
Department of Physics and Astronomy

University of Heidelberg

Bachelor Thesis in Physics
submitted by

Richard Boell

born in Stuttgart

April 2018





Visualization of Mapping and Routing of the

BrainScaleS System

This Bachelor Thesis has been carried out by Richard Boell
at the

Kirchhoff Institute for Physics
Ruprecht-Karls-Universität Heidelberg

under the supervision of
Prof. Dr. Karlheinz Meier





Abstract

To emulate neural networks on the BrainScaleS neuromorphic wafer-scale
system, the biological network first needs to be translated into a corresponding
hardware configuration. The ability to visualize this configuration process and
particularly the map-and-route step is important for software debugging as
well as commissioning of the system. Additionally, experiment monitoring
benefits from visualization of dynamic properties such as hardware usage and
spike rates.

This thesis implements an interactive browser-based visualization of indi-
vidual BrainScaleS wafers that allows a deep understanding of network config-
urations. The visualization provides an intuitive overview of the utilization of
different parts of a wafer by implementing colormaps. Further, routing across
the wafer can be studied in detail. The software is designed to be highly
maintainable and easily extendible. Due to the large number of elements on
a wafer, careful considerations about the level of detail and the method of
drawing are inevitable. In a benchmark, drawing methods are examined and
conclusions about further improvement in terms of performance are drawn.

The software presents the foundation for an adaptable and versatile visual-
ization of the BrainScaleS system.

Zusammenfassung

Um neuronale Netzwerke auf dem neuromorphen BrainScaleS System nach-
zubilden, muss das biologische Netzwerk zunächst in eine entsprechende Hard-
warekonfiguration übersetzt werden. Die Möglichkeit, diesen Konfigurations-
prozess und insbesondere den map-and-route Schritt zu visualisieren, ist so-
wohl für die Untersuchung der Software auf Fehler, als auch die Inbetrieb-
nahme des Systems wichtig. Zusätzlich ist die Visualisierung von dynami-
schen Eigenschaften wie die Verwendung der Hardware oder Spike-Raten für
die System-Überwachung von Vorteil.

Diese Arbeit realisiert eine interaktive, browserbasierte Visualisierung einzel-
ner Wafer des BrainScaleS Systems, die ein tief gehendes Verständnis von
Netzwerk Konfigurationen ermöglicht. Eine farbkodierte Übersicht verschafft
einen intuitiven Einblick in die Verwendung verschiedener Wafer Komponen-
ten. Routen können außerdem im Detail verfolgt und untersucht werden. Die
Software wurde gezielt wartungsfreundlich gestaltet und ist einfach zu erwei-
tern. Aufgrund der großen Anzahl an Elementen auf einem Wafer müssen
die Detailstufe und Zeichenmethode sorgfältig erwogen werden. In einem
Benchmark-Test werden verschiedene Methoden zum Zeichnen von Elementen
untersucht und Schlussfolgerungen über mögliche Leistungssteigerungen gezo-
gen.

Die vorgestellte Software bildet die Grundlage für eine anpassungsfähige
und vielseitige Visualisierung des BrainScaleS Systems.

i





Contents

1. Introduction 1

2. Materials and Methods 3

2.1. BrainScaleS Hardware System . . . . . . . . . . . . . . . . . . . . . . 3

2.2. HICANN Microchip . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3. Communication Networks . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Software Framework 9

3.1. Visualization Library . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3. Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4. Results 15

4.1. Visualization Features . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2. Code Structure and Implementation . . . . . . . . . . . . . . . . . . . 20

4.2.1. Wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2. Overview and Detailview . . . . . . . . . . . . . . . . . . . . . 24

4.2.3. Automode and Manual Mode . . . . . . . . . . . . . . . . . . 27

4.2.4. Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.5. Reticle Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.6. Global Namespace . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3. Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1. PixiJS Benchmarking . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.2. Visualization Benchmarking . . . . . . . . . . . . . . . . . . . 42

4.3.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4. Extending the Visualization . . . . . . . . . . . . . . . . . . . . . . . 44

5. Discussion and Outlook 47

A. Appendix 51

References 59

iii





1. Introduction

Simulating the brain has the potential to give valuable insights into learning and

development of the brain. Simulation of large-scale networks on traditional computer

clusters is time- and energy-consuming. Dedicated neuromorphic systems could offer

an advantage in this respect. Emulating parts of the behavior of a biological neuron

with electrical circuits can be proven to be many orders of magnitude more efficient

in terms of power use and also timewise [1]. Event-driven neuromorphic systems are

built upon the principle, that spikes (events) govern the activity of the chip. Instead

of following a clock, neurons react to external inputs or signals from other neurons,

communicated via synapses [2].

Neuromorphic hardware is being developed in both industry and academia. IBM’s

TrueNorth chip succeeds at a very energy-efficient implementation of learning algo-

rithms but lacks flexibility [3]. Just recently Intel introduced Loihi, a neuromorphic

manycore chip that implements a spiking neural network [4]. The BrainScaleS phys-

ical model system [5] implements a highly parallel architecture and operates 103 to

105 times faster than biology. Its analog neuron and synapse circuits are designed to

emulate biological spiking behavior. Currently, the system features 20 silicon wafer

modules. High configurability allows the emulation and scientific exploration of a

variety of models.

Software models of abstract neural networks are translated to actual neurons and

synapses on the BrainScaleS system. The goal of this thesis was to develop a visual-

ization of hardware parameters and routing on the wafer. The visualization provides

an intuitive overview of the wafer utilization and can be primarily used as a debug-

ging tool for examining the routing. It is important to develop a highly maintainable

software. Due to the modular nature of the code, the presented software can be used

as a stepping stone for more extensive and dynamic visualizations.

Johann Klähn, Eric Müller and Sebastian Schmitt cooperated to make the hard-

ware configuration data container available for the visualization.

Section 2 presents the neuromorphic hardware and the software stack supporting

1



the system. In section 3, technologies used for the visualization are introduced.

Section 4 describes the developed visualization software, starting with an overview

of the application features. The structure and implementation is then explained

with code samples and a benchmark of the graphics library is presented. Finally, an

example of how to extend the software is given.

2



2. Materials and Methods

2.1. BrainScaleS Hardware System

Beginning with the Spikey chip [6] and continued in the course of the FACETS [7]

and BrainScaleS [5] projects and the ongoing Human Brain Project [8], a large-scale

mixed-signal neuromorphic hardware has been developed by the Electronic Vision(s)

group in cooperation with the Technische Universität Dresden and the Fraunhofer-

Institut für Zuverlässigkeit und Mikrointegration IZM Berlin. The hardware dy-

namics are accelerated with a speed-up factor of around 103 to 105 compared to

biological timescales. The BrainScaleS system (Figure 1) includes 20 wafer mod-

ules mounted in industry-standard racks. Those 20 cm silicon wafers were not diced

into individual chips, but kept as a whole. A single wafer features 384 High In-

put Count Analog Neural Network (HICANN) microchips, manufactured in 180 nm

complementary metal-oxide-semiconductor (CMOS) technology. The HICANNs are

grouped into reticles of 8 chips. In a post-processing step, a metal layer is added on

top to connect the reticles. This wafer-scale integration makes super-dense connec-

tions for the on-wafer network possible [9][10]. Defects from manufacturing cannot

be sorted out, so the routing algorithm that configures the hardware for an emula-

tion needs to find solutions to work around these areas. Figure 2 shows such a wafer

with 384 HICANN chips.

2.2. HICANN Microchip

The central building block of the wafer is the 5 mm × 10 mm HICANN microchip.

Each HICANN has 512 neuron circuits, arranged in two rows of 256 circuits in the

center of the chip (Figure 2). In the current version, the neuron circuits implement

the Adaptive Exponential Integrate-and-Fire (AdEx) model [11], emulating firing

patterns found in biology [12]. They are configured by setting a number of analog

and digital parameters prior to the experiment. Spiking events are passed to the

neurons via synapse arrays, located at the top and bottom of the chip. Combining

3



Figure 1: The BrainScaleS neuromorphic hardware including 20 wafer modules mounted

in industry-standard racks. The red ethernet cables connect the modules to the host

computer.

4



Figure 2: Photograph of a full wafer with 384 HICANNs neuromorphic chips and the

metal communication layer added during post-processing. The enlarged image shows a

HICANN without the metal layer. The vertical Layer 1 (L1) bus lanes on the left and

right side of the chip as well as the horizontal L1 buses in the center of the chip are clearly

visible. The two large rectangles are the arrays of 256 by 220 synapse circuits. Between

the synapse arrays and the horizontal bus are two arrays of 256 neuron circuits each.

up to 64 neurons (32 from each neuron row) allows up to 14 080 synaptic inputs.

Grouping multiple hardware neurons together to form one biological neuron reduces

the total number of neurons.

2.3. Communication Networks

Post-processing of the silicon wafer adds a wafer-wide high-bandwidth network be-

tween all the HICANNs. L1 routes on each HICANN include 64 horizontal and

2 × 128 vertical buses, forming together an H-shape as can be seen in Figure 2.

5



Connectivity between the chips is established via repeaters between the L1 buses of

neighboring HICANNs. Crossbar switches connect the vertical and horizontal bus

segments and route the signal to the target chip. Additional switches on the ver-

tical buses navigate the signal towards the synapse arrays where they are received

and processed by synapse drivers. The two-dimensional synapse arrays of 256 × 220

synapse circuits decode the event signals together with the synapse drivers and in-

put the signal into the target neuron circuits. Spiking events from the neurons are

fed into the merger tree and processed together with signals from the on-chip back-

ground generators as well as external L1 signals. The merged signals are injected

into the horizontal L1 buses in the center of the chip to target the next neuron.

Merging the signals allows to use fewer connections of the L1 bus network.

Apart from L1 routing, the wafers need to communicate with outside systems.

During the emulation, external spike signals are inserted into the network and ac-

tivity is recorded. Connectivity with the host computer is established using field-

programmable gate arrays (FPGAs) via Gbit-Ethernet, integration of EXTOLL

technology is currently being evaluated [13]. The speed-up factor of the hardware

system created the need for high-bandwidth connections and data buffering in the

FPGAs.

2.4. Software

A number of software packages developed for the BrainScaleS system provide em-

ulation setup and interaction with the hardware. The Python-based application

programming interface (API) PyNN [14] is a language designed for modeling of neu-

ral networks and experiment protocol. The library includes a number of standard

models for neurons, synapses and plasticity and supports different software simu-

lators as well as the SpiNNaker [15] and BrainScaleS [5] neuromorphic hardware.

PyNN allows high-level modeling of networks (using e.g. populations of neurons)

but also provides access to details of single neurons and synapses.

