manner. This can be achieved by applying homeostasis to
the activity of the cause layer neurons in a closed–loop setup. Necessary mechanisms
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which are needed for an implementation of a SEM experiment in a closed–loop
setup on the BrainScaleS system are the following: Weight adaptation with weight
calculations on the host computer, homeostatic adaptation of a neuron frequencies
and a spike source to introduce stochasticity. We will discuss these points and how
feasible a closed–loop SEM experiment on the BrainScaleS system is in Chapter 5.
In Figure 3.1 we can see a background source for a spike-based homeostasis. By
adjusting the weights between this background source and the cause layer neuron,
we can maintain the frequency of these neurons. Additionally, poisson background
sources are used to introduce stochasticity into the network.

Figure 3.1.: Overview of the network structure, The network receives structured
input in form of Poisson spike trains via the input neurons yi. The visi-
ble layer is connected to the cause layer zk with weights Vik . The cause
layer itself is strongly inhibitory connected with weights Wkl and turn
the network into a winner-take-all network. [Scheme taken from Bre-
itwieser [2015]]
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3.2. Real�Time Computing

In his book Real–Time Systems (Kopetz [2011]) Hermann Kopetz describes a real–
time computing system as follows.

"A real-time computer system is a computer system in which the correctness of
the system behaviour depends not only on the logical results of the computations
but also on the physical instant at which these results are produced."

In such an environment the program has to respond within time constraints – also
called deadlines. A deadline is the given time duration the system has to respond after
an event was triggered. Dependent on the behaviour of the system if such a deadline
is missed, we can distinguish between three categories. In a Hard real–time system
producing the results after the deadline would lead to catastrophic consequences on
the system. For example, a heart pacemaker has a hard deadline – missing a deadline
could lead to loss of human life. The next category are Firm systems. In such a system
missing a deadline would not lead to a total system failure but the produced results
are useless for the system. The last category are systems with Soft deadlines. Missing
a deadline will perhaps lead to performance degradation, but the information is still
usable for the system.
In general we can divide the real–time system into subsystems. Figure 3.2 shows this
decomposition. The operator or user interacts with the real–time computer system
by sending and receiving data. The computer itself interacts with the object which
should be controlled. Depending on what kind of object we want to control, this
interaction can have different forms.
Important aspects of a real time system are timeliness, predictability, robustness

and fault tolerance. As described before, not only the value of result is essential in
such a system. The time domain in which the result was computed is significant
as well. Predictability is the next important point – the system has to be analysable
to predict what effect an action of the control system has on the controlled object.
Furthermore, the control system has to be robust against peak–load conditions as
well as fault tolerant towards single failures from the hardware or software.

On the BrainScaleS system real–time computing plays a minor role for ordinary
experiments. In general, the host computer sends data like configuration informa-
tion to the neuromorphic hardware where the experiment takes place. After the
experiment is finished, the host computer receives the results which can then be
analysed. Of course, this is a simplified view because we do not include the com-
munications between the different parts of the neuromorphic system itself which

12



Controlled
Object

Real–Time
Computer
System

Operator

Figure 3.2.: In general we can divide a real–time system into smaller subsystems.
This scheme shows the subsystems of such an real–time system. The
operator interacts with a computer system to define rules how the ob-
ject should be regulated. The computer itself interacts with the object
which should be controlled. Depending on the information the com-
puter receives it sends data back to control the object. Furthermore
the computer sends information about the controlled object back to the
operator.

can also be seen as a real–time system such as for FPGA programmes for data in-
and output. However, real–time computing becomes a crucial part of the exper-
iment when we operate in a closed–loop setup between a host computer and the
BrainScaleS system. This topic will be discussed in the next section.

3.3. Closed�Loop operation mode of the

BrainScaleS system

Most real–time computing systems act in a closed–loop setup to interact with an en-
vironment. There is no plain definition of a closed–loop system but in general there
is an interaction between two or more components of the system with a forward
data flow and a feedback. Typical examples for closed–loop systems can be found in
the field of robotics. A robot receives sensory input of the surrounding environment.
This data has to be processed and the robot has to react correspondingly.

3.3.1. Closed�Loop setup

If we combine the neuromorphic hardware and a host computer to form a hybrid
system, we can use the BrainScaleS system in a closed–loop operation mode. In a
conventional experiment the host computer is used to define the networks topology
and the experiment, afterwards data like hardware configurations are sent to the
system. After the emulation on the neuromorphic part, the host receives the results
of the experiment in form of spike timing data. In the closed–loop operation mode
the host computer can actively influence the experiment during emulation. The
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hardware interacts with the environment and communicates directly with the host
computer. Low latencies are important for these communications. A logical inter-
face for real–time spike communication allows to send spikes from the host computer
to the BrainScaleS system or readout the current spiking behaviour of a neuron. This
interface is based on a collaboration between SpiNNaker and the developers of the
BrainScaleS FPGA communication PCB firmware from TU Dresden. This leads
to a closed–loop setup as described before. The host receives informations about
the spiking behaviour and sends feedback to the BrainScaleS system which can be
used to control for example the neurons frequency. Figure 3.3 shows a simplified
overview of this hybrid system.

Control Host
( van-Neumann architecture)

BrainScaleS
(non van-Neumann architecture)

control

feedback

Figure 3.3.: Schematic view of the closed–loop mode of the BrainScaleS system. By
combining the neuromorphic system and a conventional host computer
, we form a hybrid system. The host will receive a feedback in form of
spike information from the neuronal network. The host can send a feed-
back to the neuromorphic system and actively influence the emulation.

This interface uses the lowest level API to access theHICANNs ( hicannn-systems
and halbe) and is optimized for real–time communications. Therefore it avoids
buffering and uses a small look–up table with 1024 entries to translate spike labels
and send spikes between HICANN Chips and the host computer. Before we can
use this interface, we have to define our network in PyNN. We run the mapping
and receive a mapping and a hardware configuration file. These in PyNN defined
settings can then be loaded within the closed–loop operation mode. The connec-
tion to a FPGA is encapsulated in a fpga_handle which can construct a realtime
communication object RealtimeComm to start the real–time thread.
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3.3.2. Spike Send / Readout Process

For sending spikes to a neuron on the hardware, we use the RealtimeComm ob-
ject. We can send spikes to a neuron with send_realtime_pulse(fpga_handle,

