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Abstract

In the framework of this thesis a collection of approaches is investigated to
calibrate various analog neuromorphic circuits, that are part of the HICANN-
DLSv3 ASIC implemented in a 65 nm process. Only resources and observables
available to the on-chip Plasticity Processing Unit (PPU) are used.

The chip contains 32 neurons based on the Adaptive Exponential Integrate-
and-Fire model (AdEx), whose parameters are subject to mismatch. Some of
the algorithms calibrating the analog circuitry are based on the neurons’ spike
events, while others make use of the parallel on-chip CADC. Furthermore a
calibration for the pre-synaptic synapse drivers is presented, which implement
Short-Term Plasticity (STP).

The different approaches are investigated with respect to their precision,
runtime, and scalability, especially in the light of future chip generations which
will feature a larger number of neuromorphic circuits. All calibration algorithms
presented in this thesis can be executed on the order of seconds for a whole
chip and – due to their scalable nature – their runtime is expected to stay
approximately constant even for an increased number of neurons or synapse
drivers, respectively.

Zusammenfassung

Im Rahmen dieser Arbeit wurden verschiedene Methoden untersucht um neuro-
morphe Schaltungen zu kalibrieren, wie sie auf dem HICANN-DLSv3 Prototy-
pen realisiert sind. Lediglich die beobachtbaren Größen und Rechenkapazitäten
des auf dem Chip implementierten Prozessors (PPU) werden genutzt.

Der Chip enthält 32 Neuronen, die auf dem Adaptive-Exponential-Integrate-
and-Fire Modell (AdEx) basieren und deren Parameter Fertigungstoleranzen
unterliegen. Um die analogen Schaltungen zu kalibrieren, nutzen Algorithmen
die Spike-Events von Neuronen oder den implementierten CADC. Desweiteren
wird eine Kalibration der Synapsentreiber präsentiert, durch welche Short-Term
Plasticity (STP) realisiert wird.

Die verschiedenen Ansätze werden bezüglich ihrer Präzision, Laufzeit und
Skalierbarkeit evaluiert. Der Grund sind vor allem zukünftige Chip Genera-
tionen, welche deutlich mehr neuromorphe Schaltkreise enthalten werden. Al-
le Kalibrationsalgorithmen, die in dieser Arbeit präsentiert werden, benötigen
wenige Sekunden um einen gesamten Chip zu kalibrieren. Aufgrund ihrer Ska-
lierbarkeit sollte die Laufzeit selbst für eine erhöhte Anzahl von Neuronen und
Synapsentreibern ungefähr auf dem selben Level bleiben.
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1 Introduction
Modern science would not be possible without traditional computers, as they are able
to execute large-scale simulations or managing Petabytes of data like in the ATLAS
Detector at CERN [Borodin et al., 2015]. State of the art supercomputers like the
Summit are able to perform 2 · 1017 floating-point operations per second [Feldman,
2018]. One can neglect using the human brain for such arithmetic operations, as
a normal person needs quite some time to calculate the product of two floating
numbers. On the other hand, the brain excels at cognitive tasks like face recognition
or understanding a language. But with complex algorithms also cognitive tasks like
traffic sign recognition [Stallkamp et al., 2012] can be done on computers. However
they are limited to a small number of tasks and are not even close to the flexibility
of the brain. Also the power consumption of the brain is much smaller, which
consumes around 20W, while supercomputers used to perform such algorithms are
consuming power in the order of megawatts. Also traditional computers, which
are used for personal use are consuming several hundred watts. That is the reason
why it is desireable to create machines with the computational abilities of the brain
combined with its low power consumption [Meier, 2017].

Several projects with different approaches are currently running to implement the
behavior of the brain on hardware. The SpiNNaker platform is a purely digital
approach, which is optimized for highly parallel tasks to simulate the behavior of
the brain [Furber et al., 2013]. Another approach is to emulate the structure of
the brain on an integrated analog circuit, like it is done on the BrainScaleS system
[Schemmel et al., 2010]. These systems make it possible for brain researchers to
conduct experiments on hardware.

In the Electronic Vision(s) group at the Kirchhoff-Institute for Physics Heidelberg
we are currently developing a successor for the BrainScaleS system, called High Input
Count Analog Neural Network (HICANN) with Digital Learning System (DLS). The
HICANN-DLS is an Application-Specific Integrated Circuit (ASIC) which contains
analog and digital parts. Because of its prototype status it contains a reduced
number of all relevant building blocks, but it is fully functional and can be used for
experiments.

This thesis will present new calibration methods for the third prototype of these
chips, called HICANN-DLSv3, using the general-purpose on-chip processor, called
Plasticity Processing Unit (PPU). A calibration of the chip is necessary due to
manufacturing tolerances. It is evaluated which observables can be used to calibrate
the neurons on the chip. Also the calibration of Short Term Plasticity (STP), which
is suspected to play an important role in neural information filtering, which was
previously implemented on the host computer [Weis, 2018], will be extended and
ported to the PPU.

The motivation behind this thesis is to find algorithms which reduce the mismatch
between the respective circuits’ parameters. It would be desireable to find highly
scalable algorithms that require a short runtime. Implementing these algorithms on
the PPU reduces the communication overhead to the host system. Furthermore,
for a future wafer-scale system, the amount of PPUs will scale with the number of
neurons, such that the runtime should stay approximately constant for these larger
systems.
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2 Principles

2.1 Biological background

The computational power of the human brain arises from small cells in the brain
which are called neurons and their connections. A neuron consists of three parts:
dendrites, a soma and an axon. The dendrites can be understood as input of the neu-
ron. The cell soma connects to the dendrites and forms a membrane, which receives
signals from the dendrites. Once the a critical membrane potential is reached, an
action potential is created and send along the axon [Eyzaguirre and Kuffler, 1955].
Via synapses the output axon is connected to the dendrites of other neurons. Usu-
ally synapses transfer their signals via neurotransmitters [Pereda, 2014]. In total
it is estimated that the human brain contains 10 - 22 billion neurons and with an
estimate of 20000 synapses per neuron [Dicke and Roth, 2016], this would add up
to 200 - 440 trillion synapses.

2.2 Leaky Integrate and Fire model

The Leaky Integrate and Fire model (LIF) is one of the most suitable neuron models
for analog hardware, because it is based on first order differential equations, as found
in basic analog circuitry. It can be extended to the Adaptive Exponential Integrate-
and-Fire model (AdEx) [Brette and Gerstner, 2005] to describe the action potentials
in a more realistic way. It is also able to reproduce biological firing patterns such as
adapting, bursting, and delayed spiking. The model is described by two differential
equations

C
dVm
dt

= −gl (Vm − El) + gl∆texp
(
Vm − Vt

∆t

)
− w + I, (1)

τw
dw

dt
= a (Vm − El)− w (2)

and a reset condition which sets Vm to a reset potential Vreset for the duration of the
refractory time τref, when it is crossing the threshold potential Vthresh.

In this case Vm describes the membrane potential and the first term in equation 1
describes the leakage term. The second and third term are the extensions of the
AdEx model, together with equation 2. The potential Vt describes the soft threshold
for the exponential term, while ∆t is its slope factor and w marks the adaptation
current. The dynamics of the adaptive extension are calculated within the second
term. The last term I describes all other currents on the membrane. It includes both
excitatory and inhibitory synaptic inputs, the excitatory and inhibitory current, and
a direct current stimulus.

2.3 Short Term Plasticity

Processing the synaptic input is called Short Term Plasticity (STP) [Fioravante and
Regehr, 2011]. It is based on synaptic changes which are a result of prior synapse
activity, lasting to short term effects of couple minutes [Zucker and Regehr, 2002].
A set of two effects can occur at the postsynaptic response, which are called Short
Term Depression (STD) and Short Term Facilitation (STF) [Hennig, 2013]. While
the postsynaptic input decreases over the course of repeated stimulation for STD,
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it leads to higher inputs for STF. Both effects seem to exclude each other, but they
can occur at the same time [Hennig, 2013].

A first attempt to describe the synaptic depression was done by Tsodyks and
Markram [Tsodyks and Markram, 1997]. The Tsodyks-Markram model was improved
by dividing synaptic neurotransmitters into three different states, recovered, active
and inactive [Tsodyks et al., 1998]. With this the dynamics of the synaptic input
over time can be described by three differential equations [Tsodyks and Wu, 2013].

dE

dt
= − E

τfaciliation
+ USE ·

(
1− E−) · δ (t− tAP) (3)

dR

dt
=

1−R

τdepression
− E+ ·R− · δ (t− tAP) (4)

dI

dt
= − I

τsyn
+A · E+ ·R− · δ (t− tAP) (5)

In this case E describes the effective partition and R the recovered one, while I
is the current onto the neuron membrane. E and R range between 0 and 1, as it is
linked to the amount of neurotransmitters in the respective partition. The time of
the action potential is given by tAP and states before an action potential are marked
with an upper -, states afterwards with an upper +.

If the synapse is idle, the effective partition E will decay to 0 with the time
constant τfaciliation while the recovery partition R decays to 1 with it is time constant
τdepression. These time constants are in the order of tens of milliseconds to seconds
[Regehr, 2012]. After an event in form of an action potential a fraction USE, which
is called utilization is added to the effective partition E. This leds to depression as
the recovery partition will shrink due to the enlarged effective partition E+. The
actual current onto the neuron membrane is 0 before the action potential. But if
such an event occurs, I is given as the product of a maximum amplitude A and the
product of E and R, which leads to depression as well as facilitation. At the end it
decays back to 0 with a time constant τsyn.

2.4 The HICANN-DLSv3 ANNCORE

The analog circuitry corresponding to the discussed brain model is realized in the
Analog Neural Network Core (ANNCORE), which is the heart of the chip. A sketch
of the ANNCORE is shown in figure 2.1. The HICANN-DLSv3 contains a total of
32 neurons and 1024 synapses, which are arranged in a 32 x 32 array with a neuron
connected at the bottom of each row. So every neuron can receive the signals of 32
synapses in its column. Every synapse has an individual weight and address, which
are both 6-bit values.

To realize STP, 16 synapse drivers are added on the left side of the synapse array.
Each driver is connected to two synapse rows. Signals from the drivers always contain
one of the 64 source addresses, which allows to enable the according synapses.

The current onto the neuron is defined by the signal from the synapse driver and
the weight of the synapses. Spiking neurons will send out a digital signal, which
can be fed back to the synapse drivers. These signals can reach other neurons by
traveling through the synapse array. Drivers can also receive external inputs.
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synapse driver

synapse

neuron

Figure 2.1: ANNCORE of the HICANN-DLSv3. On the left side the synapse drivers
which process STP are located, each connected to two synapse rows.
Every column of the synapse array is connected to a neuron at the bot-
tom, which can receive signals form all synapses in the column. Figure
adapted from [Weis, 2018].

The ANNCORE is sped up by a factor of 103 compared to biological time. This
gives the possibility to emulate long-term processes in a shorter time. An hour in
biological time equals to 3.6 s of chiptime. In this thesis all times are given in the
actual chip time, if not specified otherwise.

Tunable voltages and currents which are used in the ANNCORE as parameters
are generated in the capacitive memory (capmem) [Hock et al., 2013]. The capmem
cells are arranged in an array of 34 columns and 24 rows. Every row consists of 8
voltage cells and 16 current cells, which can be configured with an indivdual 10-bit
value called LSB. This led to voltages of 0.2V - 1.8V and to currents of 15 nA -
1000 nA [Aamir et al., 2018b]. Every column belongs to a single neuron, which leaves
two columns for different global currents and voltages.

2.5 Plasticity Processing Unit (PPU)

The Plasticity Processing Unit (PPU) is a general-purpose processor based on Pow-
erPC architecture with a vector unit to process 16 bytes at one time. A thorough
introduction and motivation can be found in [Friedmann et al., 2017]. It can either
be programmed in Assembler- or in C-Code. Its general purpose is to change the
synaptic weights according to complex algorithms (e.g. STDP) by reading out the
Correlation Analog to Digital Converter (CADC). The CADC has two channels for
each synapse column and converts an analog voltage to an 8-bit digital value.

The PPU is also able to read and write SRAM memory on the chip. On this
memory are the different changeable parameters of the chip saved. So it is possible
to read and write these parameters with the PPU, making it possible to use the
PPU calibration algorithms aswell. The main goal of this thesis is to test different
methods to calibrate parameters with the PPU.
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2.6 Neuron implementation

As explained in section 2.2, the differential equations enable an easy implementation
on analog hardware. This is achieved by emulating the neurons membrane using a
capacitor. While on the older prototype HICANN-DLSv2 just the LIF model was
used as neuron model [Aamir et al., 2016], an adaptation circuit and an exponential
circuit were added to the neurons of HICANN-DLSv3 [Aamir et al., 2017]. This
hardware neuron follows the model as explained in section 2.2 very accurately. A
schematic overview can be found in figure 2.2.

Figure 2.2: Schematic of the neuron circuit realized on HICANN-DLSv3. The mem-
brane is connected to the synaptic inputs on the left side, the exponential
circuit, the adaption circuit, the Istim current and to the leakage circuit.
On the right side there is a comparator which realizes the threshold in
the LIF model. Figure adapted from [Aamir et al., 2018a].

The membrane Cmem is a 6-bit tunable capacitor and integrates all input currents.
On the left side are the synaptic inputs sketched. Every pre-synaptic event enables
a 6-bit DAC which is the synaptic weight and it modulates the amplitude of the
pulse event.

The pulses are either processed in the excitatory or inhibitory input. The pulses
are integrated on Csyn and will decay back exponentially because of the adjustable
Rsyn. The voltage Vsyn,exc(t) or Vsyn,inh(t) is compared to Vsyn via an OTA, which
outputs a current proportional to the difference of the compared voltages ∆V . Its
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slope can be adjusted by Ibias which sets the transconductance. To drive positive
currents to the membrane for the excitatory input, while the inhibitory input should
act as a current sink, the polarity of the OTA is changed for the two different inputs.

The membrane is also connected to the leakage circuit. It is modelling the first
term of equation 1 and basically describes a resistor which is connecting the mem-
brane and the leakage voltage Vleak.

Also an exponential circuitry and an adaption circuit are connected to the mem-
brane. These extension are modelling the second and third term of equation 1.
Also an Analog I/O input is added, which provides debug read-outs as well as the
possibility to inject manually a current into the membrane.

On the right side of the sketch is a comparator. The membrane voltage Vmem is
compared to a threshold voltage Vthresh. The comparator outputs a signal if Vmem
reaches Vthresh, resulting in triggering a counter based delay circuit, which is resetting
the membrane potential to Vreset via the leakage circuit for an adjustable time.