After describing the network in PyNN, the ”biological” network needs to be trans-

6



lated into the configuration of the neuromorphic hardware. This ”mapping” is

achieved by the C++ software Marocco [16][17]. Marocco is designed in a feed-

forward approach, dividing the mapping task into small natural steps, that are

solved consecutively. In the first step, the neuron placement, one or more hardware

neuron circuits are combined to form a model neuron. In the next step, the merger

tree is configured to merge signals from multiple neurons and external sources. The

L1 network is configured to route the signals across the wafer and finally synapse

drivers and synapse arrays are prepared. Marocco tries to find solutions for a large

variety of neuronal networks while still finding configurations that resemble the

original network as closely as possible. With increasing network size, this becomes

harder. Additionally, hardware defects have to be taken into account all the while.

Therefore, besides offering an automatic mapping algorithm, Marocco allows the

user to manually add constraints helping to find the best configuration result.

7





3. Software Framework

Developing a web-based visualization brings a few advantages. New technologies are

quickly adopted and supported on multiple operation systems and devices. Cross

platform development even for mobile devices is possible. Due to the widespread

use of web technologies, long-term support is guaranteed and a variety of well main-

tained libraries are available. The standard web development technologies HTML,

CSS, and JavaScript [18] are comparatively easy to implement but still yield good

performance.

3.1. Visualization Library

Scalable Vector Graphics (SVG)) is an XML based vector description of graphic

elements. SVGs can be easily integrated into web applications and have the ad-

vantage of being easily manipulable after creation due to their representation as

XML objects. In 2014, the canvas element (<canvas></canvas>) was introduced

with HTML 5. It is heavily used in today’s web applications for drawing graphics

and displaying videos and is supported by all major browsers [19][20]. There are

different methods to draw graphics on a canvas element, SVGs can be embedded

and WebGL [21] makes use of the canvas environment as well. A large number

of JavaScript libraries, built on these HTML 5 technologies, are available, serving

different purposes in drawing graphics. Often times it is a trade-off between easy

implementation and rendering speed.

Benchmarking The huge number of small elements on the wafer sets clear limita-

tions as to which library can be used and also makes it necessary to think about how

detailed the visualization should be. Table 1 gives an overview over the number of

elements on the wafer. The total number of around 40 million synapses exceeds the

number of pixels on a regular screen, even 100 000 L1 buses are probably too much

too view at once since they should be represented by multiple pixels each and have

space around them. However, to estimate the limitations from the software side, a

9



element total number on wafer

neurons 196 608
L1 buses 122 880
synapse drivers 84 480
synapses 43 253 760

Table 1: An overview over the number of elements on a full wafer. There are more

synapses on a wafer than pixels on a regular screen.

technology max elements comments

HTML5 SVG <100K Easy access due to XML format.
HTML5 Canvas <1M Cumbersome to implement.
PixiJS library >1M Fast rendering using WebGL in 2D. Fairly easy

to implement.
ThreeJS library <100K Good choice for 3D applications, otherwise un-

necessary.

Table 2: Different technologies for visualization were compared in a brief benchmarking.

PixiJS allows high performance due to hardware accelerated rendering using the graphics

processing unit (GPU).

simple benchmarking is performed.

For plain HTML5 SVG, HTML5 Canvas as well as the JavaScript libraries PixiJS

[22] and ThreeJS [23], a short test code was written, drawing a number of lines on

the screen and implementing mouseover as well as pan & zoom effects. Performance

depends on the utilized hardware as well as browser version and operating system,

but the results can still be used for comparison.1

The number of lines was varied and the maximum number that still yields smooth

rendering (Table 2) was manually evaluated. Even though SVGs would be a very

convenient choice, the low maximum number of elements would limit the visual-

ization too much. Drawing directly on the HTML5 Canvas allows up to almost 1

million elements, but is more difficult to implement. Both PixiJS and ThreeJS are

JavaScript libraries that use WebGL, allowing GPU accelerated high-performance

1The tests were performed using Chromium Version 57.0.2987, running on Debian 8.10. Hard-
ware specifications: 16 GB RAM, 256 MB VRAM. The test code is available under https:

//brainscales-r.kip.uni-heidelberg.de/projects/marocco/wiki/javascript-visu.

10

https://brainscales-r.kip.uni-heidelberg.de/projects/marocco/wiki/javascript-visu
https://brainscales-r.kip.uni-heidelberg.de/projects/marocco/wiki/javascript-visu


graphics rendering. PixiJS can easily handle over 1 million elements but is limited

to two-dimensional applications. ThreeJS is a great choice for three-dimensional

visualizations but is therefore limited to less than 100 thousand elements. In con-

clusion, PixiJS seems to be the best library for the purpose of a two-dimensional

visualization with a high number of elements but no complicated shapes or the need

for exceptional visual effects. A more in-depth benchmarking of the PixiJS library

is presented in section 4.3

The PixiJS Library PixiJS supports WebGL rendering but is not limited to it.

Some browsers still do not support WebGL, in which case PixiJS uses the slower

canvas renderer as a fallback option. After initialization, objects can be created and

stored in PIXI.Container() objects. Containers can be nested to build something

comparable to a folder structure in a filesystem. However, creating too many con-

tainers slows down the rendering process. Each container has a children object

that holds the substructure. Containers have a member transform with position and

scale properties that are used to effectively move all the children in that container

and create the zooming interaction. To actually see something on the screen, the

PIXI.(WebGLRenderer | CanvasRenderer).render(PIXI.Container()) method

is called on the container to be drawn. The PIXI.Graphics class (will be referred

to as graphics object) is used to draw primitive shapes such as rectangles or circles

with specified fill- and border-style. Storing many shapes as part of a single graphics

object greatly enhances performance as opposed to creating a new instance of the

PIXI.Graphics class for each shape. It has to be noted though, that active areas

for mouse effects can only be defined on the whole graphics object. Another way to

render graphic elements is the generateCanvasTexture() method that transforms

graphics objects into textures of a specified resolution. These textures can then be

used to create a sprite that is rendered on the screen like a normal image. The

limited resolution leads to pixelated graphics when viewed in close detail.

11



3.2. Data Input

When emulating a network, the hardware configuration determined by Marocco

can be archived in a file using the boost::serialization library [24]. The

marocco::results container is traversed recursively and specified properties are

saved for example as binary data, text data or XML. In the following this hardware

configuration file will be referred to as marocco::results file. There are multiple

ways to load the data from this file into the JavaScript application. An obvious

solution would be to write a script that outputs the data in a specific format and

saves it for example as a comma-separated list. This file could then be further

processed in the JavaScript software, but the intermediate step makes the solution

prone to errors (cf. previous visualization tools). In fact there is already an API

implemented in Marocco to process the data from the marocco::results file via

boost::serialization, so it seems to be unnecessary to write custom code for

writing and reading the configuration data again. The question is, how can the

C++ API be accessed with the JavaScript application. Possible options would be

to either add a python wrapping to the C++ code or use Node.js requests with

C++ add-ons, but there is a faster and more elegant way to use the already existing

mechanisms.

Emscripten [25] is a compiler that takes C/C++ source code or LLVM [26] bitcode

and outputs JavaScript. The Clang converter is used to convert C/C++ files to

LLVM bitcode, which is then compiled by emscripten’s LLVM backend to highly

optimized JavaScript code. Comparable to boost::python [27] for Python, Embind

is used to create a register that exposes the C++ functions and classes to the

JavaScript code by defining their names. The example below makes the Marocco

class of the marocco::results container available, the constructor as well as the

functions ”load”, ”save” and ”properties” are now accessible via JavaScript.

EMSCRIPTEN_BINDINGS(marocco_results)

{

emscripten ::class_ <marocco :: results ::Marocco >("Marocco")

.constructor <>()

.function("load", &marocco :: results :: Marocco ::load)

12



.function("save", &marocco :: results :: Marocco ::save)

.function("properties", &marocco :: results :: Marocco ::

properties)

;

...

}

The advantage of using emscripten is that, apart from the bindings, no new func-

tionality is needed. Marocco can be transpiled to JavaScript automatically with

every build of the software stack and used directly in the visualization software.

Marocco can be extended to make the desired data accessible via an API, and as

long as this API stays the same, changes will not effect the visualization software.

3.3. Tools

TypeScript Javascript is an untyped language which means, that the data type

(e.g. string, number) is not explicitly defined, but figured out by the JavaScript

engine at runtime. Browsers use just-in-time compilers that include both interpreter

and compiler. When a part of the code is executed multiple times (e.g. in loops),

this part is compiled and eventually optimized to increase performance. Omitting

type definitions leads to very clear looking code, but can quickly cause unexpected

errors, especially in larger projects.

TypeScript [28] is a superset of JavaScript maintained by Microsoft, that adds

first and foremost static typing to JavaScript. This means, that JavaScript code

can be used in a TypeScript file (.ts) and works just fine, but optionally the type

can be specified in which case the TypeScript compiler will throw an error as soon

as wrong data types are assigned.

// declare variable of type number

let myVar: number;

// assign string to that variable

myVar = "I am a string"; // error

Another benefit of using the TypeScript compiler is, that multiple .ts files can

be compiled into a single .js file. Large projects can be separated into different

parts, but in the compiled end version of the software, only one file needs to be

13



Figure 3: Typescript allows compiling all the TypeScript files in the src folder into a

single JavaScript file (main.js). The complete file structure can be found in the appendix.

included. Figure 3 gives an overview of the resulting file structure. The TypeScript

compiler also allows setting a target version for the JavaScript code, so that the

most recent features can be used without limiting the software to work only on the

latest browser versions. Using TypeScript namespaces, the code can be organized

to avoid problems caused by globally declared variables.

jQuery jQuery [29] is a library that brings additional features mostly for DOM

interaction and animations. HTML elements are selected via $("selector") and

can be easily manipulated. Below is an example for implementing a mouseover effect

on the HTML tag <div id="myDiv"></div>.

$("#myDiv").mouseover( () => {

console.log("mouse is over div");

});

The extension jQuery UI [30] is a set of user interface (UI) interactions that makes

it easy to implement the most common UI items such as draggable and resizable

windows. Both libraries perform tasks that could also be implemented in plain

JavaScript and CSS, but make it a lot easier. jQuery was used in the visualization

to dynamically build and manipulate the user interface.

14



4. Results

When a neural network is built with PyNN, Marocco tries to find a hardware con-

figuration that resembles the network as closely as possible. Going through the

configuration parameters in a text file can be very cumbersome, for large networks

it becomes rather impossible. A visualization of the hardware and the configura-

tion could save time and provide a better overview of the utilization of the wafer.

Previous visualizations developed within the group ([16], [31], [32], [33], [34], [35])

were designed to solve specific tasks. They were located at a different code path

than the continuously changing software stack and were thus not compiled with the

underlying data structures. Errors occurred, the visualizations were not maintained

and are mostly not usable any longer.