SpinnInputAddress), where SpinnInputAddress is the address which is processed
by the FPGA and translated to a hardware address with a routing table. The rout-
ing table can be created, after the marocco mapping file is loaded. The table can
store 1024 entries of pulse addresses, each address consists of 16 bit which encode
the corresponding neuron address. When we create a RealtimeComm object, we
initiate transmission (TX) and receive (RX) buffers. We can insert data into the trans-
mission buffer which will be extracted by a network API, furthermore data can be
inserted into the receive buffer and be extracted by the user process. Additionally,
sockets are created which define endpoints for the communication. There are sev-
eral different socket types available, here SOCK_DGRAM was chosen. This socket uses
the User Data Protocol (UDP) to send packets between host and neuromorphic part.
Compared to the widely used Transmission Control Protocol (TCP) which is build on
top of UDP, the used data protocol has some drawbacks. UDP does not promise
that the packets will be received in the right order. Besides, if a packet is lost, the
sender will not be told so because there is no acknowledgement of packets from the
receiving side. The advantage of this protocol is that it avoids the latency which is
caused by TCP error correction. In our case a lost packet is preferred to a delayed
packet. In terms of real–time computing, this would correspond to a firm real–time
system. A delayed packet would not drive the system to a total breakdown, but the
spike information would be useless for the system.
For rate based operations like SEMwe are not interested at the precise spike timing

of a single spike. Rather we are interested in the current spike rate of a neuron.

ν =
nsp

T
(3.12)

Where nsp is the amount of spikes in a time period T . Several spikes should occur
within this period to get reliable results. Typical choices for T are 100ms − 500ms
(Gerstner et al. [2014]), but this choice depends on the one hand on the kind of
neuron type and its input and on the other hand on the necessary resolution of
rate updates for the performed task. Based on the information of the current rate,
the host computer can react in form of sending spikes or adjusting weights (see
Section 3.3.3). Therefore we use two different threads during the experiment. The
first thread waits an adjustable accumulation_time which corresponds to T and
reads out the RX buffer to get the amount of spikes since the last readout. Divided
by the elapsed time we receive the current rate of the neuron. The second thread
sends continuously spike packets from the host to the hardware neuron. With an
adjustable wait time between each sent spike, we can adapt the amount of spikes
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we are sending to the neuron. Based on measurements which were carried out
before this thesis [see Schneider [2018]], we know that due to software latencies the
minimal wait time between two spikes is limited to 2 µs which corresponds to 500
kHz firing rate in hardware time or to 50 Hz in biological time. These limitations
are possible constraints for a SEM experiment which will be discussed in Section 5.

3.3.3. Weight Adaptation Process

The strength of the connection between neurons is described by its synaptic weight
wsyn. On the hardware this weight is proportional to an analog parameter gmax and
a 4-bit digital weight as described in 2.2.1. From the host this digital weight can
be adjusted for every synapse in the closed–loop mode and will be further analysed
during this thesis. Therefore we extract which rows of the synapse array are used by
the projection we want to adjust. These information are contained in the marocco
results. Similar to the spike send process, the weight adaptation is based on infor-
mation about the current frequency of a neuron from the spike receiving thread. In
a second thread the new weight is calculated and the set_weights_row(HICANN,

row, weight_row) function is called which performs the weight update. The cal-
culation of the new weight depends on the corresponding task. In a closed–loop
SEM experiment this could be a calculation of a new weight update between visi-
ble and hidden layer. In Section 4.3 we will show how this process can be used for
rate adaptation of a neuron. For the spike send and readout process we could use
the SpiNNaker interface which is optimized for real–time operations. To change
a weight on hardware we have to use the HostARQ protocol. This protocol aims
at a reliable communication between host computer and HICANN chip but it not
optimized for real–time closed–loop operations. Therefore a characterisation of this
process is necessary to estimate if weight updates in the closed–loop operation mode
are feasible.

3.4. Homeostasis

3.4.1. Biological Concept

Homeostasis is a biological concept defining a state of equilibrium. Originally de-
scribing the self regulating internal environment in which cells live. Figure 3.4
shows the typical homoestatic process. A variable which should be maintained is
observed by a receptor. The receptor sends the information about the current state
of the variable to a controller which decides based on these informations how to
react. If the current state of the variable differs from the target value, the controller
activates an effector to actively regulate the variable towards the target value. Typi-
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Effector Receptor

Controller

Variable

Figure 3.4.: Schematic view of the underlying process of homeostasis. A receptor
acts as a sensor and detects if the value of the variable which should be
maintained differs from the target value. This information will be trans-
ferred to a controller which activates an effector that is able to control
the variable.

cal homeostatic processes in the human body are the maintainance of the body heat
or the regulation of blood pressure. In case of the human body heat the body tem-
perature is the variable which should be maintained. The central nervesystem acts as
an receptor and is able to detect temperatures in different regions of the body. The
brain as a controller compares the detected temperatures with its target temperatures
and we start to sweat if the current temperature is to high or to chatter if it is to low.

3.4.2. Homeostatic Rate Adaptation

The concept of homeostasis can be applied to the rate of spiking neurons to maintain
a defined target frequency. On the BrainScaleS system we will use the closed–loop
operation mode to solve this task. In Figure 3.5 the setup for this implementation is
shown. The neuron we want to control is shown at the top and receives disturbing
input from other spike sources. Because of these disturbances the firing rate of the
neuron can deviate from the target rate. This deviation can be compensated with an
excitatory and an inhibitory spike source which are shown below the neuron. The
host computer will act as an controller and compares the current rate of the neuron
with its target rate. Based on this error which is defined by error = ratetarget −

ratecurrent , we need to adjust the spike input to the neuron from the excitatory /
inhibitory spike source to drive the neurons rate towards the target rate. As described
in section 3.3.2, it is possible to send spikes from the host to neurons on the hardware
in the closed–loop mode. In Schneider [2018] we showed how sending spikes from
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the host could be used to regulate a neurons rate in a homeostatic manner. We will
show a different approach in section 4.3.2 using an on–wafer spike source.

NeuronDisturbance

exc. Source
νexc

inh. Source
νinh

(spike timing data)

(rate / weight update)

Host Computer

Figure 3.5.: Schematic topology of the homeostatic setup. The neuron we want to
apply homeostasis on receives disturbing input in form of spikes from
other neurons. The host compares the current rate with the target rate
and drives the neurons firing rate towards the target rate by adapting
the frequency of the connected inhibitory and excitatory spike sources
correspondingly.