This thesis will discuss different methods of calibrating Vsyn, Ibias, Rsyn Vres and
Vthresh (compare figure 2.2) using the PPU.

2.7 Short Term Plasticity implementation

Short Term Plasticity is completely processed in the synapse drivers. The synapse
driver outputs an address for the synapses and the dacen pulse. The charge on the
capacitor on the synaptic line will be proportional to the width of the dacen pulse
as it is the integral of it. Thus higher dacen pulses are causing “stronger” input
spikes. To modulate STP, the width of the dacen pulse is changed according to the
level of depression or faciliation. If STP is disabled the dacen pulse will reach his
maximum duration of 4 ns (with the intended chip clock of 250MHz).

The state of neurotransmitters is stored on a capacitor as voltage VSTP for all
available addresses. But with just one capacitor per address just one parameter can
be stored, while equation 3 and 4 require two parameters to process depression and
faciliation at the same time. Because of this, one have to decide which mode one
wants to use.

The synaptic input w received at the neuron is proportional to the recovered
partition R for depression and proportional to the inactive partition I for faciliation
[Schemmel et al., 2007], what is shown in the following equations:

dI

dt
= − I

τrec
+ USE ·R · δ (t− tAP) (6)

R+ I = 1 (7)

w ∝

{
R for depression
I for faciliation

(8)

As these equations show, faciliation is based on the same equations as depression
but with an inverted role. That is the reason why switching between the two modes
can be done by inverting the dacen pulse. This results in pulses which get shorter
for depression, while they get longer for faciliation.

The STP circuit can be seen in figure 2.3. VSTP is stored on the capacitor Cstorage
and gets updated every time an action potential is forwarded. At every update the
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Figure 2.3: Schematic of the STP circuit. The state of the neurotransmitters is
stored as a charge on Cstorage. The left side updates this charge after
an action potential and the right side is responsible for recovery. Figure
adapted from [Weis, 2018], originally from [Billaudelle, 2017].

charge of Cstorage and Cupdate are shared by closing S1 causing VSTP to change by

VSTP,f = Vcharge +
(
VSTP,i − Vcharge

)
·

Cstorage
Cstorage + Cupdate

. (9)

During this process S2 gets opened while it is normally closed to charge Cupdate for
a next update of VSTP. The ratio of Cstorage and (Cstorage + Cupdate) is the utilization
parameter USE.
VSTP also decays exponentially towards Vrecover with a select-able timing constant

τrec. This is achieved by a pseudo-resistor with a resistance R = (Csample · f)−1,
with f as switching frequency. This allows configuring τrec by changing f . Switches
S3 and S4 are therefor switched continously with the switching frequency.

A comparator is used to convert VSTP into a dacen pulse. This is done by com-
paring a linear voltage ramp with VSTP. An ideal ramp should start at Vcharge and
end at Vrecover after the maximum dacen pulse width. The dacen pulse starts when
the ramp starts rising and will end when the ramp reaches VSTP.

Generating the ramp is sketched in figure 2.4. It starts with precharging the ramp
capacitor to Vprecharge during the first 2 ns, with a global voltage Voffset. During
another 2 ns an offset is added from a tunable capacitor with a resolution of 4 bit.
That is done by charging it with a global voltage Vzero and connecting it to the ramp
capacitor. The added offset to the ramp depends on the selected capacity and the
ramp will be charged to Vcalibration. After this the ramp gets charged for 4 ns with
a constant current Iramp, resulting in a linear rise of the ramp. A detailed overview
of this circuit is given in [Billaudelle, 2017].

Because of manufacturing variations of the chip, it needs to be calibrated. The
4-bit capacitor (called offset parameter) needs to be calibrated to shift the start
value of the ramp to get similar amplitudes for all drivers at similar STP states.
This part of this thesis is based on the work of Johannes Weis [Weis, 2018] and will
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Figure 2.4: Sketch of the voltage ramp which is compared to VSTP to model the
width of the dacen pulse. In the first 2 ns it gets precharged, following
2 ns of adding an individual offset. Then the ramp is generated by a
constant current. Figure adapted from [Weis, 2018].

extend his results including to implement his algorithms to the PPU.
Equation 5 is processed in the neuron as Rsyn (compare to figure 2.2), which will

also be discussed in this thesis.

2.8 Experimental setup

All experiments have been done on a HICANN-DLSv3 setup, which is shown in
figure 2.5. It is basically a baseboard, which provides the necessary voltages and
currents by using Digital-Analog-Converters (DACs) and giving the possibility to
acces pin headers for different analog parameters, e.g. the membrane potential or
the synaptic input line. It connects to USB via the FlySpi-Board which contains
an FPGA and memory to control experiments in realtime. The DLSv3 chip itself
is bonded to a SODIMM module and can be inserted into a socked on the base-
board. A Host-Computer with frickel-dls software installed is necessary to describe
experiments in Python.

For this thesis the system clock is set to 400MHz instead of the intended system
clock of 500MHz because of different bugs reported in [Leibfried, 2018]. As Base-
board “Jack London” was used for this thesis and unless stated otherwise together
with Chip 8: “Green Bamboo” (DLSv3.0).

If in this thesis it is meant that the data was collected via an oscilloscope, it
means that a LeCroy WaveSurfer 44Xs was used together with LeCroy ZS1000
active probes. Active probes are required for readout to maintain high amplitudes,
as most signals are driven off the chip. As sourcemeter a Keithley 2635B SYSTEM
SourceMeter has been used during this thesis.
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Figure 2.5: Photo of the HICANN-DLSv3 setup which was used during this thesis.
The HICANN-DLSv3 chip can be seen on the right and is located below
the black cover. Its module is connected to the baseboard. The FlySpi-
Board is located in the upper part of the picture and is connected to
USB.

2.9 Binary search

Most algorithms in this thesis are based on a binary search. Every parameter which
will be calibrated is a digital value which can be saved as binary number. So setting
every bit in a single run starting from the most significant bit and comparing the
result with the desired result should give the perfect value. An example for a binary
search with a 3 bit parameter is given in figure 2.6.

1 2 3

1 0 0 0 1 0 0 1 1

0 1 0

≙ 4 > 2.5 ≙ 3 > 2.5≙ 2 < 2.5
bit not set bit set

run

bit not set

result: ≙ 2

Figure 2.6: Example of a binary search with 3 bit. The goal value is 2.5, so the bit
of the first run is not set because it is above 2.5. The second bit is set
because now the value is below 2.5. The last bit is not set again.

The example shown in figure 2.6 describes a method to approximate a floating
number to an integer number. But this also works for other obervables, which are
changing according to the binary settings. So by setting each bit one can compare
the observables to the desired one, resulting in a calibrated setting. Of course
the translation function of setting-observable must be monotonic rising or falling,
otherwise this is not working.

But as the example in figure 2.6 shows, there can be some deviations. An value
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of 2.9 would be also assigned to a binary value of 2 with the binary search, while
it is better to have a binary value of 3. This can be fixed by adding an additional
run to the binary search, which raises or lowers the binary value by one according
to the last setting and one tests which setting is better. In the example one would
raise the binary value by one and would see that it is better than the old value.

For big binary numbers this should not be a problem. There can be also some
mismatch in the observable which makes it hard to find the “perfect” value. For
small values however this can make some difference, so for 4 bit values an additional
run is really useful to get better results.

Sometime one wants to have a desired range within the 10-bit value. One reason
can be a lower runtime. This can be done by using an offset and a smaller binary
search. For example if one wants a capmem value of (450± 50) LSB it is possible to
calibrate this range with 7 runs. The algorithm searches within a range of 128LSB
for 7 runs. To get the start of the calibration 64LSB have to be subtracted from
the 450LSB. So the starting value is 386LSB. By doing a 7 run binary search
at maximum 127LSB can be added to this starting value. This results in the the
calibration range of 386LSB to 513LSB. The desired capmem value of 450LSB is
in the middle of this calibration range. This method is often used during this thesis.

A code snippet of the binary search used in this thesis can be found below. In
this case the example with the 7-bit offset to a value of 386LSB is included. The
measured_value is measured with a find_value() function. The output of this
function depends on the capmem_value, which was set with set_capmem_value().
In every run one bit is set and the measured_value is compared to a mean_value.
If the mean is bigger than the measured value, the bit is not set.

1 uint16_t capmem_value = 386 ;
2 uint16_t binary = 64 ; // 64 equa l s to 0b1000000
3
4 for ( uint8_t i =0; i <7; i++) {
5 capmem_value += binary >> i ;
6
7 set_capmem_value ( capmem_value ) ;
8 measured_value = f ind_value ( ) ;
9

10 i f ( measured_value > mean_value ) {
11 capmem_value −= binary >> i ;
12 }
13 }
14 set_capmem_value ( capmem_value ) ;

10



3 Neuron Calibration

There are many analog parameters in the neuron, as explained in section 2.6. To
reduce the mismatch between the different neurons are calibrations necessary. This
could be achieved by learning on the one hand, but also by providing a functional
starting point with a calibration algorithm. The weight of the synapses are limited to
6-bit and should not be wasted for calibration. So developing a calibration algorithm
is important to use the chip.

Different neuron parameters are calibrated within this chapter. The observables
available to the PPU are used to test different calibration approaches. The results
should be a starting point for calibrating the neurons of the HICANN-DLS proto-
types with the PPU. Every algorithm in this chapter is executed on the PPU.

The successor of HICANN-DLSv3 is called HICANN-X. The new system will
contain 512 neurons and an algorithm should be able to calibrate all of them in a
small runtime. Executing the calibration on the PPU has different advantages. It
is located on the chip and once programs are stored on the PPU, it does not need
frequent connection to the host computer making it also more energy efficient. Data
and commands also do not have to be frequently exchanged making it independent
of network delays. HICANN-X was taped-out during this thesis and it is desired to
run experiments on it as fast as possible. The HICANN-DLSv3 is perfect for testing
the calibration possibilities of HICANN-X because it features a very similar neuron
implementation. This should result in a faster availability of calibration algorithms
for HICANN-X.

3.1 Neuron calibration via spike rates

3.1.1 Synaptic input reference voltage (1)

As explained in section 2.6 the synaptic inputs are realized by an OTA, whose output
current is proportional to the differential input voltage. This is the differential
between the voltage of the synaptic line and Vsyn. Vsyn has to match the idle voltage
of the synaptic line very well, otherwise an offset current is flowing onto or off the
membrane. Vsyn is provided by a capmem cell for each neuron twice, as excitatory
and inhibitory inputs need a separate reference voltage. It is designed to have an
idle voltage on the synaptic line of 1.2V, which can vary due to variations caused
by manufacturing or due to different temperatures. So the capmem value has to be
calibrated that in the idle state the current onto or off the membrane is minimized.

If not specified otherwise the calibration methods presented in this thesis are
applicable to both synaptic input circuits. That is because the only difference is
the polarity of the OTA, as explained in section 2.6. So the only difference in
the algorithms should be a sign. The methods are all tested for the excitatory
input because this input will be important for the calibration of STP, which will be
explained in section 4.1.

A first attempt to write an algorithm which calibrates the 10-bit value of the
capmem cell providing Vsyn is based on a manual search, which was done by [Weis,
2018]. The basic idea is to disable all possible inputs to the membrane besides the
excitatory synaptic input. With an enabled spike comparator, a too low value for
Vsyn should result in a low membrane potential, while a too high value should result
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in regular spiking, while the amount of spikes is higher with an higher Vsyn value.
The membrane potential for different settings of Vsyn is shown in figure 3.1. At
the beginning Vsyn is below the voltage on the synaptic line causing a current off
the membrane. The membrane stays at a voltage of 200mV. With a higher Vsyn
a current onto the membrane is flowing, starting from 0.2ms resulting in firing.
Around 0.6ms Vsyn was increased again and more spikes in the same time window
can be seen. Membrane potential recorded from neuron 12 on chip 8. The following
algorithms should find the capmem value of Vsyn where the spiking starts.
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Figure 3.1: Membrane potential for different settings of Vsyn. Vsyn is set to 600LSB
at the beginning, 660LSB from 0.2ms to 0.6ms and at the end to
700LSB.

To register spikes every neuron has an individual 8-bit spike counter [Kiene, 2017]
which can be read out and reset with the PPU. Waiting a certain amount of time and
reading out the spike counter is therefore a possible observable for this calibration
method.

To get an idea how the settings of Vsyn are depending on the spike rate a plot is
made, see figure 3.2. It shows the spike rate of all neurons depending on different
settings of Vsyn. Neuron 2 was removed from the plot because of a defect spike
counter [Johannes Weis, 2018, personal communication]. It is falsely counting some
spikes several times. Plots which contain the spikes of this neuron can be found in
section 3.2.4.

Strictly speaking, the given values are not rates, because they are not divided by
time. But as the PPU does not allow floating point operations, all spike rates in
this thesis will be given in a total amount of spikes in a certain time window. In
figure 3.2 this time window is 5ms.

As shown in figure 3.2, the neurons start spiking for different settings of Vsyn. The
point where it starts spiking is the perfect value for Vsyn, because it represents the
zero-crossing of the OTA, where it is switching from a current off the membrane to
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a current onto the membrane.
The overflow of the 8-bit spike counter can also be observed. So if 256 spikes

occured during this timing window, one will readout zero spikes and for more spikes
just the modulo of 256.
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Figure 3.2: Different settings of Vsyn with the resulting spike rate. Just the excitatory
input is enabled.
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Figure 3.3: Different settings of Vsyn with the resulting spike rate. Just the excitatory
input is enabled and the reset time is increased.

This can be fixed by minimizing the timing window or raising the refractory times.
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In figure 3.3 the same plot is shown with an increased refractory time. Now the
overflow of the spike counters is prevented and the spike rate depends monotonically
on the Vsyn settings, which makes a binary search possible. A similar plot can be
generated by measuring only a time window of 2ms.

The algorithm is split into two parts: a rough, fast search for the capmem setting
of Vsyn, followed by a slower fine adjusting algorithm.

The rough and fast algorithm is based on a binary search, which takes 10 runs
because of the 10-bit capmem value. Each run is setting one bit starting from the
most significant bit and ending with the least significant bit. After resetting the
spike counter of each neuron one waits 2ms for spikes and counts all spikes in this
time window. This time window was chosen to prevent an overflow of the counters.
One will set the bit of the according run if 5 or less spikes are counted. Otherwise
the bit will not be set. This algorithm is fast and takes approximately 50ms in
total. But it is not perfectly accurate and with its settings the neurons are regularly
spiking, if one is looking at the membrane potential on the oscilloscope. On average
the capmem value is 3LSB too high. That is because for these settings the current
onto the the membrane is too small, so the neurons do not reach the five spikes in
this time window. However there is still an offset current onto the membrane. So
the fine adjusting algorithm has to minimize the offset current by taking the values
of the rough algorithm and shift the settings of Vsyn.