Building on the work of my previous internship, a browser-based visualization

was developed in the course of this thesis. The goal is to lay a solid groundwork

for a maintainable and easily extendible software that could primarily be used as

a static debugging tool. The hardware is to be represented in the necessary detail

and a few configuration parameters visualized. As a crucial feature for debugging,

visualization of the L1 routes is implemented. By separating the code in modules

with discrete responsibilities it will be easy to make changes to the software at a

later point.

4.1. Visualization Features

Before the actual visualization2 can be started, the wafer configuration has to be

loaded into the program. A start screen (Figure 4) lets the user browse through

local files, or choose a file via drag and drop. The software checks if any file was

selected at all, but has no functionality to check the type of the file, so it is the user’s

responsibility to upload a correct marocco::results file that can be processed by

Marocco. On hitting the ”upload” button, the file is uploaded, and the visualization

2A working example of the visualization is available from the Electronic Vision(s) GitHub account:
https://github.com/electronicvisions/wafer-visu.git.

15

https://github.com/electronicvisions/wafer-visu.git


Figure 4: Starting the software by opening main.html opens up a start screen. The

network configuration in the marocco::results file can be selected via the file browser

or drag and drop. Hitting the upload button starts the visualization for that network

configuration.

initialized and started.

The user will first see the full wafer in what is called the ”overview” (Figure 5).

The HICANNs are drawn as rectangles with a two-to-one ratio, resembling the shape

of the physical wafer. As explained in section 4.2.2, the wafer can and has to be

drawn at different levels of detail. The overview does not show all the elements of a

HICANN in full detail, but instead provides some cumulative information about the

utilization of different parts of the wafer. L1 Bus segments, for instance, are drawn

as rectangles in a color representing the number of routes running over all the buses

together on that segment. Further, the user can choose to display photographs of

the HICANNs to get a physically more accurate visualization. In what is called

the ”detailview”, all single buses are drawn on the HICANN as lines, so the user

can check for example the exact path of a L1 route from the source to the target

HICANN.

There are two fundamentally different modes to coordinate the visualization. The

16



Figure 5: After uploading the network file, the visualization starts with an overview of

the full wafer. The UI was designed to give much space to the visualization window and

has two panels to access parameters and control the visualization.

automatic mode switches automatically between overview and detailview when a

certain zooming threshold is passed. This way the user does not need to worry

about manually selecting the supposedly appropriate level of detail and also no

performance issues should occur. However, the automatic switching yields short

loading breaks during panning and zooming, also the user might want to display

different details than the ones proposed by the automatic mode. Hence, a manual

mode was introduced that gives the user complete control over what elements to

show for each HICANN. Elements can be selected and deselected via checkboxes.

User Interface The UI is designed to leave the main space to the visualization.

Pinned to the right side of the window is an information panel that provides informa-

tion about a selected HICANN and allows some visualization settings. The number

of neurons and the number of inputs on a chip, as well as the number of L1 routes

running over the three segments ”vertical left”, ”vertical right”, and ”horizontal”,

are displayed together with a color gradient for each property. The color gradient’s

far left and far right colors correspond to the minimum and the maximum of a prop-

17



erty throughout the whole wafer. Below the properties section, the automatic mode

”Auto” or the manual mode ”Manual” can be selected. Depending on the selected

mode, different options for customization are listed.

The panel on the left side of the window contains two ”tree” dropdown lists.

The first one ”Wafer” contains a list of all HICANNs and their elements for both

overview and detailview. The second list ”Routes” holds all the L1 routes. The

infobox attached to the right info panel shows information about selected routes.

When routes are created, a unique number ”ID” is assigned. If multiple routes are

selected, their IDs are listed. If only one route is selected, the source and target

HICANN is displayed and by clicking on ”details”, all the traversed L1 bus segments

are listed.

User Interaction Moving the mouse while holding down the left mouse button

moves the whole wafer around (panning). Zooming is achieved by scrolling the mouse

wheel. The reaction of the visualization though differs between the automatic and

the manual mode. Additionally, the user can customize the modes with checkboxes

in the right info panel. In auto mode, the user can choose what details (e.g. synapse

arrays, left buses) to load when the threshold is passed. In manual mode, elements

for all the HICANNs on the wafer can be selected to be visible or hidden.

To allow selecting elements for every HICANN separately, the ”Wafer” list in the

left info panel has checkboxes for each element. This way, the user can choose to

display, for example, the detailed L1 buses for all those HICANNs, a specific L1

route is traversing. Clicking on a HICANN in the list (not on the checkbox, but

the label) animates the wafer to center the selected HICANN. The properties are

displayed in the right info panel (Figure 6). The same can be achieved by clicking

on a HICANN in the visualization.

All the L1 routes listed in the ”Routes” list have checkboxes as well, making

selected routes visible in the visualization. The routes are drawn in random col-

ors but keep the color when they are hidden and displayed again. Clicking on the

18



Figure 6: Clicking on a HICANN in the left info panel triggers an animation to center

the selected HICANN and displays its properties in the right info panel.

Figure 7: All L1 routes are drawn as colored lines running over the L1 bus segments.

After clicking and highlighting a selection of routes, all routes can be showed in color again

by double-clicking on any route.

19



label of a route in the list has the same effect as clicking on a route in the visu-

alization: The clicked routes are drawn on top and all other routes are greyed out

(Figure 14). If multiple routes are on top of each other and selected together, they

are all highlighted. Additionally, the route infobox displays information about the

selected routes. Double-clicking on a route or alternatively clicking on the ”Routes”

label draws all routes in color again and resets the infobox (Figure 7).

During development, an emphasis was put on a user-friendly UI with few set-

tings and a maximized visualization window, but still giving access to the necessary

customizations.

4.2. Code Structure and Implementation

One of the major goals and challenges throughout this thesis was to write maintain-

able code. With growing size of the project, it gets increasingly difficult to maintain

and debug code if all is defined in global space. Using the TypeScript compiler

option to combine multiple .ts files into a single .js out-file and exploiting names-

paces and classes made it possible to separate chunks of code into parts with clearly

defined dependencies on each other. Namespacing, i.e. defining modules with their

own variable scopes, is per se not yet available in JavaScript ES53, but namespaces

(formerly internal modules) can be defined in TypeScript and are compiled into

function variable scopes.

There are three such namespaces: tools, pixiBackend, and internalModule.

tools is just a collection of useful general functions, that do not have a specific

connection to the visualization software. Examples are randomHexColor() that

returns a random color in the hexadecimal form or numberInString(string) that

filters out the numbers in a string.

pixiBackend contains all the functionality that directly uses the PixiJS library.

The goal is to make it easy to switch to a different visualization library without

having to rewrite the whole software. Thus, pixiBackend contains, besides all the

3ECMAScript 5.1 adopted June 2011, language specification

20

http://www.ecma-international.org/ecma-262/5.1/Ecma-262.pdf


Figure 8: The tree structure shows the dependencies of the namespaces and classes.

The Wafer class at the top of the tree is completely independent. Subordinate classes

need instances of the higher classes for initialization. Dependencies on the namespaces

pixiBackend and tools are indicated by the red star and the blue cross respectively.

containers to store the graphic elements, mostly methods to draw primitive shapes.

There are different functions to draw, for example, a rectangle with or without mouse

interaction, as a graphics object or as a sprite, multiple or just one rectangle as one

graphics object. The functions zoomIn, zoomOut, and moveStage handle the pan &

zoom interaction. The following example function drawCircle implements creating

a new graphics object, adding a primitive filled circle and storing the graphics object

in a specified PixiJS container.

function drawCircle(container: PIXI.Container , x: number , y:

number , radius: number , color) {

const circle = new PIXI.Graphics ();

circle.beginFill(color);

circle.drawCircle(x, y, radius);

circle.endFill ();

container.addChild(circle);

}

The namespace internalModule contains a number of classes that each have their

separate purposes but have dependencies on each other. They are written into sep-

arate files to keep a clear structure. TypeScript manages to combine classes from

multiple files into the same namespace. Figure 8 shows graphically how the names-

paces and classes depend on each other. The classes Wafer, Detailview, Overview,

RoutesOnStage, Automode, Manualmode, and ReticlesOnStage are all defined in

the namespace internalModule and do not inherit from each other as the graph may

21



mistakenly suggest. The tree structure shows the dependencies, beginning at the

top with the completely independent Wafer class. New instances of Detailview

and Overview need an instance of Wafer to be created. Similarly, RoutesOnStage

is dependent on Detailview (and therefore also on Wafer), ReticlesOnStage is

dependent on Overview, and Automode and Manualmode are dependent on both

Detailview and Overview. As indicated by the red borders and stars, all classes

in internalModule except for Wafer also have dependencies on the pixiBackend

namespace. All those classes need to draw graphic elements at some point and

need the pixiBackend for that. The appendage ”onStage” for the routes and ret-

icles classes comes from the top level PixiJS container, typically named ”stage”.

Overview, RoutesOnStage, and ReticlesOnStage also need functions from the

tools namespace, as indicated by the blue crosses.

In the main.ts file everything comes together and the class instances are con-

nected. The dependencies are created by passing the class instances to the respec-

tive constructors. Following up is a more detailed description of the classes in the

internalModule namespace.4

4.2.1. Wafer

The Wafer class is located in the file wafer.ts and contains the core hardware ele-

ments and properties. Besides the minimum and maximum values of the HICANN

coordinates, both enumerated and cartesian, a hicanns array contains informa-

tion about each individual HICANN. For each HICANN a new instance of the

HICANN class is instantiated with its coordinates and a number of properties that

are currently available via the Marocco API. Those properties are: hasInputs,

hasNeurons, isAvailable, numBusesHorizontal, numBusesLeft, numBusesRight,

numBusesVertical, numInputs, and numNeurons. They are used to draw the

color map, as explained in the section Overview. The HICANN coordinates and

4Using TypeDoc (http://typedoc.org/api/), a complete documentation of the software was
generated. The documentation is available as an HTML document in the doc folder of the
webvisu project.

22

http://typedoc.org/api/


properties are not hardcoded but dynamically loaded into the software using the

marocco:results API inside the method Wafer.loadOverviewData. Since the

number of available and implemented properties is fairly small, all data can be

loaded at once. With a larger number of features and therefore more data to load

in future versions, the data should be loaded asynchronously in batches only when

it is needed.

loadOverviewData(networkFilePath ?: string) {

// load the marocco :: results file into Marocco

const marocco = networkFilePath ? new Module.Marocco(

networkFilePath) : new Module.Marocco ();

// loop through all HICANNs

for (let i=this.enumMin; i<=this.enumMax; i++) {

// Build Maroccos HICANN and property objects

const enumRanged = new Module.HICANNOnWafer_EnumRanged_type(

i)

const hicann = new Module.HICANNOnWafer(enumRanged);

const properties = marocco.properties(hicann);

// create new instance of local HICANN class

// store coordinates and properties

this.hicanns.push(new HICANN(

i,

hicann.x().value(),

hicann.y().value(),

properties.has_inputs (),

properties.has_neurons (),

properties.is_available (),

properties.num_buses_horizontal (),

properties.num_buses_left (),

properties.num_buses_right (),

properties.num_buses_vertical (),

properties.num_inputs (),

properties.num_neurons (),

));

}

// further process properties

this.maxPropertyValues ();

}

Lastly, the functions northernHicann, easternHicann, southernHicann and

westernHicann return the enum coordinate of the northern, eastern, southern and

western HICANN respectively, if it exists.