3.5. Sea�of�Noise Networks

For SEM experiments we need to introduce stochasticity into our network. One
approach could be to use poisson spike sources and connect them with the corre-
sponding neurons. On the BrainScaleS system the FPGA background generators are
able to produce poisson distributed events on 1 to 8 channels simultaneously. Also
regular event input on a single channel is possible. However, only one HICANN at
a time can receive such distributed events from the background generator.
Another solution are Sea–of–Noise networks (SoN). These networks use the fact

that a Neuron with a resting potential Erest above the thresholdVthresh leads to a con-
tinuous spiking neuron. The neuron will spike in a regular fashion with a frequency
that depends mainly on the chosen refractory period. This regular spiking will not
introduce stochasticity, but if we connect several of these neurons inhibitory with
each other, we can generate pseudo random spike trains. A neuron which should re-
ceive stochastic input can then be connected with several randomly chosen neurons
of this SoN population. Additionally, such a network can be used as an on–wafer
spike source as we need it for the homeostatic rate adaptation. We will present and
compare in section 4.3.2 different approaches using these networks. The topology
of such a network is shown in Figure 3.6. The nodes on the left side represent neu-
rons in the SoN network. The resting potential of all these neurons is set above
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the threshold potential. This would lead to a continuously spiking neurons with
the maximum possible frequency, based on the chosen neuron parameters. Because
of the random inhibitory pre–connected partners of each neuron within this net-
work, this frequency will be limited. By adjusting the size of this network N, the
inhibitory weight between those neurons winh and the amount of randomly chosen
pre–synaptic partners K per neuron, the behaviour of this network can be controlled.
A neuron which should receive random spike input can then be connected with
some of these neurons from the SoN network. By adjusting the amount of con-
nections and the weight of those connections from the SoN network to the neuron,
we can vary the frequency of the input the neuron receives. We will use SoN net-
works as on–wafer spike source for our experiments, but a deeper analysis of these
networks will not be part of this thesis but can be found in Pfeil et al. [2016].

Neuron

Figure 3.6.: For neurons in a SoN-network the threshold vthresh is set below the
resting potential vrest . This leads to a bursting behaviour of the neurons.
These neurons have a random inhibitory (blue) connection whith each
other. Some of these neurons from the SoN population are excitatory
(red) or inhibitory connected to the external neuron.
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4. Measurements

We will present and test in this chapter different methods to regulate the firing rate
of a neuron in a closed–loop setup on the BrainScaleS system. This can be achieved
by connecting a neuron with a Sea-of-Noise (SoN) network and adjust the digital
weights of those connections correspondingly.
As described in Section 3.3, the computations on the host computer have to keep

up with the massive speed-up of the BrainScaleS system in the closed-loop operation
mode. Therefore, special considerations have to be given to the software implemen-
tation. The following optimizations have been used to satisfy the necessary timing
constraints. With the scheduling tool schedtool we can set CPU scheduling pa-
rameters of the Linux kernel. We use the real–time scheduling policy SCHED_FIFO

for the processes during an experiment. A process using this policy pre-empt other
tasks with minor priority. Additionally, the process was marked as non pageable and
the necessary memory was pre–allocated. To avoid latencies from CPU switching,
the process was pinned to one CPU.
It is important to note that the time domain of all measurements – if not stated

otherwise – represents hardware time. To obtain biological time, the speed–up factor
of 104 must be taken into account.

4.1. Weight Updates in the Closed�Loop

Operation Mode

The implementation of the weight adaptation process was described previously in
Section 3.3.3. Before we start with a measurement to characterise the weight setting
process, we start with a demonstration of a weight update in the closed–loop opera-
tion mode. As described in Section 2.2.1, the digital weights represent the synaptic
strength of the connection between neurons and have a 4 bit resolution which leads
to 16 different possible weight settings. Figure 4.1 shows the mapping topology for
this measurement.
Neuron n2 is excitatory connected to a continuously spiking neuron n1 (Vrest >

Vthresh). Neuron n2 will receive spikes from neuron n1 and will start to fire spikes if
the weight between both neurons is strong enough. Figure 4.2 shows the rate over
time of neuron n2. After 500 ms the host sends a signal to increase the weight be-
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n1
Vrest j > Vthres

n2

excitatory

Figure 4.1.: The shown topology is used to determine the duration of the weight
adaptation process. A continuously spiking neuron n1 (Vrest > Vthresh) is
connected to neuron n2. By increasing the digital weight between both
neurons, n2 will receive spike input from n1.

tween both neurons by one which is represented by grey vertical lines. Every grey
vertical line represents the point in time when the host sends a signal to increase the
weight by one. The first update which is shown in this plot represents an increase of
the digital weight from 2 to 3. The connection between both neurons is in this case
not strong enough to trigger neuron n2 to start firing. After the digital weight was
set to 4 after 500 µs, n2 starts spiking with a frequency of 400 kHz. This update has
the strongest impact on the neurons frequency. The following updates show clearly
the non linear dependency between the weights and frequency. The behaviour of
the neuron is as we would expect it, the noticeable thing about this measurement is
that the weight update was triggered from the host. During emulation of those neu-
rons on the BrainScaleS System, the host sent a signal to the corresponding FPGA
which realizes the update of the digital weight.

4.2. Characterisation of the Weight Adaptation

As mentioned in Section 3.3.3, we use a different access channel for the weight set-
ting process then for the spike sending process in the closed-loop operation mode.
To send spikes between host and the BrainScaleS system, we used the SpiNNaker
interface which is optimized for real–time communications (see Section 3.3). To set
weights, we have to use the HostARQ protocol. Because this protocol is not op-
timized for real–time communication, we are interested in what time period this
weight setting process takes place – the elapsed time between triggering a weight
update on the host computer and the point in time when the weight update is re-
alised on hardware. With this information we can estimate if a rate adaptation with
weight updates is feasible. Therefore we use again the setup from 4.1, a continu-
ously spiking neuron n1 and a connected neuron n2. To determine the described
time period we use the moment when we call the function to update the weight
as time stamp t1. We set the digital weight to the maximum value of 15, therefore
neuron n2 will immediately start to spike after the weight is set. The point in time
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Figure 4.2.: This figure shows the effect of the weight adaptation. The setting is the
same as described in Figure 4.1. By increasing the weights between n1
and n2, the frequency of neuron n2 –which is shown in the plot – starts
to increase.

