
Department of Physics and Astronomy
Heidelberg University

Bachelor Thesis in Physics
submitted by

Marcel Großkinsky

born in Buchen (Germany)

September 2016

Neural Sampling with Linear Feedback Shift
Registers as a Source of Noise

This Bachelor Thesis has been carried out by
Marcel Großkinsky

at the
KIRCHHOFF-INSTITUTE FOR PHYSICS

HEIDELBERG UNIVERSITY
under the supervision of

Prof. Dr. Karlheinz Meier

Abstract

On state-of-the-art neuromorphic hardware small LIF networks are able
to perform Neural Sampling. It is crucial that the single neurons are supplied
with stochastic background noise. This is modeled as a set of spike trains
originated from a Poisson process. In the current hardware generation, this
Poisson noise has to be generated externally. Alternatively, one has to fall
back on Linear Feedback Shift Registers (LFSRs), which are able to generate
background noise for small network sizes and short times on chip. This thesis
aims to investigate the influence sampling with LFSR generated background
noise has. Second, several LFSR architectures are investigated, which are
able to generate decorrelated spike trains under the constraint of using as few
LFSRs as possible. One approach bases on a kind of Cox Processes: Poisson
Processes with Bernoulli trials as stochastic rate. A second approach uses
modified Gold-Code generators, which are able to generate background noise
for a small LIF neuron network with only two registers and a minor loss in
sampling quality.

Zusammenfassung

Auf aktueller neuromorpher Hardware sind kleine LIF-Neuronen-Netzwerke
in der Lage, verschiedene Wahrscheinlichkeitsverteilungen zu samplen. Es-
sentiell ist hierzu, dass die einzelnen Neuronen stochastischen Input als Hin-
tergrundrauschen erhalten, das als Poisson Prozess modelliert wird. Momen-
tan kann dieses Rauschen extern erzeugt und auf die Hardware gespielt wer-
den, alternativ kann man auf Lineare Schieberegister zurückgreifen, deren
Anzahl allerdings nur kurzzeitig für kleine Netzwerke ausreicht. In dieser
Thesis wird der Einfluss untersucht, den das Samplen mit Schieberegister-
Rauschen hat. Weiterhin werden verschiedene Möglichkeiten getestet, mehrere
Schieberegister zu verschalten, um platzsparend dekorreliertes Rauschen zu
erhalten. Ein Ansatz basiert auf einer Form von Cox-Prozessen: Pois-
son Prozessen mit Bernoulli Versuchen als stochastische Rate. Ein zweiter
Ansatz verwendet veränderte Gold-Folgen Generatoren, die es mit geringen
Einbußen in der Sampling-Qualität ermöglichen, mit nur zwei Generatoren
Hintergrundrauschen für kleine Netzwerke von LIF-Neuronen zu generieren.

Contents

1 Introduction 1

2 Theory 3
2.1 Neural Sampling . 3
2.2 Poisson and Cox Process . 5
2.3 Linear Feedback Shift Register (LFSR) 6
2.4 Neuromorphic Hardware and Spike Generation on LFSRs . . 7
2.5 Gold Sequences . 8
2.6 Characteristic Values of Spike Trains 9

3 Results 12
3.1 Sampling Based on Cox Processes 12

3.1.1 Splitting of Spike Trains by a Bernoulli Process 12
3.2 Sampling with LFSRs . 14

3.2.1 Sampling with Standard LFSRs 14
3.2.2 Sampling with a Reduced Set of LFSRs 23

3.3 LFSR Spike Splitting . 24
3.3.1 Splitting using numpy as PRNG 25
3.3.2 Splitting using LFSRs as Split Generator 31

3.4 Sampling using Gold Codes 35

4 Discussion and Outlook 37

5 Appendix 40

1 Introduction

The human brain consists of over 20 billion neurons, each of which has
about 7000 synaptic connections to other neurons. Therefore, the brain is
the most complex of the human organs and its mode of operation is still not
completely understood. First theoretical models of single neurons go more
than a hundred years back in time [Lapicque (1907)]. Since then, more natu-
ral and complex models of neural structures have been developed, which try
to explain the inherently stochastic dynamics of neural networks. The sam-
pling hypothesis, a relatively recent paradigm, states that the neural activity
can be rather seen as drawing samples from probability distributions instead
of computing these analytically. Buesing describes stochastic firing activ-
ity of neuron networks via Monte-Carlo Markov Chain sampling[Buesing
et al. (2011)]. Based on his work, Petrovici et al. have developed a Neural
Sampling model for leaky integrate-and-fire neurons [Petrovici et al. (2016)],
which are able to sample from an underlying stationary probability distri-
bution.

In recent years, scientific focus lies not only on the theoretical descrip-
tion of neural network dynamics but also on neuromorphic hardware. In this
approach, circuits are built which correspond to analog neurons in silicon.
Analog emulation of neurons and synapses has two major advantages: this
method is less energy consuming and much faster than simulating neural
structures on supercomputers. As part of the BrainScaleS project [Brain-
ScaleS (2016a)], High Input Count Analog Neural Network (HICANN) chips
are developed at the Kirchhoff-Institute for Physics. These are able to emu-
late neurons, which can be used for Neural Sampling as described in [Petro-
vici et al. (2016)].

On the current HICANN, the single neurons have to be externally sup-
plied with a high-frequent background noise input for a Neural Sampling ex-
periment. This background noise makes their membrane potential stochastic
and is modeled as Poisson Process. The long-term goal is to generate this
background noise on the HICANN chips themselves. Therefore, the use of
linear feedback shift registers (LFSRs) as pseudorandom number generators
(PRNGs) is unavoidable, as they have a simple structure but are able to
produce random numbers efficiently in contrast to other methods. This the-
sis investigates the influence the of using deterministic PRNGs for Neural
Sampling and evaluates possible LFSR architectures for creating efficient
pseudorandom numbers using as little resources as possible.

The first part of this thesis deals with the theoretical fundamentals un-
derlying the discussed concepts and ideas. Especially the generation of Gold

codes – a set of binary sequences with very low cross-correlations – is de-
scribed.

The second part details the sampling results of the different experimental
setups and begins with a short discussion of Cox process generated spike
trains in section 3.1. Second, a detailed investigation of sampling using
LFSR generated spike trains in general is given in section 3.2. Section 3.3
deals with the first of two presented LFSR architectures: registers run with
increased rate and their spikes are split among different neurons. Finally, a
setup based on Gold sequences is investigated in section 3.4.

