
Department of Physics and Astronomy
University of Heidelberg

Bachelor Thesis in Physics
submitted by

Daniel Kutny

born in Kędzierzyn-Koźle (Poland)

2017





Development of a Modern Monitoring Platform
for the BrainScaleS System

This Bachelor Thesis has been carried out by Daniel Kutny at the
Electronic Visions Group in Heidelberg

under the supervision of
Prof. Karlheinz-Meier





Abstract

Ongoing monitoring of is an integral component of any large-scale project. This
thesis aims to enhance the monitoring of the BrainScaleS system by improving
on the existing infrastructure as well as developing a modern visualization for
the system state. A new ”event pipeline” has been introduced which streamlines
the process of aggregating, processing and storing event data received from the
BrainScaleS system using ElasticStack.
Using Grafana multiple dashboards were created which allow a fast visualiza-
tion of the state of BrainScaleS system, the internal Visions network and the
connected devices. A new status code for FPGAs has been introduced which
unites all information regarding its state in a three digit number. This status
code is used for the central dashboard giving the user an overview of all FPGAs
and Reticles.
Security measures regarding the access to the Elasticsearch database and the
monitoring software were introduced and the ground work for alerting has been
laid down in this thesis.

Zusammenfassung

Kontinuierliche Überwachung ist ein integraler Bestandteil eines jeden großskali-
gen Projekts. Diese Bachelorarbeit zielt auf die Verbesserung der Überwachung
des BrainScaleS-Systems durch Verbesserung der bereits existierenden Infras-
truktur sowie der Entwicklung einer modernen Zustandsvisualisierung ab.
Eine ”Event Pipeline” wird eingeführt welche die Aggregation, Verarbeitung und
Speicherung von Ereignissdaten (”event data”) des BrainScaleS-Systems durch
Nutzung des ElasticStack vereinfacht. Mittels Grafana werden verschiedene Dash-
boards zur Überwachung des Zustands des BrainScaleS-Systems, des internen
Visions Netzwerk sowie der angebundenen Geräte erstellt. Für die FPGAs der
Wafer wird ein Statuscode eingeführt welcher die zentralen Zustandsinformatio-
nen in einer dreistelligen Zahl vereinigt. Dieser Statuscode wird zur Entwicklung
des zentralen Dashboards genutzt welcher dem Nutzer eine Übersicht über alle
FPGAs und Reticles ermöglicht.
Sicherheitsmaßnahmen betreffend dem Zugang zur Elasticsearch Datenbank
sowie der Visualisierungssoftware werden eingeführt. Ebenso wird die Grundlage
für die Alarmierung geschaffen.





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Different Types of Monitoring Data . . . . . . . . . . . . . . . . . 1
1.3 Monitored Hardware and Software . . . . . . . . . . . . . . . . . 2

1.3.1 BrainScaleS System . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 Electronic Visions Network . . . . . . . . . . . . . . . . . 4

1.4 Storage and Visualization . . . . . . . . . . . . . . . . . . . . . . 4
1.4.1 Elastic Stack: Elasticsearch, Logstash and Filebeat . . . . 4
1.4.2 Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.3 Grafana . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.4 Kibana . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Deployment & Development 9
2.1 Event Processing Pipeline . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Creation of Monitoring Views . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Wafer Module . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Wafer Temperatures . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 AnaB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 PowerIt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.6 Single Reticle . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.7 Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.8 Device Information . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Overview Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 First iteration . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Second Iteration . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Exposition and Security . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Elasticsearch and Kibana . . . . . . . . . . . . . . . . . . 27

2.5 Alerting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Calibration Overview . . . . . . . . . . . . . . . . . . . . . . . . . 28



CONTENTS

3 Summary and Conclusion 31
3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Appendix 33
4.1 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Logstash Configuration File . . . . . . . . . . . . . . . . . . . . . 33



Chapter 1

Introduction

1.1 Motivation

Slawek Ligus defines monitoring in his book ”Effective Monitoring & Alerting”
as follows [4]:

Monitoring is the process of maintaining surveillance over the ex-
istence and magnitude of state change and data flow in a system.
Monitoring aims to identify faults and assist in their subsequent
elimination.

Ligus’ definition already shows the importance of monitoring. Today’s physics
experiments often run for many weeks or months and rely on many electronics,
computers, servers and other components. Large-Scale projects are frequently
platforms for other scientists who rely on those components. As such, errors
may occur of which the system’s designers did not think of. Examples of such
projects would be DESY, which allows scientists from all over the world to
perform their experiments with synchrotron radiation, but also the Electronic
Visions Group with the Neuromorphic Platform, which aims to allow scientists
to use neuromorphic hardware.
The goal of this bachelor thesis is to build a monitoring system for the neu-
romorphic platform which allows the user and the administrators to visualize
the behavior of its different component, study patterns and recognize potential
failures easily.

