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Stability of gap solitons in a Bose-Einstein condensate
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We analyze the dynamical stability of gap solitons formed in a quasi-one-dimensional Bose-Einstein con-
densate in an optical lattice. Using two different numerical methods we show that, under realistic assumptions
for experimental parameters, a gap soliton is stable only in a truly one-dimensional situation. In two and three
dimensions, resonant transverse excitations lead to dynamical instability. The time scale of the decay is
numerically calculated and shown to be large compared to the characteristic time scale of solitons for realistic
physical parameters.
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[. INTRODUCTION possible. Very recently bright solitons have been created in a
guasi-one-dimensional setfi§,5], where the transverse po-
One of the most fundamental facts about Bose-Einsteimential V(x,y) tightly confines the BEC, thus suppressing
condensateBEC) of dilute atomic gases is that they can be transverse excitations and three-dimensional collapse.
very well described by the Gross-Pitaevskii equatiGib In this paper we are concerned with the dynamical stabil-
ity of gap solitons. This collective state, which has not yet
been realized experimentally, exists for repulsive atoms
(k1p>0) in a periodic potentia¥/(z) and is related to bright
solitons. The basic idea of a gap soliton is the following: as
where s denotes the collective wave function of condenseds well known the energy eigenvalues of noninteracting par-
atoms with mass M and coupling constant x ticles in a periodic potential are given by energy bands
=4mh’aN,/M, with a being the s-wave scattering length £ (q), wheren is the band index and denotes the quasi-
andN, denoting the number of atoms in the BESEe, €.9., momentum. If a particle’s state is prepared in the lowest
Ref.[1]). Therefore a BEC provides a physical .realization ofpand only the dispersion relatiqeé/(2M) in free space is
many nonlinear wave phenomena among which the formar'eplaced by the lowest band enefy(q). Around the upper

tion of solitons is particqlarly interesting. . _ band edge, which we take to be@t 0, this energy can be
For our purposes solitons are wave packets in which th%pproximated byEo(q)~Eo(0)+q2/(2M*) where M*

dispersive effect of the kinetic term is exactly canceled by-—[don(q)/dqz]*H s the effective mass of the particle
q=

the nonlinear interaction energy so that their shape does not o ; .
change. Two fundamental types of solitons have so far bee? the p?”_Od'(? potentla,l,. Since at the upper band ehigfe
experimentally realized in a BEC: dark solitof53] corre- <0 the “kinetic energy” becomes negative and a cancella-

spond to a stable density dip in a BEC of repulsive atomstion with the po§itive inte_raction energy becomes possible.
Bright solitons do exist for atoms with attractive interaction The corresponding state is calledyap soliton . .
(k<0) and are described by a one-dimensional solution of Gap solitons have been realized in nonlinear optics using

the GPE for vanishing potentia(x) a periodic modulation of the propagation medidfi. In
' nonlinear atom optics they have first been predicted by Lenz

et al. [7] in the context of light-induced nonlineariti¢8,9].
Yrign 2,1) =—==secliz/w)e ™!, (2)  Here we are concerned with the collision-induced nonlinear-
V2w ity appearing in Eq(1).

We consider a BEC that is placed in a one-dimensional
wherew=2%2/(M«k;p) and ws=%/(2Mw?). To relate the optical lattice, created by far-detuned laser light with wave
one-dimensional GPE to its three-dimensional origin, we asnumberk; , which produces an optical potential of the form
sumed that the BEC is tightly trapped in the transverse diV(z)= —Vycos(% z), and is subject to a tight harmonic
rection so that no transverse excitations can occur. Taking theansverse confinement of the ford, (x,y)=Mo? (x?
BEC to be in the transverse ground state amounts to replacry?)/2. Herew, is the transverse trap frequency aviglis
ing the three-dimensional coupling constart by x5  the strength of the optical potential. The derivation of the
=«/A, , whereA, =27a? and witha, :=\A/(Mw,) being  corresponding gap soliton solution of the one-dimensional
the harmonic oscillator length of the transverse potentialGPE is tedious and includes a multiple scales analysis. For
The attraction between the atoms prevents the dispersion oonlinear optics it has been derived by Sipe and co-workers
the sech-shaped wave packet. Note thatdgs>0, corre- [10]. For nonlinear atom optics a related derivation has been
sponding to repulsive atom-atom interaction, the kinetic ensketched in Refs[7,11,13. One finds that, within the
ergy and the interaction energy have the same sign and thereffective-mass approximation, the one-dimensional gap soli-
fore cannot cancel each other, a bright soliton is then noton is described by

