
Department of Physics and Astronomy
University of Heidelberg

Master Thesis in Physics

submitted by

David Stöckel

born in Waiblingen (Germany)

November 2017

Exploring Collective Neural Dynamics under Synaptic
Plasticity on Neuromorphic Hardware

This Master Thesis has been carried out by David Stöckel at the

Kirchho� Institute in Heidelberg

under the supervision of

Prof. Karlheinz Meier

Abstract

In the human brain’s resting state a stable baseline of irregular activity is observed.

Facing changes in the neurons and synapses during learning and evolution these changes

must be counterbalanced tomaintain stability. This work proposes a long–term synaptic

plasticity rule which stabilizes the activity in a feed–forward neural network regardless

of the initial conditions. The rule is in particular favorable for large scale systems as

it solely depends on the local pre– and postsynaptic spike time correlation. A diverse

phenomenology of the neural dynamics is observed for di�erent parameterizations of

the plasticity. Applying this rule furthermore to recurrent networks the sensitivity and

memory capacity of the network is shown to increase with the degree of recurrence.

Last, the synaptic plasticity rule is shown to be capable of simple unsupervised pattern

learning.

All measurements for this work are performed on the HICANN–DLS, a spiking,

mixed–signal neuromorphic device. This work demonstrates the usability and flexibility

of this system for bio–inspired neural network experiments.

Zusammenfassung

Im menschlichen Gehirn ist im Ruhezustand eine stabile Grundaktivität messbar. In

seiner Entwicklung und beim Lernen verändern sich die Synapsen und Neuronen im

Gehirn kontinuierlich. Diesen Prozessen muss entgegengewirkt werden um die Stabi-

lität aufrecht zu erhalten. In dieser Arbeit wird eine Regel für synaptische Langzeit-

plastizität vorgestellt, welche in einem feed–forward Netzwerk die Aktivität stabilisiert.

Dieser stabile Punkt wird unabhängig von den Anfangsbedingungen erreicht. Für die

vorgestellte Plastizitätsregel wird eine vielfältige Phänomenologie in der Dynamik der

Neuronen beobachtet je nach Parametrisierung der Regel. Werden darüber hinaus re-

kurrente Verbindungen erlaubt, zeigt sich, dass mit der zunehmenden Anzahl an rekur-

renten Verbindungen die Sensibilität und das Erinnerungsvermögen des Netzwerkes

zunehmen. Desweiteren wird demonstriert, dass diese Regel für unüberwachtes Ler-

nen zur Mustererkennung verwendet werden kann.

Alle Messungen für diese Arbeit wurden auf dem HICANN–DLS durchgeführt, ei-

nem neuromorphen System, welches spikende neuronale Netzwerke in einer gemischt

analog–digitalen Implementierung emuliert. Diese Arbeit demonstriert dessen Ver-

wendbarkeit und Flexibilität für biologisch motivierte Experimente.

i

Contents

1 Introduction 1
1.1 Candidates for Stabilizing Synaptic Plasticity 2

1.2 This Work . 2

2 Neural Network Model and Neuromorphic Implementation 3
2.1 Model Description . 3

2.1.1 Leaky Integrate-and-Fire Neuron Model 3

2.1.2 Current Based Synapse Model . 4

2.1.3 Long–Term Synaptic Plasticity . 5

2.2 The DLS Neuromorphic Computing Platform 7

2.2.1 Neurons . 8

2.2.2 Synapses . 10

2.2.3 The Plasticity Processing Unit . 10

2.2.4 Implementation of the Synaptic Plasticity Algorithm 12

2.3 The Firmware and Software Framework . 13

2.3.1 The Host Software . 13

2.3.2 PPU Software Tools . 15

3 Experiments and Results 17
3.1 The Implemented Plasticity Algorithm . 17

3.1.1 The Biased Random Walk of the Weights 17

3.1.2 Correlation Sensor Measurements . 20

3.2 Weight Dynamics Towards Stability . 21

3.3 Recurrence in Stable Networks . 26

3.3.1 Time Constant of the Collective Neural Activity 28

3.3.2 Sensitivity to Perturbations . 29

3.4 Exploring the Plasticity Parameter Space . 32

3.5 Unsupervised Orthogonal Pattern Learning 38

4 Discussion and Conclusion 47
4.1 The Experiments . 47

4.2 Usability of the DLS and the Software Tools 50

4.3 Scalability to Larger Future Systems . 52

4.4 Predictive Power and Biological Relevance 52

Acronyms 55

Appendix 57
A Frickel-DLS Software Changes . 57

B Implementation of the Plasticity Update . 58

iii

1. Introduction

Even when lying quietly with eyes closed, spontaneous activity is observed in the brain

[Gusnard and Raichle, 2001]. Also, in–vitro slice preparations of cortical neurons show a

self–sustained baseline of irregular firing [Plenz and Aertsen, 1996]. Maintaining such a bal-

ance of activity is not inherent to most models of neural networks and is likely to turn over

to instability on changes in the synaptic connectivity [Abeles, 1991, Miller and MacKay,

1994, Abbott and Nelson, 2000, Brunel, 2000]. During learning and development however,

neural circuits undergo perpetual changes in their number and strength of synapses. These

possibly destabilizing influences are counterbalanced by homeostatic plasticity mechanisms,

by means yet to be fully understood. Various di�erent mechanisms of homeostatic plasticity

are discussed and analyzed regarding the implications on network dynamics, especially sta-

bility [Miller and MacKay, 1994, Turrigiano, 1999, Abbott and Nelson, 2000, Sussillo et al.,

2007].

To study the dynamics of spiking neural networks, software simulations have become an

important tool besides analytical methods [Brette et al., 2007]. An alternative approach is

the implementation of neuron and synapse models as physical units in electrical circuitry

[Mead, 1990, Douglas et al., 1995]. Since all units in these neuromorphic systems operate in

parallel, the speed of computation is largely independent of the system size. Several groups

have made progress in this field [Indiveri et al., 2006, Merolla and Boahen, 2006, Vogelstein

et al., 2007, Schemmel et al., 2008, Mitra et al., 2009]. In case of the neuromorphic Digital

Learning System (DLS)
1
described by Friedmann et al. [2017] a mixed–signal approach of

analog neuron and synapse circuits coupled to a digital configuration and communication

interface is pursued. The system operates ≈ 1000 times faster than comparable, biological

plausible networks and is designed to be scalable to very large system sizes. To provide

flexibility in the implementation of di�erent learning tasks, a hybrid approach is used: an

embedded general purpose processor takes care of plasticity in parallel to the analog circuits

emulating the neural network dynamics.

The aim of this work is to find long–term plasticity rules that stabilize the neural activity

by exploiting the flexibility and emulation speed of the DLS. As one goal is to generate a sta-

ble baseline of irregular firing in future large scale systems, the plasticity rules are restricted

to depend only on measures local to the synapse. This is done with respect to the scala-

bility of the experiment: if the plasticity depends on observables not local to the individual

synapse—e.g. the sum of all incoming synaptic weights for the postsynaptic neuron—the

communication e�ort in large systems quickly becomes infeasible.

1
The full name is High Input Count AnalogNeural Networkwith Digital Learning System (HICANN-DLS).

In this work it will however always be abbreviated with DLS.

1

1.1. Candidates for Stabilizing Synaptic Plasticity

Synaptic plasticity is a fundamental property of the central nervous system and likely to

be involved in learning, memory, and other cognitive processes [Hebb, 1949, Frankland

et al., 2001, Carcea and Froemke, 2013]. Sussillo et al. [2007] show that short–term synaptic

plasticity can endow a network of leaky integrate–and–fire neurons with a “remarkable sta-

bility”. On each spike transmitted by the synapse the synaptic strength is increased (known

as short–term potentiation) or decreased (short–term depression) which is compatible with

biological measurements [Abbott and Nelson, 2002]. As indicated by the name, this happens

on the short time–scale of single spikes. This work however focuses on long–term plasticity

where changes of the synaptic plasticity happen on the timescale of hundreds of spikes.

An important form of long–term synaptic plasticity is Spike–Timing–Dependent Plastic-

ity (STDP), which describes the gradual change of the synaptic weight depending on the

precise pre– and postsynaptic spike times [Markram et al., 1997, Bi and Poo, 1998]. A diverse

phenomenology of STDP is found for di�erent synapses, brain regions and species, reviewed

by Markram et al. [2012]. This form of plasticity is in particular appealing for large scale

systems as it only depends on the local information of pre– and postsynaptic spike times.

1.2. This Work

In section 2.1 the neural network model is presented and a synaptic plasticity rule proposed,

where the synaptic weights are subject to three processes: decay, stochasticity and STDP.

The implementation of this model on the neuromorphic system is discussed in section 2.2

while the inevitable software framework for performing neuromorphic experiments on the

DLS is presented in section 2.3.

The proposed plasticity algorithm is shown to be realizable on the system (section 3.1)

and to generate stable, moderate firing activity of the neurons in a feed–forward network

under random spike input (section 3.2). Having this feed–forward network with stabilizing

synaptic plasticity on–hand, this work further discusses the dynamics under an increasing

degree of recurrence in section 3.3. When sweeping large ranges of the plasticity algorithm

parameterization, the plasticity rule is shown to not only generate stable activity but also ex-

ploding, dying and diverging firing rates among the di�erent neurons, shown in section 3.4.

Last, the most thrilling question is addressed in section 3.5: is it possible to use the presented

plasticity rule to learn simple patterns?

The discussion and conclusion on the presented findings, the usability of the neuromor-

phic system and the relevance of this work regarding biology can be found in chapter 4.

2

2. Neural Network Model and

Neuromorphic Implementation

A neural network can be seen as an agent based complex system where the neurons are

the agents and the synapses modulate the interaction which is schematically depicted in fig-

ure 2.1. To analyze the system dynamics of a small neural network under synaptic plasticity

one of the most simple models of neurons and synapses is chosen, described in section 2.1.

Themodel was chosen to be simple not only because of the hardware constraints but was also

also further restricted to more clearly relate changes in the observed dynamics to changes

in the models’ parameters. The neuromorphic implementation of this model on the DLS is

described in section 2.2.

2.1. Model Description

This section covers the description of the theoretical model: Leaky Integrate–and–Fire (LIF)

neurons with current–based synapses modulated by a particular form of long–term synaptic

plasticity.

2.1.1. Leaky Integrate-and-Fire Neuron Model

The studied neuron model is a LIF neuron [Gerstner and Kistler, 2002] whose dynamics are

governed by the Ordinary Di�erential Equation (ODE) of membrane potential u(t),

τmem

du(t)
dt
= − [u(t) − u

leak] +
I (t)
g

, (2.1)

and its refractory condition

if u
(
t
spike

)
≥ u

thresh

then u (t) = ureset for t ∈
[
t
spike

, t
spike
+ τ

ref

]
. (2.2)

The parameters are named and explained in the following. In the absence of any current

input I (t) the membrane potential decays exponentially towards the neuron’s leak potential

u
leak

with the time constant τmem. The leak conductance g scales the strength of the current

input. If the membrane potential hits the threshold potential u
thresh

at the time t
spike

the

neuron emits a spike and its potential is clamped to the reset potential ureset for the refractory
period τ

ref
. The spikes can be seen as pulses which transmit information over the synapses to

the connected neurons as explained in the next section. While the evolution of themembrane

3

n0

u0(t) n1

u1(t)

n2

n3

n4

n5

n6

I10(t)

Figure 2.1.: Abstract model of a neural network. The circles represent point–like neurons,

the arrows represent the directed interaction transmitted by the synapses. The

neurons’ state variables ui (t) are described in the section 2.1.1 and the synaptic

currents Ii j (t) in section 2.1.2.

potential in equation (2.1) is a first order linear di�erential equation the reset condition in

equation (2.2) adds a nonlinearity. This nonlinearity is a necessary condition to allow for

emergent collective phenomena in the neural network [Scott, 2007].

In the following each neuron is assigned an index. The membrane potential and input

current of the i-th neuron are referred to as ui (t) and Ii (t).

2.1.2. Current Based Synapse Model

The synapse model implements a directed pairwise interaction between the neurons. In

figure 2.1 this interaction is represented by the black arrows. The source of the directed

interaction is called the presynaptic neuron, the target is called the postsynaptic neuron.

The synaptic interaction is governed by the ODE

τsyn
dIi j (t)
dt

= −Ii j (t) +
∑
t
spike, j

wi j · δ
(
t − t

spike, j

)
. (2.3)

For any spike t
spike, j of neuron j the synaptic current Ii j onto neuron i is increased by the

synaptic weight wi j . If there are no spikes, the synaptic current decays with the synaptic

time constant τsyn. Equation (2.3) therefore models current–based synapses with an expo-

nential kernel. All synaptic currents towards the i-th neuron enter the neuron dynamics in

equation (2.1) as the input current Ii (t) which is a linear sum:

Ii (t) =
∑
j

Ii j (t) . (2.4)

A synapse with a positive synaptic weight is called “excitatory”, with a negative weight

“inhibitory”. The synaptic time constant τsyn in general may vary from synapse to synapse.

4

Throughout this work the time constants of all excitatory synapses is a global constant re-

ferred to as τsyn,exc. To keep the model as simple as possible, there are no inhibitory synapses

in any of the experiments.

2.1.3. Long�Term Synaptic Plasticity

In the investigated neural network synaptic weights may change over time. First, stating

the synaptic plasticity equation, each of the terms will be motivated and explained in the

following. The used model is STDP [Markram et al., 1997, Bi and Poo, 1998] together with

decay, bias and stochasticity where the weights are restricted to the positive range.

dwi j (t)
dt

= −
wi j (t) − w0

τ
decay

+ σ
dWt

dt
+

∑
spike pairs

K
(
tpost − tpre

)
· δ

(
t −max

(
tpre, tpost

))
. (2.5)

Negative derivatives at wi j = 0 are clipped to zero. The constant τ
decay

is the decay time

constant, w0 the steady state weight, σ the di�usion constant, Wt a Wiener process and

K (∆t) the STDP kernel function.

For positive τ
decay

and σ, the di�erential equation

dwi j (t) = −
wi j (t) − w0

τ
decay

dt + σdWt (2.6)

models an Ornstein–Uhlenbeck (OU) process on the synaptic weights: a random walk of

the weights, biased towards the steady state solution w0 [Uhlenbeck and Ornstein, 1930].

For an ensemble of weights starting at time t = 0 with winit the weights would sample after

time t from a normal distribution:

wi j (t) ∼ N (µou, σou) (2.7)

with

µou = winite
− t
τ
decay + w0

(
1 − e

− t
τ
decay

)
, (2.8)

σou =
σ2τ

decay

2

(
1 − e

− 2t
τ
decay

)
. (2.9)

The larger the di�usion σ and the time constant τ
decay

, the broader the steady state distribu-

tion of an ensemble of weights becomes. The average over an ensemble of weights decays

towards the steady state solution w0 exponentially over time with the time constant τ
decay

.

Having this stochastic term allowing for exploration of the weight–space was inspired by the

theory of synaptic sampling [Kappel et al., 2014] as well as for practical reasons to overcome

precision issues when calculating in 8 bit arithmetic on the Plasticity Processing Unit (PPU),

as explained in section section 2.2.4.

5

wpost,pre

npre
npost

(a)

t1 t2 t3
Time

post

pre ∆t1 ∆t2

∆t1 0 ∆t2
Spike time di�erence

β

0

α

W
e
i
g
h
t
u
p
d
a
t
e

K
(∆

t)

∆w1

∆w2

(b)

Figure 2.2.: (a) Sketch of two neurons which are connected with a synapse under the influ-

ence of synaptic plasticity. The presynaptic neuron spikes once in this example,

the postsynaptic neurons twice shown at the bottom. (b) Change of the weight

wpost,pre due to STDP with an exponential kernel function. The post–pre pair-

ing with ∆t1 yields a negative update ∆w1 for the weight, the pre–post pairing

with ∆t2 a positive di�erence ∆w2.

