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Abstract

Neuromophic hardware platforms are developed with different aspects of the human brain’s
architecture in mind. The HICANN-DLS 3 neuromorphic ASIC, implemented in a 65 nm process,
contains 32 analog neurons and 1024 hardware synapses. This thesis focuses on synaptic plas-
ticity, specifically Short Term Plasticity (STP) and Spike-Timing Dependent Plasticity (STDP),
which are both implemented in hardware. Concerning STP, we observe that synapses can be
configured to utilize 27 % to 74 % of the available neurotransmitters when transferring an action
potential. The recovery time constants cover three orders of magnitude, ranging from 2.38 ms
to 2120 ms of biological time.

Synapse drivers, which process STP, are subject to mismatch. An offset parameter counter-
acting the mismatch is calibrated for every driver. We implement a new readout method using
the neurons’ spike events instead of an ADC to acquire the data for calibration. Using this highly
scalable readout mechanism, it is possible to calibrate the synapse drivers in 30 seconds.

Lastly, we characterize the STDP correlation sensors. Previous prototypes showed a strong
asymmetry of amplitudes between causal and anticausal measurements. The problem is solved
for the latest version by soldering a capacitor onto the board next to the chip.
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Zusammenfassung

Neuromorphe Hardware wird nach dem Vorbild des menschlichen Gehirns entwickelt. Der
neuromorphe HICANN-DLS-3-Prototyp-Chip enthält 32 analoge Neuronen und 1024 Synapsen
in Hardware. Diese Arbeit behandelt synaptische Plastizität, genauer gesagt Short Term Plastici-
ty (STP) und Spike-Timing-Dependent Plasticity (STDP). Beide sind in Hardware implementiert.
In Bezug auf STP haben wir beobachtet, dass der konfigurierbare Bereich der Ausschüttung von
Neurotransmittern bei der Weitergabe eines Aktionspotentials zwischen 27 % und 74 % einstell-
bar ist. Die verfügbaren Zeitkonstanten der Erhohlung decken drei Größenordnungen ab, von
2.38 ms bis 2120 ms biologischer Zeit.

Synapsentreiber, in welchen STP modelliert wird, unterliegen Fertigungstoleranzen. Ein Off-
set-Parameter, welcher genutzt werden kann, den Unterschied auszugleichen, wird für jeden
Treiber kalibriert. Wir implementieren eine neue Auslesemethode, welche die Aktionspotentia-
le der Neuronen anstelle eines ADC benutzt, um die zur Kalibration benötigten Daten aufzu-
nehmen. Mit dieser gut skalierbaren Auslesemethode ist es möglich, die Synapsentreiber in 30
Sekunden zu kalibrieren.

Zuletzt charakterisieren wir die STDP-Korrelationssensoren. Bisherige Prototypen zeigten
eine starke Asymmetrie der Amplituden zwischen kausalen und antikausalen Messungen. Das
Problem ist für die aktuelle Generation gelöst, indem ein Kondensator auf dem Board neben dem
Chip eingelötet wurde.
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1 Introduction

In the Human Brain Project, different subprojects are focused on researching the brain and de-
veloping neuromorphic hardware, novel computing systems inspired by the brain’s architecture.
Strong cooperation between groups working in many different fields of science is necessary to
achieve better understanding of this complex matter. When investigating neural networks, sim-
ulations are conducted. The available simulation software requires lots of computational power,
especially when using complex models of neurons and synapses [Kunkel et al., 2013]. As an al-
ternative to simulations, dedicated hardware is designed to emulate biological systems directly,
called neuromorphic hardware. Neuromorphic systems have the potential to overcome the en-
ergy efficiency problem while offering further improvements over digital computing [Meier,
2015].

The Electronic Vision(s) group at the Kirchhoff-Institute for Physics in Heidelberg develops
a neuromorphic Application-Specific Integrated Circuit (ASIC) containing both digital and ana-
log signals. We are working on a new chip generation called High Input Count Analog Neural
Network (HICANN) with Digital Learning System (DLS). Being based on current theories of
how neurons and synapses work, the hardware we build enables brain researchers to investigate
their models in accelerated time while using large systems [Schemmel et al., 2010]. There are
also purely digital approaches: the SpiNNaker platform, also part of the Human Brain project,
was created to provide highly parallel computing using ARM9 cores [Furber et al., 2013].

Machine learning allows systems to learn solving problems without being provided a specific
algorithm. Using conventional computers, machine learning is increasingly applied to physics
research, including particle physics, nuclear physics and condensed matter physics [Pang et al.,
2018]. Custom hardware is even developed in the commercial sector: one of many examples is
Google, where a specialized tensor processing unit yields advantages towards traditional proces-
sors [Jouppi et al., 2017].

For the process of learning, synapses are important. They form the connections between
neurons, which receive, process and transmit information. Synaptic plasticity, the change of
connection strength over time, is characterized in this thesis. We focus on two effects, happen-
ing on different timescales: Firstly, Spike Timing Dependent Plasticity (STDP) [Bi and Poo, 2001]
models long-lasting changes in connection strength between neurons. If a synapse transfers in-
put towards a neuron shortly before the neuron sends out an action potential itself, the strength
of this synaptic connection, its weight, is typically increased. Secondly, the weights of synaptic
connections can vary significantly over short times as well. We call this effect Short Term Plas-
ticity (STP) [Zucker and Regehr, 2002]. The release of neurotransmitters in chemical synapses
induces various processes that lead to either depression or amplification of Post-Synaptic Poten-
tials (PSPs) over time. Depending on the brain region the synapses are located in, one of the
effects is stronger, but generally both effects can take place at the same time.

During this thesis, we will present basics of the current implementation of STP and STDP
on the HICANN-DLS 3 prototype chip. We will conduct experiments characterizing the func-
tion of the models and the available configuration range. In particular, the STP mechanism will
be calibrated in order to counteract variances in the circuits’ behaviour caused by production
variances.

1



2 Principles

2.1 Biological Principles

Neurons in a brain can be coarsly split into different segments: dendrites, a soma and an axon.
Synaptic inputs travel along dendrites towards the soma, which can be understood as the essence
of the neuron. Once inputs have excited the neuron sufficiently, an action potential is created and
sent along the axon. This action potential reaches the dendrites of averagely 7000 other neurons.
Synapses normally connect axons and dendrites of different neurons. In total, the human brain
is estimated to consist of 20 billion neurons and 100 to 500 trillion synapses [Drachman, 2005].

Most synapses transfer action potentials by using neurotransmitters [Lytton, 2007]. Stored
in vesicles in the presynaptic neuron’s axon, neurotransmitters get emitted when the axon is
activated during an action potential. They travel through the synaptic cleft and reach receptors
on a dendrite of the postsynaptic neuron.

2.1.1 Short Term Plasticity

The path of neurotransmitters along the synaptic cleft allows for synaptic plasticity. Lasting at
most a couple of minutes, this is referred to as Short Term Plasticity [Zucker and Regehr, 2002].
The received input at the postsynaptic neuron decreases over the course of repeated stimula-
tion due to the limited amount of disposable neurotransmitters. This vesicle depletion leads to
Short Term Depression (STD) [Hennig, 2013]. There is also the opposite phenomenon: an in-
crease in the synaptic efficiency leads to higher received inputs, called Short Term Facilitation
(STF) [Stevens andWesseling, 1999]. The term Short Term Plasticity includes both depression and
facilitation, they can happen at the same time [Hennig, 2013].

In order to express depression and facilitation in equations, we divide synaptic neurotrans-
mitters into three partitions using the Tsodyks-Markram model [Tsodyks and Markram, 1997]. It
uses a recovered partition R, an effective partition E, and the current I flowing onto a neuron’s
membrane. The values of R and E lay between 0 and 1, the time of the action potential is given
by tAP. Denoting states before an action potential with upper indices x− and afterwards with x+,
the transfer of neurotransmitters over time t is described by a set of three differential equations
[Tsodyks and Wu, 2013]:

dE
dt
= − E

τfacilitation
+USE · (1 − E−) · δ (t − tAP) (2.1)

dR
dt
=

1 − R

τdepression
− E+ · R− · δ (t − tAP) (2.2)

dI
dt
= − I

τsyn
+A · E+ · R− · δ (t − tAP) (2.3)
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When the synapse is idle, the effective partition E decays to 0 with a time constant τfacilitation
and the recovered partition R decays to 1 with a time constant τdepression. Typical values range
from hundreds of milliseconds to seconds of biological time [Regehr, 2012]. If an action potential
is transmitted, a fraction USE is added to the effective partition E. We call the factor USE the
utilization. The enlarged effective partition E+ is then used to shrink the recovered partition
since depression occurs. R gets smaller by an amount proportional to E+. The actual synaptic
output is given by the current I . Its amplitude at an action potential is given by a maximum
amplitude A and the product of E and R, thus handling depression as well as facilitation. The
current then decays back to 0 with a time constant τsyn.

2.1.2 Spike Timing Dependent Plasticity

Another form of synaptic plasticity is the Spike Timing Dependent Plasticity (STDP). The weight
of a synapse is typically increased when it stimulates a neuron shortly before it spikes, which
we call causal correlation. It is typically decreased when the synapse sends input to a neuron
shortly after it has spiked, called anticausal correlation [Sjöström andGerstner, 2010]. This allows
changing synaptic weights according to Hebbian theory [Hebb et al., 1949]:

When an axon of cell A is near enough to excite cell B or repeatedly or consistently
takes part in firing it, some growth or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased.

For implementing learning algorithms, STDP is a key feature: Spike timing-dependent mod-
ifications, together with selective spread of synaptic changes, provide a set of cellular mechanisms
that are likely to be important for the development and functioning of neural networks [Bi and Poo,
2001]. Typical timescales for changes in synaptic weights based on correlation are in the order
of 10 µs biological time [Bi and Poo, 1998].

2.2 The HICANN-DLS 3 ANNCORE

In order to include analog neurons on a silicon chip, the membrane capacity is represented by
a capacitor. Synaptic inputs are integrated on this capacitor, while a leakage current pulls the
voltage back to a resting potential. On HICANN-DLS, neurons also include an exponential term
and adaption based on the Adaptive Exponential Integrate-and-Fire model (AdEx) [Brette and
Gerstner, 2005].

The chip runs network emulations sped up by a factor of 103 due to intrinsic time constants.
This means the typical timescales of milliseconds in biological domain translate to microseconds
of actual time. In this thesis, all times are given in actual chiptime, if not specified otherwise.

On the HICANN-DLS 3 prototype ASIC that is used in this thesis, there are 32 neurons and
1024 synapses available. The synapses are arranged in a 32 × 32 array, a neuron is located at
the bottom of each column. The neuron integrates the input of all synapses in its column. Each
synapse can have an individual weight and address, which are both 6-bit values.

On the left side of the array, there are 16 synapse drivers, driving two rows of synapses each.
A sketch of the setup is shown in figure 2.1. The synapse driver passes the target address along
the line and processes STP. Each of the 64 addresses, which are available to configure synapse
connections, can have an individual STP state, which is encoded in the length of the dacen pulse
enabling the synapses. Drivers receive their data on 4 PArallel Debug Interface (PADI) buses.
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synapse driver

synapse

neuron

Figure 2.1: Sketch of the ANNCORE on HICANN-DLS 3. On the left, synapse drivers are located
that can drive two rows of synapses each. At the bottom of synapse columns, neurons receive
input of the synapses above them.

The synapse weights characterize the connections between neurons. When spiking, neurons
send out a digital signal that can be fed back into one of the synapse drivers and thus travel
through the synapse array, reaching other neurons. External input can be sent to the drivers as
well, which will be the focus in this thesis.

Since both the short term (STP) and long term (STDP) plasticity mechanisms have to be able
to change the synaptic input amplitudes received at a neuron, synapses multiply two analog
parameters. The electric current flowing through the synapse is set by the weight, which can be
modified by STDP. The time this current is flowing for is the length of the dacen pulse, modified
by STP. The transferred charge, which is proportional to the received synaptic input, is then
subject to both STP and STDP. The typical shape of a synaptic input over time is generated in
the neuron.

2.3 STP implementation

Processing STP is done entirely in the synapse driver. Its output consists of the spike address and
the dacen pulse. In case that STP is disabled, the dacen pulse reaches its maximum duration:
with the intended chip clock of 250 MHz this means 4 ns. If STP is enabled, the dacen pulse
width changes with the level of depression and facilitation, respectively.

