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O Abstract

o.N

: An increasing body of evidence suggests that the trial-to-trial variability of spiking activity in the brain is not mere noise, but
.— rather the reflection of a sampling-based encoding scheme for probabilistic computing. Since the precise statistical properties
.~ of neural activity are important in this context, many models assume an ad-hoc source of well-behaved, explicit noise, either
O on the input or on the output side of single neuron dynamics, most often assuming an independent Poisson process in either
case. However, these assumptions are somewhat problematic: neighboring neurons tend to share receptive fields, rendering
<] both their input and their output correlated; at the same time, neurons are known to behave largely deterministically, as a
= function of their membrane potential and conductance. We suggest that spiking neural networks may, in fact, have no need
for noise to perform sampling-based Bayesian inference. We study analytically the effect of auto- and cross-correlations
() in functionally Bayesian spiking networks and demonstrate how their effect translates to synaptic interaction strengths,
QO rendering them controllable through synaptic plasticity. This allows even small ensembles of interconnected deterministic
7 spiking networks to simultaneously and co-dependently shape their output activity through learning, enabling them to perform
O) complex Bayesian computation without any need for noise, which we demonstrate in silico, both in classical simulation and
in neuromorphic emulation. These results close a gap between the abstract models and the biology of functionally Bayesian
] spiking networks, effectively reducing the architectural constraints imposed on physical neural substrates required to perform
=" probabilistic computing, be they biological or artificial.

>

>é Significance statement

From a generic Bayesian perspective, cortical networks can be viewed as generators of target distributions. To enable
such computation, models assume neurons to possess sources of perfect, well-behaved noise - an assumption that is both
impractical and at odds with biology. We show how local plasticity in an ensemble of spiking networks allows them to
co-shape their activity towards a set of well-defined targets, while reciprocally using the very same activity as a source
of (pseudo-)stochasticity. This enables purely deterministic networks to simultaneously learn a variety of tasks, completely
removing the need for explicit randomness. While reconciling the sampling hypothesis with the deterministic nature of single
neurons, our work also offers an efficient blueprint for in-silico implementations of sampling-based inference.



Introduction

An ubiquitous feature of in-vivo neural responses is their
stochastic nature [1-6]. The manifest saliency of this variabil-
ity has spawned many functional interpretations, with the
Bayesian-brain hypothesis arguably being the most notable
example [7-12]. Under this assumption, the activity of a neural
network is interpreted as representing an underlying (prior)
probability distribution, with sensory data providing the ev-
idence needed to constrain this distribution to a (posterior)
shape that most accurately represents the possible states of
the environment given the limited available knowledge about
it.

Neural network models have evolved to reproduce this
kind of neuronal response variability by introducing noise-
generating mechanisms, be they extrinsic, such as Poisson
input [13-16] or fluctuating currents [17-21], or intrinsic,
such as stochastic firing [22-27] or membrane fluctuations
[28, 29, 19]. However, while representing, to some degree, rea-
sonable approximations, none of the commonly used sources
of stochasticity is fully compatible with biological constraints.
Contrary to the independent white noise assumption, neu-
ronal inputs are both auto- and cross-correlated to a sig-
nificant degree [30-36], with obvious consequences for a net-
work’s output statistics [37]. At the same time, the assumption
of intrinsic neuronal stochasticity is at odds with experimen-
tal evidence of neurons being largely deterministic units [38-
40]. Therefore, it remains an interesting question how cortical
networks that use stochastic activity as a means to perform
probabilistic inference can realistically attain such apparent
randomness in the first place.

We address this question within the normative framework of
sampling-based Bayesian computation [41-45], in which the
spiking activity of neurons is interpreted as Markov Chain
Monte Carlo sampling from an underlying distribution over
a high-dimensional binary state space. We demonstrate how
an ensemble of dynamically fully deterministic, but function-
ally probabilistic networks, can learn a connectivity pattern
that enables probabilistic computation with a degree of preci-
sion that matches the one attainable with idealized, perfectly
stochastic components. The key element of this construction is
self-consistency, in that all input activity seen by a neuron is
the result of output activity of other neurons that fulfill a func-
tional role in their respective subnetworks. The present work
supports probabilistic computation in light of experimental
evidence from biology and suggests a resource-efficient im-
plementation of stochastic computing by completely removing
the need for any form of explicit noise.

Contributions: MAP, DD and IB conceived and designed the study. DD
performed the analytical calculations and simulations. OB developed a soft-
ware module based on NEST and PyNN which enabled faster, larger-scale
simulations. AFK provided Python code for setting up SSNs on BrainScaleS.
DD and MAP wrote the paper. DD designed and created the figures. All au-
thors reviewed the manuscript.

Methods

Neuron model and simulation details

We consider (deterministic) LIF neurons with conductance-
based synapses and dynamics described by
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with membrane capacitance C\,, leak conductance gj, leak po-
tential Ej, excitatory and inhibitory reversal potentials ;7;’
synaptic strength wy, synaptic time constant 75" and firing
threshold ¥. During the refractory period 7ef, the membrane
potential is clamped to the reset potential o. We have cho-
sen the above model because it provides a computationally
tractable abstraction of neurosynaptic dynamics [40], but our
general conclusions are not restricted to these specific dy-
namics.