The fine adjust algorithm takes the value from the rough algorithm reduced by
3LSB. It counts spikes in a certain time window of 1 s. If 6 or more spikes are
counted the capmem value will be reduced by 1LSB and the neuron is marked as
spiked. If 1 to 5 spikes are counted the neuron is marked as calibrated and it will
not be changed anymore. If zero spikes are counted two things are possible. If the
neuron is not marked as spiked it could be that Vsyn is lower than the synaptic line
voltage and therefore a current off the membrane occurs, which can not be detected
with this approach. In this case 1LSB is added to the capmem value. But if the
neuron was marked as spiked one has found a well calibrated state of Vsyn, because
with one LSB more the neuron will spike. In this case the neuron is also marked
as calibrated. The whole algorithm will end after 5 runs to set a stopping point.
This algorithm takes around 5.1 s runtime.

By using both algorithms together, Vsyn can be calibrated in under 6 s. It is
important to note that this time is dominated by the PPU waiting for spikes. The
computational time is small compared to this waiting time and it is possible to wait
for all neurons at one time and compute the observables at once. That is the reason
why the runtime should not change significantly on HICANN-X. The values which
are found with a manual guess in [Weis, 2018] and the values from the algorithm are
except for 3LSB the same which proofs the functionality of this algorithm. Further
investigation was done in section 3.1.5 and section 3.2.8 to quantify the calibration
results.

3.1.2 Synaptic input current (1)

A second important parameter to calibrate the OTA is Ibias, which sets the transcon-
ductance gm (Ibias) of the OTA. The charge onto the membrane however is pro-
portional to two different parameters: gm (Ibias) and τsyn (Rsyn) as shown in the
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following. The output of the OTA can be determined by

Isyn,out (t) = gm ·∆V (t) . (10)

By sending one spike to the synaptic line, the voltage on the synaptic line will be
an exponential decaying curve, with a decay time of τsyn. With an calibrated Vsyn

∆V (t) ∝ exp
(
− t

τsyn

)
, (11)

while the amplitude depends in this case on the synaptic weights and the STP state.
The charge Qsyn,out onto the membrane for one spike is given by

Qsyn,out =

∫ ∞

0
Isyn,out (t) dt ∝ gm ·

∫ ∞

0
exp

(
− t

τsyn

)
dt = gm · τsyn. (12)

tAP τsyn

Figure 3.4: An incoming action potential is decaying back to the ground potential
with τsyn. On hardware the charge Qsyn,out onto the membran is the
integral.

Figure 3.4 shows the charge Qsyn,out as integral. On hardware this is mirrored
and the decay is a limited growth to 1.2V.

The spike rate is related to the charge, which is proportional to gm and τsyn. So
it is not possible to calibrate gm and τsyn by sending in spikes with the synapse
drivers and counting the spikes of the neuron. One have to find an algorithm which
is independent from one of these parameters to do this.

However, for calibrating the STP circuitry it is just important that the spike
rate is the same for every neuron with the same input, compare to section 4.1. So
it is possible as done in [Weis, 2018] to calibrate just the settings of Ibias, while
the settings of Rsyn are fixed for all neurons. This algorithm should find settings
for Ibias that the spike rate is equal for all neurons, so the spread of the different
neuron parameters is calibrated with Ibias. This algorithm will be discussed first. In
section 3.1.4, another algorithm will be presented to calibrate Ibias independent of
Rsyn.

The algorithm is also based on a binary search with 7 runs. A 7-bit offset is added
to the capmem value of 61LSB to get a range from 61LSB to 188LSB. These values
were chosen, because the used settings range of [Weis, 2018] was 90LSB to 160LSB
on chip 8. Because this algorithm should run on all different chips a bigger offset
value was chosen. A 6-bit offset would just allow a range of 63LSB to 157LSB. In
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both cases a setting of 125LSB is in the middle of both ranges.
For this algorithm spikes are send in from synapse driver 0 to all neurons. A

total of 5 bursts consisting of 300 spikes each are used to gain a certain amount of
statistics, numbers from the STP calibration of [Weis, 2018]. A spike is sent every
10µs with a pause between the bursts of 500 µs. Before every burst the neuron
counter is reset and read out afterwards. First of all, the mean of the spike rate of
all neurons is determined to get a target value. As explained above the binary search
starts by setting the individual bits starting with the most significant bit. The bit
will be set if the mean rate is bigger than the measured rate from the individual
neuron.

This calibration just can be used for the excitatory synaptic. It is not possible
to calibrate the inhibitory synaptic input with this algorithm because it will take
charge off the membrane instead of loading it. However, for calibrating STP just
the excitatory input is necessary. That is the reason why this calibration should
allow for STP calibration, compare to section 4.1. To quantify the results of this
calibration, compare to section 3.1.3.

3.1.3 Suitable neuron configuration for STP calibration

To get a neuron configuration which is suitable for the STP calibration Vsyn and
Ibias have to be calibrated. The calibration of Vsyn should be independent from other
neuron parameters and will be the first algorithm to be executed. The calibration of
Ibias depends on the calibration of Vsyn, because otherwise there would be a current
onto or off the membrane which would lead into a higher/lower spike rate.

The complete calibration starts with the rough algorithm to calibrate Vsyn, fol-
lowed by the fine adjusting algorithm. Then Ibias is calibrated. Because the operat-
ing point of the OTA is shifted by changing Ibias, another complete search of Vsyn is
done, followed by another calibration of Ibias. This complete calibration takes less
than 12 s.

To check the calibrated values, a function which measures the spike rates of the
neurons is used. This function uses another synapse driver to cross check the cal-
ibration. It uses synapse driver 1. To get a high resolution of the distribution,
the function sends a total of 30 burst, each with 300 spikes. The pause between
the bursts is 500 µs while a spike is sent every 10 µs. The function adds all spike
numbers after a burst of a neuron. This number is called spike rate in this case.

The progress of the different calibration steps can be seen in figure 3.5. Each
histogram is showing the spike rate distribution of all neurons for a certain state.
Starting with figure 3.5a, which is the uncalibrated state, one can see a vast distri-
bution of the spike rates ranging from zero spikes up to 6000 spikes. Every capmem
value is the same for all neurons, showing that manufacturing variances have a big
influence.

By calibrating Vsyn roughly, the spike rates look more calibrated but they are not
perfect at all as figure 3.5b shows. 22 neurons lie within an area of 1500LBS. Also
the fine adjusting algorithm for Vsyn does not give a better result (figure 3.5c). But
it is expected that the spike rates are randomly distributed, because the charge onto
the membrane for a spike is not calibrated. Just currents onto or off the membrane
with no spikes are minimized.
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(b) After the rough Vsyn calibration
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(c) After the fine adjust calibration of Vsyn
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(d) After calibration of Ibias
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(e) Vsyn calibrated again with the rough and
the fine adjusting algorithm
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(f) Result of the complete algorithm

Figure 3.5: Each histogram is showing the distribution of spike rates of all neurons,
starting with the uncalibrated state and ending with the calibrated one
it is showing the progress of the different calibration steps.

Figure 3.5d is showing the distribution after the calibration of Ibias. As one can
see 21 neurons lie within three bins around a spike rate of 2000. Compared to the
uncalibrated state there are now neurons with a similar spike rate, which should
make the calibration of STP possible, compare to section 4.1.

To set the working point of the OTA one has to calibrate Vsyn again. By using
both alogrithms for Vsyn again (figure 3.5e), followed by another calibration of Ibias
one gets the final result of the complete calibration showed in figure 3.5f. With
this calibration 23 neurons lie within two bins, which is a satisfying result showing
that the calibration for spike rates is working for some neurons. But there are 9
neurons left which could not be used for STP calibration. This problem is also
shown in [Weis, 2018], where out of 16 neurons, 5 were not used for calibrating STP
for various reasons. A reason why this calibration is not working for all neurons will
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be discussed in section 3.1.5.
Before closing this section, the spread of the spike rates depicted in the histograms

shall be expressed by numbers. The standard deviation for the uncalibrated state is
1679 spikes with a mean of 3051 spikes. The relative deviation does not change for
figure 3.5b and 3.5c. The deviations are 1197/1198 spikes with a mean of 2141/2147
spikes. By calibrating Ibias the deviation is lowered to 678 spikes with a mean of
1666 spikes. The relative deviation is higher for figure 3.5e with a deviation of 675
spikes and a mean of 1448 spikes. This result improved again for figure 3.5f with a
standard deviation of 591 spikes and a mean of 1337 spikes. The relative deviation
is the lowest for figure 3.5d, but this includes all neurons. By using the 21 neurons
around a spike rate of 2000 and determining the deviation of these neurons one gets
a standard deviation of 77 spikes with a mean of 1871 spikes, a relative deviation of
4.1%. This can be improved for figure 3.5f, the 23 neurons around a spike rate of
1600 are having a standard deviation of 28 spikes with a mean of 1559 spikes. This
is a relative deviation of 1.8%. The lower deviation and more neruons which are
useable justifies the second run of the Ibias calibration.

3.1.4 Synaptic input current (2)

To calibrate Ibias properly for all neurons one has to disable the influence of Rsyn.
So sending in spikes from the synapse drivers as done before is not a possibility
to calibrate this parameter. By setting the synaptic input line to a chosen voltage
would cause the OTA to output a constant current and would disable the influence
of Rsyn. With synaptic input line the line connected to Rsyn and Csyn in figure 2.2
is meant. Of course Vsyn also has to be calibrated, otherwise the current onto the
membrane would be shifted. Fortunately the synaptic input line can be connected
to a pin on the baseboard. So it is possible to connect a DAC to the synaptic input
to force the line onto a certain voltage.

By disabling the leak term and just connecting the excitatory input to the mem-
brane, the spike rate should be related to the constant current onto the membrane.
By reading the amount of spikes in a certain time window should allow for calibrating
on a desired spike rate.

The synaptic input line has to be below a voltage of 1.2V for the excitatory input,
to get a current onto the membrane for a calibrated Vsyn. This algorithm should also
work for the inhibitory input, but the voltage at the synaptic line must be above
1.2V, otherwise there would be a current off the membrane. In the following just
the excitatory input will be calibrated to test the method.

The algorithm is based on a binary search with 9 runs as a 9-bit offset is added to
the capmem value of 511LSB to get a range from 511LSB to 1022LSB. According to
common theories it is desired to keep this value high [Sebastian Billaudelle, 2018, per-
sonal communication], so this range was chosen.

The OTA should be linear for ∆V = 200mV [Aamir et al., 2018b] before satura-
tion. It is desired to stay in the linear range of the OTA to get an output current
proportional to the gm value. That is the reason why a DAC on the baseboard is
used by the algorithm to set the synaptic line onto 1.15V.

For every neuron the spike counter is reset and read out after 3ms. This time
windows was chosen after some investigation on the oscilloscope. To gain some
statistics it is better to have a big time window. The counter however just has 8 bit,
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so with the highest value of Ibias no neuron should reach the 255 spikes in the time
window. This is the case for 3ms and 1.15V. For different voltages at the synaptic
input also another time window have to be chosen.

In every run the individual spikes are compared to a mean rate. If there were
more spikes as the mean, the bit of the run is not set. For this calibration a mean
rate of 166 spikes was chosen. That is because the gm value can be different for
different models and experiments. There is not the “one and only” calibration as it
is for Vsyn.

The PPU however is not able to measure the value directly, so it is not possible
to give the value and calibrate to it. On the other hand, the PPU is able to find
the relative differences of the observables. These deviations can be minimized by
algorithms to calibrate the parameters. To get a desired value for all neurons it would
be possible to choose one neuron and select the parameters as desired. Then an
algorithm could minimize the relative difference between the chosen neuron and all
other different neurons. After such a calibration the deviations should be minimized
an all neurons should have equal values.

The algorithm is extended with the fine adjusting algorithm of Vsyn in every run
to set the operating point of the OTA for the different values of Ibias. It works as
described above but it does not take the former values reduces by 3LSB to get a
correction range of ±5LSB for every run, which should be enough to correct the
operating point.

3.1.5 Calibration of the synaptic input (1)

Now the OTAs at the excitatory synaptic input of all neurons will be calibrated.
With a rough search of Vsyn at the beginning and the search for Ibias with fine ad-
justing Vsyn in every run the whole calibration takes around a minute. The problem
is the fine adjusting algorithm of Vsyn, which takes around 5 s and is executed ten
times during the whole calibration, taking the most time. Another approach to
calibrate this parameter faster is done later in section 3.2.2.

To check this calibration of the OTA the sourcemeter can be used. The membrane
is clamped to the sourcemeter and 0.8V are applied. By varying the voltage on the
synaptic input line between 0.9V and 1.4V the current of the OTA can be measured
to get the operating characteristics of every single OTA of the neurons. For every
OTA 50 single measurements are taken.

In figure 3.6 the different operating characteristics of all 32 excitatory OTAs in
an uncalibrated state are plotted. It is clearly visible that the Vsyn value is not
calibrated, because of the wide distribution around 1.2V. Calibrated curves should
cross the x-axis at 1.2V, because the idle synaptic input line voltage should be 1.2V,
which have to equal to Vsyn for a calibrated OTA. In this case Vsyn is set to 650LSB
and Ibias to 750LSB for all neurons.

Due to supply drop the voltage at the synaptic input can be lower than the actual
1.2V [Aamir et al., 2018b]. So making histograms of the distribution at 1.2V will
not deliver the true distribution of Vsyn. Further investigations in section 3.2.8 are
showing that this supply drop is about 20mV. Histograms of the distribution at
1.18V can be also found there.

By calibrating Vsyn with the rough and fine adjusting algorithm this is better,
as shown in figure 3.7. Most curves cross the x-axis in a similar point. Around
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Figure 3.6: Operating characteristics of all 32 excitatory OTAs in the uncalibrated
state. Every OTA has a individual color and linestyle.
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Figure 3.7: Operating characteristics of all 32 excitatory OTAs with spike rate cali-
bration of Vsyn. Every OTA has a individual color and linestyle.

five OTAs however show a different behavior, crossing the x-axis in a completely
different point or do not even cross it. This indicates a wrong calibrated value of
Vsyn, because the crossing of the x-axis marks the value.