In order to store STP states for all addresses, individual capacitors are used. The voltage on
the latter, VSTP, represents the state of neurotransmitters. With one capacitor each, we can store
only one parameter. Since equations 2.1 and 2.2 require two parameters to process depression
and facilitation, we have to decide which one to use. Equation 2.3 is processed at the input stage
of the neuron.

Therefore, on the HICANN-DLS 3 chip, we can configure synapse drivers to use either de-
pression or facilitation. The desired mode is set by inverting the output signal. For depression,
an initially long pulse gets shorter and for facilitation, an initially short pulse gets longer.

The voltages VSTP, that are stored on the capacitors, recover exponentially towards a global
voltage Vrecover with a selectable time constant τrec. When an action potential is forwarded, the
capacitor for the associated address gets connected to a net on voltageVcharge, thus the charge is
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Figure 2.2: Schematic of the STP circuit implemented on HICANN-DLS 3. Charge stored on
capacitor Cstorage represents the current state of neurotransmitters. The left side of the circuit
is used to update the state after handling an action potential, the right side is responsible for
recovery and runs continuously. Figure adapted from [Billaudelle, 2017, figure 11].

shared with an update capacity Cupdate. The ratio of STP storage capacity Cstorage and Cupdate is
the utilizationUSE, since the remaining voltage VSTP,i+1 will drop from VSTP,i according to

VSTP,i+1 = Vcharge + (VSTP,i −Vcharge) ·
Cstorage

Cstorage +Cupdate
. (2.4)

Since the recovery of neurotransmitters is an exponential process, it could be implemented
using a resistor between Vrecover and Vcharge. However, considering the used capacities, a re-
sistance in the range of gigaohms would be necessary to achieve the desired time constants
ranging from 1 µs to 1000 µs. This would take up a lot of space on the chip. Instead, a small
sample capacity Csample is switched between VSTP and Vrecover, transferring a minimal amount of
charge each time it is switched. This switched-capacitor circuit forms a pseudo-resistor with a
resistance R = (Csample · f )−1, where f denotes the switching frequency. This allows an expo-
nential convergence of VSTP towards Vrecover with a time constant configurable by the frequency
of switching. This frequency can be set using a global clock divider, referred to as prescaler
and a local recovery setting, which is a counter-based switch: the sample capacity is switched
after recovery global clock cycles have passed.

In figure 2.2, a schematic of the used circuits is shown. VSTP is stored on the storage ca-
pacity Cstorage. The update capacity is Cupdate, which is configurable in 4-bit resolution via the
utilization parameter. The recovery sample capacity is Csample. Switch S2 is normally closed
and gets opened after an action potential was transmitted to update the STP state. Switch S1 is
normally open and closes during an update. Switches S3 and S4 are switched continuously to
enable STP recovery. When an action potential is processed, the voltage on Cstorage is used to
create the dacen pulse.

To translate the voltages VSTP to durations of the dacen pulse, a comparator is used. It com-
pares a linear voltage ramp with the given voltage VSTP. Depending on the STP mode, the pulse
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Figure 2.3: Sketch of the two voltages the comparator in the synapse driver is connected to.
The capacitor that the ramp is produced on is plotted in black, the STP storage capacitor in red.
The ramp capacitor is precharged during the first 2 ns, shares charge with the offset capacitors
to correct individual offsets in the following 2 ns. Afterwards, the ramp is generated and the
comparator toggles the pulse when it crosses VSTP.

is initially high or low and gets toggled once the ramp crossesVSTP. In order to map the full range
of VSTP to the full range of dacen times, the voltage ramp should start near Vcharge and end near
Vrecover.

Generating the ramp starts with precharging the ramp capacity to a global voltage Voffset
during the first 2 ns of synapse driver activity. Next, an individual offset voltage is added to the
ramp: a configurable capacitor with a resolution of 4 bits is charged to an correction potential
Vzero and connected to the ramp capacitor. Sharing their charge, the voltage on the ramp capacitor
rises depending on the selected capacity. The used parameter is called offset, it provides a
constant offset to the ramp voltage before the ramp starts rising. This offset is added during
another 2 ns. Once the correct initial voltage is reached, a constant current proportional to the
parameter Iramp starts flowing onto the ramp capacitor, increasing the voltage linearly. This
happens within 4 ns, the maximum time the dacen signal can be active. Comparing VSTP with
the voltage on the ramp capacitor toggles the pulse. The whole process is visualized in figure 2.3.
Detailed information on the whole synapse driver implementation can be found in [Billaudelle,
2017].

For the STP model implemented on HICANN-DLS 3, this means each driver can use either
the facilitating or depressing mode, but not both at the same time. Using short term depression
with an inactive partition I and a recovered partition R, the amplitudes of synaptic input received
at neurons are proportional to R, as shown in these equations [Schemmel et al., 2006]:
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dI
dt
= − I

τrec
+USE · R · δ (t − tAP) (2.5)

R + I = 1. (2.6)

w ∝ R (2.7)

During depression, the weight w of the connection is proportional to R. For synapses con-
figured in facilitating mode, the dacen pulse is inverted. This means equation 2.7 is replaced in
favor of w ∝ I . The weight gets proportional to I . Therefore, facilitation is based on the same
differential equations with inverted roles.

Due to variations in the manufacturing process of the chip, the whole circuitry, especially the
voltage comparator, are subject to mismatch. The STP circuit has to be calibrated. The offset
parameters are used to shift the ramps of all drivers in a way that yields similar amplitudes for
all drivers at similar STP states. This calibration of the offset parameter is the focus of this thesis,
comparing two different readout mechanisms.

2.4 STDP implementation

The STDP feature relies on correlation measurements of every individual synapse. Synapses
measure the time between the presynaptic spike and the spiking of their neuron, the postsynaptic
spike. The measured time can also be negative if the neuron spikes before the synapse sends an
input. This way, classification of causal and anticausal correlation is possible for all synapses. The
time differences get weighted exponentially and can be read out as amplitudes of correlation. In
detail, voltages that indicate causal and anticausal correlation are stored on two capacitors that
can be read out using the Correlation Analog to Digital Converter (CADC). Complex algorithms
can be used to tune synaptic weights in a large network based on correlation timings, since the
Plasticity Processing Unit (PPU), an on-chip microprocessor, is able to access CADC results and
change synaptic weights, using various operations.

In order to achieve symmetry between anticausal and causal results, most parts of the STDP
circuit are shared between causal and anticausal measurements. Thus, using the same hardware,
there can not be any mismatch. This means that every time synapses forward an action potential
they start a causal measurement, and every time a neuron spikes, the synapses in its column start
an anticausal measurement. Every end of a measurement means the start of the opposite one.
A basic schematic of the used circuit is shown in figure 2.4. However, the actual circuit is much
more complex, including the difference between anticausal and causal measurements.

The function of this simplified circuit is explained using a causal measurement that starts
with the synapse transferring an action potential and ends when the neuron spikes. The storage
capacitor Cstorage is reset manually and then accumulates correlation amplitudes. Its voltage is
read out by the CADC. Before starting a measurement, the voltage onCmeasure is reset toVresmeas
by closing a switch Sresmeas. All other switches are initially open. A measurement starts when
the synapse transfers an action potential. The measurement capacitor Cmeasure is charged to a
voltage of 1.2 V. Closing Sramp, it is then connected to ground via a transistorM2 that limits the
current flowing depending on its gate potential Vramp. The characteristic time of exponentially
weighted measurements can be set using this potential.
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Figure 2.4: Schematic representing core elements of the STDP circuit. The actual implementation
is shown in [Friedmann et al., 2017].

Once the neuron spikes, the measurement ends. Depending on the elapsed time, the charge
on the measurement capacitor is now smaller. Opening Sramp but closing Sstore and Saccumulate,
the discharge current from the measurement capacitor now flows through a different transistor
M3. On its gate, the voltage Vstore allows setting the amplitude of the correlation signal. The
potential on the capacitor Cmeasure is also connected to the gate of a transistor M1 connected to
the STDP storage capacitor Cstore, where the final correlation signals are stored. Being a sub-
threshold voltage, the current Istore flowing from Cstore is an exponential function of the voltage
on the measurement capacitor Cmeasure. The linearly dropping voltage on the measurement ca-
pacitor limits the charge that flows off the storage capacitor. Using the fact that the integral of
an exponential function is still an exponential function, this means that the charge flowing off
the storage capacitor is proportional to the exponentially weighted time difference between start
and end of the measurement.

Despite the circuit sharing the transistors for anticausal and causal measurements, previous
experiments conducted on HICANN-DLS 2 have shown a strong asymmetry in amplitudes be-
tween causal and anticausal measurements. Those asymmetric results are presented in [Stöckel,
2017, figure 3.3], showing statistics of all synapses, and in [Wunderlich, 2016, figure 3.4], show-
ing correlation measurements for a single synapse. In this thesis we will investigate whether the
observed asymmetry in correlation amplitudes is still present using HICANN-DLS 3.

8



3 Characterization of Short Term Plasticity

3.1 Input and Output

3.1.1 Experiment setup

Figure 3.1: Photo of the HICANN-DLS 3 setup that was used during this thesis. It includes the
baseboard, the Flyspi board (the board with the USB connection) and the HICANN-DLS 3 chip,
which is located below the black cover at the right.

All experiments have been done on a HICANN-DLS 3 setup, as shown in figure 3.1. The host
computer runs frickel-dls software, which contains C++ code, and the pydls bindings, which
wrap the code in Python. This allows describing experiments using Python. It connects via USB
to the Flyspi-board that contains an FPGA and memory. Experiments are stored in memory and
controlled by the FPGA in real-time. There is a Analog-Digital-Converter (ADC) available, too.
The DLS 3 chip itself is bonded onto a SODIMM module that is inserted into a socket on the
baseboard.

The baseboard mainly provides power supply and generates voltages used inside the chip,
using Digital-Analog-Converters (DACs). There are pin headers for analog readout of several
signals, e.g. the synaptic input of neurons or their membrane potential. Since most signals are
driven off the chip, an active probe is required to maintain high amplitudes during oscilloscope
readout. Here, the LeCroy WaveRunner HRO 64Zi or the LeCroy WaveSurfer 44Xs oscilloscope
together with LeCroy ZS1000 active probes were used. To process data directly in Python, the
oscilloscopes can be accessed via an Ethernet connection [Stradmann, personal communication,
August 2017]. For most experiments however (unless stated otherwise), the Flyspi ADC was
used, since acquiring data is a lot faster.

Unless stated otherwise, chip number 8 (DLS 3a) has been used for our measurements, to-
gether with baseboard “Jack London”.
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Figure 3.2: Measuring dependence between capacitive memory configuration and output.

3.1.2 Capacitive memory

Most voltages and currents used on the chip are generated in the capacitive memory (capmem)
[Hock et al., 2013]. There are voltage and current cells available, arranged in an array of 34
columns and 24 rows, the latter are split into 8 voltage and 16 current rows. All cells can be
configured using digital values between 0 and 1023. This typically yields currents of 15 nA to
1000 nA and voltages of 0.2 V to 1.8 V [Aamir et al., 2018]. Using the capmem output pins and
a Keithley 2100 multimeter, the actual voltages are measured for all used chips using cell (32, 0),
which is a buffered cell, suited for readout, holding the STP Vcharge voltage. In figure 3.2a, the
data for chip 8 shows a linear function, as expected. This dataset is later used to map the digital
settings to voltages, e.g. when plotting STP comparator ramps. This is why we are particularly
interested in voltages below 1 V.

The same measurement is done for current cells as well, shown in figure 3.2b. A Keithley
2635B SYSTEM SourceMeter was used here, applying 0.5 V of reverse voltage to cell (32, 8+1) on
chip 8, which is the STDP ibias_correlation_ramp current. The graph shows a linear dependency
as well. For low settings below 100 LSB, the measurement was verified using the multimeter and
oscilloscope (with their internal resistances), where the results fit perfectly to the ones shown
here. Current cells are used to set several bias currents such as the synapse bias current, which
scales configured synapse weights into amplitudes. Therefore, it is relevant during characteriza-
tion.