2

2 Theory

2.1 Neural Sampling

One of the most important distributions is the Boltzmann distribution: Let
z = (z0, z1, ..., zn−1) be one particular state of a system, where the probabil-
ity of the state is given as:

p(z) =
1

Z
exp[−E(z)] (1)

Z =
∑

z exp[−E(z)] is the normalization constant and E(z) is the energy
associated with the state. For a system of binary units, such that zi = 0 or
1, an energy can be defined:

E(z) = exp

−1

2

∑
i,j

Wijzizj −
∑
i

bizi

 (2)

The energy of a state is basically a summation over all active (zi = 1)
weights Wij and biases bi, where the weight matrix W has two constraints:
first, it is symmetric (Wij =Wji ∀i, j) and second, its diagonal is zero (Wii =
0 ∀i). The system z can now be described as Boltzmann machine, a network,
where the single zi denotes the network nodes. The bias of zi is denoted as
bi and the weight Wij denotes the connection strength of zi and zj .

To enable a network of neurons to sample from a distribution p(z) =
p(z0, z1, ..., zn−1) one has to specify an assignment of spiking activity to a
set of random states {z}. A detailed derivation of the formalism can be found
in Buesing et al. (2011) and Petrovici et al. (2016), the following section gives
only a very rough idea of Neural Sampling1.

The link between neural activity and sampling from arbitrary random
distributions over binary variables is called neural computability condition
(NCC):

uk(t) = log
p(zk = 1|z\k)
p(zk = 0|z\k)

(3)

where uk(t) is the abstract membrane potential of neuron k and z\k is
the set of all zi with i 6= k. Immediately after a spike, a neuron enters its

1Especially, the difference between biological weights used as neuron connection
strength and theoretical weights used for the calculation of the DKL (see eq. (6))is not
mentioned. Otherwise, a detailed discussion of calibration and weight translation would
have had to follow, which is beyond the scope of this thesis.

3

refractory state for a time interval τref , where it is unable to spike again.
For a neuron in this state, zk = 1, otherwise zk = 0: We associate a bi-
nary variable with the state a neuron is in and sample using these random
variables. Inserting the probability of the Boltzmann distribution and the
energy defined above one finds:

uk(t) = bk +
∑
j

Wkjzk (4)

This corresponds to the membrane potential of a leaky integrate-and-fire
neuron [Lapicque (1907), Gerstner and Kistler (2002)], which is the differ-
ential equation given in eq. (5).

Cm
du(t)

dt
= gL(El − u) + I (5)

Cm denotes the membrane capacity and gL the leak conductance of the
LIF neuron. I is the input current for the specific neuron and can be split
in inhibitory, excitatory, recurrent and external input currents. Besides,
one can define the membrane time constant τm = Cm

gL
, which quantifies

the reaction speed of the membrane potential to stimuli. Whenever the
membrane potential rises above the threshold potential vthr a spike is emitted
and the potential is set and kept at the reset potential vrest for a time period
τref , in which it is unable to spike again.

The external input current relates to the bias term in eq. (4), while the
inhibitory and excitatory inputs refer to the weight term and describe the
input a neuron receives from the neurons its connected with.

In addition to the spikes the neurons receive due to their synaptic con-
nections with other neurons, every neuron is fed with background noise. This
is modeled as Poisson process generated spike times with a frequency in the
order of a few hundred Hertz. This thesis discusses the replacement of such
Poisson noise by LFSR generated spike times without a loss in sampling
quality.

Sampling quality is measured using the Kullback-Leibler divergence. The
DKL value of two probability distributions is defined as:

DKL(p, q) =
∑
z
p(z) ln

p(z)
q(z)

(6)

It quantifies the dissimilarities between the two distributions p and q.
In the case under consideration q is the theoretical distribution (calculated
using eq. (1)) and p is the sampled distribution, which one gets by summing
over all states the LIF network was in during sampling time.

4

2.2 Poisson and Cox Process

A Poisson process (PP) counts the number of events in a certain time interval
t. The single events are independent and identically distributed. The number
of events in a certain time interval follows a Poisson distribution.

We call the average number of events per time unit ν, while the prob-
ability of N events occurring in the time interval T is denoted as PN (T).
We start with the probability of a single event in dt, which is P1(dt) = νdt.
Consequently, P0(dt) = (1− νdt) is the probability that no event occurs.

Since the single events are independent, we can calculate the probability
of no event in T +dt by taking the product of the single probabilities, which
leads to:

P0(T + dt) = P0(T)(1− νdt) (7)

After some more calculations, see for example [Kingman (1995), Cowan
(2016)], it is possible to formulate a closed-form-solution for the probability
of n events occurring in the time interval T :

Pn(T) =
exp(−νT)(νT)n

n!
(8)

Both the expectation value and the variance of this distribution is νT .
In 1955 D. Cox introduced doubly stochastic Poisson processes [Cox

(1955)], which are nowadays given the name of their discoverer. The term
doubly stochastic stresses their characteristic feature: a Cox process (CP) is
a nonhomogeneous Poisson process which rate is not only time-dependent
but itself a stochastic process again. The expectation value at time t is now
given by

∫ t
0 ν(τ)dτ .

The focus is on using Bernoulli trials as stochastic process. If each event
occurring with rate r is assigned to one of two classes with probability p and
1 − p, respectively, the generation of these two classes by these Bernoulli
trials is equivalent to their generation by a Poisson process with rate rp
and r(1 − p), respectively. This equivalence is exploited for later LFSR
architectures. A more detailed proof following Siegrist (2016) is given in
section 5. The implementation of the process follows Burnecki and Weron
(2010) and is explained there in more detail.

5

2.3 Linear Feedback Shift Register (LFSR)

Linear feedback shift registers are commonly used pseudorandom number
generators, which produce a strictly deterministic series of numbers by linear
recoupling. For a very detailed discussion, see [Golomb (1981)].

timestep state feedback
0 0101 0
1 0010 0
2 0001 1
3 1000 1
4 1100 0
...

Figure 1: Left: Linear Feedback Shift Register of length n = 4. Feedback
taps are 1,2 and 4. Right: first five states of the generated sequence with
initial seed s = 0101.

Starting with a seed, some specific bits of the register called (feedback)
taps are XORed, basically a modulo-2 summation, which gives as result a 0
or a 1. The current number is shifted one bit to the right such that the last
bit drops out and the calculated bit becomes the new first bit. A sketch and
an exemplary sequence for a LFSR of length n = 4 is given in fig. 1.

