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Solving the Constraint Satisfaction Problem Sudoku on Neuromorphic
Hardware

Artificial Neural Networks are nowadays widely used, e.g. to solve problems in the
fields of image recognition and decision-making. Spiking Neural Networks, which
mimic the functional principle of networks in the brain more closely, are often not
yet competitive. However, application-specific circuits like the HICANN chips of
the BrainScaleS system are able to emulate such Spiking Neural Network dynamics
in a fast and efficient way. In this thesis a method to solve the Constraint Sat-
isfaction Problem sudoku is implemented on this neuromorphic hardware system.
The performance is analyzed and compared to simulation. The network itself is a
stochastic solver with fixed weights for all synapses. A training algorithm is devised
and implemented, increasing the performance of the network for arbitrary sudokus.
This technique can be generalized to other CSPs.
To conduct experiments using multiple HICANN chips, the existing calibration
framework has been extended to efficiently calibrate full wafer systems.
The training together with the increased number of available calibrated HICANNs
denote an important step to large-scale neural network emulations on the Brain-
ScaleS system.

Lösen des Bedingungserfüllungsproblems Sudoku auf neuromorpher
Hardware

Künstliche neuronale Netze werden heutzutage oft verwendet, zum Beispiel in
den Fachrichtungen Bilderkennung und Entscheidungsfindung. Gepulste neuronale
Netze, die das Funktionsprinzip des Gehirns nachahmen, sind in vielen Bereichen
noch nicht konkurrenzfähig zu künstlichen neuronalen Netzen. Anwendungsspezifi-
sche Schaltungen wie die HICANN Chips des BrainScaleS System emulieren gepulste
neuronale Netze schnell und effizient. In dieser Arbeit wird eine Methode realisiert,
um das Bedingungserfüllungsproblem Sudoku auf diesem neuromorphen Hardwa-
resystem zu lösen. Die Leistung des Systems wird analysiert und mit Software-
Simulationen verglichen. Das Netzwerk selbst ist ein stochastischer Löser mit festen
Gewichten für alle Synapsen. Ein Trainingsalgorithmus wird entwickelt und umge-
setzt, der die Leistung des Netzwerks für beliebige Sudokus erhöht. Diese Methode
kann auf andere Bedingungserfüllungsprobleme verallgemeinert werden.
Um Experimente auf mehreren HICANN Chips durchzuführen, wurde das vorhan-
dene Kalibrations-Framework erweitert, um ganze Wafersysteme effizient zu kali-
brieren.
Das Training zusammen mit der gesteigerten Anzahl an kalibrierten HICANNs stel-
len einen wichtigen Schritt in Richtung großskaliger neuronaler Netzwerkemulatio-
nen auf dem BrainScaleS System dar.
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1. Introduction

Decision-making based on experience and object recognition are just two of many
tasks even state-of-the-art algorithms struggle to solve. The human brain excels
at these tasks, however the mechanisms leading from networks of spiking neurons
to the formation of thoughts and memories are still to a great extent unknown.
Nowadays, many different approaches are used in the thriving field of machine
learning to tackle these tasks, whith artificial neural networks being the most
promising ones (Du, 2010; Hagan and Menhaj, 1994; Hornik et al., 1989). These
networks mimic the neural networks of the brain only in the fact that information
can be sent between neurons. The connections, called synapses, weigh their input,
before sending it to other neurons. These weights determine the networks ability to
accomplish a specific task. It is often necessary to train the network with enormous
amounts of data, which is time and energy consuming. Thus recently, multiple big
semiconductor companies launched custom application-specific integrated circuits
(ASICs) to accelerate and streamline inference, e.g. Intel Movidius (Intel, 2018)
and learning, e.g. Google’s Tensor Processing Unit (Jouppi et al., 2017). Still, these
systems lack the general-purpose functionality of the brain due to the fact that they
for now can only be trained to solve at most a narrow set of tasks. Furthermore,
they only loosely mimic the way neural network in the brain works. It is doubtful
that conclusions about the working principles of the brain can be drawn from
designing these artificial neural network chips. But insights about brain processes
are required to develop treatments for brain disorders like Alzheimers or Parkinson’s
diseases, and have an impact on the treatment of psychological disorders. Hence, a
better understanding of the human brain is beneficial for many branches of research
in industry and university.

The Human Brain Project, a Flagship of the European Union (FET , 2018), brings
together researchers from areas like neurology, biology, psychology and electronics to
collaboratively extend the knowledge about the human brain. One sub-department
is the SP9 Neuromorphic Computing Platform. It develops two large-scale neuro-
morphic machines: SpiNNaker (Furber et al., 2014) and the BrainScaleS system
(Schemmel et al., 2010). The latter is designed and built in a collaboration between
the Electronic Vision(s) group Heidelberg and the TU Dresden. It features about
four million neurons and 880 million synapses on 7680 identical and interconnected
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Chapter 1. Introduction

custom ASICs, called HICANNs. Each neuron is implemented as an analog circuit
that models the mathematical Adaptive exponential integrate-and-fire model, which
in turn enables to model aspects of biological neural networks. This physical model
system with its speed-up factor of about 10,000 compared to real biological time,
it allows to study temporal changes in neural networks that are very difficult to
observe in a laboratory. However, in contrast to the mathematical model, the
hardware neurons are inherently different due to the finite manufacturing accuracy
(Koke, 2017). To reduce this variability, calibration routines have to be developed
and applied that ensure high quality simulations. Conducting small toy experi-
ments in simulations with a neural simulator (Goodman and Brette, 2008; Kunkel
et al., 2017) and on the BrainScaleS system helps to identify and reduce differences
between the two and is a first step for large-scale experiments.

This thesis aims to investigate a method to solve constraint satisfaction problems
with neural networks on the BrainScaleS system. In the course of this task, the
existing calibration is improved and extended to the whole wafer-system. The con-
tent of this thesis is divided into three chapters. In the first chapter, an overview
of the BrainScaleS system is given. The second chapter covers means to improve
the calibration of the refractory period on the HICANN chips in the BrainScaleS
system and to scale the existing single-HICANN calibration up to a whole wafer.
This work builds on the calibration routines developed in Schmidt (2014) and the
findings in Koke (2017) and Kleider (2017). The third chapter describes the im-
plementation of a network of LIF neurons which can solve the number-placement
puzzle sudoku as an exemplary case of a constraint satisfaction problem. The theo-
retical description can be found in Habenschuss et al. (2013), an implementation on
another VLSI system is in Binas et al. (2015). A special training of the network is
implemented to use the weights of the synapses in the network to compensate for
intrinsic variations of the hardware neurons. This novel type of in-the-loop training
of neural networks was first used in Schmitt et al. (2017) to train a Spiking Neu-
ral Network to recognize MNIST digits. The approach in this thesis builds on this
training technique but instead of training the network with regular input as in a
classical machine learning approach, a particular training algorithm is implemented
to reduce the neuron-to-neuron variations.
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2. The Neuromorphic System

This chapter describes the BrainScaleS system, a physical model system to emulate
spiking neural networks. First, a single neuron is described in theory and on chip.
Then, the HICANN chip is presented, featuring 512 neurons and a synapse array to
set up neural networks. To emulate even larger networks, wafers are designed and
as a whole integrated in a system. This procedure, its advantages and limitations
are presented in sections 2.2.2 and 2.2.3.

2.1. Neuron Model
The following sections present the equations of the neuron model and their imple-
mentation on hardware.

2.1.1. Theory
The neurons of the BrainScaleS system are designed to model the differential equa-
tions of the Adaptive exponential integrate-and-fire model (R et al., 2008) shown in
eqs. (2.1) and (2.2) together with the adaptation rule after a spike in eq. (2.3) and
the refractory mechanism in eq. (2.4).

Cm
dV

dt
= −gL(V − Erev) + gL∆T exp(V − Vthresh

∆T

)− w + I (2.1)

τw
dw

dt
= a(V − Erev)− w (2.2)

if V (tf ) ≥ Vthresh then w → w + b (2.3)
if V (tf ) ≥ Vthresh then V → Vreset until t→ tf + τref (2.4)

The variables describe the membrane potential V , the adaption variable w, the input
current I, the membrane capacitance Cm, the leak conductance gL, the reset voltage
Vreset, the leak reversal potential Erev, the threshold voltage Vthresh, the slope factor
∆T , the adaption coupling parameter a, the adaption change b, time constant τw
and the refractory period τref . At tf the neuron fires. The current I is increased for
every spike the neuron receives, depending on an activation function. In the case of
the HICANN chip, neurons receive an exponential activation as shown in eqs. (2.5)
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and (2.6).

Ii(t) = wij(V (t)− Esyn)α(t− tj) (2.5)

α(t− tj) = − exp
(
− t

τsyn

)
Θ(t− tj) (2.6)

The parameter wij is the weight of the synapse between neuron i and neuron j, α
is the activation function, Θ(t) is the Heaviside function, tj is the time the spike
arrives at neuron i and Esyn is called the reversal potential.

A subset of these equations, where the adaption variable and the slope factor are
set to 0, is called the Leaky Integrate-and-Fire model (Cessac and Vieville, 2007).
Writing the inhibitory and excitatory stimulus as separate parts, the final equation
reads for a LIF neuron reads

Cm
dVi
dt

=− gL(V − Erev)

+ (Vi − Esyn,exc)
∑
j

wij
∑
tfj<t

αexc(t− tfj )

− (Vi − Esyn,inh)
∑
k

wik
∑
tf
k
<t

αinh(t− tfk) (2.7)

with the aforementioned refractory mechanism.

Figure 2.1 shows the behavior of a LIF neuron simulated with the neural network
simulator NEST when changing a single parameter. The parameter names have
been adapted to the naming in NEST, thus Esyn,inh =̂ Erev,i and the same for the
excitatory part as well as Erev =̂ Vrest.
In the following, the neuron parameters are explained panel by panel. Changes of
the parameters in (A-F) result in a different shape of the post-synaptic potential
(PSP). The reset potential Vreset (G) is the voltage to which the neuron is reset
after it spiked. A lower value also results in a longer time period until the neuron is
at rest again. Increasing the refractory time τref (H) increases the period in which
the neuron is clamped to Vreset and also increases the time until the neuron is at
rest. Furthermore, it determines the maximum spiking frequency of the neuron as
νmax = 1

τref
. Lowering the threshold Vthresh (I) induces spikes at lower input rates

and thus decreases the dynamic range of the neuron trace.
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Figure 2.1.: Relationship between parameter changes and trace behavior.
The plots are generated with NEST. Information about individual panels is given
in section 2.1.1.
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Changing Vrest (K) introduces an absolute shift. The last frame (L) shows the
behavior when Vrest > Vthresh. The refractory period can be identified as the base
line. The rise behavior does not change for different τref .
The next section describes the neuron implementation in hardware and presents

the BrainScaleS system.

2.1.2. Hardware
The basic idea to implement a neuron on hardware is to design an electric circuit that
models the differential equation of the AdEx model in eq. (2.1). The advantage is
that the network runs directly on the hardware instead of using the hardware only for
computations of the differential equations as it is done in numerical simulations. In
the case of the HICANN chip, a completely analog circuit emulates the AdEx model
in eq. (2.1). A digital part routes the spikes between neurons. The components
are only explained briefly here, for a detailed description see Kleider (2017); Koke
(2017); Millner (2012). Essentially, each model parameter is represented in the
neuron circuit by either a current or a voltage. A lookup table to translate parameter
names to hardware names and their corresponding control parameter names is given
in Schmidt (2014, pp. 10,13). For example, τref is called τrefrac and is controlled by
the bias current Ipl. Each control parameter is set via a digital 10 bit floating gate
value which results in a current from 0 - 2.5 µA or a voltage from 0 - 1.2 V. To be
precise, the floating gates are analog, but the programming circuit configures them
with 10 bit resolution. These hardware ranges have to be mapped to the digital 10
bit range, which can be either done by an ideal calibration calculated and simulated
in Schwartz (2013), or via a calibration measurement. On the other hand, the time
constants and voltages in hardware have to be translated to the biological domains
of the neuron model. This translation has been defined in Schmidt (2014, pp. 11–12)
to be

VHW[V] = 2Vbio[V] + 1000 (2.8)

τHW = τbio

10000 . (2.9)

For example, the threshold voltage is translated from Vthresh,FG → Vthresh,HW →
Vthresh,bio and the refractory time is translated as Ipl,FG → τref,HW → τref,bio.

As the hardware neurons are inherently different because of transistor mismatch
due to a limited manufacturing accuracy, calibrating the neuron circuits is the
preferred way to go, although the system can also be used uncalibrated, i.e. with
the ideal transformations, if variations between neurons is not a problem for the
network setup. Chapter 3 describes the refractory time calibration in more detail
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2.2. Hardware Layers

and analyzes its current and possible accuracy. Calibration methods for the other
parameters are described in Kleider (2017); Schmidt (2014).

In the next section the HICANN chip is described, which comprises the hardware
neurons and synapses. Then the wafer-scale integration of this chip is explained and
the current setup of 20 wafers, called the BrainScaleS system, is depicted.

2.2. Hardware Layers
The hardware layers are presented from the smallest unit, a single HICANN chip,
to the whole wafer-scale system with 20 wafers.

2.2.1. Single Chip
To model neural networks, many freely configurable neurons are needed together
with the possibility to define arbitrary network structures. The first aspect can
be realized in hardware by designing the circuit of a single neuron and putting it
on the chip multiple times. For a detailed description of the hardware design, see
Schemmel et al. (2008, 2010). The articles describe the High Input Count Neuronal
Network (HICANN) chip, which can be seen on the left of fig. 2.2. It features 512
AdEx neurons (see section 2.1, prominently placed in two rows in the middle of the
chip. The floating gates in between the neurons store all parameter values, which
can be a neuron parameter or some other parameter of the chip.