We further use the short-term plasticity mechanism de-
scribed in [46] to modulate synaptic interaction strengths with
an adaptive factor Usg x R(t), where the time-dependence is
given by
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with ¢, denoting the time of a presynaptic spike and 7ec the
time scale on which the reservoir R recovers. This enables
a better control over the inter-neuron interaction, as well as
over the mixing properties of our networks [47].

All simulations were performed with PyNN 0.8 [48] and
NEST 2.4.2 [49].

Sampling framework

As a model of probabilistic inference in networks of spik-
ing neurons, we adopt the framework introduced in [43, 45].
There, the neuronal output becomes stochastic due to a
high-frequency bombardment of excitatory and inhibitory
Poisson stimult (Fig. 1TA), elevating neurons into a high-
conductance state (HCS), where they attain a high reac-
tion speed due to a reduced membrane time constant. Un-
der these conditions, a neuron’s response function becomes
approximately logistic and can be represented as ¢(u) =
(14 exp (—(u —ug) /)" with inverse slope a and inflec-
tion point ug. Together with the mean free membrane poten-
tial © and the mean effective membrane time constant 7.,
the scaling parameters o and g can be used to translate the
weight matrix W and bias vector b of a target Boltzmann dis-
tribution p(z) o exp (427 Wz + 27b) with binary random
variables z € {0,1}™ to synaptic weights and leak potentials



in a sampling spiking network (SSN):
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This translation effectively enables sampling from p(z), where
a refractory neuron is considered to represent the state z;, = 1
(see Fig. 1B,C).

Measures of network performance

To assess how well a sampling spiking network (SSN) sam-
ples from its target distribution, we use the Kullback-Leibler
divergence
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which is a measure for the similarity between the sampled
distribution p"°* and the target distribution p*®'&¢*. For in-
ference tasks, we determine the network’s classification rate
on a subset of the used data set which was put aside dur-
ing training. Furthermore, generative properties of SSNs are
investigated either by letting the network complete partially
occluded examples from the data set or by letting it generate
new examples.
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z

Learning algorithm

Networks were trained with a Hebbian wake-sleep algorithm

ta t
AWij =n |:pz?r=gle,zj=1 _pgfil,2j21:| ’ (8)

Ab; =1 [plrEt —pit ], (9)

which minimizes the Dk, (p"© || pt2'&¢t) [50]. 7 is a learning
rate which is either constant or decreases over time 1 %
For high-dimensional data sets (e.g. handwritten letters and
digits), binary-unit networks were trained with the CAST al-
gorithm [51], a variant of wake-sleep with a tempering scheme,
and then translated to SSN parameters with Egs. (5) and (6)
instead of training the SSNs directly to reduce simulation

time.

Results

We approach the problem of externally-induced stochasticity
incrementally. Throughout the remainder of the manuscript,
we discern between background input, which is provided by
other functional networks, and explicit noise, for which we
use the conventional assumption of Poisson spike trains. We
start by analyzing the effect of correlated background on the
performance of SSNs. We then demonstrate how the effects of
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Figure 1: Sampling spiking networks (SSNs) with and without explicit noise.
(A) Schematic of a sampling spiking network, where each neuron (circles) en-
codes a binary random variable z; € {0, 1}. In the original model, neurons
were rendered effectively stochastic by adding external Poisson sources of
high-frequency balanced noise (red boxes). (B) A neuron represents the state
2z = 1 when refractory and z; = 0 otherwise. (C) The dynamics of neurons
in an SSN can be described as sampling (red bars) from a target distri-
bution (blue bars). (D) Instead of using Poisson processes as a source of
explicit noise, we replace the Poisson input with spikes coming from other
networks performing spike-based probablistic inference by creating a sparse,
asymmetric connectivity matrix between several SSNs. For instance, the red
neuron receives not only information-carrying spikes from its home network
(black lines), but also spikes from the other two SSNs as background (red
arrows), and in turn projects back towards these networks.

both auto- and cross-correlated background can be mitigated
by Hebbian plasticity. This ultimately enables us to train a
fully deterministic network of networks to perform different
inference tasks without requiring any form of explicit noise.

Background autocorrelations

Unlike ideal Poisson sources, single spiking neurons pro-
duce autocorrelated spike trains, with the shape of the au-
tocorrelation function (ACF) depending on their firing rate
p(z = 1) and refractory time 7. For higher output rates,
spike trains become increasingly dominated by bursts, i.e.,
sequences of equidistant spikes with an interspike interval
(IS1) of ISI =& Tyet. These fixed structures also remain in a
population, since the population autocorrelation is equal to
the averaged ACFs of the individual spike trains.

