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Stability of gap solitons in a Bose-Einstein condensate
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We analyze the dynamical stability of gap solitons formed in a quasi-one-dimensional Bose-Einstein con-
densate in an optical lattice. Using two different numerical methods we show that, under realistic assumptions
for experimental parameters, a gap soliton is stable only in a truly one-dimensional situation. In two and three
dimensions, resonant transverse excitations lead to dynamical instability. The time scale of the decay is
numerically calculated and shown to be large compared to the characteristic time scale of solitons for realistic
physical parameters.
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I. INTRODUCTION

One of the most fundamental facts about Bose-Eins
condensates~BEC! of dilute atomic gases is that they can
very well described by the Gross-Pitaevskii equation~GPE!

i\ċ~x,t !5S p2

2M
1V~x!1kuc~x,t !u2Dc~x,t !, ~1!

wherec denotes the collective wave function of condens
atoms with mass M and coupling constant k
ª4p\2aNA /M , with a being the s-wave scattering leng
andNA denoting the number of atoms in the BEC~see, e.g.,
Ref. @1#!. Therefore a BEC provides a physical realization
many nonlinear wave phenomena among which the for
tion of solitons is particularly interesting.

For our purposes solitons are wave packets in which
dispersive effect of the kinetic term is exactly canceled
the nonlinear interaction energy so that their shape does
change. Two fundamental types of solitons have so far b
experimentally realized in a BEC: dark solitons@2,3# corre-
spond to a stable density dip in a BEC of repulsive atom
Bright solitons do exist for atoms with attractive interacti
(k,0) and are described by a one-dimensional solution
the GPE for vanishing potentialV(x),

cbright~z,t !5
1

A2w
sech~z/w!e2 ivst, ~2!

wherew52\2/(Mk1D) and vs5\/(2Mw2). To relate the
one-dimensional GPE to its three-dimensional origin, we
sumed that the BEC is tightly trapped in the transverse
rection so that no transverse excitations can occur. Taking
BEC to be in the transverse ground state amounts to rep
ing the three-dimensional coupling constantk by k1D

5k/A' , whereA'52pa'
2 and witha'ªA\/(Mv') being

the harmonic oscillator length of the transverse potent
The attraction between the atoms prevents the dispersio
the sech-shaped wave packet. Note that fork1D.0, corre-
sponding to repulsive atom-atom interaction, the kinetic
ergy and the interaction energy have the same sign and th
fore cannot cancel each other, a bright soliton is then
1050-2947/2002/66~6!/063605~7!/$20.00 66 0636
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possible. Very recently bright solitons have been created
quasi-one-dimensional setup@4,5#, where the transverse po
tential V(x,y) tightly confines the BEC, thus suppressin
transverse excitations and three-dimensional collapse.

In this paper we are concerned with the dynamical sta
ity of gap solitons. This collective state, which has not y
been realized experimentally, exists for repulsive ato
(k1D.0) in a periodic potentialV(z) and is related to bright
solitons. The basic idea of a gap soliton is the following:
is well known the energy eigenvalues of noninteracting p
ticles in a periodic potential are given by energy ban
En(q), wheren is the band index andq denotes the quasi
momentum. If a particle’s state is prepared in the low
band only the dispersion relationp2/(2M ) in free space is
replaced by the lowest band energyE0(q). Around the upper
band edge, which we take to be atq50, this energy can be
approximated byE0(q)'E0(0)1q2/(2M* ), where M*
ª@d2E0(q)/dq2#21uq50 is the effective mass of the particl
in the periodic potential. Since at the upper band edgeM*
,0 the ‘‘kinetic energy’’ becomes negative and a cance
tion with the positive interaction energy becomes possib
The corresponding state is called agap soliton.

Gap solitons have been realized in nonlinear optics us
a periodic modulation of the propagation medium@6#. In
nonlinear atom optics they have first been predicted by L
et al. @7# in the context of light-induced nonlinearities@8,9#.
Here we are concerned with the collision-induced nonline
ity appearing in Eq.~1!.