2
PO =| g VOO +RlBOP pixt), (@)
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1 _ trum then so isv*. Using Eq.(5) it is seen that the existence
Ygad Z,t) = cpbe(z,t)—secmz/Vv)e*'“’st, ©)) of a nonzero imaginary part of one quasiparticle frequency
\/ﬁ implies exponential growth of the mode and hence dynami-
cal instability of the statel,. To demonstrate that the gap
where pd(z,t) = ppdz) e 'FoO% s the solution of the lin-  soliton is stable, therefore amounts in showing that the asso-
ear Schrdinger equation that corresponds to the upper bandiated quasiparticle spectrum is real.

edge. The parametersandw, have the same form asand
o for the bright soliton but withM replaced byM*| and

Kk1p replaced bykip:=rx1pf|epd2)|*dz. Apart from ¢y, SO-
lution (3) just corresponds to a bright soliton for a particle of ~ Although the direct numerical integration of the GPE is
mass|M*| and coupling constang. easy to implement usin_g the spl_it-step mettid€] it has the

The range of experimentally promising values for the op-disadvantage of not being practical for a 3D study of the gap
tical potential strength,, the number of condensed atoms Soliton. The reason is that sta® includes two very differ-
N, and the transverse confinement frequemgyhas been €nt spatial scales: the laser wavelengi/2_ and the width
examined in a study by Brezget al. [13]. The number of w of the soliton’s envelope. To cover both scales simulta-
atoms necessary for the generation of a first-order soliton cameously it was necessary to consider at least 260 periods of
be estimated by comparing the time scales of disper§jpn the optical potential or 2000 spatial points along #haxis.
=m*w?/#% and the nonlinearityT,, =%/x1p|¥|2 ., Where Since the number of total points in 3D is restricted by the

|2 is the absolute value squared of the wave function af@Pacity of the computer, a 3D simulation of a gap soliton
the center of the wave packit4]. Experimentally realistic becomes impractical. We therefore have applied this method

parameters arey=10 um (BEC released from a TOP trap only to 1[.3 and 2D simulations. N

an effective mass ofm*=0.2 m (corresponding toVy~ '_I'o derive the spectrum of quasiparticles around the gap

—E,..=#2k?/(2M)) and a transverse confinement fre- soliton we followed the method of Reff15] and expanded
rec L 1 : : . the modes (,v) of Eq. (6) as well as the gap soliton wave

quency ofw, =110 s *. By comparing the given time scales

) function ¢ in a set of basis functions. For tzelirection we
we expect thalN,~400 atoms lead to the formation of a : :
: . : : .+ have chosen a number of Bloch wave functions which are
soliton. In the following we will focus on this case. We will

also consider the effect of a variation K, which allows to eigenstates of the linear Scllinger equation with potential

test the quasi-one-dimensionality of the gap soliton. V(2)= _.VOCOS(ZRLZ)' '_A‘S transverse modes we usen,
harmonic oscillator eigenstates corresponding to the trans-

verse trapping potential. This turns E§) into an eigenvalue
ll. STABILITY THEORY OF GAP SOLITONS problem for a 21X 2n matrix, wheren:=n,n,n, is the total
AND BRIGHT SOLITONS number of mode functions. However, before this eigenvalue

A stationary solutiony, of the GPE, with chemical po- probl_em can be solveq, one first has to find the_exac'g wave-
tential x, is calleddynamically stableif a small deviation ~function of the gap soliton in the given set of basis mo(ies
sy from i, will not grow with time. In this case a small Practice a reasonably large subset is suffigient
perturbation will not cause the solution to evolve into a com-  SiNce analytical solutiof8) is only approximately correct
pletely different wave packet. To study dynamical instability @ Stability analysis will inevitably lead to a complex quasi-
one can either directly integrate the GPE or solve the assdqrarticle spectrum because of the finite difference to the exact

ciated Bogoliubov-de Gennes equatiof®DGE, see, e.g., Solution. To find the exact solutiofe,,., we have used a
Ref.[15]). The latter arise when one writes the wave func-Self-consistent field approadi$CP: after the expansion of