when neuron n2 starts spiking, is time stamp t2. More precisely defines this interval
∆t = t2 − t1 the round–trip time because it includes the communication from the
host computer to the FPGA and the corresponding HICANN as well as the com-
munication back to the host computer. However, in later experiments the weight
updates will be calculated on the host computer based on the current behaviour of
neurons on the hardware system. For this process the communication latencies be-
tween both systems have to be considered as well. The measured interval is shown
in Figure 4.3a, the red vertical line represents the point in time when the signal for
a weight update was sent from the host and the green line when the weight was
set which is defined as the point in time when the neuron starts to spike. To de-
termine the frequency of a neuron we accumulate spikes for a accumulation time
∆taccum. which we set before an experiment. Divided by the amount of spikes of
the neuron within this time interval, we receive the current rate. To determine if
the neuron started spiking, the accumulation time was set to ∆taccum. = 1µs. Such
short accumulation times lead to a strong variance in the determined frequencies
which can be seen in the rate trace in Figure 4.3a. As we are only interested in
the point in time when the neuron starts spiking, the accuracy of the determined
frequency is unimportant for this measurement. However, a lower accumulation
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Figure 4.3.: Wewant to determine the time duration between sending a signal to set
a weight from the host to the BrainScaleS system and when the weight
change is realized on hardware. (a) shows the time interval we want to
determine. A neuron n2 is connected to a continuously spiking neuron
n1. By changing the weight between those neurons from 0 to 15 with
a function call on the host (times stamp t1), n2 starts also to spike (time
stamp t2). (b) shows a histogram which visualizes the time duration ∆t
between the green and red dashed line in plot (a).

time increases the resolution of this measurement. The moment in time when the
neuron starts to spike – when the rate ν of the neuron is the first time larger then
zero after the signal for a weight change was sent – is set as weight set time point t2.
We measure this time interval ∆t = t2 − t1 several times and visualize the data in a
histogram in Figure 4.3b. The histogram shows a mean weight adaptation time of
∆tweight = 52 ± 14µs. Which corresponds to ∆tweight,bio = 520 ± 140ms in biological
time. This leads to a relative error of 27 %. We observe a hard boundary on the left
side of the main peak. This is to be expected because the signal needs even for the
best case a fixed amount of time which can not be undershot. The right side of the
main peak shows a wide spread distribution which can be explained by software and
communication latencies. The host computer has to communicate with the FPGA
and the FPGA with the corresponding HICANN chip. Latencies are also caused by
the error handling of the HostARQ protocol. As described previously, this protocol
is not optimized for real–time operations. In rare cases this process can take even an
order of magnitude longer then the average weight adaptation process. Especially
for peak–load conditions on the host computer, the process be queued which leads
to higher adaptation times as can be observed in this measurement.
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4.3. Rate Adaptation with Weights

We showed that rate adaptation of a neuron in a closed–loop setup is possible by send-
ing spikes from the host to the neuromorphic part (see Schneider [2018]). Sending
continuously spikes from the host to the hardware neuron should lead to a constant
firing rate of the neuron. By adjusting a wait time between each sent spike, we
can regulate the amount of spike which are sent from the host. However, software
latencies set a upper limit for frequencies which can be reached with this proce-
dure. Sending spikes as fast as possible to the BrainScaleS system – setting the wait
time between to sent spikes to zero – and measure the time between two send spike
calls, leads to a distribution as shown in Figure 4.4b. This measurement shows only
software latencies, communications between host and BrainScaleS System are not
included. The histogram in Figure 4.4b shows some smaller peaks several orders of
magnitude away from the main peak around 2.31 µs. To use spikes which are sent
from the host to maintain or adjust a spiking frequency we have to get rid of these
outliers. After the described real–time optimizations at beginning of this chapter,
we receive a distribution which is shown in Figure 4.4a. A slightly skewed Gaussian
distribution with a hard boundary on the left side which can not be undershot. The
right side shows a noisy behaviour which is a typical characteristic for measurements
of this kind. Even with the used scheduling policies it is not always guaranteed that
the corresponding process will be executed immediately. Other processes with a
high priority can get the preference and will be executed earlier and the send spike
process will be queued. An explicit reason for the small peak around 11 µs could not
be found until now. The mean interval between two with maximum speed sent
spikes is around ∆t = 2µs. This corresponds to a frequency of 500 kHz. However,
in practice only frequencies around 400 kHz showed a stable behaviour. For a more
detailed explanation see Schneider [2018].

4.3.1. Using a continuously spiking Neuron

Another approach for a rate adaptation uses continuously spiking neurons as an on–
wafer spike source during emulation. We use again the setup shown in Figure 4.1 for
this measurement. We can adjust the weights between both neurons correspond-
ingly to push the neurons rate towards a defined target rate. A possible solution to
find the weight which drives the neuron towards a target rate is a simple linear adap-
tation. By increasing the digital weight at every update by one based on the current
frequency of the neuron. In this measurement every 10 ms a weight updated takes
place.
We define an error as the difference between target rate νtarget and the current

rate of the neuron νcurrent . If the error is positive, we increase the digital weight, if it
is negative we decrease it. Furthermore we define an error tolerance. If the absolute

24



0 2500 5000 7500 10000 12500 15000 17500 20000

∆ t [µs]

10−6

10−5

10−4

10−3

10−2

10−1

100

re
la

ti
ve

o
cc

u
rr

en
ce

Histogram of ∆t between two sent spikes from the host - before optimization

mean: 3.44 µs

median: 2.31 µs

(a)

2 4 6 8 10 12

∆ t [µs]

10−5

10−4

10−3

10−2

10−1

re
la

ti
ve

o
cc

u
rr

en
ce

Histogram of ∆t between two sent spikes from the host

mean: 1.92 µs

median: 1.88 µs

(b)

Figure 4.4.: We send spikes as fast as possible from the host to the BrainScaleS system
and measure the time period between sending two spikes.(a) shows the
distribution before the optimization. (b) This histogram shows the dis-
tribution of these time durations after the real–time optimizations. The
plots and a detailed explanation can be found in Schneider [2018].

value of the error is below this tolerance, nowweight updatewill be executed. Figure
4.5 shows this rate adaptation applied on a neuron. The red horizontal line represents
the target rate which should be maintained. At the beginning the target rate is set to
700 kHz and switches after 200 ms to 500 kHz. The vertical dashed lines indicate the
weight updates. We can see that the rate of the neuron oscillates around the target
value. It would be possible to avoid those oscillations by increasing the accepted error
tolerance. However, if we look at the impact of a single weight update in Figure 4.5
on the frequency of the neuron, we observe that the effect of a weight update is to
rough – a rate adaptation is not feasible this way. We could decrease the frequency
of the spiking neuron n1 by increasing its refractory period τre f which would lead
to finer adjustments per weight update. A lower highest frequency which can be
reached would be the consequence.

25



0 50 100 150 200 250 300 350 400
hardware time [ms]

0

100

200

300

400

500

600

700

800

ra
te
[k
H
z]

Rate Adaptation with a Continuously Spiking Neuron as Spike Source

Neuron Rate
Target Rate
Weight Update

Figure 4.5.: The setup is the same as in Figure 4.1, the weights are updated based on
the current frequency of the neuron to reach a target frequency which
is displayed as a red horizontal line and switches after 200 ms from 700
kHz to 500 kHz. If the current rate is below the target frequency the
weight will be increased and decreased otherwise.