3.1.3 Flyspi ADC

The signal path when measuring synaptic inputs of neurons consists of an on-chip source fol-
lower that drives the signal off the chip [Kiene, 2017], an amplifier on the baseboard, and the
12-bit 96 MHz ADC on the Flyspi board. The source follower shifts all voltages by a constant
amount, so without characterizing it, absolute measurements of chip voltages are not suitable.
However, relative changes in voltage are mapped accurately and can be read out on the ADC.
Since we are mainly interested in amplitudes of synaptic input, this is no problem at all and we
do not quantify the shift. Still, we need to characterize the ADC and find out how the digital
output corresponds to the measured voltage. Using the Keithley 2635B SYSTEM SourceMeter, the
digital value is measured in steps of 0.05 V input voltage. The amplifier is configured with the
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Figure 3.3: The onboard ADC digital output code as a function of the applied input voltage.

parameters preamplify 0 and attenuation 5. The settings are identical in all measurements,
therefore this characterization is sufficient.

A plot of the data is shown in figure 3.3. A linear fit is used to convert digital signals from
the ADC into analog voltages. When measuring voltage differences, only the slope of this linear
function is relevant. Given the digital signal S that ranges from 0 to 4095, the original voltage
V0 is given by

V0 = 6.83 × 10−4 V · S − 0.9399 V. (3.1)

Therefore, 1 LSB corresponds to 0.683 mV of input voltage. The ADC readout is subject to
gaussian noise with a standard deviation of 2.5 LSB, which equates to 1.7 mV, if connected to
the synaptic input of a neuron, which is the usual configuration in this thesis.

3.1.4 Evaluation of amplitudes

When an experiment is executed on the chip, the onboard ADC records a predefined number
of samples. It is usually connected to the synaptic input of neurons, where, receiving a spike,
the voltage drops proportional to its weight. The voltage drop is the spike amplitude, which has
to be extracted from the ADC trace. This is done automatically using several methods from the
python module SciPy [Jones et al., 2014]. The biggest problem concerning automatic evaluation
of the voltage trace is the bad signal to noise ratio. Averaging multiple measurements to increase
the signal to noise ratio is usually done but not always possible. In case a noise-related edge in
the signal is considered a spike or a spike is considered noise, corrupted data is produced. This
is especially problematic in longer experiments like the characterization of USE, where we are
interested in decrease of amplitudes and not constant amplitudes alone.

At first, a gaussian filter is applied to the data, the width is set to 20 samples. The signal is
now low-pass-filtered, see figure 3.4a. A sobel filter, resembling the first derivation, is used to
find edges in the trace. A drop is considered a spike when its amplitude is 3σ , where σ is the
standard deviation of the sobel-filtered trace. In figure 3.4b, the sobel signal and spike threshold
is plotted. Where the sign of the difference, plotted in red, jumps from −1 to 1, a spike is noted.
In a small timeframe of 0.5 µs around the found spike time, the minimum of the low-pass-filtered
trace is used to extract the amplitude. In figure 3.4a, the red dots indicate the time found with the
sobel filter, the voltage is the minimum of the low-pass filtered trace. The baseline is given by the
mean voltage in a timeframe of typically 2 µs, shortly before the spike. All the given numbers,
especially this timing of the pre-spike baseline voltage measurement, are changed according
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Figure 3.4: Extracting spike times and amplitudes from a voltage trace.

to the individual experiment requirements, allowing us to confidently use the acquired data.
However, amplitudes are systematically under-estimated however by the low-pass filtering and
due to the fact that the ongoing exponential decay back to the baseline voltage just before the
spike is neglected. Therefore, low inter-spike-intervals make amplitude extraction difficult. For
our experiments, this should not be of major concern, especially not for the calibration, where
only comparing amplitudes of different drivers is necessary, so systematic effects do not matter.

This method to evaluate the ADC traces is CPU-intensive. The required time increases fur-
ther with additional averaging that may be necessary to find spike times correctly. In this case,
the same experiment is repeated several times and the mean voltage trace is used for ampli-
tude extraction. This worked reliably. Consistency of spike timings across multiple identical
experiments was no problem. Especially for experiments at low spike amplitudes, averaging
was necessary.

3.2 Synaptic weights

Every synapse in the synapse array can have an individual weight ranging from 0 to 63. Received
amplitudes at the neuron should be proportional to this weight. The synapse bias current scales
the received amplitude at maximum weight, it is the proportionality constant. Since the synapse
is basically a DAC, consisting of transistors, it underlies imperfections due to manufacturing
tolerances as well. The mismatch between synapses as well as the dependency of amplitudes of
the synaptic weights shall be investigated here.

In this experiment, all synapses in the first column are investigated, thus all amplitudes are
measured at the same neuron. Synapses receive a spike from their driver one after another.
Weights for the measured synapse are sweeped from 0 to 63, all other 1023 synapses are set to
address and weight 0. The experiment is repeated for synapse bias current settings of 300 LSB,
400 LSB, and 500 LSB which equate to currents of 267 nA, 366 nA, and 466 nA. The latter set-
ting on weight 63 will be used in the further part of this thesis since higher amplitudes yield
better signal to noise ratios. The experiment has been repeated 10 times and mean values have
been calculated in order to minimize statistical variations. Using the mechanism above to eval-
uate spike amplitudes, very small ones (< 5 mV) could not be measured. The results are shown
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Figure 3.5: Characterization of synaptic weights. The received input amplitude is plotted over
the digital weight setting for different bias currents. Error bars indicate the standard deviation
between different synapses in a column.

in figure 3.5, error bars indicate the standard deviation between amplitudes of the 32 individual
synapses in the column.

In the plot, amplitudes rise almost linearly with increasing weights, there are no major prob-
lems visible. The lines are not perfectly straight however, which means the synaptic conduc-
tances controlled by individual bits are not matched perfectly. This effect is best visible at the
flat spot between weights 31 and 32, where all of the 6 LSB are switched. The conductance
switched by the MSB has to be a little higher in order to increase synaptic amplitudes linearly.
Slight mismatches like the one shown heremust be expected. When updatingweights with STDP
and assuming a linear dependency of configured weights and amplitudes, the flat spot can pose a
problem. Since there is no mechanism to calibrate synaptic amplitudes further, one has to accept
the mismatch shown in figure 3.5. For the data point at 500 LSB current and a weight of 63, the
observed relative standard deviation between the synapses is 2.55 %.

3.3 Recovery

3.3.1 Characterization reading out VSTP directly

While a synapse is idle, its neurotransmitters recover from depressed states until they are all
available again. On HICANN-DLS 3, it is possible to read out the VSTP voltage indicating the
current state of neurotransmitters directly, using the Flyspi ADC.This is only possible for address
15. In order to investigate other addresses later, a different measurement protocol will be used.
Reading VSTP, the exponential recovery can simply be observed in the voltage trace. Since the
sample rate of the ADC is known, we only need to fit an exponential growth to the trace. Its
time constant is the recovery time constant τrec. An example is shown in figure 3.6, whereVSTP is
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Figure 3.6: Example measurement showing the extraction of the recovery time constant τrec.
Measured using driver 3 on chip 8, prescaler 5, recovery 0. In black, the mean of 100 VSTP
traces is plotted, in red the exponential fit yielding the time constant.

plotted in black and the exponential fit yielding τrec in black. It was measured using driver 3 on
chip 8. After depression with 4 spikes, the recovery is visible. It is not perfectly exponential since
the source follower’s output voltage is close to the supply voltage and therefore in saturation.
This introduces some error affecting the time constants.

In order to configure the speed of recovery, two settings are available. First, the global recov-
ery clock divider can be used to select faster or slower recovery on all drivers. From a clock signal
that is intended to be 250 MHz, but in this setup is running at 200 MHz due to timing issues,
the divider selects lower frequencies in steps of 2−k . This setting k is referred to as prescaler,
ranging from 0 LSB to 15 LSB [Billaudelle, personal communication, January 2017]. Addition-
ally, there is a local property of the drivers. It is a 4-bit counter that counts downwards from 15
at every recovery clock cycle, compares it to the recovery setting and toggles the switches in
the recovery circuit when the set value is reached. It then resets the counter. This means the
recovery time constant grows linearly with smaller recovery settings. Please note that this way
of implementation also affects the duty cycle between the two switches.

We sweep the prescaler setting from 2 (lowest time constant) to 8 (highest time constant)
and the recovery setting from 0 (highest time constant) to 15 (lowest time constant). The data is
plotted in figure 3.7 above the recovery setting. The different plotted lines are the prescaler
settings. Error bars indicate the deviations of the 16 drivers. It was acquired on chip 3 using
capmem parameters Vrecover = 300 LSB, Vcharge = 200 LSB and a synapse driver bias current
Ibias = 500 LSB.

In the plot, we observe the linear dependency of τrec on the recovery setting. The same
data is plotted on a logarithmic time axis in figure 3.8, where we can observe the influence of
the prescaler more easily. Furthermore, the configurable recovery time range using these
parameters can be estimated here: using the mean of all drivers, we can configure τrec from
2.38 µs to 2120 µs on chip 3. The error bars consist of readout noise accounting for roughly 2.4 %
of deviations and a fixed pattern for the drivers, showing mismatch of 8.2 %. Thus, recovery time
constants cover three orders of magnitude in the range of the global recovery clock that was used
here.
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Figure 3.7: Available configuration range for the recovery time constant τrec on linear scale. Error
bars indicate deviations between drivers. Measured on chip 3. The top line shows a prescaler
setting of 8, for the bottom one it is set to 2.
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Figure 3.8: Available configuration range for the recovery time constant τrec on logarithmic scale.
Error bars indicate deviations between drivers. Measured on chip 3. The top line shows a
prescaler setting of 8, for the bottom one it is set to 2.
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Figure 3.9: Recovery traces for all addresses of a driver. Measured on chip 3. Colors indicate
the 2 LSB of the addresses. We clearly see that traces for addresses ending with 01 recover
differently.

3.3.2 Amplitude-based analysis of recovery

Now, instead of only address 15, every address of a single driver is investigated. Since the di-
rect readout of VSTP is not possible for the other addresses, simple traces of spike amplitudes
are acquired. A burst of spikes is used to depress amplitudes. To characterize the recovery, af-
ter a pause, an additional recovery spike is sent. Depending on the duration of the pause, the
amplitudes get larger. Of course it is not possible to have more than one recovery spike in one
experiment run, since the processing of this spike utilizes neurotransmitters as well. Instead, the
idle times are swept and amplitudes recorded for every run.

Plotting the results of many experiments in one figure, we can see an exponential increase
in amplitudes - the recovery. This is shown in figure 3.9 for chip 3. Previous experiments have
shown that for very slow settings of the recovery, leakage currents are visible, pulling VSTP to-
wards varying potentials. In order to minimize their influence on this experiment, Vcharge was
set high and Vrecover low [Weis, 2017]. The STP mode bit was then set to 0 instead of 1 to obtain
the usual depressing configuration.

Amplitudes get depressed by forwarding 20 spikes with inter-spike-intervals of τISI = 40 µs.
Then, there is a pause of t = k · τISI, with k ranging from 1 to 41. After the pause, the single
recovery spike is sent. This way, we can plot a recovery trace consisting of 41 spike amplitudes.
Using neuron 0 and driver 0, we choose these parameters: Vcharge = 300 LSB,Vrecover = 100 LSB,
Voffset = 50 LSB, Iramp = 620 LSB, Ibias = 200 LSB, mode = 0, recovery = 0, prescaler = 5,
Ibias_syn = 500 LSB, weight 63.

In the plot, we can see the recovery traces splitting into four groups, forming a symmetry of 4
addresses. While recovery time constants are very similar, the target voltage differs between the
traces. This can be caused by neighboring nets in the layout: implementing a switched-capacitor
recovery results in digital signals being close to the sample capacity. Additionally, the digital
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Figure 3.10: Results of a post-layout-simulation of the recovery circuit (voltages inverted). The
simulation shows the same behaviour as the experiment (figure 3.9).

signals gating the switches have unequal duty cycles, what may contribute to the observation.
In the layout, four capacities each are placed in a repetitive pattern [Billaudelle, 2017, fig. 21-22].
Thus, the symmetry of the observed effect fits to the symmetry in the layout.

The effect is well visible in the conditions used here. We set up a simulation using identi-
cal parameters and we got similar results: the recovery traces split similarly into four groups,
which is shown in figure 3.10. The ability to reproduce the problem in a simulation is always
appreciated. The chip designers are able to change the layout and observe the effects.