The neurons are wedged in by two synapse arrays, which allow to draw connec-
tions between neurons. A thorough explanation how the spike routing works can
be found in Jeltsch (2014). The routing is summarized as follows: One spike is a 6
bit address event. Spikes from multiple neurons are first merged in a tree structure,
called the merger tree. At the bottom of the tree, spike events are relayed into the
Layer1 network, the network responsible to route spikes from one neuron to another.
Each spike in the network is routed from the aforementioned bottom merger to a
horizontal bus, then to a sparse crossbar switch which in turn is connected to a
vertical bus. This bus then is connected to another crossbar switch which routes the
spike to one of the 224 synapse drivers. These are connected to specific synapses
which eventually are connected to a synaptic input of a specific neuron. Thus, in
total 224 (drivers) × 512 (neurons) = 114 688 programmable dynamic synapses
can be defined on the chip. Setting up a specific network is a non-trivial effort and
specific routing algorithms have been implemented in Jeltsch (2014). Additionally,
the network structure can not be changed during an experiment. However, synapses
can be deactivated, thus if the biggest network of the experiment to conduct fits on
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Chapter 2. The Neuromorphic System

the chip, also any subset can be used.

Configuration and experiment control of a chip is done via a dedicated field pro-
grammable gate array (FPGA), which in turn receives the experiment configuration
by a host computer. The FPGA allows three different modes of operation, described
in Müller (2014). In this thesis only the iterative/interactive mode is used, which
consists of a configuration step that defines the network on-chip followed by multiple
experiments. During the experiment runtime changes of some network parameters
are possible. External spikes are buffered in the FPGA to ensure precise timing
and fast execution speed. As can be seen in the next section, one FPGA is able
to control eight HICANN chips at once. This is an important step to scale up the
system, as 512 neurons are not enough to conduct large scale experiments. How the
system is scaled up is presented in the next section.

2.2.2. Wafer

Figure 2.2.: The HICANN chip and a postprocessed wafer. The neurons are
placed in the center. Next to them are the floating gate cells which store analog
parameters of the chip. The synapse arrays are placed next to the neuron rows
and can be configured to set up a network between the neurons. The wafer is one
of the most recent version 4.1 wafers. It contains 384 identical HICANNs. The
golden coat is a postprocessed layer that interconnects the chips. Pictures adapted
from Koke (2017).

A single-chip system with 512 neurons is far from a large-scale neural network. or
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2.2. Hardware Layers

larger networks a simple method is to interconnect multiple chips. The technique
used in the BrainScaleS system is rather uncommon: it is called wafer-scale integra-
tion. The chips are not cut out of a silicon wafer as in the usual production process.
Instead, the wafer is kept as a whole, enabling dense and cheap connections between
the chips. The repeaters shown in fig. 2.2 recover the signal of individual spikes
and send spikes to neighboring chips. The right side of this figure presents a whole
wafer of the newest version 4.1, already coated in postprocessing with a golden
coat to connect the chips. In principle, neurons can be connected over the whole
wafer using the repeaters on the edges of each HICANN. External spikes are sent
to the HICANNs via the FPGAs. Eight HICANN chips are managed by one FPGA.

Figure 2.3 shows a schematic of a full wafer with 384 HICANNs. As the HICANN
chip length is about twice its width and 8 HICANNs are controlled by one FPGA, the
wafer is subdivided in 2×4 quadrants called reticles. The numbers hovering over each
quadrant are the reticle/FPGA coordinates. In total 48 FPGAs per wafer are used.
These reticles are further divided in groups of eight which in turn share two analog
outputs. These are used to measure analog signals on a chip, most commonly neuron
traces. In the figure, they are depicted in different colors with names from P1/P4
to P3/P6 for top and bottom. The names stem from the Analog Readout Board
(AnaB), shown in fig. 2.4 on the left together with the other components needed
to operate the wafer. Besides the already mentioned FPGAs and AnaBs there is
the AuxPwr, which supplies the power and the Main, vertical and horizontal PCBs.
In conclusion, a whole wafer consists of 384 nearest-neighbor connected HICANNs,
totaling almost 200,000 neurons and 4.4 million synapses. Still, this is less than the
number of neurons of a fruit fly (Nass and Przedborski, 2011, p. 325). Therefore,
multiple wafer systems can be combined, which is explained in the next section.

2.2.3. Wafer-Scale System
To scale the number of neurons and synapses further, multiple wafer systems can
be combined (Brüderle, 2009). The BrainScaleS System in Heidelberg contains 20
wafers, resulting in approximately 4 million neurons and 0.8 billion synapses. It
can be remotely accessed via the Human Brain Project Neuromorphic Computing
Platform (Davison, 2018) by any interested member of the HBP upon request. The
whole system can be configured using the abstract description API pyNN (Davison
et al., 2009) described in section 2.3.3. The HBP guidebook at Davison et al.
(2017) explains how to get access and demonstrates basic experiment setups. The
next section summarizes the system specifications needed to successfully conduct
experiments on the hardware.
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Chapter 2. The Neuromorphic System

Figure 2.3: Wafer schematic
with HICANN, reticle
and FPGA Coordinates.
Areas of the same color share
two analog outputs which
can be connected to a neuron
to readout its trace during
an experiment. At most two
traces can be measured in one
area of the same color. This
limits the number of simul-
taneous measurements to 12.
A block of 2 × 4 HICANNs
is called a reticle and each
reticle is controlled by one
FPGA. The numbers hover-
ing over the HICANNs are
the reticle/FPGA coordinate,
respectively.
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2.2.4. System Specifications
In the following, the features and limitations that a system like the BrainScaleS
System brings along are presented.

Transistor Mismatch

Not every transistor is exactly the same due to the finite production accuracy. Even
if the variation from transistor to transistor is very little, in Very Large Scale In-
tegration System (VLSI) like the BrainScaleS System, this can lead to undesired
behavior and thus has to be characterized. Schmidt (2014) investigates these effects
on hardware, based on Monte-Carlo simulations by Kiene (2014). The variations
between circuits can be mostly compensated for by calibrating each neuron.

Floating Gates

The neuron parameters as well as other parameters of the system are stored in
Floating Gate arrays (Martins et al., 2009, 2010; Serrano and Hasler , 2004). Values
are stored by putting a charge on a gate which in turn represents a digital 10-bit
value. This procedure produces stable parameter values in time, as shown in Klähn
(2017, pp. 48–45). Additionally, the cells are very small and have a low power
consumption. However, reprogramming the floating gates comes with two caveats:
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2.2. Hardware Layers

AnaB

Top 
Cover

Positioning
 Mask

Wafer I/O PCB
vertical Wafer I/O PCB

horizontal48 FPGA
Communication

PCBs (FCPs)

AuxPwr

MainPCB

Wafer

Figure 2.4.: Wafer module and the BrainScaleS system. Left: Exploded-view
drawing of one rack place in the BrainScaleS system. The FPGA communication
PCBs are each connected to eight HICANNs each. The insertion frame and top
cover stabilize the module. AuxPwr supplies the power, the analog readout boards
(AnaB) enable to read out analog signals like neuron traces. Right: The Brain-
ScaleS system with 20 wafer modules. Each rack place contains four modules,
behind the red cable harnesses. The racks in the middle carry power supplies and
a compute cluster. Pictures taken from Davison et al. (2017).

First, the time for a full reprogramming cycle is of the order of one second. Fur-
thermore, only rows can be configures independently, thus changing a single value
always requires to reprogram the whole row. Therefore, if possible, the network
should be configured only at the experiment start. The weights are stored in digital
Static Random-Access Memory (SRAM) cells and, hence, can be changed quickly
during experiments. Second, the floating gate cells are rather imprecise, resulting
in trial-to-trial variations between two reprograms even if the parameters are un-
changed. These variations can not be compensated for by calibration. Therefore,
experiments on the system should either be tolerant against parameter variations
between neurons or a pre-measurement has to be executed each time to determine
the actual parameter values for the experiment.

Synapse Loss

The aforementioned value of 114,688 synapses per chip is actually the maximum
number of synapses. However, if complex network structures are needed, the actual
value before synapse loss occurs can be lower due to a lack of hardware resources.
Furthermore, each neuron has only two synaptic inputs, one inhibitory and one
excitatory. These can be connected to one half of the synapse drivers, resulting in
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Chapter 2. The Neuromorphic System

a maximum of 224 inhibitory/excitatory connections for a single neuron. To solve
this problem, the synaptic inputs of multiple neighboring neurons can be combined,
while at the same time lowering the total neuron count. At most 64 neurons can be
used together, resulting in 224 × 64 = 14 336 inputs and 8 neurons per chip. The
minimum neuron size N can be calculated if the number of incoming synapses ns is
known as N = dns/224e, with the ceiling operator d·e.

Bandwidth

As with every connection, the bandwidth to send spikes from neuron to neuron
is limited. The units are MegaEvents per second, one event being equal to one
spike. However, this is measured in wall clock time, therefore the number of bio-
logical spikes per second is smaller by a factor of 104, the speedup of the HICANN
chip. First, the Host has to send external spikes to the FPGA via network. With
30 MEv/s, the bandwidth from Host to FPGA and back is hardly ever a problem.
Additionally, the FPGA is able to buffer about 312 MEv. Then, spikes are sent from
the FPGA to one or more HICANNs. The bandwidth limit measured by Koke (2017)
is lower than the theoretical one of 25 MEv/s, at about 17.8 MEv/s. This can be lim-
iting, if example one does not want to use the background generator to have complete
control over the spike timings. Then, at a biologically plausible rate of about 10 Hz
per neuron, it would only be possible to use 17.8 MEv/s÷104÷10 Hz = 178 neurons
of the chip. It should be noted, that these bandwidth limits are not a lower limit,
so in practice the bandwidth can be even smaller. The bandwidth of 62.5 MEv/s
from HICANN to HICANN does not cause these limitations. Therefore, one can
feed spikes to neurons of one HICANN by using several FPGAs and/or neighboring
HICANNs.

Blacklisted components

Fabricating millions of circuits on a wafer, it is inevitable that some components will
not work at all, like single neurons, repeaters or synapse drivers. Therefore, during
system calibration, coordinates of neurons that show unusual behavior are saved to
a file and are not used in experiments. Results of blacklisted neurons are presented
in section 3.2.

2.3. Software Packages and Modules
The software packages and tools that were used during the course of this thesis are
presented in this section.
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2.3. Software Packages and Modules

2.3.1. cake
cake is the calibration software developed in the group, main contributors are C.
Koke, S. Schmitt, M. Kleider and D. Schmidt (c.f. Kleider , 2017; Koke, 2017;
Schmidt, 2014). It is written in Python and features scripts to calibrate single
HICANNs, evaluate the calibration and plot measurement results. Calibration rou-
tines are defined for each neuron parameter. Hardware configuration and parameter
steps are in a separate file and are loaded at the start of a calibration or evaluation
run. For a more detailed description of the individual neuron parameter calibration
routines, see the aforementioned theses.

2.3.2. SLURM
The SLURM workload manager controls the local cluster nodes. This is in general
useful to divide the cluster resources (CPUs, RAM, etc.) equally among the users.
Furthermore, SLURM gives out licenses, which are used to manage the access to
the hardware units such as the wafer setups and other prototype and demonstration
chips. If multiple users request the same licenses, the jobs are queued and executed
successively. This guarantees that multiple experiments do not interfere. For a
detailed description of the implementation on the cluster of the BrainScaleS system,
Mauch (see 2016).

2.3.3. PyNN and NEST
PyNN is a high-level abstract neural network description API for Python. Network
models are defined simulator-independently and then executed on a simulation back-
end. This backend can be a software simulator like NEST, or an emulation device
like the BrainScaleS system. This allows to write code that can be executed effortless
in simulation and emulation.

2.3.4. pyHMF, marocco and the BrainScaleS software stack
pyHMF is the backend for the BrainScaleS system, short for python Hybrid Multi-
scale Facility. It is responsible for translating the biological network description to
the hardware. As part of this, marocco performs the mapping to decide which neu-
rons in software are represented by which hardware neurons. Moreover, the synapses
in software are assigned to hardware synapses. This is a complex procedure as the
algorithm has to include hardware constraints and blacklisted components. For a
thorough description, see Jeltsch (2014).
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Chapter 2. The Neuromorphic System

2.3.5. TensorFlow
TensorFlow (Abadi et al., 2016) is an open-source software library for machine learn-
ing. With its abstract description API and highly efficient backend it is especially
useful to set up artificial neural networks (ANNs). These networks only merely re-
semble neural networks in the fact that one builds up a graph of neurons (vertices)
and edges with weights (synapses). But instead of processing spikes through the
network and evolving the network in time, data that is input in the network is sim-
ply passed to the next layer with some activation function. Evolution of the weights
depends on a mathematical algorithm which minimizes the value of some predefined
error function. A simple example of such a network is explained in section 4.4.
TensorFlow version 1.0.0 was used throughout this thesis.
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3. Wafer-Scale Calibration

A perfect emulation of a neuron with analog hardware is not possible because of
transistor level variations. Calibration routines are important to reduce these man-
ufacturing inaccuracies. A framework for single-HICANN calibration of the neuron
parameters already exists (see section 2.3.1). In this section, the calibration of the
refractory period is scrutinized. It is challenging to calibrate due to the fact that
very small times have to be measured. It is expected that floating gates limit the
calibration precision (c.f. section 2.2.4). Furthermore, the single-HICANN calibra-
tion is scaled up to calibrate whole wafers and results for three of the newest wafers
in the BrainScaleS System are shown. An analysis of the other neuron parameters
besides τref has already been done with this software in Kleider (2017). All times and
voltages in the following sections will be in the hardware domain, c.f. section 2.1.2
for the translation to the biological domain.