We investigated the effect of such autocorrelations on
the output statistics of SSNs by replacing the Poisson
input in the ideal model with spikes coming from other
SSNs. As opposed to Poisson noise, the autocorrelation
C(pi, pis A) <pi(t>p§§;f(ﬁ?)>7<pi>2 of the SSN-generated
background (Fig. 2B) is nonl—slngular and influences the free
membrane potential (FMP) distribution (Fig. 2C) and thereby
activation function (Fig. 2D) of individual sampling neurons.
With increasing firing rates (controlled by the bias of the
neurons in the background SSNs), the number of significant
peaks in the ACF increases as well:

Clpis pisnTvet) = € 1P6 ([0 — K] Ties)
k=1

(10)

where p is the probability for a burst to start. This reqularity
in the background input manifests itself in a reduced width



p(z=1)=0.1

T T T T

p(z=1)=0.6

T T T

'i p(z=1)=0.9

0 5 10 15 20
A [Trerl

0 200400600800 0O 200400600800 O 200400600800 10° 10 10° 0.0 0.1 0.2 0.3
simulation time [ms] simulation time [ms] cC

Figure 2: Effect of correlated background on SSN dynamics and compensation through reparametrization. (A) Feedforward replacement of Poisson noise
by spiking activity from other SSNs. In this illustration, the principal SSN consists of three neurons receiving background input only from other functional
SSNs that sample from their own predetermined target distribution. For clarity, only two out of a total of [260, 50, 34] (top to bottom in (B)) background
SSNs per neuron are shown here. By modifying the background connectivity (gray and blue arrows) the amount of cross-correlation in the background
input can be controlled. At this stage, the background SSNs are rendered stochastic by Poisson input (red boxes). (B) By appropriate parametrization of
the background SSNss, we adjust the mean spike frequency of the background neurons (blue) to study the effect of background autocorrelations C(p;, pi, A).
Higher firing probabilities increase the chance of evoking bursts, which induce background autocorrelations for the neurons in the principal SSN at multiples

of Trer (dark blue: simulation results; light blue: P with k = TAf see Eq. (10)). (C) Background autocorrelation narrows the FMP distribution of

neurons in the principal SSN: simulation (blue bars) and the theoretical prediction (Eq. (11), blue line) vs. background Poisson noise of the same rate
(gray). Background intensities correspond to (B). (D) Single-neuron activation functions corresponding to (B,C) and the theoretical prediction (Eq. (12), blue
line). For autocorrelated noise, the slope of the response curve changes, but the inflection point (with p(z = 1) = 0.5) is conserved. (E) Kullback-Leibler
divergence Dkr, (p“‘st I ptarget) (median and range between the first and third quartile) for the three cases shown in (B,C,D) after sampling from 50
different target distributions with 10 different random seeds for the 3-neuron network depicted in (A). Appropriate reparametrization can fully cancel out
the effect of background autocorrelations (blue). The according results without reparametrization (gray) and with Poisson input (red) are also shown. (F)
A pair of interconnected neurons in a background SSN generates correlated noise, as given by Eq. (13). The effect of cross-correlated background on a
pair of target neurons depends on the nature of synaptic projections from the background to the principal SSN. Here, we depict the case where their
interaction Wgre is excitatory; the inhibitory case is a mirror image thereof. Left: If forward projections are of the same type, postsynaptic potentials will be
positively correlated. Middle: Different synapse types in the forward projection only change the sign of the postsynaptic potential correlations. Right: For
many background inputs with mixed connectivity patterns, correlations can average out to zero even when all input correlations have the same sign. (G)
Same experiment as in (E), with background connection statistics adjusted to compensate for input cross-correlations. The uncompensated cases from (F, left)
and (F, middle) are shown in gray. (H) Correlation-cancelling reparametrization in the principal SSN. By transforming the state space from z € {0,1}" to
z' € {—1,1}, input correlations attain the same functional effect as synaptic weights (Eq. (15)); simulation results given as red dots, linear fit as red line.
Weight rescaling followed by a transformation back into the z € {0, 1}" state space, shown in green (which affects both weights and biases) can therefore
alleviate the effects of correlated background. (I) Similar experiment as in (E) for a network with ten neurons, with parameters adjusted to compensate for
input cross-correlations. As in the case of autocorrelated background, cross-correlations can be cancelled out by appropriate reparametrization.

o' of the FMP distribution holds for the exact expression derived in [43], as verified by
; simulations (Fig. 2D).
ree /
fui ) ~ N = p, o’ = \/BCT) (1) Apart from the above effect, the background autocorrela-

tions do not affect neuron properties that depend linearly on

the synaptic noise input, such as the mean FMP and the

inflection point of the activation function (equivalent to zero

oo bias). Therefore, the effect of the background autocorrelations

plz =1)~ / flw)du = p(uf = ug, o’ =/Ba), (12)  can be functionally reversed by rescaling the functional (from

v other neurons in the principal SSN) afferent synaptic weights

with inflection point u{ and inverse slope . Thus, autocorre- by a factor equal to the ratio between the new and the orig-
lations in the background input lead to a reduced width of the  inal slope o/ /a (Egs. (5) and (6)), as shown in Fig. 2E.

FMP distribution and hence to a steeper activation function

compared to the one obtained using uncorrelated Poisson

input. For a better intuition, we used an approximation of

the activation function of LIF neurons, but the argument also  In addition to being autocorrelated, background input to

pairs of neurons can be cross-correlated as well, due to ei-

with a scaling factor 1/ that depends on the ACF, which in
turn translates to a steeper activation function

Background cross-correlations



ther shared inputs or synaptic connections between the neu-
rons that generate said background. These background cross-
correlations can manifest themselves in a modified cross-
correlation between the outputs of neurons, thereby distorting
the distribution sampled by an SSN.