3.4 Utilization of Synaptic Efficacy

In a synapse with short term depression, the amplitudes of subsequent spikes are lowered. Since
recovery is exponential, amplitudes drop exponentially towards a steady value when inter-spike-
intervals are constant. There, the amount of neurotransmitters released at a spike is equal to
the recovered neurotransmitters in between two spikes, thus amplitudes are constant. The time
constant of the exponential amplitude decay lets us calculate the utilization USE. The lower USE,
the more spikes it takes to approach the steady state.

3.4.1 Characterization on chip 8

In an experiment, recovery is turned off and the utilization parameter is varied from 0 to
15. Additionally, the enshare parameter can be set false, which decreases USE further. There,
charge in the STP update circuit is only shared with parasitic capacities of the routing lines
and no additional capacitor Cupdate (see figure 2.2). 30 spikes in intervals of 40 µs are evaluated
for one driver after another and read out using neuron 12 on chip 8. In order to use a broader
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Figure 3.11: Available configuration range for the Utilization of Synaptic EfficacyUSE. Red: Mean
of all drivers, error bars indicate deviations between drivers. The individual driver’s results are
plotted in light gray in the background, their errors indicate statistical variations. Simulation
results [Billaudelle, 2017] are plotted in blue.

voltage range and still retrieve usable data, an amplitude-based offset calibration is loaded, which
will be explained in chapter 4. The acquired amplitude traces look like these in figure 4.10, the
configuration is not much different: the inter-spike-interval is increased to read out amplitudes
more precisely and recovery is off, thus the baselines are lower here. An exponential function is
fitted to the spike amplitudes in order to find the “time constant” of depression, τdep.

In order to calculate the USE value, we use equation 3.2. Let the inter-spike-interval be tISI
and the time constant of exponential amplitude depression mentioned above be τdep. In general,
the utilization also depends on the recovery time constant τrec. From the deduction in appendix
A follows that it is given by

USE = 1 − e−
tISI/τdep

e−tISI/τrec
. (3.2)

Since during this experiment the recovery is turned off, only leakage currents can flow onto
the STP capacitor. The time constant of this leak-recovery is some orders of magnitude longer
[Weis, 2017], so it can be neglected here. Using an infinite recovery time constant, the denom-
inator of equation 3.2 is therefore simply 1. Without the recovery, the VSTP voltage might be
higher than desired and amplitudes may be saturated. The target voltage of leak-recovery is
not necessarily Vrecover. Although therefore it would be best to exclude the first spike from the
exponential fits, it is almost impossible to fit an exponential decay to the remaining trace and ex-
tract a reliable time constant from there. Especially for high utilizations, the trace following the
second spike shows a bad signal-to-noise ratio due to the small amplitudes. The results did not
change significantly when including the first spike, however, statistical variances are reduced
drastically. Therefore, we include the first spike in all fits.
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Figure 3.12: Results calculating USE for driver 0 only. Red: Averages of all 20 measurements,
error bars indicate the standard deviation between them. The results of every run are plotted in
light gray in the background.

Plotting the results over the digital settings yields the plot in figure 3.11. The thick red line
shows the average of all drivers over 20 measurements, error bars indicate the standard devia-
tion between the drivers. It fits well to the expectations in [Billaudelle, 2017, figure 27b], these
simulation results are plotted in blue in the same figure. Parasitic capacities have been slightly
underestimated in the simulation. The curves in a light gray in the background correspond to
individual drivers’ results, averaged over 20 measurements as well. Their error bars show the
statistical variations between the 20 runs. The slight underestimation of amplitudes introduced
by the low-pass filtering during their evaluation affects high amplitudes stronger, but should
only yield a multiplicative error that does not affect the time constant of amplitude depression.
The long inter-spike-interval used here minimizes the error resulting from reading out the base-
line voltage, so this result should be precise. The data was measured in depressing mode, but the
factorUSE stays identical for facilitation since the dacen pulse just gets inverted (see figure 2.3).

An in-depth view of a single driver is shown in figure 3.12, including the variations between
the individual runs. The thick red line in the foreground shows the mean utilization values for
driver 0 only, it is one of the gray lines in figure 3.11. Here, the lines in the background show the
individual measurements. This is the data the average was computed from. We can see that the
trial-to-trial variations are very notable and averaging of multiple measurements has to be done
in order to characterize the function properly. The mean relative statistical variations between
multiple runs across all drivers are 2.2 %.

For chip 8, using the average of all drivers, the available configuration range for USE is from
0.272 to 0.747. The mean relative mismatch between the drivers across all utilization settings is
3.7 %. This, especially with the huge range of available recovery times, should be a usable con-
figuration environment for biological experiments using STP. However, the mismatch between
drivers is higher than expected and will be investigated further.
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Figure 3.13: Available configuration range for the utilizationUSE. Red: Mean of all drivers, error
bars indicate deviations between drivers. Measured on chip 10. The measurements of single
drivers (background lines) show less variations than on chip 8. Simulation results [Billaudelle,
2017] are plotted in blue.

3.4.2 Verification on chip 10

The results will now be verified using chip 10 (DLS 3b), which originated from a different man-
ufacturing run. An amplitude-based offset calibration has been done prior to this experiment as
well. The used voltages were adopted for the different chip. The plot showing the distribution
of synapse drivers’ USE parameters over the settings is displayed in figure 3.13. There, using the
mean of all drivers, the available range for USE is from 0.266 to 0.737. The observed deviation
between drivers on chip 10 is 1.8 %. The statistical variations are 3.8 %. With the deviation of
the results between the chips being at most 1.5 %, the results lay well in each others 1σ area of
driver mismatch and therefore show no significant deviations.

For chip 10, we can see that the deviation between drivers is lower. While it is possible that
the two chips actually differ in that manner, we want to investigate if other factors matter. The
recovery is turned off and its time constant is assumed to be infinite, however, leakage currents
flow onto the STP capacitors. The time constant and even the target voltage of this leakage can
be very different, thus possibly yielding higher or lower utilizations. The fact that the relative
mismatch is mostly constant across the configurable range of USE means that this mismatch is
probably not introduced by the driver but rather during the experiment. When caused by the
capacities in the driver, the mismatch would depend on the utilization settings presented on
the horizontal axis, not the resulting parameters on the vertical axis. Since the function is not
linear, we can differ those influences. Keep in mind that the experiment includes a noisy readout,
passing many stages on the chip such as the STP comparator, the synapses, and source followers.
The evaluation of ADC traces is certainly not perfect as well. We want to know whether the
capacities CSTP and Cupdate are subject to mismatch, which we don’t expect to that extent. We
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Figure 3.14: Traces reading out the VSTP voltage directly for all drivers on chip 8. The traces are
low-pass-filtered and normalized between 0 and 1 and therefore represent the recovered partition
R of neurotransmitters. There are no visible systematic deviations between the drivers. The
utilization setting is the lowest possible.

expect the observed mismatch to be added by the readout chain or the measurement protocol
including amplitude extraction and leakage currents.

To investigate the mismatch between drivers better, we change the readout: the voltageVSTP
is recorded at the minimal utilization setting. There, we see drops that are proportional toUSE, as
shown in equation 2.4. On chip 8, we recordVSTP for every driver during depression. The voltages
differ between drivers, firstly because of the leakage currents when recovery is turned off, and
secondly because the buffers in the readout chain differ. This is why we normalize all voltages
into a range between 0 and 1. In this configuration, this can be interpreted as the fraction of
neurotransmitters in the recovered partition R.

When drivers are plotted in individual colors, we get the plot shown in figure 3.14. The steps
visible there happen when a spike is forwarded, since the recovered partition R then gets smaller.
Mainly, we can see almost no deviations between the drivers, only some statistical noise. Doing
the same for chip 10 yields a very similar plot. Extracting the USE parameter from this voltage
trace can be done the same way as before, fitting an exponential decay as an envelope to the
step function. Doing so, we get a value USE = 0.249 ± 1.9 % for the lowest utilization on chip 8.
The error given here is the sum of statistical variations and systematic variations. Those can not
be distinguished after executing just a single experiment run. The systematic mismatch present
between the drivers therefore is much lower using this readout method. This proves that the
high variations observed above are mostly introduced by the experiment and not by the drivers.

We conclude that STP should be well usable with a configuration range for the Utilization
of Synaptic Efficacy of approximately 0.27 to 0.74. The mismatch between drivers is hard to
distinguish with the readout methods used, but it is less than 2 % based on the observations on
chips 8 and 10.
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4 Calibration of Short Term Plasticity

The STP circuitry, explained in section 2.3, includes a comparator which is subject to mismatch.
Comparing the output of different synapse drivers, the amplitudes are shifted by a constant
amount. A calibration parameter, offset, adds an opposite offset, counteracting the shift. A
calibration algorithm should effectively reduce the mismatch between drivers, require a short
runtime and be highly scalable. This is especially important since the upcoming HICANN-X chip
will contain 256 synapse drivers instead of the 16 drivers on the prototype system. The number of
neurons will be increased from 32 to 512 [Billaudelle, personal communication, February 2018].

4.1 Calibration algorithm

The algorithm that will be used to find the offset parameter that minimizes the deviation be-
tween drivers is based on a binary search. The calibration consists of multiple runs. Each time,
the amplitudes of all drivers are measured. Comparing them to the mean amplitude of all drivers
yields the change of the offset parameter: the setting is changed in a way that shifts amplitudes
towards the mean. Since there are 4 configuration bits available, the binary search takes exactly
4 runs, setting one bit in each run. Since the dependency of amplitudes on the offset setting is
not perfectly linear, we extended the binary search algorithm by an additional shift. Therefore,
at least 3 consecutive settings are tested: the result from the binary search and both neighbor-
ing settings. As the final result, the algorithm chooses settings that minimize the spread around
the mean amplitude at the end of the binary search. To visualize the algorithm, the individual
drivers’ results are later plotted over the course of calibration (see figure 4.4, which shows spike
rates instead of amplitudes already).

In total, 6 runs are required for calibration. Since, in this thesis, the standard deviation of
amplitudes after calibration is the most important parameter, in a seventh run the calibrated
offsets are set and evaluated. Using the Flyspi ADC to measure the amplitudes, this calibra-
tion algorithm takes about 6 minutes to run since it checks all drivers sequentially [Weis, 2017].
Scaling this up to a larger chip the runtime grows linearly, limited by the number of parallel
readout channels. Therefore, we test whether an alternative readout method using the neurons
exclusively is possible and yields adequate results.

4.2 Neuron spike counter readout

The synapse drivers’ output, the dacen pulse, gates a current in the synapses, which is sourced
from a capacitor in the neuron synaptic input, decreasing the voltageVsyn on it. The voltage drop
is proportional to the width of the dacen pulse. Vsyn gets pulled up again to a baseline potential
Vsyn,0 with a configurable time constant. The usual readout is samplingVsyn using the ADC, what
we call amplitude readout. By design of the neuron, themean current flowing onto themembrane
is proportional to the with of the dacen pulse. If the membrane potential reaches a threshold,
the neuron spikes. Thus, the rate of spiking can be a measured variable for the received input as
well.
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4.2.1 Spike rate measurement

Every neuron has an individual 8-bit spike counter that can be reset and read out externally
[Kiene, 2017]. It is also possible to access data from the PPU. It is desirable to measure synaptic
input amplitudes as precisely as possible using this counter. A linear dependency between spike
rate and input amplitude is desired, but in theory any strictly monotonic dependency suffices
calibration purposes. In the leaky integrate-and-fire model the membrane potential on a neuron
which receives a constant synaptic input behaves like charging a capacitor over a resistor: the
voltage rises, but saturates exponentially at a target voltage. The voltage stays constant when the
leakage current and the input current are equal. Using discrete spikes instead of a constant input
current, the neuron’s membrane potential rises step-wise. Since the input is given regularly, the
envelope of the potential is still a bounded growth.

However, this is not what we desire. A neuron receiving a small input may even not be able
to cross the spiking threshold, and if it does, the events are extremely rare. In order to make
the membrane potential rise linearly, we disable the leak term. Only the synaptic input is now
integrated on the membrane capacitor, the membrane voltage therefore rises linearly. When it
crosses the spike threshold voltage, the event counter increases and the membrane potential is
set back to a reset voltage. So in theory, the number of spikes recorded in a given time interval
is a linear function of the synaptic input amplitudes.