1.2 Different Types of Monitoring Data

In general, one can differentiate between two types of data: event data and time
series data. Timeseries data are continuous lists of pairs of values, in which one
is a point in time and another one a numeric value. They are meant to represent
time-dependent, continuous metrics. An example of such data would be the his-

1



2 CHAPTER 1. INTRODUCTION

tory of the temperature of a CPU.

On the other hand, we have event data. In the context of monitoring, event
data is a data set whose existence is triggered by an external event and is
attached to a point in time. These datasets do not need to be continuous nor
do they need to have a specific value attached to them. An example of such an
event is the booting of a computer, crashing of a program or the failure of a
computer component. These events are not necessarily numeric values but can
contain logs, errors or some structured data, i.e. a JSON-object. [7]

1.3 Monitored Hardware and Software

In this section the BrainScaleS neuromorphic platform and its monitored hard-
ware and software components will be outlined.

1.3.1 BrainScaleS System

The BrainScaleS system consists of twenty wafer modules with the neuromor-
phic wafer as the central component of a module.
The wafer itself is divided into 48 parts called reticles. Each of those reticles con-
tains 8 HICANN chips, resulting in a total number of 384 HICANN chips for
each wafer. Every reticle is connected to a FPGA communication PCB (FCP)
which handles the communication between the user and the reticle. All reticles
are also connected to the Analog Breakout PCB (AnaB), which send membrane
voltages to the analog readout modules.
The wafer module is connected to the PowerIt module which, as the name sug-
gests, powers all its components. The power to the reticles is maintained by the
Wafer Module Main PCB (MainPCB), which can switch the power on and off
on a per-reticle basis. basis.
Six boards called cure boards are installed on the MainPCB board which pro-
vides the monitoring of all wafer voltages. All the data from the sensors are
collected by the Single-Board Control Computer, which is a Raspberry Pi con-
nected by an Ethernet link. [6] [3] A schematic view is provided in Figure 1.1,
an explosion view is provided in Figure 1.2.



1.3. MONITORED HARDWARE AND SOFTWARE 3

Figure 1.1: Schematic overview of a wafer module. [6]

Figure 1.2: Exploded-view drawing of the module. [6]



4 CHAPTER 1. INTRODUCTION

1.3.2 Electronic Visions Network

Servers and clients from the internal network are all monitored by the Ganglia
Monitoring System, or short Ganglia. Ganglia is a daemon which collects metrics
such as CPU temperature, work load, network activity and memory allocation
and sends them to a storage such as Graphite, which is described in 1.4.2.

1.4 Storage and Visualization

1.4.1 Elastic Stack: Elasticsearch, Logstash and Filebeat

The software bundle consisting of Elasticsearch, Logstash and Filebeat is re-
ferred to as ”Elastic Stack”. In the following section all the components of the
Elastic Stack will be presented.

Elasticsearch

Elasticsearch is a database with an integrated, powerful fulltext search. It can
store structured data as JSON documents and allows an access to saved doc-
uments via a RESTful API. Documents are organized in so called indices. For
example, one could put all logs belonging to the wafers in an index called log.
Elasticsearch supports the star symbol (*) as a wildcard, therefore one can save
files in indices with the today’s date, ie. ”logs-2017.08.13”. Using the wildcard,
one can still query across all logs using ”logs-*”.
Documents are classified by so called types. For example, logs could be classi-
fied in the types ”error”, ”warning”, and ”information”. In the following section
the queries for writing and deleting these documents will be presented. All the
documents are also carrying an unique identifier.

Queries Queries are handled with simple HTTP-Requests. To save a docu-
ment, one would send a PUT request to the Elasticsearch server with the URL
of the form http://host/index/type/id. As an example, we will put an error
message into Elasticsearch:

PUT http://host/logs-2017.08.09/error/5423
{
"@timestamp": "1507637388000",
"from": "Server_13",
"error": "Booting failed"

}

To access this error message, we can simple use GET on the above url. We can
also simply open

http://host/logs-2017.08.09/error/5423

in our browser. The answer from the server will be the error from above and
some metadata. The example response is shown in 1.1.

http://host/index/type/id


1.4. STORAGE AND VISUALIZATION 5

{
"_id": "5423" ,
"_type ": "error",
"_version ": 1,
"_score ": null ,
"_source ": {

"@timestamp ": "1507637388000" ,
"from": "Server 13",
"error ": "Booting failed"

}
}

Listing 1.1: Example response for a GET query

Searching through documents can be carried out in two ways. Either through
a URL with a Lucene Query or with a JSON object.

Lucene Query To search with a URL, one can simply append ” search” to an
index and the search query with ”q=”. The following request will look through
the index ”logs-*”, in which the source of the errors is the Server 13.

GET http :// host / logs −∗/ e r r o r / s ea r c h ?q=from : Serve r 13

Request Body Search The request body search allows a more sophisticated
search, as it is possible to perform full-text search, combine multiple queries,
weight different queries and receive a score based on how well the document
matches the information. For the purpose of this bachelor thesis, however, it is
sufficient to know that you can query through Elasticsearch with a HTTP-body
like in 1.2.