The last term in equation (2.5) adds the dependency on the pre–post spike times: it is a

sum over all nearest neighbor spike pairs tpre, tpost. At the later spike of each spike pair the

synaptic weight is changed by the kernel K (tpost − tpre) as sketched in figure 2.2.

There are di�erent motivations to investigate this form of synaptic plasticity of which all

will be discussed in the following.

• Stability of the weights

• Robustness to di�erent initial conditions

• Constraints of the neuromorphic computing platform

• Overcome limits of the low precision arithmetic

The stability of the ODE of the weights comes with the OU process which is one of the

simplest forms to have a stochastic process with a stable fixed point. In particular, the force

towards w0 grows ever larger for large |w0 − w |. The further the weights are away from

the fixed point, the larger the force will be. Therefore, the OU process is also robust against

di�erent initial conditions. For any initial weights the fixed point w0 is globally attractive for

positive τ
decay

and σ. Especially with w0 > 0 an initially disconnected network (w = 0 for

all synaptic weights) will over time establish synaptic connections. In this work only small

6

networks are looked into where all–to–all connectivity is a realistic scenario. For large net-

works one could introduce a dependence on the distance to penalize all–to–all connectivity

on the scale of the whole system.

There are furthermore constraints on the plasticity imposed by the neuromorphic plat-

form as only a limited set of observables is available to the PPU. Every synapse on the DLS

has a correlation sensor which accumulates exponentially weighted pre-post spike time dif-

ferences. The accumulation for positive and negative time di�erences is done with separate

accumulation values, such that the most general form of a kernel—using the correlation

sensors—is

K (∆t) =



α exp
(
− ∆tτ

stdp

)
if ∆t > 0

β exp
(
∆t
τ
stdp

)
if ∆t ≤ 0

. (2.10)

which is also sketched in figure 2.2. The implemented correlation sensors are discussed in

section 2.2.3 in detail. Using these correlations sensors is highly appealing as they asyn-

chronously measure the pre–post correlations without using the digital on–chip computing

resources. This work will therefore only look into kernels of the form described in equa-

tion (2.10).

As mentioned before, the stochastic term was also introduced to overcome precision issues

when calculation the plasticity rule with fixed point arithmetic. To allow for weak updates it

may be desirable to have an update which is less than the precision with which the synaptic

weight is implemented. Here, the approach is chosen to calculate the weight di�erence

with a higher precision and then to round the result randomly up or down. This stochastic

rounding is biased by the non–significant digits to yield the more precise weight di�erence

on average.

2.2. The DLS Neuromorphic Computing Platform

The DLS neuromorphic chip shown in figure 2.3a is a prototype
1
system with 32 neurons

and an array of 32 × 32 synapses [Friedmann et al., 2017]. The implemented time constants

are much smaller than their biological counterparts, which leads to an emulation speed–

up of ≈ 10
3
compared to the biological domain. A general purpose processor with vector

extensions—the Plasticity Processing Unit (PPU)—has not only read and write access to the

complete chip configuration, but can also read the synaptic correlation data and neuron–wise

spike counters.

External control as well as spike input and recording is provided by a Xilinx Spartan-6

Field Programmable Gate Array (FPGA) connected to a host computer via USB-2.0 run-

ning at 96MHz. Similar to the PPU the external FPGA has read and write access to the

complete chip configuration. The FPGA performs the chip configuration, experiment ex-

ecution and spike recording. The configuration and spike input data is stored in 512MiB

DDR3-SDRAM and played back by the FPGA using cycle-accurate timing. As the FPGA

and the internal chip logic both run at a clock frequency of 96MHz, the best-case temporal

1
The used prototype system is internally referred to as DLSv2.

7

PPU, digital control and IO

ADC

Synapses

Neurons

Analog memory

(a)

s0

s1

s31

n0 n1 n31

sin
0

sin
1

sin
31

sout
0

sout
1

sout
31

...

. . .

. . .

(b)

Figure 2.3.: (a) Photograph of the DLS v2 prototype chip with the layout of the functional

areas highlighted. (b) Schematic view of the spike sources (green triangles),

neurons (blue triangles) and synapses (grey circles) on the chip. The spike trains

sin and sout denote the spikes sent in and recorded back from the chip by the

Field Programmable Gate Array (FPGA).

precision is 10.4 ns, which equals 10 µs in biological time. Throughout this thesis, the ac-

celeration factor is defined to be 960 which is a sensible choice to simplify the conversion

between FPGA cycles measuring the wall–clock time and the biological domain:

t
bio
= 960 · t

wall
⇔ t

bio
= n

cycles
· 1 × 10−5 s (2.11)

Measurements and time constants in the following are always given in biological time.

2.2.1. Neurons

The neurons on the prototype system are built around a 2 bit switchable membrane capacitor

Cmem with a maximum capacitance of 2.4 pF [Aamir et al., 2016]. The leak conductance g

is realized as an Operational Transconductance Amplifier (OTA) with negative feedback

that pulls the membrane towards a configurable leak potential u
leak

. Leak conductance and

membrane capacity are related to the membrane time constant in the LIF equation (2.1) by

τmem =
Cmem

g
. (2.12)

Each neuron receives the accumulated input of 32 synapses via two current based synaptic

inputs—one for excitatory and one for inhibitory events. Both of these inputs feature RC-

integrators with individually tunable resistances which are used to generate exponentially

decaying synaptic currents with adjustable synaptic time constants. Therefore, all excitatory

incoming connections of one neuron share the same time constant, as well as all inhibitory

connections.

8

Parameter Symbol Value
Time constant τmem 4.8ms

Leak potential u
leak

800mV

Reset potential ureset 600mV

Threshold potential u
thresh

1.1V

Refractory period τ
ref

4.8ms

Excitatory synaptic time constant τsyn,exc 1.9ms

STDP time constant τ
stdp

5.3ms

Causal STDP amplitude η+ 19 lsb

Table 2.1.: LIF parameters used for all neurons. Time constants are given in the biological

time domain while voltages are not translated to biological plausible ranges.

Spikes are detected by a comparator that triggers digital events as well as the reset circuitry

for the membrane. The latter allows for adjustable refractory times by implementing an

analog delay cell.

All analog parameters are supplied using 17 integrated Digital to Analog Converters

(DACs) per neuron—14 for currents and 3 for voltages. The reset potential is set glob-

ally for all neurons via a shared DAC. These parameters can be adjusted with a precision of

10 bit from the PPU as well as externally from FPGA. Further details can be found in [Aamir

et al., 2016].

Even if all 32 neurons are configured with the same set of parameters their behavior will

vary. Each neuron is implemented as a separate circuit with fixed–pattern noise on the tran-

sistors due to manufacturing variations. Furthermore, there are trial–to–trial variations due

to variations in the reconfiguration of the analog parameter storage. The trials–to–trial vari-

ations measured by Hock [2014] are much less than the fixed pattern noise characterized

by Stradmann [2016]. Along with the characterization a calibration database was set up to

allow for an individual mapping from the LIF parameters to a set of analog parameters for

each neuron. The parameters used for this work are show in table 2.1. The voltage param-

eters u
leak

, ureset and u
thresh

are chosen such that the linear range of the leak term and the

available dynamic range of the chip is well used. Furthermore the biological plausible order

of ureset < u
leak

< u
thresh

is used. For the time constants the order τsyn < τmem = τref ≈ τstdp is

chosen. The membrane time constants was chosen to be as large as possible, but still reliably

configurable on the DLS as for this system holds: the larger the time constant the less reliable

the calibration [Stradmann, 2016]. Then, the STDP time constant should be similar to the

larger of the membrane and synaptic time constant in order to give a meaningful measure on

how much a presynaptic spike contributed to a postsynaptic spike. Last, the synaptic time–

constant was chosen to be smaller than the membrane time constant and refractory time

constant, such that the memory in the synaptic currents has decayed when the refractory

period is over.

9

16KiB memory

4KiB cache

General Purpose

Queue

Vector control Funct. units VRF

Synapse array

memory

processor

vector unit

IO unit

32 bit

128 bit

Figure 2.4.: Schematic of the PPU which is part of the plasticity sub-system and computes

weight updates. It consists of a general–purpose part implementing the Power

Instruction Set Architecture (ISA) and a vector unit to accelerate computations.

The processor has access to 16KiB of on-chip memory and uses a 4KiB in-

struction cache. The functional units of the vector extension operate on 128 bit

vectors of which 32 can be stored in the Vector Register File (VRF).

2.2.2. Synapses

The synapses are arranged in a 2-dimensional array sketched in figure 2.3b. The neurons

are located along the bottom line whereas the presynaptic spikes enter the array from the left

side. For each row the presynaptic signal is transmitted to all synapses in the row. Analog

current pulses are generated for all active synapses and transmitted along the columns to the

neurons where they are converted to synaptic currents. These pulses are scaled in height by

the synaptic weights which can be configured individually for each of the 1024 synapses.

The lengths of the pulses are configured globally and therefore allow for scaling all weights

simultaneously. The weight has a precision of 6 bit and therefore ranges from 0 lsb to 63 lsb.

The unit Least Significant Bit (lsb) will be used in the following for all digitally stored or

processed integers. Each row determines whether the pulses of these synapses are send to

the excitatory or inhibitory synaptic input of the neuron. In other words, all synapses along

a row are of the same type: either excitatory or inhibitory.

To allow for multiplexing postsynaptic spikes from di�erent neurons onto the same

synapse row a 6 bit source address may be given to each of the spikes. Within the synap-

tic array a 6 bit decoder address is stored for each synapse in addition to the 6 bit synaptic

weight. The synapse transmits the spike only if the source address matches the internal

decoder address.

2.2.3. The Plasticity Processing Unit

Calculating new weights and actually updating the weights during operation is done by the

PPU, schematically shown in figure 2.4. This is a general-purpose processor extended with

a functional unit specialized for parallel processing of the synapses. It has access to 16KiB

10

bit 7 6 5 4 3 2 1 0

value −1 2
−1

2
−2

2
−3

2
−4

2
−5

2
−6

2
−7

weight 0 w5 w4 w3 w2 w1 w0 0

Table 2.2.: Bit representation of the weights in fractional saturation arithmetic.

of main memory with an instruction cache of 4KiB. The special–purpose part implements

an instruction set extension for vector–wise processing of synaptic properties. It operates on

128 bit wide vectors with a Vector Register File (VRF) that can store 32 of these vectors.
2

The vector extension is organized as a weakly–coupled coprocessor. Upon encountering

vector instructions the general-purpose part sends them to a queue. While the general–

purpose part continues with the execution of the following instructions, this queue of vector

instructions is processed in at the same time. The vector unit takes instructions in order from

this queue, decodes them and distributes them to the appropriate functional units. These

functional units provide operations for di�erent precision of the vector components—8 ×

16 bit and 16 × 8 bit vectors. For each of those precisions, the components may be treated

with integer modulo arithmetic or fractional saturation arithmetic:

• Integermodulo arithmetic: The components are unsigned integers within [0, 2n) or
signed integers within [−2n−1, 2n−1) where n is the number of bits for each component.

Results of the arithmetic operations are storedmodulo 2
n
(i.e. 255+1 = 0 in 8 bit signed

integer modulo arithmetic).

• Fractional saturation arithmetic: The components are signed rational numbers

within [−1, 1) with a resolution of 2
−n+1

where n is the number of bits for one com-

ponent. A signed 8 bit integer m reinterpreted in the fractional representation maps to

m/128. Operations resulting in values out of the valid range would saturate at −1 or

1 − 2−n+1 (i.e.: 127/128 + 1/128 = 127/128 in 8 bit fractional saturation arithmetic).

There are two di�erent load–store units: a 32 bit wide access to the main memory and

a parallel 128 bit bus to access the synapses and the Analog to Digital Converter (ADC).

The synaptic weights on the prototype chip are stored as 6 bit weights which are aligned in

memory to 8 bit by filling up the two most significant bits with zeros. Therefore, the oper-

ation set for vectors of 8 bit elements is used for the synaptic plasticity algorithm. This is in

particular convenient, as the ADC also digitizes the accumulation traces of spike correlations

introduced below to 8 bit values. The fractional saturation arithmetic is used for all calcula-

tions as it is preferred compared to modulo arithmetics: if an update of 1 lsb is calculated to

a weight which already is at its largest value, this weight stays at the current value instead of

wrapping around to zero. To make use of this saturation the 6 bit weights need to be aligned

to use the range from 0 to 127/128 in fractional representation. This is realized by shifting

the weights to the left by one, to align the weights’ most significant bit w5 with the 6
th
bit

as shown in table 2.2. Here, wi are the individual bits of the weight with w5 being the most

2
Registers are variable storages to which the compute units in the processor have a fast access.

11

significant bit. This bit–shift is applied after each load and before each store operation of the

synaptic weights. Using this scheme, the largest weight of 63 lsb maps to 126/128 and on

the reverse, the largest fractional number 127/128 maps to 63 lsb.

The correlation measurement on the neuromorphic hardware system is realized by analog

circuits [Friedmann et al., 2017]. For every synapse the correlation data is stored in form of

two accumulation traces:

a+ =
∑

tpre>tpost

η+ exp *
,
−

tpre − tpost
τ
stdp

+
-
, (2.13)

a− =
∑

tpre<tpost

η− exp *
,

tpre − tpost
τ
stdp

+
-
, (2.14)

with the analog accumulation rates η±. The summed–up pairs (tpre, tpost) are selected accord-
ing to a reduced symmetric nearest neighbor pairing rule defined in [Morrison et al., 2008].

The accumulation traces a± are digitized by an ADC. A characterization of the correlation

measurements and their digitization is given in [Wunderlich, 2016].

2.2.4. Implementation of the Synaptic Plasticity Algorithm

To approximate the learning rules defined by equation (2.5) the vector unit of the PPU

performs discrete updates

w′i j = max

{
1

2

[
2wi j +

1

4

(
2wi jλdecay +

a+
2

λ
stdp
+ ni j

)]
, 0

}
(2.15)

at every time stepT , where the update rule can be parameterized by the 8 bit signed fractional

factors λ
decay

and λ
stdp

. The term ni j represents biased random numbers which are supposed

to approximate the Wiener process. They furthermore implement stochastic rounding of

the decay and STDP update when cropping the update to the significant bits of the weights.

In appendix B the implementation of the update equation with in–line assembly embedded

in C is listed. Some important notes on equation (2.15):

• Divisions are realized by bit shifts and therefore the results are biased towards lower

values as all results are rounded to the next lower integer. A division by 8 for example

yields

1

8

= 0 ,
2

8

= 0 , · · · ,
7

8

= 0 ,
8

8

= 1 . (2.16)

• Saturation may happen at any of the multiplications and additions.

• The factor of 2 attached to the weight accounts for the bit shift by one to match the

fractional representation as shown in table 2.2.

• The correlation measurement a+ has 8 significant bits. With the division by 2 the

range is scaled to [0, 128] such that the sign bit in the fractional representation is always

cleared.

12

• The update term in the round brackets is calculated with three non significant bits

compared to the weights (i.e. w′ = w + 1

8
∆w). These non-significant bits are taken

into account by the stochastic rounding. Therefore, the smallest change in the average

update is 1/8 lsb in units of the weights least significant bit.

The decay factor translates to the time constant τ
decay

with

τ
decay

=
4T
λ
decay

, (2.17)

where T is the update cycle. The fixed point of the plasticity algorithm without pairwise

correlations (λ
stdp
= 0) is given by

w0 = −
〈ni j〉 − 4
2λ

decay

. (2.18)

The −4 in the enumerator accounts for the biased rounding of the update as noted before.

The general–purpose part of the PPU executes the update loop of the synaptic weights.

The synapses are updated in row–major order of the synapse array. As 16 synapses are

processed in parallel, 64 iterations are necessary to update all synapses of the chip. To provide

control over the update cycle T of the synaptic weights the PPU is triggered with precise

timing by the FPGA. The general–purpose part waits for the trigger signal until the next

update loop is executed. This synchronizes the update cycle of the synaptic weights with the

timing of playback and recording of spikes.