IIl. NUMERICAL METHODS

tion (x,t) in the form the GPE in the basis modes Eq) is turned into a set of
’ coupled nonlinear algebraic equations for the expansion co-
P, t) =exp( —iut/h)[ go(X)+ S(Xx,1)], (4)  efficients ofyy. Using approximate solutiof8) as an ansatz

Yia,n We insert it into the GPE to evaluate the nonlinear
and linearizes the GPE iAy. By making the ansatz of a terms. The resulting equation,
stationary perturbation,

2

Su(x,t)=u(x)exp —iwt) —v* (x)expli wt), 5 p
poetmuIeREtet T geRten, O B0 =| 3+ V00 + Kl 02| w0, ()
one arrives at the BDGE
hwu=Lu— K¢§v, represents a linear eigenvalue problem foand can easily
be solved using standard numerical methods. We pick that
—hov=Lv— k(§)?u, (6)  solution iy, » out of all eigenstates of Eq47) which has the

least deviation from our previous guegg, ; and iterate this
with L£:=p?/(2M)+V(X) — u+2k|#o/?. A solution (u,v)  procedure until the change in the trial wave function is below
with eigenvaluew corresponds to a quasiparticle mode. Thea given value(we used a relative change of 11 as accu-
set of allw forms the quasiparticle spectrum which in gen-racy goa). The converged wave function may then corre-
eral is complex. One can shdi] that if  is in the spec- spond to the true gap soliton.
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FIG. 1. The expansion coefficient,=(¢q(2)|#(2)) of the FIG. 2. Real part of the Bogoliubov spectrum and energies of

wave functiony in the basis of Bloch functiong, around the band  the expansion modes for the first two bands in units of the recoil
edge of the first and second bands. The crosses indicate the initiéhergyErEC:hzkf/(ZM).
wave function and the dots indicate the converged wave function.
The coefficients of the first band are nearly identical. The coeffi-the transverse trap frequency. For a well-converged solution
cients of the second band are all close to zero. The coefficients q{ is always very small, Im,)<0.001X o, .
the initial wave function in the second band have been multiplied To understand the unstable mode better a few general
by 5 to improve the presentation. facts about the quasiparticle spectrum are helpful: for any
IV. ONE-DIMENSIONAL RESULTS potential and any stationary solution of the GPE the mode
- o . . .
In one dimension the convergence of the SCF algorithn"n(:uc')v_)Th(ilspor'nl/g)d)eIsisaaqléaoslszsigﬂem%%ie av;gr;cﬁ;gge:v% the
can easily be achieved. We have used up to 180 Bloch mOdFé?/mmetry of the energy functional
e

to expand the exact soliton wave function which covered th
upper half of the lowest-energy band and the lower third of 2

the second Bloch energy band. However about 40 modes E:f [¢3(p_+v
covering the effective-mass region around the upper band 2M
edge were sufficient to get about the same numerical accu-

racy. The(rea) expansion coefficients for the gap soliton canwith respect to a global phase change=exp{a)y. If the

be seen in Fig. 1. It is interesting to note that the SCF metho@xternal potential/ is absent then, for any stationary solution
essentially amounts to removing that part of the approximateyo of the GPE, there is a second Goldstone modg X
solution (3) which corresponds to the second energy band=(Vq,—V¢5). It arises because of the invariance ©f
The exact numerical solution therefore is indeed centeredgainst spatial translations. If the effective mass approxima-
around the upper band edge of the first energy band, whet&®on was exact then the gap soliton would fulfill the same
the effective mass is approximately constant. We havequation as the bright soliton does in free space. Conse-
checked whether the final result of the SCF algorithm indeedjuently, it would also possess a translational Goldstone
describes a soliton by using it as an initial condition for themode. However, since the periodic optical potential does ex-
split-step direct integration of the GPE. It was found that theplicitly break the translational invariance one can expect a
solution does not change its shape for times exceeding 0.2 shift of the complex Goldstone frequency away from zero. A
To verify the stability of the 1D gap soliton we have calcu- second effect that explicitly breaks translational invariance is
lated the quasiparticle spectrum for up to 350 Bloch modesghe finite number of Bloch basis functions used in the nu-
as basis functions. The result for the real part of the spectrummerical calculations. This is equivalent to an optical lattice
can be seen in Fig. 2 together with the Bloch mode energieglaced in a box whose length is a finite multiple of the lattice
As one can see the two spectra are very similar apart from period. In our case, the box contained 260 periods.
constant shift. This shift is given by the chemical potential That the unstable mode indeed corresponds to a modified
and arises because of the corresponding phase factor in a@oldstone mode can also be seen by looking at its expansion
satz (4). The similarity of the curves is due to the small coefficients(Fig. 3). Obviously the shape af(q) is approxi-
number of condensed atomd (=400) and the correspond- mately given byq¢y(q) which would describe the Gold-
ing small collision effects. With a numerical accuracy of stone mode if the quasimomentugis replaced by the real
1015, the imaginary part of the quasiparticle spectrum ismomentum as it is done in the effective-mass approximation.
zero except for a single modand the corresponding mode The question remains whether this tiny instability associated
with complex conjugated frequencfor which the frequency  with Im(w,)<0.001X w, ~0.1 s'* results from numerical