4.3.2. Using a Sea�of�Noise network

A more plausible approach is to use a Sea–of–Noise (SoN) network as spike source.
As described in Section 3.5, we can adjust the SoN network parameters like the
amount of neurons N within this network, the number of pre connected partners
K or the inhibitory weight winh. This leads to a lower spike frequency of the SoN
neurons compared to continuously spiking neurons like in the last section and. This
makes it possible to use a SoN network as an on–wafer spike source. Furthermore,
we could decrease the amount of data which we would send from the host to the
BrainScaleS system compared to the homeostasis implementation shown in Schnei-
der [2018]. In the implementation shown in Schneider [2018] we send spikes from
the host to the hardware to adjust a neurons frequency in a homeostatic manner.
With this approach spikes would be generated on the hardware and only the weight
updates would be sent from the host. In the following measurements we use a Sea–
of–Noise network with 100 neurons, every neuron has 10 inhibitory connected
partners with a digital weight of winh=1. This leads to a mean firing rate of the neu-
rons within the SoN network of 120 ± 30 kHz. We measured the mean rate of each
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neuron in this SoN network. The standard deviation of these determinedmean rates
defines the error of 30 kHz. It is important to note that this large error does not mean
that a single neuron spikes with such a large variance. It just shows that the mean
rates of the neurons within this population are widely distributed, which is caused
by the random inhibitory connections. The neuron we want to regulate has 40 con-
nections to randomly chosen neurons of this Sea–of–Noise network. The amount
of 40 connections was chosen empirically and should not be seen as a general rule.
The amount of necessary connections depends on the used SoN network as well on
the necessary accuracy and the possible maximum rate which should be reached. To
reach higher frequencies the SoN network has to be tuned, the amount of inhibitory
pre-synaptic partners or the inhibitory weight can be decreased. Also the amount
of connections between the neuron and the SoN network can be increased.

Linear Adaptation

By adjusting the digital weights of the connections between the SoN network and
a neuron, we can regulate its firing frequency. In this first implementation we use a
linear weight adaptation for the rate adjustment. At every weight update the weight
of one of those 40 connections is increased by one until the target frequency is
reached. Because of the 4 bit weight resolution per synapse, we get for 40 con-
nections in total 600 different weight steps. We can imagine these weights as an
array with the length defined by the amount of the connections. The i-th connec-
tion will then be set to the value of the i-th entry in this array. In this case every
50µs in hardware time a weight update takes place. The reason for this chosen up-
date frequency will be explained in the following. Furthermore only weights which
were changed compared to the previous weight setting will be updated. In case of
a linear adaptation with a step size of 1 weight step, only one connection weight
will be changed per update. Is the current frequency within a tolerance frame of the
target rate, no weight update will be executed. Figure 4.6 shows the rate adaptation
of a neuron with a target rate of 200 kHz. Every vertical dashed line represents a
weight update, when the target rate is reached the density of weight updates de-
creases. The tolerance frame was set to ± 10 kHz around the target rate. We can see
that the target rate is reached after around 170 ms and is maintained. Between 200
ms and 500 ms the mean rate of the neuron is 200 ± 11 kHz which corresponds to
a frequency of 20.0 ± 1.1 Hz in the biological time domain.

Analysis of Di�erent Update Frequencies

Figure 4.3 shows the rate traces of a neuron with a target rate of 400 kHz and dif-
ferent update frequencies. We can not increase the rate adaptation by increasing
the weight update frequency further because an update every 50 µs defines a lower
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Figure 4.6.: This figure shows a rate adaptation with weights and a Sea-of-Noise
network as spike source. The SoN network consists of 100 continu-
ously spiking neurons, each with 10 inhibitory connected partners with
a digital weight of winh = 1. Every weight update is represented with
a grey vertical line. At every update step the weight of one of those
40 connections is increased or decreased by one until the target rate is
reached.

bound. If we increase the update frequency further, the rate adaptation will not be
accelerated as can be seen for the 10 µs trace in Figure 4.7 which is covered by the 50
µs trace. In Figure 4.3b we determined the duration for a weight update which was
around 52 µs. This boundary can not be crossed even if we update different con-
nections. The reason is that these connections are on the same chip and are updated
by the same update controller. Therefore we are limited by the weight-set duration
which we determined in Figure 4.3b It is hard to determine specific reasons for this
latency and to decide if this process can be improved. There are different sources
which contribute to this latency like the communication between Host, FPGA and
HICANN as well as software latencies and were not analysed further during this
thesis. Figure 4.8 shows an overview of rate traces for different target traces. In this
case the weight updates take place again every 50 µs. This plot visualizes the linear
weight updates with a step size of one weight per update. Furthermore, we can see
again the non linear dependency between weights and the rate of the neuron.
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Figure 4.7.: This plot shows different traces of the rate of a neuron with a target rate
of 400 kHz. By adjusting the rate of the weight updates we can control
the speed of the rate adjustment.

Binary Search

There are different other update procedures possible to accelerate the rate adaptation.
The amount of connections between SoN Network and the neuron is adjustable
before an experiment, during an experiment this number is fixed. Because of that,
the rate adaptation can be seen as a search for the right weight setting. For a fixed
amount of different possible weight sets W = {wi |wi ∈ {0, .., 15}} we can use a
binary search. The idea is to split the whole possible range in half and set the current
weight in the middle. Based on the current frequency after this weight update we
repeat this process with the upper or lower half of the possible set of weights until
we reach the target frequency. With this approach the necessary amount of updates
to find the right weight setting scales with O(log n) compared to O(n) for a linear
search. In Figure 4.9a we can see how this approach works. Independent from the
target frequency all traces start after the first update in the middle of the possible
weight range which correspond approximately to the middle of the possible rate
range. Afterwards they split up and reach their target rate after around 200 µs. To
avoid oscillations around the target rate, we switch to a linear weight adaptation if
the current rate is within a tolerance frame. We can see that this methods slows
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Rate Adaptation with a Sea-of-Noise Network as Spike Source - Linear Adaptation

Figure 4.8.: This plot shows traces of a neurons frequency with different target rates.
We used a linear adaptation with an adjustment of one digital weight
every 50 µs.

down the process of adjusting the neurons rate for low target rates compared to a
linear adaptation. On the other hand this method accelerates the adaptation for cases
with large differences between current rate and target rate. For a linear adaptation
we need to reach a target rate of 600 kHz around 550 µs, with a binary search
this target rate was reached under 200 µs. The disadvantage of this method is the
discontinuous rate trace. In a SEM experiment this could destroy the dynamics of
the winner–takes–all network.
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Rate Adaptation with a Sea-of-Noise Network as Spike Source - Binary Search
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Figure 4.9.: The rate adaptation can be accelerated with two different approaches
which are shown in this Figure. (a) shows the implementation of a rate
adaptationwhere we apply a binary search on the possible set of weights.
The plot shows four traces with four different target rates which are
represented by black horizontal lines. (b) shows a comparison of the
different update procedures which are explained in Figure 4.1. We use
an increasing step size for the weight updates and can see the impact of
the two update procedures on the adaptation speed.