2.3. The Firmware and Software Framework

The software on three di�erent systems is involved in order to perform the presented exper-

iments. First, the frickel-dls program library on the host computer for the chip configu-

ration and experiment description. Second, the FPGA firmware which handles the commu-

nication with the chip and the precisely timed experiment control. The last system involved

is the on-chip PPU which is programmed for the continuous reconfiguration, in particular,

implementing synaptic plasticity. The host and the PPU software are explained in more

detail in the following two sections.

2.3.1. The Host Software

The host software frickel-dls is a C++ library with a Python interface named pydlsnew.

Every configurable module on the chip and the baseboard is abstracted as a container holding

the module’s configuration and a coordinate which addresses this component. For example

the Neuron class holds the digital configuration for one neuron while the Neuron_index

addresses one of the 32 implemented neurons on the chip in a type–safe manner. These

containers are nested such that the Setup configuration itself is a hierarchical container con-

taining all configurable parts of a physical setup in the laboratory. The hierarchy of the

13

Setup

Board_config

Config_reg

Spike_router_ctrl_reg

Dac_control

Dac_values

Chip

Cap_mem_config

Cap_mem

Neuron_control_reg

Neurons

Neuron

Rate_counter

Synram_config_reg

Synram

Synapse

Syndrv_config

Ppu_control_reg

Ppu_program

MailboxCorrelation_config

Figure 2.5.: Hierarchical container structure in the host software of the full setup configu-

ration. Every leaf item is a configurable module either on the chip or on the

experiment baseboard.

1: t ← 0 . Reset the global time counter to zero

2: WAIT_UNTIL(t > 10
4
) .Wait until the counter reaches 10

4
cycles

3: SEND_SPIKE(address=1, row=0) . Send the 1
st
spike

4: WAIT_UNTIL(t > 2 · 104)

5: SEND_SPIKE(address=1, row=0) . Send the 2
nd

spike

6: STOP . Stop execution and recording of spikes

Figure 2.6.: Playback program which sends two spikes with an inter–spike interval of 10
4

FPGA cycles which corresponds to 100ms biological time. The global time

counter t increases with every FPGA clock cycle.

containers is shown in figure 2.5. The containers of the on–chip modules also implement

the bit–formatting which transforms the configuration into a stream of 32 bit words which

are understood by the chips’ digital IO interface. For the containers holding the configu-

ration of the baseboard modules the settings are transformed into control–register settings

for the FPGA. The content of the containers and configuration options of the individual

containers will not be discussed here.
3

Another task of the frickel-dls host software is the composition of playback programs.

These are precisely timed instructions to the chip which are for example external input spikes

and synchronization signals to the PPU. A minimal example for a playback program is listed

in figure 2.6. The instruction set of the playback program named Universal Neuromorphic

Instruction set (UNI) has timing, read and write instructions. It furthermore describes the

3
There exists an internal tutorial written by the author on how to get started with the software: https:

//brainscales-r.kip.uni-heidelberg.de/projects/symap2ic/wiki/dls-testing-cookbook.

14

https://brainscales-r.kip.uni-heidelberg.de/projects/symap2ic/wiki/dls-testing-cookbook
https://brainscales-r.kip.uni-heidelberg.de/projects/symap2ic/wiki/dls-testing-cookbook

data format of recording experiment results, in particular spike events and the responses

of chip configuration read requests e.g. requesting the current synaptic weight w0,0. The

instructions are executed in sequential order as no commands to alter the control flow exist,

for example no if– or while–statement is defined. Documentation on the instructions and

the execution model is provided in the repository of the host implementation [Friedmann,

2017]. During the execution of a playback program the spikes from all neurons on the chip

are recorded.
4

The third responsibility of frickel-dls besides experiment configuration and playback

program composition is the communication with the FPGA over USB. This includes trans-

ferring the configuration and experiment playback programs to the FPGA, trigger the ex-

periment execution and fetch recorded spikes and data from the FPGA memory.

2.3.2. PPU Software Tools

Generating binary programs for the on–chip processor is not straight forward, as the custom

vector extension has its own, non–standard instruction set. While the Power–Instruction Set

Architecture (ISA) is supported by the GNU Compiler Collection (GCC), vector instruc-

tions cannot be used with the standard compiler. A patched version is publicly available

which supports vector variable declarations, automated register allocation and wrapping of

the assembly instructions as built–in functions [Heimbrecht, 2017, Stallman and the GCC

Developer Community, 2017]. Register allocation is the process of mapping the variables

in the source code to registers of the processor and save and fetch them from the main

memory if necessary. Built–in functions of a compiler are an extension to the program-

ming language that allow for calling the instructions of the instructions set with syntax of

the programming language. Further information on this topic can be found for example in

Aho et al. [2006]. These features simplify programming the vector extension and prevent

a large range of programming errors, e.g. overriding register values which are later sup-

posed to be used. The patched cross compiler together with the libnux library allows for the

implementation of programs in the C programming language that can be executed by the

embedded plasticity processor, the PPU. While the patched GCC can cross compile di�er-

ent programming languages the implemented execution startup routines are implemented

C–specifically. Furthermore this library provides various low–level features frequently used

when programming the plasticity processor.

• Chip specific constants and addresses.

• Read and write functions to the mailbox, a predefined address space of the memory

for communication with the FPGA.

• String output using the mailbox.

• Linear congruential random number generation with constants from Press et al.

[2007].

4
While writing this thesis there may bemore spikes recorded by error which is known as work package #2373.

This issues does not distort the presented measurements as “wrong” spikes can be filtered reliably by their

timing.

15

• A conveniently usable basic testing framework.

Though, the vector instructions are available as built–in functions when programming in

C, the vector extension was programmed during the work for this thesis in assembly syntax.

The assembly is embedded in the C code using the GCC extended assembly syntax and also

taking advantage of the automated vector register allocation. This was considered to be the

only option to have fast and e�cient updates of the synaptic weights.

Summarizing, the GCC cross compiler together with the libnux library provide a low–

level interface to implement plasticity algorithms for the PPU. Yet, e�ort needs to be taken

to simplify this process and to hide the current complexity of programming the vector ex-

tension e�ciently.

16

3. Experiments and Results

3.1. The Implemented Plasticity Algorithm

In order to find any errors in the implementation as well as unexpected interference between

the analog and the digital part of the chip, the synaptic plasticity updates as performed by the

PPU are analyzed in the following. The figures in this section further illustrate the plasticity

algorithm with measurements on the hardware.

3.1.1. The Biased Random Walk of the Weights

First, the approximation of the OU process

∆wi j =
2wi jλdecay + ni j

8

(3.1)

to which the weights are subject without spike correlations is tested. This only approximates

the OU process as the random numbers are uniformly distributed and not from a contin-

uous Wiener process. The description of the constant λ
decay

and the noise ni j is given in

section 2.2.4. As for the full plasticity algorithm in equation (2.15) the result of the division

by 8 is not rounded but floored onto an integer value. The data for the following figures are

not simulated but measured on the DLS including the full configuration as it is also used for

later experiments. In particular, the updates are measured with the full plasticity algorithm

and enabled neurons and the synapses. The correlation term in equation (2.15) is turned o�

by setting λ
stdp

to zero.

The average update of the synaptic weights due to decay and biased noise is shown in

figure 3.1. The slope of 〈∆w〉(w) is determined by λ
decay

= −4/128 (cf. equation (3.1)). The

random numbers ni j are drawn uniformly from −2 lsb to 13 lsb which results in a bias of

3/16 lsb:

〈∆w〉(w = 0) =
〈ni j〉 − 4

8

=
3

16

, (3.2)

where the −4 accounts for the bias introduced by the division in equation (3.1) that floors

the result to the next lowest integer.

Di�erent considerations were taken into account for this choice of the random numbers

and λ
decay

: First, the randomness should be such that in the long run all weights are reachable

by chance. For any weight the probability to increase and to decrease must be nonzero,

except for the boundary cases. This prohibits too large decay factors. Furthermore, the

randomness should not change the weights by more than ±1 lsb for one synaptic plasticity

update in order to always ensure weak gradual changes of the synaptic weights. Last, the

17

0 10 20 30 40 50 60

Weight [lsb]

−0.25

0.00

0.25
〈∆

w
〉
[
l
s
b
]

(a)

experiment

target

0 10 20 30 40 50 60

Weight [lsb]

−2

0

2

∆
w
[
l
s
b
]

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
r
o
b
a
b
i
l
i
t
y

Figure 3.1.: (a) The blue line shows the average plasticity update of a synaptic weight without

correlationmeasurements. It approximates the linear dependence drawn in solid

orange where λ
decay

determines the slope while the random noise ni j accounts
for the bias. (b) Probability for a weight’s update. While the smallest update

is ±1 lsb, the smallest shift for the average update is 1/8 lsb. Both figures are

measured on the DLS where the PPU updates all 1024 synapses.

bias should be positive with a stable steady state which is above the weight needed to make

the neurons fire. Even with initial weights of zero all neurons should in the long run start

to spike.

While the decay and the STDP factor will be varied in later experiments the random

numbers will be drawn from the same distribution throughout all experiments. Drawing

the random numbers in the kernel code is time critical as for each update and each synapse

an individual random number needs to be drawn. Therefore, the distribution is hard coded

and not parameterized such that the compiler has more optimization opportunities.

The functional form

〈∆w〉 = −
1

128

w +
3

16

, (3.3)

shown as an orange line is well approximated in figure 3.1. The smallest shift of the average

weight update is 1/8 lsb as the update is calculated with three non-significant bits which are

taken into account by the stochasticity. As the update can only be an integer, the lower

18

0 25 50 75 100 125 150 175 200

0

20

40

60

〈w
〉
[
l
s
b
]

(a)

w
initial

= 0 lsb

w
initial

= 63 lsb

0 25 50 75 100 125 150 175 200

Time [s]

2

4

σ
w
[
l
s
b
]

(b)

w
inital
= 0 lsb

w
inital
= 63 lsb

Figure 3.2.: Average weights (a) and variations (b) over all synapses starting at an initial

weight of 0 lsb (blue) and 63 lsb (orange). The updates as shown in figure 3.1 are

applied every second. In dashed blue and orange the weights of two randomly

chosen synapses are shown for both experiments. The black dashed lines show

the expected exponential decay with a time constant of 128 s and a stable weight

of 24 lsb.

graph in figure 3.1 shows the probability for the weight to change. The largest change for

any synaptic weight for this set of parameters is ±1 lsb.

This test shows that the random numbers from the linear congruential generator are not

biased, but they may still be correlated which cannot be seen in this figure. This test also

shows, that the boundary cases for the smallest and largest weights are handled correctly. At

the lower bound of 0 lsb and at the upper bound of 63 lsb no overflow and underflow errors

occur, instead, weights are clipped to the valid range.

If equation (3.1) is applied every second, the average weight over all synapses is expected

to decay towards the stable fixed point of 24 lsb. This temporal evolution of the average

synaptic weight is shown in figure 3.2a. The correlation term is still turned o�: λ
stdp
= 0.

Two experiments are shown with initial weights of 0 lsb for the blue line and initial weights

of 63 lsb for the orange line. The dashed orange and blue lines show the weights of two

randomly chosen synapses as an example how the individual weights evolve. The expected

exponential decay given by the solution to the OU process with a time constant of 128 s

19

−5 0 5

0

100

200

a +
[
l
s
b
]

(a)

−5 0 5

0

100

200

(b)

−5 0 5

Time di�erence [ms]

0

100

200

a −
[
l
s
b
]

(c)

−5 0 5

Time di�erence [ms]

0

100

200

(d)

Figure 3.3.: Causal (upper row) and anticausal (lower row) correlation sensor measurements

for 10 spike pairs over all 1024 synapses. In each plot the blue shaded area shows

the full range of measured correlations over all synapses. The orange area shows

the range of the 25% to 75% quantile. Themedian is drawn as a red line. Figure

(a) and (c) show the measured correlation without the calibration, figure (b) and

(d) with calibration. The range from 0 lsb to 255 lsb of the digitizer for the

correlation measurements is shown by the black dashed lines.

(cf. equation (2.17)) towards the stable fixed point of w = 24 lsb (cf. equation (2.18)) is

shown by the black dotted lines. The lower graph, figure 3.2b shows the variation among

the individual weights over time. While the average weight decays the variation among the

synaptic weights grows.

3.1.2. Correlation Sensor Measurements

As the last ingredient to the plasticity algorithm the spike correlation sensor is characterized

in the following. The causal and anticausal correlation sensor measurements for 10 spike

pairs are shown in figure 3.3 with and without using the per–synapse calibration bits. For

each time di�erence plotted on the horizontal axis, all 1024 correlation sensors are read out

after receiving 10 pre–post spike pairs. The blue shaded area shows the full range of measured

correlations while the orange area displays the range of the 25% to 75% quantile. The time

constant fitted to the median of the measurements with the per–synapse calibration is 5.3ms.

20

npre
0

npost
0

νout
0

npre
1

npost
1

νout
1

npre
31

npost
31

νout
31

...
...

Figure 3.4.: Abstract view of an emulated feed forward neural network. The green neurons

represent randomly spiking spike sources which are connected to the imple-

mented neurons shown as blue circles.

Figures 3.3a and 3.3b show themeasurements where all per–synapse calibration bits are set

to the same default value. For the measurements in figures 3.3b and 3.3d the calibration bits

are configured individually such that the targeted time constant and amplitude is matched

as closely as possible. The synapse–to–synapse variation of the measured kernel functions

can be decreased significantly. The spread in both columns is dominated by fixed pattern

synapse–to–synapse variations and not trial-to-trial variations. The per–synapse calibration

of the correlation sensors is limited by the coarse control one has over the amplitude and

time constant with the calibration bits [Wunderlich, 2016, Friedmann et al., 2017].

If the causal correlation is within the sensor’s dynamic range—as shown in figure 3.3—

the anticausal branch will mostly measure a− = 0. This is a problem which is supposed to

be fixed in later chip revisions. As both branches are scaled with the same global constant,

this implies that the causal and anticausal branch of the STDP rule cannot be taken into

account for kernel functions K (∆t) both at once. Configuring the anticausal sensor to yield

measurements in its dynamic range comes at the cost of having the causal measurement

saturating at a+ = 255. Hence, for all experiments only the causal branch will be used.

3.2. Weight Dynamics Towards Stability

As motivated in the introduction in chapter 1 one of the main aims is to generate a con-

nectivity matrix by local plasticity rules that yield moderate spiking activity for all neurons

and therefore acting as a homeostatic plasticity mechanism. This moderate spiking activity

cannot be achieved with equal parameter settings as every neuron and every synapse varies

in its dynamics due to transistor mismatch. If all weights in a feed–forward network with

random spike input as sketched in figure 3.4 are set to the same weight one neuron might

be bursting while another neuron does not fire at all even though the same input spikes are

received.

The sketched feed–forward network with Poissonian distributed input spikes from 32

spike sources at 30Hz projecting onto the 32 neurons on the DLS is chosen for the exper-

iments in this section. All 1024 synapses are subject to synaptic plasticity. The fixed point

of the weights shown in the previous section 3.1 is such that every neuron fires close to

21

0 25 50 75 100 125 150 175 200

Time [s]

0

25

50

75

〈ν
〉
[
H
z
]

0 25 50 75 100 125 150 175 200

Time [s]

10
0

10
1

σ
ν

〈ν
〉
[
1
]

0

4

8

12

16

I
n
i
t
i
a
l
w
e
i
g
h
t
[
l
s
b
]

Figure 3.5.: Evolution of the average firing rates and the relative variations over all postsy-

naptic neurons for anti-Hebbian plasticity. The relative variations are consid-

ered to be the better measure for how di�erent the firing rates are as explained

in the text.

νmax = 1/τ
ref

(cf. figure 3.16a later in the experiment section). By setting the STDP scaling

factor to λ
stdp
= −16/128, correlated spiking is penalized. Every postsynaptic spike con-

tributes to a decrease of the synaptic weight if there was a presynaptic spike close before.