is purely imaginary. The value of the imaginary part for this aberrations, from the finite number of periods, or whether it
mode depends on the degree of convergence of the SOF a real physical effect. To shed some light on this question
wave function and on the number of modes included. For theve also have performed a stability analysis of the bright
analytical, nonconverged soluti@B) the value of the imagi- soliton in free space using the same algorithm. We found a
nary part of the mode is Inaf;)~0.02X w, , wherew, is  similar behavior: a Goldstone mode develops an imaginary

Yot K|¢o|4] d"x 8
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FIG. 5. Density of the initial state wave function lgy|? for
- 0.2 < 400 atoms in the BEC.
-015 -01 -005 0 005 01 015 responds to transversally excited atoms with a transverse en-

kg, ergy of 2hw, to 6hw,, respectively. It is important to
) o - ) observe that there are resonances between transversally un-
FIG. 3. Expansion coefficients for the modified translational oy cited atoms withg=0 and transversally excited atoms
Goldstone mode. Shown is the real patots and imaginary part \\ith 0. Since the gap soliton is a superposition of Bloch
(circles of the functionu(z). Numerically it was found that (z) modes around the upper band edge=0), these resonances
~-u@). have the consequence that even for tight transverse confine-

eigenvalue, but this time it is the mode associated with th ent a true gap soliton does not exist. This situation is quali-

phase transformation. Since one can prove that this mode h %tlvely the same in two and in three dimensions since in

zero frequency, we conclude that the tiny imaginary eigen: oth cases the free-energy levels are given by those of Fig. 4.

value for Goldstone modes is a spurious numerical effect angr']r::zi:ﬁ?};xvgoﬂg?ephséor?]iltt?e“g?ni\f’eﬂr;e;Laeep'n?e\?gltse?;'il_'s
the gap soliton is dynamically stable in one dimension. AR Iplicity of ergy
ways one. This is different in three dimensions where a trans-

verse excitation energy ofiw, has an (+1)-fold degen-
V. RESULTS IN TWO AND THREE DIMENSIONS eracy. The number of resonant states is therefore larger than
Having examined the stability of the 1D gap soliton it is in two dimensions. Although a true gap soliton does not exist
of interest whether it will remain stable in a quasi-one-it is of interest to examine gquasigap solitorof the form
dimensional situation. The condition for the latter is usually _
formulated as follows: the interaction energy, which leads to Yquas™ Ygad 2 1) Po(X,Y), ©)

a coupling between different modes of the corresponding linyith ¢, denoting the transverse ground state. It should be

ear_Sc_hrdinger equation, should be muc_h smaller_than th_ ossible to produce a state lilgey s Using dispersion man-
excitation energy pf fche transverse trapping p(_)tennal. If thi gement[18]. Though the quasi gap soliton is not a true
is fulfilled, a BEC in its ground state will effectively behave giationary solution of the GPE, it may be sufficiently stable
like a one-dimensional quantum gas since transverse excitgs g|iow for experimental observation. A signature of a quasi-
tions are off-re_so_nant and therefore suppres_sed_ ap soliton would be a strongly suppressed dispersion of the
However, this is not the case for a gap soliton. The reasof}5ye packet along the axis. To analyze the time scale on
can be seen by looking at Fig. 4 which displays the mode, ;- this state decays, we first note that the transverse