An experiment will consist of several bursts of spikes, where inter-spike-intervals are lower
than when an amplitude measurement is desired. A very linearly rising membrane potential is
ideal, since this will provide a better resolution in spike rate readout than a function that rises
step by step. Fast spiking is preferred here. For the ADC measurement, the pre-spike voltage
must be read correctly. For fast spiking, this voltage may still increase towards its baseline. Slow
spiking with high weights is ideal there.

The event counter only has 8 bits and an overflow indicator, which limits themaximum size of
a single burst. Between the bursts, the counter is read out and reset. Shortly before a new burst
begins, the membrane potential is reset as well, since it may be floating without the leakage
current. We use multiple bursts to do more averaging in-place and reduce statistical variations.

If not specified otherwise, we will send 40 bursts consisting of 300 spikes each to the drivers.
A spike is sent every 10 µs, between the bursts is a pause of 500 µs. Drivers activate both their
top and bottom attached synapse row. This yields higher amplitudes and decreases the error
introduced by synapse mismatch. In order to not include possible differences in utilization or
recovery in the calibration, we disable recovery and set the synapse drivers to renewing. This
means that USE is set to 1 by connecting the STP storage capacitor Cstorage directly with the
Vcharge supply. During amplitude measurements using the ADC, the first 10 spikes of a burst
are discarded since they include the depression phase, which may differ between drivers. The
target driver is selected using the enreceiver setting, which makes the other drivers discard
any input they receive. Using chip 8, the voltages Vrecover and Vcharge are set to 210 LSB and
170 LSB, respectively. The synapse bias current is set to 500 LSB, the weight is 63. Concerning
the STP calibration, as explained in section 2.3, the ramp is precharged to a capmem voltage of
Voffset = 50 LSB, the offset calibration capacitors are precharged to Vzero = 300 LSB and the
current flowing onto the ramp capacitor is set to Iramp = 600 LSB.
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4.2.2 Parameter search for synapse reference voltage

With the leakage current disabled, the membrane potential reacts sensitively to changes in the
synaptic input reference voltage Vsyn,0. This voltage is the reference for the transconductance
amplifier which converts the synaptic input voltage, Vsyn, into a current flowing onto the mem-
brane capacitor. The reference voltage has to match the idle synaptic input voltage very well.
The voltage varies across different neurons, but also with temperature or other factors. If it is
set poorly, a constant current is flowing onto or off the membrane, this means the spike rate at
a given input can appear both over- or underestimated.

Watching themembrane potential on the oscilloscope, amanual guess of the right parameters
was taken for every even neuron. For the chosen parameter, themembrane voltage seems to float,
which means that rare spiking can occur. Also, the membrane voltage should not constantly be
very low, since this could indicate a negative input. Of the 16 available even neurons, 5 were not
used for various reasons. Therefore, the spike rate readout is tested using 11 neurons. Based on
these manually adjusted values, an automatic parameter search is run before every experiment
that includes spike rate readout. This ensures that the rates are neither too high nor too low. The
script uses the setting forVsyn,0 that is 1 LSB below regular spiking. The initial parameter is varied
in steps of 1 LSB until the “threshold” for regular spiking is found. Although the script takes only
a few seconds to run, its runtime is not included in the later presented runtime measurements.

Another setting that is individually set for all neurons is the ibias_syn_gm_exc parameter,
which allows scaling of the synaptic input voltages. Here, the parameter is set so that the spike
rates of all 11 neurons are approximately equal. This means that when averaging the spike rates,
they contribute equally to the result. It is not important to have precise settings here, since all
neurons will show the same dependency on changes in the synaptic amplitudes. This is why
for this parameter, no additional automatic calibration was implemented, only the manually set
values are used. Used settings range from 90 LSB to 160 LSB.

4.2.3 Feasibility analysis

Besides the faster runtime on this chip, the big advantage of a spike rate-based measurement is
that it can use many neurons in parallel to acquire data for multiple drivers at the same time.
Since the larger HICANN-X chip will not only hold more synapse drivers but also more neu-
rons, the whole chip could be calibrated in the same time as the current prototype. In order to
determine whether the spike rate readout method is suitable, the dependency of amplitudes and
spike rates on the offset parameter is measured. This is done by reading out spike rates of the
11 available neurons via the counter, as presented above, and in parallel sampling the synaptic
input voltage of neuron #12 with the ADC.The trace gets evaluated as usual in order to find spike
amplitudes.

For every driver, amplitudes and spike rates are plotted as a function of the offset setting.
The plot is shown in figure 4.1. Error bars indicate statistical deviations of the data over 20 runs.
It is clearly visible that the black data points that were acquired with spike rates and the red
data points that are ADC amplitudes show similar behaviour. However, the error bars of red
(amplitude) data points are invisibly small. For the black (spike rate) data points, they are fairly
large, even large enough that neighboring offset settings can not clearly be distinguished by using
just one run of spike rate measurement. This is already a sign that calibration using spike rates
may be less accurate.
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Figure 4.1: Comparison of spike rate (black) and amplitude (red) measurement as a function of
the offset parameter. One line per driver, respectively. Error bars indicate statistical deviations
across 20 runs. Measured on chip 8 using 11 neurons for spike rate readout and neuron 12 for
amplitudes.

We can see that a calibration is possible, since all drivers reach identical amplitudes or spike
rates. All plotted lines, representing drivers, intercept a common horizontal line. The voltages
Vzero andVoffset are chosen well. IncreasingVzero further would enlarge the steps between offset
settings, yielding higher mismatch after calibration.

The plot also justifies the calibration method presented above, checking both data points left
and right of the result of the binary search. Since the amplitude dependency on the setting is
not linear, this is an important step. The more bits switch, the larger is the observed nonlinear-
ity. Between settings 7 and 8, where all of the 4 bits are changed, a flat spot is visible, similar
to the synapse amplitude characterization. This is again caused by imperfections during chip
manufacturing.

A calibration using amplitudes can not use parallel readout. This means an increase of run-
time from 6 min onDLS 3 to roughly 1.5 h onHICANN-X. Using spike rates, the calibration could
be done in about a minute if sufficient neurons are available, which is the case on HICANN-X.We
conclude that a runtime advantage of a factor 100 justifies slightly worse results of the calibration,
as long as everything stays usable. Thus, we keep working on the spike rate-based calibration,
in order to investigate how much the standard deviation of drivers’ amplitudes really is and how
much time is required.

4.3 Spike rate-based calibration results

Combining the newly implemented readout mechanism with the calibration algorithm used be-
fore, a spike rate-based calibration is available. In this section, we directly compare the results
of amplitude-based and spike rate-based calibration.
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(c) Spike rate-calibrated spike rate
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Figure 4.2: Histograms showing the distribution of spike rates and amplitudes of all drivers.
The first row shows the original uncalibrated state, a calibration based on spike rate readout is
displayed in the middle, a calibration based on amplitude readout using the ADC is at the bottom.
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(a) After calibration using spike rates
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(b) After calibration using amplitudes

Figure 4.3: For every driver, the offset parameter resulting from the calibration is marked as a
dot. A small histogram on the right of each plot shows the distribution of used settings. While
the settings are alike for both calibration methods, they are not identical.
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Figure 4.4: Spike rate measurements during the whole calibration plotted for every driver. On
the horizontal axis, the calibration iterations are plotted. After run 4, the initial binary search is
finished and, after an additional shift, calibrated amplitudes are available on the far right.
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In figure 4.2, histograms of the distribution of drivers are displayed. In the left column, we
see spike rate distributions while on the right column, amplitude distributions are shown. The
first row shows uncalibrated data that was measured using an offset setting of 7 for all drivers.
Data from 20 runs were taken and averaged to plot the histogram. This allows the distribution to
depict a higher resolution than only steps of one. The second row shows the distribution of the
same drivers after the offset parameter was calibrated using spike rates. For the calibrations,
results of only one run are displayed. In the bottom row, the distributions after a conventional
calibration using the analog readout is plotted. The scaling of the horizontal axis and the position
of bins was kept constant for a whole column. The upper two histograms share the vertical axis.
The lower four plots, all showing results of a calibration, are plotted on equal vertical axes as
well.

Looking at the top two histograms (figures 4.2a and 4.2b), we can see that the spike rate
distribution of uncalibrated drivers is a relatively symmetric function that rises towards a mean
value and decreases again. The amplitude distribution looks less symmetric, although the basic
shape is preserved: the distribution seems centered around a mean value. It is more difficult to
tell where exactly this mean value is located. The two drivers putting out very high amplitudes
seem to be more distinct. However, it might be the bin limits of the histograms that make the
figures look differently.

Looking at the calibration results below (figures 4.2c to 4.2f), we can see that the relatively
large range of values covered by uncalibrated drivers is shrunken down to only three bins. This is
a satisfying result, meaning that the calibration algorithm works fine. However, the histograms
showing amplitude-based calibration (bottom row) still show smaller deviations than the plots
containing spike rate-based calibration in the row above. This is especially true when comparing
both amplitude measurements, figures 4.2d and 4.2f. For the amplitude calibration, only two
synapse drivers are not in the main bin, one is off to the left and another to the right. For the
spike rate calibration, there are six drivers that are not in the center bin. While we can not expect
that both calibration mechanisms use the same target for all drivers since the means of the spike
rate- and amplitude-distribution are different, in figure 4.2d, even the bin to the right is larger.
Two drivers are in there, one more than before, while judging by the spike rate measurements,
the calibration target has shifted to the left.

In order to investigate the parameter sets resulting from the calibrations, we compare the
offset parameter settings after calibration for individual drivers. The values are plotted over
the synapse driver numbers. Since we are using the exact same drivers, the parameters should
be the same. Identical parameters should produce identical results however, so judging from the
histograms, there may be deviations. In figure 4.3, the used offset settings are shown for both
calibration methods: on the left using spike rates, on the right using extracted amplitudes.

While the basic shape of both plots is the same, looking closely, drivers 0, 1, 5, 6, 9, 13 and 15
all have a different setting. This is best visible looking at the small histograms included on the
right of each plot, which differ clearly. There are seven drivers with different settings, which is
nearly half of them. The number of different settings is higher than we expected, however, the
parameters differ by only 1 LSB, apart from driver 0. It is possible that both used settings do not
match the target value very well, so even a small readout noise could decide which setting gets
selected. However, this observation confirms the theory stated already in the previous section:
due to the higher statistical deviations of the spike rate measurements, calibration results will be
less accurate and also less reproducible than the amplitude calibration.

The third figure presented in this section visualizes the path taken by the spike rate-based
calibration to find the just displayed offset settings. Figure 4.4 shows the spike rate measure-
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Figure 4.5: Varying the number of bursts used in the experiment, the lower part of the plot shows
relative standard deviation of amplitudes. The data is averaged from 20 runs, error bars indicate
the statistical variations when repeating the calibration using the same settings. In the upper
part, the runtime of the whole calibration is plotted.

ments during calibration plotted over its 7 runs. Each line represents a driver. In run 4, the
results of the binary search algorithm that starts the calibration are evaluated. In run 5, the yet
untested neighboring setting of the binary search result is tested. Looking at the bottom driver
of run 4 in figure 4.4, the additional step proves useful, potentially reducing the spread further.
The final run shows the calibrated state, which is also shown in figure 4.2c.

Before closing this section, the spread of the synapse drivers’ amplitudes depicted in the
histograms shall be expressed by numbers. The calibration results presented show a standard
deviation of amplitudes of 0.5 mV (1.7 % of the mean amplitude) for the amplitude calibration
(figure 4.2f) and 0.9 mV (3.1 %) for the spike rate calibration (figure 4.2d). It was 4.6 mV (17 %)
before the calibration (figure 4.2b). Note that the amplitude calibration used here was not fully
optimized. When, e.g., synapse weights are tuned first to compensate for their mismatch, it is
possible to achieve an even lower spread. The spike rate readout is less susceptible to unequal
amplitudes from the synapses, since using multiple neurons in parallel enables averaging rates
from multiple synapses. The amplitude readout uses only one synapse column and therefore is
more susceptible to synapse mismatch. Also, the used inter-spike-interval is very low for reliable
amplitude readout, as explained in section 3.1.4. While the measurements in [Weis, 2017] show
lower numbers, they were done at a higher Vcharge setting of 240 LSB which decreases relative
deviations. Thus, the numbers are not comparable. Additionally, a different chip was used.