We consider a BEC that is placed in a one-dimensio
optical lattice, created by far-detuned laser light with wa
numberkL , which produces an optical potential of the for
V(z)52V0cos(2kLz), and is subject to a tight harmoni
transverse confinement of the formV'(x,y)5Mv'

2 (x2

1y2)/2. Herev' is the transverse trap frequency andV0 is
the strength of the optical potential. The derivation of t
corresponding gap soliton solution of the one-dimensio
GPE is tedious and includes a multiple scales analysis.
nonlinear optics it has been derived by Sipe and co-work
@10#. For nonlinear atom optics a related derivation has b
sketched in Refs.@7,11,12#. One finds that, within the
effective-mass approximation, the one-dimensional gap s
ton is described by
©2002 The American Physical Society05-1
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cgap~z,t !5wbe~z,t !
1

A2w̃
sech~z/w̃!e2 i ṽst, ~3!

wherewbe(z,t)5wbe(z)e2 iE0(0)t/\ is the solution of the lin-
ear Schro¨dinger equation that corresponds to the upper b
edge. The parametersw̃ andṽs have the same form asw and
v for the bright soliton but withM replaced byuM* u and
k1D replaced byk̃1Dªk1D* uwbe(z)u4dz. Apart fromwbe so-
lution ~3! just corresponds to a bright soliton for a particle
massuM* u and coupling constantk̃.

The range of experimentally promising values for the o
tical potential strengthV0, the number of condensed atom
NA , and the transverse confinement frequencyv' has been
examined in a study by Brezgeret al. @13#. The number of
atoms necessary for the generation of a first-order soliton
be estimated by comparing the time scales of dispersionTd

5m* w2/\ and the nonlinearityTnl5\/k̃1DuCumax
2 , where

uCumax
2 is the absolute value squared of the wave function

the center of the wave packet@14#. Experimentally realistic
parameters arew510 mm ~BEC released from a TOP trap!,
an effective mass ofm* 50.2 m ~corresponding toV0'
5Erec5\2kL

2/(2M )) and a transverse confinement fr
quency ofv'5110 s21. By comparing the given time scale
we expect thatNA'400 atoms lead to the formation of
soliton. In the following we will focus on this case. We wi
also consider the effect of a variation ofNA which allows to
test the quasi-one-dimensionality of the gap soliton.

II. STABILITY THEORY OF GAP SOLITONS
AND BRIGHT SOLITONS

A stationary solutionc0 of the GPE, with chemical po
tential m, is calleddynamically stableif a small deviation
dc from c0 will not grow with time. In this case a sma
perturbation will not cause the solution to evolve into a co
pletely different wave packet. To study dynamical instabil
one can either directly integrate the GPE or solve the a
ciated Bogoliubov-de Gennes equations~BDGE, see, e.g.,
Ref. @15#!. The latter arise when one writes the wave fun
tion c(x,t) in the form

c~x,t !5exp~2 imt/\!@c0~x!1dc~x,t !#, ~4!

and linearizes the GPE indc. By making the ansatz of a
stationary perturbation,

dc~x,t !5u~x!exp~2 ivt !2v* ~x!exp~ ivt !, ~5!

one arrives at the BDGE

\vu5Lu2kc0
2v,

2\vv5Lv2k~c0* !2u, ~6!

with Lªp2/(2M )1V(x)2m12kuc0u2. A solution (u,v)
with eigenvaluev corresponds to a quasiparticle mode. T
set of allv forms the quasiparticle spectrum which in ge
eral is complex. One can show@1# that if v is in the spec-
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trum then so isv* . Using Eq.~5! it is seen that the existenc
of a nonzero imaginary part of one quasiparticle frequen
implies exponential growth of the mode and hence dyna
cal instability of the statec0. To demonstrate that the ga
soliton is stable, therefore amounts in showing that the as
ciated quasiparticle spectrum is real.

III. NUMERICAL METHODS

Although the direct numerical integration of the GPE
easy to implement using the split-step method@16# it has the
disadvantage of not being practical for a 3D study of the g
soliton. The reason is that state~3! includes two very differ-
ent spatial scales: the laser wavelength 2p/kL and the width
w̃ of the soliton’s envelope. To cover both scales simul
neously it was necessary to consider at least 260 period
the optical potential or 2000 spatial points along thez axis.
Since the number of total points in 3D is restricted by t
capacity of the computer, a 3D simulation of a gap solit
becomes impractical. We therefore have applied this met
only to 1D and 2D simulations.

