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Abstract

This thesis implements a neuromorphic solver for map coloring problems on the
BrainScaleS system, an analog accelerated spiking neural network emulator. The maps
of the territories of Australia and the German federal states are used to show that it is
capable of solving map coloring problems i.e. generating solutions in which no bordering
countries have the same color and analyze its performance.

Two different modes of operation are investigated. Experiments with constant stimulus
rate are optimized to produce the first correct solution as fast as possible. It is shown
that there are configurations for which the influence of hardware variations is limited,
leading to predictable and robust network behavior even after hardware reconfiguration.
A second kind of experiments are annealing experiments. They show that decreasing

the stimulus rate over time can be used to achieve network convergence. Biological
convergence times are comparable to those achieved with similar networks simulated
on the SpiNNaker system, which means one can take full advantage of the BrainScaleS’
acceleration factor. Through the optimization of read out times configurations are found
in which no incorrect solutions are produced, thus eliminating the need to check for
violated constraints. Therefore, only very little computational resources other than the
spiking neural network itself are needed to solve a map coloring problem.

Zusammenfassung

Die vorliegende Arbeit implementiert einen neuromorphen Löser für Kartenfärbungspro-
bleme auf dem BrainScaleS System, einem analogen beschleunigten gepulsten neuronalen
Netzwerkemulator. Die Karten der australischen Territorien und der deutschen Bun-
desländer werden benutzt, um dessen Lösungsfähigkeit für Kartenfärbungsprobleme zu
demonstrieren, d. h. Lösungen zu generieren, bei denen Nachbarländer nie die gleiche
Farbe haben, und dessen Leistung zu analysieren.
Es werden zwei verschiedene Betriebsmodi untersucht. Experimente mit konstanten

Stimulusraten werden darauf optimiert, möglichst schnell die erste korrekte Lösung zu
finden. Es wird gezeigt, dass Konfigurationen existieren, bei denen sich der Einfluss von
Hardwareschwankungen in Grenzen hält, was zu vorhersehbarem und robustem Netzwerk-
verhalten führt, selbst wenn die Hardware neu konfiguriert wird.

Eine andere Art von Experimenten sind Annealing-Experimente. Sie zeigen, dass Ab-
senkung der Stimulusrate über Zeit genutzt werden kann, um Netzwerkkonvergenz zu
erreichen. Biologische Konvergenzzeiten sind dabei vergleichbar mit denen, die in Simula-
tionen auf dem SpiNNaker System erreicht wurden, was bedeutet, dass der Beschleuni-
gungsfaktor des BrainScaleS Systems voll ausgenutzt werden kann. Durch Optimierung
der Auslesezeiten werden Konfigurationen gefunden, in denen keine inkorrekten Lösungen
auftreten, wodurch dort die Überprüfung auf verletzte Bedingungen nicht nötig ist. Daher
werden neben dem gepulsten neuronalen Netzwerk nur geringe Rechenressourcen benötigt,
um das Kartenfärbungsproblem zu lösen.
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1 Introduction

1.1 Motivation

Constraint satisfaction problems (CSPs) are an important class of computational problems.
In their general form they are NP complete, which means there is no algorithm with
polynomial complexity to solve them assuming P 6= NP (cf. Dechter and Cohen 2003,
p. 20). For this reason constraint satisfaction problems cannot be solved efficiently on
conventional computational hardware.

The human brain is capable of tackling many problems like decision making and image
recognition that cannot be solved efficiently even on modern conventional hardware.
To operate the brain uses networks of neurons, which are connected by synapses and
communicate via electrical pulses called spikes. Artificial Spiking neural networks (SNN)
mimic this structure. This makes SNN solver an interesting option in trying to solve CSPs
efficiently. The BrainScaleS system implements such a spiking neural systems physically,
which allows it to run with an acceleration factor of 104 compared to biology (cf. Schemmel
et al. 2010).
In this thesis a solver for the map coloring problem, which is a constraint satisfaction

problem, is implemented on the BrainScaleS system. It builds upon Alexander Kugele’s
master thesis (Kugele 2018), where a solver for the constraint satisfaction problem sudoku
was implemented and analyzed, and the work done during my internship in the Electronic
Vision(s) group (Steidel 2018).

In the first step, the network structure to solve map coloring problems is implemented.
The maps of Australian territories and the German federal states are tested and averaging
is used to gain solutions. Afterwards, the network performance is analyzed in detail and
optimized for different operation modes. Annealing is used to achieve convergence. At
last, configuration times are measured to gain insight into the actual time needed to solve
CSPs on the BrainScaleS system.

1.2 Map coloring problem

To visualize the countries on a geographic map, it is important that one can easily
distinguish them on first sight. For this purpose it is useful to color bordering countries
in different colors. That is the goal of the map coloring problem. An example of a correct
solution of the map coloring problem for the map of Australia can be seen in Figure 1.1.

Related to the map coloring problem is the four color theorem. It states that the coun-
tries of a euclidean map can be colored with only four different colors while maintaining
that bordering countries are colored differently if a few conditions are met. First off,
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1 Introduction

Figure 1.1: Map of Australia colored
according to the map coloring problem.
Made with (Met Office 2018) and (Nat-
ural Earth 2018).

Figure 1.2: Simple map that needs
to be colored in four colors to satisfy
constraints. Inspired by (Wilson 2013,
p. 14).

countries are only considered to be bordering if they share a curved segment, not just a
single point (cf. Gonthier 2008). Another condition is that countries must be contiguous
and also country borders have to be of finite length (cf. Hudson 2003). A simple map
that illustrates the need for four colors to solve general map coloring problems correctly
is shown in Figure 1.2.
Geographical maps are both euclidean and have only finite borders, though countries

are not always contiguous, since for example exclaves and colonies exist. For this reason
the four color theorem is only applicable to geographical maps if the map either only has
contiguous countries or exclaves and colonies are colored independently of their parent
country.

The map coloring problem can be formulated as a constraint satisfaction problem (CSP)
with two constraints:

1. bordering countries have to have different colors, and

2. every country has to have exactly one color.

1.3 Solving constraint satisfaction problems on conventional
hardware

To solve CSPs on conventional hardware one can use the backtracking algorithm (cf.Kumar
1992). For this algorithm variables are assigned values in sequence. As soon as a constraint
is violated, the last assigned variable that still has unchecked values for the current

2



1.4 Spiking neural networks

configuration in its corresponding domain is assigned a new value. This continues until all
variables have been assigned values and no constraint is violated or there is no variable
with unchecked values. In the latter case the CSP is not solvable.