GET http :// host/logs -*/ error/_search
{

"query" : {
"term" : { "from" : "Server_13" }

}
}

Listing 1.2: Example of a document request in Elasticsearch

Filebeat

Filebeat is a daemon which runs on a device such as a server and observes its
log files and sends them to Logstash.

Logstash

Logstash is a service that can process log files to useful JSON objects which
can be put into Elasticsearch. A typical log file from syslog is in the following
format:



6 CHAPTER 1. INTRODUCTION

Apr 12 18:43:35 host script.py: Error while Init

Logstash can process this error message into a JSON file, but the user has
to define the pattern of the log format against which it is supposed to match.
The end result that we want for the above message is a structured document
which can easily be queried:

{
"@timestamp ": 1002891515000 ,
"host": "host",
"source ": "script.py",
"message ": "Error while Init"

}

Listing 1.3: Example of a transformed log message

To start processing, we need to define a ”pipeline” along which the log is
processed. Such a pipeline is saved in /etc/logstash as a.conf file and is loaded
automatically when starting Logstash. Since logstash has a built-in filter for
syslog messages, the listing 1.4 file would transform the log into the JSON
format we want and insert it into Elasticsearch.

input {
# Listen to port 5044 for
# incoming logs from filebeat
beats { "port" => "5044"}

}

filter {
grok {

match => {
# Match incoming log against known
# pattern and structure it to JSON
"log" => "%{ SYSLOGBASE} %{ GREEDYDATA:message }"

}
}

}

output {
#Send structured file to Elasticsearch
elasticsearch {}

}

Listing 1.4: Example of a configuration file for Logstash

1.4.2 Graphite

Graphite is a fixed-size time-series database. This means that for each time-series
metric, a fixed period is stored (for example, one year). The resolution in time



1.4. STORAGE AND VISUALIZATION 7

can also be set up, so that one month metrics only have a resolution of 30 min-
utes, while the metrics of the last 24 hours have a resolution of one minute. The
metrics are stored in a folder-like structure. Graphite provides a JSON object
for retrieving the stored data. It can be queried using http://shinviz.kip.
uni-heidelberg.de/render?target=QUERY&format=json, where QUERY is
replaced with the target metric. An example of such a target would be ”Wafer-
Module.*.Wafer.temperatures.south”. This will retrieve all temperatures from
the ”southern” part of the wafer from all wafers. Like in Elasticsearch, the star
symbol (*) is used as a wildcard.
An example response from graphite is provided in 1.5.

Listing 1.5: Example response from graphite for wafer temperature

[
{

"target ": "WaferModule .36. Wafer.temp.south",
"datapoints ’: {

[34.3 , 1509724940] ,
[35.2 , 1509724960] ,
[34.7 , 1509724980] ,
...

}
},
...

]

1.4.3 Grafana

Grafana is a web-based visualization tool for monitoring and analysis. The soft-
ware supports the creation of dashboards. A dashboard is divided into rows
which can be created, rearranged or deleted. The user can add so-called panels
to the rows. These panels can be different types of visualizations like the graph
panel and the single status panel which will be described in this chapter.
The user can choose the time range he wants to view. Grafana supports multiple
data sources for visualization such as MySQL, Graphite, InfluxDB or Elastic-
search. [2] In this bachelor thesis only Graphite and Elasticsearch are used.

1.4.4 Kibana

Kibana is a browser-based visualization and management tool for Elasticsearch.
Kibana provides a GUI for trying out queries, but also the creation of different
types of graphs such as histograms.

http://shinviz.kip.uni-heidelberg.de/render?target=QUERY&format=json
http://shinviz.kip.uni-heidelberg.de/render?target=QUERY&format=json


8 CHAPTER 1. INTRODUCTION



Chapter 2

Deployment &
Development

This chapter covers the creation of an event processing pipeline, the dashboards
and the access security to the platform. Figure 2.1 shows the parts of which the
current monitoring platform consists.
On the left side we have the BrainScaleS system, covered in section 1.3, which
sends metrics to Graphite. We also have the ”Visions Network” in the top center
consisting of all the servers and computers in the network which interact with
the BrainScaleS System (i.e. job allocation, power cycling,..). This network itself
is also monitored and sends events and metrics to the monitoring storage repre-
sented below the Visions Network box. The aggregation is described in the next
chapter. Finally, Grafana accesses data from monitoring storage and visualizes
it. This part is covered in Section 2.2.
During the precedent internship Elasticsearch as a new event database and
Grafana as a visualization tool were deployed. This bachelor thesis focused on
the creation of an event pipeline for the interaction between the network and
the BrainScaleS System as well as the creation of different dashboards for mon-
itoring using Grafana.

9



10 CHAPTER 2. DEPLOYMENT & DEVELOPMENT

Figure 2.1: Diagram of the monitoring system showing different parts of the
monitoring system.