3.1. Calibration of the refractory period τref

3.1.1. Method
Each neuron has a distinct time interval after it spiked in which it can not be excited
again, cf. fig. 2.1 panel H and L. This time interval (minus the rise time) is called
the refractory period and can be controlled for each neuron by the pulse current Ipl.
To measure this period, the neuron is set to a constant-spiking state by setting the
spike threshold Vt below the resting potential El. The measurement procedure is as
follows: First, all neurons are set to the smallest possible interspike interval tmin by
setting Ipl to the maximum value of about 2500 nA. A trace is recorded, the spike
times measured and the average time difference between spikes tmin is calculated,
for each neuron separately. Second, measurements at different values for Ipl are
recorded in the same manner, resulting in time differences t(Ipl) = ti. Then, for
every neuron n the refractory time at this value of Ipl can be calculated as

τref(i, n) = ti(n)− tmin(n). (3.1)

An exemplary measurement of one neuron for t(Ipl = 10 DAC) and tmin is shown
in fig. 3.1. Subtracting the rise time from the measured spike difference ti gives
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Figure 3.1.: Constant-spiking state of a neuron on hardware. Left: The
refractory period can be identified as the length of the baseline of the voltage
trace. Together with the rise time, it adds up to the interspike interval. Right: At
the highest current setting, no refractory period can be identified, which means its
less than the time resolution of the analog readout sample rate. Thus, the rise time
coincides in this case with the interspike interval.

the refractory period τref . On the right, the same neuron’s trace is shown for the
maximum value of Ipl. The rise time marker is not changed in length between
the panels, confirming that the rise time does not change in this example when
changing the refractory time. This is also the expected behavior from simulation
if no other parameters are changed, c.f. fig. 2.1. However, if the membrane time
constant τm or the reset potential Vreset changes, also the rise time will change. This
can inevitably occur when setting new floating gate values between measurements.
This introduces trial-to-trial variations, c.f. section 2.2.4.

Multiple values for ti are recorded and the respective value for τref are calculated
to get a calibration curve. The ideal curve function was determined with transistor-
level simulations in Schwartz (2013, p. 69) to be

Ipl = 1023
62.5
µs τref [µs] + 1[DAC]. (3.2)

To fit this function, at least one constant parameter has to be defined as a free
fit parameter. After testing different free parameter sets on one HICANN, it was
chosen to use the fit function

Ipl = 1
aτref + b

(3.3)

with two free parameters a and b. The starting points for the fit can be ex-
tracted from the ideal calibration in eq. (3.2) to be b0 = 9.78× 10−4 DAC−1 and
a0 = 6.11× 104 s−1 DAC−1.
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3.1. Calibration of the refractory period τref

An example of the fit and the corresponding residuals can be seen in fig. 3.2.
The fit curve follows the trend of the measurement points. The relative error for
b is 15.3, which is justified by the fact that the current Ipl(τref = 0) can not be
determined accurately from the data as the curve has a singularity at τinf = − b

a
and

the steepness of the curve diverges to ±infinity.

The residuals in the right panel of fig. 3.2 show up to 27% deviation to the
fit function. This effect is explained by the trial-to-trial variations between runs:
Writing neuron parameters in the floating gate cells can only be done with a finite
accuracy, c.f. section 2.2.4. This effect can for a calibration measurement be aver-
aged out when enough repetitions are recorded. Still, it limits the precision of the
calibration. The standard deviation of the distribution of the times is investigated
in section 3.1.3 to estimate the impact on the accuracy of τref .
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Figure 3.2.: Calibration curve of a neuron on hardware. Six runs are recorded
to reduce trial-to-trial error. The curve in eq. (3.3) is fitted to all data points. The
fit parameters are a = (45 100± 2100) s−1 DAC−1 and b = (0.004± 0.063) DAC−1.
The error bars are the standard error as in eq. (3.4) for approximately N = 100
ISIs. These do not account for the trial-to-trial variation, which could be measured
in a second run by taking the standard deviation of multiple measurements at the
same value for Ipl. This is investigated in section 3.1.3.

3.1.2. Results
This section discusses the results of the calibration of the refractory period τref . The
measurements presented are done on three wafers, 599 HICANNs, in total 306 688
neurons. The method to calibrate HICANNs in parallel is presented in section 3.2.
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without calibration with calibration
Ipl target mean σ τref,0 mean σ τref,0
[DAC] [µs] [µs] [µs] [%] [µs] [µs] [%]
10 1.621 1.8 1.5 1.3 1.11 0.43 1.9
17 0.9468 1.01 0.75 1.4 0.61 0.31 2.2
25 0.6387 0.66 0.48 1.7 0.40 0.39 3.3
33 0.48 0.49 0.35 2.2 0.29 0.16 5.0
41 0.3832 0.38 0.27 2.9 0.23 0.33 7.0
48 0.325 0.32 0.23 3.7 0.19 0.23 9.0
56 0.2763 0.26 0.19 4.8 0.17 0.14 11.4
64 0.2397 0.23 0.17 5.7 0.14 0.14 14.1
72 0.2113 0.20 0.15 7.1 0.13 0.33 16.3
80 0.1886 0.18 0.14 8.5 0.117 0.099 18.9
100 0.1477 0.14 0.11 11.9 0.092 0.093 24.4
275 0.04352 0.049 0.065 36.0 0.047 0.074 46.9
450 0.02037 0.036 0.058 45.8 0.040 0.070 52.7
625 0.01019 0.031 0.055 51.0 0.037 0.067 55.9
800 0.00446 0.030 0.055 52.6 0.036 0.066 57.0

Table 3.1.: Results for the calibration of the refractory period. The standard
deviation σ is in all but five cases lower with calibration. The column Ipl is only
relevant without calibration, as with calibration, each neuron is set to its respective
Ipl value. The column τref,0 denotes the percentage of neurons with τref = 0 s. The
distance between mean value and target as well as the number of neurons with
a measured refractory period of 0 is higher with calibration. This indicates that
the fit introduces a bias to the refractory period. At about 0.15 µs the refractory
period is without calibration as precise as with calibration.

Table 3.1 lists average values for the refractory period with and without calibra-
tion. The target value without calibration is calculated with eq. (3.2) and the DAC
value in the table. With calibration, the DAC values are calculated individually for
each neuron from their calibration curve. To determine the fit curve, each neuron
was measured for these eight values of Ipl: {10, 15, 20, 30, 40, 60, 80} DAC and four
repetitions.
The standard deviation is in all but five cases lower after calibration. The smaller
the target value for τref , the closer the mean and standard deviation with and
without calibration are. This is expected for two reasons: First, the measurement
precision declines with smaller values of τref , c.f. section 3.1.3. Second, the steep-
ness of the fit curve increases for smaller values, rendering the fit more sensible to
deviations at small values. Even at 10 DAC, the number of neurons with τref = 0
is with ≈ 1.5% non-negligible, both with and without calibration. Neurons which
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Figure 3.3.: Histograms for four target values with and without calibration
on hardware. Dashed lines of the same color as the bins mark the mean value.
The black dashed line is the target value. Long target values around 1 µs the
calibration results in a higher peak and smaller width of the distribution. The
shape in both cases is a skew normal distribution in log-space. The shorter the
target value, the closer are the distributions with and without calibration.

have a refractory period of 0 at 10 DAC are not really utilizable, because their whole
refractory period range is somewhere between 0 DAC and 10 DAC.
The 0-refractory period neurons are in all cases more with calibration than without.
This is also accountable to the fit curve, which introduces a bias. This can also be
seen by the smaller mean values in all but the last three cases.

For four exemplary target values of table 3.1, histograms are presented in fig. 3.3.
The distributions are very similar for low values of τref < 0.05 µs. For larger values
> 0.5 µs the distribution with calibration is narrower than without. The mean value
is shifted to lower values of τref . Values with a refractory period of zero are excluded.
In conclusion, it is demonstrated that the calibration reduces the width of the

distributions of the refractory time for refractory times > 0.5 µs. This translates
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to 5 ms bio time. The calibration introduces a bias to the mean value, that results
in smaller values than the target value. The next section identifies error sources
and estimates the minimum variation of τref in experiments due to the trial-to-trial
variations.

3.1.3. Validation of the Measurement Procedure
The calibration method described in section 3.1.1 has the advantage to be easily
implementable. However, calculating the difference of two variables with errors
leads to potentially very small results, while at the same time the error squared
is summed. Furthermore, different kinds of errors are present during calibration.
These are:

• Accuracy of the peak detection in software

• Sample rate of the ADC readout of 10.4 ns

• Trial-to-trial variations when setting neuron parameters

The accuracy of the peak detection is limited in two ways: First, the peak time
can only be detected with a limited accuracy because the trace is noisy. This is
a statistical error and can be averaged out when measuring enough spikes. Then,
individual peaks may not be detected at all. If this happens only scarcely, the
outliers can be detected by comparing each measured value by the mean value for
all measurements: if the deviation from the mean is too high, it is most probable
that one spike time was not detected and the value can be discarded. This method
introduces a bias if many spikes are not detected, but for a test set of 8 HICANNs,
only 489/25462451 ≈ 2× 10−4 spikes were not detected correctly.

The sample rate limits the measuring accuracy due to the fact that the trace
falls down rapidly after a spike, and if the sample is shortly after the spike, the
recognized spike time will approximately be the real spike times minus the inverse
sampling rate. When taking time differences, this leads to fluctuations around ±
the inverse sampling frequency. This is counted as a statistical error and can be
reduced when recording multiple spikes. The same fluctuations are also caused by
an imperfect detection of the spike peak due to noise. Both errors combined are
identified as the standard error, and calculated with N measurement samples and
the standard deviation σ(ti) as:

σmean(ti) = σ(ti)√
N

(3.4)
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3.1. Calibration of the refractory period τref

The last error source is caused by the floating gates that set the neuron param-
eters. They have a limited precision, as explained in section 4.1.3. This causes
fluctuations around the mean value with a certain width σFG. This can be averaged
out in the calibration by recording multiple repetitions while re-setting the floating
gates between measurements. In an experiment however, this error limits the total
precision with which a parameter can be set. This error is therefore counted as an
additional error to the mean value.

Using the usual calibration procedure described in eq. (3.1), the statistical error
can be calculated using error propagation as

∆τref,stat =
√
σ2

mean,i + σ2
mean,min (3.5)

=
√
σ2

t,i

N2 +
σ2

t,min

M2 . (3.6)

The additional trial-to-trial error then is added linearly, but these errors itself are
also summed squared. The total error then is

∆τref =
√
σ2

mean,i + σ2
mean,min ±

√
σ2

FG,i + σ2
FG,min (3.7)

First, the statistical error is examined for different numbers of repetitions. A
set of 8 HICANNs on wafer 33 was used to record 100 repetitions for three values
of Ipl ∈ {20, 200, 1023}. This measurement took about 11 h per HICANN and is
therefore unsuitable for a real calibration of multiple wafers. A set of 6 repetitions
has been selected for comparison. To get good results for the calibration curve fit,
about 8 times ti have to be recorded for different values of Ipl. This takes about an
hour to measure for 6 repetitions.

The results are shown in fig. 3.4. The quantile is defined as the fraction of
neurons that have a standard deviation below the standard deviation on the x-axis.
The absolute times τref,i vary from neuron to neuron. This can be seen by calcu-
lating the mean and standard deviation over all neurons: τref,20 = (0.90± 0.63) µs,
τref,200 = (0.050± 0.032) µs. Therefore it was chosen to present the errors on the
x-axis as relative errors, which should be comparable between neurons. The top
panel show the quantile for Ipl = 20 DAC and 6 and 100 repetitions. As expected,
the relative error decreases when increasing the number of repetitions. The median
mj also decreases from m6 = 0.045 to m100 = 0.012. Still, even the error of
about 4.5% for 6 repetitions is low enough to guarantee that most neurons can be
calibrated in this range. Close to 90% of the neurons are below 10% relative error.
In the bottom panel, the standard deviation is considerable higher, with a median
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Figure 3.4.: Quantile of the standard error of τref,i for two values of Ipl on
hardware. Top: The current is set to Ipl = 20 DAC, a low value. The error is
below 10% for about 90% of the neurons at 6 repetitions. This should suffice to
calibrate the neurons in a range around Ipl = 20 DAC. Bottom: A higher value
of Ipl = 200 DAC results in much higher errors. For 6 repetitions, the number of
neurons with a relative error below 10% is less than 1%. For 100 repetitions it is
about 25%.

of m6 = 0.535 and m100 = 0.163. This can be attributed to eq. (3.1). The difference
results in small values, but the errors for both times are squared and then summed.
For 6 repetitions, a value of 200 for Ipl is not reasonable. Even for 100 repetitions,
still half of the neurons have a relative error of at least 16%. In conclusion, the
calibration method is only feasible for small values of Ipl. Next, the trial-to-trial
variations are investigated.

To measure the trial-to-trial variations, 100 repetitions have been recorded for
three values of Ipl: 20 DAC, 200 DAC and 1023 DAC. Quantiles of the absolute stan-
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3.1. Calibration of the refractory period τref

0.0 0.1 0.2 0.3 0.4 0.5
standard deviation of t [µs]

0.0

0.2

0.4

0.6

0.8

1.0
qu

an
til
e

Ipl = 20 DAC
Ipl = 200 DAC
Ipl = 1023 DAC

Figure 3.5.: Quantiles of the trial-to-trial variation for three values of Ipl
on hardware. The quantile for Ipl = 20 DAC is always below the other quantiles.
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Figure 3.6.: Refractory times for Ipl = 20 DAC on hardware. These values are
used to estimate the maximum value of τref . This is done because the measurements
for lower values of Ipl are influenced even more by the trial-to-trial error. The
median is mτ = 0.73 µs.

dard deviation are shown in fig. 3.5. The mediansmI for Ipl arem20 = 7.64× 10−8 s,
m200 = 5.34× 10−8 s and m1023 = 5.10× 10−8 s. As the error ∆τref scales approxi-
mately linear with the absolute trial-to-trial error σFG,i (c.f. eq. (3.7)), the relative
trial-to-trial error on average is about 8% for low values of Ipl. This means that on
average, the refractory period can only be set with a precision of 8%. In the current
method used, the two trial-to-trial errors of ti and tmin are added quadratically. The
error for τref at Ipl = 20 DAC can therefore be estimated as ∆FG = 9.2× 10−8 s.

In conclusion, the statistical error for small values τref < 5× 10−8 s can not be
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Chapter 3. Wafer-Scale Calibration

lowered enough for many neurons to allow a good calibration, as the number of
repetitions necessary is too high. For larger values of τref , a calibration is possible,
but limited by the trial-to-trial error. It is expected to have about 10% variations for
values of about 1 µs and larger variations for smaller values. The relative standard
deviation of τref of about 70% for a fixed value of Ipl indicates that the range of the
refractory period is very diverse between neurons. Using values for Ipl lower than
20 DAC increases the trial-to-trial error. The maximum value for the refractory
period can therefore be estimated by the median mτ = 0.73 µs in fig. 3.6.