The decrease of the weight for correlated spiking will be referred to as anti–Hebbian plas-

ticity.
1
It is expected that every synaptic weight constantly grows at a small rate. As soon as

the weight is strong enough to make the postsynaptic neuron spike the weight is decreased

again. The growth and this penalty to the synaptic weight are both configured to be weak

such that a plasticity update would not be larger than ±2 lsb. This is supposed to ensure that

the updates happen softly and no update iteration may strongly change the weight matrix.

The evolution of the average firing rate of the postsynaptic neurons during an emulation

is shown in figure 3.5. The di�erent colors encode di�erent initial weights and therefore

di�erent initial firing rates. For each initial weight five repetitions with di�erent random

seeds for the spike sources and synaptic random term are averaged. The relative variations of

the firing rates among all neurons of all repetitions are shown in the lower graph as they are

1
This naming is commonly used and relates to [Hebb, 1949] which is often summarized as “Cells that fire

together wire together”.

22

0 25 50 75 100 125 150 175 200

Time [s]

0

5

10

15

〈w
〉
[
l
s
b
]

0 25 50 75 100 125 150 175 200

Time [s]

2

4

σ
w
[
l
s
b
]

0

4

8

12

16

I
n
i
t
i
a
l
w
e
i
g
h
t
[
l
s
b
]

Figure 3.6.: Evolution of the average weights and the variations over all synapses for anti-

Hebbian plasticity.

considered to better show how di�erent the firing rates are. For the initial weight of 16 lsb,

initially all neurons fire at a very high rate such that the absolute spread for the firing rates

among the neurons is large. Still, all neurons show a similar behavior as all firing rates are at

the same order of magnitude. Contrary, for low initial weights, the firing rates vary among

the neurons within a factor of 10 showing a much more diverse behavior from neuron to

neuron even though the absolute variations are small.

As expected, due to the plasticity updates the system reaches a steady state where all neu-

rons fire at a moderate rate of 17Hz. All firing rates of the individual neurons in the last 10 s

are within 3.9Hz to 45Hz. Neither are neurons firing close to the maximum firing rate of

210Hz nor are any neurons not firing at all. Furthermore, the same steady state of firing

rates is reached regardless of the initial conditions. In particular, an initially disconnected

neural network also reaches the same steady state of moderate firing activity.

The evolution of the average weight over all synapses and five repetitions is shown in

figure 3.6. As for the firing rates, the same stable average weight of 6 lsb is reached for long

emulation times regardless of the initial conditions. Though the stable average weight is

quickly reached, the variations show slower dynamics towards a stable state. In comparison

to the evolution without STDP in figure 3.2, the steady state average weight is much lower

with the anti-Hebbian STDP term. This shows that indeed the positive bias and the anti-

Hebbian STDP term balance far below the steady state solution of 24 lsb. For large initial

23

10
0

10
1

Spikes in per interval

10
−4

10
−3

10
−2

10
−1

10
0

P
r
o
b
a
b
i
l
i
t
y

(a)

10
0

10
1

Spikes out per interval

10
−4

10
−3

10
−2

10
−1

10
0

R
e
l
a
t
i
v
e
o
c
c
u
r
r
e
n
c
e

(b)

Figure 3.7.: (b) Probability of the number of input spikes over all 32 spike sources within

intervals of 5ms. There are on average 4.80 input spikes per interval. (a) Relative

occurrence of the number of output spikes summed up over all neurons within

the same interval size. There are on average 2.72 spikes in the intervals 5ms.

For both plots the orange cross marks the probability for zero spikes within a

time window.

weights and therefore large initial firing rates the decrease of rates andweights happensmuch

faster than in the free case (cf. figure 3.2). In this region the dynamics are dominated by the

STDP term. For low initial weights on the other hand, the rates and weights increase slowly

with the same speed as without STDP. Here, the positive bias dominates the dynamics.

In figure 3.7a the probability of the number of input spikes across all 32 spike sources

within intervals of 5ms is shown. It is a binomial distribution with p = 30Hz · 5ms and

n = 32. The same statistics over the number of spikes over all postsynaptic neurons is shown

in figure 3.7b. The time interval of 5ms was chosen to match the neurons refractory periods

such that each neuron contributes with at most one spike to the number of spikes within an

interval. Therefore, there are at most 32 spikes within one time frame for both graphs in

figure 3.7. The orange crosses mark the probability for zero spikes within a time window,

as this cannot be correctly placed on a logarithmic scale.

It is remarkable how much the distributions of input and output spikes di�er, though the

average rates of 30Hz for the input and 17.0Hz for the output are at the same order of

magnitude. While it is highly unlikely to have all 32 source neurons fire within a period

of τ
ref
, this is still observed for the output neurons. This indicates that the output neurons

tend to fire together. As all neurons may connect to the same spike sources by means of

the same plasticity algorithm this is expected. The only asymmetry between the synapses

in the theoretical model is the contribution of the random term to the plasticity algorithm.

24

0 10 20 30

Neuron

0

5

10

15

20

25

30

S
y
n
a
p
s
e
d
r
i
v
e
r

(a)

0 10 20 30

Neuron

0

5

10

15

20

25

30

S
y
n
a
p
s
e
d
r
i
v
e
r

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Weight [lsb]

Figure 3.8.: Weight matrices after the emulation of 200 s for two di�erent random seeds for

the synaptic random term and the random spike sources. The circles are drawn

for reference.

In practice there also is asymmetry due to di�erent strengths of the synapses, correlation

sensors and sensitivity of the neurons.

To qualitatively show this asymmetry, figure 3.8 shows two weight matrices at the steady

state for di�erent random seeds. Di�erent random seeds for the random term in the synaptic

plasticity and for the spike sources generate di�erent weight matrices. These two examples

of resulting weight matrices do not show, but indicate that the steady state solution is not too

biased by the synapse–to–synapse variations. Though, the synapse s11 → n27, highlighted
with the black circle, is probably biased for example, as the final weight is quite large in

both trials. A more thorough analysis on a bias of the steady state by fixed pattern noise is

given in figure 3.9. The correlation between the amplitude of the correlation sensor and

the steady state weight is shown in figure 3.9a. Each synapse has its own correlation sensor

with an individual sensitivity (the spread of the correlation sensor amplitudes is measured

in section 3.1.2). For the same correlation of pre–post spikes, a synapse with a more sensi-

tive correlation sensor decreases the weights stronger than with a less sensitive correlation

sensor. A synapse with a strong correlation sensor therefore contributes to the histogram in

figure 3.9a in the lower right as the steady state weight is likely to be low. All synapses of 25

repetitions with di�erent seeds are taken into account individually for the histogram.

25

100 150 200

Correlation sensor amplitude [lsb]

0

5

10

15

20

25
S
t
e
a
d
y
s
t
a
t
e
w
e
i
g
h
t
[
l
s
b
]

(a)

0 500 1000 1500

Occurrences

0 10 20 30

Neuron

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

A
v
e
r
a
g
e
s
t
e
a
d
y
s
t
a
t
e
w
e
i
g
h
t
s
[
l
s
b
]

(b)

Figure 3.9.: (a) Two-dimensional histogram over the final synaptic weight and the synapses’

correlation sensor amplitude measured in section 3.1. (b) Average incoming

synaptic weights for each individual neuron. The error bars show the uncer-

tainties of the average weights. The data from all five repetitions over the five

di�erent initial conditions is included in the histogram and the graph of the

average final weight per neuron.

Figure 3.9b shows the average steady state weight of all incoming synaptic connections

with their respective uncertainties for each neuron. The neuron–to–neuron variation of

this average weight is much larger than the expected uncertainty. In other words, there

are neurons that systematically have higher or lower incoming synaptic weights than the

expected average. This shows a form of fixed pattern noise from neuron to neuron which is

believed to be due to varying strengths in the synaptic inputs.

3.3. Recurrence in Stable Networks

With the plasticity algorithm, a robust tool is available to generate neural networks with

a stable moderate activity. This allows for studying how recurrent connections among the

neurons would change the dynamics in a spiking neural network with all of its neurons

at a favorable working point. In this section two questions are addressed: Do recurrent

connections add some kind of measurable memory to the network and does the sensitivity

26

0 250 500 750 1000 1250 1500 1750 2000

Time [ms]

0

20

N
e
u
r
o
n

(a)

0 250 500 750 1000 1250 1500 1750 2000

Time [ms]

0

20

N
e
u
r
o
n

(b)

Figure 3.10.: (a) Spike pattern after 198 s for a network with 16 recurrent synapses and 16

synaptic connections from external spike sources for each neuron. (b) The

spike pattern for a pure feed–forward network.

to perturbations increase? The first question is a natural question to ask as the recurrent

connections allow for the information packages, as which the spikes may be seen, to re–

enter the system at multiple di�erent locations. The second question whether the sensitivity

increases arose when trying to hand–craft a connection matrix that yields stable activity with

recurrent synapses. The more recurrence the harder it gets to make the network neither

excite itself to exploding activity nor to have the activity die out. Analytical calculations

with balancing excitatory and inhibitory populations support this finding [Brunel, 2000].

For the following experiments the feed-forward network with stable plasticity parameters

is modified to also have recurrent connections. The degree of recurrence drec is used to

control the amount of connections among the neurons: each neuron has 32 − drec Poisson
spike sources as presynaptic partners and drec recurrent connections from randomly chosen

neurons, also allowing for synaptic connections with itself. Throughout this section the

plasticity parameters are the same as in the previous section (λ
stdp
= −16/128 and λ

decay
=

−4/128). Also, the random input spikes are at a rate of 30Hz except otherwise noted.

The spikes of a network with plastic synapses and a degree of recurrence of 16 is shown

in figure 3.10a. Below in figure 3.10b the spike pattern of a network without recurrent

connections but only the feed–forward connectivity is shown. Both spike patterns show

27

0 50 100

∆t [ms]

−0.1

0.0

0.1

0.2

0.3

0.4

0.5
ρ
s,
s

(a)

0 4 8 12 16 20

drec
0 10 20

drec

0

2

4

6

8

10

12

14

16

τ ν
[
m
s
]

(b)

Figure 3.11.: (a) Autocorrelation of the total activity for di�erent degrees of recurrence.

(b) Time constant of the decay of the autocorrelation.

the steady state recorded after 198 s and therefore 198 synaptic plasticity updates. The net-

work with recurrence shows distinct periods of high activity and low activity, whereas the

spike pattern without recurrence is much more homogeneous. With increasing number

of excitatory recurrent connections a high spiking activity will further excite the neurons.

Contrary, a low spiking activity will keep the network at a low activity. Broadly speaking,

the recurrence adds a form of short term memory to the networks’ activity.

3.3.1. Time Constant of the Collective Neural Activity

To quantify the previous qualitative observation—the more recurrence the longer the net-

work stays in a high or low activity state—the autocorrelation of the summed up spiking

activity of all neurons is shown in figure 3.11a. The autocorrelation ρs,s (∆t) of the spiking
activity s(t) is defined as commonly used in statistics

ρs,s (∆t) =
1

σ2

s

∫ ∞

−∞

[s(t) − µs] [s(t + ∆t) − µs] dt , (3.4)

where µs is the average and σs the standard deviation of s(t). The spiking activity s is the
total number of spikes, binned within bins of 1ms. As s(t) can only be recorded over a finite

duration, the integral limits are cropped to the valid range where both s(t) and s(t +∆t) are

28

given. The autocorrelations are calculated for spike trains of 10 s duration during which the

weight matrices were kept static. For each degree of recurrence 10 weight matrices were

generated with di�erent random seeds. The correlations are averaged over those 10 weight

matrices and further over 10 trials with di�erent random spike input.

A positive autocorrelation for some time lag ∆t indicates, that if s is large at time t it’s
likely to be large at time t + ∆t, too. Contrary, a negative autocorrelation for ∆t indicates,
that s is likely to be small at time t + ∆t if it was large at time t.
For small degrees the autocorrelation quickly drops below zero. This is expected: if many

neurons were active at time t, all of them are in the refractory state shortly after and may

not spike again. For large degrees the autocorrelation does not drop below zero, instead

slowly decreases. A large firing activity at time t will excite the non spiking neurons via the

recurrent synapses such that the activity stays high. Furthermore, if there is low activity at

time t is is likely to still be low after a short time lag: then the neuron mostly get spikes from

the external spike sources, but only few from the other neurons within the network.

To quantify the memory how long such a high or low activity state is stable, the time

constant of the decay of the autocorrelation is fitted. Figure 3.11b shows these time constants.

The more recurrence, the longer the network keeps its activity.

With these findings at least a very simple form of memory is shown. The next section

addresses the question on how sensitive the system responds to perturbations.

3.3.2. Sensitivity to Perturbations

The sensitivity of the neural network towards perturbations is analyzed with the following

three measurements:

• The trial–to–trial variation between two experiments is measured where the chip con-

figuration and the input spikes are exactly the same. This shows the influence of the

analog parameter reconfiguration variations, thermal noise or jitter due to the spike

routing and recording on the FPGA.

• The input spikes are perturbed by adding a pulse of spikes at a specific point in time.

The neurons’ responses are compared to their responses if there are the same random

input spikes without a pulse.

• The last measurement for analyzing the sensitivity is the decrease and increase of the

spiking activity, if the frequency of the random spike input is changed.

The trial–to–trial variations in the resulting spike patterns are measured by the squared dif-

ference between the Gauss–convolved spike trains:

∆
spikes,m,n =

∑
i

∫ ∞
−∞

(
smi (t) − sni (t)

)
2

dt∑
i

∫ ∞
−∞

(
smi (t) + sni (t)

)
2

dt
, (3.5)

with

smi (t) =
∫ ∞

−∞

exp


−
1

2

(
t − t ′

σt

)
2

∑
tm
spike, i

δ
(
tm
spike,i

− t ′
)
dt ′ . (3.6)

29

0 5 10 15 20

Degree of recurrence drec [1]

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

D
i
s
t
a
n
c
e
o
f
s
p
i
k
e
t
r
a
i
n
s
∆
s
p
i
k
e
s
[
1
]

Figure 3.12.: Average distance between the spike trains of repetitions of the experiment with

exactly the same random spike input and configuration. The distance measure

∆
spikes

is explained in the text.

The index i indexes the di�erent neurons, m and n the di�erent trials and σt denotes the

width of theGaussian kernel. The kernel of the convolution is not normalized, as themeasure

in equation (3.5) is invariant under scaling all smi (t) with the same factor. The measure is

within [0, 1] where zero codes for a perfect overlap between the Gauss–convolved spike

trains, while one stands for no overlap at all. Not only the number of spikes is accounted for

by the spike measure but also the precise timing. This measure is similar to the van Rossum

distance [van Rossum, 2001] where the squared distance of the spike trains convolved with

an exponential decay for t > 0 is calculated. Here, the proposed measure is considered to be

easier to interpret as its boundaries have intuitive interpretations.

For each degree of recurrence the distance in the spike patterns between two trials of

the same experiment is shown in figure 3.12. The distances are averaged over 10 pairs of

experiments for the 10 generated matrices which were also used for measuring the autocor-

relations. The width of the Gaussian kernel is 2.5ms which is chosen to match half of the

refractory period. Therefore, a spike contributes to si (t) mostly during a duration of τ
ref
.

Each experiment is executed with a duration of 1.1 s where the spikes of the last 1 s are used

for the calculation of the distance. The first 100ms are discarded for the evaluation such that

the warm-up at the beginning of an emulation does not contribute to the distance measure.

Longer experiments cannot be used for calculating the distance because of a known issue

that causes the times of recorded spikes to be shifted systematically.
2

2
This is internally documented as working package #2550.

30

300 320 340

Time [ms]

0

50

100

150

200

∆
ν
[
H
z
]

(a)

0 4 8 12 16 20

drec
0 10 20

drec

0.5

0.6

0.7

0.8

0.9

1.0

1.1

∆
n

(b)

n
Pulse
= 8

n
Pulse
= 16

Figure 3.13.: (a) Average increase in the average spiking frequency of the neurons when

introducing additional spikes on 8 of the 32 external spike sources at t = 300ms.

(b) Average increase in the number of spikes per neuron for di�erent strengths

of the pulses.