2.1 Event Processing Pipeline

During the bachelor thesis the need for aggregating and storing different events
emerged. For this, a pipeline for processing events was designed. Figure 2.2 por-
trays the pipeline which is explained in this chapter.

2.1.1 Aggregation

In order to simplify the aggregation it was decided to write events as a system
log on a server and send the logs to Logstash using Filebeat.
Events like the on and off switching of a FPGA or its allocation to a SLURM
job are written to the server hel into a file /var/log/elasticsearch/*.log, where
the star can be an arbitrary valid file name.
A Filebeat daemon was installed on hel which watches all .log files in the di-
rectory /var/log/elasticsearch. Whenever a new line is noticed by Filebeat it is
send to Logstash.
For an easy and understandable processing of the events logs by Logstash a
logfile format which should be obeyed was introduced. The format demands

1. Every event type, like the FPGA switching, should have their own file

2. Every event should be written in one line



2.1. EVENT PROCESSING PIPELINE 11

3. Every line starts with the syslog base
MMM dd hh:mm:ss {SOURCE} {SCRIPT}: {LOGGER}
An example of such a base is
Aug 24 14:06:38 hel fpga remote init.py: hwlog

4. The events are written after the syslog as key-value pairs.

5. The keys and values are separated by an equal sign (=) and all pairs are
separated by a space ( ). Keys should not contain any special characters
and especially spaces. Values which are strings should be surrounded by
double quotation marks (”). Newlines and quotation marks have to be
escaped.

An example of full log file line is in Listing 2.1.

Listing 2.1: Example of a log file line

Aug 24 14:06:38 hel fpga_remote_init.py: vislog
Wafer =20 FPGA =07 State =1

This format not only allows an easy implementation for the user wanting to
log information, it also allows an easy processing of the event data by Logstash
described in the next chapter.

2.1.2 Processing

The Logstash daemon was deployed on monviz and listens on port 5044 for
incoming log lines. The incoming line is split into the syslog part and the re-
maining part, which contains all the key-value pairs. Using the kv-Filter from
Logstash the remainder is split into key-value pairs. The timestamp from the
syslog is converted into a elasticsearch timestamp. As such the example from
listing 2.1 would translate into the following JSON-object.

{
"@timestamp: 2017 -08 -14 T12 :06:38 ,
"logsource ": "hel",
"program ": "hwlog",
"Wafer ": "20",
FPGA: "07"

}

This JSON-object is then send to Elasticsearch. The configuration file for
the log file processing can be found in the Appendix 4.1.

2.1.3 Storage

Once the JSON-object is received from Logstash it is saved to the Elasticsearch
storage and is now queriable. The full pipeline is represented in 2.2.



12 CHAPTER 2. DEPLOYMENT & DEVELOPMENT

Figure 2.2: Diagram of the monitoring system. [6]

2.2 Creation of Monitoring Views

Having a clean visualization of a system allows an easy and fast administration.
Therefore, developing views for various components were one of the key goals
of this bachelor thesis. This section covers the development and motivation of
different views. All views were created in Grafana, described in subsection 1.4.3.
The entry point into Grafana is the ”Overview”-Dashboard. As the name sug-
gests, this dashboard allows the user to see the status of all Reticles and FPGAs
of all wafers at a glance. The user can click on an FPGA / Reticle / Wafer which
leads them to the corresponding dashboard, where they receive more informa-
tion. All dashboards are described in this section, except for the ”Overview”-
Dashboard which, due to its nature and complexity, received its own section in
2.3.
For a better readability the screenshots for all dashboards were moved to the
end of this section. To improve the printing the dashboard colors were switched
to a white theme. In production the standard background color of Grafana is
black.

2.2.1 Wafer Module

The ”Module”-Dashboard gives the user an abstract overview of the status of
the wafer module. The dashboard is divided into four rows. The first row fea-
tures the selection of a wafer and links to more detailed dashboards of different
components, i.e. AnaB or PowerIt.
The second row shows the most important temperatures of the wafer module,
i.e. minimal and maximal temperature of the wafer or MainPCB temperature.
Depending on the value of the temperature, the background color of the panel
changes to yellow (warning) or red (critical) if certain thresholds exceeded. The
threshold values depend on the component. For example, the wafer’s tempera-



2.2. CREATION OF MONITORING VIEWS 13

ture is deemed to be critical above 65◦C, while an air temperature above 40◦C
is already considered to be critical.
The third row shows the power status of the reticles as well as the status of
the FPGAs. Next to it, the temporal evolvement of the PowerIt current at the
48V and VDD points is displayed. Next to it, a graph of the wafer’s minimal,
maximal and average temperature is shown. The third graph counts the number
of job allocations for the Reticles.
The fourth and last row shows a bar chart with the temperature of each FPGA.
They are sorted depending on whether they are off, on or in a critical status
(temperature above 60◦C).