3.1.4. Conclusion
The previous section showed that the error for the refractory period is too high
for values of Ipl > 200 DAC. This can not be improved much by measurement, as
the calibration measurements are ultimately limited by the sample rate of the ADC
readout of 10.4 ns which is the same order as more than half of the values for the
refractory period. In addition, the trial-to-trial error is about 50 ns, which requires
many repetitions to average the error out. At the same time, even after calibration
the refractory period can not be set more accurately than the trial-to-trial error. In
a range of about 1 µs however, the trial-to-trial is only about 10% and the statistical
error can be reduced enough by a small number of repetitions. A direct measurement
of the refractory period, e.g. by determining the minimum values of the trace is not
expected to give significantly better results. The major improvement is to only have
the trial-to-trial error of one measurement instead of two. However, it has been
shown that this error is already low enough for large values of the refractory period.

3.2. Wafer-Scale Calibration
This section discusses the requirements for a framework to calibrate as many HI-
CANNs at once as possible, keeping track of all calibrations and automating the
process. Results for three wafers in the BrainScaleS system are presented.

3.2.1. Method
The cake calibration package is designed only for single HICANNs. As the cali-
bration of individual HICANNs is independent, it is possible to start a calibration
run for each HICANN separately. To acquire additional information about each
run and automate data visualization, a four-step pipeline has been designed during
the course of this thesis. A schematic is depicted in fig. 3.7. In the first step,
preliminary requirements are checked: loaded software packages, version of the
wafer and state of the calibration parameter files. If these checks are passed, an
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prerequisites success? calibration
success

?

success?

evaluation

plotting

success? plotting

Figure 3.7.: Schematic of the calibration pipeline. Each step (blue boxes) is
executed when the previous step was successful.

actual calibration run is started. On finishing this run, an evaluation run is started
and at the same time plots are generated for the available data. If the evaluation
finishes, plots for this data are generated, too. The data format has been changed
to pandas DataFrames written on disk in the Hierarchical Data Format (HDF5).
This simplifies data access and analysis and decreased the file size. Furthermore,
the data visualization step has been updated to use DataFrames. Information
about the current state of each calibration is written on disk. This together with
the calibration data can be used to visualize the calibration state. An example is
shown in fig. 3.9.
The access to specific wafers, FPGAs and HICANNs is managed by SLURM. Sec-
tion 2.3.2 gives a brief explanation of SLURM’s features, a detailed explanation can
be found in Mauch (2016). If a specific resource is already used, SLURM puts this
job in a queue until the previous job finished. Therefore, the calibration jobs for all
HICANNs can be put in the queue and then will be executed as fast as possible.
Each HICANN needs one analog out for the calibration measurements. As only two
outputs are shared by eight FPGAs, This limits the number of parallel calibration
runs to 48 : 8 × 2 = 12. A 96 channel digitizer has been developed by Ilmberger
(2017) and is currently integrated into the system, which will increase the number
of parallel calibrations significantly.
The time of a single HICANN calibration stronlgy depends on the number of data
points to be recorded for each parameter. A sensible set of calibration ranges has
been established in Kleider (2017); Koke (2017); Schmidt (2014), which results in a
total calibration time of about 8 h per HICANN. In the ideal case of 12 calibrations
in parallel, the calibration of a whole wafer module takes about 256 h or about 11
days. If a calibration has to be interrupted or fails, it can be resumed from the last
successful data point measurement.

The pipeline is designed to automate the process of calibrating whole wafers.
A single command starts the pipeline for all HICANNs passed to the command.
Folders are created automatically for each HICANN and measurement results like
fit curves and distributions of data points are plotted. If a calibration fails for some
reason, it can be restarted by the same command. To keep track of all calibrations,
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Chapter 3. Wafer-Scale Calibration

Wafer 21 33 37
calibrated 98 848 111 321 70 457
blacklisted 12 768 14 119 28 359
not yet calibrated 19 968 12 800 36 352
excluded 65 024 58 368 61 440
calibrated relative to blacklisted [%] 88.6 88.7 71.3

Table 3.2.: Neuron counts after calibration for three wafers. Not yet cali-
brated neurons are on HICANNs where the calibration did not finish. Excluded
neurons are all neurons on HICANNs that could not be initialized. The percentage
of calibrated neurons relative to blacklisted is about 17 percentage points higher
on wafer 21 and 33 compared to wafer 37.

the user can plot a 2D wafer map as shown in fig. 3.9.
Before the pipeline is started, it is important to ensure that all FPGAs and reticles
that should be calibrated are turned on. In between calibration runs, it is advisable
to reprogram the FPGAs and initialize the reticles to ensure that the system is in
a sane state. Then, calibrations ca be (re)started.

The next section presents the results for the three version 4.1 wafers 33, 21 and
37. All measurements where recorded using the new pipeline script and analyzed
using the helper functions that were implemented for this matter.

3.2.2. Results
An overview of the current calibration state for the three wafer systems 33, 21 and
37 is given in this section. Results are shown in figs. 3.9 to 3.11. The figures show
2D views of the respective wafer with a color-coded calibration status. The left
panel shows the calibration status and green HICANNs could be calibrated success-
fully. On the right is the evaluation view, again green HICANNs could be evaluated
without error. To use the calibration, it is not necessary to do the evaluation, but
it is essential to check if the calibration contains obvious errors.
In the following, the errors that occured are described. A number of reticles had to
be excluded because the highspeed initialization does currently not work for at least
one HICANN on this reticle. These are marked in a dark gray. Currently, it is not
possible to initialize the other HICANNs on that reticle. This will be integrated in
the software in the future. The cause for highspeed init failures is under investiga-
tion.
The most prominent error is that only very few or no spikes are measured in the
HICANN preout. This is a check done before starting the calibration. If the HI-
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Figure 3.8.: Blacklisted neurons by parameter calibration routine. The per-
centage is calculated by dividing the number of blacklisted neurons by all neurons.
Each routine tests each neuron, even if it has been blacklisted in a previous cali-
bration step. Therefore, the range for each bar is from 0 to 100. The percentage
of blacklisted neurons for wafer 21 and calibrations V_t and E_l is below 0.002 %.
Wafer 37 has the highest count of blacklisted neurons for all calibration. The count
is comparable for wafer 21 and wafer 33. The number of blacklisted neurons for
the Igl routine is significantly higher for wafer 37 than for the other wafers.

CANN preout does contain only very few spikes, it is probable that the Layer1 which
transports the spikes between neurons has an issue. In most cases this is due to a
neighboring HICANN or the HICANN itself not being properly initialized. However,
if the highspeed connection does not work, it is not possible to put this HICANN in
a sane state for measurements. It can be seen that most HICANNs with the weak
preout signal are next to a HICANN where the highspeed initialization does not
work or on the edge of the wafer.
The connection timeout occurs if at least one packet is lost between host and FPGA.
This can be due to a high network load or because the FPGA is turned off or defec-
tive. In the future, a link with error control will be installed to make the connection
more reliable.
Problems with the Analog Readout Boards only occur rarely but the reason for a
non-responsive board is still under investigation. To get an overview of all possi-
ble errors and possible causes, Electronic Vision(s) maintains a frequently updated
ErrorFAQ (2018).
In fig. 3.12 the number of blacklisted neurons are shown for each HICANN on all

free wafers as a 2D wafer view. The color encodes the number of blacklisted neurons
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Chapter 3. Wafer-Scale Calibration

as depicted in the colormap. As more HICANNs are green on wafer 37 than on
the others, it can be seen that the blacklisted rate is higher on this wafer than on
the others. One defective reticle was found during calibration. Reticle 16 on wafer
33 was not calibratable because the measurements only return corrupt data. It is
assumed that there is a problem with the analog readout.

A summary of the neuron count is given in table 3.2. The number of not yet
calibrated neurons and blacklisted neurons is considerably higher on wafer 37 com-
pared to wafer 21 and 33. An explanation can be deducted from fig. 3.8. This figure
presents the relative count of blacklisted neurons itemized by parameter calibration.
It can be seen that the calibration for Igl lead to much more blacklisting on this
wafer than on the others. Additionally, the blacklisted neuron count on wafer 37 is
higher for all other calibrations.
The blacklisted neurons for wafers 33 and 21 stem mostly from the Vsyntc,x and
Vsyntc,i calibration. The method to blacklist neurons is described in Koke (2017, pp.
130–132). An investigation on two HICANNs of wafer 21 revealed that all black-
listed neurons came from the rejection of data points after measurement because the
signal-to-noise ratio defined for this calibration was to low. Further investigation is
needed to examine if the signal-to-noise ratio can be increased or the tolerance is
set to low.

Concluding, 656 HICANNs on wafers 33, 21 and 37 have been calibrated success-
fully. The average rate of not blacklisted neurons is about 88% for wafers 21 and 33
and about 71% for wafer 37.
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Errors of wafer 33 -- calib Errors of wafer 33 -- eval

General errors
104x excluded

Errors during calibration of wafer 33:

, 21x Weak preout signal
, , 14x Connection timeout

Errors during evaluation of wafer 33:

, 27x Weak preout signal
, 8x Connection timeout
1x Calibration Software Error

Figure 3.9.: 2D wafer view of the current state of the calibration (wafer
33). Each small rectangle represents one HICANN chip. The errors are color-
coded, separately for calibration and evaluation. The dark gray HICANNs and their
corresponding FPGAs are turned off due to connection problems on the highspeed
link. The weak preout signal error is always next to an uninitialized HICANN. It
indicates that there is a problem on Layer1 (see section 2.2.1). As each HICANN
has hardwired connections to its direct neighbors, it is expected that Layer1 fails
for such HICANNs. Connection timeout can happen for many reasons, see the
main text.
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Errors of wafer 21 -- calib Errors of wafer 21 -- eval

General errors
128x excluded

Errors during calibration of wafer 21:

, 18x Weak preout signal
, , , , 10x Problem with Analog Readout Board
, 10x Connection timeout

Errors during evaluation of wafer 21:

, 18x Connection timeout
, 10x Problem with Analog Readout Board
, 9x Weak preout signal

Figure 3.10.: 2D wafer view of the current state of the calibration (wafer
21). For a description of the color codes, see fig. 3.9. One section of the wafer
has a problem with an Analog Readout Board. Weak preout signals on this wafer
almost always happen next to uninitialized HICANNs. Currently there is no expla-
nation for the few HICANNs having a weak preout while being around initialized
HICANNs.
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Errors of wafer 37 -- calib Errors of wafer 37 -- eval

General errors
120x excluded

Errors during calibration of wafer 37:

, 49x Weak preout signal
13x Problem with Analog Readout Board
, 9x Connection timeout

Errors during evaluation of wafer 37:

, 30x Weak preout signal
3x Connection timeout
2x Problem with Analog Readout Board

Figure 3.11.: 2D wafer view of the current state of the calibration (wafer
37). For a description of the color codes, see fig. 3.9. The number of HICANNs
that show the a weak preout are significantly higher for this wafer. The analog out
of P2 bottom/master (c.f. fig. 2.3) does not work properly, explaining the Analog
Readout Board errors.
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Figure 3.12.: 2D wafer view of the blacklisted neurons for the three wafers.
Left top: Wafer 33. Right top: Wafer 21. Bottom: Wafer 37. HICANNs that
are shut down are marked with medium light gray and the number −2. Not yet
finished calibrations are marked with a −1 and a light gray color. The color code
encodes the number of blacklisted neurons from 0 (blue) to 512 (red) as depicted
in the colormap. Reticle 16 (c.f. fig. 2.3) of wafer 33 has almost only blacklisted
neurons. The distribution of blacklisted neurons shows no obvious structure. On
wafer 37, the number of blacklisted neurons is significantly higher.
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4. Constraint Satisfaction Problems

The following chapter describes the basics of Constraint Satisfaction Problems
(CSP). One example for a CSP is the number-placement puzzle sudoku. A method
to solve this problem using a neural network is presented. Simulations in software
and on the BrainScaleS system are done to show its performance. The last section
introduces an in-the-loop procedure similar to the one in Klähn (2017); Schmitt
et al. (2017) to train the weights to increase the network performance on hardware
for arbitrary sudokus. All times and voltages in the following sections will be in the
biological domain, c.f. chapter 2 for the translation to the hardware domain.

4.1. Theory

4.1.1. Constraint Satisfaction Problems
The definitions in this paragraph are taken from Dechter and Pearl (1987, pp. 2-4).
The constraint satisfaction problem is defined as a set of m variables X1, . . . Xm

with domains D1, . . . Dm and relations ρ ⊆ D1× . . .×Dm. Binary constraints are a
subset of the Cartesian product of two variables,

Rij ⊆ Di ×Dj. (4.1)

The solutions of a network of binary constraints define the set

S = {(x1, . . . , xm) |xi ∈ Di and (xi, xj) ∈ Rij ∀ i, j} . (4.2)

Before discussing the solving strategy to find the set S, the definitions are applied
to the case of the number-placement puzzle sudoku. This puzzle in its most general
form is an n×n grid of cells, itself consisting of blocks with size k · l = n. In its most
popular form, n = 9. An example for an even smaller puzzle with n = 4 can be seen
in section 4.1.2. Each cell is either empty or filled with exactly one number. The
goal is to fill the empty cells, such that the following four constraints are fulfilled:

Rule 1 One of each number in each row

Rule 2 One of each number in each column
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Rule 3 One of each number in each block

Rule 4 One number per cell

Bringing the concept of CSPs and sudokus together, each cell of the sudoku defines
a variable Xi with its domain Di = {1, 2, . . . n}. The sudoku rules define relations
ρ, e.g for Rule 1 when (X1, . . . , Xp) are n cells in the same row:

ρrow = {(x1, . . . , xp)|xi 6= xj ∀ i 6= j} (4.3)

and similar for the other rules. These relation can be split up in binary constraints,
namely

Rij = {(xi, xj)|xi 6= xj for i 6= j if Xi and Xj are in the same row, column or block} .
(4.4)

In the case of an unambiguous sudoku, the solution S contains only one element,
the solution to the sudoku. Finding the solution S solves the CSP. Deterministic
methods exist to find such solutions. However, depending on the problem at hand, it
can be time-consuming to search for the solution in the solution space Ω = D1×. . .×
Dm. For general n, sudoku is an NP-hard problem. This means there is no known
algorithm which can solve a sudoku in polynomial time, but given a solution, it can
be verified if the solution is correct. A system, that generates solution from which
some are correct is therefore a possible way to solve sudokus faster, as each solution
can be checked in polynomial time. The next section presents such a method using
a Spiking Neural Network.