23



Figure 9: HICANN in the overview representation. A color

scheme provides information about the utilization of the part

of the chip. The route segments are colored in shades of

green, indicating how many routes run over each segment.

The blue background color of the chip represents the number

of neurons on that HICANN and the triangle at the bottom

of the chip is colored depending on the number of inputs.

4.2.2. Overview and Detailview

As a first step, a very rough visualization of the wafer is drawn. Later more detailed

objects are added, therefore the visualization is divided into the Overview and the

Detailview class.

Overview Before drawing all the L1 buses and synapses in detail, a color map was

developed that had few enough elements to be rendered for the full wafer and still

provides meaningful information. All buses on one segment were combined into a

single rectangle, with the background color according to the gradient, representing

the total number of L1 routes running over that segment (Figure 9). If for example

eight routes use the left vertical buses on HICANN 194, and the maximum number

of routes using a vertical bus anywhere on the wafer is 18, a rectangle in medium

light green color will be drawn on the left side of HICANN 194. The same principle

holds for the other route segments as well as the number of neurons and the number

of inputs on a chip. The number of neurons is represented by a colored background

rectangle, the number of inputs by a triangle located at the bottom of each HICANN.

The full wafer is drawn by calling the drawWafer function. Inside that func-

tion, the position on the stage is calculated for every HICANN, according to preset

hicannWidth, hicannHeight, and gap properties. Subsequently, the color-coded

elements are drawn by calling the functions drawHicannBackground, drawInputs,

24



and drawBusH. drawHicannBackground, for instance, uses tools.colorInGradient

to determine the color in the number-of-neurons color gradient and calls

pixiBackend.drawRectangle to draw the HICANN background in that color.

drawHicannBackground(hicannNumber: number , x: number , y: number)

{

// calculate color on number of neurons color gradient

let colorNumNeurons = tools.colorInGradient (...);

// draw rectangle as hicann representation

pixiBackend.drawRectangle(pixiBackend.container.backgrounds , x

, y, this.hicannWidth , this.hicannHeight ,

colorNumNeurons);

}

Detailview The detailed visualization of single L1 buses and synapses followed the

implementation of Overview to pave the path for drawing L1 routes on the buses.

To improve performance when drawing the increasingly large number of elements,

many elements were grouped together in PIXI.Graphics objects and rendered as

PIXI.Sprites. As an example, all the 128 vertical left buses of one HICANN are

drawn together. Rendering sprites instead of graphics objects is computationally

more expensive but makes it possible to use antialiasing. Drawing a large number

of thin lines as a representation of the L1 buses leads to undesired pixelation effects

because the rendering engine has to decide whether the line fits on a row of pixels

or not. In video games, antialiasing is very commonly used to smooth edges. Unfor-

tunately, graphics objects cannot be antialiased with the WebGL renderer because

it uses the stencil buffer. However, rendering the graphics objects as textures using

the canvas renderer allows smoothing edges. These textures are then included as

sprites into the visualization. The textures are created with linear scale mode and 10

times the screen resolution. This reduces pixelation effects dramatically (Figure 10).

When zoomed in very closely, one starts to see the smoothing around the edges of

the buses. To avoid that and get clearly distinguishable shapes at all times, the

sprites are removed at a predetermined zoom level and instead the graphics objects

drawn (Figure 11).

The method drawHicann handles drawing all the graphics objects when entering

25



Figure 10: The large number of regularly spaced elements leads to pixelation effects that

look like completely missing elements (right image). Using antialiasing, these effects can

be drastically reduced (left image).

Figure 11: At very close distances, the sprites limited resolution leads to blurry lines (left

image). Thus, the sprites are automatically hidden and the graphics objects displayed

instead (right image).

26



the detailview. Similarly, resetDetailview can be called when leaving the detail-

view to remove the graphics objects from the respective PIXI.Containers. The

methods hicannCenter, hicannClosestToCenter, updateSurroundingHicanns,

distanceFromCanvas, determineThreshold, and northernHicannCloser,

easternHicannCloser, southernHicannCloser, westernHicannCloser aide

determining which HICANN is currently in the center of the display and when to

switch to the neighboring HICANN, as explained in the chapter Automode.

4.2.3. Automode and Manual Mode

All the Elements that are drawn with the Overview and Detailview classes need

to be managed. Two different user modes were developed to render objects visible

or hide them depending on the user input. The automode determines automati-

cally what details on which HICANN to draw, while the manual mode gives the

user complete control. The possibility to switch the mode at every point makes

this complicated, on the other hand maintaining a lot of variables that save the

state of the visualization can be resource-inefficient and lead to confusing code. The

task is made even more difficult by the need to delete graphics data when it is not

needed anymore, in order to improve performance. Reactive programming based on

so-called asynchronous event streams is a common concept in JavaScript program-

ming. Libraries like react.js [36] help to organize large numbers of asynchronously

interacting components, but were not yet considered necessary for this project.

Automode The automode makes zoom level dependent decisions on what de-

tails to visualize. The wafer visualization is split into three parts, overview,

detailview, and detailview level 2. Zooming past Detailview.threshold and

Detailview.threshold2 determines which detail level to load. The Detailview

and DetailviewLevelTwo are only loaded for a limited number of HICANNs. Specif-

ically the one, the mouse is over during zooming, or the one closest to the center

of the screen as well as the eight surrounding HICANNs. Drawing all details of all

27



Figure 12: The automode switches automatically between the three levels Overview,

Detailview and DetailviewLevelTwo. The basic structure are start functions for each

level. Detailview can be reached from either Overview or DetailviewLevelTwo and

startDetailview takes that into account. Overview can be accessed directly from

DetailviewLevelTwo when either the HICANN is moved out of scope, or the manual

mode is started.

HICANNs would yield painfully slow performance, if not cause the software to crash

on most browsers and devices5.

Changing between detail levels is done by the methods startOverview,

startDetailview, and startDetailviewLevelTwo as shown in Figure 12. Each

of these methods needs to take care of three things: drawing graphic elements if

they are not drawn yet, setting the visible property of already drawn graphic el-

ements and updating the Detailview parameters enabled and levelTwoEnabled

that describe the current state of the level of detail. The detailview can be reached

either by zooming in from the overview or zooming out of detailview level 2. The

sprite representation of the L1 bus segments is already drawn as soon as the vi-

sualization is loaded, but hidden to make it available for the Manual Mode. The

graphics objects for the bus segments as well as sprites and graphics objects for the

5Tested on A: Chromium Version 57.0.2987, running on Debian 8.10 with 16 GB RAM, 256 MB
VRAM and B: Google Chrome Version 65.0.3325, running on macOS HighSierra with 16GB
RAM and 2GB VRAM.

28



synapse arrays are not drawn yet. Hence if the detailview is started coming from

the overview, those parts need to be drawn by calling Detailview.drawHicann.

Prior to that, the indices of the surrounding HICANNs are determined. All ele-

ments are set visible or hidden with the methods setOverview, setDetailview,

and setDetailviewLevelTwo.

startDetailview(hicannIndex: number) {

// check if coming from detailview level two

if (!this.detailview.enabled) {

this.getDetailedHicanns(hicannIndex);

// draw detail objects i.e.

// synapse array level one and level two

// buses level two

for (const hicannIndex of this.detailedHicanns) {

this.detailview.drawHicann(hicannIndex);

};

}

// display level one detailview

// hide overview containers

for (const hicannIndex of this.detailedHicanns) {

this.setDetailview(hicannIndex , true);

this.setOverview(hicannIndex , false);

}

// hide level two details

this.setDetailviewLevelTwo(false);

// set parameters in detailview

this.detailview.enabled = true;

this.detailview.levelTwoEnabled = false;

this.detailview.currentHicann = hicannIndex;

this.detailview.updateSurroundingHicanns ();

}

startDetailviewLevelTwo and startOverview work in principle exactly the

same. Starting level two, nothing needs to be drawn but only the visible property

set correctly for all elements. startOverview serves as a reset function for all the

detailview elements, both graphics objects and sprites. The synapse arrays have to

be removed again in order to take the load off the renderer.

This set of functions allows now to easily handle not only zooming in and

out but also switching to automode from every zoom level or panning the cur-

rently centered HICANN out of the scope of the screen. startNorthernHicann,

startEasternHicann, etc. first call startOverview to reset the Detailview and

then startDetailview and startDetailviewLevelTwo on the neighboring HI-

29



CANN, depending on the Detailview.enabled and Detailview.levelTwoEnabled

properties.

Manual Mode The manual mode is in principle very simple but is complicated

by the large number of DOM elements, the mode is interacting with. The idea is,

that the user has full control over which elements to show in both the overview

and the detailview representation. In the left panel of the window, a complete tree

list of all HICANNs allows setting checkboxes for the full overview, full detailview

as well as the individual elements such as detailed left buses. The right info panel

holds further checkboxes to select all elements of one type at once. When switching

to automode and back to manual mode, the state of the visualization should be

restored, all elements set to visible or invisible, just like before leaving the manual

mode. For that reason, a selectedElements object was introduced to always hold

the information about which elements are selected by the user. Here again, a reactive

programming scheme is used to synchronize the following properties: The DOM

checkboxes changed by the user, the selectedElements object in manual mode,

and the visible property of the PixiJS elements. The flowchart Figure 13 shows

this connection. Even though the manual mode is designed to let the user control

which elements are visualized, the switch between sprites and graphics objects is

done automatically, because there is no benefit from showing blurry sprites instead

of sharp graphics objects at a large zoom scale.