By manually adjusting the neurons it was possible to set the “right” Vsyn value.
Further investigation showed that some neurons start spiking at different values of
Vsyn, depending from which side one is changing the value. For example if one is
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Figure 3.8: Operating characteristics of all 32 excitatory OTAs with spike rate cali-
bration of Vsyn and Ibias. Every OTA has a individual color and linestyle.

starting from 1000LSB and going down until the neuron stops spiking one is reaching
550LSB. But if one is starting from 0LSB and going up until it is spiking one is
reaching 650LSB. This hysteresis problem is causing the algorithm to find wrong
values for neurons which have this problem. But the algorithm proves its theoretical
functionality for most neurons on the chip. It must be investigated on HICANN-X
if this hysteresis is still there for some neurons. This problems led to a CADC based
calibration of Vsyn presented in section 3.2.1.

This investigation can also explain the histogram in figure 3.5f. Some neurons
could not be calibrated to have a similar spike rate. Neurons with a spike rate of
zero have a low value of Vsyn, taking current off the membrane. Incoming spikes
do not have an effect and the neuron is never spiking. Also high spike rates can be
explained with too high values of Vsyn, because a constant current is added to the
incoming spikes onto the membrane causing a high spike rate.

In figure 3.8 the operating characteristics after a complete calibration of the OTAs
is shown. Compared to figure 3.7 most curves are crossing the x-axis in a similar
point. But there are again some neurons with a wrong calibrated Vsyn. But the
result is not convincingly because the curves are still spread somehow. One reason
for the spread of Ibias will be discussed in section 3.2.2.

It is also possible to get the gm value by determining the slope of each trace.
According histograms are shown in figure 3.9. Figure 3.9a shows the distribution
for an uncalibrated Ibias. The standard deviation is 1.03µA/V with a mean of
4.93 µA/V. By calibrating Ibias with spike rates one gets a distribution shown in
figure 3.9b. The standard deviation is 1.55µA/V with a mean of 6.27 µA/V.

It can be concluded that it is no feasible to use spike rates to calibrate all neurons.
A majority however can be calibrated in Vsyn. But one wants to use all neurons on
the chip and not a part of them. That is the reason why other methods are tested
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(a) gm distribution for uncalibrated Ibias
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(b) gm distribution for the spike rate cali-
bration of Ibias

Figure 3.9: Comparison of the gm values for figure 3.6 and figure 3.8.

to calibrate the OTAs of the neuron input, see section 3.2.

3.2 Neuron calibration via CADC

3.2.1 Synaptic input reference voltage (2)

All calibrations presented in section 3.1 were done with the leak term disabled,
allowing for spike rate calibration. Perturbations on the membrane were a problem,
because with a calibrated Vsyn, the membrane potential is fluctuating. Enabling the
leak term should stabilize the membrane potential, because the leak is realized with
an OTA in unity gain feedback (see figure 2.2). This is modelling the conductance
gl from equation 1.

As explained in section 2.5 the PPU is able to read out the CADC, whose channels
can be connected to each membrane potential. First of all the CADC must be cali-
brated with a reference voltage, which was done in [Weis, 2018] and the calibration
is used in the following. It is based on connecting a known reference voltage from
one of the DACs to the CADC and calibrating every channel by doing a linear fit
for different voltages.
Vsyn can be calibrated with an enabled leak and the CADC. By disabling all inputs

besides the leak term, the membrane potential will be at Vleak plus an offset of the
leak OTA and there will be no leakage current Ileak. So the potential difference at gl
is zero. By enabling one of the synaptic inputs, a current onto or off the membrane
starts flowing for a wrong calibrated Vsyn. This results in a higher/lower membrane
potential, because the leakage current Ileak is not zero anymore resulting in a po-
tential difference at gl. By calibrating Vsyn the current onto or off the membrane
should be reduced. Perfectly calibrated the membrane potential should be at Vleak.
So calibrating to the former membrane potential without synaptic input is another
possibility to calibrate Vsyn. The potentials can be read out with the CADC.

Such a method was already developed by Yannik Stradmann [Yannik Strad-
mann, 2018, personal communication]. But his method did not calibrate the last
three bits. So just steps of 8LSB are possible to calibrate with this algorithm. That
is too inaccurate to use this as calibration, so a new algorithm was developed.

The algorithm is based on a binary search with 7 runs. It is calibrating a 7-bit
offset to a value of 586LSB leading to a range of 586LSB up to 713LSB. Former
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research showed that this range should work for all neurons. Again just the excita-
tory input will be calibrated, but the algorithm should work perfectly fine also with
the inhibitory input without changes.

First of all the leak gets enabled and all other inputs disabled. Vleak is set to
330LSB and the gm value for the leak OTA is set to 1000LSB. Also spiking is
disabled to prevent spiking for high settings of Vsyn causing wrong results. All
membrane voltages are read out with the CADC and get saved. After this the
excitatory input is enabled and the binary search starts. In every run the value of
Vsyn is changed and one is waiting 10ms for the membrane to recover. The CADC
value of the current membrane potential is compared to the saved one. If this value
is higher than the saved one it indicates a current onto the membrane is flowing and
the bit is not set.
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Figure 3.10: Progress of the calibration of Vsyn with the CADC. The membrane po-
tential changes according to the selected capmem value and is adjusted
to fit to the voltage at the beginning of the trace.

In figure 3.10 the progress of the calibration is shown for neuron 14. The mem-
brane potential during the calibration of Vsyn with the CADC is recorded with the
FlySpi-Board. Starting with Vleak at 0ms, the voltage drops after 25ms because the
excitatory input is enabled. The former setting of Vsyn was 586LSB. At 50ms the
first significant bit is set to a total value of 650LSB causing the membrane potential
to rise above the first value. Thats why this bit is not set. At 65ms the potential
drops because just the second bit is set to a total value of 618LSB. Because now
the membrane is lower the bit get set and the voltage is rising again at 80ms. So
the membrane potential is rising and falling according to Vsyn and at the end it is
on the same level as at the beginning. The potentials are not changing every 10ms
because the PPU have to readout the CADC and set the capmem values which is
extra time. The runtime of the complete algorithm is around 250ms.
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3.2.2 Calibration of the synaptic input (2)

To calibrate the whole OTA one can use the algorithm explained in section 3.1.5 by
replacing the spike rate based algorithm of Vsyn with the CADC based algorithm
and compare the results.

One big advantage is the better runtime of 5 s for the whole calibration. The
operating characteristics are shown in figure 3.11. Compared to figure 3.8 the result
is also better, because Vsyn was calibrated for all neurons successfully. By using the
fine adjusting spike rate algorithm for Vsyn at the end of the complete calibration
the result can be improved, compare to figure 3.12. The runtime however is 10 s
now.
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Figure 3.11: Operating characteristics of all 32 excitatory OTAs with CADC cali-
bration of Vsyn and spike rate based calibration of Ibias. Every OTA
has a individual color and linestyle.

But figure 3.12 also shows some deviation in Ibias, as discussed in section 3.1.5.
One reason for this is the deviation of Vthresh and Vres, which is sketched in figure 3.13.
In two plots a model of the membrane potential during the calibration of Ibias is
sketched. Because of the constant current onto the membrane its voltage is rising
linearly resulting in regular spiking by reaching Vthresh and getting reset to Vres. In
figure 3.13a the difference ∆V = Vthresh − Vres is smaller than in figure 3.13b. With
the same Ibias one gets different spike rates in the same time windows, resulting in
a calibration, which depends also on ∆V .

Figure 3.21a shows the distribution of the gm compared to distribution with a
calibrated ∆V . The standard deviation is 0.87 µA/V with a mean of 6.16µA/V.
The result improved compared to figure 3.9b.

Quantitatively one can write this in a formula. The charge Q on a capacitor can
be calculated with its capacity C and the voltage U with Q = C ·U . By deriving it
in time one gets the current I onto the capacitor as function of U̇ with I = C · U̇ .
Let t be the time for a complete flank, starting at Vres and ending at Vthresh. Now
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Figure 3.12: Operating characteristics of all 32 excitatory OTAs with CADC cali-
bration of Vsyn, spike rate based calibration of Ibias and fine adjusting
spike rate algorithm for Vsyn at the end. Every OTA has a individual
color and linestyle.

Vres

Vthresh

(a) Small ∆V resulting in a higher spike
rate compared to a bigger ∆V .

Vres

Vthresh

(b) Higher ∆V resulting in a lower spike
rate compared to a lower ∆V .

Figure 3.13: Model of the membrane potential in a certain time window during the
Ibias calibration. Because of the constant current on the membrane the
voltage is rising linearly to Vthresh resulting in spiking and getting reset
to Vres. The different plots show different values for Vthresh.

the voltage change can be calculated:

U̇ =
∆V

t
=

I

C
. (13)

The spike rate s is now proportional to 1/t and with equation 13 it is

s ∝ 1

t
=

I

∆V · C
. (14)
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Let s1 and s2 be the Ibias calibrated spike rates of two different neurons. Because
they are calibrated they should be equal. The membrane capacities should be equal
by design, this results in

∆V1

∆V2
=

I1
I2

(15)

showing that the mismatch of Ibias after the calibration is related to the mismatch
of the difference of Vthresh and Vres.
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(a) Distribution of the difference of Vthresh
and Vres for an uncalibrated state.
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(b) Distribution of the current Iout onto the

membrane with the synaptic input set
to 1.15V.
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(c) Scatter plot for ∆V and the according Iout for all neurons.

Figure 3.14: Distributions of ∆V and Iout.

That is the reason why ∆V was investigated to find out if the mismatch of it
causes such variations. This was done by recording the membrane potential with
the FlySpi. To get Vthresh and Vres, 1.15V were applied to the synaptic input to
make the neurons spike. The curves look like the models in figure 3.13. By reading
out the maximum and the minimum of each trace one can get the threshold and
reset potential for every neuron. ∆V can be calculated for every neuron and the
distribution is shown in figure 3.14a.
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The current Iout onto the membrane can be determined by reading the current
at 1.15V from figure 3.12 for each neuron. The distribution of Iout is shown in
figure 3.14b.

Direct comparison of both plots show a vastly distribution. In figure 3.14c ∆V
is compared to Iout for every neuron to investigate the correlation of the two pa-
rameters. The four points in the lower part of the right are the four curves from
figure 3.12 which have a lower linear slope. Reasons for that can be found in sec-
tion 3.2.5. The correlation factor ρ for the remaining neurons is ρ = 0.22. ∆V
and Iout are just weakly correlated. According to equation 15 they should be cor-
related. The equation however is based on different assumptions, for example the
reset time of the membrane potential was neglected. Nevertheless Vres and Vthresh
are calibrated in the following and it is tested again if the calibration of Ibias can be
improved with a calibrated ∆V .

3.2.3 Reset potential

To calibrate Vres with the PPU it is not possible to record the trace of the membrane
potential with the CADC and find its minimum points as it is done above with the
FlySpi and the host computer during regular spiking. That is because the PPU has
not the computational power and memory to do this. Also reading out the CADC
is way to slow to record this trace.

But it is possible to trigger a reset manually and also the reset time can be
increased. With this method the membrane potential is set to Vres and can be
read out with the CADC. So calibrating to a given CADC value could calibrate the
according capmem values.

In figure 3.15 the CADC measured Vres is compared to the according capmem
value. The 8-bit CADC value was converted to the according calibrated voltage.
The reset time is increased and all neurons are forced to the reset value and the
CADC reads out the membrane potential.

Starting from 200LSB all curves show a linear behavior, while they seem to be
saturated for values below 100LSB. This plot shows that a calibration of Vres above
0.4V is possible with a maximal difference of 80LSB for the capmem values.

The calibration algorithm uses the function described above to readout the mem-
brane voltage with the CADC for a forced reset.

A 6-bit offset would just allow a range of 64LSB, which is to small to calibrate all
neurons to the same Vres as figure 3.15 shows. That is the reason why the algorithm
is based on a binary search with 7 runs to add a 7-bit offset to a value of 86LSB.
This results in a calibration range from 86LSB to 213LSB. It is desired to get
capmem values around a value of 150LSB.

The CADC can be calibrated differently, so the values of different CADC readouts
can not be compared if the CADC was calibrated between these readout. As the
calibration depends on CADC values, a fixed calibration value as done with the Ibias
calibration was not chosen. Instead the mean of all CADC values for a setting of
150LSB is taken. In every run the Vres potential is determined and compared to
this mean value. If the actual value is bigger than the mean, the bit is not set.

To compare the uncalibrated with the calibrated state the same measurement
technique as used to find ∆V was used by using the FlySpi and evaluate the data
on the host computer. The comparison is shown in figure 3.16.
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Figure 3.15: The capmem settings of Vres are plottet against the measured voltage
of Vres.
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(a) Uncalibrated Vres.

0.35 0.40 0.45 0.50

Vres [V]

0

10

20

N
um

be
r

of
N

eu
ro

ns

(b) Calibrated Vres.

Figure 3.16: Both histograms showing the distribution of Vres, measured by the Fly-
Spi and evaluated with the host computer.

As figure 3.16b shows, the calibration works fine as all values of Vres lie within
three bins. This is a big improvement compared to the uncalibrated distribution
shown in figure 3.16a. The uncalibrated Vres has a standard deviation of 35.5mV
with a mean of 439.3mV. Calibrated the standard deviation is lower by an order
of magnitude, it is 3.6mV with a mean of 425.9mV. The relative deviation can be
lowered from 8.1% to 0.9%. The runtime is also below 1 s and should not change
for HICANN-X significantly.

3.2.4 Threshold potential

The calibration of Vthresh ca not be done by reading the whole trace and finding the
maximum by applying 1.15V to the synaptic input for the same reason discussed
in the context of the Vres calibration. So a new method has to be developed to find
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the threshold with the PPU.
One possible method is using the leak to calibrate the threshold. By just con-

necting the leak term to the membrane, the potential of the membrane is Vleak plus
an offset of the leak OTA. So by raising the capmem value until it is spiking will
indicate that Vleak reached Vthresh and is above it. This can be seen in figure 3.17.
The spike rate is measured over a time of 500 µs. For all neurons Vthresh is set to
450LSB and the gm value for the leak OTA is set to 1000LSB.
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Figure 3.17: Different settings of Vleak with the corresponding spike rate. Spiking is
enabled for the neurons, but all other membrane inputs are disabled.

One can see that the neurons start spiking at a certain value for Vleak. The spike
rate goes fast up to a range of 60 - 90 spikes in the selected time window and stays
at the same level for higher values. Just one neuron is irregular spiking, compare
to figure 3.17. It is again neuron 2 which is reported to count some spikes several
times, as already mentioned in section 3.1.1. But it also starts spiking at a certain
Vleak, so this should not be a problem for this calibration.

The idea of the algorithm is to raise the leak to it is maximal value that no spiking
occurs. So Vleak is a little bit smaller than Vthresh. By reading out the membrane
potential with the CADC on can readout a good approximation of Vthresh for all
neurons. The value is a little bit shifted downwards for all neurons, so this should
not be a problem. By calibrating to a given CADC value the capmem values of
Vthresh can be calibrated.