4.1.2. CSPs and Spiking Neural Networks
A stochastic method using spiking neural networks is presented here, which is an
adapted version of the network described in Habenschuss et al. (2013, pp. 9-13). It
is only suitable for CSPs with a finite number of elements in each domain Di. Thus,
it is suitable to solve sudokus. The general idea is as follows: Each element in each
domain of the CSP is represented by a neuron or a set of neurons1, as depicted in
the right panel in fig. 4.1. On taking a time average over the spiking activity of all
neurons in a domain, the number associated with the neuron with the highest firing
rate is taken as the suggested solution for this variable. Clues, which in the case
of sudoku are the given numbers receive a high excitatory stimulus such that they
spike with a high frequency. Constraints are set by drawing inhibitory connections
between conflicting numbers. A random stimulus is applied to each neuron, leading

1In the aforementioned publication, the network is even more fine-grained, with one neuron per
constraint per element per domain.
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to an exploration of the solution space. Since conflicting numbers inhibit each other,
it is expected that on average the network state will be very close to the solution.
It is preferable to have a network that neither gets stuck in a certain state nor ex-
plores the states wildly, because then the correct solution can be found most reliably.
This is achieved by letting each neuron excite itself, reducing the exploration and
increasing exploitation. Summarizing, the tuneable parameters are:

• the number of neurons Ni per variable Xi

• the Poisson noise rate ν

• the rate for the clue neurons νc

• the strength of the connections between two neurons wjk

• the neuron model, e.g. LIF, AdEx

• the neuron parameters

• the time window to average over ∆t

• the method to average over ∆t

An overview of the methods used to analyze the network dynamics is given in
section 4.1.5. Additionally, the network structure can be varied depending on the
problem at hand. The next section explains different structures and their scaling
with the neuron size.

4.1.3. Network Structure
This section presents four different connections schemes that can be used to im-
plement the CSP solver. The schemes are compared to the scheme used recently
on SpiNNaker (Fonseca Guerra and Furber , 2017). Finally, the connection scheme
is chosen to be the standard scheme presented in eq. (4.5) with one neuron per
number per cell.

As an intuitive start, one can count the connections of one neuron in fig. 4.1 in
the case that every sudoku rule is implemented one after another. The number of
binary constraints is identical for every neuron, thus the connections per neuron can
be multiplied by the total amount of neurons n3 to get the total amount of synapses
in the network, with n = kl as defined above.
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Figure 4.1.: Sudoku structure and network. Left: A typical 4 × 4 sudoku and
its nomenclature. Right: The neural network as a representation of a 4×4 sudoku.
The color code exemplary marks the inhibitory connections of the gray neuron
to neurons in the same cell (orange), row (violet), column (green) and block
(blue). Each neuron is connected in this way and additionally excites itself.

The same row, column, block or cell each contain n − 1 neurons that have to be
connected. Additionally, the neuron can be connected to itself. This already gives

Cs = 4(n− 1) + 1 (4.5)

connections per neuron. Under consideration that some neurons are in the same
row/column and block, this number can be reduced to the minimum amount of
connections

Cm = 4(n− 1) + 1− (n
l

+ l − 2). (4.6)

To randomly excite the neurons, an additional connection per neuron has to be
drawn for both eq. (4.5) and eq. (4.6). Furthermore, it will prove necessary to
inhibit each neuron externally (c.f. section 4.3), again adding one connection. In the
case where each domain value should be represented by a set of neurons instead of
one neuron, further possibilities emerge. In the simplest case, each set of neurons is
all-to-all connected to each other set, in general

Ca = [4(n− 1) + 1]N2 (4.7)

with N neurons per set (assuming the same number for each set). Then, 2N ad-
ditional connections for individual excitatory and inhibitory external stimulus is
necessary. Yet another option is to simply instantiate multiple sudoku networks in
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parallel, with one accumulating neuron per variable Xi. The sudokus are stacked in
the sense that they all perform in parallel without connections between the sudokus.
The numbers of synapses when stacking t sudoku networks is

Ct = t(Cm/s + 1). (4.8)

Figure 4.2 shows the dependency of the number of synapses for the proposed models
on the sudoku shape and the number of neurons per set. The number of synapses
can vary several orders of magnitude between the different network structures. Al-
though they scale equally with the sudoku size, it is still important to consider how
many synapses are computationally affordable.
Especially on a system like BrainScaleS where synapses are realized with limited
hardware resources, fewer synapses are preferable. The first two variants, min and
standard, corresponding to Cm and Cs respectively, explicitly only allow single neu-
rons to represent one domain value dj of one variable Xi of the CSP. This of course
can result in a more unstable network, as the dynamics are more limited if a sin-
gle neuron competes with another neuron compared to two whole sets of neurons
competing. Therefore, a tradeoff between set size and the number of synapses to
be realised has to be made. In a recently published paper by Fonseca Guerra and
Furber (2017), a network with N = 25 is realised on the SpiNNaker system which is
able to solve 9×9 sudokus. They claim that the network size is mandatory to achieve
stable solutions. In total, they utilize 36,675 neurons and 86,154,125 synapses, i.e.
an average input count of 4700 synapses per neuron. It should be noted however
that the actual number of synapses is smaller because some of the synapses are an
artefact of the network topology of SpiNNaker, caused by the distribution of the
neurons on multiple cores. These synapses have zero weight and effectively do not
contribute to the system. For experiments on the BrainScaleS system it is desir-
able to start with a lower input count to make good use of the limited hardware
resources. Implementing a minimum connection or the stacked sudoku network re-
quires only 35N connections per neuron, compared to approximately 4700 synapses
in the SpiNNaker model. In conclusion, the small network structure can be mapped
to the BrainScaleS system. In this thesis, the connection scheme will be the “stan-
dard” connection scheme Cs, with one neuron per variable per domain value. The
number of neurons will be n3 with the number of digits per cell n.

4.1.4. Sudoku Difficulty Rating
When the network is used to solve sudokus, it is handy to know how difficult it will
be for the network to find the correct solution. There are many ways to do this,
and there is not an established way. Therefore, multiple methods are presented in
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Figure 4.2.: Synapse count for different network structures. Left: Number of
synapses per domain range. The domain range is defined by the possible numbers
that can be put in a cell. That is 9 in the case of a 9×9 sudoku, and kl in the case
of a kl × kl sudoku. The difference between the minimum number of connections
and an all-to-all connected setup is about 3-4 orders of magnitude. Right: The
two connection formula Cs and Ca are compared depending on the set size. For
small set sizes < 3, the number of synapses is roughly equal, but for set sizes > 10
the number of synapses is at least one order of magnitude higher in the all-to-all
method.

this section. An easy way to do this is to count the empty cells and set a limit to
establish discrete sudoku difficulties. This is obviously a good method for a fast and
coarse estimate of the sudoku difficulty: A sudoku where only one number is missing
will be easier than one with over 25 missing numbers. Depending on the sudoku
configuration though, it can still be easier to find a correct solution, when many
fields allow only one number directly from the start. This can be accounted for by
doing the rating by counting the number of possible numbers in each empty cell,
depending on the starting condition, adding these numbers up and dividing by the
total number of empty cells. This gives a number ≥ 1, where a difficulty rating of 1
is a very easy sudoku where all numbers can be filled in directly. This kind of rating
is especially interesting, as it reflects the way the spiking neural network is going
to solve a sudoku: In the case where only 1 number is possible in a cell, n − 1/n
neurons will be inhibited from the given numbers and in principle only one neuron
will spike in this cell. This again will reduce the number of possible solutions. At
a point where the network is in a state where no empty cell can be directly solved,
the stochasticity of the input spikes helps to find the correct solution nevertheless.
Figure 4.3 shows two 4× 4 and two 9× 9 sudokus, which will be solved in the fol-
lowing sections either in simulation or on the BrainScaleS system. Two more rating
strategies exist, which are explained briefly. The first rates the sudoku depending
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on the methods that are necessary for humans to solve them. An overview over the
methods can for example be found in Pelánek (2014). One of the newest ratings was
established in Ercsey-Ravasz and Toroczkai (2012), which uses chaos simulations to
get the escape rate κ out of the probability p(t) that the solution is not found by
time t, which decays exponentially in hyperbolic dynamical systems. As this value
requires to define a solver, it is not as general as the other ratings, and thus is not
considered further.
As a last step, before using the BrainScaleS, methods to analyze the network dy-
namics are discussed in the next section.
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Figure 4.3.: Sudokus and their respective difficulty. The black numbers on
white ground mark given numbers, called clues. The orange numbers on gray
ground are the number of possible numbers that can be put in this cell under
consideration of the clues. The difficulty is calculated by adding the orange numbers
and dividing this number by the number of empty cells. The sudokus shown are
solved in the following sections in simulation or on hardware.

4.1.5. Methods for Network Dynamics Analysis
In the last section it was already mentioned that an important step to utilize Spiking
Neural Networks as CSP solvers is to interpret the spike of a neuron as “suggestion”
that this domain value is the correct solution. As the dynamics of the network
is stochastic, obviously wrong suggestions will occur and therefore a method to
determine the correct solution out of all solutions has to be developed. A simple
first approach can be to take the domain value of the last spiking neuron in each
domain as the result. If the network converges to the correct solution and the
network has already evolved some time, this is a sensible approach. However, it is
unclear when “some time” exactly is and in addition, due to the stochasticity the
network can in principle always explore new solutions (c.f. section 4.1.2). Taking
averages reduces statistical fluctuations of the solution and there are multiple options
to average over the spike times. The most general way is to define n time bins
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{∆tj : j ∈ {1, . . . , n} ∧∑j ∆tj = ttotal}, and do for every variable of the CSP:

1. Measure the spiking activity, i.e. the number of spikes ns for each domain value

2. Calculate the fraction of spiking activity for each domain value: ps = ns∑
i
ni

The result for a domain of size m are m probability-like values ps which add up
to one and can be interpreted as the “certainty” with which the network predicts
the domain values. These values in turn can be used to calculate the information
entropy (Shannon entropy) of the system. It is defined as (Shannon, 1948):

H = −
∑
k

pk log2 pk = −
nv∑
l=1

m∑
s=1

ps(l) log2 ps(l) (4.9)

with the number of variables nv and all other variables as defined above. Its
maximum is the logarithm of the number of random variables in the system
Hmax = log2 nvm at ps = 1

n
∀ s and its minima are at ps = 1 ∧ pj = 0 ∀ j 6= s (see

Appendix A for details). Calculating the Shannon entropy gives us information
about the state of the system: If the value is far away from zero, the network
explores different network states. If in turn it is very close to zero, the network
does only explore very little. Also, one of the minima is the correct solution (see
Appendix A). Therefore one could hope that the correct solution is found when the
entropy converges to zero. However, due to the fact that the entropy has multiple
minima it could also be that the network did simply not converge to the correct
solution, for example when one cell of the sudoku puzzle is guessed wrong. Still,
it is a valuable method to get information about the network dynamics. As a last
remark, it is important to chose suitable time bins ∆tj such that for each variable
of the CSP at least one domain value was active. Otherwise, all probabilities ps will
be 0 in that time bin. Therefore the time bins are chosen to be the maximum time
distance of the spikes in each domain to ensure that all variables of the CSP have a
solution at all times.

In the next section, the network is simulated in NEST with suitable parameters.

4.2. Simulation: Solving Sudokus with PyNN and
Nest

This section describes the software simulation with pyNN and NEST of a spiking
neural network being able to solve sudokus. This is done as a preliminary study to
the implementation on the BrainscaleS system.
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To simulate the network, the abstract description in the previous section has to
be put in concrete terms. First, the neuron model is chosen to be the conductance
based leaky integrate-and-fire model with an exponentially growing current close to
the threshold. In pyNN, this model is called IF_cond_exp. This is a subset of the
AdEx model on the HICANN chip, c.f. section 2.1.2. Neuron parameter settings are
chosen to be compatible with the hardware parameter range as well. The neuron
parameters used in this section are given in listing 1. They are chosen such that the
neurons can be mapped on hardware and additionally such that each neuron has to
receive more than one spike to spike while at the same time the traffic is kept on a
moderate level. To achieve the second requirement, a suitable synapse weight was
chosen. The synapse delay has been set to 1 ms, which is on the same order of the
delay of the hardware synapses.

cell_params = {
'tau_m' : 30.0, # (ms)
'tau_syn_E' : 5.0, # (ms)
'tau_syn_I' : 5.0, # (ms)
'e_rev_E' : 40.0, # (mV)
'e_rev_I' : -100.0, # (mV)
'tau_refrac' : 5.0, # (ms)
'v_rest' : -21.0, # (mV)
'v_reset' : -21.0, # (mV)
'v_thresh' : -10.0, # (mV)
'cm' : 0.5} # (nF)

synapse_weight = 0.014 #(mu s)
synapse_delay = 1. #(ms)

Listing 1: Neuron parameters used for all neurons of the sudoku network.
The synapse delay is of the order of the synapse delay on hardware (≈ 5 ms).
Neuron parameters are chosen such that they are in the range of the hardware
neuron parameters. The difference between Vt and Vrest together with the synapse
weight is set heuristically, such that the network dynamics are maximized (many
spikes until spike) while at the same time the total bandwidth is not too high.

The network structure is the “standard” connection scheme, as explained in
fig. 4.1. Recurrent excitatory connections are set for all neurons.