The advantage of backtracking is that it is always able to find a solution if the CSP is
solvable. The disadvantage is its exponential complexity O (ean), where a is the domain
size (number of potential values for each variable), e is the number of constraints and
n is the number of variables (cf. Mackworth and Freuder 1985). For the map coloring
problem a corresponds to the number of colors, n to the number of countries and e to the
sum of all neighbors. Throughout the experiments in this thesis the maps of Australia
and Germany are used. Their properties can be seen in Table 2.1. With those properties
one can calculate their respective complexities

OAustralia = O
(
20 · 37

)
= O

(
4.37× 104

)
and (1.1)

OGermany = O
(
58 · 416

)
= O

(
2.49× 1011

)
, (1.2)

which clearly shows the inefficient scaling.
The backtracking algorithm can be improved by constraint propagation depending on

the problem. It essentially transforms the CSP into a another CSP with reduced domain
sizes, thus decreasing a (cf. Kumar 1992).

1.4 Spiking neural networks

Spiking neural networks (SNNs) consist of neurons which are connected by synapses and
often mimic the dynamics of biological neurons.
Each neuron has a membrane potential (cf. Maass 1997). If this potential exceeds a

certain threshold, the neuron spikes, which is a sudden increase in membrane potential
followed by a refractory period, which can be seen in Figure 1.3. In this period the neuron
does not spike again. Afterwards, the membrane potential assumes the resting potential.

Spikes are propagated to other neurons by synapses. Synapses can be either excitatory
or inhibitory. Excitatory synapses increase the membrane potential of the receiving neuron,
which results in the receiving neuron spiking if its potential exceeds the spiking threshold.
Inhibitory synapses decrease the membrane potential and therefore can suppress neuron
spiking. The strength of the change in membrane potential depends on the synapse weight.

The output of spiking neural networks, which can be further processed and interpreted,
are the spike timings of neurons.

1.5 The BrainScaleS system

On conventional computers spiking neural networks are implemented by solving differ-
ential equations of neural models numerically. In contrast, the BrainScaleS system im-
plements a spiking neural system physically by using electronic components that mimic
neuron behavior (cf. Schemmel et al. 2010). This approach has several advantages. Due
to the use of a much lower amount of transistors the power consumption is reduced

3
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Figure 1.3: Membrane potential for a single spike. Adapted from (Wikimedia Commons
2007).

severely. Furthermore, through the continuous time operation and the speed advantage
of electronic components compared to biological neurons the system is able to run at an
acceleration factor of 104. Another interesting property is fault tolerance. Misbehaving
or defect synapses can be blacklisted without impacting the system as a whole. This also
mimics biology.
The BrainScaleS system is used to run the experiments in this thesis.

1.6 Network setup

To visualize the network structure used to solve map coloring problems a simple example
map is used, which can be seen in Figure 1.4. This simple map consists out of three
countries and can be solved by only using two different colors. The corresponding network
is shown in Figure 1.5.

Each country is represented by the same amount of neuron populations, which is equal
to the amount of colors needed to solve the map coloring problem correctly (in this case
two). Each neuron population represents a color (in this case green and blue). To get a
solution the number of spikes in a certain time interval is counted for each population
and each country is assigned the color which is represented by the neuron spiking the
most.

To represent the constraints, inhibitory projections between the neuron populations are
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1.6 Network setup

A B C

Figure 1.4: Simple example map used to visualize the network structure.

A B C
inhibitory projection

excitatory projection

neuron populations

Poisson noise input
(excitatory)

Figure 1.5: Structure of the networks used to solve map coloring problems.

used. In the ideal case this takes care that only one of the connected populations spikes.
To keep non-inhibited neuron populations spiking and enhance already existing activity,
each population is connected to itself by an excitatory connection. Every connection
is an all-to-all connection, which means that every neuron of the first population is
connected to each neuron of the second population. Together with the use of multiple
neuron populations instead of single neurons this helps to increase network stability,
since it makes the network less susceptible to single neurons not spiking when they were
supposed to do so.

Additionally, each neuron population is connected excitatorily to a Poisson noise source,
which induces spiking of the neurons.

Solutions to a map coloring problem are not unique as permuting colors of a correct
solution yields another correct solution. Those solutions are not interesting, because the
colors do not have any meaning in themselves. For this reason one can set a single country
to have a fixed color. In practice it is most useful to fix the country with the most
neighbors as it was found that this increases the network stability the most.
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1 Introduction

1.7 Network scaling

The amount of neurons needed for the network scales linearly with the number of countries
and the number of colors used to color the map.

The scaling of the solving time is not trivial, since it depends on the network dynamics
and the network topology. There are also different modes of operation, where the solving
time has to be defined differently. Those will be investigated during the course of this
thesis. Nonetheless, it is reasonable to expect the scaling to be better than the exponential
scaling of the backtracking algorithm. While the backtracking algorithm explores one
point in the solution space at a time the spiking neural network is able to explore multiple
solutions in parallel due to its structure.

1.8 Annealing

In condensed matter physics annealing describes the slow cooling of a material from a
liquid into a solid state (cf. Van Laarhoven and Aarts 1987, p. 7). Thermal equilibrium is
achieved throughout the process due to the slow decrease in temperature. In consequence
the materials particles arrange in such a way, that their energy is minimal, putting the
system into its ground state once the temperature reaches zero.
Based on this principle, simulated annealing algorithms are implemented to solve op-

timization problems (cf. Kirkpatrick, Gelatt, and Vecchi 1983). Most common is the
Metropolis algorithm, which can be used to minimize an energy function. By making an
energy function which depends on violated constraints, CSPs can be solved using this
algorithm on conventional hardware.

For the network setup described in section 1.6 the temperature analogue is the Poisson
noise frequency. High frequency is equivalent to high temperature, low frequency to low
temperature. High Poisson noise frequency results in high network dynamics, while low
frequency results in low network dynamics. By starting the experiment at a high Poisson
noise frequency and lowering it throughout the course of the experiment many different
solutions should be explored at the start. The amount of different solutions should then
decrease, eventually converging into a correct solution, since correct solutions should not
need any stimulus to be preserved.
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2 Basic results

2.1 Maps and neuron parameters

During the experiments of this thesis the maps of the Australian territories and the
German federal states were used, which are displayed in Figures 2.1 and 2.2. All exper-
iments were run on the BrainScaleS system, none were conducted through simulations.
The properties of those maps and the corresponding experiments are shown in Table 2.1.

The neuron parameters were kept constant throughout the experiments and are shown
in Table 2.2. They were inspired by parameters set in guidebook examples (cf. Davison
et al. 2018). Other parameters relevant for the experiments and kept constant throughout
are also shown in Table 2.2. Synapse weights on the BrainScaleS system are decoded in
4 bit and have values in the range from 0 to 15 hwu (hardware units).