Due to that construction, every LSFR has a finite number of different
states which are run through. Since a zero-state would result in a the zero-
state again because the result of the summation is always a 0, a LFSR of
length n can at most generate a sequence of 2n−1 different numbers. Not all
possible tap configurations lead to sequences of the maximum length (maxi-
mum or m-sequences): the feedback taps can be interpreted as a polynomial,
for example the LFSR in fig. 1 has the polynomial x4 + x2 + x + 1. If the
polynomial is primitive, the generated sequence is a m-sequence.

As stated in Golomb (1981), m-sequences fulfill the three conditions in
order to be a pseudo-noise sequence:

Balance Property
The number of ones in the complete sequence is exactly one greater or
smaller than the number of zeros.

6

Run Property
A run is a subsequence of zeros or ones in the m-sequence. The fol-
lowing conditions have to hold:

• 1
2 of the runs are of length 1

• 1
4 of the runs are of length 2

• 1
8 of the runs are of length 3

• ...

Moreover the total number of runs of zeros and ones equals each other.

Correlation Property
The linear autocorrelation function of the m-sequence approximates a
Kronecker delta function and is two-valued.

2.4 Neuromorphic Hardware and Spike Generation on LF-
SRs

The HICANN chip is the primary building block for the wafer-scale system
and consists of 128,000 synapses[BrainScaleS (2016b)]. 512 on-chip mem-
brane circuits can emulate neurons directly, which limits their number of
synapses to 256, or be grouped together to form neurons with up to 16,000
synapses .

On the current HICANN, eight 16-bit-LFSRs can be used. 16 bits result
in a m-sequence of 65535 states, which are cycled through every 3.28 s (bi-
ological time) assuming a 5 ns system clock (hardware time) and a speedup
factor of 104. One state of the LFSR corresponds therefore to a timebin tb of
0.05ms biological time. Other clock rates are also possible [Gruebl (2016)].

The generated sequence of states can be used as spike generator by the
following way: interpret the state s as binary number b and spike in the
specific time-interval t if

1. bt > θ

2. bt−1 < θ

where the threshold θ determines the firing rate ν and the second con-
dition has to hold for technical reasons. One complete cycle of the LFSR
produces at most 2n−1−θ spikes, if only the first spiking condition is taken
into account. Therefore the spiking probability of one particular state is
p(s) = 2n−1−θ

2n−1 = 1 − θ
2n−1 . During the total sampling time T , N = T/tb

7

states are run through. That means there are N · p(s) spikes generated and
the generating rate gets ν = N ·p(s)

T = 1
tb(1−

θ
2n−1). We can adjust an appro-

priate threshold by choosing θ = (2n − 1) · (1 − 2 · tb · ν). Since due to the
second condition spikes are discarded, if they immediately follow an other
spike, one has to decrease the threshold. Then more spikes are generated and
it does not matter if some of them are discarded. This decreasing is done
by inserting a factor of two. This does not cancel the effect of the second
condition exactly, but the absolute value of the frequency is of lower interest
as long as it is in the right order of magnitude.

2.5 Gold Sequences

Gold sequences [Gold (1967)] are commonly used in Code Division Multiplex
techniques, e.g., for the GPS system or for UMTS. The basic idea is to
generate sets of sequences with low cross correlations by using two connected
LFSRs. The concrete structure can be seen in fig. 2.

Figure 2: Gold sequence architecture: the last bits of two LFSRs with
different tabs are XORed and result in one code bit. In this sketch the
feedback tabs for different Gold sequences are colorcoded.

For the Gold code creation the last bits of two LFSRs of the same length
n are XORed. The resulting sequence has a period length of 2n − 1, which
is the same period lengths as the single m-sequences have. The use of a
second LFSR, which does not extend the m-sequence is justified by the fact
that one can generate up to 2n − 1 m-sequences almost in parallel by using

8

the last bit not directly but an offset bit determined by additional feedback
taps. Due to a comparable small additional effort of some feedback taps,
one gets a complete m-sequence. Before one had to use an additional LFSR.
The sketch shows the architecture for Gold code generation, which has to be
slightly modified if the LFSRs are used as spike generators: a spike is emitted
for neuron i if the upper LFSR is above the threshold and the resulting bit
equals 1.

2.6 Characteristic Values of Spike Trains

Since the background noise spike trains are the main object of investigation,
in this section the focus is on several important characteristic values, which
can be calculated from them. The first value is the correlation value of
interspike intervals, which gives a measure of the regularity of the spike
times. Second the auto- and crosscorrelation of spike trains is important
since both are characteristically related to LFSR sequences. Third, the KS
test measures the poissonity of a spike train.

Correlation Value of Interspike Intervals

For every given set of interspike intervals (ISIs) their correlation value is
defined as

CVISI =
σ(ISI)

ISI
(9)

where σ(ISI) is the standard deviation and ISI the mean of the ISIs, respec-
tively. For a perfectly regular spike train CVISI is zero, since the standard
deviation is zero, too. For a Poisson spike train of sufficient length the cor-
relation value gets one, because the standard deviation equals the mean.

Auto- and Crosscovariance Functions (ACF and CCF)

Since high correlations will appear in LFSR generated spike trains due to
their construction, both autocovariance and crosscovariance can be an im-
portant measure of their characteristics.

We use the definition of the autocovariance function given in Brockwell
and Davis (2006): if Xt, t ∈ T is a process such that V ar(Xt) < ∞∀ t ∈ T ,
then the autocovariance function γX(., .) of Xt is defined by:

γX(r, s) = Cov(Xr, Xs) = E[(Xr − E[Xr])(Xs − E[Xs])] ∀r, s ∈ T (10)

The same formula holds for the crosscovariance function, if one replaces
the second Xs with Ys, which denotes a second process. In this thesis, the

9

term process refers to series of interspike interval times, where the time index
in the equation denotes the index of the ISI.

Note that the autocovariance function – in contrast to the autocorrelation
function – is not normalized to the interval [−1, 1]. We do not use the latter
one, since we are also interested in the absolute magnitude of the correlation
and therefore a normalization would make no sense.