The measure of distance increases for an increasing degree of recurrence. Even without

recurrence the resulting spikes vary from trial–to–trial, shown by the nonzero distance mea-

sure. Possible reasons are trial–to–trial variations in the analog parameter storage, thermal

noise in all analog circuitry and jitter on the recording of spikes on the FPGA. The distance

is interpreted to increase with an increasing degree of recurrence as these small changes fur-

ther influence the spike times in the future. The postsynaptic neurons may receive di�erent

spike trains from trial–to–trial which even stronger change the future spike times. The more

recurrence the more the perturbations within chip and FPGA influence the system.

Next, the neurons’ responses to pulses of input spikes are tested as a perturbation of the

system. Figure 3.13 shows the response as the time resolved increase of the spiking frequency

as well as the total number of additionally excited spikes. In figure 3.13a the increase in

the average spiking frequency is shown, if 8 out of the 32 external spike sources spike at

t = 300ms. The frequency increase is averaged over 10 repetitions and 10 di�erent weight

matrices for each of the recurrent degrees.

Within 5ms after the pulse, the average firing rate increases stronger for fewer recurrence.

Looking at short time lags, the feed–forward network is the most sensitive to the tested

perturbation on the spike input. This may be explained by the fact that all neurons are

31

connected to all input sources. The spiking activity is solely determined by the input spikes

and not by any recurrent spikes. Therefore, on the other hand, the feed–forward network

quickly forgets the pulse, shown by the fast decrease in figure 3.13a.

For larger degrees of recurrence the increase of activity is not as strong but longer in

time compared to no recurrence. As already seen for the autocorrelation in figure 3.11a the

increased activity after the pulse further excites the network via the recurrent connections.

Figure 3.13b shows the average increase of the total number of spikes per neuron when

comparing the perturbed network to the unperturbed. An increase of ∆n = 1 means, that all

of the 32 neurons spiked on average one time more with the perturbation compared to no

perturbation. This increase is the integral of the curves shown in figure 3.13a. It measures

the total influence the perturbation has for all times. The di�erent colors encode di�erent

strengths of the pulse. There is the trend to a stronger increase of the number of spikes for

an increasing recurrence. For fewer recurrence the system responds fast and strongly on

a short timescale while with increasing recurrence the total influence of the perturbation

becomes larger.

As the last measure of sensitivity of recurrent neural networks, the increase of the average

spiking frequency is shown in figure 3.14 when varying the random input spike frequency.

For each point of the response functions two repetitions of the experiment for each of the

10 weight matrices are averaged. All weight matrices were generated with a random spike

input at 30Hz. Interestingly all curves intersect close to an input spike rate of (30 ± 1) Hz

and an output spike frequency of (14 ± 2) Hz, which is the spike rate of input spikes at which

the weight matrix was generated. A larger degree of recurrence yields a steeper increase of

the output frequency when varying the random spike rate. Again, the more recurrence, the

more sensitively the network responds to a shift in the background spike frequency.

3.4. Exploring the Plasticity Parameter Space

All of the previous measurements are performed with the same set of plasticity parameters.

However, the synaptic plasticity has a few free parameters which are the decay factor λ
decay

,

the strength of the correlation update λ
stdp

, the time constant of the STDP kernel and the

bias of the random numbers. As the values used previously are chosen with few justification,

this section aims to explore the influence of the decay strength and correlation update factor.

How sensitive are the resulting network dynamics to these changes of the synaptic plastic-

ity? Due to the acceleration factor of the hardware it is possible to do many plasticity exper-

iments within a short time. One of the repetitions for the sweep in figure 3.16 for example

takes 51.6min wall clock time emulating 16.1 h biological time in which 112 × 106 spikes

are recorded and every pre–post spike pair at each of the 1024 synapses is taken into account

for the synaptic plasticity. Still, the STDP time constant and bias of the randomness are fixed

to limit the parameter space to a sweepable range.

The discrete synaptic plasticity update reads simplified

∆wi j ∝ 2wi jλdecay +
a+
2

λ
stdp
+ ni j . (3.7)

32

20 40 60

νin [Hz]

0

20

40

60

80

ν o
u
t
[
H
z
]

(a)

0 4 8 12 16 20

drec

20 40

νin [Hz]

0

1

2

3

4

5

∂
ν o

u
t

∂
ν i
n

[
1
]

(b)

Figure 3.14.: (a) Change in the spiking frequency when varying the rate of the random

input spike sources for di�erent degrees of recurrence. (b) Slope of the change

in the spike frequency. It shows the gain factor with which changing the input

frequency will change the output frequency.

The change of the weights due to decay and bias in the random numbers is sketched in

figure 3.15a Given a positive bias of the random numbers, a positive decay factor causes

the weights to grow while a negative factor makes the weights decay towards the stable

fixed point. The correlation update factor λ
stdp

configures how strong the accumulated,

exponentially weighted pre–post spike pairs contribute to the plasticity update. A positive

factor causes the weights to increase, a negative factor causes the weights to decrease on

causal correlated spike pairs. Hence, the swept λ
decay

–λ
stdp

parameter plane covers di�erent

interesting regimes:

• Hebbian and convergent: λ
stdp

> 0 and λ
decay

< 0. Causal spiking will lead to

potentiation of the synaptic weights while weights decay towards the stable fixed point.

• Anti–Hebbian and convergent: λ
stdp

< 0 and λ
decay

< 0. Causal spiking will de-

crease synaptic weights and weights decay towards the stable fixed point. For large

decay factors the activity is expected to die out because all weights will converge to-

wards zero as the stable weight w0 is proportional to 1/λ
decay

. The spiking activity

may only speed up this decrease of weights.

33

0
wmax

Weight w

0

b

A
v
e
r
a
g
e
u
p
d
a
t
e
〈∆

w
〉

w0(λ
decay

) ∝ −
1

λ
decay

λ
decay

> 0

λ
decay

= 0

λ
decay

< 0

(a)

0

λ
decay

0

λ
s
t
d
p

Hebbian

divergent

→ explodes

Hebbian

convergent

→ ?

anti–Hebbian

divergent

→ ?

anti–Hebbian

convergent

→ dead

(b)

Figure 3.15.: (a) Sketch of the average change in the synaptic weights given a positive bias

b in the randomness and no contributions from the correlation term. (b) The

di�erent regimes of the swept parameter range. The expected behavior for the

Hebbian divergent and the anti–Hebbian convergent regime as explained in

the text are also added.

34

• Hebbian and divergent: λ
stdp

> 0 and λ
decay

> 0. Causal spiking will increase the

synaptic weights and weights are repelled from the instable fixed point which is smaller

than zero. The weights may only increase and therefore spiking activity is expected

to explode.

• Anti–Hebbian and divergent: λ
stdp

< 0 and λ
decay

> 0. Causal spiking will decrease

the synaptic weights while weights are repelled from the instable fixed point which is

smaller than zero. In this regime, the network may find a balance between growing

weights due to the divergent decay and the decreasing of the weights due to the STDP

kernel.

Figure 3.15b shows the di�erent regimes and the expectations.

Using the feed–forward topology as in figure 3.4 the network activity is recorded in the

last 10 s out of 200 s emulation time. The measurements from analyzing the stability in sec-

tion 3.2 indicate that indeed the steady state of the weight evolution is reached after this

period. The swept parameters cover mostly regions with stronger factors than for the previ-

ous measurements—especially
���λdecay

��� is mostly larger than 4/128. Therefore the weights are

expected to converge even faster. Figure 3.16a shows the average firing rate of the neurons

at the end of the emulation for the di�erent plasticity parameters. The frequencies are aver-

aged over all neurons and over three repetitions for each measured point. The 5% quantile

over all postsynaptic neurons’ spiking frequencies of all of the three trials is shown in fig-

ure 3.16b. It shows the activity of the rarely spiking neurons. Similarly, the 95% quantile

of all postsynaptic neurons’ spiking frequencies is shown in figure 3.16c to show the activity

of the frequently spiking neurons. The solid line shows the border where the activity of the

rarely spiking neurons is larger than 1Hz. The dashed line on the other hand shows the

border where the activity of the frequently spiking neurons is larger than 50Hz.

In theAnti–Hebbian convergent regime in the lower left the spiking activity goes to zero for

large decay factors as expected. On the opposite, in theHebbian divergent regime at the upper

right all postsynaptic neurons fire with their largest possible firing rate since all weights grew

to the largest value of 63 lsb. In the regimes Hebbian convergent and Anti–Hebbian divergent
where STDP and decay may balance di�erent patterns are observed and characterized in the

next paragraph.

The solid and dashed lines define di�erent phases which are shown in figure 3.16d. The

phases are named:

• Dead: There are rarely spiking neurons which fire with less than 1Hz and there are

no neurons firing heavily at more than 50Hz.

• Diverging: Both rarely spiking neurons and heavily spiking neurons exist.

• Stable: Neither rarely spiking neurons nor heavily spiking neurons exist.

• Explode: No rarely spiking neurons, but heavily spiking neurons exist.

For each of those phases the spikes within the last second of the emulation for exemplary

parameter combination are shown in figure 3.17. The spikes are taken from the first of the

35

−25 0 25

−50

0

50
λ
s
t
d
p
[
1
/
1
2
8
]

(a)

−25 0 25

−50

0

50

(b)

−25 0 25

λ
decay

[1/128]

−50

0

50

λ
s
t
d
p
[
1
/
1
2
8
]

(c)

−25 0 25

λ
decay

[1/128]

−50

0

50

(d)

10
0

10
1

10
2

ν m
e
a
n
[
H
z
]

10
0

10
1

10
2

ν 0
.0
5
[
H
z
]

10
0

10
1

10
2

ν 0
.9
5
[
H
z
]

Explode

Stable

Diverging

Dead

Figure 3.16.: (a) Average firing rate over three experiments for di�erent plasticity parameters

in the λ
stdp

–λ
decay

–plane. Figure (b) and (c) show the 5% and 95% quantile

of the neurons’ firing rates over all three repetitions for each parameter com-

bination. The transparent data points in (b) show where the 5% quantile of

the firing rates is zero and therefore not representable on the logarithmic fre-

quency scale. The solid and the dashed lines indicate where ν0.05 crosses 1Hz

and where ν0.95 crosses 50Hz. These lines separate the space into the di�erent

phases—shown in (d). The black crosses are shown for later reference.

three trials with the parameter combinations marked in figure 3.16 by the black crosses. The

spike patterns can nicely be related to the names of the di�erent phases—dead, diverging,

stable and explode. Still, also within the di�erent phases the spike plots may look di�erently

for di�erent parameter combinations which cannot be seen from these examples. For exam-

ple, the ratio from exploding to dying neurons in the diverging phase varies with respect to

the λ
stdp

–λ
decay

parameters.

Log–spaced histograms over the spiking frequencies of all neurons in three trials for the

exemplary parameter combinations are shown in figure 3.18. The outermost bins hold all

occurrences of frequencies which are outside of the vertical dashed lines. In particular, a

neuron that never fired would fall into the leftmost bar. For the dead case in figure 3.18a

still some neurons fire rarely while most of the neurons never fire at all. With the diverging

parameter combinationmost of the neurons either fire at a very high rate or at a very low rate

36

0 200 400

Time [ms]

0

20

N
e
u
r
o
n

(a)

0 200 400

Time [ms]

0

20

N
e
u
r
o
n

(b)

0 200 400

Time [ms]

0

20

N
e
u
r
o
n

(c)

0 200 400

Time [ms]

0

20

N
e
u
r
o
n

(d)

Figure 3.17.: Spikes during the last second of the emulations for the parameter combinations

marked in figure 3.16 with black crosses. The spike pattern of the first of the

three repetitions is displayed. Figure (a) to (d) are for the phases dead, diverging,
stable and explode.

(cf. figure 3.18b). Only very few neurons spike at a rate within 1Hz to 50Hz. Contrary,

in the histogram in figure 3.18c all neurons have a firing rate within this range. In the

exploding phase (figure 3.18d) all neurons fire at a rate above 50Hz.

As expected the dynamics change heavily depending on the parameter combinations of

λ
decay

–λ
stdp

. Though designed to also yield stabilizing plasticity with moderate firing rates,

it is remarkable how large the stable parameter space is. For strong, anti–Hebbian plasticity

with λ
stdp
= −64/128 the decay factor may vary from −24/128 to 16/128 while still observ-

ing moderate activity for all neurons. In particular, the factor may even change its sign and

therefore changing the plasticity from converging to diverging weights.

For Hebbian plasticity—“what fires together, wires together”—no stable, moderate firing

is observed. The network either shows dead, diverging oder exploding activity dependent

on the strength and sign of the decay.

37

10
0

10
1

10
2

νout [Hz]

0

50

100

O
c
c
u
r
r
e
n
c
e
s

(a)

10
0

10
1

10
2

νout [Hz]

0

50

100

O
c
c
u
r
r
e
n
c
e
s

(b)

10
0

10
1

10
2

νout [Hz]

0

50

100

O
c
c
u
r
r
e
n
c
e
s

(c)

10
0

10
1

10
2

νout [Hz]

0

50

100

O
c
c
u
r
r
e
n
c
e
s

(d)

Figure 3.18.: Histogram over the measured frequencies of the postynaptic neurons for the

exemplary parameter combinations. The outermost bins hold all occurrences

of frequencies which are outside of the vertical dashed lines. Figure (a) to (d)

are for the phases dead, diverging, stable and explode.

3.5. Unsupervised Orthogonal Pattern Learning

After observing this diversity of spiking dynamics, one of the most thrilling questions now

certainly is: can this rule be used for learning? Here, one of the most simple pattern learning

tasks is to be solved, where the neurons are expected to respond to either of two populations.

There are two input populations of which at any point in time one is silent while the other

is active. Can the neurons automatically adapt onto these two di�erent input patterns and

learn how to discriminate among them? On the one hand the plasticity algorithm is known

to generate moderate spiking activity for anti–Hebbian plasticity where all neurons are at a

favorable working point: neither silent nor close to the largest possible firing rate. This even

holds for extremely di�erent initial weights where all neurons are either spiking or silent.

On the other hand this plasticity algorithm is known to penalize correlated spiking where

the postsynaptic spikes come closely after the presynaptic spike. For pattern learning the

strengthening of correlated spiking is favored. The neurons should respond quickly as soon

as the learned pattern is active. The parameter sweeps of the previous section 3.4 however

suggest that the resulting dynamics may not be robust for example against di�erent initial

conditions.

38

nNoise

0

nA
16

nB
24

npost
0

npost
1

...

...

...

...

(a)

0 10 20 30

Neuron

0

10

20

30

S
y
n
a
p
s
e
r
o
w

wNoise

wA

wB

(b)

Figure 3.19.: (a) Sketch of the network for the unsupervised pattern learning experiments.

There are three populations as spike sources: the noise population nNoise
and

the A– and B–populations. (b) Partition of the synaptic weight matrix for this

experiment on the DLS.

What about combining both types of plasticity? While anti–Hebbian synapses from ran-

dom spike sources shift the individual neurons towards a state of responsive moderate spiking

activity there are Hebbian synapses that reinforce the correlated spiking together with the

input patterns. Broadly speaking, the anti–Hebbian plasticity stabilizes, the Hebbian plas-

ticity learns. The network topology for this experiment is shown in figure 3.19a. There

are three populations of external spike sources. The noise population nNoise
consists of 16

neurons that spike randomly with an average rate of 30Hz. The A– and B–populations nA

and nB are populations of 8 neurons which alternate every 250ms to fire at a frequency of

60Hz. If one population fires, the other population is silent. These populations A and B are

in the following referred to as the pattern populations. Each of the 32 neurons is connected to

these three populations. Figure 3.19b shows the partition of the synaptic weight matrix into

the weights from the noise and the pattern populations.

While the synaptic connections from the noise feature anti–Hebbian plasticity with

λ
stdp
= −16/128 the connections towards the pattern populations evolve according to Heb-

bian plasticity with λ
stdp
= 32/128. The decay of the synaptic weights from the noise pop-

ulation decays with λ
decay

= −4/128. For the synapses from the pattern populations the

decay is much stronger with λ
decay

= −32/128. These plasticity parameters for the synapses

from the noise population were the same as previously used when analyzing the stability in

section 3.2.