All time values and rates in this thesis are given in the biological domain unless
explicitly stated otherwise. Time values in the hardware domain are accelerated by 104

(cf. Schemmel et al. 2010).

2.2 Spike times

To get a feel on how the network behaves, the spike and stimulus timings of an example
run for the map of Australia are shown in Figure 2.3. The color of ‘South Australia’ was
fixed to green by stimulating the green population with a constant rate and turning off
the stimulus inputs for the population representing the other colors, as it is the country
with the most neighbors. What can be seen is that the spike rate is quite different for
different countries.

2.3 Averaged solution

To convert the spike timings of the different populations into a solution of the map
coloring problem, the runtime is divided into intervals of constant length. This can be
seen in Figures 2.4 and 2.5. In intervals which are displayed in white, no population of
the corresponding country spiked at all. The color saturation shows the confidence of the
network for this color choice:

saturation =
#spikes color

#all spikes country
. (2.1)

On the bottom, the number of violated constraints is shown, which corresponds to the
number of neighbor pairs that have the same color.
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2 Basic results

Western
Australia

Northern
Territory

Queensland

South
Australia

New South
Wales

Victoria

Tasmania

Figure 2.1: Map of Australian territo-
ries. Made with (Met Office 2018) and
(Natural Earth 2018).

Schleswig-
Holstein

Niedersachsen

Hamburg

Mecklenburg-
Vorpommern

Bremen

Brandenburg

Berlin

Sachsen-
AnhaltNordrhein-

Westfalen

Hessen
Thüringen

Sachsen

Rheinland-
Pfalz

Saarland

Baden-
Württemberg

Bayern

Figure 2.2: Map of German federal
states. Made with (Met Office 2018) and
(Natural Earth 2018).

Property Australia Germany
countries 7 16

colors 3 4

country with most neighbors South Australia Niedersachsen
sum of all neighbors 20 58

neurons per population 10 8

neurons 210 512

synapses 12 510 31 744

wafer 33 33

HICANNs 320, 321 320, 321, 322,
340, 341, 342

Table 2.1: Properties of the used maps.
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2 Basic results

Parameter Value
tau_m 20 ms

tau_syn_E 5 ms

tau_syn_I 5 ms

e_rev_E 0 mV

e_rev_I −70 mV

tau_refrac 0.1 ms

v_rest −70 mV

v_reset −70 mV

v_thresh −45 mV

cm 0.2 nF

inhibitory weights 15 hwu

rate fixed stimulus 100 Hz

average interval 200 ms

Table 2.2: Parameters that were kept constant throughout the experiments.

The average interval was chosen to be 200 ms long. This number is a good compromise
between having the least amount of intervals in which countries have no color at all and
the best temporal resolution.

The network is able to find correct solutions for both maps. While the result stays the
same after about 1000 ms for the example run for the map of Australia, multiple correct
solutions are found for the map of Germany.
With those results it is shown that a network of the previously described structure

implemented on the BrainScaleS system is able to solve map coloring problems. The next
chapter will deal with quantifying and improving the network performance.
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2.3 Averaged solution

0 250 500 750 1000 1250 1500 1750 2000

biological time [ms]

violated constraints

Western Australia

Northern territory

Queensland

South Australia

New South Wales

Victoria

Tasmania

2 2 N/A N/A 0 0 0 0 0 0

Figure 2.4: Averaged solutions for the map of Australia.

0 500 1000 1500 2000 2500 3000 3500 4000

biological time [ms]

violated constraints
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Niedersachsen

Hamburg

Mecklenburg-Vorpommern

Bremen
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Berlin

Sachsen-Anhalt

Nordrhein-Westfalen

Hessen

Thüringen

Sachsen

Rheinland-Pfalz

Saarland

Baden-Württemberg

Bayern

N/A 1 0 2 1 0 1 0 0 0 0 0 0 N/A N/A 0 0 0 0 0

Figure 2.5: Averaged solutions for the map of Germany.
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3 Optimizing network performance

3.1 Modes of operation

To optimize performance of the map coloring network it is necessary to think about the
mode in which the network operates. One option is using the network on its own by
trying to achieve convergence into a correct solution and reading out the solution at the
end of the experiment. Another option is to use the spiking neural network to generate
solutions that are as ‘good’ as possible and use conventional hardware to check whether
or not those solutions are correct. This is a valid approach, since generating a solution
to a constraint satisfaction problem on conventional hardware is much more resource
intensive than just checking if a given solution is correct.

This second approach is investigated first. To optimize performance in this mode, one
can take a look at the time till the first correct solution occurs and the percentage
of correctly solved bins for the entire emulation time. By decreasing the time till the
first correct solution occurs, the time that the spiking neural network needs to run can
be decreased. By increasing the percentage of correctly solved bins, the conventional
hardware needs to check less solutions on average to find a correct one, thus decreasing
the conventional hardware resources needed.

Afterwards, the first approach is implemented as described in section 1.8. The goal of
this approach is not needing conventional hardware to check whether or not the solution
is correct. Instead, the network should only generate correct solutions.

3.2 Scaling inhibitory weights with number of neighbors

When running experiments with maps where countries have vastly different amounts of
neighbors it can be seen that neuron populations of countries with many neighbors are
inhibited much more than those of countries with few. These tend to have many time
intervals where no neuron spiked at all. This can be seen in Figure 3.1a.
To compensate for this, the inhibitory weight of all connections representing the con-

straint that neighboring countries cannot have the same color are scaled with the amount
of neighbors the country on the receiving end has:

inhibitory weight neighbors =
15 hwu

#neighbors
. (3.1)

The result is rounded to the nearest integer. Since the number of neighbors for every
country on every map used throughout the experiments was below 15 this was not a
problem. If a country with more than 30 neighbors had occurred, the inhibitory weight

13



3 Optimizing network performance

0 500 1000 1500 2000 2500 3000 3500 4000

biological time [ms]

violated constraints

Western Australia

Northern territory

Queensland

South Australia

New South Wales

Victoria

Tasmania

N/A N/A N/A N/A N/A N/A 3 2 N/A 2 N/A N/A 2 N/A N/A N/A N/A N/A 2 N/A

(a) Constant inhibitory weights

0 500 1000 1500 2000 2500 3000 3500 4000

biological time [ms]

violated constraints

Western Australia

Northern territory

Queensland

South Australia

New South Wales

Victoria

Tasmania

N/A 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 N/A 1 0

(b) Inhibitory weights scaled with number of neighbors

Figure 3.1: Comparison of networks without and with inhibitory weight scaling. In this
experiment Tasmania was set to be the country with the constant color.

would have been rounded up to 1 regardless. The scaling of inhibitory weights depending
on the number of neighbors is shown in Figure 3.2.