Adaptive Step Size

Another approach to accelerate the rate adaptation is to use different step sizes per
weight update. For the linear adaptation approach, we updated the weights with a
step size of one digital weight. Now we will increase the step size additive by one
at every update if the sign of the current error is the same as in the previous update.
The error is again defined as the difference between target rate and the current rate
of the neuron. This leads to larger step sizes if the deviation from the target rate
is tall and keeps the step size small for minor deviations. The blue graph in Figure
4.9b shows this approach with a target frequency of 500 kHz. This rate is reached
after 250 ms which is around 100 ms faster then the simple linear adaptation with
a step size of one. The limiting factor is again the duration for the execution and
realization of a weight update on hardware. To accelerate this adaptation further,
we need to decrease the amount of weight updates. In Figure 4.1 we can see two
different weight update procedures. The i-th entry of the array represents the dig-
ital weight of the i-th connection. If we increase the weights at every update step
by one digital weight, we adjust at every update step a different connection until
every weight is set to one and start again with the first array entry. This is how
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we updated the weights until now. We will call this the Population-first procedure
because we connect first the whole population of neurons from the SoN network
which are connected to the neuron we want to control before we increase the dig-
ital weights further. A problem arises if we use larger step sizes than one. If we
need to increase the connection strength between the neuron and SoN network
by an amount of ten digital weights in one update step, we had to set the digital
weights of ten different connections. This can be avoided by using the Neuron-first
procedure shown in Figure 4.1. First, we increase the weight of the connection of
a single neuron from the SoN up to 15 before we start with the next connection.
The advantage of this method is that we need less updates of hardware connections,
we can increase the digital weight of a single connection by up to 15 weight steps
and have to change only one weight on hardware. In the example in Figure 4.1 we
start in both cases with all connections set to zero. We want to increase the con-
nection strength between SoN network and the controlled neuron by an amount of
16 digital weights. The Population-first-procedure updates at every step a different
connection and starts again with the first entry if the end of the array is reached.
The Neuron-first-procedure increases the weight of a single connection to 15 and
continues afterwards with the next connection. In this example we had to update
16 different weights on hardware with the Population-first approach, and only two
connections with the Neuron-first procedure. It is important to note that it has not
the same effect on the neurons frequency if we increase three different connections
by one or one single connections bye three because of the non linear dependency
between weights and rate. Nevertheless, we want to examine if this approach could
be used to accelerate the rate adaptation. Figure 4.9b shows also a graph for a rate
adaptation using the Neuron-first procedure. We can see that the target rate is with
the Neuron-first procedure reached after 80 ms, which is around three times faster
as with the Population-first procedure. This shows that using the Neuron-first pro-
cedure can accelerate the adaptation process if needed.

Maximum Step Size

When we use an increasing step size, it is possible to control the speed of the adap-
tation process by defining a maximum step size. In Figure 4.10 we can see this
approach for different maximum step sizes. The target rate is set to 500 kHz and
switches after 500 ms to 200 kHz. For a maximum step size of one we get similar
results as for the linear adaptation in Figure 4.8 – a target rate of 500 kHz is reached
after approximately 400 ms. By increasing the maximum step size, the adaptation
is accelerated – for a maximum step size of 20 the target rate of 500 kHz is reached
after around 80 ms.
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Start [ 0, 0, 0, 0, ..., 0 ] [ 0, 0, 0, 0, ..., 0 ]

1.Weight [ 1, 0, 0, 0, ..., 0 ] [ 1, 0, 0, 0, ..., 0 ]

2.Weight [ 1, 1, 0, 0, ..., 0 ] [ 2, 0, 0, 0, ..., 0 ]

3.Weight [ 1, 1, 1, 0, ..., 0 ] [ 3, 0, 0, 0, ..., 0 ]
...
16.Weight [ 1, 1,...,1, 0,...,0] [ 15, 1, 0, 0, ...,0 ]

Population-first Neuron-first

Table 4.1.: We present two different update procedures. The different weights can
be visualized as an arraywhere the i-th entry represents the digital weight
of the i-th connection between Sea–of–Noise network and the neuron
we want to control.
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Figure 4.10.: Using an increasing step size with the Neuron-first procedure from
Table 4.1. This acceleration can be controlled by defining a maximum
step size which will not be passed. This plot shows five traces for differ-
ent maximum step sizes. The target rate is set to 500 kHz and changes
after 500 ms to 200 kHz.
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Di�erent Amount of Connections

We used for all measurements the same SoN network and also the same amount
of 40 connections for comparison purposes. However, the amount of connections
can easily be changed. Figure 4.11 shows rate traces of a neuron with different
amounts of connections. The target rate was set to 800 kHz for all three traces.
The blue graph with 20 connections is not able to reach the target rate. Even if all
weights are set to the maximum value of 15, the rate is still below 400 kHz. With
40 or 60 connections this target rate can be reached. If we look at the beginning of
the emulation and compare the two traces with 40 and 60 connections, we can see
that even if all weights are set to zero, the neuron receives spike input if we use 60
connections. This is a problem as we would not be able to regulate the neuron on
frequencies below 100 kHz. In general the neuron should not receive spikes if the
weights are set to zero, with an adjustment of the neuron parameters this problem
can be solved. It appears to be a calibration problem and has to be analysed further.
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Figure 4.11.: The amount of connections between SoN network and the controlled
neuron can be adjusted. This figure shows rate traces with a target rate
of 800 kHz with a different amount of used connections.
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Homeostasis Applied on a Neuron with Background Input