As a starting point, a 4×4 sudoku will be solved. The input spike rate for neurons
that represent a given number of the sudoku is set to 180 Hz, that for unknown
numbers to 70 Hz. The spike pattern is regular for the neurons that represent given
numbers and Poisson noise for all neurons representing a number in an empty cell.
Due to the these rates in combination with the neuron parameters and the synapse
weight, neurons of given numbers show a spike rate of (83.5± 2.5) Hz. Neurons
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Figure 4.4.: A 4 × 4 sudoku in simulation. The black horizontal lines mark the
different cells of the sudoku. When a number is already given, the corresponding
neuron spikes steadily (e.g. (3, 0)). In free cells, up to three out of the four neu-
rons spike, but on average, the neuron representing the correct number spikes the
most (e.g. (2, 0)). This is also depicted with the transparency of the color in each
cell: The lighter the cell, the lower is the relative spike rate of the correct neuron
compared with all neurons in this cell, c.f. section 4.1.5. White cells are given
numbers. The time averaging window in this example is 667 ms.

42



4.2. Simulation: Solving Sudokus with PyNN and Nest

0 1000 2000 3000 4000
time [ms]

0

1

2

3

4

vi
ol
at
ed

co
ns
tr
ai
nt
s
(a
ve
ra
ge
)

Performance of the 4× 4 sudoku at 100 repetitions

mean performance
min-max
standard deviation

0 1000 2000 3000 4000
time [ms]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

en
tr
op

y
[b
its

]

Entropy of the 4× 4 sudoku at 100 repetitions

mean performance
min-max
standard deviation

100 150 200 250 300 350 400
time [ms]

0

10

20

30

40

50

60

co
un

t

Time to solution for the 4× 4 sudoku and 100 repetitions

time averaging window = 100 ms

Figure 4.5.: Performance of the 4×4 sudoku in simulation. The performance is
defined as the number of incorrectly filled sudoku cells. The time average was taken
such that even the sudoku with the slowest dynamics did not contain any empty
cells at any time step. 100 repetitions with different seed have been recorded. For
the same time step size, the entropy is calculated as described in Appendix A. The
entropy together with the performance show that the network converges very fast
to the correct solution at about 200 ms, after which the entropy is approximately
constant. This implies that the network still explores new solutions, which is due
to the fact that the random input stimulation is not decreased with time. To find
the first time when the correct solution is found, a smaller time averaging window
is chosen. It can be seen that over 90% of the time, the correct solution is found
in the first 200 ms.
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in the same cell as a given neuron receive no external input. The spike trains
for a specific sudoku as well as the predicted solutions are shown in fig. 4.4. The
predicted solutions are calculated by taking regularized rates (c.f. section 4.1.5) in
time intervals of 667 ms, which was chosen for a simpler depiction of the sudoku
evolution. Figure 4.4 shows the spikes of all neurons, the colors encode the number
the neuron represents and black horizontal lines divide the different cells. The black
vertical lines mark the points in time where an average is taken and the sudoku
depicted below the raster plot is the current prediction in this time frame. White
cells correspond to given numbers, colored cells to unknowns. If the prediction is
correct, the cell is green, and red if it is wrong. The transparency of the color is the
probability, c.f. section 4.1.5. For example it can be seen in cell (2, 0) in the first
part that the green is lighter compared to (1, 0), as neurons 1, 2 and 3 spiked in cell
(2, 0), while in the latter cell, only neuron 2 spiked.

To analyze the network dynamics, 100 repetitions have been simulated with dif-
ferent random seeds, which determine the input spike times for unknown numbers.
Results are shown in fig. 4.5. The performance as well as the entropy converge after
about 500 ms to a stable value close to zero. At least one sudoku is always wrong at
a time step (orange area), but the low number of violated constraints indicates that
close to all sudokus are solved at each time step after 500 ms. The low entropy value
shows that the network is stable in the solution found and other possibilities are not
much explored. As the input spike rate does not decrease over time, some entropy
will always be present. The bar graph at the bottom shows the time to solution for
100 repetitions. In 91/100 cases the solution is found in the first 200 ms. The time
averaging window of 100 ms was taken as low as possible without introducing too
many evaluations where a sudoku cell is not filled with any value because no neuron
of that cell spiked.
Overall, the network is able to find the solution very fast. This was expected due

to the small solution space. On a closer look, the sudoku under investigation has six
cells where 3/4 neurons are inhibited by clamped neurons ((1, 0), (3, 1), (0, 2), (1, 2),
(0, 3) and (2, 3)), three cells where only two numbers are possible ((0, 0), (2, 1) and
(2, 2)) and only one cell where three numbers are possible at (2, 0). Therefore, in
the next paragraph the network is scaled up to solve 9× 9 sudokus.
The rate for known numbers is increased to 360 Hz to push the network faster

to the correct solution and stabilize it. The output rate then is (118.1± 1.8) Hz.
Unknown numbers are stimulated with a rate of 120 Hz. Simulation time has
been increased to 2000 ms. The wall-clock runtime is about 20 s. The sudoku
has 22 free cells and can be easily solved, but two correct solutions are possible.
Therefore, it is expected that the network will alternate between the two solutions.
Figure 4.6 shows the predicted sudokus over time. Green cells again mark correct
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Spike trains for the ambigous 9× 9 sudoku

Figure 4.6.: The ambigous 9× 9 sudoku in simulation. Two solutions are valid
and, as expected, the network switches back and forth between the two solutions.
If all cells are green, the sudoku is in one solution state. The four blue cells mark
the second valid solution. From the spike trains shown on the bottom it can be
seen that almost only the correct neurons are active and in the case where two
neurons can be correct, the activity switches back and forth.
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solutions, but in addition 4 cells are marked blue when they predict the second
correct solution. The sudoku is correct, if either all cells are colored green or for
cells are colored blue. The raster plot only shows the neurons that spiked at least
once in empty cells. Black horizontal lines mark the different cells. Only in cell
(3, 0) three neurons are competing against each other, in all other cells only one
to two neurons are spiking. This is due to the small amount of empty cells, which
drastically limits the solution space. As expected, the sudoku prediction switches
between the two correct solutions back and forth, with only one prediction being
wrong at t = 859 ms. Sometimes the transition from one solution to the other takes
place in one time step, e.g. from t = 1575 ms to t = 1718 ms, at other times the
transition takes longer (e.g. t = 430 ms to t = 716 ms. In the following section, the
sudoku difficulty is increased but the solution to the sudoku is unique.

The parameters for this network are again increased to get more stable solutions:
The input rate is 4 kHz, the Poisson spike rate 400 Hz and the simulation time is
increased to 15 s. This increases the wall-clock simulation time for a single run to
about 60 s. Figure 4.7 presents the predicted solutions for one of the 100 repetitions.
It is 1/48 repetitions where a correct solution was found at all. With its 30 given
numbers it is a medium sudoku, according to the rating described in section 4.1.4.
The entropy, depicted in fig. 4.8, again decreases rapidly, indicating that the network
gets stuck in a particular solution, and does only explore few new solutions, even
if the solution is not correct. Also, the time to solution increases rapidly and the
dynamics of the system decrease: The time averaging window had to be increased
to 1000 ms to get solutions without empty cells for all 100 repetitions. The average
solving time increased to about 6000 ms, excluding the 62 repetitions where no
solution was found at all. It is expected that this behavior can be reduced by
introducing multiple neurons per number and varying the random Poisson rate over
time. On the other hand, this technique has proven to work in principle and therefore
the next step is to implement the network to the BrainScaleS system. The simple
network structure is an ideal starting point and can be scaled to more complex
structures on demand.
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Figure 4.7.: The “hard” 9 × 9 sudoku in simulation. The transparency value
indicates the ratio of the neuron that spiked most in the cell over the summed rates
of all neurons in that cell. This sudoku with many empty cells can in principle be
solved using the presented network. However, the results vary heavily depending
on the random seed used to generate the Poisson noise.
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Figure 4.8.: Performance of the “hard” 9 × 9 sudoku in simulation. The
performance is worse than in the case of the 4× 4 sudoku. The time average again
was taken such that even the sudoku with the slowest dynamics did not contain
any empty cells at any time step, which in this case was much higher at about
1000 ms. 100 repetitions with different seed have been recorded. The network does
not converge to the correct solution on average. The time to solution is now widely
spread, with 62 tries that did not converge after 16 s. The entropy again decreases
rapidly in the beginning, indicating that the solution space is only explored in the
first 2 s. An approach to increase the exploration and thus to have a better chance
to find the correct solution is to start with a higher rate and decreasing it over the
course of the experiment.
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4.3. Experiment: Solving Sudokus on the
BrainScaleS System

In this section, the neural network is transferred from the NEST simulator to the
BrainScaleS system. A few important differences to the software simulation should
be noted: First, the neurons on hardware are inherently different due to transistor
mismatch. Therefore, their neuron parameters will vary as well as the synaptic
input strengths for each synapse. To get a general idea about these differences,
multiple measurements are presented in the next section. Then, a first result using
the network as is is presented. To improve the results, a training for the synaptic
weights is discussed and presented in section 4.4. Finally, results are presented using
the weight matrix from the training.

4.3.1. Premeasurements
This section describes how to set up the network correctly on the chips. Due to the
bandwidth limitations between HICANNs and from FPGA to HICANN this can be
a non-trivial endeavor. In addition, not all HICANNs are calibrated and not all ret-
icles function for all wafers, as described in section 3.2. When only one experiment
is executed with fixed input stimulus spikes, the mapping software can take care
of the process of selecting enough HICANNs and FPGAs to distribute the input
spikes. Then, all that has to be done by the user is to specify the HICANNs where
the neurons should be placed. The following experiments however often require
to change the input rates between two measurements. This can not be accounted
for by the mapping software, but can be estimated manually by determining the
highest possible input rate in the experiment and comparing it with the maximum
value of section 2.2.4.

In the following, most experiments use approximately 200 Hz random Poisson-
distributed input noise per neuron, and it is desirable to use only about 80% of the
bandwidth to have some clearance. The amount of neurons that can be served by
one HICANN thus are (c.f. section 2.2.4):

N = b17.8 MEv/s÷ 104 ÷ 200 Hz · 0.8c = 7. (4.10)

This in principle does not mean that we have to use multiple HICANNs, as input
can also be supplied by neighboring HICANNs. On the other hand this reduces the
HICANN-to-HICANN connections, and therefore the neurons are placed on multiple
HICANNs. The number of HICANNs needed can directly be calculated with the
total number of neurons ntot to be NHC = dntot

N
e = d9.14e = 10. Distributing the
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Figure 4.9.: Spike rates for 64 neurons under regular stimulation with 200 Hz
on hardware. The measurement procedure is as follows: In a first step, each
neuron receives the 200 Hz input sequentially. Then, all neurons receive the spike
input at the same time. Comparing both output rates of the neurons allows to see
if the neurons and external stimuli have been distributed correctly. The standard
deviation is shown in gray. This bar gives additional qualitative information about
the spike loss. The difference between rates is at most 5 Hz, or 7 %. The different
rates between neurons is caused by fluctuations in the neuron parameters and the
synaptic input strength.

neurons should not introduce any bandwidth problems, as the bandwidth between
HICANNs is higher than from FPGA to HICANN and it is not expected that the
network activity is as high as the input stimulus due to the inhibitory connections.
To confirm that the external stimulus arrives at all neurons, a measurement is
conducted once when a set of HICANNs is selected: Each neuron receives the
maximum stimulus, first one after another and then all at once. This stimulus
is linearly spaced instead of random to have better control over the results. An
exemplary result can be seen in fig. 4.9 where the 64 neurons of a 4× 4 sudoku have
all been measured. The rates between different neurons vary from about 40 Hz to
120 Hz, which is expected due to different neuron parameters on hardware and fluc-
tuations in the strength of the synaptic inputs. Both are caused by manufacturing
inaccuracies as explained in section 2.1.2. The variations of one neuron between
parallel and sequential spike input is at maximum at about 15 Hz. Including the
standard deviation, the rates of the parallel measurement are always in a 3σ range
to its sequential pendant and therefore the system is considered sane.

A second important precaution is to always verify that all repeaters are locked
and all digital tests pass at least once when a distinct set of HICANNs is selected.
This test checks among others the repeaters, the synapse decoders and the synapse
weight memory. These can be faulty and will lead to spike loss or problems with
the synaptic input. The software to blacklist them and ignore them is still under
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development. So, the test has to be done manually and if it fails, a new set of
HICANNs should be considered to conduct experiments on.

4.3.2. Results
After determining a set of HICANNs without errors and enough bandwidth, the
network can be set up for a first experiment. In the following, wafer 33 is used
together with HICANNs 296, 297, 298, 320, 321, 322, 323, 341 and 342, coordinates
as depicted in fig. 2.3. Three adaptions are made to facilitate the task for the
network: First, it can be that there are spikes on the communication layer from
a previous experiment, or the voltage traces are at different starting values. This
can be compensated for by sending inhibitory spikes to all neurons in the network.
Second, the neurons representing given numbers receive their input earlier as the
other neurons. This drives the network faster to the solution, as neurons that
are directly constrained by a given number are strongly inhibited before they are
excited and thus will never fire. The last adaption concerns the sudoku itself: it is
simplified to have 8 empty cells, where 6 cells only allow one neuron to spike, i.e.
3/4 neurons are directly inhibited by given numbers in these cells. 2 cells, (1, 2) and
(2, 2) allow two neurons to spike. Rates are set to 200 Hz for given numbers and
130 Hz for unknowns. The inhibitory spike rate at the beginning is set to 120 Hz
and the rate for the given numbers before the random noise starts is set to 180 Hz.
The network is inhibited for 500 ms, followed by a pause of 1200 ms. Then, the
actual experiment starts and runs for 10 000 ms. The raster plot together with the
predicted solutions is shown in fig. 4.10.