2.2.2 Wafer Temperatures

The ”Wafer Temperatures” dashboard gives an overview of the key temperatures
of the wafer system and can be reached by clicking on a temperature panel
in the ”Module”-Dashboard. In the top row on the left the temperature of
the surrounding air is displayed whilst on the right five temperatures of the
MainPCB board.
The second row features the temperatures of the wafer itself as well as the
temperatures measured from the top cover.
The third row includes the temperature of the AnaB module as well as the speed
of the fans mounted on the wafer system.

2.2.3 AnaB

Like the ”Wafer Temperatures” dashboard the ”AnaB” dashboard can be reached
from the ”Module” dashboard. It features the three panels with one present-
ing the AnaB temperature, one presenting the main voltages and the third one
presenting corresponding voltages at the shunts.

2.2.4 PowerIt

The ”PowerIt” dashboard consists of six graphs. Again, they show the most im-
portant voltages and currents of the PowerIt module as well as its temperature.
As of now, many of these sensors are not yet calibrated (i.e. the temperature of
the PowerIt is at constant 3◦C) so the use of the dashboard is limited. Seeing
relative changes might still be useful, though.

2.2.5 FPGA

The FPGA dashboard can be accessed from the ”Module” dashboard. Its pur-
pose is to show in-depth information about the state of FPGAs where the user
can choose the wafer and one or multiple FPGAs. Three metrics which are mea-
sured from FPGAs are its temperature, the RTA(round time average, average
time a package needs from the client to the FPGA and back) and the package
loss. These metrics are displayed in three separate graphs in the second row.



14 CHAPTER 2. DEPLOYMENT & DEVELOPMENT

Additionally, the temperature of the corresponding FCP is displayed in the tem-
perature graph.
The user can choose to display events concerning the FPGA. As of now, only
the power state change is supported. These events are displayed as vertical lines
in the graphs. An application of this is shown in Figure 2.14. Additionally, the
current temperature and the current RTA of all FPGAs are displayed at the
bottom.
Using the button at top right the user can switch to the linked Reticle. Since
the Reticle number and FPGA number are different one can not simply use the
build-in linking feature of Grafana, which normally allows to link between two
dashboards. Therefore a link to a webpage which routes the user to the correct
reticle has been created.

2.2.6 Single Reticle

The ”Singe Reticle” dashboard can be accessed from the FPGA dashboard.
The top row is a panel showing the power status of the currently viewed reticle.
The second row offers an overview over all recorded voltages. The left half
shows a plot of voltage drains (VDD) while the right side shows the voltage
at common collectors and the high / low output voltages. Additionally, the
minimal, maximal, average (over the chosen time period in the upper right
side) and current voltage are listed in table.
The left plot shows seven voltages. The user, however, can choose to click on
one or multiple of these to filter these out.

2.2.7 Cluster

The ”Cluster” dashboard is not related to the wafer system. It is supposed to
give a general overview of the state of the servers and nodes in the Visions net-
work. The dashboard is separated into two rows. In the first row two graphs are
featured showing the load on the frontend (servers and desktop computers) and
the network nodes. These graphs might look confusing but abnormalities are
easy to spot. Additionally, two tables listing the top users of SLURM (ordered
by number of SLURM jobs) are displayed.
In the second row a graph showing the traffic throughput of all connected de-
vices is included. Next to it the RTAs (round time averages) of all KIP nodes
are displayed. Two more graphs plot the package loss of all cluster devices and
kip nodes which have a package loss of more than 0%. This allows a fast iden-
tification of problematic nodes and devices.

2.2.8 Device Information

The purpose of the ”Device Information” dashboard is to give the user an
overview of the state of a device. The first graph in the upper left side shows
the load on the device as well as the 5- and 15- minute weighted average of it so



2.2. CREATION OF MONITORING VIEWS 15

that trends can be easier identified. Next to this a graph showing the CPU us-
age (in percent) of the user, system and IO (input/output) processes is placed.
Furthermore, key characteristics of the device such as RAM size, clock speed,
number of cores and the total disk size as well as its occupation in percentage
are shown.
In the next row on the left the composition of the memory usage (in percent)
and the CPU temperature are plotted. The last row features important infor-
mation regarding the device’s network activity such as the number of bytes and
packages coming in and out as well as information about the Round Time Trip
(average, maximum, minimum).
Most devices do not deliver all metrics at the same time. In such a case, the
graphs are left out empty.



16 CHAPTER 2. DEPLOYMENT & DEVELOPMENT

Figure 2.3: Screenshot of the module view showing all graphs and panels which
give the user an abstract view of the wafer state.



2.2. CREATION OF MONITORING VIEWS 17

Figure 2.4: Dashboard of the AnaB module with key voltages being displayed.