The evolution of the averageweight from the noise and the pattern populations per neuron

is shown in figure 3.20. Initially, all synaptic weights are set to zero. Figure 3.20a shows

the connection strength towards the noise population. At the beginning of the experiment

39

0 100 200 300 400 500

Time [s]

0

5

10

〈w
N
o
i
s
e
〉
[
l
s
b
]

(a)

0 100 200 300 400 500

Time [s]

0

20

〈w
A
+
w
B
〉
[
l
s
b
]

(b)

Figure 3.20.: (a) Evolution of the weights towards the noise spike sources. The red line

represents the median weight, the orange range the 25% to 75% quantile and

the blue area shows the total range. (b) Evolution of the weights towards the

A– and B–population. The color code is the same as for (a). The dashed lines

are for later reference.

these weights increase to stabilize the firing rate onto a moderate level, as already analyzed

in section 3.2. As soon as the neurons reach a moderate firing rate the synapses from the

pattern populations with Hebbian plasticity start to grow. This can be seen in the lower

plot, figure 3.20b. The potentiation of these Hebbian synapses causes the neurons to fire

even stronger. Therefore, the synaptic connections to the noise population decrease. At

the end of the emulation synapses with Hebbian and anti–Hebbian plasticity balance onto

a stable equilibrium. As later shown in figure 3.23, the neurons also fire with a moderate

firing rate at this steady state.

Three exemplary weight matrices during this process are shown in figure 3.21. The first

shows the weight matrix where the noise connections are still growing. Only few synapses

with Hebbian plasticity have yet grown strong. The second weight matrix (figure 3.21b)

shows the stagewhere the connections towards the pattern populations grow. The last matrix

(figure 3.21c) shows the steady state at the end of the emulation. Most of the neurons—

26 out of 32—formed strong incoming synaptic connections from one of the two pattern

populations. Of the remaining neurons, three still have strong incoming connections from

40

0 10 20 30

Neuron

0

10

20

30

S
y
n
a
p
s
e
r
o
w

(a)

0 10 20 30

Neuron

0

10

20

30

(b)

0 10 20 30

Neuron

0

10

20

30

(c)

0 5 10 15 20 25 30

Weight [lsb]

Figure 3.21.: The weight matrices after (a) 60 s, (b) 130 s and (c) 499 s. These times are also

highlighted in figure 3.20.

the noise sources and no relevant connections from the pattern populations. The remaining

three neurons connect strongly to both pattern populations.

This evolution of the weights in more detail is shown in figure 3.22. It covers most of

the interesting aspects. The x– and y–axis show the average incoming weight from the A–

and B–population for each neuron. Each line in the plot is the evolution of the weights for

one of the 32 neurons. All neuron starts at wA = 0 and wB = 0. The change of the weights

during the emulation is shown by the arrows in the background. They show the average

direction of movement over time in a smoothed way, averaged over all traces. Lastly, the

color encodes the average weight towards the noise population.

The movement of the incoming weights—as nicely visible in this graph—starts for all

neurons at zero and moves to a plateau at high wNoise and relatively low wA and wB. This

is also seen in figure 3.20. From this plateau the incoming synaptic connections may chose

one of four paths:

• Couple strongly either onto the pattern A or B. As soon as the symmetry is broken, the

weights towards the preferred input quickly increase while the synaptic connections

towards the noise decrease. This process is believed to be governed mostly by the

stochasticity of the synaptic plasticity and the fixed pattern noise of the strength of the

correlation sensors.

• Couple to both inputs.

• Stay on top of the noise plateau. This cannot be seen in this graph but is known from

the figure of the final weight matrix (figure 3.21c).

41

0 10 20 30 40

〈wA〉 [lsb]

0

10

20

30

40

〈w
B
〉
[
l
s
b
]

0

2

4

6

8

10

〈w
N
o
i
s
e
〉
[
l
s
b
]

Figure 3.22.: Average incoming synaptic weight wA, wB and wNoise for each neuron. One

line represents theweights for one neuron during the emulation. The arrows in

the background show the smoothed movements of the average weights during

the emulation.

42

60.00 60.25 60.50 60.75 61.00

Time [s]

0

5

10

15

20

25

30

N
e
u
r
o
n

(a)

499.00 499.25 499.50 499.75 500.00

Time [s]

0

5

10

15

20

25

30

N
e
u
r
o
n

(b)

Figure 3.23.: Spike output of all postsynaptic neurons after 60 s and 499 s.

This visualization indicates that the final weights with coupling towards the pattern popu-

lations are stable while coupling solely to the noise is meta stable.

The firing patterns of the postsynaptic neurons at the beginning and the end of the ex-

periment is shown in figure 3.23. It is recorded from a di�erent trial than the previous plots

analyzing the weights. This is done because of technical reasons. For reading out the synap-

tic weight matrix, the experiment needs to be stopped, which is done after each plasticity

update for the previous measurements. The spikes, however, can be recorded without in-

terfering with the experiment. Therefore, the spike patterns in figure 3.23 are a check that

the qualitative result is the same as with the short interruptions of the experiments as for all

previous figures in this section. The spike pattern in figure 3.23b is recorded after 60 s. At

this time the onset of the Hebbian plasticity happens. The neurons fire at an average rate

of 14.7Hz. While most of the neurons seem to fire randomly some neurons already show

a preference for one of the pattern populations, e.g. neuron 11. At the end of the experi-

ment shown in figure 3.23b most of the neurons strongly respond to either of the pattern

populations. On average—including the silent periods—the neurons fire at a rate of 44.2Hz.

Summarizing so far, this network topology and synaptic plasticity not only results in a

network with stable, moderate firing of all neurons. Furthermore, most of the neurons learn

to respond to either the A or the B input pattern. This coupling to the patterns is governed

by local plasticity rules without any teacher signal. The network performs unsupervised

pattern learning using local plasticity rules without the need of inhibitory synapses.

It is known, that the stabilization by the noise synapses is not too sensitive to the plasticity

parameters as shown in section 3.4. However, the question arises how sensitive the perfor-

mance is towards changing the plasticity parameters of the learning synapses λA,B
stdp

and λA,B
decay

.

43

−50 −25 0

λA,B
decay

[1/128]

0

20

40

60
λ
A
,B

s
t
d
p

[
1
/
1
2
8
]

(a) Both

−50 −25 0

λA,B
decay

[1/128]

0

20

40

60

(b) None

−50 −25 0

λA,B
decay

[1/128]

0

20

40

60

(c) Bad

0 20 40 60 80

Number of neurons

Figure 3.24.: (a) Number of neurons in three trials that couple to neither of the patterns. (b)

Number of neurons that couple to both patterns. (c) Total number of “bad”

neurons in three trials that either respond to both populations or to neither

population.

The superscript “A,B” denotes that parameters of the synapses from the pattern populations

are addressed. Figure 3.24 shows the pattern recognition performance within this parameter

plane. The performance is measured by how many neurons are in “bad” final states:

• Coupling to both patterns, shown in figure 3.24a. The average incoming weights

wA and wB are both above 12 lsb.

• Coupling to neither pattern, shown in figure 3.24b. The average incoming weights

wA and wB are both below 12 lsb.

Lastly, figure 3.24c shows the total number of “bad” final states. The threshold of 12 lsb is

chosen as in figure 3.22 these values appear to discriminate well between coupling to noise

and coupling to the patterns. This measure of the pattern recognition performance is chosen

because of its simplicity. For each data parameter combination the emulation is repeatedwith

three di�erent random seeds such that 96 examples of neurons are available.

There are three regimes observed in the parameter space. For large negative decay factors

and low STDP strengths the weights from the pattern populations decay faster than the

STDP term could strengthen them. The neurons still fire at a moderate rate but couple only

to the random spike sources. Decreasing the strength of the decay changes the behavior such

that neurons are able to form stable synaptic connections from the pattern populations. As

soon as these connections become stable, there are also neurons that respond to both patterns.

44

With a further decreasing decay all neurons would respond to both pattern populations

almost independent of the STDP strength.

There is no perfect set of parameters where all neurons connect reliably either to A or to

B. Still, the parameter range where most of the neurons show the desired behavior is quite

large. For example, the STDP strength of the previous measurements in this section could

be doubled while still most of the neurons perform well on the classification task.

45

4. Discussion and Conclusion

While the initial results look promising, a critical discussion is appropriate. The individ-

ual experiment results are discussed in section 4.1. Next, advantages and disadvantages of

the DLS neuromorphic computing platform and the available software framework for these

experiments are discussed in section 4.2. Section 4.3 addresses the question whether the pre-

sented experiments are ready to be scaled to larger systems currently under development.

The crucial question whether any predictive power or biological relevance comes with the

presented findings is addressed in section 4.4.

4.1. The Experiments

Stability

The goal of finding a local synaptic plasticity rule that stabilizes the neural activity in a feed–

forward network was achieved. Even for extreme initial conditions at either end of the scale

(i.e. a strongly connected or a completely disconnected network), the neurons reach a stable

baseline of spiking activity by this homeostatic plasticity mechanism. This stable baseline

is at an average firing rate of 17Hz for the tested plasticity parameters in section 3.2. This

working point provides the dynamic range for each neuron to increase or decrease the firing

rate. The average weight and firing rate at the steady–state are the same for all initial condi-

tions. It was observed furthermore, that the steady–state weights are biased by the strength

of the individual correlation sensors in the synapses and also biased neuron–wise (see fig-

ure 3.9). Synapses with a more sensitive correlation sensor tend to have a lower steady–state

weight. Also the average weight of all incoming synaptic connections varies significantly

from neuron to neuron from (4.7 ± 0.3) lsb to (7.9 ± 0.4) lsb. This is supposedly due to the

fixed pattern noise in the strength of the synaptic inputs. Both biases are undesirable: ideally

all synapses and neurons are exactly the same and there is no preference for one over another.

As this contradicts the theoretical model, this questions the predictive power of the results

regarding the model. This is addressed in section 4.4.

Recurrence

The influence of recurrence on the network dynamics is analyzed in section 3.3. For all

experiments the recurrence changes the neural dynamics significantly. It was shown that

an increased recurrence adds memory and sensitivity to the networks dynamics. These two

aspects, memory and sensitivity, are however only analyzed on a very basic level, namely

on the level of the total network activity. The memory was characterized by the width

of the autocorrelation of the networks’ activity. It therefore measures how long it takes

47

for the system to forget a high and low firing activity state. A more thorough analysis of

the memory capacity is yet to be done for example by integrating the mutual information

between any pair of network states as done by Natschlaeger and Maass [2004]. This method

would also reveal information stored as repetitive occurring patterns where the overall firing

activity is constant.

The sensitivity of the presented recurrent neural networks was analyzed with di�erent

methods:

• The distance in the individual spike trains of two repetitions of exactly the same exper-

iment. This not only measures the perturbation of the total firing rate over all neurons

but also on the level of individual neurons and spikes.

• The increase in the time–resolved firing rate and the total number of spikes when

injecting a stimulation pulse.

• The change in the firing rate and the gain factor when varying the rate of the random

input spike trains.

All measurements showed that the sensitivity of the network increases with an increasing de-

gree of recurrent connections as expectedwith the exception of the short–term response onto

the pulse stimulus. In the time resolved pulse–response the feed–forward network showed a

faster and stronger increase in the firing rate, than the networks with higher degrees of re-

currence. However, as indicated by the increasing measures of sensitivity, it was not possible

to generate a self–sustained network without the input of random spikes for these specific

neuron parameters. The discrete plasticity updates were found to over– and undershoot even

for very weak factors in the plasticity rule as the network activity changed extremely with

very small changes in the synaptic weights. A self–sustained network may be achievable in a

larger system, where the spikes from distant populations may serve as independent random

spike sources.

Plasticity Parameter Space

In section 3.4 the parameter space of the plasticity algorithm was partly explored and ana-

lyzed regarding the resulting dynamics of the system. The parameters chosen for the ex-

ploration are the decay and the STDP scaling factor. These parameters were considered

to be the most interesting: The decay factor heavily determines the fixed point of the OU

process of the weights and whether it is stable at all. The STDP scaling factor on the other

hand determines to which degree the dynamics of the weights are governed by this random

walk instead of the pre–post spike time correlations ranging from Hebbian to anti–Hebbian

plasticity. Consequently, the observed dynamics vary strongly for those di�erent regimes:

the parameter space could be separated into regions where the activity dies out, explodes,

stabilizes onto a moderate firing rate or diverges among the di�erent neurons. It is remark-

able how large the parameter space is in which stable activity is observed: For example for

λ
stdp
= −64/128 the stable region ranges from −24/128 ≤ λ

decay
≤ 16/128.

However, this was tested for a fixed bias with a fixed STDP time constant. If these fixed

parameters are changed the dynamics are also expected to change. For large biases, the

48

weights would continuously grow unless a very strong anti–Hebbian term counterbalances.

Very low—in particular negative—biases would on the other hand force the neural network

into a disconnected state. It would be even more interesting to measure the e�ect of the

STDP time constant on network dynamics. For τ
stdp
→ 0 the dynamics are expected to be

the same as for λ
stdp
= 0: with a vanishing time constant hardly any correlations would be

measured at all and therefore no update due to correlated spiking would take place. On the

opposite for τ
stdp
� τmem, τsyn the correlation measurement is expected to not be meaningful

anymore on howmuch an individual presynaptic spike contributed to the postsynaptic spike.

Instead, the correlation measurement is rather a measurement of the overall spiking activity

νpre · νpost that may relate to rate based models, e.g. by Oja [1982]. Since all software tools

are readily available for this study, experimental results should be straightforward to obtain.

Pattern Learning

The application of the proposed plasticity algorithm for simple pattern learning was shown

in section 3.5. The neurons are connected to input populations presenting the patterns with

Hebbian synapses while the stability is provided by anti–Hebbian synapses from random

spike sources. The presented patterns however are simple: Either population A or popula-

tion B fires at a rate of 60Hz. If a neurons responds to either of the pattern populations it is

likely that the other synapses from the same populationmeasure a correlated spike pair. It was

observed that most of the neurons couple to either of the pattern populations, instead of cou-

pling to neither or both. This highly desirable behavior is not yet fully understood though

the attempt of an interpretation is given: If there is any spontaneous symmetry breaking due

to the randomness of the synapses or the fixed–pattern noise such that a synapse would by

chance strongly connect to population A or B, the other synapses would follow. As the firing

rate quickly increases, the weights from the noise decrease and random postsynaptic spikes

during the non–preferred pattern become more and more unlikely. The noise population

can be seen as shifting the baseline of the neural activity onto a moderate rate. As soon as a

neuron fires due to the growing Hebbian synapses this baseline vanishes again. This may be

seen as that the shifted baseline gets inhibited when coupling to a pattern.

There are however serious limitations on this kind of pattern learning if the underlying

processes are well described by the given interpretation. To couple either to the A or B

pattern is explained by symmetry breaking due to the stochasticity in the synaptic strengths.

This symmetry breaking becomes more di�cult for an increasing number of synapses. In

the presented experiment are eight synaptic connections to each of the pattern populations

which is quite few. If there are much more synapses the relative variations in the average

synaptic strengths over these pattern populations are much smaller. Therefore, it is expected

that the neurons would then always couple to both patterns or neither of both patterns.

The parameter space in figure 3.24 shows the parameter combinations for which the two

patterns are well discriminated. This region where the classification performs well is ex-

pected to change for di�erent numbers of patterns. It is expected that for more patterns, the

synaptic noise connections need to decrease even faster to not couple to more than one pat-

tern. Ideally, there are parameters for which any number of patterns is well discriminated.

49

This may be realistic if there is a process which either allows for escaping the state of cou-

pling to multiple patterns or which penalizes if many neurons couple to the same pattern. In

the given interpretation none of both is present. Introducing lateral inhibition is expected to

be a promising approach to prevent too many neurons from coupling to the same pattern.

This may also contribute to the process of symmetry breaking in a favorable way: if any

neuron coupled to one pattern, the inhibited neurons are expected to quickly connect the

opposite pattern.