The resulting change can be seen in Figure 3.1b. The amount of time intervals where at
least one country cannot get a color assigned drops from 75 % to 10 % in these example
runs.

3.3 Constant stimulus rate experiments

The average stimulus rate for all constant rate experiments is set to 50 Hz, the emulation
time is chosen to be 16 s.

3.3.1 Experiments with constant weight without hardware reconfiguration

To get a feel for the quantities mentioned in section 3.1 an experiment is performed for
the maps of Australia and Germany. For this experiment 200 runs are performed without
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Figure 3.2: Scaled weights for inhibitory country-country synapses depending on the
number of neighbors. For countries with more than 10 neighbors the weight is always set
to 1.

reconfiguring the hardware in between. The weights for the excitatory connections of
the neuron populations with themselves are set to 4 hwu. For each run the same random
seed is used, resulting in the same stimulus spikes for each run, so in a simulation one
would expect each run to be exactly the same. After each run all neurons get inhibited
for 200 ms and are then left alone for another 200 ms.

In Figures 3.3a and 3.4a histograms for the time until the first correct solution occurred
can be seen, while in Figures 3.3b and 3.4b the percentages of correctly solved bins are
shown. With those one can see that the different runs yield different results, which may
indicate that the network explores the solution space differently for even slight variations
of stimulus times. Despite that, the distributions for the time at which the first correct
solution occurs are quite sharp.

3.3.2 Excitatory weight sweeps

Next, the influence of the excitatory weights for the connections of the neuron populations
with themselves on the network performance is investigated. For each weight between 0
and 10 hwu 100 runs are performed. Nothing but the weight of the excitatory connections
is reconfigured in between. To visualize the results violin plots are used, which can be
seen in Figures 3.5, 3.6, 3.7 and 3.8. The markers on the top and on the bottom of each
violin denote the extremes, while the marker in the middle shows the median. The area
colored in a slightly lighter tone shows the distribution of values. For the weights where
the violin is colored in orange the network was not able to find any correct solution in
more than 2 % of all runs.

15



3 Optimizing network performance

0 500 1000 1500 2000 2500 3000 3500 4000

biological time [ms]

0

10

20

30

40

co
u

n
ts

map: Australia
sample size: 100
success ratio: 100.0 %
mean: 1266.0 ms
standard deviation: 194.0 ms
minimum: 1000.0 ms
average interval: 200.0 ms
excitatory weight: 4 hwu
not reconfigured after each run

(a) Time till first correct solution

0 20 40 60 80 100

ratio of solved bins [%]

0

10

20

30

40

50

60

co
u

n
ts

map: Australia
sample size: 100
mean: 80.7 %
standard deviation: 4.0 %
minimum: 67.5 %
maximum: 88.8 %
average interval: 200.0 ms
excitatory weight: 4 hwu
not reconfigured after each run

(b) Correctly solved bins

Figure 3.3: Histograms for constant weight experiments without reconfiguration for the
map of Australia.
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Figure 3.4: Histograms for constant weight experiments without reconfiguration for the
map of Germany.
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3.3 Constant stimulus rate experiments

By taking a look at Figures 3.6 and 3.8 one can see that the network performance for
the map of Germany is better with weights 3, 4 and 5 hwu than with the other weights.
The network is able find the first correct solution faster and the percentage of correctly
solved bins is higher. It is also noticeable that for high weights the distribution of correctly
solved bins is quite broad. The reason for this is that the network tends to stay in the
solution it adapted in the beginning, whether or not this solution is correct, leading to
runs with a high percentage of correctly solved bins and runs with a low percentage of
correctly solved bins.
For the Australian map, the excitatory weights with 4 and 5 hwu seem to lead to the

most stable results. Both distribution for the time till the first correct solution and the
percentage of correctly solved bins are sharp compared to the others and the percentage
of correctly solved bins is higher. For the excitatory weights 8 to 10 hwu the network is
not able to find any solution at all. It is also noticeable that the first solution for the
excitatory weights of 0 and 1 hwu occur always in the interval beginning at 1200 ms. This
suggests that the major part of run to run variations is due to the excitatory connections,
which have no or very little influence on the network behavior for 0 and 1 hwu respectively.

3.3.3 Floating gate variations

Neuron parameters for the BrainScaleS system are stored on floating gates (cf. Meier
2015). Floating gates are used to store voltages, which decode analog values (cf. Fujita
and Amemiya 1993). Due to floating gate variations, neuron parameters differ if the
hardware is reconfigured. To determine the influence of these variations on the network
performance the same experiment is run 10 times with reconfiguring the hardware in
between. The experiments are done for the map of Germany with the excitatory weights,
which seemed most promising in the last section. For each weight 200 sample runs are
taken. As a result 6000 runs with a total hardware runtime of 7 h 44 min were used to
create the Figures 3.9 and 3.10.
It can be seen that the influence of floating gate variations is much higher for the

excitatory weight of 5 hwu, for the weights 3 and 4 hwu the influence is not as apparent.
This is the case for both time till the first solution occurs and percentage of correctly
solved bins.
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Figure 3.5: Time till first correct solution occurs depending on excitatory weights for
map of Australia.
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Figure 3.6: Time till first correct solution occurs depending on excitatory weights for
map of Germany.
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Figure 3.7: Percentage of correctly solved bins depending on excitatory weights for map
of Australia.
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Figure 3.8: Percentage of correctly solved bins depending on excitatory weights for map
of Germany.
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Figure 3.9: Variation time till first correct solution for map of Germany due to floating
gate variations.
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Figure 3.10: Variation percentage of correctly solved bins for map of Germany due to
floating gate variations.
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3.4 Annealing experiments

3.4 Annealing experiments

3.4.1 Naive approach

The naive approach builds upon the description in section 1.8. For this a fixed emulation
time is chosen and the Poisson noise rate for each neuron is decreased exponentially with
a characteristic annealing time τ throughout it. The solution taken is the solution in the
last average interval, where the noise frequency is almost zero.

To investigate the properties of networks with annealing the map of Germany is used.
In order to include all variations, 100 runs with different random seeds for the stimulus
spike times are done for all excitatory weights. After each run the hardware is reconfigured
to include floating gate variations.
In Figure 3.11 the results for the experiment described above and run on HICANNs

360, 361, 362, 372, 373 and 374 of wafer 21 can be seen. Important parameters like the
characteristic annealing time and the initial noise rate are written there as well. The
emulation time of experiments done in section 3.3 was 16 s, which was also chosen here
for Figure 3.11a. Additionally, an emulation time of 64 s was tested for Figure 3.11b. Both
results are from the same experiment, since cropping off at 16 s is equivalent to running
a shorter experiment.
The results are strongly dependent on the excitatory weight. For low weights at least

one country stops spiking after the stimulus has decreased below a certain value for all
runs, which results in no solution being available at all. In this case self excitation is not
strong enough to sustain spiking of all countries. For high weights there are many runs
in which the last solution is incorrect. The reason for this is that the self reinforcement
is high compared to the inhibition caused by violated constraints. For medium weights
like 6, 7 and 8 hwu, the number of correct solutions is much higher than the number of
incorrect solutions. For every weight the number of runs in which there is no solution at
all is the highest.