4.4 Runtime versus mismatch

The statistical variations in spike rate measurements seem to be a significant problem in order
to achieve less mismatch of amplitudes after calibration. One could expect that by changing the
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Figure 4.6: The obtained offset parameters from the calibrations are shown depending on the
number of bursts used. The data is averaged from 20 runs, error bars indicate the statistical
variations. One line per driver is plotted. No trend is visible, so experiments that use many
bursts to average from yield the same parameters as ones with very few bursts.

number of bursts that are sent during one experiment, these variations differ. Since sendingmore
bursts means that more averaging is done in-place, spike rate variations can be interpreted as the
error of the mean spike rate and should decrease proportionally to the square root of the number
of bursts. Sending more bursts obviously takes time, so the potentially increased calibration
quality is at the expense of a longer runtime. Since for the 40 bursts used in figure 4.1 variations
are quite high, we expect that by increasing the number of bursts we get lower relative standard
deviations of calibrated amplitudes.

To investigate how the number of bursts affects mismatch and runtime, we sweep it from 1
to 100 and run the calibration at each setting. We disable the amplitude readout, requiring the
majority of time. The runtime measurement is started after the parameter search for the synaptic
input reference voltage Vsyn is complete and stops after run 6, when the calibration results were
tested once. Afterwards, amplitudes in the calibrated state are acquired.

This way we are able to plot the standard deviation of amplitudes and the pure runtime of
the spike rate calibration over the number of bursts used, which is shown in figure 4.5. In the
plot, data is averaged from 20 measurements, error bars indicate the statistical deviations during
those. The relative amplitude mismatch is constant for almost the whole plotted range, statistical
deviations are multiple times larger than the systematic decrease we expected. Only for the first
data point using only 1 burst, a higher average mismatch is observable. Hence, we can reduce
the number of bursts to low numbers, such as 5.

The offset parameters that were the result of the calibrations are plotted in figure 4.6. There,
one plotted line corresponds to a single driver. Error bars still show the standard deviation across
20 runs. We can see that the lines are constant, except for statistical variations, in particular not
even the amount of variation shows a trend. Neither the size of the error bars nor the parameters
change with the number of bursts. This makes us even more confident in using low burst counts:
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Figure 4.7: STP traces in usable range. One colored low-pass-filtered trace per driver, spike peaks
are marked in the same color. The offset parameter is not calibrated.

if the resulting set of parameters stays the same, the relative standard deviation of the drivers has
to be constant as well. The set of offset parameters is the only actual result of the calibration.

The second advantage of the spike rate calibration, besides its scalability, is shown in the
upper graph in figure 4.5: the runtime. Here, the minimum runtime of the 20 executions is
plotted. This represents best what runtime can be expected by selecting the run that was the
least disturbed by other processes. The data shows that the calibration can be done in roughly
30 s, when low burst counts like 5 are used. For the calibration shown above, using 40 bursts,
a runtime of about 45 s and an average standard deviation of amplitudes of 2.5 % are expected.
Looking at the error bar however, the previously obtained 3.1 % relativemismatch is only slightly
outside the 1σ area and thus not unusual.

The result of this experiment is that we can use the new readout confidently: using about
30 s of runtime, we get an offset parameter calibration that reduces amplitude mismatch of the
synapse drivers down to (2.5 ± 0.5)%. Since the larger HICANN-X chip contains more synapse
drivers but also proportionally more neurons that can be used for parallel readout, the runtime
should not change. Keep in mind that here, the experiment is still controlled by the FPGA.
Potentially, the runtime changes when implementing the calibration locally on the PPU.

4.5 STP example traces

In this section, we want to verify that the calibration can be applied to real world STP usage.
During calibration, the difference between Vcharge and Vrecover is very small in order to reach
constant spike amplitudes fast and have all drivers’ amplitudes in a measurable range. In this
section, we present examples of STP traces that use a wider range of STP voltages and thus
change amplitudes by a larger amount. We will also compare results for the uncalibrated state
and both calibration methods. All plots presented here are measured using the ADC in order
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Figure 4.8: STP traces in usable range. One colored low-pass-filtered trace per driver, spike peaks
are marked in the same color. The offset parameter is calibrated using the spike rate readout.

to acquire voltage traces. Comparing the synapse drivers, all their amplitudes are plotted in
the same figure. For every driver, the full low-pass-filtered trace is plotted and spikes found by
the usual algorithm are marked as colored dots. The used voltages are Vcharge = 80 LSB and
Vrecover = 320 LSB. The Voffset and Vzero parameters are unchanged in order to use the available
calibration.

The experiment is executed using neuron 12 on chip 8. A burst of spikes is sent to the drivers,
similar to the calibration scenario. Of the 300 sent spikes, only the first 30 are plotted, since the
decrease in amplitudes during the depression phase is what we are interested in. In order extend
this depression phase, we do not disable the recovery and no longer use the renewing setting
of the synapse drivers. It is the opposite: they are now configured to have a low USE parameter.
We use the settings utilization = 0, recovery = 0, prescaler = 5. The enshare setting is
still enabled.

The original uncalibrated traces are shown in figure 4.7. We can see that spike amplitudes
are strongly spread, which seems so due to the lower amplitudes here. The amplitude offsets
between the drivers are constant for all depression states, which means that in this state with
low amplitudes, the relative deviations are high. For one driver, the driver on the top marked
with a red amplitude trace even showed amplitudes that are too small for the amplitude extraction
algorithm to work properly: some of the spikes were not recognized. If, during calibration, an
amplitude or spike rate is out of range and reads zero, the offset parameter still gets shifted into
the right direction, but this will strongly shift the mean of all drivers, which is the calibration
target. Therefore, we avoid this large range of amplitudes during the calibration.

While the traces in the uncalibrated figure impressively show why a calibration is inevitable,
the traces calibrated by spike rates laymuch closer. They are displayed in figure 4.8. The spread of
the marked spike peaks is partially caused by the spread of the baselines. Comparing the spikes,
we can see that the measured voltages are not constant either. This is why plotting these traces
for an amplitude-based calibration yields a very similar figure. In order to evaluate amplitudes
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Figure 4.9: STP amplitudes calibrated using spike rates, extracted from the shown trace (figure
4.8) subtracting the baseline. Each line represents a single driver.
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Figure 4.10: STP amplitudes calibrated using the ADC for amplitude readout, extracted subtracting
the baseline. Each line represents a single driver.
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Figure 4.11: dacen time plotted over the voltage on the STP storage capacitorVSTP. The offset
parameters are uncalibrated and set to 7 for all drivers. Data is read out using ADC amplitude
measurements.

more precisely and compare the two calibrations, we plot only the amplitudes over time. This
means we use the amplitude extraction algorithm in order to subtract the individual baseline at
every spike.

The extracted amplitudes for the spike rate calibration are plotted in figure 4.9. We can see
that in relation to the amount of depression, from 55 mV to 14 mV, the spread of the individual
drivers looks small. The STP mechanism seems to be usable with this calibration applied. In
comparison to the amplitude trace with a calibration using ADC amplitudes, which is shown in
figure 4.10, the amplitude calibration manages to decrease the spread. Therefore, we can confirm
that, for the best results, an amplitude calibration is the best approach. As previous data has
already shown, the mismatch after a spike rate calibration is simply larger, there is no doubt
about that. One will have to decide whether the spike rate calibration is good enough or the
decreased mismatch is worth the long runtime of the amplitude calibration. Usually, the spike
rate calibration should be sufficient.

4.6 STP comparator ramps

Thepresented calibrationmechanism is able to compensate for constant offsets. Other deviations
such as linear terms can not be equalized. Looking at the STP example shown in figure 4.9, we
can see that some drivers cross traces of other drivers. The spread is not constant across the
whole range of amplitudes. There are two major sources which can introduce a deviation that
is not constant: the generation of VSTP, including utilization and recovery, and the comparator
ramps, possibly varying in steepness.

Calibrating on a specific voltageVcharge means that all drivers generate the same amplitudes at
this voltage, but not necessarily at other voltages. Assuming a configuration as used here where
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Figure 4.12: dacen time plotted over the voltage on the STP storage capacitorVSTP. The offset
parameters are calibrated using amplitudes. Data is read out usingADC amplitudemeasurements.
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Figure 4.13: dacen time plotted over the voltage on the STP storage capacitorVSTP. The offset
parameters are calibrated using spike rates. Data is read out using ADC amplitude measurements.
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Figure 4.14: dacen time plotted over the voltage on the STP storage capacitorVSTP. The offset
parameters are calibrated using spike rates. Data is read out using neuron spike rate measure-
ments.

Vrecover > Vcharge and mode = 1, changes in ramp steepness mean the following: if the current
Iramp responsible for generating the comparator ramp is lower for one driver, the amplitudes for
depressed states are higher than usual while the amplitudes for a fully recovered state is lower.
This leads to drivers crossing each others’ curves.

In order to investigate the spread of the ramp slope across all drivers, we plot the dacen pulse
widths over the voltage VSTP on the STP storage capacitor. In addition, with these plots we can
estimate the usable range of STP voltages until the dacen pulse does not depend linearly on the
voltage any more.

The length of the dacen pulse cannot be measured easily. We calculate it as the ratio of
the measured synaptic input amplitude versus the synaptic input amplitude with STP disabled,
which would equate to a dacen pulse of 5 ns on this particular setup with reduced clock speeds.
Therefore, at first, all the amplitudes with STP disabled are measured. Dividing by these means
that synapse mismatch will not influence our measurement since we use an individual value for
each synapse. Since we are reading out synaptic input amplitudes, we can do this either using
the ADC or neuron spike rates. We tested both: the spike rate readout shows similar results but
a higher statistical noise on the data, exactly as we would expect from previous experiments.
We therefore prefer and use the ADC to read out the amplitudes. Nevertheless, a plot showing
data read out using spike rates is included as well. The horizontal axis of the plots, showing the
applied voltage on the STP storage capacitor, is translated from the capmem setting in LSB to
mV using the capmem characterization presented in figure 3.2a. The actual voltageVSTP at every
driver involves error as well.

In the experiment, we configure the synapse drivers like during calibration. This means we
enable the renewing setting which discharges the STP storage capacitor completely to Vcharge,
and disable recovery. We send 40 bursts of 300 spikes for the spike rate measurement but mea-
sure amplitudes in parallel using only 200 of the available spikes in total. Again, the first 10

36



amplitudes are discarded. Sweeping Vcharge from 30 LSB to 400 LSB, we measure the ramps for
both calibration methods and in uncalibrated state.

In figure 4.11, the uncalibrated ramps are shown. We can see the high spread of dacen times
between different drivers at the same voltageVSTP. This is exactly the offset that we are calibrating
for. So comparing with the plots showing the ramps after amplitude calibration (figure 4.12) and
after spike rate calibration (figure 4.13), we can see that the mismatch is reduced drastically there.
Again, the amplitude calibration shows a little less spread than the spike rate calibration. The
usable range of voltages VSTP is from around 200 mV to 480 mV. The optimal setting for Vrecover
is higher:

Vrecover = Vcharge + (VSTP,max −Vcharge) · (1 +USE,min), (4.1)

with VSTP,max being the maximum usable STP voltage and USE,min ≈ 0.27 being the utilization of
synaptic efficacy when enshare is disabled. The reason is that charge on Cstorage is shared with
parasitic capacity before it reaches the voltage comparator. Only the additional sharing in order
to increase USE is done after the spike transmission [Billaudelle, 2017, figure 25]. This explains
why in the STP example traces a voltageVrecover = 320 LSB can be used, while in the ramp plots,
the maximum dacen times are reached at around 500 mV, which equates to roughly 250 LSB.

These first three figures show data that was acquired by using the ADC to find amplitudes in
the voltage trace. For very low voltages VSTP, there are two visible effects: the spread between
drivers increases, and even the dacen times for the lowest drivers never actually reach zero. The
latter happens because the dacen time is directly calculated from the amplitude measurements.
If there is only noise present during the extraction of amplitudes, some edges in the noise may
be treated as spikes.

In figure 4.14, the STP comparator ramps are plotted using spike rate measurements. The
drivers are configured to use offsets from the spike rate calibration and should therefore look
identical to figure 4.13. The new plot using spike rate readout shows a much higher noise on the
measurements itself, but we can see that for very low voltages VSTP, the dacen times actually
drop to zero. When the neurons show no spikes, the spike rate reaches zero, in contrast to the
amplitude measurement which still shows amplitudes different from zero and therefore shows a
dacen time that is non-zero.