To derive the spectrum of quasiparticles around the
soliton we followed the method of Ref.@15# and expanded
the modes (u,v) of Eq. ~6! as well as the gap soliton wav
functionc0 in a set of basis functions. For thez direction we
have chosen a number ofnz Bloch wave functions which are
eigenstates of the linear Schro¨dinger equation with potentia
V(z)52V0cos(2kLz). As transverse modes we usednxny
harmonic oscillator eigenstates corresponding to the tra
verse trapping potential. This turns Eq.~6! into an eigenvalue
problem for a 2n32n matrix, wherenªnxnynz is the total
number of mode functions. However, before this eigenva
problem can be solved, one first has to find the exact wa
function of the gap soliton in the given set of basis modes~in
practice a reasonably large subset is sufficient!.

Since analytical solution~3! is only approximately correc
a stability analysis will inevitably lead to a complex quas
particle spectrum because of the finite difference to the ex
solution. To find the exact solutioncexact, we have used a
self-consistent field approach~SCF!: after the expansion o
the GPE in the basis modes Eq.~1! is turned into a set of
coupled nonlinear algebraic equations for the expansion
efficients ofc0. Using approximate solution~3! as an ansatz
c trial,1 we insert it into the GPE to evaluate the nonline
terms. The resulting equation,

Ec~x!5S p2

2M
1V~x!1kuc trial~x!u2Dc~x!, ~7!

represents a linear eigenvalue problem forc and can easily
be solved using standard numerical methods. We pick
solutionc trial,2 out of all eigenstates of Eq.~7! which has the
least deviation from our previous guessc trial,1 and iterate this
procedure until the change in the trial wave function is bel
a given value~we used a relative change of 10214 as accu-
racy goal!. The converged wave function may then corr
spond to the true gap soliton.
5-2



hm
d

th
o
d
an
cc
an
ho
a
nd
re

he
av
ee
he
th
.2
u-
de
ru
ie
m
ia

ll
-
of
i

e

is
SC
th

tion

eral
ny
de

the

n

a-
e
se-
ne

ex-
t a
. A

is
u-
ce
ce

ified
sion

-
l
ion.
ted

r it
ion
ht

d a
ary

ni
io
ffi

ts
lie

of
coil

STABILITY OF GAP SOLITONS IN A BOSE- . . . PHYSICAL REVIEW A 66, 063605 ~2002!
IV. ONE-DIMENSIONAL RESULTS

In one dimension the convergence of the SCF algorit
can easily be achieved. We have used up to 180 Bloch mo
to expand the exact soliton wave function which covered
upper half of the lowest-energy band and the lower third
the second Bloch energy band. However about 40 mo
covering the effective-mass region around the upper b
edge were sufficient to get about the same numerical a
racy. The~real! expansion coefficients for the gap soliton c
be seen in Fig. 1. It is interesting to note that the SCF met
essentially amounts to removing that part of the approxim
solution ~3! which corresponds to the second energy ba
The exact numerical solution therefore is indeed cente
around the upper band edge of the first energy band, w
the effective mass is approximately constant. We h
checked whether the final result of the SCF algorithm ind
describes a soliton by using it as an initial condition for t
split-step direct integration of the GPE. It was found that
solution does not change its shape for times exceeding 0
To verify the stability of the 1D gap soliton we have calc
lated the quasiparticle spectrum for up to 350 Bloch mo
as basis functions. The result for the real part of the spect
can be seen in Fig. 2 together with the Bloch mode energ
As one can see the two spectra are very similar apart fro
constant shift. This shift is given by the chemical potent
and arises because of the corresponding phase factor in
satz ~4!. The similarity of the curves is due to the sma
number of condensed atoms (NA5400) and the correspond
ing small collision effects. With a numerical accuracy
10215, the imaginary part of the quasiparticle spectrum
zero except for a single mode~and the corresponding mod
with complex conjugated frequency! for which the frequency
is purely imaginary. The value of the imaginary part for th
mode depends on the degree of convergence of the
wave function and on the number of modes included. For
analytical, nonconverged solution~3! the value of the imagi-
nary part of the mode is Im(vU)'0.023v' , wherev' is

FIG. 1. The expansion coefficientsaq5^wq(z)uc(z)& of the
wave functionc in the basis of Bloch functionswn around the band
edge of the first and second bands. The crosses indicate the i
wave function and the dots indicate the converged wave funct
The coefficients of the first band are nearly identical. The coe
cients of the second band are all close to zero. The coefficien
the initial wave function in the second band have been multip
by 5 to improve the presentation.
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the transverse trap frequency. For a well-converged solu
it is always very small, Im(vU),0.0013v' .