By comparing the results for the different emulation times one can see that the number
of both the correct and incorrect solutions decreases, which is expected, since a solution
cannot recover without stimuli once one country has stopped spiking. Also expected is
that the decrease for incorrect solutions is bigger, since in this case at least two spiking
populations inhibit each other, which makes them inherently less stable. This can also be
seen comparing the two plots.
For operation in this mode it would be ideal to only generate correct solutions. This

seems to be not possible, at least for the chosen parameters. The second best case is
generating only correct and empty solutions, since empty solutions can be easily detected
and the experiment can be just repeated. This is the case for the excitatory weight of
7 hwu at 64 s. Here 81 % of runs are empty, 19 % are correct and 0 % are incorrect.

In the following the behavior of the annealing network will be analyzed further.

3.4.2 Last non-empty solution

To get an upper bound on how many correct solutions can be achieved one can take
a look at the last non-empty solutions for each weight, since they contain all solutions
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(a) Results at 16 s
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(b) Results at 64 s

Figure 3.11: Results for the naive approach annealing network for the map of Germany,
read out at different times. Displayed are the the ratios of correct, incorrect and empty
solutions for different excitatory weights.
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Figure 3.12: Ratio of correct and incorrect last non-empty solutions for different ex-
citatory weights. This shows the upper bound on how many correct solution can be
achieved.

which were able to converge, even if they stopped spiking at a certain point. The last
non-empty solutions for the experiment in subsection 3.4.1 can be seen in Figure 3.12.
As seen earlier, the amount of correct solutions is highest for medium weights. The

highest percentage of correct solutions (47 %) is achieved at 7 hwu, while at 6 hwu and
8 hwu similar results are achieved.

3.4.3 Convergence time and frequency

To determine the earliest time at which the results can be evaluated, one needs to take
a look at which time solutions stop changing. This is the convergence time. It can be
determined by looking at the last non-empty solution and tracing back at which time it
first occurred without changing in between.
This is done for the weights of 5, 6, 7 and 8 hwu in Figure 3.13. It can be seen that

the convergence time tconv does not depend significantly on the excitatory weight. All
solutions converge past 4000 ms. Correct and incorrect solutions also converge roughly at
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Figure 3.13: Convergence times for correct and incorrect solutions for different excitatory
weights. Convergence time is the time after which the solution does not change anymore,
except populations that stop spiking entirely.
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3.4 Annealing experiments

the same time. This implies that convergence occurs at a certain stimulus frequency

νconv = ν0 exp

(
− tconv

τ

)
, (3.2)

where ν0 is the initial stimulus frequency and τ the characteristic annealing time.
With the values from the experiments and the convergence time at 7 hwu this frequency

can be calculated:

νconv = 500 Hz · exp

(
−6110.6

2000

)
= 23.6 Hz. (3.3)

The uncertainty can be estimated using the standard deviation and error propagation:

∆νconv = ν0 exp

(
− tconv

τ

)(
∆tconv
τ

)
= νconv

(
∆tconv
τ

)
= 18.2 Hz. (3.4)

This puts the convergence frequency at νconv = (24± 18) Hz.

3.4.4 Stability analysis

For optimal results it is important that correct solutions stay stable over a long period
of time and incorrect solutions die out relatively quickly. If that is the case, there is a
period in time where only correct and empty solutions occur and the percentage of correct
solutions is ideally close to the percentage of correct last non-empty solutions shown in
Figure 3.12.

To quantify the stability one can take a look at the duration for which the last nonempty
solution did not change, in other words the time between the solutions convergence and
the point at which it died out. The results for excitatory weights of 5, 6, 7 and 8 hwu for
the experiment described in subsection 3.4.1 can be seen in Figure 3.14. Solutions which
remain until the end of the experiment are put into a separate bin since one cannot know
how long they would have lasted.

Looking at the distributions for the different excitatory weights, one can see that both
correct and incorrect solutions tend to last longer with higher weights, although the effect
is much more noticeable for the correct solutions. This is the expected result. For 8 hwu
one incorrect solution stays stable till the very end of the experiment, making this setting
not usable if one wants to find a setting where only correct and empty solutions are
produced, unless the experiment duration is increased even further. For 5 hwu there is
also no such setting since all solutions die out almost immediately.

To find the optimal time to read out the solution one needs to take a look at which time
the last non-empty solutions occur. In Figure 3.15 this is shown for excitatory weights
of 6 and 7 hwu. It suggests that the optimal read out time for 6 hwu is 8 s and 24 s for
7 hwu.

For 7 hwu this read out time is valid, since the solutions of all runs have already con-
verged at this point. This can be seen in Figure 3.13. In contrast the longest convergence
time for 6 hwu is 13 s. Taking non-converged solutions goes against the principle of An-
nealing, since the minimum which is searched for is not reached yet. For this reason, the
longest convergence time is used as the read out time for further considerations.
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(b) 6 hwu
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(c) 7 hwu
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(d) 8 hwu

Figure 3.14: Stability duration of the last non-empty solution for different excitatory
weights. Optimal is low stability for incorrect and high stability for correct solutions, since
in this case they can be distinguished from each other.
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Figure 3.15: Time of last non-empty solution for different excitatory weights. The
optimal read out time is after the last incorrect solution occured.
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3.4.5 Optimized performance

The experiment conducted in subsection 3.4.1 is evaluated agian at the optimized read
out times determined in subsection 3.4.4. The results can be seen in Figure 3.16.

Both evaluations show that there are no incorrect solutions for the excitatory weights
for which they were optimized, which is of course the case due to the construction of
the optimized read out times. In the result optimized for 6 hwu 19 % of all runs with an
excitatory weight of 6 hwu are correct, in the one optimized for 7 hwu 24 % of all runs
with an excitatory weight of 7 hwu are correct.

This can be compared to the results that were just taken at 64 s, which can be seen in
Figure 3.11b. Here only 3 % of runs for 6 hwu are correct, 19 % for 7 hwu. The increase
is much higher for 6 hwu since the stability of correct, converged solutions is much lower,
as can be seen in Figure 3.14
To show that the chosen read out times are not just valid for the experiment with

which they were determined another experiment with the same parameters is performed.
The results can be seen in Figure 3.17.