However, depending on the number and nature of presynap-
tic background sources, background cross-correlations may
cancel out to a significant degree. The correlation coefficient
(CC) of the FMPs of two neurons fed by correlated noise
amounts to

pluiyug) o Y Jwpwm (B — i) (B — ) (13)
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where [ sums over all background spike trains S; ; projecting
to neuron ¢ and m sums over all background spike trains Sy, ;
projecting to neuron j. 5(/{,&, A) is the unnormalized auto-
correlation function of the postsynaptic potential (PSP) ker-
nel &, e, C(k, K, A) = (k(t)k(t + A)), and C (Syi, Sm.j, A)
the cross-correlation function of the background inputs. Aj;
is given by Ay ;m; = \/Var (S1;) Var (Sy, ;). The background
cross-correlation is gated into the cross-correlation of FMPs
by the nature of the respective synaptic connections: if
the two neurons connect to the cross-correlated inputs by
synapses of different type (one excitatory, one inhibitory), the
sign of the CC is switched (Fig. 2F). However, individual con-
tributions to the FMP CC also depend on the difference of
the mean free membrane potential and the reversal poten-
tials, so the gating of cross-correlations is not symmetric for
excitatory and inhibitory synapses. Nevertheless, it is appar-
ent that if the connectivity statistics (in-degree and synaptic
weights) from the background sources to an SSN are chosen
appropriately and enough presynaptic partners are available,
the total pairwise cross-correlation between neurons in an
SSN can cancel out to zero, leaving the sampling performance
unimpaired (Fig. 2G). It is important to note that this way of
reducing cross-correlations is independent of the underlying
weight distribution of the networks providing the background;
the required cross-wiring of functional networks could there-
fore, in principle, be encoded genetically and does not need to
be learned. Furthermore, a very simple cross-wiring rule, i.e.,
independently and randomly determined connections, already
suffices to accomplish low background cross-correlations and
therefore reach a good sampling performance.

While this method is guaranteed to work in an artificial
setting, further analysis is needed to assess its compatibil-
ity with the cortical connectome with respect to connectivity
statistics or synaptic weight distributions. However, even if
cortical architecture prevents a clean implementation of this
decorrelation mechanism, SSNs can themselves compensate
for residual background cross-correlations by modifying their
parameters, similar to the autocorrelation compensation dis-

cussed above.
To demonstrate this ability, we need to switch from the

natural state space of neurons z € {0,1}" to the more sym-
metric space 2’ € {—1,1}¥.! By requiring p(2') = p(z) to
conserve state probabilities (and thereby also correlations),
the desired change of state variables z’ = 2z — 1 can be
achieved with a linear parameter transformation:

1 1 1
W' = W and b/=§b+12001iw- (14)

In the {—1,1}" state space, both synaptic connections wi;
and background cross-correlations p(s;, s;) shift probability
mass from the mixed states (z;,z;) = (—1,1) and (1,-1)
to the aligned states (z;,z;) = (—1,—1) and (1,1) (see SI,
Fig. S1). Therefore, by adjusting b and W, it is possible
to find a W’ (Fig. 2H) that precisely conserves the desired
correlation structure between neurons:
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with constants go and g1 (Fig. 2I). Therefore, when an SSN
learns a target distribution from data, background cross-
correlations are equivalent to an offset in the initial network
parameters and are automatically compensated during train-
ing.

At this point, we can conclude that all effects that fol-
low from replacing input noise in an SSN with functional
output from other SSNs (which still receive explicit noise)
can be compensated by appropriate parameter adjustments.
This is an important preliminary conclusion for the next sec-
tions, where we show how all noise can be eliminated in
an ensemble of interconnected SSNs endowed with synap-
tic plasticity without significant penalty to their respective
functional performance. We start with larger ensembles of
small networks, each of which receives its own target distri-
bution, which allows a straightforward quantitative assess-
ment of their sampling performance Dy, (p™°* || p'*"&°*). We
study the behavior of such ensembles both in computer simu-
lations and on mixed-signal neuromorphic hardware. Finally,
we demonstrate the capability of our approach for truly func-
tional, larger-scale networks, trained on high-dimensional vi-
sual data.

Sampling without explicit noise in large ensem-
bles

We initialized an ensemble of 100 6-neuron SSNs with an
inter-network connectivity of ¢ = 0.1 and random synaptic
weights. No external input is needed to kick-start network
activity, as some neurons spike spontaneously, due to the ran-
dom initialization of parameters (see Fig. 3A). The existence
of inhibitory weights disrupts the initial reqularity, initiating