The three time phases can be identified by the colored vertical dashed lines: Until
the yellow line, all neurons are inhibited. From the yellow to the green line, the
given numbers are excited. And starting from the green line, the unknown cells
receive random Poisson input. As in the simulation, in most cells only a single
neuron, which is also the correct solution, spikes. However, in cell (1, 2), neurons 3
and 4 compete and only in tiles 2 and 3, neuron 4 spikes more often than neuron
3. This is at first glance unusual, as neuron 3 in this particular cell is inhibited by
2 other neurons, namely (0, 2, 3) and (1, 1, 3), while neuron 4 is only inhibited by
(2, 2, 4). In addition, neurons (2, 0, 3), (3, 0, 4) and (3, 3, 3) do not spike in the yellow
to green tile, although they receive the same input as other given numbers. Both
phenomena can be explained by the different synaptic input strengths of individual
synapses on hardware. That exactly the two cells (1, 2) and (2, 2) show the most
unstable behavior can be explained by comparing the sudoku with its difficulty
rating in fig. 4.3. The two cells are the only ones that have more than one neuron
which is not constrained by a clue neuron. As in the simulation, 100 repetitions
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Figure 4.10.: The 4 × 4 sudoku on hardware. The raster plot shows the spikes
of all neurons. Black solid horizontal lines divide the different cells, the number is
color coded. The experiment starts at the green dashed line. Until the yellow line,
all neurons are inhibited to ensure equal starting conditions. Between the yellow
and green line, the clue neurons are stimulated. The sudoku on the bottom shows
the solutions the network came up with, the time bins marked in the raster plot
with black dashed lines. The transparency value encodes the relative number of
spikes of the neuron that spiked most. For example the bright 1 of the fourth slice
in cell (2, 2) resembles the competition of neuron 1 and 4 in this cell.
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Figure 4.11.: Performance of the 4×4 sudoku on hardware. The mean perfor-
mance is constant at about 1, indicating that the network is all the time close to
solving the sudoku but one cell is often determined wrongly. The entropy is almost
constant too and below 1, indicating that only very little solutions are explored.
An entropy value close to 0.5 is an indicator that two neurons in one particular cell
compete. The time to solution is higher than in the simulation, which corresponds
to the higher number of violated constraints on average. 90% of the solutions are
found after 2000 ms.
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of the network dynamics are recorded to determine the performance, entropy and
time to solution. Results are shown in fig. 4.11. The entropy and performance are
approximately constant with values about 1 and 0.4, respectively. This is in both
cases more than in the simulation, which decays in the first 500 ms to about 0/0.2.
The standard deviation and min-max are higher for the performance on hardware,
but of the same order for the entropy. The maximum value of the entropy is with
1.2 in fact smaller than the maximum value in simulation of about 4.2. The average
value of 0.4 can be an indicator that all but one cell are solved correctly and in the
last cell, two neurons compete. If the neurons spike approximately equally often, the
entropy would be −∑2

n=1
1
n

log2
1
n

= 0.5. The time to solution is more widespread
than in simulation and 90% of the solutions are found after 2000 ms. The initiation
time has already been subtracted from that value, so this is the actual solving speed.
However, as the hardware runs 104 times faster than biological time, the actual result
is still obtained very fast. In conclusion, the network on hardware works not as well
as in simulation. This is expected, as the network configuration is not very stable
against fluctuation of the synaptic input strengths, neuron parameter variations or
spike loss: In the best case, all neurons should be exactly equal, as they all should
compete equally against each other. Due to the fact that imperfections on analog
electronics can never fully be controlled, another approach has to be found to make
the network more stable against imperfections. A simple way to do so is to use
one of the more sophisticated connection schemes described in section 4.1.3. This
also would increase the number of neurons, but it is desirable to keep the network
simple at first to be able to survey the whole network. Another option is to draw
the same connection multiple times. This can average out the effect of individual
synapses, but the number of synapses needed is unknown and can probably be high.
As the endeavor is to keep the network simple, this option is unfeasable. On the
other hand, the weights also control the synaptic strength and are until now all set
to their highest value. The next section describes a method to tune the weights such
that the synaptic input strengths are evened out and the network performs better.

4.4. Experiment: Pretraining of the Sudoku Network
Weights

The last section demonstrated that it is in principle possible to solve 4× 4 sudokus
on the BrainScaleS system. However, the performance of the neural network is
worse than in simulations. This is on the one hand caused by the lower input
rate, which is bandwidth-limited from the FPGA to the HICANNs. However, it
is assumed that also the variations between the neurons and between the synaptic
inputs are a reason for the lower performance compared to simulation. Therefore,
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a training algorithm is presented in this section that determines the best weights
for all synapses in the sudoku to increase the solving capabilities. As a remark, the
network is not trained to solve specific sudokus better, but such that the solution is
found faster and more reliably for any sudoku.

The key of this training is to divide the whole network into small, independent
and all-to-all connected networks. This can be for example all the neurons in the
same cell. Each of these units can then be trained individually corresponding to the
algorithm depicted in fig. 4.12. In essence, the all-to-all connected neural network
is “unfolded” to a feedforward artificial neural network. This is done in four steps.
First, N sets of input rates are defined. The neurons then receive Poisson-distributed
spike input according to the rates. The N sets are used one after another with
a small relaxation period between each set, where all neurons receive inhibitory
spike input. As a result, we get N output spike rates. These values together with
the input spike rates are put in an artificial fully-connected feedforward network
(ANN) of the same network size as the spiking neural network unit. This network is
implemented in TensorFlow, details can be found in Appendix B. Heuristically, the
following approche was found to be viable: The input to the network is the summed
input of the source neuron rates and the network neuron rates. The activation
is overridden with the output rates instead of calculated from the input rates.
And the input rates are transformed to a one-hot vector by taking the maximum
and then set as the correct solution of the network. This effectively results in a
network that tries to optimize its behavior such that only the neuron with the
highest input spikes. For our CSP this in turn results in a high sensitivity to the
sum of the random excitatory stimulus and the inhibitions from the other neurons.
After inserting the rates as described above, weight updates for both the source
weights and the network weights of the artificial neural network are calculated.
These weights then have to be translated back to the weights in the spiking neural
network. This step is non-trivial, because the weight range of the synapses in the
ANN is not limited by default. On the hardware however, only digital weights from
0 to 15 can be set. One option to translate is to crop the artificial weights too, and
then simply rescale. Another way to do the translation is to take the maximum
weight of the ANN weights and translate it to the maximum hardware weight. All
other weights are rescaled accordingly. This allows the artificial weights to steadily
increase and decrease without limits. On the other hand, the weights on hardware
may jump using this translation. Still, this translation proved to give better results
in training and is therefore used. As in every iterative approach, the four steps of
the weight update are performed multiple times, until a target classification rate is
achieved. In principle, all network units representing the same sudoku rule can be
trained at once, because they share no connections. As the rates used for training
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are in the range of about 200 Hz per neuron, the bandwidth is limited on hardware
and to have more control over the units, each unit is trained sequentially.

1 2

34

1 Set input rates, measure output
rates

2 Plug both rates in the unfolded
network

3 Calculate a new weight matrix
4 Use new weight matrix for the

training
Repeat steps until convergence

Figure 4.12.: The WTA training. Each independent unit of the sudoku (each cell,
row, column or block) can be seen as an all-to-all connected inhibitory network
with external stimulus. The objective is to train each unit such that the neuron
with the highest input spikes and suppresses the other neurons. This is a form of a
Winner-Take-All (WTA) network. The network is stimulated using Poisson noise
with a constant rate for each neuron. The resulting output rates are measured and
both rates are put in a single-layer ANN modeled in TensorFlow. The weights are
then translated to hardware weights and the same experiment is executed again,
until convergence is reached.

In the following, an example of the training will be illustrated and then results
for all units are presented. Each unit is trained with fixed rates of 50, 100, 130 and
200 Hertz.

These rates are randomly distributed over the four neurons and then exponen-
tially distributed 2 spike times are drawn for these rates. These spikes are presented
to the network in 2000 ms. This is called a single batch. Multiple batches are
recorded on hardware before the results are passed to the ANN. The chosen batch
size is 400, with a pause of 200 ms between batches. During the pause intervals,
all neurons are inhibited such that for every batch, the neurons are approximately
in the same state. The total runtime on hardware therefore is 88 000 ms for each
training step. Finally, the spike times are read out, cut in batches and passed to
the ANN, as explained in the last paragraph.

Figure 4.13 shows the evolution of weights and correctness for unit 48. This

2The number of spikes in a given interval is Poisson distributed. One can show that the spike
times then are exponentially distributed.
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Figure 4.13.: Weights and correctness for a single unit on hardware. The
unit consists of the four neurons representing a 1 in row 0. Top: Evolution of
the weights of the ANN and on hardware. Due to the chosen weight translation
method, weights on hardware can jump from 0 to 15 in one step, e.g. for (16, 16)
in step 1. Center: The weights of the sources that provide the external excitatory
stimulus to the neurons. Bottom: Correctness, Loss and Correctness per neuron
for each training step. Correctness is defined as the fraction of correct batches,
where the neuron with the highest input rate also had the highest output rate.
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unit comprises of the four neurons representing a 1 in column 0. The top two
panels show the weights of this unit. The numbers in the legend are the unique
IDs of the neurons in the network. The synapse (n,m) transfers spikes from m

to n. Inhibitory connections in the Spiking Neural Network are represented by
negative weights in the Artificial Neural Network. The excitatory self-connections
are represented by the four lines above 0. The weight translation uses the maximum
weight as explained in section 4.4. As a result, the hardware weights can jump in
the full range from 0 to 15 in one training step. In the center panels, the weights
of the external stimuli is shown. They are initialized at 11, such that the stimulus
is sufficient to induce spikes. The last three panels enable to quantify the traning.
The correctness is defined as the number of batches where the neuron with the
highest spike rate (200 Hz) spiked the most. It reaches 100 % after 8 training steps
and therefore the training is aborted. As expected, the correctness and the loss are
anti-correlated. The last panel shows the correctness per neuron. It jumps by as
much as 80 percentage points between single training steps. For the first training
steps, the increase in correctness of one neuron leads to a decrease for at least one
other neuron. This effect is expected as the correctness increases for one neuron if
it is less inhibited, also leading to more inhibition of the other neurons, which can
decrease their correctness if they are inhibited too much.

The example at hand shows that the training in principle works. The weights of
the unit are tuned such that for the given input rates, 100 % of the time the neuron
with the highest input rate fires the most. The correctness for all units using this
training is shown in Appendix C. Next, it will be shown that the correctness for
other than the training rates is increased for all units using this training method.
Finally, the performance when solving sudokus is analyzed.

The devised test presents a set of rates to the network such that the highest
rate is fixed and all other rates are sweeped. The set with the highest rates is
{200, 200, 154, 77} Hz. For each set of rates, 100 spike trains are drawn from a
Poisson distribution per neuron. All units are tested sequentially to avoid too high
traffic from FPGA to HICANN. Results for the trained and untrained case are shown
in fig. 4.14. The x-axis shows the scaling factor between the highest and the second
highest rate of the test set, because this is the main competitor for the tested neuron.
The measured correctness is averaged over all units. After training the correctness
improves significantly. It is constant at 100 % until 0.65, where before training the
correctness already decreased to about 60 %. The standard deviation decreases,
minimum and maximum are shifted towards higher values. At a scaling value of 1,
two neurons have the same rate. It is expected that the network can only be correct
about 50 % of the time, as both neurons are equally strong excited. The observed
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Figure 4.14.: Correctness for given rates before (left) and after train-
ing (right) on hardware. All units are stimulated sequentially with a set
of rates, where all but the highest rates are sweeped. The maximum rates are
{200, 200, 154, 77} Hz. The training significantly improves the correctness in this
test.
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correctness is slightly higher, at about 60 %.
Summarizing, the devised test shows that the correctness can be improved for a
larger set of rates than the units were trained for. The network with trained weights
is therefore utilized in the next section to solve the sudoku from section 4.3 again.
Furthermore, the solving accuracy is tested for multiple sudokus in sequence.

4.5. Experiment: Solving Sudokus with Trained
Weights

In this section, the sudoku from section 4.3.2 is revisited, using the weights from
the training in section 4.4. Furthermore, it is tested if multiple different sudokus
are solved better on average with training.

The same setup as in section 4.3.2 is used, with the only difference that this time
all weights are adjusted to the values determined in training. The raster plot and
the found solutions to the sudoku are shown in fig. 4.16. As in the untrained case,
the neurons first are inhibited and then the clue neurons are stimulated. In contrast
to the untrained case, less clue neurons fire in this pre-experiment phase. Again, the
spike times have been tiled in four parts from the beginning of the experiment, and
the solutions found by the network are shown as sudokus with white cells for clues
and red and green cells for wrong and correct solutions. The correct solution is found
in all four slices. However, the individual cells are in part lighter colored, meaning
that also wrong neurons spiked in that cell during that slice. An example is cell
(1, 0), where up to three neurons spike during one time step. This is in accordance
with our training objective: The correct neuron is on average the neuron that is
inhibited the least, and should therefore spike the most.
Average performance, entropy and the time to solution is presented in fig. 4.15.

The performance with trained weights is close to zero. Also the maximum value
is below the maximum value without training. All in all, the performance has
increased because of the training. In contrast, the entropy is higher than in the
untrained case, averaging about 1 at each step. This is in accordance with the
observation that the training did not optimize such that only one neuron spikes, but
rather such that the correct neuron spikes the most. The correct solution is therefore
found much faster, 90 % of the solutions are found after 800 ms. The longest it took
to find the solution was 1600 ms, also much better than the 4800 ms without training.