For both read out times the ratio of incorrect solutions is 0 % for the weights they were
optimized for. This shows the validity of the approach and that the network performance
is stable enough for this kind of optimization. Despite that, the percentage of correct
solutions at 7 hwu changes quite a bit form the previously achieved 24 % to 40 %.

3.4.6 Influence of annealing parameters

The annealing process is characterized by two parameters, the initial noise rate ν0 and
the characteristic annealing time τ , since the average noise rate ν drops exponentially:

ν = ν0 exp

(
− t
τ

)
. (3.5)

Characteristic annealing time

As long as the rate decrease is not too fast compared to the networks reaction speed the
characteristic annealing time τ should be proportional to the convergence time of the
network, leaving the convergence frequency νconv (see Equation 3.2) constant.

To validate this experiments with different τ are performed leaving all other parameters
like they were used in subsection 3.4.1. The results can be seen in Tables 3.1a and 3.1b.
The total number of experiments for each τ is 100. For the convergence time only the
runs which converge into a correct solution are taken into account, since those are the
relevant runs. The ratio of last correct solutions shows how many those are. It tends to be
larger for longer τ . The convergence frequencies νconv are calculated with Equation 3.2.
It can be seen that the convergence frequency stays constant over a wide range of τ ,

thus decreasing τ decreases the convergence time. Whether or not this can be used to
decrease the needed emulation time depends on how long it takes for incorrect solutions
to die out. The effectiveness with lower τ additionally depends on how many correct
solutions persist.
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(a) Optimized for an excitatory weight of 6 hwu
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Figure 3.16: Ratio of correct, incorrect and empty solutions for optimized read out
times.
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Figure 3.17: Ratio of correct, incorrect and empty solutions with optimized read out
times for a newly performed experiment with the same parameters used in subsection 3.4.1.
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τ [ms] tconv[ms] ∆tconv[ms] νconv[Hz] ∆νconv[Hz] ratio last correct[%]

250 728.9 174.6 27.1 18.9 45

500 1584.3 1351.7 21.0 56.9 51

1000 2877.8 912.0 28.1 25.7 54

2000 6281.8 1935.9 21.6 20.9 44

4000 13 603.2 4694.1 16.7 19.6 62

(a) excitatory weight 6 hwu

τ [ms] tconv[ms] ∆tconv[ms] νconv[Hz] ∆νconv[Hz] ratio last correct[%]

250 825.8 174.1 18.4 12.8 31

500 1671.1 497.4 17.7 17.6 45

1000 3043.1 673.7 23.8 16.0 51

2000 6110.6 1546.9 23.6 18.2 47

4000 12 582.6 2760.3 21.5 14.9 69

(b) excitatory weight 7 hwu

Table 3.1: Convergence times tconv and frequencies νconv for different characteristic
annealing times τ and different excitatory weights. The ratio of last non-empty solutions
that are correct is also shown, since it corresponds to the amount of solutions used to
calculate the convergence time.
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τ [ms] tout[s] p[%] t1[s]

250 2 19 10.5

500 3 30 10.0

1000 8 15 53.3

2000 13 19 68.4

4000 34 5 680.0

(a) excitatory weight 6 hwu

τ [ms] tout[s] p[%] t1[s]

250 4 16 25.0

500 6 27 22.2

1000 18 30 60.0

2000 24 24 100.0

4000 33 53 62.3

(b) excitatory weight 7 hwu

Table 3.2: Optimized readout times tout, ratio of correct solutions at the readout time
p and average emulation time to produce a correct solution t1 for different characteristic
annealing times τ .

To optimize performance the same strategy as in subsection 3.4.4 is used. In order to
compare the different results the emulation time which is needed to produce one correct
solution on average

t1 =
tout
p

(3.6)

is calculated with the optimized readout time tout and the ratio of correct solutions p at
this time.
t1 only includes the emulation time, configuration time and reset time are ignored and

will be discussed in chapter 4. The results for the different τ can be seen in Tables 3.2a
and 3.2b.

For low characteristic annealing times t1 is only about half as long for the network with
an excitatory weight of 6 hwu than it is for the one with 7 hwu. For the highest τ setting
used t1 is about a factor 11 lower for 7 hwu than for 6 hwu. This can be explained by a
difference in dynamics. With higher excitatory weights the network needs more time to
change with the advantage of being less susceptible to undisturbed populations stopping
to spike.
The lowest value of t1 is achieved at a characteristic annealing time of 500 ms and an

excitatory weight of 6 hwu. Here the network needs on average 10 s to generate a correct
solution. Since there do not occur incorrect solutions in this setting the only thing that
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Figure 3.18: Correct and incorrect last non-empty solutions for different excitatory
weights with an initial noise rate of 1000 Hz.

needs to be checked is whether or not the solution has a country without a color. In this
case this needs to be done 3.3 times on average for one correct solution.

Initial noise rate

The influence of the initial noise rate should be much smaller than that of the characteristic
annealing time, as long as it is sufficiently high to allow high network dynamics at the
experiments start. If the initial noise rate is too low the network is not able to explore
solutions sufficiently, if it is way too low at least some neuron populations do not spike at
all. Higher noise rates should only offset the network behavior by the time that is needed
to reach the lower initial period it is compared to.
In practice too high initial noise rates are also a problem. Increasing the initial noise

rate too much leads to experiments with a pretty low percentage of last correct intervals
as can be seen in Figure 3.18. The reason for this probably is the limited transfer speed
for the stimulus spikes. This potentially leads to highly different stimulus rates for the
different neurons and skewed network behavior in general.

The value for the initial noise rate that was used before, 500 Hz, turns out to be a good
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Figure 3.19: Convergence time of an an-
nealing network for the map of Australia.
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Figure 3.20: Convergence time on
SpiNNaker. Reproduced from (Fonseca
Guerra and Furber 2017).

compromise to avoid both problems.

3.4.7 Performance comparison with SpiNNaker

To compare the performance of the network run on the BrainScaleS system data from a
similar network run on the SpiNNaker system is used. The SpiNNaker system is parallel
multi-core system consisting of over a million ARM9 cores (Furber et al. 2013). Due to
this parallel design it is able to simulate spiking neural networks in real-time. In (Fonseca
Guerra and Furber 2017) map coloring networks are implemented for maps of Canada,
Australia and the whole world. The convergence time for the map of Australia can be
seen in Figure 3.20.