Since the user chooses which elements from the detailview to show, there is in

principle no startDetailview function as in Automode needed. However, the text

showing the HICANN enum coordinate when hovering the mouse over a HICANN

is not useful when only one HICANN takes up most of the screen. Therefore,

the HICANN number is hidden when the zoom level is greater than the threshold

for the detailview. Detailview level two (i.e. graphics objects instead of sprites) is

entered automatically and not managed by the user, as previously explained. The

methods startDetailviewLevelTwo and leaveDetailviewLevelTwo take care of

30



Figure 13: User interaction in the form of zooming and clicking checkboxes is used as

input for the manual mode to control the visualization via the pixiBackend. Switching

from automode to the manual mode requires resetting the details from the automode and

restoring the previous selections of the manual mode

that for the manual mode. Essentially the same three things need to be done as in

the corresponding methods of the Automode. Variables, describing the state of the

visualization need to be set, missing graphic elements are drawn (or removed when

leaving the detail level), and visible properties set for the PixiJS containers. To

maximize performance, only the graphics objects for those buses, that are selected

by the user via the checkboxes, are drawn. Consequently, the PixiJS container for

these graphics objects has in general not 384 children, but only as many as elements

were selected, and not even in numerical order since elements can be selected and

deselected in any order at any time. Hence, an additional object containerIndices

keeps track of the graphics objects’ index in the respective PixiJS container. If

single detailview elements are selected via the checkboxes, the methods busesLeft,

busesRight, and busesHorizontal handle setting properties and possibly drawing

new graphics objects just for that one selected element.

Finally, the checkboxes themselves should be consistent, meaning that if for ex-

ample all detailview elements for one HICANN are checked, the detailview checkbox

itself for that HICANN should be checked as well. The checkAllCheckboxes and

setAllCheckboxes methods handle that.

31



4.2.4. Routes

Drawing detailed L1 routes between HICANNs was one of the main goals right

from the start and is a useful feature for debugging purposes. Instead of see-

ing only how many routes run over which L1 bus segment, the exact bus should

now be highlighted. The data is at the time of writing not yet available via the

marocco::results API, so L1 routes were created manually using the stand-alone

library for L1 routing [17] and stored in JavaScript Object Notation (JSON) for

the meantime. The function loadRouteData in routes.ts handles the JSON and

stores the routes in an internal format. An instance of Route holds an array of

RouteElements of type ”vLine” or ”hLine” for vertical and horizontal L1 bus seg-

ments respectively. The class RoutesOnStage holds all the Route instances and has

the methods needed for drawing the Routes and interacting with them.

L1 Routes are drawn as a number of randomly colored basic rectangles for each L1

route segment. At the intersection of horizontal and vertical route segments of the

same route, switches are represented by white circles. Similar to the HICANN list

for the manual mode, a routes list in the left info panel on the screen lets the user

select which routes to show. Since the routes should be clearly visible at every zoom

scale, the route width is adjusted automatically in five steps during zooming. When

the zoom event occurs, the method currentZoomLevel determines which of the five

levels should be started and compares that to zoomLevels.current. If they do not

coincide, all routes are removed from the PixiJS containers, and new routes drawn

with the adjusted width. All routes have a visible property, redrawing routes

updates only the position and width and height values of the old route objects.

When L1 routes are clicked, all other routes are greyed out and properties about

the selected route are shown in the route infobox (Figure 14). Source and Target

HICANN can be extended to show a list of all the L1 routes segments. Double-

clicking on a route resets the route infobox and shows all routes in color again. The

same interaction is possible by clicking the ”Routes” label in the route list.

32



Figure 14: Selecting one or more L1 routes by clicking on them in the visualization or in

the routes list in the left info panel highlights those routes by greying out all other routes.

If only one route was clicked, the route infobox in the top right corner of the visualization

displays detailed information about the route.

4.2.5. Reticle Coordinates

As a last feature, a lookup plot for the reticle coordinates (i.e. DNC coordinates) and

FPGA coordinates was created (Figure 15). When zooming all the way out (wafer

is fully displayed), an overlay with reticle and FPGA coordinates is automatically

shown. Additionally, the overlay is accessible at every zoom level via a checkbox in

the right info panel. The drawing and hiding of the lookup plot works with the same

principles as already discussed for other parts of the visualization, the interesting

part was to calculate the position of the reticles on the wafer. Since the positions for

all HICANNs were known, the top left HICANN of a reticle was determined from

the reticle coordinate.

4.2.6. Global Namespace

In the global variable scope of the main.ts file, the visualization software is set up

and all the modules built together. After the DOM finished loading, setupScreen is

started. A setup screen allows the user to upload the marocco::results file either

33



Figure 15: The lookup plot for reticle and FPGA coordinates can be accessed either by

zooming all the way out or by clicking the ”reticle coordinates” checkbox in the settings

section of the right info panel.

using the file browser or via drag and drop. Clicking the upload button, the file

is read using a JavaScript FileReader object and then written into emscripten’s

virtual file system to make it accessible for marocco. The loading screen is started

and the function main called, which starts the core visualization program.

Initially, everything was declared in global space, later parts were separated and

packed into namespaces and classes. Still a number of global variables remain,

serving mainly as configuration properties for the visualization, such as HICANN

width and also the colors for property gradients in the right info panel.

At the top of the document, all module files are referenced to make them avail-

able in main.ts. Inside main, new instances of those classes are created and built

together. It is important to do that in the right order respecting the dependencies.

First, pixiBackend is set up, creating the PixiJS container ”folder” structure. Fol-

lowing the dependencies tree in Figure 8, a new instance of Wafer is created and

the data from the marocco::results file loaded with wafer.loadOverviewData.

Next, Overview is set up using the global visualization property variables. At this

point, the overview of the wafer can already be drawn with Overview.drawWafer.

34



Subsequently, Detailview, RoutesOnStage, ReticlesOnStage and the two modes

Automode and Manualmode are initialized. The visualization is set to start in auto-

matic mode.

Even though most of the HTML structure is coded statically or controlled with

CSS, some JavaScript is necessary to set up the UI. The HICANN list and the

routes list in the left info panel are created dynamically from the wafer data in the

marocco::results file and the routing data, currently accessed via the routes.json

file.

Lastly, all the event handlers for mouse and keyboard interaction, as well as

checkboxes are defined in the main function. handleWheel does not only zoom in

and out according to mouse wheel movement but also controls manual or automatic

Mode and triggers the route width adjustments. Basically, the PixiJS scaling value

is compared to the predetermined thresholds to then call the respective functions in

manual or automatic Mode. An emphasis was put on performing as few operations

as possible to try and allow smooth zooming, but also keep a clear structure that

can easily be modified for new features.

4.3. Benchmarking

Even though the PixiJS library allows high-performance visualizations, it is easy

to run into performance issues by using the wrong mechanisms. The goal of the

first part of this section is to explore the general behavior of the PixiJS library, to

find out about limitations and draw conclusions about best practices. In the second

part, the visualization software’s capability of drawing L1 routes is tested.

4.3.1. PixiJS Benchmarking

The presented benchmarking was executed in a testing environment, using the

namespace pixiBackend that was developed for the wafer visualization. A simple

canvas of the size 952 pts × 781 pts6 was set up and WebGL used for rendering. High-

6952 pts × 781 pts was the effective size of the browser window and has no further reason.

35



resolution time measurements are possible in browsers with the performance.now()

method. To prevent timing attacks, the time stamps have been rounded to the near-

est 5 microseconds in most browsers [37]. As a reaction to Spectre and Meltdown the

time resolution was then even further reduced [38]. For the purposes of this bench-

marking however, the time resolution of performance.now() is still precise enough

and was used to time different processes such as creating (”drawing”) graphics ob-

jects in PixiJS. To calculate the frame rate in frames per second (fps), the stat.js

tool counts each time, a new frame is drawn with requestAnimationFrame() over

the span of 1000 milliseconds. The tool was extended to write out 10 frame rate

measurements by pressing an action key and calculating mean value and standard

deviation. The distribution of the frame rate measurements varied a lot but resem-

bled in most cases a gaussian distribution. More data points would be necessary

to perform a fit. The GPU memory and RAM usage as well as CPU usage was

retrieved from the Google Chrome Task Manager [39].

All tests were performed with Google Chrome Version 65.0.3325 on macOS High-

Sierra with 16GB RAM and 2GB VRAM.

Comparison of Methods Since WebGL is using the GPU for hardware accelerated

computation, the GPU memory presents a limitation. However, depending on the

”method” used for drawing in PixiJS, other factors will lead to limitations before-

hand. Table 3 shows a comparison between storing every shape in its own graphics

object (GO), storing all shapes as a single graphics object, and creating a sprite

with twice the resolution of the canvas. In each case, an array of 50 × 50 squares

with a length of 100 px and a 10 px gap between the squares was drawn. The frame

rate and CPU usage were measured during panning interaction.

Using a new graphics object for every new square yields with 9 fps the worst per-

formance. This is certainly not only due to the GPU memory usage of 324 MB, since

drawing a sprite takes up 922 MB of GPU memory but still results in the maximum

frame rate of 60 fps. The high RAM consumption of around 2 GB probably con-

36



parameter multiple GO single GO single sprite (2x resolution)

GPU memory [MB] 324.0±0.5 3.00±0.05 922.0±0.5
RAM [MB] 2000±50 87.40±0.05 54.90±0.05
CPU [%] 23.25±0.79 21.19±0.61 21.02±0.42
upload time [ms] 7730.300±0.005 11.800±0.005 5.600±0.005
frame rate [fps] 9.01±0.39 59.99±0.01 60.0±0.31

Table 3: Comparison of different methods to draw graphics in PixiJS. Drawing 50x50

squares each stored in a separate graphics object (GO) yields by far the worst performance.

sprites require a significantly higher amount of GPU memory than drawing all rectangles

as one graphics object but a lower amount of RAM.

tributes to the low frame rate for the multiple GOs. Interestingly the CPU usage

during panning is almost the same for all three drawing methods, but when leaving

the browser tab in idle state with multiple graphics objects drawn, a CPU usage of

around 99 % was noted. The reason for this is not clear as there were no instructions

coming from the test software at all. Storing all squares in a single graphics object

takes up only 3 MB of GPU memory and is outweighed by RAM usage as will be ex-

plored in detail later. The upload time should theoretically be the timespan needed

for uploading the data into the GPU, which is necessary before rendering the first

time. However, there are other processes that cannot be measured well, which are

often times much longer. Thus, the upload time turns out to be not a good measure

of the latency.

In the following, the methods are explored in detail.

Sprites As previously shown, the GPU memory is the primary limiting factor of

performance, when drawing large sprites. The GPU memory needed for a sprite

depends on its width and height as well as its resolution. PixiJS provides an option

to specify a resolution relative to the canvas resolution. In the following, resolution

refers to the ratio sprite resolution
canvas resolution

. Canvas resolution is not necessarily the devices

screen resolution. When HiDPI (High Dots Per Inch) images became common,

device independent sizes had to be introduced to display objects in approximately

37



the same size on different devices, independent of its resolution. The retina screen

of a MacBook, for example, has approximately twice the resolution of a traditional

screen. Web browsers deal in different ways with this issue. A canvas in Safari, for

example, takes care of the higher resolution, while Chrome scales the canvas in a way

to always have the standard resolution at the same canvas size. When comparing

memory allocation from drawing on a canvas in a browser other than Chrome, the

device’s resolution has to be taken into consideration.