18 CHAPTER 2. DEPLOYMENT & DEVELOPMENT

Figure 2.5: This screenshot shows the important metrics for the PowerIt module.
As we can see the temperature sensor is not calibrated as it shows a constant
temperature of 3◦C



2.2. CREATION OF MONITORING VIEWS 19

Figure 2.6: Exmple of an FPGA dashboard with one activated FPGA. We can
see a zig zag pattern in the temperature. Interestingly, this pattern can be
found across many different devices. Some assume that these come from the air
conditioning powering on and off depending on the temperature.



20 CHAPTER 2. DEPLOYMENT & DEVELOPMENT

Figure 2.7: Another screenshot of FPGA dashboard with events (power up and
shut down) being marked by green and red line. Round Trip Time stops being
measured and temperature of FCP goes down when FPGA shut down.



2.2. CREATION OF MONITORING VIEWS 21

Figure 2.8: ”Reticle” dashboard showing voltages of an reticle which is off.



22 CHAPTER 2. DEPLOYMENT & DEVELOPMENT

Figure 2.9: ”Cluster” dashboard showing the state of the cluster. Interestingly,
the load of some nodes exhibit the behavior of a leaky integrator



2.2. CREATION OF MONITORING VIEWS 23

Figure 2.10: ”Device” dashboard showing different information regarding the
activity of a desktop computer. Not all information was available for display for
this device.



24 CHAPTER 2. DEPLOYMENT & DEVELOPMENT

2.3 Overview Dashboard

One of the key views that needed to be developed was an overview for the status
of all FPGAs and Reticles of all wafers. However, none of the available panels
for Grafana were suitable for this. Therefore, a new panel had to be developed.

2.3.1 First iteration

In the first version a Python script was started using a CRON job every minute
which queried the package loss and the temperature of the FPGA and also the
power status (on/off) of the reticles from shinviz and saved the results as files.
This reduced the workload on the database as they were only queried once a
minute instead of being queried every time a user started the overview.
The queried information was then processed in the browser. If the temperature
was above 0 (meaning that the FPGA sensor is actively sending the temperature
metric) and the package loss was 0%, the FPGA was on. The color green was
assigned for this status. If the package loss was 100% or less but above 0% and
a temperature value was received, a problem with the network or FPGA was
assumed. This was coded with the color yellow.
If the temperature was received but the package loss was below 100% an error
in the temperature sensor was assumed, being displayed as blue. If the package
loss was 100% and the received temperature was 0%, the FPGA was considered
to be offline.
The status were aligned rectangular, with the FPGA’s number going in direc-
tion X and the Wafer’s number going downwards Y-direction.
Additionally, the power status of the corresponding reticle was added. A screen-
shot of the first overview was added in Figure 2.11.

Figure 2.11: Screenshot of the first iteration of an FPGA / reticle overview



2.3. OVERVIEW DASHBOARD 25

2.3.2 Second Iteration

The first iteration was only capable of showing status quo of an FPGA. It did
not take into account that there might be a desired status for an FPGA, i.e.
the FPGA should be on or off (PowerState) and whether it initialized this state
successfully (InitState). For this, Christian Mauch developed a script which,
whenever an FPGA is supposed to be on or off, records this event in Elastic-
search using the pipeline described in 2.1.1.
As many combinations are possible regarding the temperature values, package
losses and the initiation state, a new metric status code was introduced. Each
FPGA now has a status code assigned, a three digit number encoding its state.

• The first digit encodes the availability of the FPGA. All FPGAs are rou-
tinely pinged. If all packages are lost, the first digit of the status code
becomes ”0”, if all packages are received the digit becomes ”1”, and if
there is some loss it becomes ”2”.

• The second digits encodes the temperature of the FPGA. If the tempera-
ture of an FPGA is unavailable the digit becomes ”0”, if it is below 50◦C
it becomes ”1” and if it is above 50 ◦C it becomes ”3”.

• The third digit shows if was shut down (”0”) or powered on (”1”) correctly.
If the PowerState and InitState do not match, the digit becomes ”2”. If
such an event was not registered for the FPGA, the digit becomes a ”3”

For example, ”000” means the FPGA shut down correctly, whilst ”111” means
it powered on correctly and is running. The code ”211” would mean that it was
powered on correctly and the temperature is below 50◦C, however there is some
package loss regarding the FPGA.
Like in the first version a python script queries the databases and determines
the status for all FPGAs every minute. To reduce the workload on the database
and speed up the script only the states for the current day are queried whilst
states from the previous days are taken from a cache. At the same time, if a
new desired state is received during the current day, it is added to the cache.
The caching reduced the time to determine all status code from an average of
40 seconds to 6 seconds. All states are written to a JSON file which is exposed
to the internet.
On the front-end, at the internet browser of an user, a JavaScript script retrieves
the status codes. Like in the first iteration, the wafer and FPGAs numbers are
aligned rectangular, with each rectangle representing an FPGA in the top half
and its corresponding Reticle in the lower half. The top half is colored con-
formable to its state, i.e. ”111” becomes green(no package loss, temperature
below 50◦C, correct initialization), ”000” becomes red (full package loss, no
temperature sent from Raspberry Pi, shut off correctly) and ”211” becomes yel-
low indicating a problem with the FPGA connectivity. Additionally, the status
code is displayed as a number if it is not in an expected state. Like in the first
version, the lower half of the rectangle shows the power state of the Reticle.