The search for the settings of Vleak is done with a binary search. As figure 3.17
shows, a 7-bit search is necessary to get the whole range. The start depends on
Vthresh, because the curve in figure 3.17 will be shifted to the right for a higher
Vthresh. Because the mean of Vthresh should be 450LSB in this case, a 7-bit offset is
added to a Vleak value 386LSB to get the whole range. This results in a calibration
range of 386LSB to 513LSB. The spike counters are read out within a time window
of 5ms. If at least one spike is detected the bit is not set. The high waiting should

29



make sure that no spiking occurs, which would led to wrong results by reading it
out with the CADC.

In figure 3.18 the CADC measured Vthresh is compared to the according capmem
value. The 8-bit CADC value was converted to the according calibrated voltage.
The CADC was read out after the algorithm described above was executed. Steps
of 50LSB for Vthresh were recorded.
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Figure 3.18: The capmem settings of Vthresh are plottet against the measured voltage
of Vthresh, determined by the algorithm describes above.

Most curves in the whole interval are showing a linear behavior saturating at
500LSB. So calibrating these around 450LSB should not be a problem. A higher
Vthresh however is not possible with this CADC calibration. This has to be changed
to get the linearity for higher voltages, compare to [Weis, 2018]. But there are also
some outlier which differ from the linear behavior for one measurement point. That
is because spiking can occur even if it does not spike during the earlier 5ms. Vleak
is too close to Vthresh that small influences result in spiking. This can be fixed by
subtracting 5LSB at the end from Vleak to be sure the neuron is not spiking.

The main algorithm uses the algorithm described above in each run to find Vthresh.
The main algorithm is based on a binary search with 7 runs adding an offset to a
value of 386LSB. This results in a range of 386LSB to 513LSB to calibrate Vthresh.
As done in the calibration for Vres, a mean value of the CADC is determined for a
capmem setting of 450LSB to be independent of the CADC calibration. In every
run the Vleak value close before spiking is determined by the algorithm described
above and reduced by 5LSB. This does not make a difference for the calibration
because all values are corrected and Vleak is linearly connected to its capmem settings
below 450LSB, compare to figure 3.32. The bit is not set if the current membrane
potential is above the mean membrane potential. The complete calibration of Vthresh
can be done in under 1 s and should not change for HICANN-X.

To compare the uncalibrated with the calibrated state the FlySpi was used to find
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the value of Vthresh. Both histograms are shown in figure 3.19.
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(a) Uncalibrated Vthresh.
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(b) Calibrated Vthresh.

Figure 3.19: Both histograms showing the distribution of Vthresh, measured by the
FlySpi and evaluated with the host computer.

Figure 3.19b shows the functionality of the whole algorithm because all values lie
within two bins. The standard deviation is 3.9mV at a mean of 894.8mV. The
distribution of the uncalibrated values is shown in figure 3.19a and the standard
deviation is 33.6mV with a mean of 817.3mV. Compared to the calibration of Vres
in section 3.2.3, the standard deviations of the uncalibrated and calibrated voltages
are the same. But because of the higher mean the relative deviation is 4.1% for the
uncalibrated Vthresh and 0.4% for the calibrated one.

3.2.5 Calibration of the synaptic input (3)

With the calibrated Vres and Vthresh also ∆V should be calibrated better. So the
whole spike rate based calibration of Ibias was redone to check the results from sec-
tion 3.2.2. Again during the calibration of Ibias the settings for Vsyn were calibrated
with the CADC algorithm to set the working point and at the end the fine adjusting
algorithm was used. The calibration results are shown in figure 3.20.

Compared to figure 3.12 the operating characteristics still have some deviation
but the whole result improved, showing that ∆V was playing a role in calibrating
Ibias with spike rates. This is also shown in figure 3.21 for their gm values. With-
out calibrated ∆V (figure 3.21a) the relative deviation is 14.1% with a mean of
6.16 µA/V. With a calibrated ∆V the standard deviation is 0.61 µA/V with a mean
of 6.28 µA/V. The relative deviation is 9.6%. But for both values the outliers with
a smaller gm value are causing these high standard deviations.

These outliers are four neurons which differ from the rest and can also be seen
in the other operating characteristic curves in this thesis. This led to an extra
investigation of this phenomena. The current from the OTA on the membrane was
recorded for different settings of Ibias. This was done by connecting the sourcemeter
with 0.8V to the neuron and connecting the excitatory synaptic input to the DAC
with 1.15V. All other inputs were disabled and for every setting of Ibias the CADC
calibraiton of Vsyn was executed to set the working point.

The result is shown in figure 3.22. One can see that that the current depends
linear on the settings for Ibias, but there are different slopes for all neurons. Four
neurons are having a lower slope resulting in small currents even for high settings
of Ibias. Their current output at 1000LSB equals the output at 600LSB for other
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Figure 3.20: Operating characteristics of all 32 excitatory OTAs, with precalibrated
Vres and Vthresh. OTAs were calibrated with CADC calibration of Vsyn,
spike rate based calibration of Ibias and fine adjusting spike rate al-
gorithm for Vsyn at the end. Every OTA has a individual color and
linestyle.
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(a) Using spike rates to calibrate Ibias, but
Vres and Vthresh are not calibrated
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(b) Vres and Vthresh are calibrated and Ibias
is calibrated with spike rates

Figure 3.21: Comparison of the gm values for figure 3.12 and figure 3.20.

neurons. This makes it nearly impossible to calibrate them for a range of 511LSB
to 1022LSB, which was done in the spike rate based calibration of Ibias. But it
explains the deviations of some neurons in figure 3.20, which are the same neurons
mentioned here. They have been setted to 1022LSB, but they output a current
which is too low.

The plot however shows that a calibration of the OTAs is possible, but a full
10-bit calibration of Ibias is necessary. That is because the mismatch of different
OTAs is a factor of two. While one OTA outputs 0.7 µA with Ibias set to 1000LSB
another OTA outputs 1.4 µA with the same settings on the synaptic input line. To
fulfill the expectations of the common model this mismatch have to be lowered to
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Figure 3.22: Different capmem settings of Ibias are plottet against their correspond-
ing current onto the membrane from the OTA. Measured with a
sourcemeter.

get high input currents for all neurons.
In the current state there are two options. The first option is to keep these high

settings and exclude the neurons with weak input OTAs to fit to the common model.
Another method is to use lower settings for Ibias to get all neurons calibrated. With
this method Iout is lower for all neurons.

Figure 3.23 shows the calibration result for a full 10-bit calibration of Ibias with
calibrated Vres and Vthresh. It is the same algorithm as used in section 3.1.4. However
the time windows was increased to 4ms and the mean rate was set to 170 spikes.
With this changes a smaller value for Ibias will be set. The gm value will be discussed
in section 3.2.6.

Now there are two neurons which vary from the other calibrated ones. Closer
investigation showed that this are neuron 0 and 31. The same problem appeared in
section 3.2.6, where this issue will be discussed.

3.2.6 Synaptic input current (3)

The spike rate based calibration of Ibias has calibrated the OTA successfully. But by
inspecting figure 3.20 there is still room for improvement. That is the reason why
another method of calibrating Ibias with the CADC was tested.

It is using the same effect as the spike rate calibration of Ibias by disabling all
terms beside the excitatory synaptic input and setting it to 1.15V. Like the spike
rate based algorithm this calibration can also be used for the inhibitory input by
setting the input line to a voltage higher than 1.2V. There is a constant current
onto the membrane. The current onto the membrane is proportional to the slope
of the membrane voltage, because of I = C · U̇ . Determining the slope of the trace
allows for calibrating Ibias.
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Figure 3.23: Operating characteristics of all 32 excitatory OTAs, with precalibrated
Vres and Vthresh. OTAs were calibrated with CADC calibration of Vsyn,
spike rate based calibration of Ibias and fine adjusting spike rate al-
gorithm for Vsyn at the end. Ibias is calibrated over the whole 10-bit
range.
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V1
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Figure 3.24: Model of the membrane potential in a certain time window during the
Ibias calibration. The slope can be determined by reading out two points
of the membrane potential. Two points are enough because it is rising
linearly.

The algorithm is based on finding the slope with the CADC. The basic idea is
sketched in figure 3.24. After triggering a reset the membrane potential will start
rising again. By reading out the CADC and saving the different values in arrays one
can get V1 and V2. To get the slope of the trace one normally must know δt = t2−t1.
But reading out the CADC can be done in parallel for all neurons. So δt is the same
for all and the slope is proportional to δV = V2 − V1. So calibrating all neurons to
have the same δV will calibrate Ibias.

First of all the algorithm is tested for high values of Ibias. To compare the algo-
rithm with the spike rate algorithm also the same range from 511LSB to 1022LSB
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is used by using a binary search with 9 runs. It is expected that the four neurons
from figure 3.22 also cannot be calibrated with this algorithm. It starts by deter-
mine a mean slope for a setting of 767LSB. In every run Vsyn gets calibrated with
its CADC calibration. Afterwards the slope is determined after a triggered reset by
reading out two points of the rising potential. If the slope is bigger than the mean
slope the bit is not set. Afterwards the fine adjusting algorithm for Vsyn is used. In
particular this algorithm is the same as the spike rate bases algorithm just with the
slope as condition, the rest is the same.

The operating characteristics can be seen in figure 3.25. It also shows the problem
of the four neurons which cannot be calibrated in the range of the algorithm. But
it seems that this approach improves the calibration of Ibias compared to the spike
rate approach (figure 3.20). This is also verified by figure 3.26. Also the runtime
does not change and the whole calibration can be done in under 10 s and should not
change for HICANN-X significantly.
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Figure 3.25: Operating characteristics of all 32 excitatory OTAs with CADC cal-
ibration of Vsyn, CADC based calibration of Ibias by slopes and fine
adjusting spike rate algorithm for Vsyn at the end. Every OTA has a
individual color and linestyle.

Figure 3.26 shows the direct comparison between both calibration approaches of
Ibias. Figure 3.26a is the same as figure 3.21b. But it is compared to figure 3.26b.
The standard deviation of the latter is 0.70 µA/V, which is 10.0% of the mean.
The spike rate approach has a relative deviation of 9.6%. With the slope approach
however 26 neurons lie within three bins and the five neurons with a lower gm are
causing the higher standard deviation. For the 26 neurons the standard deviation
is lower.

To compare the results to section 3.2.5, where Ibias also was calibrated over its
full 10-bit range, another algorithm also should be possible to calibrate lower values
for Ibias. Therefore the same slope algorithm was used but the mean slope was
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(a) Vres and Vthresh are calibrated and Ibias
is calibrated with spike rates
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(b) Ibias calibration with the CADC slope
approach

Figure 3.26: Comparison of the gm values for figure 3.20 and figure 3.25.
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Figure 3.27: Operating characteristics of all 32 excitatory OTAs with CADC cal-
ibration of Vsyn, CADC based calibration of Ibias by slopes and fine
adjusting spike rate algorithm for Vsyn at the end. Ibias is calibrated
over the whole 10-bit range.

determined at 512LSB. The other parts of the algorithm stays the same. The
calibration result is shown in figure 3.27.

The gm values for both calibrations with the whole 10-bit Ibias calibration are
shown in figure 3.28. Both histograms show two outlier at low gm values. As
mentioned above these are neuron 0 and 31 for both calibrations. Figure 3.28a has a
standard deviation of 0.40 µA/V with a mean of 4.29 µA/V. The standard deviation
for figure 3.28b is 0.35 µA/V with a mean of 4.78 µA/V. By comparing the relative
deviations the slope approach is better. With 7.4% its relative deviation is lower
than the 9.4% from the spike rate approach.

Again neuron 0 and 31 are not calibrated as already mentioned in section 3.2.5.
The reason for this is unknown, but both neurons are on the edge of the chip
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(a) Ibias is calibrated with spike rates for
calibrated Vres and Vthresh
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(b) Slope approach used for the calibration
of Ibias

Figure 3.28: Comparison of the gm values for figure 3.23 and figure 3.27. In both
cases the whole 10-bit search was done.

and cannot be calibrated with different algorithms. An assumption is that due to
parasitic effects the membrane capacity is lower than for other neurons. For all
calibrations of Ibias it was supposed that the membrane capacity is the same for all
neurons. So the voltage change as shown in equation 13 is higher for lower capacities.
As shown in equation 14 for same spike rates the current onto the membrane is lower
for the same ∆V . So the gm value should be also lower for neurons with smaller
membrane capacities calibrated with all algorithms discussed in this thesis.

Mismatch in the neurons’ membrane capacitances could also explain the spread
observed for the gm values. The synaptic input line was pulled to 1.10V – instead
of the previous 1.15V – to investigate if the measurement resolution was the dom-
inating factor contributing to the observed post-calibration variances. Since the
received results were very comparable, the membrane capacitors are suspected to
vary strongly.

3.2.7 Problems calibrating the synaptic input current

The best calibration of Ibias shows a relative deviation of 7.4% for the gm values.
Compared to a deviation of 20.9% for an uncalibrated Ibias this is not a significant
improvement. That is the reason why one has to look at the possible observables
critically.

Equation 14 shows that the spike rate depends on the current Iout onto the mem-
brane, the voltage difference ∆V (Vthresh − Vres) and the membrane capacity C. By
calibrating ∆V it was possible to improve the relative deviation of gm with the spike
rate based calibration for Ibias from 14.1% to 9.6%. However with neglected capac-
ity mismatch the correlation factor between ∆V and Iout was just 0.22. This low
correlation could be caused by the capacity mismatch.

The voltage change U̇ depends on the current onto the membrane I and the
capacity C as shown in equation 13. Also for the slope based calibration of Ibias the
mismatch of the neuron capacities was neglected and it was assumed that it is the
same for all neurons. But even with calibrating the whole range of Ibias it was just
possible to get a relative deviation of 7.4% for gm.

As mentioned in section 3.2.6 it is expected that the membrane capacities are
spread. This would cause such a deviation. But also the algorithm could be im-
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Figure 3.29: Different voltages at the synaptic input line are causing different
spikesrates. Neuron 2 behaves because of the defect spike counter as
outlier.
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Figure 3.30: Distribution of the spike rates at 1.15V from figure 3.29.

perfect, so the spike rates for different voltages at the synaptic input are recorded
to test this, which is shown in figure 3.29. The different spike rates at a voltage of
1.15V are shown in figure 3.30. With a standard deviation of 3.2 spikes this makes
a relative deviation of 4.3% when neuron 2 is excluded.