Kolmogorov-Smirnov Test

The two-sample KS test presented by Smirnov and Kolmogorov (Smirnov
(1939)) is used to estimate the probability for two data samples to obey
the same probability distribution. We want to use this test for a direct
determination of the quality of different background spike trains without the
need of performing Neural Sampling and using the DKL value as evaluating
measure. Therefore we investigate, if the KS test result and the final DKL
value correlate. Then the test can serve as a good measure. In our case
we compare two spike trains generated by different sources. If the KS test
provides the result that the two data samples follow the same distribution
we expect a good sampling result. Otherwise, if the hypothesis has to be
rejected, the final DKL-values should be higher.

The empirical distribution function (edf) Fn for n independently identi-
cally distributed random variables is defined as:

Fn(x) =
1

n

n∑
i=1

χx(Xi) (11)

where χx denotes the indicator function: χx = 1 if Xi ≤ x, otherwise it’s
0. For a value x the edf value Fn(x) is the proportion of random variables
lower or equal to x.

The KS statistic D for two empirical density functions Fm(x) and Fn(x)
is

D = sup
x
|Fn(x)− Fm(x)| (12)

Basically, this test measures the maximum distance between the em-
pirical distribution function Fn(x) calculated from the data and reference
cumulative distribution function or from two edfs, respectively. An example
is given in fig. 3.

10

Figure 3: Example of the Kolmogorov-Smirnov Test. The blue and green
lines are the edfs of two different Poisson processes. The red vertical line
equals the test statistic D and determines the final p-value.

The red line equals the test statistic and determines the pvalue of the
test, which states the probability of the test result arising by chance from
noise. In this case, the null hypothesis states that both spike trains come
from the same probability distribution. If this value is large, one therefore
has to reject the null hypothesis.

11

3 Results

In the following sections the results of the performed experiments are dis-
cussed. During all setups LIF neurons were used and their parameters like
vrest or vthr were left unchanged. The network consists of five neurons,
where not stated differently, though some experiments were repeated with
ten LIF neurons, too. As the results of the two network sizes do not differ
significantly, they are not shown in this thesis.

First, every experiment begins with a calibration of the neurons for 100 s,
after that the neurons sample ten different distributions for 1000 s each. Both
during calibration and sampling the neurons are supplied with the discussed
spike trains. The weights and biases of each distribution are drawn randomly.
Please find the detailed experimental setup in section 5.

Section 3.1 deals with Neural Sampling performed with CP spike times.
Afterwards section 3.2 gives a very detailed discussion of sampling with LFSR
spike times. The problems and their possible improvements or solutions are
presented in section 3.3 and section 3.4, where two possible LFSR architec-
tures are investigated.

3.1 Sampling Based on Cox Processes

Doubly stochastic Poisson processes are characterized by the random process
which generated the single samples. We investigate the split property. Each
of the PP spike times is therefore put into one of several subtrains. The PP
runs with multiplied intensity, which ensures that every single spiketrain in
the resulting set has the appropriate rate.

3.1.1 Splitting of Spike Trains by a Bernoulli Process

In this section, we perform the next step from theoretical Neural Sampling
using split Cox Process (CP) spike trains towards pure LFSR spike trains.

A PP spike train S with doubled intensity is divided into two subtrains S0
and S1 such that both S0 and S1 have the same mean frequency of 1000Hz.
This means, that each spiketime in S is assigned randomly to S0 or S1.
There are several possibilities how to perform the assignment. One could
draw a uniformly distributed random number u and assign the spike si to
S0 if u <= 0.5. Since we want to find a method to perform this split using
LFSRs, we use a different method. We create random numbers which have
the values 0 and 1 with probability 0.5 each. These values correspond to
class labels, and S0 (S1) is just the set of all spikes with class label 0 (1).

12

This method has another advantage: if we do not only use a spike train
generated with doubled rate, but use an quadrupled (or octuplicated) rate,
the approach changes hardly: we can draw one (or two) additional random
numbers with the same possible values 0 and 1 and define two-bit (or three-
bit) class labels: 00 refers to class 1, the other class labels are consequently
01, 10 and 11. The class labels for a split of S into eight spike trains are
obviously the binary representations of the numbers 0 to 7.

Since every single bit is drawn with the same probability 0.5 each class
label appears with the correct probability.

Figure 4: Setup for a split experiment. The sketch shows the random splits
of spike trains into a green and brown subset. The blue and red lines denote
excitatory and inhibitory synapses, respectively. In this sketch the split
factor is 2 and the connections from spike trains to synapses are ordered.

split factor DKL (order) DKL (random)
2 0.0031 ± 10 0.0032 ± 9
4 0.0030 ± 8 0.0031 ± 8
8 0.0025 ± 9 0.0028 ± 11

Table 1: Final DKL values for different ordering schemes and split factors
corresponding to the experiment in fig. 4

Figure 4 shows first an exemplary experimental setup of a 3-LIF-neuron
network. Since the split-factor is 2, each of the original spike trains is split
into one brown and one green class. These spike trains are sent to the neu-
rons in order, which means, that the first spike trains connect to excitatory

13

synapses and the last spike trains are connected with inhibitory synapses.
In contrast, there is also the possibility to assign spike trains to synapses
randomly.

The experimental results are shown in table 1. All different values are
in the order of 10−3, which is the same as achieved by PP Neural Sampling.
There is neither a significant difference in the choice of the split-factor not
the randomness of the ordering of the synaptic connections.

3.2 Sampling with LFSRs

This subsection discusses basic experiments in which LFSRS are used the
background noise generation. In section 3.2.1 the influence of register length
as well as of tap configuration is evaluated. The results are discussed in
detail since they are reference for the results of later experimental setups.
Secondly, in section 3.2.2 a first - naive - way of reducing the area used by
the LFSRs is presented, which failure is the reason why we examine more
complex LFSR architectures later on.

3.2.1 Sampling with Standard LFSRs

To answer the question whether Neural Sampling using LFSRs for noise gen-
eration works we choose a very easy experimental setup. Each of a set of
neurons is connected to two LFSRs. One register acts as acts as excitatory,
the other one as inhibitory spike source. Additionally, each neuron is con-
nected with all others by randomly drawn weights and has an individual bias
input.

A sketch for four neurons can be seen in fig. 5, where the biases and
feedback taps of the LFSRs have been ommited for clarity. One can think
of different parameters which might have an influence on the DKL value.
The most obvious parameter is the register length, but also the choice of the
feedback taps could be of importance. Of course, the threshold affects sam-
pling because it determines the final rate, but since the LFSRs are supposed
to bring the neurons in their high conductance state, for all experiments the
threshold was chosen such that the LFSRs emit spikes with a frequency of
approximately 1000Hz. The absolute value is of less importance as long as
it is high enough for Neural Sampling to work at all.