26 CHAPTER 2. DEPLOYMENT & DEVELOPMENT

Figure 2.12: Second and final design of the new FPGA / reticle overview.



2.4. EXPOSITION AND SECURITY 27

2.4 Exposition and Security

For administrators and users it is important to be able to access monitoring
not only from inside the internal network of KIP, but also from the ”nor-
mal” internet. For this, Eric Müller set up a reverse proxy from monviz.kip.
uni-heidelberg.de to brainscales-r.kip.uni-heidelberg.de:12443. This
however, meant that the Elasticsearch database and our monitoring software was
exposed to the general public and therefore also to malicious users. Attacks on
unsecured Elasticsearch databases were already reported. [8]

Grafana

Grafana has a built-in LDAP support. Grafana was configured to use the Brain-
ScaleS LDAP server for login, which allows the user to use the same credentials
as for GitViz or Gerrit.

2.4.1 Elasticsearch and Kibana

Elasticsearch and Kibana do not offer built-in security. Therefore, any user who
has access to the server running Elasticsearch can perform any kind of opera-
tion he likes, including deleting or creating datasets. [1] There are two different
security solutions, though, which allow the creation of users and management
of their rights.
The first security solution is called ”X-Pack”, developed and maintained by the
company behind Elasticsearch. Unfortunately, it is not free. Therefore, it was
decided to use SearchGuard, an open source security plugin. SearchGuard li-
cense allows the use of Basic HTTP Authentication, but not LDAP. Therefore
each use case gets its own user with the rights it needs in accordance with the
principle of least privilege [5].

2.5 Alerting

A notification channel for Mattermost was created (called ”Monitoring Alerts”)
and a Grafana Bot which can send notifications about status of the hardware
was set up. An example notification is shown in Figure 2.13. Right now, only
notifications about exceeding temperatures are implemented.

monviz.kip.uni-heidelberg.de
monviz.kip.uni-heidelberg.de
brainscales-r.kip.uni-heidelberg.de:12443


28 CHAPTER 2. DEPLOYMENT & DEVELOPMENT

Figure 2.13: Example of a notification for exceeding wafer temperature in Mat-
termost.

In the long run more notifications about the components should be imple-
mented, as well as an email notification and, in critical cases, even an SMS
notification is conceivable. Grafana, however, should not be used for critical
alerting as there are too many points of failure in the alert chain, i.e. connection
error, server crash or loss of power.

2.6 Calibration Overview

Alexander Kugele developed during his master research phase a calibration
overview for the wafer. These files now have been integrated into Grafana.
They are copied regularly from Kugele’s folder to the monviz server so they
can be viewed publicly. Then they are included in the ”Calibration Overview”
in Grafana using an iframe.
The use can choose the calibration file which corresponds to the wafer of his
interest.



2.6. CALIBRATION OVERVIEW 29

Figure 2.14: Alexander Kugele’s calibration data included in Grafana.



30 CHAPTER 2. DEPLOYMENT & DEVELOPMENT



Chapter 3

Summary and Conclusion

3.1 Summary

In this thesis and the preceding internship the groundworks for a modern moni-
toring platform, with Grafana as the central visualization tool, were developed.
An event pipeline was developed which allows a streamlined aggregation, pro-
cessing and storage of event data. Using Grafana, multiple dashboards for the
different components of the BrainScaleS system were designed which allow a
faster and simpler administration. An overview of the states of all FPGAs and
Reticles was developed which uses a newly introduced status code. This status
code encodes the state of an FPGA by evaluating different metrics such as net-
work availability and temperature.
Additionally security measures were introduced which control the access to the
database and Grafana. A basic alerting has been setup which notifies adminis-
trators of unexpected behaviors. It is, however, rather limited in the amount of
supported metrics and alerting threshold.

3.2 Conclusion

Several things can still be improved on this platform. As of now the ”Overview
dashboard is just an iframe which binds an HTML-file, served by an nginx
server. This solution is more of a hack rather than a proper Grafana plugin.
A better way of implementing this would be the creation of a Grafana plugin
using the official API. At first, the iframe solution was supposed to be used for
prototyping, but due to an incomplete API documentation and time constraints
this solution stuck around. A second thing that could have been improved is the
determination of the FPGA status code. As of now, this code is simply deter-
mined by a Python script being started by CRON. Unfortunately, CRON can
only start a program once a minute. If the Python script was made as a systemd
Service, shorter refreshing periods would be possible. The main challenge during
this work very often was not the creation of the dashboards but to learn the

31



32 CHAPTER 3. SUMMARY AND CONCLUSION

many ways the databases and tools like the security plugin work in the backend.