To measure the convergence time for the map of Australia on the BrainScaleS system
an annealing experiment is conducted on HICANNs 362 and 374 of Wafer 21. In contrast
to the constant rate experiments only 8 neurons per population are used, making the
network more comparable to the annealing network used for the map of Germany. Despite
that, using the same settings as for the Germany annealing experiments does not work
very well, since the fixed population often stops spiking at the beginning, leading to a
high percentage of runs that converge into incorrect solutions. However, fixing this issue
is relatively simple. Increasing the stimulus rate of the fixed population from 100 Hz to
500 Hz is sufficient to keep the fixed population spiking at all times.
For the comparison the network is optimized for a high percentage of last solutions

being correct and short convergence time. At a characteristic annealing time τ of 2000 ms
the ratio of last correct solutions for an excitatory weight of 7 hwu is still high at 95 %, for
lower τ this decreases. The convergence time for this setting can be seen in Figure 3.19.
To include all kinds of variations the floating gates are reconfigured after each run and a
new random seed is used.
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3 Optimizing network performance

Comparing Figures 3.19 and 3.20 one can see that the convergence times on the
biological timescale are fairly similar. While it takes on average 3.96 s for convergence
to occur on BrainScaleS, it takes 4.74 s on SpiNNaker. The distribution on BrainScaleS
is sharper with a standard deviation of 1.47 s compared to the 5.85 s on SpiNNaker.
Convergence percentage into a correct solution on the other hand is higher on SpiNNaker,
100 % compared to 95 % on BrainScaleS.

Although both networks are build to solve the same task, their sizes differ. While the
network described in this thesis uses 168 neurons which are connected by 8208 synapses,
the SpiNNaker network consists out of 450 neurons connected by 22 920 synapses, making
it almost 3 times larger.

The strength of the BrainScaleS network becomes apparent if the networks are compared
on the hardware timescale. While the BrainScaleS system runs with an acceleration factor
of 104 (cf. Schemmel et al. 2010), the SpiNNaker system runs in real-time (cf. Furber
et al. 2013). This puts the hardware runtime of the BrainScaleS network ahead by four
orders of magnitude if the time to configure the hardware is excluded.

3.4.8 Performance problems with certain configurations

For certain HICANN configurations such as the one used for all the constant rate ex-
periments annealing does not work at all, as can be seen from the data of an example
experiment shown in Figure 3.21. Changing parameters such as the characteristic anneal-
ing time or the initial noise rate does not change this. The problem is not wafer dependent,
as there are configurations on wafer 33 (i.e. HICANN 325, 326, 327, 345, 346 and 347)
that produce acceptable results.

To investigate the reason for this a few runs from the experiment on shown in Figure 3.21
were plotted. A typical example run can be seen in Figure 3.22. In this case the red
population of ‘Sachsen-Anhalt’ stops spiking around the usual convergence frequency
νconv calculated in subsection 3.4.3 despite the solution being correct beforehand.
Looking at the output spike rates of the different neuron populations shown in Fig-

ure 3.23 one can see that the rate of ‘Sachsen-Anhalts’ red population drops around
6000 ms, shortly recovers and then drops to zero spiking only once again between 7600
and 7800 ms for the rest of the run. During this time no other population of ‘Sachsen-
Anhalt’ as well as red populations of its neighbors ‘Sachsen’, ‘Thüringen’, ‘Brandenburg’
and ‘Niedersachsen’ spike. This leaves no way of explaining why the population stops
spiking with the available data, since one would expect from a neuron population without
a fault to only stop spiking if it is inhibited.
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Figure 3.21: Annealing experiment for the HICANN configuration used for the constant
rate experiments. Shown are the ratios of correct, incorrect and empty solutions for
different excitatory weights after 64 s emulation time.
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Figure 3.23: Output spike rates for an example run of the annealing experiment for the
HICANN configuration used for the constant rate experiments.
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4 Performance discussion

4.1 Configuration time

Until now only the pure emulation time was considered for the different experiments. In
practice this is only a small fraction of the time needed to run an experiment on the
BrainScaleS system. Most time is needed to configure the hardware correctly.
In Table 4.1 the duration of different, selected experiment steps for the constant rate

experiments with the map of Germany from section 3.3 can be found. Table 4.2 shows
the time needed for different types of runs. All values are in the hardware domain, which
is accelerated by a factor of 104 compared to the biological domain used earlier. For the
measurements all hardware tests were disabled to measure pure configuration times. For
Tables 4.1 and 4.2 10 experiments were performed to display the averages and standard
deviations for each value. The emulation time and reset time were calculated with the
specified values and the acceleration factor.

Before the hardware can be configured the network needs to be mapped to the hardware
resources. This can be done without the hardware with the use of calibration files. In
theory each network only needs to be mapped once if the same hardware resources are
used. The time needed depends on the complexity of the network, the hardware resources
to which the network should be mapped and the mapping algorithm used.

After allocating hardware resources to a user or changing neuron parameters the neuron
parameters need to be written to the floating gates. This takes most of the time of the
hardware configuration. It is not dependent on the network size, since HICANNs are
configured in parallel.
Synapse weights are stored digitally and in theory only need to be configured once

experiment step hardware time [ms]

mapping 9890 ± 530
floating gate configuration 9679 ± 48
synapse configuration 3986.8 ± 7.8
stimulus configuration 7.77 ± 0.63
saving data 73 ± 35
emulation time 1.6

reset time 0.04

Table 4.1: Runtime for different experiment steps.
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experiment step hardware time [ms]

fully reconfigured run 15323 ± 43
synapses reconfigured run 4141 ± 18
not reconfigured run with different stimulus 154 ± 20
not reconfigured run with same stimulus 146 ± 20

Table 4.2: Runtime for different run types.

the hardware is allocated and when weights are changed. In practice they are configured
before each run. This is a software constraint and can be changed in the future. Like the
floating gate configuration the synapse configuration is done in parallel, which makes it
network size independent. It takes about half as long as the floating gate configuration.
Since the stimulus times are generated by the host during all experiments conducted

in this thesis they need to be transfered. This is done for every run although in theory it
only needs to be done once the random seed is changed. Compared to floating gate and
synapse configuration this is rather fast and takes only around 8 ms.

The time needed to save the received spikes fluctuates strongly depending on resource
usage by other users.