To show that the training did not only improve the solving speed and accuracy
of this specific sudoku, multiple sudokus are tested for different difficulties. The
number of empty cells of a 4× 4 sudokus is at most 12. Therefore, 100 sudokus are

60



4.5. Experiment: Solving Sudokus with Trained Weights

2000 3000 4000 5000 6000 7000 8000 9000 10000
time [ms]

0

1

2

3

vi
ol
at
ed

co
ns
tr
ai
nt
s(

av
er
ag
e)

mean performance
min-max
standard deviation

2000 3000 4000 5000 6000 7000 8000 9000 10000
time [ms]

1

2

3

en
tr
op

y
[b
its

]

mean entropy
min-max
standard deviation

200 400 600 800 1000 1200 1600 not solved

time to first solution [ms]

0

20

40

co
un

t

time averaging window = 200 ms

Figure 4.15.: Performance of the 4×4 sudoku on trained hardware. The mean
performance is close to zero, implying that the network always finds the correct
solution on average. The entropy is almost constant at about 1. The higher entropy
results from more wrong neurons spiking. The time to solution is lower compared
to the untrained network, but still higher than in simulation. Over 90% of the
solutions are found after 800 ms.
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Figure 4.16.: One example of a 4 × 4 sudoku on trained hardware. Top:
Raster plot of the spikes of all neurons. On the y-axis are the individual neuron
coordinates of the sudoku. Additionally, the number that a neuron represents is
color coded. As in the untrained case, all neurons are inhibited until the yellow
line, to ensure equal starting conditions. Between the yellow and green line, the
clue neurons are stimulated. Bottom: The solutions the network found. White cells
are given. Green cells are correctly predicted, red cells are not. The transparency
value encodes the relative number of spikes of the neuron that spiked most. The
solutions are correctly predicted all times, but at the same time, wrong neurons
spike more often than in the untrained case.
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drawn at random for each possible number of empty cells from 0 to 12. Spiketrains
are then drawn for each sudoku and the outgoing spiketrains are recorded and
sliced. For each slice, it is determined if the solution presented by the network is
correct. If at least one solution is correct, this sudoku is said to be solved. This is
done for all 100 sudokus and all 13 numbers of empty cells. For this measurement,
the floating gate has not been reconfigured after the training. Therefore, the neuron
parameters did not change. The whole measurement procedure is done 4 times,
results are averaged. In the untrained case, each weight is set to its maximum value.
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Figure 4.17.: Correctly solved sudokus for different sudoku difficulties be-
fore and after training on hardware. 100 sudokus are presented to the net-
work for each data point. A sudoku is defined to be correct, when at least one
of the produced solutions is correct. The x-axis shows the number of empty cells
of the sudokus. The measurement was repeated four times with the same input
spiketrains. In orange, the minimum and maximum value for each data point are
shown. The variations for a single data point are always lower than ±5 %. The
training improves the number of correct sudokus significantly. This measurement
was conducted without resetting the floating gates after the training.

Results are shown in fig. 4.17. The percentage of correctly solved sudokus increases
significantly with the weights from training. In the case of 0 empty cells, both
networks perform optimally, with a correct percentage of 100 %. This is expected,
as with no free cells, only the correct neurons are stimulated. Having less than
100 % correct sudokus is an indicator that spikes are lost. At 8 empty cells, the
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untrained network accuracy declined significantly below 70 %, while for the trained
case it is still close to 100 %. From 10 empty cells on, the accuracy also declines
for the trained network, and ends at about 50 %. The untrained network accuracy
in this case is below 20 %. Concluding, the network with trained weights vastly
outperforms the untrained network at solving arbitrary sudokus.
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5. Discussion and Outlook

This thesis accomplished to solve a Constraint Satisfaction Problem at the exam-
ple of the number placement puzzle sudoku on neuromorphic hardware. To achieve
this goal, multiple prearrangements have been realized. The refractory period was
scrutinized in chapter 3 to ascertain the attainable precision of the calibration and
in-experiment use. Also in this chapter, the calibration framework was scaled up
to allow an efficient calibration of a whole wafer module of the BrainScaleS sys-
tem. Three wafer modules were calibrated using the framework, allowing to conduct
multi-HICANN experiments.
In chapter 4, a method is presented to solve general Constraint Satisfaction Prob-
lems. This method is utilized to solve specific instances of sudokus in simulation
and on hardware. The dynamics of the Spiking Neural Network are investigated in
detail.
It is observed that the network on hardware a priori does not perform as well as in
simulation. This is accounted to the neuron parameter variations between neurons
and variations of the synaptic input strength of each synapse, which is at the time of
writing not yet calibrated. A training algorithm is presented which trains single, all-
to-all connected subsets of the Spiking Neural Network to detect the highest input
rate, hereby resembling Winner-Take-All networks. An Artificial Neural Network
is set up with TensorFlow to train the weights of the Spiking Neural Network. Af-
ter training, results are presented to show that the performance of solving sudokus
improved with the training. Future experiments can benefit from this training algo-
rithm as it is not tailored specifically to the network proposed here to solve sudokus.
In the following, an outlook is given for the calibration, the Spiking Neural Network
to solve sudokus, the training algorithm and large-scale experiments extending the
ones presented in this thesis.

Calibration
The result of scrutinizing the calibration of the refractory period it that it is only
possible to get a sensible calibration in a small range due to the large variations
between neurons. Furthermore, the trial-to-trial variations further restrict the cali-
bration range. As an experimenter, one should always expect at least 30 % variation
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of the refractory period for larger networks. However, if precise refractory period
settings are needed the BrainScaleS still can be an option. It could be realized
in the future to include the variations in the calibration framework, such that an
experimenter can select the neurons with the lowest variation. Also, it is already
possible to measure the refractory period of each neuron before conducting the
experiment. As it is not necessary to rewrite the floating gates when conducting the
same experiment multiple times (Klähn, 2017), it is sufficient to measure them once
after setting the floating gates. In the newest version of the HICANN-DLS chip,
the successor to the HICANN chip, the refractory period is digital, and therefore
does not have distinct variations.

Scaling the calibration up to wafer-scale resulted in three of the newest wafers that
can be used for large-scale experiments. In total, 656 HICANNs could be calibrated,
from which on average about 80 % of the neurons have not been blacklisted. Large-
Scale experiments are now in reach using tens of thousands of neurons. Tuning
the calibration hyperparameters like the number of calibration steps it could be
possible to further reduce the amount of blacklisted neurons. The time to calibrate
a single wafer module was found to be about 10 days. Due to the pipeline, the
user interaction during that time is on a moderate level. As the calibration can be
stopped and resumed at any point, the calibration can be done overnight or when
the wafer system is idle. Furthermore, as different wafer modules can be calibrated
in parallel, the only limit for calibration time when scaling up is the number of
host computers that run the calibration software analyze the data. Moreover, with
the new 96 channel digitizer of Ilmberger (2017), the parallelization is expected to
increase significantly.

Solving Constraint Satisfaction Problems
It could be shown that the sudoku-solving Spiking Neural Network simulated
with NEST can be translated to the BrainScaleS system hardware. The complete
software stack to implement an abstract neural network in PyNN and map it on
the hardware had already been developed. Therefore, it is effortless to transform
a network that is already implemented with PyNN and a simulator backend like
NEST to the hardware.
However, the chosen network structure is susceptible to variations of the neuron
parameters and changes in the strength of the synaptic input. As the BrainScaleS
system uses analog neurons, parameter variation are inevitable. Therefore at first,
the solving capabilities of the network were worse on hardware than in software.
To increase the solving capability of the Spiking Neural Network on hardware, a
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training algorithm has been devised that trains small subsets of the network, called
units. Although each unit is trained separately, it could be shown that the network
performs better after training. For the maximum number of 12 free cells in a 4× 4
sudoku, the percentage of correctly solved sudokus could be increased from below
20 % to 50 % for 100 randomly drawn sudokus. At 8 free cells, the solving accuracy
with training still is at 100 % while it declines below 70 % without training. This is
a vast improvement, especially regarding that the training algorithm is not designed
to solve specific sudokus better.

Still, there is room for improvement. Manual tuning was necessary to find the
optimal training hyperparameters. This could be circumvented by automatic tuning
for example with Bayesian inference.
The focus of this thesis was to solve Constraint Satisfaction Problems in the case of
sudokus. However, there are more CSPs that can be solved, for example the map
coloring problem. Using the code developed in this thesis, it should be practicable
to implement other CSPs quickly. The training algorithm can also be adapted to
other CSPs.
The connection structures presented in section 4.1.3 can be tested to improve the
performance of the Spiking Neural Network: It has already been shown in simulation
and on SpiNNaker that a population of neurons per number is more efficient in
solving sudokus. This would also naturally decrease the variations between different
cells and in the same cell of the sudoku.
This thesis investigated only 4×4 sudokus on hardware, instead of the common 9×9
sudokus. The software and training however are already implemented for arbitrary
neuron sizes. A suitable way has to be found to feed more neurons externally, for
example by using the background generators on chip or a sea of noise population.
Then, the network can be scaled up to solve 9× 9 sudokus and the performance of
the training can be investigated for a large network.
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A. Derivation of the Extrema of the Shannon Entropy
Finding the extrema can be seen as an optimization problem and therefore be solved
using Lagrange multipliers. The function under investigation is the Shannon En-
tropy, taken for a single variable Xl of the CSP:

Hl = −
∑
k

pk log2 pk (.1)

with the constraint that the probabilities have to sum up to 1:
∑
k

pk = 1. (.2)

Implicitly, it is assumed that there is only a finite set of pi’s. Each probability pk is
seen as an independent variable. The Lagrangian then reads

L = −
∑
k

pk log2 pk + λ(
∑
k

pk − 1) (.3)

and its derivative after pi is

∂L

∂pi
= − log2 pi + λ− 1 (.4)

As all λ have to be equal it follows that the extremum is at

log2 pi = log2 pj ∀i, j ⇔ pi = pj (.5)

which can only be fulfilled if pi = 1
n

is uniformly distributed. This is the only
extremum and actually the maximum which can be seen by simply plugging in any
other value for the pi’s and observing that it is smaller. The value for the extremum
can be simply calculated as:

Hmax = −
n∑
k=1

1
n

log2
1
n

= −n 1
n

log2
1
n

= log2 n (.6)

Now the boundaries of the function Hl have to be investigated. The boundaries for
pi are [0, 1]. The value for a term of Hl at the boundary is Hl(0) = Hl(1) = 0. As
Hl(x) < 0 ∀ x ∈ (0, 1), it follows that for multiple pi with the constraint in equation
eq. (.2), the minima of Hl are:

Hl = 0 for pi = 1 ∧ pj = 0 ∀ j 6= i (.7)
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B. Artificial Neural Network Implementation in
Tensorflow

The artificial neural network used for the pretraining is a one-layer, fully-connected
and feedforward neural network. The neuron size is equal to the number of neurons
per cell of the sudoku that the whole network represents. In mathematical form, it
can be written down as (using Ricci calculus)

νi = σ(wijµj) (.8)

with the activation function σ, in- and output rates µ/ν and the weight matrix
wij. In the case that multiple batches are presented between training steps, ν and
µ simply become matrices instead of vectors. The activation function used in the
course of this thesis is the tf.nn.elu function, which is defined as

σ(x) =
x, if x ≥ 0

expx− 1, otherwise
.

as a cost function, the L2 loss is used, in TensorFlow defined in tf.nn.l2_loss and
defined as

L = 1
2
∑
i

(νi − σ(wijµj))2 (.9)

the error is minimized through gradient decent (tf.train.GradientDescentOptimizer).
Now, updates of the weight matrix wij can be calculated using backpropagation.
This is in this case tractable to calculate, as the network consists of only one layer.
Before the calculation, eq. (.8) is slightly modified: it is desired to not only update
the network weights between neurons but also the weights from a source to a neuron
in the spiking neural network. This is done by introducing a new variable sj = zj ·µj
with the elementwise multiplication · (thus no summing over indices) and replacing
µj → sj in each equation. This method scales the output by its source weights,
which is in principle also a measure for the strength of the source input to the
neuron. Now, weight updates can be calculated for wij and zk. In gradient descent,
the weight update is defined as the negative derivation of the loss function after the
weight, multiplied by a small constant value α called the learning rate. The idea is
to minimize the loss by descending along the steepest direction of the loss function.
To converge to the minimum, the learning rate ensures that the steps are not too
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large, which would lead to pass over the actual minimum. In formula:

∆wji = −α ∂l

∂wji
(.10)

∆zi = −α ∂l
∂zi

(.11)

So all that has to be done is to calculate the partial derivatives. This can be one by
simply applying the chain rule twice:

∂L

∂wji
= 1

2
∑
k

∂

∂wji
(νk − σ(wklsl))2 (.12)

= −
∑
k

(νk − σ(wklsl))σ′(wklsl)
∂(wklsl)
∂wji

(.13)

= −(νi − σ(wilsl))σ′(wilsl)sj (.14)
= −(νi − gj)σ′(wilsl)sj (.15)

where σ′ is the derivative of σ and in the last step we introduced the new variable
gj = σ(wjlsl)). Why this is important will be explained shortly. But first, a similar
calculation for the source weight updates gives

∂L

∂zi
=
∑
k

(vk − gk)σ′(wklsl))wki · µi (.16)

Observe that the sum does not vanish in this case because the last derivative does
not give a δkj. The derivative of the activation function is

σ′(x) =
1, if x ≥ 0

expx, otherwise
.

This concludes all that is needed to calculate weight updates. Now all that is left
is to determine the variables in our spiking neural network. One choice can be to
use the input rates for µ and the output rates for ν. However, heuristically it seems
that a more natural description of the system is to define the output rates as g and
the input rates as a one-hot encoded ν. This approximately says that it is desired
that the neuron with the highest input rate spikes, while all others do not. As for
µ, the sum of output and input rates is taken, which is justified by the fact that the
spiking neurons receive this summed input as spike input.
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Figure .1.: Correctness of all units on hardware. The correctness per neu-
ron before training ranges from 0 % to 100 %. After 28 training steps, all WTA
units reach a correctness of over 99.7 %. Training is aborted when the correctness
surpasses this percentage. The loss and correctness are anti-correlated.

The training of all units happens in serial using the method described above. The
maximum training steps are set to 30. If a unit scores over 99.7 % correctness, the
training is aborted and the next unit is trained. This decreases the overall training
duration. The results for all units are shown in fig. .1. After 28 training steps, all
units reach a correctness over 99.6 %. The correctness per neuron can be improved
by about the same percentage. As expected, the L2 loss can be reduced for all units.
Most units abort training after at most 7 steps. Two units take slightly longer and
abort after 12 steps. A last unit finishes after 28 steps. From the bottom panel it can
be seen that it is one neuron in particular which does not score a high correctness
for a long time.
In conclusion, all WTA units can be trained to achieve a correctness of at least
99.7 %.
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