energies of noninteracting atoms in the optical latticeé andyonq state has even parity and because of parity conserva-
with a tight harmonic transverse confinement around the UPion can only couple to even excited levels/2w, . This is

per band edge. The solid line displays the energy of atoms Ifhe yeason why we omitted odd transverse excitations in Fig.
the transverse ground state and with longitudinal quasimoy

mentumg in the lowest-energy band. Each dashed line cor- We have used the two-dimensional version of stajeas

shown in Fig. 5 as initial condition and numerically studied
the time evolution of it. To study the influence of the trans-
verse confinement we have considered three BECs with 400,
1600, and 25600 atoms in Figdah 6(b), and Gc¢), respec-
tively. The number of atomsl, and the transverse confine-
ment frequencyo, have been simultaneously varied keeping
the productw, N, constant. Consequently the interaction en-
ergy in Eq.(8) is kept constant, since it is proportional to
(w, Np)?. This also ensures that the first-order soliton con-
dition is fulfilled. The result of the numerical time evolution
after 23 ms is shown in Fig. 6. While some excitations are
FIG. 4. Energy eigenvalues around the upper band edge fopbservable, the state still looks very much like the quasigap
noninteracting atoms in an optical lattice and with a transverse trapsoliton in Fig. 5. This situation changes after 0.26-&. 7).
ping potential. Due to resonances between longitudinal and trand2n Figs. 7b) and 7c) one can see strong excitations which
verse excitations the gap soliton will be unstable against transversgre growing with decreasing transverse excitation frequency,
decay. The physical parameters are given in the text. whereas the state shown on Figa)7still resembles the gap

-01  -005 0.05 0.1 a/k;,
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FIG. 6. Density of the wave function lgg|? att=23 ms for
(a) 400 atoms(b) 1600 atoms, andc) 25 600 atoms in the BEC.
See text for detalils.
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cause for a fixed value afthere are three density maxima in
thex direction. This is in agreement with the qualitative pre-
dictions which we have made above. To verify this result we
also have calculated the quasiparticle spectrum of sgate

two and three dimensions. In principle, since the quasigap
soliton is not a stationary state, the spectrum is not enough to
predict the evolution of it accurately and a more sophisti-
cated approach is needgl7]. However, to gain a qualitative
understanding of the time scale on whigh,, decays the
imaginary part of the spectrum is sufficient.

In 2D we used up to 100 Bloch wave functions and up to
19 one-dimensional eigenstates of the transverse harmonic
trap as basis modes. The quasigap soliton was expanded us-
ing 51 Bloch states. It turned out that there are generally
quite many unstable modes, but only few of them do have a
considerable overlap with the collective wave function. The
number of unstable modes depends on the number of basis
states used to expand the BDGE since the number of reso-
nant transversely excited states is growing. However, it
turned out that this basis dependence does only affect modes
with a small instability. Some examples are displayed in Fig.
8. ModeA of Fig. 8 corresponds very well to the anticipated
resonant excitation of transverse modes. It has a nonzero
overlap with the quasigap soliton and otherwise only popu-
lates even transversely excited basis modes. Correspondingly
its instability is rather large; only the instability of mo&eof
Fig. 8, which roughly describes the phase Goldstone mode,

soliton state on Fig. 5 quite well. This is a reasonable resulfjecays faster. ModB of Fig. 8 is unstable because, as de-
since the ratio of the interaction energy and the transversggrihed above, the quasigap soliton is not a stationary solu-

excitation energy is greater than one for Fig&)7and 7c)

tion of the GPE. However, due to a coupling to transversely

hence the nonlinear coupling is strong enough to excite thgycited states the decay rate is strongly enhanced as com-
transverse modes. The figure suggests that in particular theyred to the nonconverged one-dimensional quasigap soliton
transverse modes with/io, energy are strongly excited be- (the modulus of the transversely excited mode coefficients is

—1
A) No=400‘ wo=110 S

X (um)

-50 0 50
z (um)

2
B) N2=1600, w2=w0/2

S —

z (um)

6
) Ns=25600’ 036=c00/2

R =

z (um)