4.2. Usability of the DLS and the Software Tools

In addition to the measurements presented in this thesis, numerous software and hardware

tests were performed on the DLS. Having learned a lot about the DLS, this section will

discuss the usability of the current system and software tools.

First of all, the DLS is a viable platform for studying LIF neurons under the perpetual

influence of synaptic plasticity. The calibration database by Stradmann [2016] allowed for

configuring the neurons reliably with the targeted LIF parameters. Performing these exper-

iments without any calibration turned out to be feasible, too [Stöckel et al., 2017] but comes

at the cost, that the predictive power of the results is limited as the realized LIF parameters

do not match the targeted parameters of the model.

The emulation speedup of ca. 1000 compared to biological time scales allowed for the large

parameter sweeps presented in section 3.4. Even though the current operation software has

not been designed for performance, the fast emulation speed of the hardware system can be

exploited. One repetition of the sweeps in figure 3.16 takes 51.6min wall–clock time while

16.1 h of biological time are emulated. Though not measured rigorously, the preparation

of the spike trains in Python, the communication with the FPGA and the conversion of the

resulting spikes into numpy–arrays are known to be the most time consuming tasks for these

experiments. Especially the process of input spike preparation and conversion of the resulting

spikes are ine�cient for–loops in Python. For example, adding the spikes to the playback

program for an experiment of 200 s length is done with a for–loop with 2 × 105 repetitions.

Within this loop there is also an if–else statement. Both, for–loops and if–else statements

are known to cause a substantial interpreter overhead [Python Wiki, 2017]. These time

consuming functions can easily be implemented e�ciently in the frickel�dls C++ layer.

The hybrid approach—an analog neuron and synapse implementation alongwith the dig-

ital PPU for synaptic plasticity—proved to be flexible in terms of plasticity rules if the rules

restrict to the di�erent observables that are available to the processor. While the presented

synaptic plasticity algorithm takes the current weight, spike time correlations and random-

ness into account the PPU also has access to per–neuron rate counters as well as the whole

chip configuration. For example, changing the neurons’ individual thresholds according to

the current firing rate is straight forward to implement.

The simple neuron and synapse model together with lots of on–chip debugging features

allow for fine–grained testing and debugging. For example, switches are provided to enable

and disable components or switching di�erent analog signals for o�–chip readout In the

author’s point of view, the current simplicity of the implemented model is a great advantage

50

as it limits the parameter space of possibly faulty configurations which are likely to occur

and still hard to debug. Even given the current model, a huge amount of time was spent

on testing and making the host software feature complete on supporting all of the chips

functionalities. The author’s vision for the future development is a system scaled up in the

number of neurons and synapses keeping these simple models.

When writing this thesis, the host software only supported an explicit chip configuration

at the level of functional units (see section 2.3) but no abstraction onto the neural network

level as PyNN [Davison et al., 2008]. As the current chip is a prototype and still under

development, this is also not planned. However, to improve the current usability and to hide

complexity from the user the full host software is currently being refactored by di�erent

developers
1
. The experience collected during the experiments presented in this thesis turned

out to be very valuable for this process in various ways:

• It deepened the understanding of the chip and baseboard configuration options and

therefore improved the future container and coordinate naming.

• Drawbacks in the control flow and programming design patterns of the current soft-

ware were identified.

• The typical use cases when performing experiments are now taken into consideration

for the design of the Application Programming Interface (API).

The task of designing a convenient interface for using the PPU and its vector extension for

synaptic plasticity experiments is yet to be solved. There are di�erent competing require-

ments to be balanced:

• The generated kernel code should be e�cient. It should in particular e�ciently use

the vector extension.

• Any complex synaptic plasticity algorithm that is supported by the PPU should be

realizable with the interface, e.g. access to all observables.

• The complexity of the software that exposes the synaptic plasticity to the user should

be low.

As a short term solution the author suggests to expose a library of hand–crafted plasticity

algorithms that may be parameterized by the users. This, on the one hand, limits the users

to a fixed set of plasticity rules, but on the other hand allows for plasticity experiments with

minimal e�ort. In the long term, a code generator which transforms a computational graph

on the observables into performant PPU programs would enable users limited low–level

programming knowledge to implement custom plasticity rules. This goal requires a high

complexity of the software which exposes the plasticity features. It is planned for PyNN to

adopt to NineML [Raikov et al., 2011] for the formulation of the synaptic plasticity, hence

this is also the favored solution as the front–end for the code generation.

1
This refactoring is ongoing work by Christian Mauch and Johann Klähn with support from Eric Müller,

Yannik Stradmann and the author.

51

In summary, Friedmann et al. [2017] presented the first device where STDP could be

studied in a flexible manner. The advantages of this new technology were utilized for this

work to analyze synaptic plasticity with regard to the stability of the neural activity. The

fast emulation speed allowed for large systematic parameter sweeps to study the diverse phe-

nomenology of the resulting system dynamics under di�erent parameterizations of the plas-

ticity rule. Performing the experiments came at the cost of a large software development

e�ort. If the software tools also advance along with the physical devices they will together

become an important tool for studying spiking neural network dynamics.

4.3. Scalability to Larger Future Systems

Scaling the experiment to larger systems was the main motivation when designing the pro-

posed plasticity algorithm. Yet, the claim of scalability of the current experiments is yet

only partly true: while the plasticity algorithm can run independently on many intercon-

nected chips (as planned for theDLSwafer–scale system) the calibration e�ort for the neurons

and the individual synaptic correlation sensors can become increasingly complex and time

consuming. For the current BrainScaleS wafer–scale system [Schmitt et al., 2017] the cal-

ibration roughly takes 160 h [Kugele, 2017].
2
From the author’s point of view however, it

is also worth trying to repeat the presented experiments without calibration of the neurons

and synapses. The main e�ort then is to find a parameter set for the neurons and synapses

at which at least most of the neurons are responsive. If still a baseline of stable activity is

reached in an extremely large system, this would be a major achievement as it may allow

for observing collective phenomena on a much larger scale. For example slow oscillations

of neural activity and slow oscillations in the synaptic strengths cannot be observed in the

small network of 32 neurons but are candidates for possible large–scale, self–organized phe-

nomena. As already discussed before, generating a network with a self–sustained activity

is more promising to achieve in larger neural networks. Furthermore, does the plasticity

self–organize the large–scale network topology into a state that performs interesting trans-

formations on any structured input patterns?

4.4. Predictive Power and Biological Relevance

In the following two important questions will be addressed: To which extend are the emula-

tion results fundamental properties of the theoretical model instead of rather being undesired

side–e�ects of the physical model? And does any biological relevance come with the pre-

sented work?

In regard to the first question it is already shown in figure 3.9 that for this experiment the

steady–state weights are biased by fixed–pattern noise in the physical implementation: For

one, they are biased by the strength of the correlation sensor as synapses with a stronger cor-

relation sensor tend to have a lower final steady–state weight. Furthermore, some neurons

2
The single chip calibration takes for the HICANN chip ≈5 h. One wafer contains at most 384 HICANNs of

which 12 can be calibrated in parallel in the current system configuration.

52

have a significantly higher or lower average weight over all incoming synapses than other

neurons, presumably biased by di�erent strength of the synaptic inputs. This is a clear con-

tradiction to the theoretical model presented in section 2.1 where all synapses and neurons

are equally strong and responsive, i.e. no bias is expected. For the other experiments one

must therefore assume that the results are biased, too.

While—to the author’s best knowledge—there are no implementation errors, it is sensible

to discuss the bias introduced by possible implementation errors. Obtaining wrong or biased

results did happen during the work for this thesis despite thorough testing. The control over

the neuromorphic chip and the PPU happened at a very low level and therefore it is possible

that some detail was overlooked. To check the implementation and the obtained results these

experiments should be repeated with software simulations which was not yet done.

Even if the results were verified with software simulations the second question remains,

whether these results are biologically relevant. The chosen theoretical model—LIF neurons

with current–based synapses—is a very simple model where relevant mechanisms of the

brain may not be covered. Furthermore the tested synaptic plasticity rule is only one of

many di�erent forms proposed in literature. However, the author suggests that this work

supports the hypothesis that the dynamics on the level of multiple neurons are not subject

to the exact implementation of all features on the lowest level. Instead, sweeping the large

parameter space (see section 3.4) shows that the phenomenology changes when changing the

key features of the plasticity algorithm: changing from Hebbian to anti–Hebbian plasticity

and changing from a globally attractive fixed point of the weights to a repulsive, diverging

behavior. Also the dynamics changed strongly when changing the network’s topology from

feed–forward to a recurrent neural network in section 3.3. Identifying such key features

that lead to fundamental changes in the network dynamics can indeed contribute to the

understanding of the mechanisms found in biology.

In summary, the relevance of this work regarding biology is that anti–Hebbian plasticity

may act as a homeostatic mechanism. It adjusts the weights to form a stable network, while

keeping the synapses’ responsiveness from spike to spike, contrary to short–term plastic-

ity. This mechanism was shown to bring the network into a ready–to–learn state and then

retreating in a self–organized fashion as soon as functional plasticity takes over.

53

Acronyms

ADC Analog to Digital Converter.

API Application Programming Interface.

DAC Digital to Analog Converter.

DLS Digital Learning System.

FPGA Field Programmable Gate Array.

GCC GNU Compiler Collection.

ISA Instruction Set Architecture.

LIF Leaky Integrate–and–Fire.

lsb Least Significant Bit.

ODE Ordinary Di�erential Equation.

OTA Operational Transconductance Amplifier.

OU Ornstein–Uhlenbeck.

PPU Plasticity Processing Unit.

STDP Spike–Timing–Dependent Plasticity.

UNI Universal Neuromorphic Instruction set.

VRF Vector Register File.

55

Appendix

A. Frickel-DLS Software Changes

In order to perform the experiments presented in this thesis the host software had to be

extended. The major extensions are:

• Integrate into the SLURM ressource management.
3

• Integrate the spike routing configuration.
4

• Make the chip abstraction feature complete.

• Create a full description of the experiment environment.

• Implement a serializable chip and baseboard configuration.
5

• Add the integration of the calibration.

All measurements presented in this work were performed with the host software at the git

commit 602b85ac7a8bd7c441edcc25a6bdc56bacc04ce8. This commit is the 2
nd

patch set

of the change id If483fedd12abf8693eb0dfaf927059bbfa5c6877.

3
Thanks to Christian Mauch.

4
Thanks to Christian Pehle.

5
Thanks to Eric Müller.

57

B. Implementation of the Plasticity Update

The implemented plasticity algorithm is listed in listing 1 without further discussion in de-

tail. It is listed as a reference on how the in–line assembly syntax of GCC is used correctly

interfacing between C and assembly. Further information, especially on the di�erent reg-

ister constraints, is given in the manual by [Stallman and the GCC Developer Community,

2003].

Listing 1: Implementation of the plasticity update with GCC in–line assembly

void upda te_weight s (

u i n t 8 _ t const f a c t o r _ s t d p ,

u i n t 8 _ t const f a c t o r _d e c ay)

{

// I n i t i a l i z e v e c t o r s w i t h t h e c o n s t a n t f a c t o r s
vec to r u i n t 8 _ t const r e s e t s = v e c _ s p l a t _u8 (

r e s e t s _ c a u s a l | r e s e t s _ a c a u s a l) ;

v e c to r u i n t 8 _ t const f a c t o r s _ s t d p = v e c _ s p l a t _u8 (f a c t o r _ s t d p) ;

v e c to r u i n t 8 _ t const f a c t o r s _ d e c a y = v e c_ s p l a t _u8 (f a c t o r _d e c ay) ;

v e c to r u i n t 8 _ t z e ro s = v e c _ s p l a t _u8 (0) ;

v e c to r u i n t 8 _ t u p d a t e _ s c a l e s = v e c _ s p l a t _u8 (3 2) ; // = 1/4

// Loop o v e r a l l v e c t o r s o f s y n a p s e s
for (u i n t 32_ t index = 0 ; index < d l s_num_syn_vec tor s ; index ++) {

// C r e a t e t h e random numbe r s
u in t 8 _ t random [16] _ _ a t t r i b u t e _ _ ((a l i gned (1 6))) ;

make_random (random) ;

// D e c l a r e t emp o r a r y v a r i a b l e s
r eg i s t e r vec to r u i n t 8 _ t temps ;

r eg i s t e r vec to r u i n t 8 _ t upda t e s ;

r eg i s t e r vec to r u i n t 8 _ t weight s ;

asm vo l a t i l e (

// Get s t d p u p d a t e
" f xv inx %[temps] , %[d l s _ c a u s a l _ b a s e] , %[index] \ n"

" fxv shb %[temps] , %[temps] , −1\n"

" fxvmulb f s %[upda t e s] , %[temps] , %[f a c t o r s _ s t d p] \ n"

// Re s e t c o r r e l a t i o n mea su r emen t
" fxvoutx %[r e s e t s] , %[d l s _ c a u s a l _ b a s e] , %[index] \ n"

// Load t h e s h i f t e d w e i g h t s
" f xv inx %[weight s] , %[d l s _we igh t_ba s e] , %[index] \ n"

" fxv shb %[weight s] , %[weight s] , 1 \n"

// Add d e c a y u p d a t e
" fxvmulb f s %[temps] , %[weight s] , %[f a c t o r s _ d e c a y] \ n"

" f x v addb f s %[upda t e s] , %[upda t e s] , %[temps] \ n"

// Add random up d a t e
" f x v l a x %[temps] , 0 , %[random] \ n"

58

" f x v addb f s %[upda t e s] , %[upda t e s] , %[temps] \ n"

// D i v i d e and add t h e u p d a t e s t o t h e w e i g h t s
" fxvmulb f s %[upda t e s] , %[upda t e s] , %[u p d a t e _ s c a l e s] \ n"

" f x v addb f s %[weight s] , %[weight s] , %[upda t e s] \ n"

// S e t t o z e r o i f t h e r e s u l t i s s m a l l e r t h a n 0
" fxvcmpb %[weight s] \ n"

" f x v s e l %[weight s] , %[weight s] , %[z e ro s] , 2 \n"

// Save s h i f t e d w e i g h t s
" fxv shb %[weight s] , %[weight s] , −1\n"

" fxvoutx %[weight s] , %[d l s _we igh t_ba s e] , %[index] \ n"

: [temps] "=&kv " (temps) ,

[upda t e s] "=&kv " (upda t e s) ,

[weight s] "=&kv " (weight s)

: [index] " r " (index) ,

[d l s _ c a u s a l _ b a s e] "b" (d l s _ c a u s a l _ b a s e) ,

[d l s _we igh t_ba s e] "b" (d l s _we igh t_ba s e) ,

[r e s e t s] " kv " (r e s e t s) ,

[z e ro s] " kv " (z e ro s) ,

[f a c t o r s _ d e c a y] " kv " (f a c t o r s _d e c ay_1) ,

[f a c t o r s _ s t d p] " kv " (f a c t o r s _ s t d p _ 1) ,

[u p d a t e _ s c a l e s] " kv " (u p d a t e _ s c a l e s) ,

[random] " r " (&random)

: /* no c l o b b e r i n g */) ;

}

}

}

59

Bibliography

S. A. Aamir, P. Müller, A. Hartel, J. Schemmel, and K. Meier. A highly tunable 65-

nm CMOS LIF neuron for a large scale neuromorphic system. In ESSCIRC Con-
ference 2016: 42nd European Solid-State Circuits Conference, pages 71–74, Sept 2016.

doi: 10.1109/ESSCIRC.2016.7598245. URL https://dx.doi.org/10.1109/ESSCIRC.

2016.7598245.

L. F. Abbott and Sacha B. Nelson. Synaptic plasticity: taming the beast. Nature Neuroscience,
2000. doi: 10.1038/nn1100_1178. URL https://dx.doi.org/10.1038/nn1100_1178.

L. F. Abbott and S.B. Nelson. Temporal dynamics of biological synapses. In Michael A.

Arbib, editor, The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge,

MA, USA, 2nd edition, 2002. ISBN 0262011972.