14

Figure 5: LFSR architecture for Neural Sampling. Four neurons are fed
by two LFSRs each, one for inhibitory and one for excitatory spike input,
respectively. For clarity, biases and feedback taps have been ommited.

In fig. 6 the DKL courses of a few LFSRs with different lengths are
plotted. Two effects are important: first of all, the DKL courses follow the
DKL trajectory achieved by Poissonian background noise, but start to flat
out at some point in time such that the DKL remains at the same value
for the rest of the sampling time, which is 1000 s. That means, that only
during a small fraction in time Neural Sampling works. This turning point
is clearly dependent on the register length: for example, the DKL course of
the LFSR with length 12 begins its flattening at about 200ms. 12 bit result
in a period of 212 − 1 states, therefore the period length of the register is
0.05ms·(212 − 1) = 204.8ms, which is exactly the time of the turning point.

15

Figure 6: DKL course for LFSRs of lengths in the range from 4 to 64. All
LFSRs of a certain length share the same feedback taps, but are initialized
differently. The DKL does not change once the first period of the LSFRs was
completed. The final DKL value is clearly dependent on the period length
of the registers.

While for very short register lengths (and hence periods) the DKL not
even starts to decrease, one observes for long register lengths (n > 20), that
the DKL does not improve until the full period is reached, but plateaus at
the same order as in the Poissonian case. Since the Neural Sampling theory is
formulated in terms on Poissonian noise this sounds reasonable: Poissonian
background noise works best, and differently generated spike trains can at
most lead to equivalent, but not better results, which are achieved by it.
Further extending of the register lengths the can not reduce the differences
between Poissonian and LFSR generated spike times to zero: the first one
is at least in theory a real random process (though its implementation is
deterministic), while the LFSR is not only fully deterministic but not very
complex at all. Especially the run property of a LFSR leads to interspike
intervals which differ from the ISIs of a Poisson process (refer to fig. 7): In
the Poissonian ISI histogram with its shape like an exponential decay, every
ISI time appears with the correct frequency, while the LFSR ISIs are only an

16

approximation. The concrete structure of the LFSR ISI histogram is length-
dependent, too. For longer registers the histogram will look more like the
Poissonian (see section 5, fig. 29), but the run property prevents a perfect
convergence of the two shapes.

Figure 7: Histograms of the interspike intervals of spike trains generated by
a Poisson Process (left) and a LFSR with length 12 (right). Sampling time
is 10s. The left histogram is shaped like an exponential decay while the right
one is only an approximation. Longer register lengths lead to better, but not
perfect, approximations.

The plateaus in the DKL trajectories arise from the periodicity of the
LFSR spike trains. The Kullback-Leibler divergence gives a hint of the dis-
similarity of two probability distributions, in this case between the theoretical
and sampled distribution. An end of the DKL development results from the
fact, that for the single neurons the probability of encountering the different
states does not change anymore. This means that the spikes emitted by the
neurons repeat themselves with the same period as the LFSRs have. This
can be seen in fig. 8

17

Figure 8: Raster plot of three spike trains generated by LFSRs of lengths
8,10 and 20 and one generated by a Poisson Process. For the 8 bit LFSR
two spikes immediately after another follow a longer break of about 10ms.
The second topmost spike train has a period of about 45 ms, while the third
and fourth spike train show no periodicity in this time interval (the Poisson
spike train has no periodicity at all).

Since we are interested in a measurement of the poissonity of a spike train,
we calculate their characteristic values and apply the KS test. We start with
a discussion of the auto- and cross-correlations (AC and CC) of the spike
trains: fig. 9 to fig. 13 show the unnormalized AC and CC of Poisson and 12
bit LFSR generated spike trains. spike times are sampled up to T =1000ms.
Figure 9 shows the deltapeak approximation of the Poisson AC. Since the
single spike times are drawn independently of each other, any shifted version
of the spike train with itself results in low autocovariance values, with the
exception of a shift by zero. In fig. 10 the CC of two spike trains generated
by a Poisson process is shown. The same argument as for the AC holds here
as well and explains the low crosscovariance values: single spike times are
independent from each other, therefore the CC is low without any exception
(note the scale of the y-axis).

18

Figure 9: Deltapeak-like AC for a
spike train originating from a Poisson
process.

Figure 10: CC for two Poisson gener-
ated spike trains. Note the scale on
the y-axis.

The AC of the 12 bit LFSR in fig. 11 approximates a sequence of delta-
peaks with a distance of the LFSR period P : every 212−1 states the sequence
repeats itself and generates therefore the same spike times, which result in
the plotted deltapeaks. Again the same argument holds for the crosscovari-
ance and explains the peaks, but in addition there is an offset of the middle
peak. This peak corresponds to the offset of the two initial seeds in the
sequence, since for the two LFSRs the same feedback taps were used.

Figure 11: The AC of a spiketrain
generated by a 12 bit LFSR is a se-
quence of deltapeaks for T > P .

Figure 12: CC of two spike trains
generated by two 12 bit LFSRs with
the same feedback taps but different
initial seeds: sequence of deltapeaks
with offset.

These covariances diminish if different feedback taps are used, which is
shown in fig. 13.

19

Figure 13: CC of two spike trains gen-
erated by two 12 bit LFSRs with dif-
ferent feedback taps. Note the simi-
larity to the Poissonian case.

Figure 14 shows the CVISI for LFSRs which have lengths in the range
from 4 to 64 bits. The registers are run for 1000ms which means that a
bit length of 16 is sufficient for unrepeated spikes. For every spike train
generation the same feedback taps are used, but as experiments show a use
of different sets of feedback bits does not affect the final correlation values.
Due to the periodic repetition of spike times the standard deviation decreases
for longer sampling times and short register lengths, while the absolute value
stays the same. A register length of 10 or higher is sufficient for the CVISI to
be around 1 like for Poisson generated spike trains, though for some register
lengths depending on the initial seed the covariance value rises.

20

Figure 14: correlation values of interspike intervals for LFSRS of lengths in
the range from 4 to 64. If the register length is larger than 10 bits, the CVISI
gets approximately 1.