The increased spread between drivers at low amplitudes is partly caused by the STP compara-
tor not being designed for voltages below 100 mV. This poses a problem when STP should be
configured so that fully depressed spikes have an amplitude of zero. However, the offset voltage
Voffset can be increased, so that the ramp start voltage is higher. Another factor is the edge steep-
ness of the dacen pulse. For very low amplitudes, the falling edge starts before the pulse has
fully settled. Some synapses might still detect the pulse, while others, due to mismatch, do not
receive it at all. In biological use cases, the recovery normally prevents such strongly depressed
amplitudes.

We conclude that the comparator ramps are not the cause for crossing curves in an STP
experiment (figure 4.9). The crossing is most likely caused by differences in STP recovery.
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5 Spike Timing Dependent Plasticity

5.1 Characterization of Correlation ADC

In order to collect data about the correlation of presynaptic input and postsynaptic neuron spike
timings, the voltages stored on the STDP correlation capacitors are evaluated using the CADC
(section 2.4). The CADC has two channels for each synapse column, one for anticausal and causal
measurements, respectively. They can be connected to their synapse column or to a common
external voltage using switches addressed as a virtual synapse row 33 [Wunderlich, 2016]. As part
of the readout mechanism, the CADC is inspected first. Being subject to mismatch, it provides
an offset setting for each channel that allows shifting of the readout. A calibration within 1 LSB
is feasible.

The CADC compares the applied input voltage with a voltage ramp. An internal counter
measures the time from the start of the ramp until the input voltage is reached. The calibration
offset is subtracted from the original counter value before the result is transmitted. Since the
voltage ramp is shared between all CADC channels, no further calibration is necessary. In order
to find the correct offset parameters, it is sufficient to apply a constant external voltage at a
medium level that does not clip on any ADC. The offsets are set as the respective differences
to the minimum measured value. The voltage is supplied by the baseboard using a DAC that is
connected to the synapse debug line. Since all the CADC channels are connected to this line as
well, it poses no problem if the applied voltage is not precisely the desired voltage. It only has to
be identical for all channels, which it is by design.

A characterization of the CADC output is shown in figure 5.1. There, the applied external
voltage is swept from 0.1 V to 1.1 V in steps of 0.1 V, each line corresponds to one channel. Black
lines represent anticausal channels, red lines represent causal ones. We can see that the linear
range is calibrated well indeed, it shows only minimal mismatch. Depending on the configured
offset, the channels clip at different levels. For voltages below the usable range, the digital output
clips to 255 instead of 0. This is a known bug. The plot shows that the usable linear range is around
30 LSB to 200 LSB of digital output, so we will keep the correlation amplitudes in this range.

5.2 Characterization of Correlation amplitudes

5.2.1 Measurement setup

Correlation between synapitc inputs and the neurons’ spike events can be causal or anticausal.
To express configurations more clearly, we use the term “prespike” for the signals coming into a
synapse from the synapse drivers, representing synaptic inputs; and the term “postspike” for the
signals outputted by neurons that indicate it was spiking. If prespikes arrive before postspikes,
we call that causal correlation, while postspikes arriving before prespikes are called anticausal
correlation. The exponentially weighted time differences are correlation amplitudes, as shown
in figure 5.2. When plotting the correlation amplitudes, the horizontal axis represents the time
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Figure 5.1: Characterization of the CADC output codes depending on the applied input voltage.

Figure 5.2: Correlation of pre- and postsynaptic events can be measured as amplitudes. The
upper part shows causal, the lower part anticausal correlation. With higher time differences,
the measured amplitudes decrease exponentially. Figure adapted from [Sjöström and Gerstner,
2010].

difference between pre- and postspikes. As a consequence, the negative branch represents anti-
causal correlation, positive values correspond to causal correlation.

An experiment starts with resetting the correlation capacitors to a voltageVreset. This voltage
is chosen such that it does not exceed the linear range of the CADCmeasurements. It is generated
using a DAC on the baseboard. From the available range of 4095 LSB, which corresponds to a
voltage of 2.5 V, we use a setting of 3300 LSB. Since readout of this voltage via the CADC
includes a buffer in the synapses, this voltage does not equate to the input voltage at the CADC.
After the reset, the initial voltage on the capacitors is read out via the CADC and used as a
baseline. Therefore, a calibration of the CADC is not crucial, only the changes in output signals
are relevant. Then, 6 correlated pairs of pre- and postspikes are sent. That means depending
on the desired time difference, either the synapse drivers or the neurons send a signal to the
synapses first.
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We send one pair of pre- and postspikes, sweeping the time difference in steps of 0.52 µs,
which equates to 50 FPGA clock cycles. Time differences of up to 10.4 µs, or 1000 FPGA clock
cycles, are measured. Before sending the next pair of spikes, we wait 417 µs or 40 000 FPGA
cycles. After all correlated spikes have been sent, the CADC is used to read out all correlation
measurements again. This allows calculating the difference between the initial and the final
measurements, which we will refer to as the STDP amplitude.

A big advantage on this chip compared to the previous generation is the ability to generate
an artificial spike at the neuron which produces the postspike signal for the synaptic column. It
is no longer necessary to use synapse rows on high weights for triggering the spiking of neurons.
Therefore, all synapse weights are set to 0 in this experiment.

The configured voltages (see figure 2.4) are Vresmeas = 4095 LSB, Vramp = 1100 LSB, Vstore =

1340 LSB all generated on a 1.2 V 12-bit DAC, and Vreset = 3300 LSB, Vcoroutbias = 573 LSB
generated on a 2.5 V 12-bit DAC.

5.2.2 Measurement results

The correlation amplitudes are evaluated as a function of the differences between spike times.
Since we observe a dependency between the number of synapses that are configured on the
correct prespike address and correlation amplitudes, the presented plots show correlation mea-
surements of only the first synapse column. The remaining synapse columns listen to prespikes
if enabled, but never receive postspikes.

For the first experiment, the whole synapse array is configured at address 63, where the
prespikes arrive. For this setup, we see a strong asymmetry. The observations are plotted in fig-
ure 5.3. Anticausal amplitudes are plotted in blue, causal amplitudes in green. Error bars indicate
the standard deviation between the 32 available synapses. The anticausal measurements reach
amplitudes of about 71 LSB at a time difference of −100 FPGA clock cycles (−1.04 µs), while
causal amplitudes are only 29 LSB on average at a time difference of +100 FPGA cycles. A sim-
ilar asymmetry was observed on HICANN-DLS 2. However there, the anticausal measurements
showed lower amplitudes than the causal ones. The problem appears inverted.

Investigating the issue, we configure only one column of synapses to listen to the injected
events. This way, only the first column receives prespikes and measures correlation, the re-
maining synapses are entirely disabled. The observed asymmetry can not be reproduced when
enabling only a single synapse column. The measurement is plotted in black for the acausal am-
plitudes and in red for the causal amplitudes in figure 5.3. The error bars indicate the standard
deviation between synapses. As a conclusion, the problem must lie outside of the individual
synapses’ STDP circuitry.

We see that causal amplitudes are much lower when all synapses listen to prespikes (green
curve) than when only the first column receives prespikes (red curve). Otherwise, the plot shows
that there are no causal amplitudes measured while the spike timing is anticausal and vice versa.
The first measurement after switching from anticausal to causal, for some reason, shows a small
anticausal amplitude and a lower causal amplitude than expected. This is also observable for the
first anticausal measurement. We did not investigate this further, but discard the respective data
points.
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Figure 5.3: Measured correlation amplitudes as a function of the time difference between pre- and
postspike. The data points are average amplitudes of the first synapse column, error bars show
their spread. Black: anticausal measurement with addresses set in 1 column, red: associated
causal measurement. Blue: anticausal measurement with addresses set in 32 columns, green: as-
sociated causal measurement. A strong asymmetry between anticausal and causal measurements
is visible when enabling 32 columns of synapses.
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Figure 5.4: Dependency of the asymmetry of causal and anticausal STDP amplitudes on the
number of synapse columns that are configured to the correct address.
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Figure 5.5: Oscilloscope readout of the used voltage: Channel C2 shows a voltage trace ofVresmeas
during a prespike with 31 synapse columns listening to the address. A significant drop is observ-
able.

5.3 Troubleshooting asymmetry

To investigate the asymmetry, we sweep the number of enabled synapse columns. The ampli-
tudes of the causal measurements decrease monotonically with the number of synapse columns
that listen for prespikes at the correct address, as shown in figure 5.4. There, the difference of
anticausal and causal amplitudes at a time difference of 100 clock cycles each is plotted over
the number of synapse columns that have the correct address set. The curve does not seem to
settle at the shown 32 enabled columns: if there were more synapses on the chip, amplitudes
would get even lower and asymmetry would grow even stronger. This effect made us suspect
the reset voltage for the measurement capacitors,Vresmeas, to be insufficient [Schemmel, personal
communication, December 2017].

When a prespike arrives, a measurement is started. This means the measurement capacitor is
connected toVresmeas in order to be charged. When only one synapse column receives prespikes,
Vresmeas does not drop significantly. However, when all synapses are configured at the same
address, all 1024 synapses charge their respective capacitor at the same time. This effect only
occurs for causal measurements, since for the anticausal branch, measurements are started with
the postspikes. In this experiment, these are never sent to all synapses at once.

A drop of Vresmeas would explain the observed behaviour. When setting the voltage from the
original 4095 LSB down to 3200 LSB on the 1.2 V DAC, causal amplitudes are about as high
as in the asymmetric measurement, even though only one synapse column is used. The latter
DAC setting corresponds to a voltage of 938 mV, assuming the DAC works perfectly linear. As
a next step in troubleshooting the problem, Vresmeas is recorded during experiments as close to
the chip as possible, using the oscilloscope and an active probe. We see that indeed the voltage
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Figure 5.6: Characterization of the STDP mechanism after including a capacitor next to the chip.
The anticausal and causal amplitudes now show only minimal asymmetry. The experiment is
identical to the plot in figure 5.3, colors are chosen identical as well.

is dropping significantly. At its lowest point, it was found to be 953 mV, which approximately
corresponds to our observations above, considering we expect the voltage to be 1200 mV.

In figure 5.5, the oscilloscope measurement is shown. The two cursors indicate the lowest
point during the drop and the highest point afterwards, that lays higher than the baseline voltage.
Between the minimum and the maximum of overdrive lay 42 ns of time and 300 mV of voltage
difference. The time during which the voltage is low is much longer than the 5 ns time that
synapses receive the prespike for. Also, the drop amplitude is strong enough to explain the
observed effect.

The voltage drop can be reduced by placing a block capacitor next to the chip that holds
sufficient charge to supply simultaneous charging of all STDPmeasurement capacitors. TheDAC
on the baseboard is able to drive a capacitive load of 500 pF [Schreiber, personal communication,
December 2017]. Therefore, a 470 pF capacitor is soldered onto the chipboard. With this fix
applied, no voltage drops are observable on the oscilloscope.

Using the same setup of first setting addresses at only the first synapse column and in a
second run synapses in 32 columns, a new plot is produced. As shown in figure 5.6, the observed
asymmetry has now vanished. Plotted using the same colors as in figure 5.3, we see that causal
measurements are no longer influenced by the number of enabled synapses. We learn from this
that the power draw for the reset of multiple STDP measurement capacitorsCmeasure is not to be
underestimated. However, in a biological experiment with synapses configured at many different
addresses, the case that the entire synapse array receives a prespike at the same time is unusual.
In most experiments, problems would be much smaller than in this artificial test scenario.

With the help of Benjamin Cramer, we tried to apply the same fix for the asymmetric ampli-
tudes observed on the previous chip generation, HICANN-DLS 2. Before soldering a capacitor,
a drop ofVresmeas was observed as well. While the voltage drop indeed vanishes using the capac-
itor, the STDP characterization measurement on the older setup still does not show symmetric
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Figure 5.7: Dependency of STDP measurements on the STP state. On the vertical axis, the ratio
of the STDP amplitude at the given STP state to the amplitude with STP disabled is plotted. On
the horizontal axis, data from the STP ramp experiments is used to translate the used voltages
Vcharge (see legend) into lengths of the dacen pulse.

amplitudes. Certainly it changed, amplitudes now show less deviations than before. In particu-
lar, without the capacitor, it was not possible to have both anticausal and causal amplitudes in a
usable range for many synapses. When choosing parameters so that causal measurements were
readable, anticausal measurements read 0. When choosing parameters that yield higher ampli-
tudes in general, anticausal measurements become readable, at the cost of causal measurements
clipping at the maximum value. This problem is now less severe and multiplying anticausal
measurements by a constant factor seems to work. The correlation measurements are usable
[Cramer, personal communication, January 2018].