In Figure 16 the allocated GPU memory for a sprite is plotted against its size

and resolution. For the left graph, a varying number of squares with a length of

100px and gap between the squares of 10px was drawn into a single sprite with

resolution 2. The relation can be well approximated by a linear function. For the

second graph, an array of 30x30 squares with the same size as before was drawn

at different resolutions. The quadratic relation comes from the two dimensions of

the sprite. The GPU memory allocation is limited by the 2.0GB VRAM of the

Graphics Card. Using the gradient fit parameter from the first graph, and taking

the quadratic dependency on the resolution into account, a formula for calculating

the required memory of a sprite can be put up:

size[Bytes] = 7.48
Bytes

px
· numPixels · resolution2

where numPixels is the number of pixels the sprite would have at resolution one.

Even though the maximum size of a sprite is limited by the VRAM, multiple

sprites each of maximum size can be drawn after each other. In that case, the sprite

data is distributed to both RAM and GPU memory while the GPU memory rises

above the physical amount of VRAM as shown in the bar chart Figure 17. This

is possible because the GPU memory is a virtual amount, including swap memory.

RAM and GPU memory together equal the amount of memory needed for one sprite

multiplied by the number of sprites, as expected. It has to be noted though, that

the sprites need to be drawn on top of each other. Drawing them with a relative

shift results in a too large size of the effective sprite.

38



0 1 2

0

1

2

number of pixels [1 × 108]

G
P

U
m

em
or

y
[G

B
]

1 2 3 4
0

0.5

1

resolution

A B

Figure 16: Memory allocation for sprites, depending on their size and resolution. A: a

sprite of varying size with constant resolution was drawn and the allocated GPU memory

measured. The linear fit has a gradient of 7.48Bytes
px . B: The sprite size was kept constant

and the resolution relative to the canvas resolution increased. In effect, the sprite size

increases quadratically as expected due to the two-dimensionality.

1 2 3 4 5
0

2

4

6

8

10

12

number of sprites

m
em

or
y

[G
B

]

GPU memory RAM

40

50

60

fr
am

e
ra

te
[f

p
s]

mouse-pan frame rate

Figure 17: Memory allocation for drawing multiple sprites, each of maximum size. The

sprites need to be drawn at the same position on the canvas to keep the effective size of the

resulting sprite the same. This way, the GPU memory can exceed the physically available

VRAM. In addition, RAM is allocated. RAM and GPU memory add up to a multiple of

the 2 GB needed for one sprite. the Memory has to be swapped around during rendering

processes, resulting in a lower framerate (white dots).

39



0

1

2

m
em

or
y

[G
B

] GPU memory
RAM

0 0.5 1 1.5 2 2.5 3 3.5 4

0

5

10

15

number of rectangles [1 × 106]

ti
m

e
[s

]

draw time
upload time

A

B

Figure 18: A varying number of rectangles was drawn into a single graphics object until

crashing at around 3.6 million elements. A: RAM and GPU memory allocation depend

linearly on the number of rectangles and RAM is the limiting factor in this case. B:

Especially the time to upload graphics data to the GPU increases rapidly up to 15 seconds

for the maximum number of rectangles.

Interestingly, the frame rate remains constantly at 60 fps until the GPU memory

is full. This means that if no data has to be loaded into the GPU it is processed

really fast. When the physical size of the VRAM is exceeded, the frame rate drops

significantly, as shown by the white dots in Figure 17.

Graphics Objects To explore the limits of drawing graphics in the most performant

way possible, a varying number of squares was created as a single graphics object

(Figure 18). The relationship between both RAM and GPU memory and the number

of rectangles is clearly linear, up to the maximum number of around 3.6 million

rectangles at which the whole browser tab crashed. For graphics objects, the limiting

factor is RAM and not GPU memory, as the amount of RAM that can be used in

a single tab is limited by the browser. In Chrome, the available memory for a tab

can be increased by setting the --max_old_space_size flag.

40



The time to draw the rectangles and prepare for rendering by uploading the

graphics to the GPU also increases significantly. The frame rate decreases at ap-

proximately 2 million rectangles but is with 37 fps at 3.6 million rectangles still high

enough to yield smooth usage.

General Behavior Two things have to be kept in mind when deciding whether to

use graphics objects or sprites. Firstly, the performance of graphics objects does

not depend on their size. Drawing a square of length 1 px or 1000 px does not make

a difference. The performance of sprites, on the contrary, depends significantly on

their size as described before, but the complexity of the texture does not make a

difference. However, a very detailed sprite with tiny elements has to be rendered

at high resolution to show these details. In general, it is best to use plain graphics

objects and avoid sprites. The primary benefit of sprites is, that antialiasing can be

used to minimize pixel effects for large amounts of small elements.

To test, how graphics outside of the canvas boundaries influence performance, an

array of 50 × 50 rectangles, each stored as an individual graphics object was created.

Panning the graphics outside of the canvas boundaries increased the frame rate from

10 to 43 fps. In a second experiment, five large sprites with a total GPU memory

of 5.9 GB were created. For the sprites, the frame rate increased from 37 to the

maximum of 60 fps.

Setting the visibility property of graphic elements happens in split seconds and

elements that are set invisible increase performance significantly. Therefore a good

way to deal with regularly changing elements such as the width adjusting routes is to

preload them all into the GPU and then simply set the visible properties. PixiJS

allows uploading data to the GPU with the PIXI.prepare namespace and remove

elements again by calling the destroy method. By default, the PixiJS garbage

collector removes unused objects from the GPU memory after two minutes, but all

the processes can also be managed manually. However, doing this for the whole

visualization requires a lot of extra effort and has to be thoroughly planned, since

41



errors could quickly lead to worse performance. Additionally, the software would

become harder to maintain.

4.3.2. Visualization Benchmarking

To get an estimate of the limits in visualizing L1 routes, a varying number of routes

between 100 and 10 000 was drawn. The total time to draw all lines as well as the

frame rate during panning and hovering the mouse over the wafer were measured.

The number of routes was increased in steps of 100 between 100 and 1000 routes, then

in steps of 1000 up to 5000 routes and lastly, 10 000 routes were drawn. The time, the

software takes to draw all elements was measured simply using a stopwatch since the

underlying processes could not be timed using JavaScript. 10 measurements were

taken for each configuration and an estimated reaction time of treact = (0.15±0.05)s

for the manual handling of the stopwatch was subtracted. As can be clearly seen

in Figure 19, the time to draw all routes increases in a linear fashion with the

number of routes. Since in the current implementation of the software, all routes

have to be redrawn every time the route width is adjusted, long drawing times

have a direct negative impact on the usability of the software. While for 100 routes

drawing happens more or less instantaneously, zooming over a route width threshold

is already noticeably laggy for 500 routes. For 700 routes the drawing time is larger

than one second and zooming over thresholds becomes annoying. For 3000 routes,

drawing times are almost prohibitively high and at 10 000 routes, the visualization

cannot be used in a proper way anymore.

As a second benchmark parameter, the frame rate for panning and hovering the

mouse is assessed. The frame rate is limited to 60 fps by the display, theoreti-

cally possible changes in the frame rate above 60 fps cannot be detected, thus the

”plateau” in Figure 19. Drawing more routes than 2000 causes the frame rate to

drop quickly during both hovering the mouse and panning the view. A low of 15 fps

within the measured area is reached for 10 000 routes.

42



0

5

10

15

lo
ad

in
g

ti
m

e
[s

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

40

60

number of L1 routes [1 × 104]

fr
am

e
ra

te
[f

p
s] mouse-hover

mouse-pan

A

B

Figure 19: The number of visualized L1 routes was increased from 100 routes up to 10 000

routes. A: The loading time (i.e. time between clicking the routes checkbox and the first

rendering of the routes) increases linearly. Loading times below one second could not be

well measured by hand and were thus set to zero. A: The frame rate for hovering the

mouse and panning drops quickly at around 2000 routes.

4.3.3. Conclusion

For the general use of PixiJS, graphics objects should be the first choice if large

numbers of primitive shapes have to be drawn. The benchmarking showed, that

performance is significantly higher for graphics objects than for sprites because latter

require vastly more GPU memory. Further, shapes should be stored in as few

graphics objects as possible to improve performance.

By implementing the results of the general PixiJS benchmarking, the performance

of L1 route visualization could be even further improved. Drawing 1000 routes both

in color and greyed out, for all five currently implemented width levels yields a total

of approximately 300 000 graphics shapes. Drawing all the elements as one graphics

object would certainly cause no memory issues (Figure 18). The routes have to be

separated into different graphics objects for colored and greyed out routes as well

as the different widths, but 10 graphics objects can be easily handled by PixiJS as

43



well. On clicking the ”Routes” checkbox, all routes in all widths in color as well

as greyed out could be created and uploaded to the GPU. Then, depending on the

zoom level, the correct graphics visible property would be set, which happens in

a split second. Having a faster response for a higher number of routes comes at the

cost of having to draw no routes or all routes at once since they are bound together

in one graphics object. However, upon clicking on routes in the visualization, all

routes could be greyed out and the selected ones drawn additionally at that moment

since this will require only a small number of new graphics objects.

4.4. Extending the Visualization

Adding features to the visualization is more or less complicated, depending on the

type of feature. However, an effort was put into keeping a clear code structure

through modularity and thus making the process of extending the software as easy

as possible. This should be demonstrated with the following example of adding the

neuron arrays represented by rectangles to the visualization. The complete code

necessary for the extension can be found in the appendix.

In a first step, a new PixiJS container needs to be added to later hold the graphics

objects. Two lines have to be added to pixiBackend inside the container property:

loadOverviewData(networkFilePath: string) {

// create new instance of a container

neurons: new PIXI.Container (),

// place the container in the main container "stage" inside

setup ()

this.stage.addChild(this.neurons);

};

Next, a draw function has to be added to the Detailview class in the detailview.ts

file. The draw function needs to perform two tasks: calculate the positions of the

neurons using the hicannPosition as well as Detailview’s properties controlling

the position of the already existing buses and synapses. And secondly, the rectangles

representing the neurons are drawn by calling pixiBackend.drawRectangles and

passing the neuron positions as well as specified rectangle widths and heights and

44



a chosen fill color. To draw the neurons together with the L1 routes and synapse

arrays, the draw function simply has to be included into Detailview’s drawHicann

method.

To improve performance and make use of antialiasing, the rectangles should ad-

ditionally be drawn as sprites. Sprites are drawn by simply calling pixiBackend’s

drawRectanglesSprite method instead of drawRectangles.