The corresponding plot of the KS values (fig. 15) looks completely the
same, for the 4 and 8-bit register the fraction of pvalues which are above 0.05
is very low, but from 10 bit register length on 60% to 70% of the pvalues
are higher than 0.05, so the similarity between a Poisson spike train and a
LFSR one is big. This trend is also for longer times observable.

Due to the course of both the CVISI and the KS-plots these characteristic
values are of less importance than the covariance of the spike trains, which
explain the DKL trajectory very well. The first two do not distinguish be-
tween longer register lengths: these values divide the register lengths in two
subsets: short – CVISI far from 1 and fraction of pvalues smaller 0.05 – and
sufficiently long – CVISI around 1 and fraction of pvalues larger than 0.05.

21

Figure 15: fraction of pvalues larger than 0.05 for LFSRS of lengths in the
range from 4 to 64. If the register length is longer than 10 bits, the fraction
of large p-values is about 60 to 70%.

There are two possible issues arising to the auto- and crosscorelations of
LFSR m-sequences: Two spike trains generated by parallel LFSRs are up
to an offset identical, additionally both of them repeat themselves, if the
sampling time is larger than the period length. To determine, which of the
effects - autocovariance or crosscovariance - is of more importance, the above
sampling experiment is repeated, but this time different sets of feedback taps
are used. This reduces the crosscovariance as shown in fig. 13. The result of
the experiment can be seen in fig. 16.

22

Figure 16: DKL course for LFSRS of lengths in the range from 10 to 64.
All LFSRs of a certain length share different feedback taps and are initili-
azed randomly. The DKL stops decreasing once the first cycle is completed.
There is no significant difference to the same experiment with a same-taps
configuration.

The plot looks similar to fig. 6. This indicates that it does not matter
if some neurons get the same input with an offset or if the spike times are
completely uncorrelated. However, the offset is a necessary condition as we
will see. The periodic autocovariance remains, and therefore the main issue
is creating long m-sequences, where the crosscovariance has second priority.

3.2.2 Sampling with a Reduced Set of LFSRs

The final DKL values in fig. 6 show that in principal Neural Sampling using
LFSRs works, if the period length is at least in the same order as the sampling
time and the used m-sequences are shifted to each other. This means that
it is sufficient to build very long registers on chip, but since the space on
the chip is limited and the priority lies on the realized number of neurons,
one needs to find a trade-off between sampling quality and space used for
LFSRs.

A network of five neurons needs in total ten synaptic inputs: five excita-

23

tory and five inhibitory. The very first idea one has is to simply reduce the
total number of LFSRs and connect one LFSR directly to several neurons.
In this experiment a set of two to ten LFSRs is connected to the neurons.
Figure 17 shows the sampling results of this reduction. The connections are
drawn randomly, the figure shows the mean DKL value of ten runs as blue
line, where the filled area are the minimum and maximum values.

2 3 4 5 6 7 8 9 10

number of registers

10-3

10-2

10-1

100

101

D
K

L

DKL vs. number of registers for LF

mean

Figure 17: DKL vs. number of registers. The blue line gives the average
DKL of ten runs, while the colored area ranges from minimum to maximum
values. The more registers are used, the better the final DKL value is.

We observe that the more LSFRs there are, the better the sampling
quality is. Even if a single LFSR is omitted and nine registers are used for
the noise generation this results in a major decrease in sampling quality. In
summary: This very basic kind of space saving does not seem to work, which
means that the shift between spike trains is crucial, while a high and periodic
crosscovariance does not seem to affect sampling that much.

3.3 LFSR Spike Splitting

In the following section several possible LFSR architectures are investigated,
commonality of which is the use of two sets of PRNGs. One set generates

24

spike times while the other set is used for distributing these spike times
among different neurons. In a first attempt, we model this splitting as a
Cox process, which rate is driven by a series of Bernoulli trials. The trick
is to generate the spike times with a doubled rate such that every synapse
gets input after the split with the standard rate. There is one crucial effect
splitting has: If a neuron gets a spike at a specific point in time, all other
neurons connected with the same source can not receive a spike at the same
point in time. This leads to correlations which will have an influence on sam-
pling. Different parameters as split ordering and frequency of split number
generation are discussed in section 3.3.1.

From the theoretical point of view the splits have to be performed ran-
domly, but, again, the aim is to replace the Bernoulli trials with pseudoran-
dom numbers generated by LSRs. This setup is discussed in section 3.3.2.

Though two LFSRs are replaced by one with doubled rate and one which
takes care of the splits this approach is useful: On the one hand, the cor-
relations for the two cases may differ and this may have an effect to the
DKL value. On the other hand the split is not restricted to a factor of two,
one could also think of an octuplicated rate and then three registers which
encode a binary three-bit number. Three binary bits correspond to eight
numbers, so in total four registers are used as noise source for four neurons.
This results in a win of four registers instead of eight as would be the case
in the setup discussed until now.

3.3.1 Splitting using numpy as PRNG

The following experiments will begin with a very complex model in the sense
of LFSR architecture, before two possible simplifications and their combina-
tion is evaluated. On the first glance this approach sounds counterintuitive,
but every simplification will lead to more and higher covariances, which will
affect the sampling quality.

All splits of this section are done using random numbers generated by
the Numerical Python module.

25

Figure 18: Most complex, bestcase architecture: one PRNG per split and
random connections between spike trains and neurons.

The most complex architecture can be seen for a three LIF-neuron net-
work in fig. 18. There are three LFSRs run with doubled rate and one PRNG
for each register. The registers are connected to two neurons each and every
connection is randomly drawn before starting sampling. The reason behind
this way of connection is to prevent covariances which can arise for example
if one single LFSR is connected to two excitatory synapses of two neurons:
if there is an event at the excitatory synapse of neuron 1 there cannot be an
event at the excitatory synapse of neuron 2 at the same time. Due to the
random connection and multiple runs these covariances are reduced, but not
disabled.

The experimental results for different register lengths (8 to 64 bit) are
shown in fig. 19.

26

Figure 19: DKL plot of LFSR generated spikes. LFSRs run with doubled
frequency, splits are performed with numpy. Decreasing DKL for short, but
increases for long register lengths.

The DKL courses indicate that due to the random split the period length
of the generated spike trains is artificially extended and - only for short
register lengths recognizable - sampling works much better. Additionally
the curves converge smoother, there is no sharp edge as before (e.g., see
fig. 6) when the sampling time equals the period length. For example, in
case of 8 bit LSFR length, where the period time is about 12ms, the DKL
decreases until the sampling time is 300ms, and the final DKL value is about
0.2, which is one order of magnitude better. For large register lengths the
split process is useless, since if the period length is larger than the sampling
time, the additional gained decovariance has no effect.