To understand the unstable mode better a few gen
facts about the quasiparticle spectrum are helpful: for a
potential and any stationary solution of the GPE the mo
(u,v)5(c0 ,c0* ) is a quasiparticle mode with frequencyv
50. This mode is a Goldstone mode associated with
symmetry of the energy functional

E5E H c0* S p2

2M
1VDc01kuc0u4J dnx ~8!

with respect to a global phase changec85exp(ia)c. If the
external potentialV is absent then, for any stationary solutio
c0 of the GPE, there is a second Goldstone mode (u,v)
5(“c0 ,2“c0* ). It arises because of the invariance ofE
against spatial translations. If the effective mass approxim
tion was exact then the gap soliton would fulfill the sam
equation as the bright soliton does in free space. Con
quently, it would also possess a translational Goldsto
mode. However, since the periodic optical potential does
plicitly break the translational invariance one can expec
shift of the complex Goldstone frequency away from zero
second effect that explicitly breaks translational invariance
the finite number of Bloch basis functions used in the n
merical calculations. This is equivalent to an optical latti
placed in a box whose length is a finite multiple of the latti
period. In our case, the box contained 260 periods.

That the unstable mode indeed corresponds to a mod
Goldstone mode can also be seen by looking at its expan
coefficients~Fig. 3!. Obviously the shape ofu(q) is approxi-
mately given byqc0(q) which would describe the Gold
stone mode if the quasimomentumq is replaced by the rea
momentum as it is done in the effective-mass approximat
The question remains whether this tiny instability associa
with Im(vU),0.0013v''0.1 s21 results from numerical
aberrations, from the finite number of periods, or whethe
is a real physical effect. To shed some light on this quest
we also have performed a stability analysis of the brig
soliton in free space using the same algorithm. We foun
similar behavior: a Goldstone mode develops an imagin

tial
n.
-
of
d

FIG. 2. Real part of the Bogoliubov spectrum and energies
the expansion modes for the first two bands in units of the re
energyErec5\2kL

2/(2M ).
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HILLIGSO”E, OBERTHALER, AND MARZLIN PHYSICAL REVIEW A 66, 063605 ~2002!
eigenvalue, but this time it is the mode associated with
phase transformation. Since one can prove that this mode
zero frequency, we conclude that the tiny imaginary eig
value for Goldstone modes is a spurious numerical effect
the gap soliton is dynamically stable in one dimension.

V. RESULTS IN TWO AND THREE DIMENSIONS

Having examined the stability of the 1D gap soliton it
of interest whether it will remain stable in a quasi-on
dimensional situation. The condition for the latter is usua
formulated as follows: the interaction energy, which leads
a coupling between different modes of the corresponding
ear Schro¨dinger equation, should be much smaller than
excitation energy of the transverse trapping potential. If t
is fulfilled, a BEC in its ground state will effectively behav
like a one-dimensional quantum gas since transverse ex
tions are off-resonant and therefore suppressed.

However, this is not the case for a gap soliton. The rea
can be seen by looking at Fig. 4 which displays the mo
energies of noninteracting atoms in the optical lattice a
with a tight harmonic transverse confinement around the
per band edge. The solid line displays the energy of atom
the transverse ground state and with longitudinal quasi
mentumq in the lowest-energy band. Each dashed line c

FIG. 3. Expansion coefficients for the modified translation
Goldstone mode. Shown is the real part~dots! and imaginary part
~circles! of the functionu(z). Numerically it was found thatv(z)
'2u(z).

FIG. 4. Energy eigenvalues around the upper band edge
noninteracting atoms in an optical lattice and with a transverse t
ping potential. Due to resonances between longitudinal and tr
verse excitations the gap soliton will be unstable against transv
decay. The physical parameters are given in the text.
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responds to transversally excited atoms with a transverse
ergy of 2\v' to 6\v' , respectively. It is important to
observe that there are resonances between transversall
excited atoms withq50 and transversally excited atom
with qÞ0. Since the gap soliton is a superposition of Blo
modes around the upper band edge (q50), these resonance
have the consequence that even for tight transverse con
ment a true gap soliton does not exist. This situation is qu
tatively the same in two and in three dimensions since
both cases the free-energy levels are given by those of Fi
Since in two dimensions the transverse trapping potentia
one dimensional, the multiplicity of the energy levels is a
ways one. This is different in three dimensions where a tra
verse excitation energy ofn\v' has an (n11)-fold degen-
eracy. The number of resonant states is therefore larger
in two dimensions. Although a true gap soliton does not ex
it is of interest to examine aquasigap solitonof the form

cquasi5cgap~z,t !w0~x,y!, ~9!