M. Abeles. Corticonics: Neuronal Circuits of the Cerebral Cortex. Cambridge University Press,

Cambridge, England, 1st edition, 1991.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Tech-
niques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2006. ISBN 0321486811.

Guo-qiang Bi and Mu-ming Poo. Synaptic modifications in cultured hippocampal neu-

rons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal
of neuroscience, 18(24):10464–10472, October 1998.

Romain Brette, Michelle Rudolph, Ted Carnevale, Michael Hines, David Beeman, James M

Bower, Markus Diesmann, Abigail Morrison, Philip H Goodman, Frederick C Harris,

et al. Simulation of networks of spiking neurons: a review of tools and strategies. Journal
of computational neuroscience, 23(3):349–398, July 2007.

Nicolas Brunel. Dynamics of sparsely connected networks of excitatory and inhibitory

spiking neurons. Journal of Computational Neuroscience, 8(3):183–208, 5 2000. ISSN

1573-6873. doi: 10.1023/A:1008925309027. URL https://dx.doi.org/10.1023/A:

1008925309027.

Ioana Carcea and Robert C. Froemke. Cortical plasticity, excitatory–inhibitory balance,

and sensory perception. Progress in brain research, 207:65–90, January 2013.

Andrew Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif Muller, Dejan

Pecevski, Laurent Perrinet, and Pierre Yger. PyNN: A common interface for neuronal

network simulators. 2:11, 02 2008.

61

https://dx.doi.org/10.1109/ESSCIRC.2016.7598245
https://dx.doi.org/10.1109/ESSCIRC.2016.7598245
https://dx.doi.org/10.1038/nn1100_1178
https://dx.doi.org/10.1023/A:1008925309027
https://dx.doi.org/10.1023/A:1008925309027

Rodney Douglas, Misha Mahowald, and Carver Mead. Neuromorphic analogue VLSI. An-
nual review of neuroscience, 18(1):255–281, 1995.

Paul W Frankland, Cara O’brien, Masuo Ohno, Alfredo Kirkwood, and Alcino J Silva. α-

CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature,
411(6835):309–313, May 2001.

Simon Friedmann. Universal Neuromorphic Instruction set. Universität Heidelberg, 2017. URL

ssh://git@gitviz.kip.uni-heidelberg.de/uni.git.

Simon Friedmann, Johannes Schemmel, Andreas Grübl, Andreas Hartel, Matthias Hock,

andKarlheinzMeier. Demonstrating hybrid learning in a flexible neuromorphic hardware

system. IEEE Trans. Biomed. Circuits and Systems, 11(1):128–142, 2017. doi: 10.1109/

TBCAS.2016.2579164. URL https://dx.doi.org/10.1109/TBCAS.2016.2579164.

Wulfram Gerstner and Werner Kistler. Spiking Neuron Models: An Introduction. Cambridge

University Press, New York, NY, USA, 2002. ISBN 0521890799.

Debra A. Gusnard and Marcus E. Raichle. Searching for a baseline: Functional imaging and

the resting human brain. Nat Rev Neurosci, 2:685–694, 10 2001. doi: 10.1038/35094500.

URL https://dx.doi.org/10.1038/35094500.

Donald O. Hebb. The organization of behavior: A neuropsychological theory. Wiley, NewYork,

6 1949. ISBN 0-8058-4300-0.

Arthur Heimbrecht. Compiler support for the BrainScaleS plasticity processor. Bachelo-

rarbeit, Universität Heidelberg, March 2017.

Matthias Hock. Modern semiconductor technologies for neuromorphic hardware. PhD thesis, Uni-

versität Heidelberg, July 2014.

Giacomo Indiveri, Elisabetta Chicca, and Rodney Douglas. A VLSI array of low-power

spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE trans-
actions on neural networks, 17(1):211–221, January 2006.

David Kappel, Bernhard Nessler, and Wolfgang Maass. STDP installs in winner-take-all

circuits an online approximation to hidden markov model learning. PLOS Computational
Biology, 10(3):1–22, 03 2014. doi: 10.1371/journal.pcbi.1003511. URL https://dx.doi.

org/10.1371/journal.pcbi.1003511.

Alexander Kugele. Constraint satisfaction problem solved on the BrainScaleS system. Mas-

terthesis, to be published, Universität Heidelberg, 2017.

H Markram, W Gerstner, and P J Sjöström. Spike-timing-dependent plasticity: A compre-

hensive overview. Frontiers in Synaptic Neuroscience, 4(2), 2012. doi: 10.3389/fnsyn.2012.
00002. URL https://dx.doi.org/10.3389/fnsyn.2012.00002.

62

ssh://git@gitviz.kip.uni-heidelberg.de/uni.git
https://dx.doi.org/10.1109/TBCAS.2016.2579164
https://dx.doi.org/10.1038/35094500
https://dx.doi.org/10.1371/journal.pcbi.1003511
https://dx.doi.org/10.1371/journal.pcbi.1003511
https://dx.doi.org/10.3389/fnsyn.2012.00002

Henry Markram, Joachim Lübke, Michael Frotscher, and Bert Sakmann. Regulation of

synaptic e�cacy by coincidence of postsynaptic APs and EPSPs. Science, 275(5297):213–
215, Janurary 1997.

Carver Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):1629–1636,
October 1990.

P. A. Merolla and K. Boahen. Dynamic computation in a recurrent network of het-

erogeneous silicon neurons. In 2006 IEEE International Symposium on Circuits and Sys-
tems, pages 4539–4542, May 2006. doi: 10.1109/ISCAS.2006.1693639. URL https:

//dx.doi.org/10.1109/ISCAS.2006.1693639.

Kenneth D. Miller and David J. C. MacKay. The role of constraints in hebbian learning.

Neural Computation, 6(1):100–126, 1994. doi: 10.1162/neco.1994.6.1.100. URL https:

//doi.org/10.1162/neco.1994.6.1.100.

S. Mitra, S. Fusi, and G. Indiveri. Real-time classification of complex patterns using spike-

based learning in neuromorphic VLSI. IEEE Transactions on Biomedical Circuits and Sys-
tems, 3(1):32–42, Feb 2009. ISSN 1932-4545. doi: 10.1109/TBCAS.2008.2005781. URL

https://dx.doi.org/10.1109/TBCAS.2008.2005781.

Abigail Morrison, Markus Diesmann, andWulfram Gerstner. Phenomenological models of

synaptic plasticity based on spike timing. Biological cybernetics, 98(6):459–478, April 2008.

T. Natschlaeger andW. Maass. Information dynamics and emergent computation in recur-

rent circuits of spiking neurons. In S. Thrun, L. Saul, and B. Schoelkopf, editors, Proc. of
NIPS 2003, Advances in Neural Information Processing Systems, volume 16, pages 1255–1262,

Cambridge, 2004. MIT Press.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of Mathe-
matical Biology, 15(3):267–273, Nov 1982. ISSN 1432-1416. doi: 10.1007/BF00275687.

URL https://doi.org/10.1007/BF00275687.

D Plenz and A Aertsen. Neural dynamics in cortex-striatum co-cultures: 2. spatiotem-

poral characteristics of neuronal activity. Neuroscience, 70(4):893–924, 2 1996. doi:

10.1016/0306-4522(95)00405-X. URL https://dx.doi.org/10.1016/0306-4522(95)

00405-X.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Nu-
merical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press,

New York, NY, USA, 3 edition, 2007. ISBN 0521880688, 9780521880688.

Python Wiki. Performance tips, 2017. URL https://wiki.python.org/moin/

PythonSpeed/PerformanceTips. Online; accessed 03-Nov-2017.

Ivan Raikov, Robert Cannon, Robert Clewley, Hugo Cornelis, Andrew Davison, Erik

De Schutter, Mikael Djurfeldt, Padraig Gleeson, Anatoli Gorchetchnikov, Hans Ekke-

hard Plesser, Sean Hill, Mike Hines, Birgit Kriener, Yann Le Franc, Chung-Chuan

63

https://dx.doi.org/10.1109/ISCAS.2006.1693639
https://dx.doi.org/10.1109/ISCAS.2006.1693639
https://doi.org/10.1162/neco.1994.6.1.100
https://doi.org/10.1162/neco.1994.6.1.100
https://dx.doi.org/10.1109/TBCAS.2008.2005781
https://doi.org/10.1007/BF00275687
https://dx.doi.org/10.1016/0306-4522(95)00405-X
https://dx.doi.org/10.1016/0306-4522(95)00405-X
https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Lo, Abigail Morrison, Eilif Muller, Subhasis Ray, Lars Schwabe, and Botond Szatmary.

NineML: The network interchange for neuroscience modeling language. In BMC Neu-
roscience, volume 12, pages 1–2, 07 2011.

J. Schemmel, J. Fieres, and K. Meier. Wafer-scale integration of analog neural networks.

In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence), pages 431–438, June 2008. doi: 10.1109/IJCNN.2008.4633828.

URL https://dx.doi.org/10.1109/IJCNN.2008.4633828.

Sebastian Schmitt, Johann Klähn, Guillaume Bellec, Andreas Grübl, Maurice Güttler, An-

dreas Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Vitali Karasenko, Mitja

Kleider, Christoph Koke, Christian Mauch, Eric Müller, Paul Müller, Johannes Partzsch,

Mihai A. Petrovici, Stefan Schiefer, Stefan Scholze, Bernhard Vogginger, Robert Legen-

stein, Wolfgang Maass, Christian Mayr, Johannes Schemmel, and Karlheinz Meier. Neu-

romorphic hardware in the loop: Training a deep spiking network on the BrainScaleS

wafer-scale system. Proceedings of the 2017 IEEE International Joint Conference on Neural
Networks, 2017. doi: 10.1109/IJCNN.2017.7966125. URL https://dx.doi.org/10.

1109/IJCNN.2017.7966125.

Alwyn C. Scott. The Nonlinear Universe: Chaos, Emergence, Life. Springer Publishing Com-

pany, Incorporated, 1st edition, 2007. ISBN 3540341528, 9783540341529.

Richard M. Stallman and the GCC Developer Community. Using the GNU Compiler Col-
lection, 2003. for GCC version 4.9.4.

RichardM. Stallman and the GCCDeveloper Community. GNU compiler collection, 2017.

URL https://github.com/electronicvisions/gcc. Electronicvisions Fork.

Yannik Stradmann. Characterization and calibration of a mixed-signal leaky integrate and

fire neuron on HICANN-DLS. Bachelorarbeit, Universität Heidelberg, 2016.

David Stöckel, Benjamin Cramer, Andreas Hartel, Arthur Heimbrecht, Eric Müller, Chris-

tian Pehle, Yannik Stradmann, Johannes Schemmel, and Karlheinz Meier. Flexible synap-

tic plasticity on accelerated analog neuromorphic hardware. To be published., 2017.

David Sussillo, Taro Toyoizumi, and Wolfgang Maass. Self-tuning of neural circuits

through short-term synaptic plasticity. Journal of Neurophysiology, 97(6):4079–4095, 2007.
ISSN 0022-3077. doi: 10.1152/jn.01357.2006. URL https://dx.doi.org/10.1152/jn.

01357.2006.

Gina G. Turrigiano. Homeostatic plasticity in neuronal networks: the more things change,

the more they stay the same. Trends in Neurosciences, 22(5):221 – 227, 1999. ISSN 0166-

2236. doi: 10.1016/S0166-2236(98)01341-1. URL https://dx.doi.org/10.1016/

S0166-2236(98)01341-1.

G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Phys. Rev.,
36:823–841, Sep 1930. doi: 10.1103/PhysRev.36.823. URL https://dx.doi.org/10.

1103/PhysRev.36.823.

64

https://dx.doi.org/10.1109/IJCNN.2008.4633828
https://dx.doi.org/10.1109/IJCNN.2017.7966125
https://dx.doi.org/10.1109/IJCNN.2017.7966125
https://github.com/electronicvisions/gcc
https://dx.doi.org/10.1152/jn.01357.2006
https://dx.doi.org/10.1152/jn.01357.2006
https://dx.doi.org/10.1016/S0166-2236(98)01341-1
https://dx.doi.org/10.1016/S0166-2236(98)01341-1
https://dx.doi.org/10.1103/PhysRev.36.823
https://dx.doi.org/10.1103/PhysRev.36.823

M. C. W. van Rossum. A novel spike distance. Neural Computation, 13(4):751–763,
2001. doi: 10.1162/089976601300014321. URL https://dx.doi.org/10.1162/

089976601300014321.

R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwenberghs. Dynamically reconfig-

urable silicon array of spiking neurons with conductance-based synapses. IEEE Transac-
tions on Neural Networks, 18(1):253–265, Jan 2007. ISSN 1045-9227. doi: 10.1109/TNN.

2006.883007. URL https://dx.doi.org/10.1109/TNN.2006.883007.

Timo Wunderlich. Synaptic calibration on the HICANN-DLS neuromorphic chip. Bach-

elorarbeit, Heidelberg University, 2016.

65

https://dx.doi.org/10.1162/089976601300014321
https://dx.doi.org/10.1162/089976601300014321
https://dx.doi.org/10.1109/TNN.2006.883007

Danksagung

Vielen Dank an dieser Stelle an Prof. Karlheinz Meier und Dr. Johannes Schemmel für

ihr Engagement und ihre Führung dieser prima Gruppe. Danke, dass ich an diesem selbst

gewählten Projekt mit Ihrer Unterstützung arbeiten durfte. Dieser Dank gilt auch meinem

Betreuer Andreas Hartel.

Prof. Kurt Roth verdanke ich die Wahl des Themas durch seine motivierende Vorlesung.

Durch die Zeit die Sie sich für Vorlesung und persönliche Diskussionen genommen haben,

haben Sie diese Arbeit mitgeprägt.

Den vielen Helfern bei Problemen und Fragen bin ich sehr dankbar, sonst gäbe es die

Arbeit nur in vielen Nummern kleiner. Bei der Software und Firmware sind das Eric, Ar-

thur, Christian Pehle, Christian Mauch und Johann. Bei technischen Fragen hatte ich Hilfe

von Yannik, Andi, Gerd, Korbi und Sebastian. Die Diskussionen mit Dr. Viola Priesemann,

Mihai, Benjamin und Oliver sind in weiten Teilen für den Inhalt verantwortlich. Unter den

Genannten sind auch viele, die beim Korrigieren geholfen haben, wobei Ákos, Sebastian

Schmitt und Daniel noch nicht genannt wurden. Danke euch allen.

Liebe Container-Kollegen, ihr seid super. Danke fürs Ka�ee kochen und wichtigen Dis-

kussionen zu Musik, Ka�eegeschmack, Build-Systemen und anderen diskussionswürdigen

Fragen.

Zuletzt an meine Liebsten: Kathrin, danke, dass du dabei bist. Freunde und Familie, mit

eurem Interesse und der Freizeit mit euch macht es definitiv mehr Spaß.

67

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angege-

benen Quellen und Hilfsmittel benutzt habe.

69

	Introduction
	Candidates for Stabilizing Synaptic Plasticity
	This Work

	Neural Network Model and Neuromorphic Implementation
	Model Description
	Leaky Integrate-and-Fire Neuron Model
	Current Based Synapse Model
	Long–Term Synaptic Plasticity

	The DLS Neuromorphic Computing Platform
	Neurons
	Synapses
	The Plasticity Processing Unit
	Implementation of the Synaptic Plasticity Algorithm

	The Firmware and Software Framework
	The Host Software
	PPU Software Tools

	Experiments and Results
	The Implemented Plasticity Algorithm
	The Biased Random Walk of the Weights
	Correlation Sensor Measurements

	Weight Dynamics Towards Stability
	Recurrence in Stable Networks
	Time Constant of the Collective Neural Activity
	Sensitivity to Perturbations

	Exploring the Plasticity Parameter Space
	Unsupervised Orthogonal Pattern Learning

	Discussion and Conclusion
	The Experiments
	Usability of the DLS and the Software Tools
	Scalability to Larger Future Systems
	Predictive Power and Biological Relevance

	Acronyms
	Appendix
	Frickel-DLS Software Changes
	Implementation of the Plasticity Update