In the previous measurements, the neuron received only input from neurons of the
SoN network. This input regulated the rate of the neuron towards the target rate.
In a SEM experiment this would be different. The neuron would receive additional
input which should be compensated by the homeostatic rate adaptation. If we apply
homeostasis to a neuron, a defined target rate should be maintained independent
from the additional input which the neuron receives. In Figure 4.12 we can see how
this maintenance can be achieved. The plot shows two different traces of a neuron
rate over time. The neuron receives spike input with a non-constant rate over time
which is called background. If we apply homeostasis to the neurons frequency, this
background will be compensated and a constant rate is maintained. We can see that
after approximately 200 ms the background input decreases. If we apply homeostasis
to the neurons rate, the rate decreases as well after 200 ms but increases again shortly
after and is kept at the target rate. In this case we used a linear adaptation with a
step size of one per weight update. As described previously, this process can be
accelerated or slowed down if necessary. The background source was represented
by spikes which were sent from the host computer during emulation.
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Figure 4.12.: A neuron receives a background input with a decreasing rate. Home-
ostasis applied to the neuron compensates the varying disturbances
from the background input resulting in a constant rate.
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We presented in this chapter different approaches how a rate adaptation of a neu-
ron can be achieved using a SoN network as an on-wafer spike source during a
closed–loop emulation on the BrainScaleS system. These different adaptation meth-
ods aimed at an acceleration of the rate adaptation. Nevertheless, care was take that
the presented methods can be regulated in their adaptation speed as it is an crucial
part for later SEM experiments to adjust the homeostatic rate adaptation correspond-
ingly. Different other methods are conceivable which will be addressed in Section
6.
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5. Outlook � Closed�Loop

Spike�Based Expectation

Maximization

This chapter will give an outlook towards spike–based expectation maximization
experiments on the BrainScaleS system in a closed–loop operation mode. We will
discuss how the methods which were implemented during this thesis can be used to
conduct such an experiment.

5.1. Experimental Setup

As proof of concept, we will use a minimal network of three neurons encoding three
different patterns of a 2 x 2 input layer. The three neurons of the cause layer will
try to find the hidden cause behind patterns which are encoded in spike trains. The
network will receive these spike trains via an input layer consisting of four neurons
yi. Three possible patterns are shown in Figure 5.1. Each of the four cells of these
patterns is either active or inactive which will be represented by different mean rates
of the corresponding spike train.

y3

y1

y4

y2

Figure 5.1.: For the SEM experiment, we need three different patterns which will be
encoded in spike trains and passed to the network through an input layer
of four neurons yi. The four cells of the shown patterns can be active
or inactive. This can be represented by different mean rates of the spike
trains which are sent to the corresponding neurons of the input layer.

The input layer neurons are connected to the cause layer neurons via weights Vki
which are chosen randomly at the beginning and will be updated during emula-
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tion as described in Section 3.1. The cause layer neurons are connected with each
other via strong inhibitory weights Wkl to form a winner-takes-all structure. These
weights will be kept fixed. To learn the patterns, we present them randomly to the
network, if zk fits better to this input than the other neurons z j( j , k), it will suppress
the other neurons – Vki will learn more of the current input than the other weights
Vji, j , k. After the weight update, the given neuron will be slightly specialised on
input from the current pattern. Furthermore, we need to apply homeostasis on the
activity of cause layer neurons. If the mean rate of one neuron increased, this neuron
would suppress the other neurons because of the winner-takes-all structure. In this
case, other neurons would not be able to learn as weight updates are only performed
upon post–synaptic spikes. There are – roughly speaking – three processes which
evolve in parallel during the experiment – each on a different time scale. On the
fastest time scale is the presentation of the different patterns to the network. The
homeostatic rate adaptation of the cause layer activity evolves slower as it hast to be
maintained across all the different input patterns shown. Finally, the weight updates
caused by the learning rule have to operate on the slowest time scale since other-
wise the homeostatic control circuity would be unable to maintain an equilibrium
of activity. The fine-tuning of these processes will be one of the difficulties of an
implementation on the BrainScaleS system.

5.2. Possible Implementation on the BrainScaleS

System

The experiment will be performed in the closed–loop operation mode of the Brain-
ScaleS system. After the network is mapped onto hardware, we can present different
patterns by sending spike packets from the host to the corresponding input neurons
(see 3.3.2). The update rule for the weights Vki (see Equation 3.1.2) depends on the
rate of cause layer neuron zk and the rate of input neuron yi. The calculations for the
weight update will be performed on the host computer. Therefore we can determine
the rate of the corresponding neurons yi and zi as it was done with a single neuron
for the rate adaptation in Section 4.3.2. Because of the winner–takes–all structure
of the cause layer only one of the neurons in this layer will spike. Therefore only
the weight updates for Vik have to be calculated. How fast the weight adaptation
process evolves depends on the chosen learning rate which has to be tuned to satisfy
the timing constraints explained in the previous section. After the weight update
for Vik is calculated, we can change the digital weight of the corresponding connec-
tion. The maintenance of the cause layer neurons activity can be achieved with a
Sea–of–Noise network similar to what was shown in Figure 4.12. The next steps,
after the network is mapped on the hardware, are to implement the learning rule
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and measure the resulting correlations. Finally, the learning rates have to be tuned.
The described network in this section learns the hidden cause of small 2 x 2 pic-

tures. It is also possible to scale this experiment up and to increase the number of in-
put neurons to learn more advanced patterns or to increase the amount of cause layer
neurons to introduce more patterns. It is also important to mention, that learning
such small pictures as shown in Figure 5.1 puts a huge burden on the single synapses.
Another very promising approach was shown by Guo et al. [2017]. They stacked
several SEM networks to form a Hierarchical Bayesian Inference and Learning Spik-
ing Neural Network. With this approach, they were able to train their stacked SEM
network on the MNIST dataset of handwritten digits. An implementation of this
approach on the BrainScaleS system in the future is conceivable. The single SEM
networks could be distributed over awholewafer of the system. Problems could arise
for the calculations of the update rule and the weight updates for the homeostatic
rate adaptation which are done on the host computer. Because the computations
have to keep up with the network emulation, it could be necessary to use more than
one computer to perform the required updates.
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6. Discussion

The goal of this thesis was to implement and test the necessary mechanisms for a
Spike–Based Expectation Maximization experiment. These were: weight updates
from the host with the required computations of the updates on the host, a method
to introduce stochasticity into a network and a homeostatic rate adaptation. There-
fore, we used the closed–loop operation mode of the BrainScaleS system to commu-
nicate in real–time between the host computer and the BrainScaleS system during
emulation — forming both systems into a hybrid system.
First, we characterised the weight setting process. We showed that this process

takes 52 ± 14 µs until the digital weight is set on hardware after the host triggered
a weight change (see Section 4.2). We could not determine if this process can be
improved because the reason for this delay is a combination of different commu-
nication latencies: between the host and the FPGA as well as between FPGA and
the corresponding HICANN chip. Also, software latencies contribute to this de-
lay. An analysis of these communication processes is necessary for the improvement
of this weight setting process. The determined duration defines a round–trip time
because it includes the communication from the neuromorphic system back to the
host computer. To find the actual period for realising a weight update on hardware,
the communication time back to the host has to be subtracted from the determined
duration. In case of a SEM experiment, we have to calculate weight updates on the
host based on informationwhich the host receives from the neuromorphic hardware.
Therefore, the communication time has to be considered as well. The problem of
this communication overhead can beminimizedwith the developedHICANN–DLS
prototype chip. This chip uses an on–chip plasticity processing unit which can be
used to implement different plasticity rules.
A method to regulate the activity of a neuron was implemented (see Section 4.3).