with w0 denoting the transverse ground state. It should
possible to produce a state likecquasi using dispersion man
agement@18#. Though the quasi gap soliton is not a tru
stationary solution of the GPE, it may be sufficiently stab
to allow for experimental observation. A signature of a qua
gap soliton would be a strongly suppressed dispersion of
wave packet along thez axis. To analyze the time scale o
which this state decays, we first note that the transve
ground state has even parity and because of parity conse
tion can only couple to even excited levels 2n\v' . This is
the reason why we omitted odd transverse excitations in
4.

We have used the two-dimensional version of state~9! as
shown in Fig. 5 as initial condition and numerically studie
the time evolution of it. To study the influence of the tran
verse confinement we have considered three BECs with 4
1600, and 25 600 atoms in Figs. 6~a!, 6~b!, and 6~c!, respec-
tively. The number of atomsNA and the transverse confine
ment frequencyv' have been simultaneously varied keepi
the productv'NA constant. Consequently the interaction e
ergy in Eq. ~8! is kept constant, since it is proportional t
(v'NA)2. This also ensures that the first-order soliton co
dition is fulfilled. The result of the numerical time evolutio
after 23 ms is shown in Fig. 6. While some excitations a
observable, the state still looks very much like the quasig
soliton in Fig. 5. This situation changes after 0.23 s~Fig. 7!.
On Figs. 7~b! and 7~c! one can see strong excitations whic
are growing with decreasing transverse excitation freque
whereas the state shown on Fig. 7~a! still resembles the gap

l

or
p-
s-
se

FIG. 5. Density of the initial state wave function log10ucu2 for
400 atoms in the BEC.
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STABILITY OF GAP SOLITONS IN A BOSE- . . . PHYSICAL REVIEW A 66, 063605 ~2002!
soliton state on Fig. 5 quite well. This is a reasonable re
since the ratio of the interaction energy and the transve
excitation energy is greater than one for Figs. 7~b! and 7~c!
hence the nonlinear coupling is strong enough to excite
transverse modes. The figure suggests that in particular
transverse modes with 2\v' energy are strongly excited be

FIG. 6. Density of the wave function log10ucu2 at t523 ms for
~a! 400 atoms,~b! 1600 atoms, and~c! 25 600 atoms in the BEC
See text for details.

FIG. 7. Density of the wave function log10ucu2 at t50.23 s for
~a! 400 atoms,~b! 1600 atoms, and~c! 25 600 atoms in the BEC
See text for details.
06360
lt
se

e
he

cause for a fixed value ofz there are three density maxima
thex direction. This is in agreement with the qualitative pr
dictions which we have made above. To verify this result
also have calculated the quasiparticle spectrum of state~9! in
two and three dimensions. In principle, since the quasi
soliton is not a stationary state, the spectrum is not enoug
predict the evolution of it accurately and a more sophis
cated approach is needed@17#. However, to gain a qualitative
understanding of the time scale on whichcquasi decays the
imaginary part of the spectrum is sufficient.

In 2D we used up to 100 Bloch wave functions and up
19 one-dimensional eigenstates of the transverse harm
trap as basis modes. The quasigap soliton was expande
ing 51 Bloch states. It turned out that there are gener
quite many unstable modes, but only few of them do hav
considerable overlap with the collective wave function. T
number of unstable modes depends on the number of b
states used to expand the BDGE since the number of r
nant transversely excited states is growing. However
turned out that this basis dependence does only affect m
with a small instability. Some examples are displayed in F
8. ModeA of Fig. 8 corresponds very well to the anticipate
resonant excitation of transverse modes. It has a non
overlap with the quasigap soliton and otherwise only po
lates even transversely excited basis modes. Correspond
its instability is rather large; only the instability of modeB of
Fig. 8, which roughly describes the phase Goldstone mo
decays faster. ModeB of Fig. 8 is unstable because, as d
scribed above, the quasigap soliton is not a stationary s
tion of the GPE. However, due to a coupling to transvers
excited states the decay rate is strongly enhanced as c
pared to the nonconverged one-dimensional quasigap so
~the modulus of the transversely excited mode coefficient
less than 0.1 and is therefore not visible in Fig. 8. ModeC of
Fig. 8 is typical for the many unstable modes which have
overlap with the quasigap soliton. Therefore, unless trans
sal excitations are created during the experimental prep
tion of the quasigap soliton, they do not contribute to t
decay of it. These modes appear because the collective w
function provides a linear coupling term between tran
versely excited states which are in resonance with each o
Such modes can exist for even and odd transverse excita
levels without violating parity. Finally, modeD of Fig. 8
describes a somewhat off-resonant coupling between
transverse ground state and transversely excited states
cause of its off-resonant nature its decay rate Im(v) is con-
siderably smaller than for the resonant modeA of Fig. 8. To
analyze the dynamical instability of a 3D quasigap solit
we used again Bloch wave functions for the longitudin
expansion of the Bogoliubov modes. For the two transve
directions we have chosen a basis of states which are
eigenstates of the Hamiltonian and the angular momen
operatorLz . These states can be constructed by using
creation operatorsc6ª(ax