"The z = 0 state for a silent neuron is arguably more natural, because
it has no effect on its postsynaptic partners during this state. In contrast,
z € {—1,1} would, for example, imply efferent excitation upon spiking and
constant efferent inhibition otherwise.
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Figure 3: Sampling without explicit noise from a set of predefined target distributions in software (A-C) and on a neuromorphic substrate (D-G). (A)
Temporal evolution of spiking activity in an ensemble of 100 interconnected 6-neuron SSNs with no source of explicit noise. An initial burst of regular
activity caused by neurons with a strong enough positive bias quickly transitions to asynchronous irreqular activity due to inhibitory synapses. (B) Median
sampling quality of the above ensemble during learning. At the end of the learning phase, the sampling quality of individual networks in the ensemble
(blue) is on par with the one obtained in the theoretically ideal case of independent networks with Poisson background (black). Error bars given over 5
simulation runs with different random seeds. (C) Illustration of a single target distribution (magenta) and corresponding sampled distribution (blue) of a
network in the ensemble at several stages of the learning process. (D) Photograph of a wafer from the BrainScaleS neuromorphic system used in (E), (F)
and (G) before post-processing (i.e., adding additional structures like buses on top), which would mask the underlying modular structure. Blue: exemplary
membrane trace of an analog neuron receiving Poisson noise. (E) Performance of an ensemble consisting of 15 4-neuron SSNs with no external noise during
learning on the neuromorphic substrate, shown in light blue for each SSN and with the median shown in dark blue. The large fluctuations compared to
(B) are a signature of the natural variability of the substrate’s analog components. The dashed blue line represents the best achieved median performance
at Dkr, (pnCt I ptarg“) = 3.99 x 10~ 2. For comparison, we also plot the optimal median performance for the theoretically ideal case of independent,
Poisson-driven SSNs emulated on the same substrate, which lies at Dkr, (pnCt I ptarg“) = 2.49 x 10~2 (dashed black line). (F) Left: Demonstration
of sampling in the neuromorphic ensemble of SSNs after 200 training steps. Individual networks in light blue, median performance in dark blue. Dashed
blue line: median performance before training. Dashed black line: median performance of ideal networks, as in (E). Right: Best achieved performance, after
100s of bio time (10 ms of hardware time) for all SSNs in the ensemble depicted as blue dots (sorted from lowest to highest Dkr,). For comparison, the
same is plotted as black crosses for their ideal counterparts. (G) Sampled (blue) and target (magenta) distributions of four of the 15 SSNs. The selection
is marked in (F) with green triangles (left) and vertical green dotted lines (right). Since we made no particular selection of hardware neurons according to
their behavior, hardware defects have a significant impact on a small subset of the SSNs. Despite these imperfections, a majority of SSNs perform close to
the best value permitted by the limited weight resolution (4 bits) of the substrate.

the sampling process. Implementation on a neuromorphic substrate

Ongoing learning (Equations (8) and (9)) shapes the sam-
pled distributions towards their respective targets (Fig. 3B),
the parameters of which were drawn randomly. Our en-
semble achieved a sampling performance (median Dky,) of

To test the robustness of our results, we studied an implemen-
tation of noise-free sampling on an artificial neural substrate.
For this, we used the BrainScaleS system [52], a mixed-signal

1.06179-37 x 1073, which is similar to the median performance
of an idealized setup (independent, Poisson-driven SSNs) of
1.0515:25 % 102 (errors are given by the first and third quar-
tile). To put the above Dk, values in perspective, we compare
the sampled and target distributions of one of the SSNs in
the ensemble at various stages of learning (Fig. 3C). Instead
of training ensembles, they can also be set up by translating
the parameters of the target distributions to neurosynaptic
parameters directly, as discussed in the previous section (see

SI, Fig. S2).

As we show in the following, this approach to noise-free
sampling-based computation can also be applied to physical
neural substrates which incorporate unreliable components
and are therefore significantly more difficult to control.

neuromorphic platform with analog neurosynaptic dynamics
and digital inter-neuron communication (Fig. 3D, see also S|,
Fig. S3). A major advantage of this implementation is the em-
ulation speedup of 10* with respect to biological real-time;
however, for clarity, we shall continue using biological time
units instead of actual emulation time.

The additional challenge for our neuronal ensemble is to
cope with the natural variability of the substrate, caused
mainly by fixed-pattern noise, or with other limitations such
as a finite weight resolution (4 bits) or spike loss, which can
all be substantial [53, 54]. It is important to note that the abil-
ity to function when embedded in an imperfect substrate with
significant deviations from an idealized model represents a
necessary prerequisite for viable theories of biological neu-
ral function.
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Figure 4: Bayesian inference on visual input. (A) Illustration of the connectivity between two hierarchical SSNs in the simulated ensemble. Each SSN had
a visible layer v, a hidden h and a label layer L. Neurons in the same layer of an SSN were not interconnected. Each neuron in an SSN received only
activity from the hidden layers of other SSNs as background (no sources of explicit noise). (B) An ensemble of four such SSNs (red) was trained to perform
generative and discriminative tasks on visual data from the EMNIST dataset. We used the classification rate of restricted Boltzmann machines trained with
the same hyperparameters as a benchmark (blue). Error bars are given (on blue) over 10 test runs and (on red) over 10 ensemble realizations with different
random seeds. (C) Illustration of a scenario where one of the four SSNs (red boxes) received visual input for classification (B). At the same time, the other
SSNs continuously generated images from their respective learned distributions. (D) Pattern generation and mixing during unconstrained dreaming. Here,
we show the activity of the visible layer of all four networks from (B), each spanning three rows. Time evolves from left to right. For further illustrations of
the sampling process in the ensemble of hierarchical SSNs, see Sl, Fig. S4, S5. (E) Pattern completion and rivalry for two instances of incomplete visual
stimulus. The stimulus consisted of the top right and bottom right quadrant of the visible layer, respectively. In the first run, we clamped the top arc of a “B”
compatible with either a “B” or an “R" (top three rows, red), in the second run we chose the bottom line of an “L" compatible with an “L", an “E”, a “Z" or
a “C”" (bottom three rows, red). An ensemble of SSNs performs Bayesian inference by implicitly evaluating the conditional distribution of the unstimulated

visible neurons, which manifests itself here as sampling from all image classes compatible with the ambiguous simulus (see also Sl, Fig. S6).