3.2.8 Characterization of the synaptic input voltage

As mentioned in section 3.1.5 due to a supply drop the voltage at the synaptic input
line can be different from the desired 1.2V. By evaluating figure 3.20 this voltage
drop was determined to be 20mV, because all calibrated curves cross the x-axis
around 1.18V. So for different methods of calibrating Vsyn are the distributions at
1.18V taken. The result can be seen in form of histograms in figure 3.31.

Figure 3.31a shows the distribution for an uncalibrated value of Vsyn. For every
neuron this value is set to 650LSB. For most neurons this value is too small,
because there is a current off the membrane. The mean is −0.238 µA with a standard
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(a) Uncalibrated (figure 3.6)
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(b) spike rate calibration of Vsyn (figure 3.7)
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(c) spike rate calibration of Vsyn and Ibias
(figure 3.8)
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(d) CADC calibration of Vsyn and spike rate
calibration of Ibias (figure 3.11)
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(e) Same as figure 3.31d with fine adjusting
Vsyn algorithm at the end (figure 3.12)
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(f) Same as figure 3.31e with calibrated Vres
and Vthresh (figure 3.20)

Figure 3.31: Cross section of different OTA curves with 1.18V.

deviation of 0.147 µA. The currents are within a range of −0.491 µA to 0.079 µA.
By calibrating Vsyn with spike rates, 20 neurons lie within three bins around a

current of 0 µA (figure 3.31b). This is a improvement compared to the uncalibrated
state. There are some outlier making this method not usable to calibrate all neurons
on the chip. Because of the outlier the standard deviation is 0.204 µA and the mean
0.012 µA. The minimal current is −0.638 µA and the maximum current is 0.666 µA.

Calibrating Vsyn within every run of Ibias gives figure 3.31c. 24 neurons lie within
two bins around 0 µA. So calibrating Ibias and set the working point with Vsyn
improves the distribution. But there are also some outlier making this method
unusable. The standard deviation is 0.190 µA with a mean of −0.008 µA. The range
of the currents is from −0.636 µA to 0.618 µA.

Using the CADC calibration of Vsyn all neurons lie within three bins around a
current of 0 µA. This is shown in figure 3.31d. So with this calibration all neurons
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can be calibrated. The standard deviation is 0.014 µA with a mean of 0.009 µA. The
minimal current is −0.027 µA and the maximum current is 0.44µA.

With the fine adjusting algorithm at the end and the CADC based calibration of
Vsyn used during the calibration of Ibias the result can be improved. In figure 3.31e
all neurons lie within two bins and the standard deviation is 0.010 µA with a mean
of 0.016 µA. For this calibration method the minimal current is −0.002 µA and the
maximal current is 0.039 µA.

Figure 3.31f shows the distribution of figure 3.20 at 1.18V. The standard deviation
is 0.004 µA with a mean of 0.015 µA. The currents range from 0.008 µA up to
0.024 µA.

The resolution of a voltage capmem cell is around 2mV [Hock et al., 2013]. The
mean of the gm parameter in figure 3.26b is 7 µA/V. So with a perfect calibration
of Vsyn just a resolution of 0.014 µA can be reached. The difference of the maximum
and minimum current from figure 3.31f is 0.016 µA. These deviation is in the same
order of magnitude as the possible resolution, so this calibration of Vsyn can not be
significantly improved.

These distributions show that the calibration of Vsyn is possible. The rough and
fast algorithm which is based on spike rates is not useful. The fine adjusting algo-
rithm however improves the results of the Vsyn calibration together with the CADC
algorithm. That is the reason why the CADC algorithm should be used whenever
a calibration of Vsyn is needed and at the end one should execute the fine adjusting
algorithm to get better calibrated settings for Vsyn.

3.3 Further investigations

3.3.1 Leak potential

Calibrating the leak potential Vleak is really simple, because it is easy to set the
membrane potential to it. That is because Vleak is connected with a conductance gl
realized by an OTA to the membrane. By disabling all inputs beside the leak the
membrane potential will equal the leak voltage. In figure 3.32 the CADC measured
Vleak is compared to the according capmem value. The voltage was determined with
the CADC an converted to the calibrated voltage.

If the CADC is not in saturation, the capmem settings are depending linearly
on the leak voltage. With this calibration of the CADC it would be possible to
calibrate the leak in a range from 0.3V to 1.2V. This range can be shifted by using
a different calibration for the CADC.

A binary search could be used to calibrate the leak to a desired voltage. In this
case it is possible to input a desired voltage and convert it to the according CADC
8-bit value. Calibrating to this value would give the desired voltage to all neurons.
But a calibration was not tested in this thesis due to the limited time and because
it was not needed for further progression.

3.3.2 Synaptic time constant

With an calibrated Ibias it should be possible to calibrate the charge onto the mem-
brane, which is shown in equation 12. With a calibrated reset and threshold po-
tential it should be possible to calibrate Rsyn with spike rates. But this will just
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Figure 3.32: The capmem settings of Vleak are plotted against the measured voltage
of Vleak.

work for the excitatory input, because a current onto the membrane is needed for
such a calibration. This can be achieved by connecting the excitatory input to the
membrane to charge it, while all other terms are disabled.

To measure τsyn the voltage on the synaptic input line has to be investigated. This
can be done by recording the trace with the FlySpi and processing the data with the
host computer. τsyn is independent of STP, which is disabled for an easier evaluation.
The synaptic input line of neuron 14 and Rsyn = 200LSB is shown in figure 3.33
during this process. Every 50 µs a spike is send in from the drivers with disabled
STP. So all spikes are having the same amplitude and they decay exponentially back
to the origin voltage. By doing a exponential fit to every decaying curve τsyn can be
determined for every fit individually. The output τsyn is the mean of all five fits.

With this method it is possible to research the dependency of the settings of Rsyn
with the real measured τsyn. This should allow setting a proper range of τsyn to
calibrate Rsyn. Every neuron has to be calibrated that the synaptic time constant
is the same for all neurons. This plot is shown in figure 3.34 for a range of 20LSB
up to 900LSB.

Some curves are not starting at a Rsyn setting of 20LSB. That is because some-
times it was not possible for the computer to find a fit due to different reasons. A
big problem was to set initial values to get a fit during the search. That is the reason
why the fit failed sometimes. These failed fits are not shown in the figure.

This measurement was already done in [Stradmann, 2016] for HICANN-DLSv2.
This part of the circuitry was not changed so the results should be comparable.
That is the reason why both results are just compared qualitatively. The minimum
synaptic time constants are around 1.15 µs in [Stradmann, 2016]. Figure 3.34 shows
also time constants in the same order of magnitude for high values of Rsyn con-
firming the results from Yannik Stradmann. With a setting of 20LSB for Rsyn, the
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Figure 3.33: Synaptic input with five incoming spikes with STP disabled. Every
spike is decaying back to the ground voltage exponentially with τsyn.
To determine the latter exponential fits are made to every rising flank.
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Figure 3.34: Different capmem settings of Rsyn are plotted against the corresponding
τsyn which was measured with the FlySpi and evaluated with a host
computer.

time constants vary within 10µs up to 40 µs for different neurons in [Stradmann,
2016, Figure 3.16]. This range can be confirmed for HICANN-DLSv3 as shown in
figure 3.34.

To check the possibility of a spike rate based calibration, the influence of different
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Figure 3.35: Different capmem settings of Rsyn are plotted against a measured spike
rate for each neuron.
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Figure 3.36: The measured τsyn is plotted against the spike rate for the same values
of τsyn for each neuron.

Rsyn settings to the spike rates is plotted in figure 3.35. For this plot a total of 50
bursts containing 120 spikes from synapse driver 0 with an interval of 10 µs between
each spike are send in. An interval of 500 µs is between each burst. The spike rate
of each burst is summed up to the displayed value.

The dependency of Rsyn with the spike rate is similar to the dependency of Rsyn

43



with τsyn in figure 3.34. It shows that it is possible to calibrate Rsyn for different
spike rates. Again the defect spike counter of neuron 2 shows up.

But the distribution depends hardly on the spike rate. By calibrating on a spike
rate of 2000, all values of Rsyn are located in a range of 0LSB to 200LSB. This is
changing for a spike rate of 1000, where the settings of Rsyn are within a range of
100LSB to 400LSB. That is the reason why a binary search with a total of 10 runs
should be done to calibrate Rsyn with spike rates.

To check equation 12 the fitted values of τsyn are plotted against the spike rate,
which should be a linear dependency. This is shown in figure 3.36. The longer the
synaptic time constant, the more charge is going onto the membrane resulting in
more spiking. Again neuron 2 is showing up and the fitting faults as discussed above.
Also measurement points of failed fits are not shown.

In conclusion the calibration of Rsyn should be possible with a proper calibrated
Ibias, Vres and Vthresh. But one has to be sure that the desired τsyn can be reached for
all neurons. Also the search for the right parameters should be done for all 10 bits
to get Rsyn calibrated for all kinds of selected τsyn.

To calibrate the inhibitory input it would be theoretical possible to use a calibrated
excitatory input. Vsyn and Ibias have to be calibrated for both synaptic inputs to
use this method. Every synapse driver has two output rows, one row can be chosen
as excitatory row and the other one as inhibitory row. All synapse weights have
to be same. By sending in spikes from the same driver, the different inputs should
overlay each other. If both synaptic time constants are the same, the two currents
should compensate each other, resulting in no change of the membrane potential.
For a higher excitatory τsyn however the membrane potential should rise. Such a
calibration can be possible with the PPU.
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4 Calibration of Short Term Plasticity

As explained in section 2.7 the dacen pulse have to be calibrated with the 4-bit
offset parameter due to variations in the manufacturing process of the chip, because
it is desired to let all 16 synapse drivers on HICANN-DSLv3 process STP in the
same way.

A calibration routine should be fast and highly scalable. A first attempt to cal-
ibrate STP on HICANN-DLSv3 within 6min was done with an amplitude based
calibration [Weis, 2017]. By using a spike rate based calibration it was possible to
lower the runtime by a order of magnitude to 30 s [Weis, 2018]. Both algorithms are
processed on a host computer off chip.

Within this chapter the spike rate based calibration of STP will be ported to
the PPU and it is limited computational power. It is evaluated whether a faster
runtime can be achieved with no loss in accuracy of the calibration. Also research is
done regarding HICANN-X with its 128 synapse drivers and 512 neurons. Also the
synapse drivers will stay the same for it. It is also tested how the bigger amount of
synapse drivers can be calibrated with a smaller runtime.

4.1 Getting started

The calibration depends on spikes sent from the synapse drivers. The total charge
onto the membrane from one spike sent from the driver depends on four parameters.
One is the length of the dacen pulse ∆t, because this selects the time how long
the capacitor on the synaptic input is charged. Another parameter is the synaptic
weight w, which modulates the amplitude of the current onto the synaptic capacitor.
Both parameters determine the amplitude A (∆t, w) of the voltage at the synaptic
input. Also gm and τsyn are playing a role, shown in equation 12. The resulting
spike rate depends on different neuron parameters like Vthresh, Vres or the membrane
capacity.

The mismatch of the synaptic weight w can be neglected, because the mismatch
of different synapses with the same weight is below 3% [Weis, 2018]. ∆t is the
parameter which have to be calibrated for the STP states, so this parameter should
change the spike rate to read it out indirectly. All other parameters are specific for
every neuron. But to get the same spike rate for the same ∆t for all neurons one
have to calibrate the other parameters for spike rates. This was done for Ibias as
described in section 3.1.3, while the others were not calibrated. That it is possible
to use such calibration for this was proven in [Weis, 2018].

With this algorithm (section 3.1.3) it was possible to have 23 neurons with similar
spike rate as shown in figure 3.5f on the experimental setup, which are usable for
the STP calibration. On different setups this amount can differ. To calibrate the
offset parameter one needs to find the neurons which are usable, which is done
with an algorithm.

This algorithm searches 16 usable neurons. This amount was chosen because of
two reasons. One is that the amount of neurons which have similar spike rates can
differ on different chips, but it should be possible to have at least 16 neurons which
are usable. Another important reason is that there are 16 synapse drivers and it is
tested in section 4.4 if the neurons can be read out in parallel.
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The algorithm sends 100 spikes from synapse driver 0 and the spike counters are
read out afterwards. Then the rate which the highest occurrence is determined to
be the “mean rate”. Thats the reason why just 100 spikes are send in that the
spikecounts are not to vastly spread and some neurons have the same spikecount.
The mean is not taken because otherwise the true mean would be lower than the
actual perfect calibrated rate as figure 3.5f shows. Afterwards the difference from
the “mean rate” is determined for every neuron. This is done 10 times and every
deviation of a neuron is summed up. At the end the 16 neurons which are having
the lowest summed up deviation are chosen to be usable.

Compared to the manual search of [Weis, 2018], the classification in usable/not
usable neurons equals. Of course there are now more neurons declared to be not
usable, because the algorithm just searches for 16 neurons. By doing multiple runs
the results still stays the same, so the algorithm should work. If not specified
otherwise, this neuron configuration was used to calibrate the offset parameter
in the STP circuitry. Also the calibration algorithms presented in [Weis, 2018] are
using this configuration.

4.2 Basic algorithm
For the calibration all inputs to the neurons are disabled besides the excitatory
synaptic input. As explained in section 4.1, the spike rate of the calibrated neurons
should be proportional to the dacen pulse. So calibrating to a mean rate should be
a possible way to calibrate the offset parameter.

Just one driver is enabled at once and all spikes of the usable neurons are read
out. This should minimize the mismatch of a single neuron by using more statistics.
To get the spike rate of a driver, five bursts containing 300 spikes are send in with
10µs between every single spike and 500 µs between each burst. This are the optimal
parameters to have enough statistics, small runtime and no spike counter overflow
[Weis, 2018]. Both rows of each synapse driver are enabled to get higher amplitudes
and to reduce the synapse mismatch. The spike counter of every usable neuron is
summed up for every neuron and burst.

The algorithm itself is based on a binary search with four runs. First off all the
mean rate of all drivers is determined. This is done for an offset parameter of
8, because the binary search of a 4-bit value is starting with 8. In every run the
spike rate of each driver is determined. If this spike rate is below the mean rate the
according bit of the run is not set. An additional run is added as done in [Weis,
2018] and also described in section 2.9. In this run the offset parameter is raised
or lowered by one whether the spike rate is below or above the mean rate. Then the
spike rate with this settings is compared to the old one and the configuration with
the smallest deviation to the mean rate is used.

The whole STP calibration can be done in under 2 s which is a big improvement
compared to a calibration off chip. It is tested in section 4.3 if the smaller runtime
leds to a bigger mismatch or not. In this case the runtime should increase on
HICANN-X because for every driver all usable neurons are used. That is the reason
why in section 4.4 the possibility of reading out neurons parallel is tested to get a
better runtime.