†6 iay
†)/A2 @19#. The basis states

are then given by

un,m&ª
~c1

† !(n2m)/2~c2
† !(n1m)/2

A@~n1m!/2#! @~n2m!/2#!
u0&. ~10!
5-5
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HILLIGSO”E, OBERTHALER, AND MARZLIN PHYSICAL REVIEW A 66, 063605 ~2002!
The energy of these states is given byn\v' ,n50,1,2, . . .
and their angular momentum bym\,m52n,2(n
22), . . . ,n. We used again 51 Bloch states to expand
Bogoliubov modes along thez axis and up to 30 transvers
modes as given in Eq.~10!. We found again a large numbe
of unstable modes which spuriously depends on the num
of transverse basis states. However, similarly to the 2D c
modes with an instability Im(v).0.02v' do not depend
significantly on the number of basis states. Some of th
unstable Bogoliubov modes in 3D are shown in Fig. 9. Mo
A of Fig. 9 is again roughly the phase Goldstone mode p
some small transversal excitations not visible in the figu
Due to the larger number of nearly resonant basis states
decay rate is even larger than in the 2D case. ModeB of Fig.
9 is again a superposition of resonant states and, as in
has the second largest decay rate. These two states as w
most of the other unstable modes are solely compose
states with zero angular momentum, i.e., states which
symmetric in thex-y plane. They are therefore very simila

FIG. 8. Selected unstable Bogoliubov modes for a 2D quasi
soliton. Shown is the energyE ~in units of\v') of the basis func-
tions as a function of the quasimomentumq ~in units of kL). The
lowest parabola corresponds to the transverse ground state.
other parabolas describe a transverse excitation ofn\v' ,n
51,2, . . . . Thethickness of the dots corresponds to the modulus
theu or v coefficients with respect to the corresponding basis fu
tion. The smallest~largest! dots correspond to coefficients of mod
lus between 0 and 0.1~0.5!, respectively. The imaginary part Im(v)
of the unstable modes is given in units of the transverse trap
quencyv'5110 s21.
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to the 2D case. A new kind of instability in 3D occurs
Mode C Fig. 9, which has no overlap with the quasiga
soliton. It is composed out of states withm561 and thus
describes the decay or increase of rotating states line
coupled by the collective wave function. We found 80 u
stable modes of this kind.

VI. CONCLUSION

We have examined the dynamical instability of gap so
tons in a BEC in one, two, and three spatial dimensio
under the condition of tight transversal confinement. Us
different methods we found that a truly one-dimensional g
soliton is stable. In higher-dimensions transversal excitati
which are resonant with the upper band edge forbid the
istence of a real gap soliton. However, a quasigap sol
may be experimentally prepared which behaves like the
gap soliton for a time smaller than the smallest decay time
one of the unstable Bogoliubov modes. In 3D we nume
cally found this time to be in the order of 1/(0.1333v')
which is the decay time of modeA in Fig. 9. For a transverse

p

he

f
-

e-

FIG. 9. Selected unstable Bogoliubov modes for a 3D quasi
soliton. The units are as in Fig. 8, but in addition to the basis ene
E and quasimomentumq, a third quantum numberm is introduced
which is associated with the axial angular momentumLz5m\ of
the basis functions.
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trap frequency ofv'5110 s21 we expect the quasigap sol
ton to be sufficiently stable for about 70 ms. This should
long enough for experimental observation.
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