27

Figure 20: Second architecture: one PRNG per split and ordered connections
between spike trains and neurons.

The first simplification is related to the order of the connections between
LFSRs and neurons: if the ordering is of no importance this special kind of
ordering in fig. 20 should not lead to a loss in sampling quality, too. In this
scenario the spike times of the first LFSRs are used as excitatory input, while
the latter LFSRs generate inhibitory input. The final DKL values given in
fig. 23 indicate that both investigated LFSR architectures are equivalent.
This is an interesting phenomenon, since one do not has to care about the
ordering.

Figure 21: third architecture: one PRNG for all splits and random connec-
tions between spike trains and neurons.

28

The second simplification is the reduction of the number of pseudorandom
generators: in the architecture of fig. 21 one PRNG takes care of all splits
simultaneously. Of course, this simplification affects the covariances of the
different spike trains as well. The results are listed in fig. 23.

In this case we observe major DKL increases for long register lengths.
For short ones (8 to 12 bit) the influence of the short period length is stronger
than the effect of the restricted split random numbers. For register lengths
above 12 bit the DKL loss is about a factor of two. The reason for this
deterioration is the fact, that the single PRNG leads to correlation between
some of the neurons: For example, let spike register i generate the spike
trains i1 and i2, and register j the spike trains j1 and j2. Now, every time a
spike of i is distributed to i1, a possible spike of j has to be part of j1 and
not j2, since the corresponding bit of the split register is the same for all
spike sources.

Figure 22: Easiest, worstcase architecture: one PRNG for all splits and
ordered connections between spike trains and neurons.

Finally, before starting to use LFSRs for the split generation, both sim-
plifications are combined, since though the second simplification had no in-
fluence if applied exclusively, this does not necessarily hold true if different
neurons are linked as well. The resulting architecture is given for three neu-
rons in fig. 22 and the experimental results are given in fig. 23.

29

Figure 23: DKL values of four different architectures. Register lengths from
8 to 64 bit. The more complex the architecture is, the better is the final
DKL value.

Again - and in contrast to the single application of input ordering - we can
a DKL loss for large register lengths. The deteriorations sum up to almost
one order of magnitude in sampling quality loss. This sounds extremely bad,
but we used only a total number of 5 + 1 pseudorandom number generators
(5 LFSR and 1 numpy PRNG). If we compare the final DKL of 2 · 10−2 to
the DKL value we got for 6 registers in fig. 17, which is 2 · 10−1, we achieved
a total decrease in the DKL value by a factor of ten.

The next step consists of increasing the splitfactor: up to now we tried to
save space on the chip by restricting the number of PRNGs which perform the
splits, but – as mentioned in the introduction of this section – one can go one
step further and increase the rate of the LFSRs. If these run with quadrupled
(or octuplicated) rate and the spike times are divided into four (or eight)
subsets, one would save additional space - always under the assumption that
Neural Sampling still works, which is being investigated in this thesis.

30

Figure 24: Histograms of DKLs. bestcase: random connections, new split
numbers (left), worstcase: ordered connections, same split numbers (right)

Figure 24 shows the histograms of the final DKL values for twenty runs
with different bias and weight drafts, in total 200 simulations.

The left histograms are the results for the bestcase scenario: the con-
nections between LFSRs and synapses are randomly drawn and the split
random numbers are only used once. The register length of the LFSRs is
20. To enable better comparisons and avoid splitting artifacts the number of
neurons is set to eight - the lowest common multiple of two, four and eight.

The first observation is the spread of the histograms: for a splitfactor of
2 the DKL values are of smaller variation. The split factor of 4 results in
the largest mean DKL, but all three histograms are in the order of 10−3.

The right histogram shows the same for the worstcase architecture. All
three distributions are shifted towards higher DKL values and they are much
more separated from each other. For the octuplicated rate and split among
eight spike trains, the DKL loss is about a factor of ten.

3.3.2 Splitting using LFSRs as Split Generator

The next change in the experimental setup is the swap of numpy PRNGs
for LFSRs. Of course, depending on the period length of the latter one,
correlations occur not only when generating spike times but also to the split
generation. Figure 25 shows the DKL values depending on both spike and
split register length, for two different types of architectures and one reference
setup. The upper left plot uses fig. 18 as structure: in this bestcase setup
the connection between LFSRs and neurons is randomly and all splits are
performed with new noise. The upper right plot is the worstcase scenario,
where there is only one LFSR for split performing and the connections are
ordered (for the structure see fig. 22). In the bottom plot, the DKL values

31

are shown for standard LFSR sampling with an equivalent use of space. This
means, if the split register length is 10 and the spike register length is 14,
this is space-equivalent to standard LFSR sampling with all the registers
being of length 12. Since this plot shall only give a rough overview over the
improvement of the final DKL, the resulting equivalent register lengths are
rounded such that former simulations could be reused. For example, every
register length > 20 is set to 20, since this makes no significant difference.

Figure 25: DKL values for LFSR generated spikes and splits (splitfactor is
2). Bestcase architecture(upper left), worstcase architecture (upper right),
standard LFSR sampling (bottom, equivalent to worstcase architecture)

There are three important statements to make about the first plot of
fig. 25. First of all, the diagonal elements of the plot are clearly worse than
the off-diagonals. Especially the use of 12-bit registers both for split and
spike generation is worse than the use of a 8- and a 10-bit register for the two
tasks. Reason for this is that the two periods of the registers with different
period lengths do not overlap but sum up to a longer period. Therefore,
periodic spiking is to some extent prohibited.

32

Secondly, the choice, which register length is used for spike generation
and which one for split performing is important. Independent of the split
register length short spike registers will not lead to low DKL values. This is
reasonable, if one thinks in terms of interspike intervals: 8 bit register length
corresponds to 255 possible states and a period of 12.8 ms. Consequently,
the spike times repeat every 12.8 ms. A simulation time of 106ms means that
we use the same ISIs about 78000 times. Even if the splits are performed
without any correlations (such that there are about

(
255
127

)
= 5 · 1073 possible

resulting spike trains, large subsets will correlate due to the limited number
of ISIs. Repeating spike input leads to DKL deterioration as seen above.