We emulated an ensemble of 15 4-neuron SSNs, with an
inter-SSN connectivity of e = 0.2 and with randomly drawn
target distributions. The biases were provided by additional
bias neurons and adjusted during learning via the synaptic
weights between bias and sampling neurons, along with the
synapses within the SSNs, using the same learning rule as
before (Equations (8) and (9)). After 200 training steps, the
ensemble reached a median Dy, of 3.99713% - 102 (errors
given by the distance to the first and third quartile) compared
to 1.18'_"8:‘515 before training (Fig. 3E). As a point of reference,
we also considered the idealized case by training the same
set of SSNs without interconnections and with every neu-
ron receiving external Poisson noise generated from the host
computer, reaching a Dxr, of 2.491“3}? -1072.

This relatively small performance loss of the noise-free
ensemble compared to the ideal case confirms the theoret-
ical predictions and simulation results. Importantly, this was
achieved with only a rather small ensemble, demonstrating
that large numbers of neurons are not needed for realizing
this computational paradigm.

In Fig. 3F, we show the sampling dynamics of all emu-
lated SSNs after learning. While most SSNs are able to
approximate their target distributions well, some sampled dis-
tributions are significantly skewed (Fig. 3G). This is caused
by a small subset of dysfunctional neurons, which we have
not discarded beforehand, in order to avoid an implausibly
fine-tuned use-case of the neuromorphic substrate. These ef-
fects become less significant in larger networks trained on

data instead of predefined distributions, where learning can
naturally cope with such outliers by assigning them smaller
output weights. Nevertheless, these results demonstrate the
feasibility of self-sustained Bayesian computation through
sampling in physical neural substrates, without the need for
any source of explicit noise. Importantly, and in contrast to
other approaches [55], every neuron in the ensemble plays a
functional role, with no neuronal real-estate being dedicated
to the production of (pseudo-)randomness.

Ensembles of hierarchical SSNs

When endowed with appropriate learning rules, hierarchi-
cal spiking networks can be efficiently trained on high-
dimensional visual data [47, 54, 56-59]. Such hierarchical
networks are characterized by the presence of several layers,
with connections between consecutive layers, but no lateral
connections within the layers themselves. When both feedfor-
ward and feedback connections are present, such networks
are able to both classify and generate images that are simi-
lar to those used during training.

In these networks, information processing in both direc-
tions is Bayesian in nature. Bottom-up propagation of infor-
mation enables an estimation of the conditional probability of
a particular label to fit the input data. Additionally, top-down
propagation of neural activity allows generating a subset of
patterns in the visible layer conditioned on incomplete or par-
tially occluded visual stimulus. When no input is presented,



such networks will produce patterns similar to those enforced
during training ("dreaming”). In general, the exploration of a
multimodal solution space in generative models is facilitated
by some noise-generating mechanism. We demonstrate how
even a small interconnected set of hierarchical SSNs can per-
form these computations self-sufficiently, without any source
of explicit noise.

We used an ensemble of four 3-layer hierarchical SSNs
trained on a subset of the EMNIST dataset [60], an extended
version of the widely used MNIST dataset [61] that includes
digits as well as capital and lower-case letters. All SSNs had
the same structure, with 784 visible units, 200 hidden units
and 5 label units (Fig. 4A). To emulate the presence of net-
works with different functionality, we trained each of them on
a separate subset of the data. (To combine sampling in space
with sampling in time, multiple networks can also be trained
on the same data, see S| Fig. S5.) Since training the spik-
ing ensemble directly was computationally prohibitive, we
trained four Boltzmann machines on the respective datasets
and then translated the resulting parameters to neurosynap-
tic parameters of the ensemble using the analytical approxi-
mations for correlation compensation described earlier in the
manuscript.

To test the discriminative properties of the SSNs in the
ensemble, one was stimulated with visual input, while the
remaining three were left to freely sample from their underly-
ing distribution. We measured a median classification rate of
91.573-0% with errors given by the distance to the first and
third quartile, which is close to the 94.0731% achieved by
the idealized reference setup provided by the abstract Boltz-
mann machines (Fig. 4B). At the same time, all other SSNs re-
mained capable of generating recognizable images (Fig. 4C).
It is expected that direct training and a larger number of
SSNs in the ensemble would further improve the results, but
a functioning translation from the abstract to the biological
domain already underpins the soundness of the underlying
theory.