Before each experiment all neuron populations are inhibited for 0.02 ms and left alone
for another 0.02 ms to ensure that every neuron starts the experiment on its resting
potential. In Table 4.1 this is denoted as the reset time. Compared to emulation time
and reset time the different configuration steps take a long time, in case of the floating
gate and synapse configuration the emulation time is shorter by 3 orders of magnitude.
The steps shown here are by no means all that are needed in order to perform an

experiment on the BrainScaleS system, but are the most time consuming and most
important in order to understand why the configuration takes so much longer than the
experiment itself.
In Table 4.2 the duration of the different types of runs used in the experiments is

shown. This does not include mapping or the time to save spike data. The time for a fully
reconfigured run, that includes floating gate configuration and synapse configuration, and
a run with reconfigured synapse weights were measured directly. As mentioned earlier
functionality to keep synapse settings for new runs and reusing old stimulus times is
currently not implemented, but possible from a hardware perspective. For this reason
the duration of runs where only the stimulus times or nothing are reconfigured cannot
be measured directly. They were determined with the duration of the run where only
synapse weights were reconfigured by subtracting the time of the synapse configuration
and, in case of the run with the same stimulus, the stimulus configuration time. This was
done for each of the 10 experiments individually and averaged afterwards.
Compared to the biological domain all runtimes are shorter. If one uses only fully

reconfigured runs with 16 s biological emulation time the speed up is insignificant. If
one only reconfigures the synapses the provided acceleration factor is around 4, for the
currently not implemented runs without synapse and floating gate reconfiguration it is
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around 100.
This shows that experiments with static networks that can be used for multiple problems

benefit the most. For such problems it should be sufficient to configure floating gates
and synapse weights once in the beginning and solve different problems by changing
the stimulus. This is not really applicable to map coloring problems, since the structure
is unique and irregular for each map. Other CSPs like sudoku are regular enough. In
Alexander Kugele’s implementation (cf. Kugele 2018) the network structure stays the
same for different sudokus of the same size. Particular sudokus are implemented by fixing
the given numbers like the color of the country with the most neighbors was fixed in
the implementation of the map coloring problem in this thesis. This means the different
sudokus with same size only differ in stimulus spikes.
For experiments with longer biological emulation times the speed up is higher, since

configuration times except the stimulus configuration stay constant while varying the
emulation time, making experiments with longer emulation times more efficient.

4.2 Discussion of runtimes for different experiment parts

In chapter 3 both constant stimulus and annealing experiments were conducted. As men-
tioned before the foci of those experiments were different. For this reason the experiments
are not really comparable.
In the constant rate experiments solutions generated by the spiking neural network

were checked by a conventional computer. Generating the first correct solutions fast was
prioritized to minimize the network runtime. Having a high percentage of correct solutions
was preferred in order to minimize the amount of solutions that needed to be checked by
the conventional hardware.

After optimization the median time till the first correct solution occurs for the map of
Germany is around 800 ms in the biological domain, fluctuating slightly due to floating gate
variations (see Figure 3.9). The median for the percentage of correct solutions is around
50 %, fluctuations due to floating gate variations are more apparent (see Figure 3.10).

The goal of the annealing experiments was to eliminate the need to check if a solution has
violated constraints, in other words the network should not produce incorrect solutions.
Either correct or empty solutions are generated. Empty solutions are much easier to
identify than incorrect ones, since one only needs to check if each country was assigned a
color. Performance for the annealing network can be quantified with the average emulation
time to generate a correct solution and the amount of empty solutions generated during
this time. The amount of empty solutions is especially relevant if you consider configuration
times, since it coincides with the amount of additional runs needed.

For the optimal setting found in Table 3.2a the average time to generate a correct solu-
tion is 10 s in the biological domain. During this time 2.3 empty solutions are generated,
which means the hardware needs to be configured 3.3 times on average. As shown in
section 4.1 the configuration time for each run highly depends on what is actually reconfig-
ured. The experiments in section 3.4 were all done with full reconfiguration between runs
to include floating gate variations and thus giving the actual averaged performance over
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all influencing factors. In an experiment designed to produce a correct solution without
using a conventional computer to check for incorrect solutions in the shortest possible time
it would be better to not reconfigure the floating gates and synapse weights, since this
is a relatively slow process, only varying stimuli in between runs. This could potentially
increase the variability between experiments, but should still be much faster anyway.

Comparing on the biological timescale shows that convergence times for the annealing
experiments done for the map of Australia are very similar to convergence times measured
on SpiNNaker (cf. Fonseca Guerra and Furber 2017). As already mentioned, the huge
advantage of the BrainScaleS system is its acceleration factor of 104 putting it ahead of
SpiNNaker by the same factor when considering hardware emulation time.
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5 Conclusion and outlook

With the experiments described throughout this thesis it could be shown that a simple
network run on the BrainScaleS system is able to solve map coloring problems for small
maps. Additionally, the network performance was analyzed for multiple configurations.
Keeping neurons with many inhibitory inputs from stopping to spike was achieved by
scaling the inhibitory weights for inter-country synapses by the number of neighbors.
For the map of Germany it could be shown that there are configurations where the

impact of floating gate variations is quite limited. This is important, because the network
then behaves predictably every time it is configured. For the map of Australia this was
not investigated, but it is reasonable to assume similar behavior.
The measurements for the annealing experiments showed that annealing can be used

to achieve configurations in which only correct or empty solutions are generated. This
eliminates the need to check whether or not constraints are satisfied with conventional
hardware. It only needs to be checked if countries have no color assigned at all, which
does not need much computing power.

The performance of an annealing network for the map of Australia was compared to a
network run on SpiNNaker. Convergence speeds in the biological domain are similar. While
the SpiNNaker network converges correctly every time, the network run on BrainScaleS
only does so in 95 % of runs. On the other hand the network used in this thesis is only
about a third as large as the SpiNNaker network. Comparing on the hardware timescale
shows the big advantage of the BrainScaleS system. Through its acceleration factor of
104 the network run on it is faster than the SpiNNaker network, which runs in real-time,
by the same factor.
Furthermore, configuration times for different types of runs were measured. It can be

seen that those are much longer than the emulation times, especially the initial configu-
ration of floating gates and synapse weights, which is four orders of magnitude higher for
typical emulation times.

To take this project further it would be most interesting to investigate larger maps and
larger networks, like the map of Europe and eventually the world map. Implementing the
map of Europe was attempted but did not succeed due to mapping constraints. For a
successful implementation those constraints must be removed by improving the mapping
algorithm. By implementing larger maps the scaling properties of the hardware could be
investigated. One could check if the methods of optimization which were used in this thesis
could also be applied to larger networks. Quantifying the performance of the world map
would be particularly interesting, since it was the largest map implemented on SpiNNaker
(cf. Fonseca Guerra and Furber 2017).

Neuron parameter optimization was not attempted in this thesis and could be used
to improve results further and gain a deeper understanding of the network, its behavior,
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5 Conclusion and outlook

which can be unstable at times when compared to simulations, and its limitations. Most
parameters were kept constant after a working configuration was found for the basic
experiments conducted with the map of Australia. The only parameter whose influence
was investigated in detail is the weight of the synapses used for the self-excitation of
neuron populations.
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