50

FIG. 7. Density of the wave function leg|> att=0.23 s for
(a) 400 atoms(b) 1600 atoms, andc) 25 600 atoms in the BEC.
See text for details.

less than 0.1 and is therefore not visible in Fig. 8. Madef

Fig. 8 is typical for the many unstable modes which have no
overlap with the quasigap soliton. Therefore, unless transver-
sal excitations are created during the experimental prepara-
tion of the quasigap soliton, they do not contribute to the
decay of it. These modes appear because the collective wave
function provides a linear coupling term between trans-
versely excited states which are in resonance with each other.
Such modes can exist for even and odd transverse excitation
levels without violating parity. Finally, mod® of Fig. 8
describes a somewhat off-resonant coupling between the
transverse ground state and transversely excited states. Be-
cause of its off-resonant nature its decay ratedn{s con-
siderably smaller than for the resonant madef Fig. 8. To
analyze the dynamical instability of a 3D quasigap soliton
we used again Bloch wave functions for the longitudinal
expansion of the Bogoliubov modes. For the two transversal
directions we have chosen a basis of states which are both
eigenstates of the Hamiltonian and the angular momentum
operatorL,. These states can be constructed by using the
creation operators. :=(af+ia/)/\2 [19]. The basis states
are then given by

(C'L)(nfm)IZ(C'I;)(n+m)/2

[n,m) 0). (10

T2l (n—m2]!
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FIG. 8. Selected unstable Bogoliubov modes for a 2D quasigap
soliton. Shown is the enerdy (in units ofZw, ) of the basis func-
tions as a function of the quasimomentuptin units ofk,). The
lowest parabola corresponds to the transverse ground state. Th.

other parabolas describe a transverse excitationndtv, ,n . .
=1,2,.... Thehickness of the dots corresponds to the modulus of FIG. 9. Selected unstable Bogoliubov modes for a 3D quasigap

theu or v coefficients with respect to the corresponding basis func_s,ohton. The units are as in Fig. 8, but in addition to the basis energy

. - E and quasimomentum, a third quantum numbaen is introduced
tion. The smallestlargesj dots correspond to coefficients of modu- S . ; ;
. . - which is associated with the axial angular momentuys m# of
lus between 0 and 0.(D.5), respectively. The imaginary part Imaj . .
o . : the basis functions.
of the unstable modes is given in units of the transverse trap fre-

=110s . : . A :
quencye. S to the 2D case. A new kind of instability in 3D occurs in

Mode C Fig. 9, which has no overlap with the quasigap

The energy of these states is giventyw, ,n=0,1,2...  soliton. It is composed out of states with= =1 and thus
and their angular momentum bym7,m=—-n,—(n  describes the decay or increase of rotating states linearly
—2),....n. We used again 51 Bloch states to expand thecoupled by the collective wave function. We found 80 un-

Bogoliubov modes along theaxis and up to 30 transverse stable modes of this kind.
modes as given in Eq10). We found again a large number

of unstable mode; which spuriously dgp_ends on the number VI. CONCLUSION
of transverse basis states. However, similarly to the 2D case,
modes with an instability Im$)>0.02w, do not depend We have examined the dynamical instability of gap soli-

significantly on the number of basis states. Some of thestons in a BEC in one, two, and three spatial dimensions
unstable Bogoliubov modes in 3D are shown in Fig. 9. Modeunder the condition of tight transversal confinement. Using
A of Fig. 9 is again roughly the phase Goldstone mode pluslifferent methods we found that a truly one-dimensional gap
some small transversal excitations not visible in the figuresoliton is stable. In higher-dimensions transversal excitations
Due to the larger number of nearly resonant basis states thehich are resonant with the upper band edge forbid the ex-
decay rate is even larger than in the 2D case. M@ Fig. istence of a real gap soliton. However, a quasigap soliton
9 is again a superposition of resonant states and, as in 2pay be experimentally prepared which behaves like the 1D
has the second largest decay rate. These two states as wellgap soliton for a time smaller than the smallest decay time of
most of the other unstable modes are solely composed afe of the unstable Bogoliubov modes. In 3D we numeri-
states with zero angular momentum, i.e., states which areally found this time to be in the order of 1/(0.18% )
symmetric in thex-y plane. They are therefore very similar which is the decay time of mod&in Fig. 9. For a transverse
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