The controlled neuron is connected to a Sea-of-Noise network which acts as an on-
wafer spike source. During emulation, we adjust the digital weights of connections
from the SoN network to the neuron or order to control the frequency. We showed
that the communication speed between both systems is fast enough to regulate the
neuron in biological meaningful time domains. Different types of rate adaptation
methods were implemented and presented in this thesis: linear adaptation, binary
search and an adaptive step size. It was shown that the last two methods accelerated
the rate adaptation compared to linear adaptation. There are other rate adaptation
methods conceivable. Building on top of the adaptive step size we could use a mul-
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tiplicatively increasing step size. Another possibility is a proportionality controller.
There we would adjust the weights proportional to the current error. The prob-
lem with this method is it requires error normalisation. Otherwise, it would not be
possible to convert the current error, given as frequency, into an adjustment of the
digital weights. This normalisation would depend on the current neuron parame-
ters, the amount of connections and the chosen Sea-of-Noise network. Therefore, a
change in parameters requires adjustment of the normalisation. A simplified version
could use a linear approximation between rate and weights and use the maximum
possible rate which can be reached, divided by the highest possible weight setting
as a conversion factor. The implemented methods which were shown in this thesis
do not need normalisation and are rather straight–forward to use for different setups
of Sea-of-Noise networks or neuron parameters Furthermore, we took care that it
is possible to increase or decrease the speed of the rate adaptation for the different
methods which is essential for homeostatic rate adaptation in SEM–like experiments.
A limiting factor when increasing the speed of rate adaptation was the number of
hardware connections which have to be changed at every update step. We showed
with two different weight update procedures – Population first andNeuron first – that
we can accelerate this process with the second procedure (see Section 4.3.2). How-
ever, Neuron-first procedure showed a rougher rate trace with a larger variance.
The reason for this is that we use fewer neurons which are connected to the reg-
ulated neuron. This leads to larger statistical fluctuations. A solution could be a
compromise between both procedures. A possibility would be to limit the number
of different synapses which will be changed per update. If the amount of digital
weights which we want to increase is larger than a defined quantity N , the digital
weights will be equally distributed over the N connections with the lowest current
weight.
During this thesis, we demonstrated different weight update methods with the

same Sea-of-Noise network configurations. A next step should be to analyse the
behaviour with larger Sea-of-Noise networks. If the network parameters are chosen
sensible, neurons within larger SoN networks can spike with a lower variance. This
would be useful for the rate adaptation process, as a lower variance could enable
more precise rate adjustments.
Finally, we presented a minimal version of a SEM experiment and how it could

be implemented on the BrainScaleS system. All necessary mechanisms for such an
experiment were verified on this system or, if not existing, implemented during this
thesis. In a next step towards a closed–loop SEM experiment, these mechanisms have
to be combined. Furthermore, the corresponding learning rates have to be tuned to
satisfy the required timing constraints which are caused by the different time scales
in which the involved processes operate, as described in Section 5.2.
The shown experiments in this thesis were the first using the closed–loop oper-
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ation mode on the current hardware version (HICANN v4) and mark a first step
towards closed–loop SEM experiments on the BrainScaleS system. However, SEM
experiments are just one possible use case for this operationmode. Especially the field
of robotics opens a promising application area for biologically inspired closed–loop
controllers where the sensory input could be processed on neuromorphic hardware
like the BrainScaleS system. An ambitious but outstanding project would be to use
several individual robots. The sensory input of each robot could then be processed
on one of the wafer of the BrainScaleS system. Furthermore, they could interact
with each other over the of–wafer network. It would also be possible to simulate
this in a virtual environment, several agents could be used to solve for example a
maze. The individual agents could then learn from each other to improve the be-
haviour of the whole group of agents.
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A. Appendix

A.1. Acronyms

API Application Programming Interface

AdEx Adaptive-Exponential Integrate-and-Fire

FPGA Field Programmable Gate Array

HICANN High Input Count Analog Neural Network

SEM Spike-Based Expectation Maximization

VLSI Very-Large-Scale Integration
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A.2. Parameters

A.2.1. Measurements with a Continuously Spiking Neuron

Table A.1.: Parameters for the measurements of the following Figures:
4.2, 4.3b, 4.5

Parameters Values
Wafer 21
HICANNS 300 / 324

Neuron parameters

"tau_refrac": 0.1,
"tau_m": 2.0,
"v_thresh": -10.0,
"e_rev_E": 60.0,
"v_reset": -70.0,
"cm": 0.2, "e_rev_I": -100.0,
"tau_syn_E": 5.0,
"tau_syn_I": 5.0,
"v_rest": -20.0

Firing Neuron parameters

"tau_refrac": 0.1,
"tau_m": 2.0,
"v_thresh": -20.0,
"e_rev_E": 60.0,
"v_reset": -35.0,
"cm": 0.2,
"e_rev_I": -100.0,
"tau_syn_E": 5.0,
"tau_syn_I": 5.0,
"v_rest": -10.0
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A.2.2. Measurements with a Sea�of�Noise network

Table A.2.: Parameters for the measurements of the following Figures:
4.6, 4.7, 4.8 4.9b, 4.10, 4.12

Parameters Values
Wafer 21
HICANNS 300 / 324

Neuron parameters

"tau_refrac": 0.01
"tau_m": 0.1
"v_thresh": -20.0
"e_rev_E": 60.0
"v_reset": -40.0
"cm": 0.2
"e_rev_I": -100.0
"tau_syn_E": 1.0
"tau_syn_I": 1.0"
v_rest": -30.0

Sea-of-Noise network

#Neuronen: 100
winh =1
presynaptic Partner: 10

Neuronparameters:
"tau_refrac": 4
"tau_m": 2.0
"v_thresh": -20.0
"e_rev_E": 60.0
"v_rese t": -70
"cm": 0.2
"e_rev_I": -100.0
"tau_syn_E": 1
"tau_syn_I": 1
"v_rest": -10.0
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