The algorithm was not a direct copy of the algorithm presented in [Weis, 2018].
One difference was the start. In this thesis the algorithm starts with 8, because of
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the method with the binary search. In the algorithm of Johannes Weis the search
was not a standard binary search and it started with 7. Another difference is the
mean rate. In this thesis the mean rate is determined at the beginning and is fixed
during the whole algorithm. Johannes Weis determined the mean rate of every run
and calibrated to this rate. Because of the fixed mean rate just one extra run was
added in this algorithm instead of three extra runs.

During the calibration all synapse weights are set to 63. One sets Vcharge =
170LSB and Vrecover = 210LSB. The ramp is precharged with Voffset = 50LSB and
the offset capacitors are charged with Vzero = 300LSB. The current flowing onto
the ramp is Iramp = 600LSB.

4.3 Testing the calibration algorithm

The algorithms are tested by recording real STP traces. The mismatch between each
trace should be minimized. Every trace is recorded with the FlySpi and several spikes
are send in every 10 µs. The curves of all different synapse drivers recorded on the
synaptic input of neuron 12 are plotted in one diagram. The found spikes are marked
with a dot in the same color. Every curve was low passed filtered. For recording one
used Vcharge = 80LSB and Vrecover = 320LSB to get nice curves. Other important
voltages and currents were not changed to use the former calibration result.

The STP trace for an uncalibrated offset parameter is shown in figure 4.1. The
spike amplitudes are strongly spread for the depressed state. Some amplitudes in the
depressed state are different by a factor of two, which would have a great influence
when executing experiments.
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Figure 4.1: Low pass filtered STP trace of all synapse driver, spike peaks are marked
with a dot in the same color. The offset parameter is not calibrated.

Looking at figure 4.2, the result improved alot. It shows the STP curve after
the STP calibration with the PPU. The amplitudes of the different spikes lie much
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Figure 4.2: Low pass filtered STP trace of all synapse driver, spike peaks are marked
with a dot in the same color. The offset parameter is calibrated via
spike rates with the PPU.

closer. Some spread of the different dots could also come from the spread of the
different baselines, which does not have the same voltage either.

To compare the different plots and to get a observable to check the calibration, the
amplitudes of the different spikes are plotted. To check the quality of the calibration
one can fit an exponential decay to the amplitudes with

f (x) = a · exp (−b · x) + c. (16)

The offset of the exponential function c should be the same for all neurons if the
offset parameter is calibrated.

The uncalibrated amplitudes are shown in figure 4.3. The amplitudes are strongly
distributed. Some amplitudes in the depressed state are below 10mV, while others
are above 25mV. Also the amplitudes at the start are vastly distributed.

The amplitudes of the spike rate based algorithm which was executed on the PPU
is shown in figure 4.4. Compared to the uncalibrated curves this looks alot better.
In the depressed state the amplitudes are within 15mV to 18mV. Compared to the
amplitudes at the beginning, which are around 60mV, the spread is low compared
to the amount of depression.

In figure 4.5 the spike rate based algorithm presented in [Weis, 2018] was used
to calibrate the offset parameter. Compared to the PPU based algorithm there is
not a big difference. But this is not surprising because both algorithms are based on
the same idea. The only problem with the PPU is that it does not support floating
numbers. So the mean rate at the beginning is determined by integer division, which
makes it more inaccurate. But the comparison of the two plots show that this is not
a big factor.

Figure 4.6 shows the different fitted exponential offsets of different calibrations.
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Figure 4.3: Amplitudes of the STP traces of all drivers. The dashed line is the result
of the exponential fit. The offset parameter is not calibrated.
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Figure 4.4: Amplitudes of the STP traces of all drivers. The dashed line is the result
of the exponential fit. The offset parameter is calibrated via spike rates
with the PPU.

This parameter can be used to check the quality of the calibration, because it is
desired that this parameter is the same for all drivers. Figure 4.6a shows the dis-
tribution for an uncalibrated offset parameter. It is strongly spread and some
drivers are below 10mV and some above 20mV, which is a factor of 2. Figure 4.6b
however shows the distribution with the offset parameter calibrated with the spike
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Figure 4.5: Amplitudes of the STP traces of all drivers. The dashed line is the result
of the exponential fit. The offset parameter is calibrated via spike rates
with the algorithm from [Weis, 2018].

rate approach on to the host computer and the neuron calibration manually found
in [Weis, 2018]. Figure 4.6d shows the distribution with the calibration executed on
the PPU, while figure 4.6c shows the distribution with the calibration executed on
the host computer. Both had the same initial conditions because the neuron con-
figuration was determined by the algorithm described in section 4.1. All calibrated
exponential offsets are within three bins and the results are nearly equal. So it is
possible to calibrate STP on the PPU by observing spike rates. The possibility to
calibrate STP shows that the algorithms to calibrate the neuron parameters, shown
in section 4.1, is working and also the right usable neurons are chosen.

The uncalibrated exponential offset has a standard deviation of 4.14mV, which is
a relative deviation of 27.1%. The spike rate based calibration shown in [Weis, 2018]
has a standard deviation of 0.91mV, which is 5.5% of the mean. With calibrating
the neurons as described in section 4.1 with the algorithm, the calibration of STP as
done in [Weis, 2018] has now a standard deviation of 0.75mV. The relative deviation
is 4.4% now. The algorithm for finding the settings of the neuron is better than
manually adjusting them. By using also the PPU for calibrating STP one gets
a standard deviation of 0.87mV, which is 5.3%. This is also a big improvement
compared to the uncalibrated drivers.

So it is possible to calibrate STP on every HICANN-DLSv3 chip in under 14 s. 12 s
are needed to get the calibrated neuron parameters and the actual STP calibration
takes 2 s. The neuron parameters can be calibrated in under 2 s by using the CADC
Vsyn calibration, but it is recommended to use the slower method as described in
section 3.1.3, because it is more precise.

The runtime of the neuron calibration will not change on HICANN-X, because
the most time one waits for incoming spikes and evaluating these spikes can be done
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(b) Spike rate based calibration from
host computer with neuron parameters
found in [Weis, 2018].
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(c) Spike rate based calibration from host
computer with neuron parameters deter-
mined by algorithm (section 4.1)
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(d) PPU based spike rate calibration with
neuron parameters determined by algo-
rithm (section 4.1)

Figure 4.6: Each histogram is showing the fitted exponential offset of each driver for
different calibrations and calibration conditions.

pretty fast. But the STP calibration will take more time if the same algorithm is
used because of the bigger amount of synapse drivers. That is the reason why in
section 4.4 the parallel readout of different neurons for different drivers is tested, to
get a faster calibration of STP on HICANN-X.

To check the general functionality of this calibration different chips were used to
confirm the results from chip 8. For this purpose chip 3 and chip 9 were calibrated
and the STP curves were recorded after a calibration. Similar results were achieved
on both chips, confirming the functionality of the whole STP calibration algorithm.

4.4 Parallel neuron readout
In section 4.1, 16 neurons were declared as useful. The number of 16 was not random
chosen, because there are 16 synapse drivers. So there was the idea of reading out
the neurons in parallel to get a better runtime. Every neuron belongs to one driver
and all rates are determined by this neuron. In the current algorithm spikes are send
in just from one driver at once and all usable neuron counters are read out to get
enough statistic and minimize the error. With parallel readout all synapse drivers
would send in spikes at once and the belonging neurons are evaluated. This should
be possible to do in under 1 s.

This can be done by changing the address of the synapses for the desired neuron/-
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driver combination. So in the column of every usable neuron are the addresses of
two synapses changed, which are in the belonging synapse driver row. This should
look like a diagonal in the synapse array. This new address have to be the same for
all these synapses, as long it is different from the addresses of the other synapses.
By sending in spikes with this address, every usable neuron receives just the spikes
from its belonging driver. It would also be possible to set all weights to zero except
for the synapses described above.

This was implemented as calibration by determining the mean rate for all neurons
with its drivers with an offset value of 8. Also the rest of the algorithm is similar
to the algorithm described in section 4.2, the only difference is that the spike rate is
now just determined from one neuron instead of summed up from different neurons.

The decreased runtime however did not justify the result of this calibration, be-
cause the offset parameter was not well calibrated. The result was better than
uncalibrated, but was not close as precise as the former algorithm. The mismatch of
a single neuron is too big to use the parallel readout of a single neuron for the STP
calibration. To use such an algorithm all neurons have to behave the same, but the
neuron calibration is not exact enough to reach this.

Because there are more neurons on HICANN-X, a total of 512 neurons, it was
investigated in figure 4.7 how many neurons are needed for a parallel readout to get
good results. One does not want all usable neurons on HICANN-X to calibrate a
single driver at once, which would take alot more time because there are 128 synapse
drivers on HICANN-X.
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Figure 4.7: The amount of neurons which are read out together to calibrate the
offset parameter is plotted against the standard deviation of the offset
of the exponential fit to estimate how many neurons can be read out in
parallel on HICANN-X to get a sufficient STP calibration.

In the figure the determined standard deviation of the offset from the exponential
fit of the amplitudes is determined for every calibration. The x-axis is showing the
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number of neurons which are read out in parallel. Because of its small size it was
not possible to really read out the amount of neurons in parallel. Therefore for every
driver and amount random neurons out of the usable are chosen and every driver
is calibrated with them. The mean rate is determined with all usable neurons. For
every amount of neurons are calibration 100 runs made and the standard deviation
of the standard deviation of the different exponential fit offsets is also added.

One can see in figure 4.7 that even the readout of one single neuron is better than
letting it uncalibrated. But the more neurons are read out in parallel, the better the
result. It seems to approach to a limit. For HICANN-DLSv3 a readout of 8 neurons
in parallel should be a sufficient calibration.

This plot have to be redone for HICANN-X to decide how many neurons should
be readout in parallel. But by reading out an amount of 8 or 16 neurons in parallel,
the runtime of 2 s should not be exceeded. By doing this, also the whole STP
calibration with its belonging neuron configuration can be done in under 14 s for
every HICANN-X chip.
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5 Discussion and Outlook

In this thesis, different neuron parameters and the STP circuitry were calibrated
with the PPU. The only observables used for these calibrations were spike rates and
the CADC.

It was possible to calibrate Vsyn, with two different approaches. By using only
spike rates it was possible to calibrate this value in under 6 s. The runtime should
not change significantly on HICANN-X. However it was not possible to calibrate
all neurons with this approach because of a hysteresis effect. By using the CADC
to calibrate Vsyn, this problem was solved. Also, the complete calibration can be
executed in 250ms. The mismatch however of the different neurons is a little bit
higher than with the spike rate calibration. A two-stage approach, applying a spike
rate based fine-tuning after executing the CADC based algorithm, is recommended
for maximal precision. Both methods can be used for the calibration of excitatory
and inhibitory input, but in this thesis it was just tested for the excitatory input.
The calibration results are summarized in table 1.

Also Ibias, which determines the gm value of the OTA, was calibrated by using
three different methods. It was the desire to reach two goals. The first goal was
to get a suitable calibration for the STP circuit which was previously manually
searched [Weis, 2018]. It was possible to reproduce the results of the manual search
with an algorithm. This was done together with the calibration of Vsyn in 12 s,
within which the Vsyn calibration took around 10 s. For HICANN-X the runtime
should be approximately the same. The other goal was to calibrate the OTA to
equalize the individual neurons’ responses to the same stimuli. A DAC on the
baseboard was used to clamp the synaptic input line to a fixed voltage, resulting in
a constant current onto the membranes. Two approaches were tested, one based on
the readout of spike rates and one determining the slope of the membrane voltage
with the CADC. With both approaches the whole OTA can be calibrated in under
10 s including the calibration of Vsyn. Again, on HICANN-X this algorithms should
have an equal runtime. Both approaches performed well and no calibration approach
outstands the other one. Also here just the excitatory input was calibrated, but it is
also easily possible to convert the two algorithms which are calibrating the OTA to
the inhibitory input. The used observables however are depending on the mismatch
of the membrane capacitors, making both methods dependent of this mismatch.
Table 1 collects the standard deviations of the different calibrations.

The reset potential Vres was also calibrated with the PPU. The CADC was used to
calibrate this parameter. The whole calibration worked (results in table 1) and the
runtime is below 1 s. Vthresh is another parameter which was calibrated. By using
the leak, the spike counters and the CADC it was possible to calibrate the threshold
in under 1 s. On HICANN-X it should be possible to run both calibrations within
a similar runtime. Both parameters also had an influence on the spike rate based
calibration of Ibias.

Also, the possibility of calibrating Rsyn, to get a calibrated τsyn for all neurons,
was investigated. Because of the formerly calibrated Ibias, Vres and Vthresh it should
be possible to calibrate this parameter with spike rates only. Because of the limited
time it was not possible to implement an algorithm and to prove this hypothesis.
But in this case just the excitatory Rsyn can be calibrated with this method, because
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spikes send in from the synapse drivers are necessary for this calibration. For the
inhibitory input another method was discussed based on a calibrated Rsyn for the
excitatory input.

All of these calibration methods can be executed within seconds and are working,
as table 1 shows. The runtime should not change significantly on HICANN-X for
all neuron calibrations. This shows that some observables are enough to calibrate
different parameters on the chip.

Calibrating STP with spike rates can be done in 2 s with the PPU instead of
30 s from the host computer [Weis, 2018]. The results of both calibrations are very
comparable, so calibrating STP should be done on the PPU. Just the amplitude-
based calibration [Weis, 2017] is better, but its runtime of 6min is higher by two
orders of magnitude. This trade-off must be decided based on the experimenters
use-case.

Things are also changing on HICANN-X, with its higher amount of neurons and
synapse drivers. The runtime of the amplitude based calibration will increase dras-
tically [Weis, 2018]. It scales with the amount of neurons. But by using the spike
rate calibration on the PPU with parallel readout, which is possible as shown in this
thesis, the whole STP calibration on HICANN-X should be also possible in 2 s. This
runtime advantage definitely justifies the slightly imperfect results of the spike rate
based calibration compared to the amplitude-based calibration.

Including the matching neuron calibration, STP can be calibrated in 14 s for
HICANN-DLSv3 and HICANN-X. This was tested for different DLSv3 chips. And
if the calibration of τsyn is working properly, the whole individual neuron calibration
for STP can become unnecessary.

However there are also some disadvantages to execute calibration algorithms on
the PPU. It is not possible to give the parameters of the neuron as absolute values,
as a fit can not be executed on the PPU. Instead, the PPU can be used to calibrate
all neurons to behave like a chosen neuron. This chosen neuron can be calibrated as
desired, while a PPU based calibration reduces the mismatch between each neurons.