Without visual stimulus, all SSNs sampled freely, gener-
ating images similar to those on which they were trained
(Fig. 4D). Without any source of explicit noise, the SSNs
were capable to mix between the relevant modes (images
belonging to all classes) of their respective underlying dis-
tributions, which is a hallmark of a good generative model.
We further extended these results to an ensemble trained on
the full MNIST dataset, reaching a similar generative perfor-
mance for all networks (see SI Fig. S5).

To test the pattern completion capabilities of the SSNs in
the ensemble, we stimulated them with incomplete and am-
biguous visual data (Fig. 4E). Under these conditions, SSNs
only produced images compatible with the stimulus, alternat-
ing between different image classes, in a display of pattern
rivalry. As in the case of free dreaming, the key mechanism
facilitating this form of exploration was provided by the func-
tional activity of other neurons in the ensemble.

Discussion

Based on our findings, we argue that sampling-based
Bayesian computation can be implemented in ensembles
of spiking networks without requiring any explicit noise-
generating mechanism. While in biology various explicity
sources of noise exist [62-64], these forms of stochasticity
are either too weak (in case of ion channels) or too high-
dimensional for efficient exploration (in the case of stochastic
synaptic transmission, as used for, e.g., reinforcement learn-
ing [65]). On the other hand, neuronal population noise can
be highly correlated, affecting information processing by, e.g.,
inducing systematic sampling biases [32].

In our proposed framework, each network in an ensemble
plays a dual role: while fulfilling its assigned function within
its home subnetwork, it also provides its peers with the spik-
ing background necessary for stochastic search within their
respective solution spaces. This enables a self-consistent and
parsimonious implementation of neural sampling, by allowing
all neurons to take on a functional role and not dedicating
any resources purely to the production of background stochas-
ticity. The underlying idea lies in adapting neuro-synaptic
parameters by (contrastive) Hebbian learning to compensate
for auto- and cross-correlations induced by interactions be-
tween the functional networks in the ensemble. Importantly,
we show that this does not rely on the presence of a large
number of independent presynaptic partners for each neuron,
as often assumed by models of cortical computation that use
Poisson noise (see, e.g., [66]). Instead, only a small number
of ensembles is necessary to implement noise-free Bayesian
sampling. This becomes particularly relevant for the develop-
ment of neuromorphic platforms by eliminating the computa-
tional footprint imposed by the generation and distribution
of explicit noise, thereby reducing power consumption and
bandwidth constraints.

The suggested noise-free Bayesian brain reconciles the de-
bate on spatial versus temporal sampling [67, 41]. In fact, the
suggested ensembles of spiking neurons that provide each
other with virtual noise may be arranged in parallel sensory
streams. An ambiguous stimulus will trigger different repre-
sentations on each level of these streams, forming a hierar-
chy of probabilistic population codes. While these population
codes learn to cover the full sensory distribution in space,
they will also generate samples of the sensory distribution
in time (see Fig. S5 in the SI). Attention may select the most
likely representation, while suppressing the representations
in the other streams. Analogously, possible actions may be
represented in parallel motor streams during planning and
a motor decision may select the one to be performed. When
recording in premotor cortex, such a selection causes a noise
reduction [68], that we suggest is effectively the signature of
choosing the most probable action in a Bayesian sense.

In our simulations, we have used a simplified neuron model
to reduce computation time and facilitate the mathemati-
cal analysis. However, we expect the core underlying prin-