At this point all the functionality is implemented to draw rectangles representing

the neurons on the HICANNs. To include the neurons into the flow of the rest of

the detailview, Automode needs to be adjusted. Automode’s start functions, as well

as the set functions that handle switching between the sprite representation and

the graphics objects, have to be extended, but mostly just by one or two lines of

code. A checkbox to set whether the neurons should be displayed when entering the

detailview in automode has to be added to the UI.

45





5. Discussion and Outlook

The developed software presents a solid foundation for a maintainable and easily

extendible visualization of the HICANN wafer. At the current state, the application

is a useful static debugging tool and allows an intuitive exploration of the wafer.

An intermediate layer that uses wafer configuration data and provides an environ-

ment for visualizing hardware properties was constructed. The configuration data

is accessed with the marocco::results API directly in the JavaScript application,

eliminating possibly error-prone conversion steps. Integration of emscripten into the

existing CI (continuous integration) flow and testing of the JavaScript API to detect

errors right away is planned. The JavaScript graphics library PixiJS was extended

by an API specifically for the visualization of the wafer. Hardware-accelerated draw-

ing of graphic elements on an HTML canvas facilitates smooth user interaction with

a large number of elements. Still, drawing every L1 bus segment and synapse for the

whole wafer at once was not feasible and hence two separate modes were developed

to control the visualization. The automatic and manual mode can be used together

for an intuitive exploration of the wafer but also specific examination and debug-

ging of certain parts. L1 Routes are visualized as colored lines running over the

L1 bus segments and can be easily tracked from the source to the target HICANN.

The visualization also provides an immediate feedback about the utilization of dif-

ferent parts of the wafer. A color map intuitively shows concentrations of neuron

placement and their routing across the wafer.

The application presented in this thesis is documented and an effort was made to

keep the code maintainable. The code was separated into functional parts with well-

defined dependencies. Writing in TypeScript instead of JavaScript enables static

typing and allows defining namespaces and classes. All the TypeScript source files

are compiled into a single JavaScript file to achieve both, comprehensibility for the

developer and simplicity for the user.

A detailed benchmarking of the graphics library PixiJS was performed. The li-

brary includes different methods for drawing graphics and managing memory. It

47



was found that graphics objects allocate little GPU memory. Therefore, the max-

imum number of graphics objects that can be drawn is more likely to be limited

by other factors such as available RAM. Sprites on the other hand require a large

amount of GPU memory to resolve detailed graphic elements like single synapses

on an array. GPU memory can exceed the physically available VRAM by making

use of swap memory which comes at the cost of reduced performance. In general,

it was found, that performance can be dramatically improved by storing multiple

graphic elements as one graphics object. The benchmarking holds implications for

implementing the visualization software. Based on a blog post by one of the PixiJS

developers [40], sprites were used in order to allow antialiasing small graphics ele-

ments. As it turns out, antialiasing is by now possible with the WebGL renderer as

well. An assessment on the performance losses when using antialiasing on graphics

objects could potentially eliminate the need for sprites altogether. This would make

the software not only faster, but also easier to maintain. Since the loading times be-

fore the first rendering lead to a temporarily frozen visualization, preloading graphic

elements into the GPU and setting their visibility when needed can lead to a better

user experience. However, with a growing number of features and elements, a smart

manual memory management will become necessary. Further work can be done on

assessing ways to improve performance. For example, it could be investigated how

memory management differs in different software and hardware environments, to

support a wide range of devices.

Even though the visualization is developed as a static debugging tool, the ground-

work is laid for the implementation of further features. The software can be easily

extended to show more details, such as neurons, and visualize additional param-

eters like synapse loss or blacklisting. Once data can be retrieved from running

experiments, the visualization can be used to show live snapshots of the wafer on

a monitoring screen. A large but desirable new feature would be a dynamic visu-

alization in slow-motion. As an example, neurons could be highlighted when they

fire to show the global firing pattern on the wafer. For reasons of performance, all

48



needed graphic elements should be drawn upfront and then simply turned visible or

invisible, potentially animating transparency, when a neuron spikes. Another useful

feature would be to mark neuron populations and highlight connections between

them. In a major next step, a graph for the PyNN neural network could be drawn

and connections with the hardware configuration visualized.

On a large system, visualization is essential not only for understanding experi-

ments, but also the hardware itself, its behavior, limitations, and chances.

49





A. Appendix

File Structure

Figure 20: A complete diagram of the file structure. The doc folder contains a complete

documentation of the code as HTML document, generated with TypeDoc. All TypeScript

files are collected in the src folder. The code is organized in namespaces and classes and

stored in separate files. All TypeScript files are compiled into a single main.js JavaScript

file in the build folder. The build folder also contains the markup and style sheets as well

as third party libraries and the Marocco code. The file routes.json is used to store layer 1

routes, until they are accessible via the marocco:results API.

51



Figure 21: A screenshot of the extended detailview that includes blue rectangles as a

representation of the neuron circuits. The two rectangle arrays are located below the top

synapse array and above the bottom synapse array respectively. A checkbox in the right

info panel allows to set the neurons visibility for the detailview in automatic mode.

Extending the Visualization

The following section describes in detail how to add rectangle arrays representing the

neuron circuits to the visualization and integrate them into the automode. Figure 21

shows the resulting neuron array below the top synapse array.

pixiBackend.ts First of all, two PixiJS containers have to be created to hold the

graphics elements and sprites that represent the neurons. Extend the container

object of the pixiBackend namespace:

export const container = {

...

neurons: new PIXI.Container (),

neuronsSprite: new PIXI.Container (),

setup: function () {

...

this.detailView.addChild(this.neurons);

this.detailView.addChild(this.neuronsSprite);

},

}

52



detailview.ts A method to draw two arrays of rectangles representing the neurons

between the synapse arrays and the horizontal buses is needed. Add a method

drawNeurons to the DetailView class:

drawNeurons(hicannPosition: {x: number , y: number }) {

// calculate the neuron positions

const synapseArrayHeight = (this.numSynapsesVertical - 1)

* this.unitDistance + this.unitLength;

const neurons = {

arrayOneX: hicannPosition.x

+ (this.numBusesVertical + this.gap)*this.unitDistance ,

arrayOneY: hicannPosition.y

+ 5.5 * this.gap + synapseArrayHeight ,

arrayTwoX: hicannPosition.x +

(this.numBusesVertical + this.gap)*this.unitDistance ,

arrayTwoY: hicannPosition.y + this.hicannHeight

- synapseArrayHeight - 5.5 * this.gap - this.unitLength ,

xValues: [],

yValues: [],

widthValues: [],

heightValues: [],

};

for (let i=0; i<this.numNeurons; i++) {

neurons.xValues.push(neurons.arrayOneX + i*this.unitDistance

);

neurons.yValues.push(neurons.arrayOneY);

neurons.widthValues.push (2* this.unitLength);

neurons.heightValues.push (4* this.unitLength)

neurons.xValues.push(neurons.arrayTwoX + i*this.unitDistance

);

neurons.yValues.push(neurons.arrayTwoY);

neurons.widthValues.push (2* this.unitLength);

neurons.heightValues.push (4* this.unitLength);

};

// draw the neurons both as graphics objects and sprites

pixiBackend.drawRectangles(

pixiBackend.container.neurons ,

neurons.xValues , neurons.yValues ,

neurons.widthValues , neurons.heightValues , "0x26baff");

pixiBackend.drawRectanglesSprite(

pixiBackend.container.neuronSprites ,

neurons.xValues , neurons.yValues ,

neurons.widthValues , neurons.heightValues , "0x26baff");

}

In order to draw the neurons together with the other elements of the HICANN

when the detailview is entered, a call for drawNeurons has to be added to Detailview’s

drawHicann method:

drawHicann(newHicann: number) {

...

53



this.drawNeurons(hicannPosition);

}

Also extend the resetDetailview method to remove the neurons again:

resetDetailview () {

for (let i=0; i<numChildren; i++) {

...

pixiBackend.removeChild(pixiBackend.container.neurons ,0);

pixiBackend.removeChild(pixiBackend.container.neuronsSprite

,0);

}

};

main.html Now the neurons need to be integrated into the element handling of

the automatic mode. In main.html in the build folder, add a checkbox that can be

set to display neurons in automode:

<div id="automodeCheckboxes">

...

<div class="elementsCheckbox">

<input id="autoNeuronsCheckbox" type=checkbox checked=true >

<label >auto neurons </label >

</div >

...

</div >

main.ts An event handler for the checkbox has to be added:

$("#autoNeuronsCheckbox").change( () => {

let checked = (document.querySelector("#autoNeuronsCheckbox")

as HTMLInputElement).checked

if (checked) {

automode.options.neurons = true;

} else {

automode.options.neurons = false;

};

})

automode.ts Lastly, the automode itself has to be extended to handle the neuron

objects. Add a boolean for neurons in the options object of the Automode class:

constructor(overview: internalModule.Overview , detailview:

internalModule.Detailview) {

...

this.options = {

...

neurons: true ,

54



}

}

Also in the Automode class, extend the setDetailview and setDetailviewLevelTwo

methods to set the visibility of the neuron containers:

setDetailview(hicannIndex: number , enabled: boolean) {

...

pixiBackend.container.neuronsSprite.visible = this.options.

neurons ? enabled : false;

};

setDetailviewLevelTwo(enabled: boolean) {

...

pixiBackend.container.neurons.visible = this.options.neurons ?

enabled : false;

};

55





Acronyms

API application programming interface 6, 12, 45

CMOS complementary metal-oxide-semiconductor 3

FPGA field-programmable gate array 6, 33

fps frames per second 35

GPU graphics processing unit 10, 35–41, 43, 45, 46

HICANN High Input Count Analog Neural Network 3, 5, 17–19, 22–25, 27–34, 44,
45, 49

JSON JavaScript Object Notation 31

L1 Layer 1 5–7, 9, 10, 15, 17–19, 23–25, 28, 31, 32, 35, 41, 42, 44, 45

SVG Scalable Vector Graphics 9

UI user interface 14, 16, 17, 20, 34, 44

57





References

[1] C. Mead. “Neuromorphic electronic systems”. In: Proceedings of the IEEE
78.10 (1990), pp. 1629–1636. issn: 0018-9219. doi: 10.1109/5.58356.

[2] C. Bartolozzi et al. “Neuromorphic Systems”. In: Wiley Encyclopedia of Elec-
trical and Electronics Engineering. John Wiley & Sons, Inc., 1999. isbn:
9780471346081. doi: 10.1002/047134608X.W8328. url: http://dx.doi.
org/10.1002/047134608X.W8328.

[3] Steve Furber. “Large-scale neuromorphic computing systems”. In: Journal of
Neural Engineering 13.5 (2016), p. 051001. url: http://stacks.iop.org/
1741-2552/13/i=5/a=051001.

[4] M. Davies et al. “Loihi: A Neuromorphic Manycore Processor with On-Chip
Learning”. In: IEEE Micro 38.1 (2018), pp. 82–99. issn: 0272-1732. doi: 10.
1109/MM.2018.112130359.