The final results of the different calibration algorithms performed during this
thesis are collected in table 1. For the calibration of Vsyn the standard deviation
and the min-max gap ∆I are shown. For the gm value are the relative deviations
given. For Vres and Vthresh is the standard deviation for the uncalibrated values given
compared to the calibrated ones. For the neuron calibration of the STP circuit are
the relative deviations of the incoming spike rates given. Last but not least the
standard deviation of the exponential offset is given for different calibration methods
of the offset parameter in the STP circuitry.

In a future step more calibrations should be developed for this neuromorphic
circuits. One example is the synaptic time constant. Theoretical methods were
developed during this thesis to calibrate τsyn for both synaptic inputs. But also the
transconductance gl of the leak OTA should be calibrated to set the membrane time
constant τm.

For future chip generations the OTAs of the synaptic input have to be revised.
According to the specification the linear range should be given for ∆V = 200mV,
but measurements show that the OTA starts to saturate even for lower deviations.
Also the design on-chip have to be investigated to lower the parasitic deviations of
the membrane capacity for boundary neurons.
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Parameter Uncalibrated Method Calibrated Comment
Vsyn σ = 0.147µA spike rate based σ = 0.190 µA Outlier making this

∆I = 0.570µA calibration ∆I = 1.304 µA calibration not usable

CADC based σ = 0.014 µA No outlier anymore
calibration ∆I = 0.071 µA

CADC and σ = 0.004 µA Resolution of Vsyn
spike rate ∆I = 0.016 µA reached

gm 20.9% spike rate based 24.7% Outlier making this
calibration calibration not usable

CADC based Vsyn 14.1% ∆V uncalibrated
spike rate Ibias (high Ibias values)

CADC based Vsyn 9.6% ∆V calibrated
spike rate Ibias (high Ibias values)

slope CADC 10.0% (high Ibias values)
calibration

CADC based Vsyn 9.4% ∆V calibrated
spike rate Ibias (lower Ibias values)

slope CADC 7.4% (lower Ibias values)
calibration

Vres σ = 35.5mV - σ = 3.6mV -
Vthresh σ = 33.6mV - σ = 3.9mV -
Neuron STP 55.0% One search 4.1% For 21 neurons
calibration for Ibias with similar rate

Two searches 1.8% For 23 neurons
for Ibias with similar rate

STP 27.1% Spike rates on 5.5% Manually found
calibration host computer capmem values

Spike rates on 4.4% Capmem values
host computer found with PPU

Spike rates 5.3% Capmem values
on PPU found with PPU

Table 1: Collection of different calibration approaches executed during this thesis.
Their deviations are also collected in this table.

56



References

S. A. Aamir, P. Müller, A. Hartel, J. Schemmel, and K. Meier. A highly tunable
65-nm cmos lif neuron for a large scale neuromorphic system. In ESSCIRC Con-
ference 2016: 42nd European Solid-State Circuits Conference, pages 71–74, Sept
2016. doi: 10.1109/ESSCIRC.2016.7598245.

S. A. Aamir, P. Müller, L. Kriener, G. Kiene, J. Schemmel, and K. Meier. From
lif to adex neuron models: Accelerated analog 65 nm cmos implementation. In
2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), pages 1–4,
Oct 2017. doi: 10.1109/BIOCAS.2017.8325167.

S. A. Aamir, P. Müller, G. Kiene, L. Kriener, Y. Stradmann, A. Grübl, J. Schemmel,
and K. Meier. A mixed-signal structured adex neuron for accelerated neuromor-
phic cores. IEEE Transactions on Biomedical Circuits and Systems, pages 1–11,
2018a. ISSN 1932-4545. doi: 10.1109/TBCAS.2018.2848203.

S. A. Aamir, Y. Stradmann, P. Müller, C. Pehle, A. Hartel, A. Grübl, J. Schemmel,
and K. Meier. An accelerated lif neuronal network array for a large-scale mixed-
signal neuromorphic architecture. IEEE Transactions on Circuits and Systems
I: Regular Papers, pages 1–14, 2018b. ISSN 1549-8328. doi: 10.1109/TCSI.2018.
2840718.

Sebastian Billaudelle. Design and implementation of a short term plasticity circuit
for a 65 nm neuromorphic hardware system. Masterarbeit, Universität Heidelberg,
2017.

Mikhail Borodin, Kaushik De, Jose Garcia Navarro, Dmitry Golubkov, Alexei Kli-
mentov, Tadashi Maeno, David South, and Alexandre Vaniachine. Big data pro-
cessing in the atlas experiment: Use cases and experience. Procedia Computer
Science, 66:609 – 618, 2015. ISSN 1877-0509. doi: https://doi.org/10.1016/
j.procs.2015.11.069. URL http://www.sciencedirect.com/science/article/
pii/S1877050915034183. 4th International Young Scientist Conference on Com-
putational Science.

Romain Brette and Wulfram Gerstner. Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity. Journal of Neurophysi-
ology, 94(5):3637–3642, 2005. doi: 10.1152/jn.00686.2005. URL https://doi.
org/10.1152/jn.00686.2005. PMID: 16014787.

Ursula Dicke and Gerhard Roth. Neuronal factors determining high intelligence.
Philosophical Transactions of the Royal Society of London B: Biological Sciences,
371(1685), 2016. ISSN 0962-8436. doi: 10.1098/rstb.2015.0180. URL http:
//rstb.royalsocietypublishing.org/content/371/1685/20150180.

Carlos Eyzaguirre and Stephen W. Kuffler. Further study of soma, dendrite, and
axon excitation in single neurons. The Journal of General Physiology, 39(1):
121–153, 1955. ISSN 0022-1295. doi: 10.1085/jgp.39.1.121. URL http://jgp.
rupress.org/content/39/1/121.

57

http://www.sciencedirect.com/science/article/pii/S1877050915034183
http://www.sciencedirect.com/science/article/pii/S1877050915034183
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1152/jn.00686.2005
http://rstb.royalsocietypublishing.org/content/371/1685/20150180
http://rstb.royalsocietypublishing.org/content/371/1685/20150180
http://jgp.rupress.org/content/39/1/121
http://jgp.rupress.org/content/39/1/121


Michael Feldman. Summit Up and Running at Oak Ridge, Claims First
Exascale Application, 2018. URL https://www.top500.org/news/
summit-up-and-running-at-oak-ridge-claims-first-exascale-application/.
called on: 2018-07-30.

Diasynou Fioravante and Wade G Regehr. Short-term forms of presynaptic plastic-
ity. Current Opinion in Neurobiology, 21(2):269 – 274, 2011. ISSN 0959-4388. doi:
https://doi.org/10.1016/j.conb.2011.02.003. URL http://www.sciencedirect.
com/science/article/pii/S0959438811000298. Synaptic function and regula-
tion.

S. Friedmann, J. Schemmel, A. Grübl, A. Hartel, M. Hock, and K. Meier. Demon-
strating hybrid learning in a flexible neuromorphic hardware system. IEEE Trans-
actions on Biomedical Circuits and Systems, 11(1):128–142, Feb 2017. ISSN
1932-4545. doi: 10.1109/TBCAS.2016.2579164.

S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple, and
A. D. Brown. Overview of the spinnaker system architecture. IEEE Transactions
on Computers, 62(12):2454–2467, Dec 2013. ISSN 0018-9340. doi: 10.1109/TC.
2012.142.

Matthias Hennig. Theoretical models of synaptic short term plasticity. Frontiers in
Computational Neuroscience, 7:45, 2013. ISSN 1662-5188. doi: 10.3389/fncom.
2013.00045. URL https://www.frontiersin.org/article/10.3389/fncom.
2013.00045.

M. Hock, A. Hartel, J. Schemmel, and K. Meier. An analog dynamic memory array
for neuromorphic hardware. In 2013 European Conference on Circuit Theory and
Design (ECCTD), pages 1–4, Sept 2013. doi: 10.1109/ECCTD.2013.6662229.

Gerd Kiene. Mixed-signal neuron and readout circuits for a neuromorphic system.
Masterthesis, Universität Heidelberg, 2017.

Aron Leibfried. Characterization of a pll circuit used on a 65 nm analog neuromor-
phic hardware system, 05 2018.

K. Meier. Special report : Can we copy the brain? - the brain as computer. IEEE
Spectrum, 54(6):28–33, June 2017. ISSN 0018-9235. doi: 10.1109/MSPEC.2017.
7934228.

Alberto E. Pereda. Electrical synapses and their functional interactions with chem-
ical synapses. Nature Reviews Neuroscience, 15:250 EP –, Mar 2014. URL
http://dx.doi.org/10.1038/nrn3708. Review Article.

Wade G. Regehr. Short-term presynaptic plasticity. Cold Spring Harbor Perspec-
tives in Biology, 4(7), 2012. doi: 10.1101/cshperspect.a005702. URL http:
//cshperspectives.cshlp.org/content/4/7/a005702.abstract.

J. Schemmel, D. Bruderle, K. Meier, and B. Ostendorf. Modeling synaptic plasticity
within networks of highly accelerated i amp;f neurons. In 2007 IEEE International
Symposium on Circuits and Systems, pages 3367–3370, May 2007. doi: 10.1109/
ISCAS.2007.378289.

58

https://www.top500.org/news/summit-up-and-running-at-oak-ridge-claims-first-exascale-application/
https://www.top500.org/news/summit-up-and-running-at-oak-ridge-claims-first-exascale-application/
http://www.sciencedirect.com/science/article/pii/S0959438811000298
http://www.sciencedirect.com/science/article/pii/S0959438811000298
https://www.frontiersin.org/article/10.3389/fncom.2013.00045
https://www.frontiersin.org/article/10.3389/fncom.2013.00045
http://dx.doi.org/10.1038/nrn3708
http://cshperspectives.cshlp.org/content/4/7/a005702.abstract
http://cshperspectives.cshlp.org/content/4/7/a005702.abstract


J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner. A wafer-
scale neuromorphic hardware system for large-scale neural modeling. In Pro-
ceedings of 2010 IEEE International Symposium on Circuits and Systems, pages
1947–1950, May 2010. doi: 10.1109/ISCAS.2010.5536970.

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Bench-
marking machine learning algorithms for traffic sign recognition. Neural Net-
works, 32:323 – 332, 2012. ISSN 0893-6080. doi: https://doi.org/10.1016/j.
neunet.2012.02.016. URL http://www.sciencedirect.com/science/article/
pii/S0893608012000457. Selected Papers from IJCNN 2011.

Yannik Stradmann. Characterization and calibration of a mixed-signal leaky in-
tegrate and fire neuron on hicann-dls. Bachelorarbeit, Universität Heidelberg,
2016.

M. Tsodyks and S. Wu. Short-term synaptic plasticity. Scholarpedia, 8(10):3153,
2013. doi: 10.4249/scholarpedia.3153. revision #182489.

Misha Tsodyks, Klaus Pawelzik, and Henry Markram. Neural networks with
dynamic synapses. Neural Computation, 10(4):821–835, 1998. doi: 10.1162/
089976698300017502. URL https://doi.org/10.1162/089976698300017502.

Misha V. Tsodyks and Henry Markram. The neural code between neocortical pyra-
midal neurons depends on neurotransmitter release probability. Proceedings of
the National Academy of Sciences, 94(2):719–723, 1997. ISSN 0027-8424. doi:
10.1073/pnas.94.2.719. URL http://www.pnas.org/content/94/2/719.

Johannes Weis. Testing of a neuromorphic short term plasticity circuit, 11 2017.

Johannes Weis. Characterization and calibration of synaptic plasticity on neuro-
morphic hardware. Bachelor, Universität Heidelberg, 2018.

Robert S. Zucker and Wade G. Regehr. Short-term synaptic plasticity. An-
nual Review of Physiology, 64(1):355–405, 2002. doi: 10.1146/annurev.
physiol.64.092501.114547. URL https://doi.org/10.1146/annurev.physiol.
64.092501.114547. PMID: 11826273.

59

http://www.sciencedirect.com/science/article/pii/S0893608012000457
http://www.sciencedirect.com/science/article/pii/S0893608012000457
https://doi.org/10.1162/089976698300017502
http://www.pnas.org/content/94/2/719
https://doi.org/10.1146/annurev.physiol.64.092501.114547
https://doi.org/10.1146/annurev.physiol.64.092501.114547


60



Acknowledgements
First of all, I want to thank Prof. Dr. Karlheinz Meier for giving me the chance to
work in this group on this interesting topic.

I also want to thank Dr. Johannes Schemmel for his great leadership and for pro-
viding this great hardware.

Also thanks to my supervisors Sebastian Billaudelle and Yannik Stradmann for
supporting me during this thesis. You calmly explained the usable methods, the
implemented circuitry and you provided helpful solving approaches if I was stuck.

Another thanks goes to Johannes Weis for his nice groundwork in the STP calibra-
tion and taking his time to explain me his used code, his ideas and explaining me
the influence of different parameters.

Thanks to Sebastian Billaudelle, Yannik Stradmann, Simon Rosenkranz, Malte Prin-
zler and Oliver Leibfried for proofreading this thesis and the helpful feedback.

I also want to thank the whole Electronic Vision(s) group for the great atmosphere
and willingness to help.

Thanks to my friends and my familiy for supporting me during the course of my
studies.

61



62



Statement of Originality (Erklärung):

I certify that this thesis, and the research to which it refers, are the product of
my own work. Any ideas or quotations from the work of other people, published
or otherwise, are fully acknowledged in accordance with the standard referencing
practices of the discipline.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, August 21, 2018 ..................................................
(signature)

63


	Introduction
	Principles
	Biological background
	Leaky Integrate and Fire model
	Short Term Plasticity
	The HICANN-DLSv3 ANNCORE
	Plasticity Processing Unit (PPU)
	Neuron implementation
	Short Term Plasticity implementation
	Experimental setup
	Binary search

	Neuron Calibration
	Neuron calibration via spike rates
	Synaptic input reference voltage (1)
	Synaptic input current (1)
	Suitable neuron configuration for STP calibration
	Synaptic input current (2)
	Calibration of the synaptic input (1)

	Neuron calibration via CADC
	Synaptic input reference voltage (2)
	Calibration of the synaptic input (2)
	Reset potential
	Threshold potential
	Calibration of the synaptic input (3)
	Synaptic input current (3)
	Problems calibrating the synaptic input current
	Characterization of the synaptic input voltage

	Further investigations
	Leak potential
	Synaptic time constant


	Calibration of Short Term Plasticity
	Getting started
	Basic algorithm
	Testing the calibration algorithm
	Parallel neuron readout

	Discussion and Outlook