ciples to generalize, as evidenced by our results on neuro-
morphic hardware, where the dynamics of individual neurons
and synapses differ significantly from the mathematical model.
Such an ability to compute with unreliable components repre-
sents a particularly appealing feature in the context of both
biology and emerging nanoscale technologies.
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Figure S1: Compensation of input correlations by adjustment of weights and biases in an SSN. For simplicity, this is illustrated here
for the case of shared input correlations, but the results hold for all types of statically correlated inputs. See also [69] for additional
information. (A) Exemplary architecture of a network with 3 neurons that samples from a Boltzmann distribution with parameters W
and b. In order to achieve the required stochastic regime, each neuron receives external noise in the form of Poisson spike trains (not
shown). (B)-(D) Exemplary sampled distributions for a network of two neurons. The “default” case is the one where all weights and
biases are set to zero (uniform distribution, blue bars). (B) Shared noise sources have a correlating effect, shifting probability mass into
the (1,1) and (0,0) states (red bars). (C) In the {0,1}? space, increased weights introduce a (positive) shift of probability mass from
all other states towards the (1,1) state (red bars), which is markedly different from the effect of correlated noise. (D) In the {—1,1}?2
space, increased weights have the same effect as correlated noise (red bars). (E) Dependence of the correlation coefficient r between
the states of two neurons on the change in synaptic weight AW’ (red) and the shared noise ratio s (blue). These define bijective
functions g and h that can be used to compute the weight change (AW’ = f(s), with f := g~ oh) needed to compensate the effect
of correlated noise in the {—1,1}" space. (F) Study of the optimal compensation rule in a network with two neurons. For simplicity,
the ordinate represents weight changes for a network with states in the {—1,1}2 space, which are then translated to corresponding
parameters (W, b) for the {0, 1}? state space. The colormap shows the difference between the sampled and the target distribution
measured by the Kullback-Leibler divergence Dy, (p™°* || p'7&°%). The mapping provided by the compensation rule f (see (E)) is
depicted by the green curve. Note that the compensation rule AW’ = f(s) provides a nearly optimal parameter translation. Remaining
deviations are due to differences between LIF and Glauber dynamics. (G) Compensation of noise correlations in an SSN with ten
neurons. The results are depicted for a set of ten randomly drawn Boltzmann distributions over z € {0,1}10 (error bars). For a set of
randomly chosen Boltzmann distributions, a ten-neuron network performs sampling in the presence of pairwise-shared noise ratios s
(x-axis). The blue line marks the sampling performance without noise-induced correlations (s = 0). For an increasing shared noise ratio,
uncompensated noise (green) induces a significant increase in sampling error. After compensation, the sampling performance is nearly
completely restored. As before, remaining deviations are due to differences between LIF and Glauber dynamics. (H) An LIF-based
ten-neuron network with shared noise sources (s = 0.3 for each neuron pair) is trained with data samples generated from a target
Boltzmann distribution (blue bars). During training, the sampled distribution becomes an increasingly better approximation of the target
distribution (red line). For comparison, we also show the distribution sampled by an SSN with parameters translated directly from the
Boltzmann parameters (purple). The trained network is able to improve upon this result because learning implicitly compensates for
the abovementioned differences between LIF and Glauber dynamics.
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Figure S2: (A) A straightforward way to set up the parameters of each network (w;; and Ej) is to use the parameter translation as
described in the main text, i.e., use the corresponding activation function of each neuron to correctly account for the background noise
statistics. This is demonstrated here for the case of (left) 399 networks (only two shown) receiving Poisson noise and one network
only receiving ensemble input and (right) all networks only receiving ensemble input. In both cases, the resulting activation function is
the same and we can indeed use it to translate the parameters of the target distribution to neurosynaptic parameters. (B) Using the
corresponding activation functions to set up the ensemble (but no training), each network in the ensemble is indeed able to accurately
sample from its target distribution without explicit noise, as expected from our considerations in (A) and the main text. This is shown
here (in software simulations) for an ensemble of 400 3-neuron SSNs with an interconnection probability of 0.05, reaching a median
Dy, of 12‘87:2:3 x 1073 (blue), which is close to the ideal result with Poisson noise of 6.245218 x 1073 (black, errors given as the
first and third quartile).
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Figure S3: (A) A single HICANN chip (High Input Count Analog Neural Network), the elemental building block of the BrainScaleS
wafer. The HICANN consists of two symmetric halves and harbors analog implementations of adaptive exponential integrate-and-
fire (AdEx) neurons and conductance-based synapses in 180nm CMOS technology. Floating gates next to the neuron circuits are
used to store neuron parameters. Spikes are routed digitally through horizontal and vertical buses (not shown) and translated into
postsynaptic conductances in the synapse array. Unlike in simulations on general-purpose CPUs, here neurons and synapses are
physically implemented, with no numeric computations being performed to calculate network dynamics. A single wafer consists of 384
HICANN chips. (B) Individual components of the BrainScaleS system, including both wafer and support structure. For instance, FPGA
boards provide an 1/O interface for wafer configuration and spike data and Giga-Ethernet slots provide a connection between FPGAs
and the control cluster from which users conduct their experiments via Python scripts using the PyNN API. (C) Completely assembled
wafer of the BrainScaleS neuromorphic system.
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Figure S4: t-SNE representation [70] of consecutively generated images of two of the four SSNs trained on EMNIST. Both SSNs
smoothly traverse several regions of the state space representing image classes while dreaming. The red diamond marks the first image

in the sequence, gray lines connect consecutive images. Consecutive images are 200 ms apart.
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Figure S5: (A) Dreaming ensemble of five hierarchical SSNs with 784 visible, 500 hidden and 10 label neurons (without explicit noise).
Each row represents samples from a single network of the ensembles, with samples being 375ms apart. To set up the ensemble, a
restricted Boltzmann machine was trained on the MNIST dataset and the resulting parameters translated to corresponding neurosynaptic
parameters of the ensemble. Here, to facilitate mixing, we used short-term depression to modulate synaptic interactions and weaken
attractor states that would be otherwise difficult to escape [47]. (B) t-SNE representation [70] of consecutively generated images of two
of the five SSNs trained on MNIST digits. Both SSNs are able to generate and mix between diverse images of different digit classes
while dreaming. The red diamond marks the first image in the sequence, gray lines connect consecutive images. Consecutive images
are 400 ms apart.
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Figure S6: (A) Relative abundance of the label output while clamping parts of a "B". Most of the time (79.85%), the image is correctly
classified as a "B”. The closest alternative explanation, an "R’ is generated second most (17.45%). The remaining classes are explored
significantly less often by the network (0.43%, 0.70%, 1.57%). (B) Examples of the visible layer activity while the label layer classifies
the partially clamped images either as a "B" (top) or an "R” (bottom). (C) Examples of the visible layer activity while classifying the
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image as a "T", "X" or "V". In these cases, the images generated by the visible neurons show prominent features of these letters.
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