3.3 Outlook

This bachelor thesis is only the beginning of a centralized monitoring system.
With monviz, a foundation for a solid monitoring framework was laid down,
which allows administrators to build upon it. Monitoring is never finished and
always a work-in-progress, as the needs evolve with the development of the ob-
served system. Therefore, the dashboards should be viewed as something to be
expanded and built upon. As the BrainScaleS is becoming an open platform for
scientists, errors will arise which were not thought of, as they might use the plat-
form in a way not yet thought of. Therefore, the platform will need an extensive
monitoring so that administrators will be able to respond to problems quickly.
Several things are already planned for the time after this bachelor thesis.
For example, an overview for the job allocation of Reticles is already planned.
The job allocation data has been made available using the developed pipeline
and now needs to be visualized. There were already plans on doing the visual-
ization in this thesis. These plans were postponed as the time to develop such
an visualization would only allow the creation of a suboptimal solution. Plans
to move monviz to a more stable and more powerful server are already in work.
Additionally, the relocation of the time-series database Graphite from shinviz
to monviz is planned which would unify monitoring-oriented databases on one
server. Some users started experimenting with the Elasticsearch database as a
storage for event data and hopefully more users will start to use it in the future.
Monitoring profits from a large and meaningful dataset which still needs to be
expanded.



Chapter 4

Appendix

4.1 Abbreviations

Reticle FPGA
API Application Programming Interface

FPGA Field Programmable Gate Array
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
LDAP Lightweight Directory Access Protocol
REST Representational State Transfer

Table 4.1: Lookup table for the FPGA to Reticle connection and also the cor-
responding IP

4.2 Logstash Configuration File

Listing 4.1: Configuration file for Logstash

input {
// Listen for log events coming from Filebeat
beats {

port => "5044"
}

}

filter {
grok {

# Split the message into the syslog part and the rest of the text
match => {

"message" => "%{ SYSLOGBASE} %{ GREEDYDATA:remainder }"

33



34 CHAPTER 4. APPENDIX

}
}

}

filter {
# The text is split into key value pairs.
kv {
}

}

filter {
# Use the timestamp from the Syslog -part
date {

"match" => [" timestamp",
"MMM dd HH:mm:ss",
"MMM d HH:mm:ss",
"ISO8601 "]

remove_tag => [" beats_input_codec_plain_applied "]
}

}

output {
# Save the data under the wafer -* index
elasticsearch {

index => "wafer -%{+ YYYY.MM.dd}"
}

}



Bibliography

[1] Elastic Documentation. https://www.elastic.co/guide/index.html.

[2] Grafana Documentation. http://docs.grafana.org/.

[3] Neuromorphic platform specification - public version. Human Brain Project,
2017.

[4] Slawek Ligus. Effective Monitoring & Alerting. O’Reilly, 2013.

[5] Jerome H. Saltzer. Protection and the control of information sharing in
multics. Communications of the ACM, 1974.

[6] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner.
A wafer-scale neuromorphic hardware system for large-scale neural model-
ing. Proceedings of the 2010 IEEE International Symposium on Circuits and
Systems (ISCAS”10), pages 1947–1950, 2010.

[7] James Turnbull. Art of Monitoring. Self-published, 2016.

[8] Steven J. Vaughan-Nichols. Elasticsearch ransomware attacks
now number in the thousands. http://www.zdnet.com/article/
elasticsearch-ransomware-attacks-now-number-in-the-thousands/,
2017.

35

https://www.elastic.co/guide/index.html
http://docs.grafana.org/
http://www.zdnet.com/article/elasticsearch-ransomware-attacks-now-number-in-the-thousands/
http://www.zdnet.com/article/elasticsearch-ransomware-attacks-now-number-in-the-thousands/


36 BIBLIOGRAPHY

Statement of Originality

I certify that this thesis, and the research to which it refers, are the product of
my own work. Any ideas or quotations from the work of other people, published
or otherwise, are fully acknowledged in accordance with the standard referenc-
ing practices of the discipline.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, 05.03.2018
(signature)


	Introduction
	Motivation
	Different Types of Monitoring Data
	Monitored Hardware and Software
	BrainScaleS System
	Electronic Visions Network

	Storage and Visualization
	Elastic Stack: Elasticsearch, Logstash and Filebeat
	Graphite
	Grafana
	Kibana


	Deployment & Development
	Event Processing Pipeline
	Aggregation
	Processing
	Storage

	Creation of Monitoring Views
	Wafer Module
	Wafer Temperatures
	AnaB
	PowerIt
	FPGA
	Single Reticle
	Cluster
	Device Information

	Overview Dashboard
	First iteration
	Second Iteration

	Exposition and Security
	Elasticsearch and Kibana

	Alerting
	Calibration Overview

	Summary and Conclusion
	Summary
	Conclusion
	Outlook

	Appendix
	Abbreviations
	Logstash Configuration File