5.4 STDP in combination with STP

The synapse correlation circuit uses the address enable signal addren as a prespike. This makes
sense since the synapse has to check whether the address sent out by the synapse driver matches
its configured address. With the dependency of STDP amplitudes on the number of columns
with matching event addresses, we already verified that synapses check the addresses. In this
section, we want to enable STP while measuring the correlation amplitudes. We do not expect
any influence of the STP states on the STDP measurements, since the dacen pulse does not have
any influence on triggering the measurement.

The experiment we conduct uses the same chip configuration as for the measurement of the
STP ramps (section 4.6). This means we configure STP on the synapse drivers to be renewing,
so that VSTP reaches the applied Vcharge voltage at the first spike. Vrecover is set 20 mV above
that, with recovery turned off. Before sending the 6 correlated spikes, 10 spikes are sent to the
configured address in order to reachVSTP = Vcharge. This is especially important during the STDP

44



measurement: we can not throw away the first 10 spikes during evaluation, like we did when
measuring amplitudes before. Even the first spike has to be in the correct STP state.

Since we know from the ramp measurements how the length of the dacen pulses depends on
the VSTP settings for every driver, we can now plot the amplitude of the STDP measurements as
a function of the dacen time. For the correlation amplitude, we use the measurement at a time
difference of +100 FPGA clock-cycles, corresponding to causal correlation. Since we measure
data from the whole first column of synapses and we have data for every individual synapse
driver concerning the pulse lengths, we can plot a data point for every single synapse of the
first column. Since the absolute STDP amplitude measurements are scattered a lot (see error
bars in figure 5.6), we plot the ratio of the measured amplitude to the original amplitude with
STP disabled. We sweep Vcharge in steps of 50 LSB, equivalent to changes of about 100 mV.
The settings correspond to every fifth data point plotted in figure 4.12. However, since the time
between spikes is 40 times larger compared to the recording of the ramps, the dacen times can
be slightly higher in this experiment due to the increased influence of leakage currents, which
are pulling up VSTP [Weis, 2017].

Loading a set of offset parameters that was obtained using the amplitude-based calibration,
we run the experiment. The results are plotted in figure 5.7. Every data point represents a
single synapse, the different Vcharge settings are indicated by colors. We can see point clouds
representing measurements with identical parameters. For low lengths of the dacen pulses, the
horizontal spread increases. This is caused by some synapse drivers still outputting longer pulses
than they should when we assume the ramps to be perfectly linear. This is the exact same effect
that we saw in figure 4.12 for low VSTP settings. For the vertical spread, the amplitudes of the
STDPmeasurement do not vary significantly, just as we expected. Correlation amplitudes are not
lower when synaptic depression occurs, no prespikes are missed. Repeating this measurement
shows that the seemingly lower amplitudes at the two lowestVcharge settings are purely incidental.

Therefore, we conclude that both synaptic plasticity topics discussed in this thesis, STDP
correlation measurements and STP, work fine in this experiment.
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6 Discussion and Outlook

In this thesis, synaptic plasticity mechanisms, STP and STDP, were tested and verified to work
properly on HICANN-DLS 3. For the depletion of neurotransmitters, the utilization of synaptic
efficacy ranges from 0.27 to 0.74 for the tested chips. The recovery of neurotransmitters, which
increases the amplitudes of transmitted action potentials, covers three orders of magnitude: time
constants range from 2.38 ms to 2120 ms biological time on the tested chip. These parameters
allow for a wide range of configurations: STP can recover fast enough to be used in recurrent
networks. Typical networks spike at rates lower than 100 Hz [Amit and Brunel, 1997], which
equates to inter-spike-intervals of 10 ms biological time. Besides the usage of inhibitory and
excitatory connections at the same time, STP will provide an additional method to stabilize the
spike rates in such applications [Bill et al., 2010]. Concerning recovery, a dependency of time
constants on the address is visible (figure 3.9). STP works as expected from simulations, both
concerning the effects of configured parameters but also regarding this address pattern during
recovery.

Before using STP, the synapse drivers need to be calibrated. The output amplitudes are en-
coded by the length of a dacen pulse reaching the synapses. This pulse is generated by com-
paring the voltage VSTP, representing the current state of neurotransmitters, with a ramp. The
comparators located in different instances of the circuit are not identical, so amplitudes of dif-
ferent drivers would vary in a fixed pattern if they were not calibrated. We add an offset voltage
to the ramp, fixing the effects of this mismatch. The offsets have to be determined individually
for every driver. Until now, an external ADC was used in order to read out the amplitudes.
This takes 6 minutes on DLS 3 [Weis, 2017], and the runtime scales linearly with the number of
synapse drivers.

In this thesis, a new readout mechanism is tested. The amplitudes at the synaptic input of
neurons are measured directly in the neuron, using only its core circuitry. By design, the neuron
integrates inputs on the membrane capacity. However, in the leaky integrate-and-fire model,
leakage introduces a strong nonlinearity between spike rates and PSP amplitudes. By eliminat-
ing the leakage current, membrane potentials rise linearly and neuron spike rates can be used
as a linearly mapped observable representing the received synaptic input. A big advantage of
this readout method is that neuron spike events can be stored in local counters in every neu-
ron. This increases the number of available parallel readout channels to the number of neurons.
Currently, after the experiment, the stored counts are read out using the FPGA. This approach
allows calibrating the HICANN-DLS 3 prototype in approximately 30 s. The runtime can be re-
duced further by adding parallel readout: since the HICANN-X chip will feature twice as many
neurons as synapse drivers, the number of required runs to acquire every driver’s data can be cut
in half, using all neurons in parallel. This is possible while maintaining 16 neurons to average
spike rates from, like it is done in the presented experiments.

The readout of spike rates unfortunately introduces higher statistical variations than the con-
ventional method using the ADC. This means that the calibration script may regularly find an
offset setting that is 1 LSB off the optimal setting determined by the ADC readout. Thus, the
standard deviation of different synapse drivers’ amplitudes is greater using the fast spike rate
method compared to the slow ADC method. After a calibration using spike rates on the tested
chip, the amplitude mismatch is approximately 1 mV, which equates to 3 % of the amplitudes at
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medium depression. All results are compared at the end of section 4.4. To put it in a nutshell, the
remaining mismatch between drivers is higher using spike rate readout, but about 5 times lower
than without calibration. The results are still very usable. The mismatch is about the same as the
mismatch between individual synapses, which is 2.6 %. Since the route of an action potential
travelling between neurons includes the synapse drivers as well as the synapses, their mismatch
effects are added squared. Therefore, while having lower individual mismatch numbers is always
better, reducing one far below the other yields no advantages.

Future steps include implementing the calibration using the spike rate readout on the sys-
tem’s on-chipmicroprocessor, the PPU. It can access the neuron spike counters andwrite settings
into synapse drivers. This was not tested during this thesis. Without frequent communication to
the host computer, an entirely local calibration consumes less power and resources. Addition-
ally, the calibration needs to be integrated into the calibration stack for neuron parameters. This
is especially important since for the spike rate readout to work reliably, we need the synaptic in-
put to be configured correctly. This also replaces the parameter search based on manually found
values, which was used during this thesis.

The actual results after calibrating STP using spike rates are shown in figure 4.9, using a
more realistic range of amplitudes than during calibration. The mismatch between drivers and
synapses observed during these experiments should not be obstructive regarding the emulation
of neural networks, or especially learning algorithms: the latter should be able to compensate a
systematic pattern in connection strengths by tuning the synapse weight matrix accordingly.

The second synaptic plasticity mechanism covered by this thesis is STDP, which is an im-
portant feature concerning learning [Bi and Poo, 2001]. Synaptic weights are changed based
on correlation of spikes, where causal and anticausal correlation between synaptic inputs and
neuron spike events are responsible for both positive and negative weight changes.

In this thesis, the circuit measuring correlation for every single synapse was tested. Vary-
ing the time difference between the synaptic input and the spiking of the neuron, correlation
measurements should show the expected exponential dependency. This was indeed the result,
however, we observed a strong asymmetry between anticausal and causal measurements, with
the causal amplitudes being smaller by a factor of 3 to 4. After observing a dependency of the
asymmetry on the number of listening synapses, we found an insufficient voltage supply com-
bined with the artificial test-scenario during characterization, where all synapses receive input
simultaneously, to be causing the asymmetry. The voltage can be stabilized by placing a capac-
itor next to the chip, which holds sufficient charge. Resetting the measurement capacitors of
all synapses at the same time no longer causes asymmetric results. Therefore, a nice symmetric
plot showing the characterization of correlation amplitudes is the result of this thesis (figure 5.6).
Asymmetric correlation measurements should not be a problem anymore, the amplitudes show
the expected exponential function on a configurable timescale.

Together with the PPU being able to process complex algorithms in order to tune synaptic
weights for successful learning, the system provides ideal requirements for complex experiments.
This is why we look forward to see people using the upcoming HICANN-X chip, that is based
on the same circuitry concerning STDP, for their network emulations. Concerning STP, the
implementation of the comparator ramp generation will be different, including the calibration
bits. However, the function of the configurable parameters will stay the same. Therefore, results
from this thesis should still be applicable. With many problems solved, HICANN-X will not
only be a larger chip targeted at biological use cases, but also an improvement over the current
hardware available as prototypes.
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A Deduction of utilization

In this appendix section, formula 3.2 will be deducted. It allows calculating USE from a fit to
regular spiking when the recovery time constant is known. The deduction is based on personal
communication with Sebastian Billaudelle in September 2017.

Let ai be a spike amplitude. The amplitude of the following spike ai+1, which is sent after
a time difference ∆t , is subject to utilization (with a parameter USE) and recovery (with a time
constant τrec). Assuming a depressing configuration, the amplitude gets smaller proportional to
utilization:

∆ai,util = −ai ·USE. (A.1)

The recovery has a positive influence on the amplitude:

∆ai,rec = (1 − (ai − ai ·USE)) ·
(
1 − e−

∆t
τrec

)
. (A.2)

For the amplitude of the following spike ai+1, this gives

ai+1 = ai + ∆ai,util + ∆ai,rec (A.3)

= ai − ai ·USE + (1 − (ai − ai ·USE)) ·
(
1 − e−

∆t
τrec

)
(A.4)

= (1 −USE) · ai + (1 − (1 −USE) · ai ) ·
(
1 − e−

∆t
τrec

)
(A.5)

= (1 −USE) · ai ·
(
1 −

(
1 − e−

∆t
τrec

))
+
(
1 − e−

∆t
τrec

)
(A.6)

= ai · (1 −USE) · (1 − α) + α , (A.7)

with α := 1 − e−
∆t
τrec .

Applying the result to another spike ai+2 yields

ai+2 = ai+1 · (1 −USE) · (1 − α) + α (A.8)

= [ai · (1 −USE) · (1 − α) + α] · (1 −USE) · (1 − α) + α (A.9)

= [ai · β + α] · β + α (A.10)

= ai · β2 + α + α · β, (A.11)

with β := (1 −USE) · (1 − α).
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Inductively, this yields a series for the i-th spike amplitude:

ai = a0 · β i + α ·
i−1∑
j=0

β j (A.12)

= a0 · β i + α · 1 − β i

1 − β
(A.13)

=

(
a0 −

α

1 − β

)
· β i + α

1 − β
. (A.14)

During regular spiking, this allows fitting an exponential function A · e−
t

τdep +C to the spike
amplitudes. The “time constant” of the depression is τdep. We can now set β i equal to the fitted
exponential function and insert the definitions of α and β again:

β i = e
− ∆t ·i
τdep (A.15)

⇔ (1 −USE) · (1 − α) = e
− ∆t
τdep (A.16)

⇔ (1 −USE) ·
(
e−

∆t
τrec

)
= e

− ∆t
τdep (A.17)

⇔ USE = 1 − e
− ∆t
τdep

e−
∆t
τrec
. (A.18)

This is equation 3.2.
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