[5] BrainScaleS. Research Project. 2012. url: https://brainscales.kip.uni-
heidelberg.de/index.html.

[6] Thomas Pfeil et al. “Six networks on a universal neuromorphic computing
substrate”. In: Frontiers in Neuroscience 7 (2013), p. 11.

[7] FACETS. Research Project. 2010. url: http://facets.kip.uni-heidelber
g.de.

[8] Human Brain Project. Research Project. 2013. url: https://www.humanbra
inproject.eu/en/.

[9] J. Schemmel, J. Fieres, and K. Meier. “Wafer-scale integration of analog neural
networks”. In: 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence). 2008, pp. 431–438.
doi: 10.1109/IJCNN.2008.4633828.

[10] J. Schemmel et al. “A wafer-scale neuromorphic hardware system for large-
scale neural modeling”. In: Proceedings of 2010 IEEE International Symposium
on Circuits and Systems. 2010, pp. 1947–1950. doi: 10.1109/ISCAS.2010.
5536970.

[11] R. Brette and W. Gerstner. “Adaptive exponential integrate-and-fire model as
an effective description of neuronal activity”. In: J. Neurophysiol. 94.5 (2005),
pp. 3637–3642.

[12] Henry Markram et al. “Interneurons of the neocortical inhibitory system”. In:
Nature Reviews Neuroscience 5 (Oct. 2004), 793 EP –. url: http://dx.doi.
org/10.1038/nrn1519.

[13] Tobias Thommes. “Design and Implementation of an EXTOLL Network-
Interface for the Communication FPGA in the BrainScaleS Neuromorphic
Computing System”. Master. Universität Heidelberg, 2018.

59

https://doi.org/10.1109/5.58356
https://doi.org/10.1002/047134608X.W8328
http://dx.doi.org/10.1002/047134608X.W8328
http://dx.doi.org/10.1002/047134608X.W8328
http://stacks.iop.org/1741-2552/13/i=5/a=051001
http://stacks.iop.org/1741-2552/13/i=5/a=051001
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
https://brainscales.kip.uni-heidelberg.de/index.html
https://brainscales.kip.uni-heidelberg.de/index.html
http://facets.kip.uni-heidelberg.de
http://facets.kip.uni-heidelberg.de
https://www.humanbrainproject.eu/en/
https://www.humanbrainproject.eu/en/
https://doi.org/10.1109/IJCNN.2008.4633828
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/ISCAS.2010.5536970
http://dx.doi.org/10.1038/nrn1519
http://dx.doi.org/10.1038/nrn1519


[14] Andrew P Davison et al. “PyNN: A Common Interface for Neuronal Network
Simulators”. In: Frontiers in Neuroinformatics 2 (2008), p. 11. doi: 10.3389/
neuro.11.011.2008. url: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC2634533/.

[15] SpiNNaker. Research Project. 2012. url: http://apt.cs.manchester.ac.
uk/projects/SpiNNaker/.

[16] Sebastian Jeltsch. “A Scalable Workflow for a Configurable Neuromorphic
Platform”. PhD thesis. Universität Heidelberg, 2014.

[17] Johann Klähn. “Training Functional Networks on Large-Scale Neuromorphic
Hardware”. Master. Universität Heidelberg, 2017.

[18] Ecma International. ECMAScript Language (JavaScript). 2011. url: http:
//www.ecma-international.org/ecma-262/5.1/Ecma-262.pdf.

[19] Mozilla. MDN web docs - canvas. [Online; accessed 5-March-2018]. 2018. url:
https://developer.mozilla.org/de/docs/Web/HTML/Canvas.

[20] Alexis Deveria and community. caniuse.com - canvas. [Online; accessed 5-
March-2018]. 2018. url: https://caniuse.com/#search=canvas.

[21] WebGL Public Wiki. Main Page — WebGL Public Wiki, [Online; accessed
5-March-2018]. 2017. url: http://www.khronos.org/webgl/wiki_1_15/
index.php?title=Main_Page&oldid=2546.

[22] Mat Groves and the PixiJS team. PixiJS - The HTML5 Creation Engine. 2017.
url: http://pixijs.download/release/docs/index.html.

[23] three.js authors. three.js - JavaScript 3D library. 2017. url: https://three
js.org/docs/index.html#manual/introduction/Creating-a-scene.

[24] Robert Ramey. Boost serialization C++ library. 2004. url: http://www.

boost.org/doc/libs/1_66_0/libs/serialization/doc/index.html.

[25] Alon Zakai and contributors. Emscripten: An LLVM-to-JavaScript Compiler.
2015. url: http://kripken.github.io/emscripten-site/docs/index.
html.

[26] LLVM Project. LLVM compiler infrastructure. 2018. url: https://llvm.
org/docs/.

[27] Stefan Seefeld David Abrahams. Boost python C++ library. 2015. url: http:
//www.boost.org/doc/libs/1_66_0/libs/python/doc/html/index.html.

[28] Microsoft Corporation. TypeScript. 2017. url: https://www.typescriptlan
g.org/docs/home.html.

[29] jQuery Foundation. jQuery v3.2.1. 2017. url: https://api.jquery.com/.

[30] jQuery Foundation. jQuery UI v1.12.1. 2016. url: https://api.jqueryui.
com/.

60

https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.011.2008
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634533/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634533/
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
http://www.ecma-international.org/ecma-262/5.1/Ecma-262.pdf
http://www.ecma-international.org/ecma-262/5.1/Ecma-262.pdf
https://developer.mozilla.org/de/docs/Web/HTML/Canvas
https://caniuse.com/#search=canvas
http://www.khronos.org/webgl/wiki_1_15/index.php?title=Main_Page&oldid=2546
http://www.khronos.org/webgl/wiki_1_15/index.php?title=Main_Page&oldid=2546
http://pixijs.download/release/docs/index.html
https://threejs.org/docs/index.html#manual/introduction/Creating-a-scene
https://threejs.org/docs/index.html#manual/introduction/Creating-a-scene
http://www.boost.org/doc/libs/1_66_0/libs/serialization/doc/index.html
http://www.boost.org/doc/libs/1_66_0/libs/serialization/doc/index.html
http://kripken.github.io/emscripten-site/docs/index.html
http://kripken.github.io/emscripten-site/docs/index.html
https://llvm.org/docs/
https://llvm.org/docs/
http://www.boost.org/doc/libs/1_66_0/libs/python/doc/html/index.html
http://www.boost.org/doc/libs/1_66_0/libs/python/doc/html/index.html
https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://api.jquery.com/
https://api.jqueryui.com/
https://api.jqueryui.com/


[31] D. Brüderle et al. “A Comprehensive Workflow for General-Purpose Neural
Modeling with Highly Configurable Neuromorphic Hardware Systems”. In:
ArXiv e-prints (Nov. 2010). arXiv: 1011.2861 [q-bio.NC].

[32] T. Harion. 3D-Visualisierung einer Abbildung von neuronalen Netzwerkmod-
ellen auf eine neuromorphe Hardware. Internship Report. 2008.

[33] B. Kindler. Personal communication.

[34] A. Kononov and S. Billaudelle. Personal communication.

[35] J. Bill. Personal communication.

[36] React, JavaScrip library. 2019. url: https://reactjs.org/docs/hello-
world.html.

[37] Michael Schwarz et al. “Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript”. In: Financial Cryptog-
raphy and Data Security. Ed. by Aggelos Kiayias. Cham: Springer Interna-
tional Publishing, 2017, pp. 247–267. isbn: 978-3-319-70972-7.

[38] Google Developer Meltdown/Spectre Update. 2018. url: https://developer
s.google.com/web/updates/2018/02/meltdown-spectre.

[39] Google Chrome consistent memory metrics. 2017. url: https://docs.goog
le.com/document/d/1_WmgE1F5WUrhwkPqJis3dWyOiUmQKvpXp5cd4w86TvA/

mobilebasic#.

[40] Post by Chad Engler (@rolnaaba) on html5games.com. 2015. url: http://
www.html5gamedevs.com/topic/15395-pixi-webgl-antialiasing/.

61

http://arxiv.org/abs/1011.2861
https://reactjs.org/docs/hello-world.html
https://reactjs.org/docs/hello-world.html
https://developers.google.com/web/updates/2018/02/meltdown-spectre
https://developers.google.com/web/updates/2018/02/meltdown-spectre
https://docs.google.com/document/d/1_WmgE1F5WUrhwkPqJis3dWyOiUmQKvpXp5cd4w86TvA/mobilebasic#
https://docs.google.com/document/d/1_WmgE1F5WUrhwkPqJis3dWyOiUmQKvpXp5cd4w86TvA/mobilebasic#
https://docs.google.com/document/d/1_WmgE1F5WUrhwkPqJis3dWyOiUmQKvpXp5cd4w86TvA/mobilebasic#
http://www.html5gamedevs.com/topic/15395-pixi-webgl-antialiasing/
http://www.html5gamedevs.com/topic/15395-pixi-webgl-antialiasing/




Acknowledgments

First of all, I would like to thank Prof. Dr. Karlheinz Meier for accepting me in
the Electronic Vision(s) Group. Writing my Bachelor thesis about this fascinating
topic, I had the opportunity to become familiar with academic research. Equal
thanks to Dr. Johannes Schemmel. The exciting research in your group is inspiring
and motivating.

Special thanks to my supervisor Sebastian Schmitt for introducing me to the topic
and supporting me all the way to the thesis. I also want to thank Eric Müller and
Johann Klähn for thorough explanations and project vision. Many thanks to the
people proofreading this thesis, Sebastian Schmitt, Eric Müller, Christian Mauch,
Alexander Kugele and Andrea Hegele. Your comments helped bringing structure
and fresh ideas into the document.

Finally, I want to thank all the amazing people in the ”container” for a motivated
and fun working environment and of course my friends, roommates and family for
continued support.

63





Statement of Originality (Erklärung)

I certify that this thesis, and the research to which it refers, are the product of
my own work. Any ideas or quotations from the work of other people, published
or otherwise, are fully acknowledged in accordance with the standard referencing
practices of the discipline.

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, April 4, 2018

..........................................
(signature)


	Introduction
	Materials and Methods
	BrainScaleS Hardware System
	HICANN Microchip
	Communication Networks
	Software

	Software Framework
	Visualization Library
	Data Input
	Tools

	Results
	Visualization Features
	Code Structure and Implementation
	Wafer
	Overview and Detailview
	Automode and Manual Mode
	Routes
	Reticle Coordinates
	Global Namespace

	Benchmarking
	PixiJS Benchmarking
	Visualization Benchmarking
	Conclusion

	Extending the Visualization

	Discussion and Outlook
	Appendix
	References