Third, for small LIF networks, a spike register length of 20 or more is
sufficient for good spike generation, regardless of the split register length.
This means, that five 8 bit and five 20 bit registers are sufficient for Neural
Sampling in small networks – in contrast to the ten 20 bit registers which
were necessary if standard LFSR sampling was performed.

The main results in the upper right plot are still the same: the diago-
nals cases result in bad DKL values, the same holds for short spike register
lengths. The correlations which are typically for the diagonals appear for
other lengths combinations, too. If the spike register length is a multiple
of the split register length the arising correlations lead to increasing DKL
values as well (as can for instance be seen for 16 bit spike and 8 bit split
LFSR).

The bottom plot suggests, that some cases exist, in which a use of the
splitting architecture is very efficient. The best example is the use of a spike
register length of 20 bit and a split register length of 8 bit, which results in
a DKL of about 3 · 10−3. Space equivalent is the use of ten 14-bit LFSRs
for standard sampling, which only results in DKL values of the order 10−1,
which is an immense improvement.

Figure 26 shows the result of the above experiments for a splitfactor of
eight and in case of the worstcase scenario.

33

Figure 26: DKL values for LFSR generated spikes and splits. The splitfactor
is 8, worstcase architecture

In total the three observations of the previous cases can be made here
as well: The offset elements are worse than the architectures in their direct
neighborhood. The symmetry breaking and good results for long spike reg-
ister lengths are visible as well, though in general the final DKL values are
worse than in the previous cases. The shift towards higher DKLs strengthens
the observations made in fig. 24.

34

3.4 Sampling using Gold Codes

Figure 27: DKL courses for Neural Sampling using Gold code generators of
different lengths (8 to 64 bit) as noise source. For long register lengths the
final DKL values are low, but not as good as the values achieved with PP
spike trains.

For the generation of a set of binary Gold sequences only two registers are
necessary. A slightly modified structure allows a creation of several spike
trains (see fig. 2). Figure 27 shows the DKL courses of a five neuron network
if the spike times were generated using Gold codes. Since due to the con-
struction of Gold codes (and their modification to sequences of spike times)
the period length of the single sequences does not change, we observe the
characteristic flattening of the DKL trajectory after the first period cycle.
The second observation is the performance of longer registers: even the 60-
bit and more registers do not achieve the same performance as Boltzmann
machines supplied with Poission noise.

Reason for this is clearly not the periodicity of the spike times – as
then other architectures, investigated previously, would have been able to
achieve DKL values comparable to Poission processes. The loss in sampling
quality can instead be explained by looking at the structure of the Gold spike

35

generator: all possiple spikes are timed with the upper LFSR: if this register
value is larger than the threshold, a spike is possible. The feedback taps
determine now, if the spike is sent to the neuron, but here the correlations
enter: every neuron, whose feedback taps add up to one, gets a spike. This
can be also seen if one looks at the input spike trains. The correlations
due to the construction of the spike train generator are clearly observable.
Figure 28 shows ten spike trains for a network of five neurons.

Figure 28: Ten spike trains created by a Gold code generator. Note the
correlations between different spike trains.

Note that the correlations are not a result of the Gold code generation,
but a result from the necessary modification of the Gold sequences to gen-
erate spike times.

Though there is a gap between Gold code sampling and Poisson sampling,
an improvement in sampling with LFSRs has been achieved: the Gold code
generator falls back on just two registers and is able to produce spike times
for the whole LIF network.

36

4 Discussion and Outlook

This thesis has shown that background noise generated by Linear Feedback
Shift Registers (LFSRs) is able to make the membrane potential of LIF neu-
rons stochastic. Therefore, the LIF neurons are able to sample from arbitrary
probability distributions, which is called Neural Sampling. A replacement of
the original Poisson Process spike trains with LFSR generated background
noise is possible. Furthermore, certain LSFR architectures were investigated
with the aim of achieving good sampling performance with as little space as
possible. The latter constraint is important for a possible use of LFSRs on
neuromorphic hardware. There one wants at the one hand to generate the
necessary background-noise on-chip, but on the other hand the area wasted
for noise generation should be as small as possible. Architectures basing on
Gold codes or Cox processes seem to be an efficient way of creating back-
ground noise.

The different experimental setups share some general characteristics. As
shown in section 3.2.1, the most crucial LSFR property is its length, since
small periods result in repeating spike times. These in turn lead to a repe-
tition of the network dynamics such that the single neurons do sample the
right probability distribution. The tap configuration has a minor influence:
If the registers are initialized differently, there is no observable effect on the
DKL value between spike time sequences with no correlation and highly cor-
related ones. Since naive reduction of LFSRs to save area on the hardware
chips does not seem to work (see section 3.2.2), different architectures were
investigated.

In section 3.3 an approach based on Cox Processes was taken. Spike
trains run with a multiplied rate, while their spikes are assigned to several
synapses (and neurons). For this case there are quite a few parameters such
as split factor and number of split generators. The first one is the number
of synapses, every spike train is split to. The second one states, if one or
several random number generators are used to perform the assignments of the
single spike times to synapses. Some combinations of split and spike register
length allow rather good sampling results since the splits partly destroy the
correlations between single background spike trains.

A second approach based on Gold codes (used for example in satellite
communication) was evaluated in section 3.4. In contrast to the splitting
approach, there is a higher loss in sampling quality. This loss is caused by
very strong correlations of the single spike trains. These again stem from
the fact, that in the end a single LFSR produces the spikes, while the second
LFSR just provides for the connections between the LFSR and the synapses.

37

However, this approach immense ly saves chip area at the same time.
Furthermore, two methods of determining the quality of spike trains for

Neural Sampling were investigated. Both the KS test result and the Corre-
lation Value of Interspike Intervals (CVISI) do not correlate with the DKL
values of the corresponding Neural Sampling experiments. Consequently
they can not be used for determining sampling quality.

This thesis investigates just the very fundamentals of background noise
generation with LFSRs. There are still some open questions which have to
be investigated. First, there might exist more powerful LFSR architectures
in the sense of a more efficient use of the registers. If one accepts the minor
loss in sampling quality, a reduction of up to 90% of the necessary chip area
was achieved. The architecture based on Gold codes is therefore promising.

Possible improvements can be done by decreasing the strong correlations
between the single spike trains. Therefore a replacement or modification of
the single spike generating register is necessary. One can either use a set of
LFSRs for the spike generation or find another structure which uncouples the
different neurons more. For example, one could use standard LFSRs with a
set of feedback taps for each synaptic input. A threshold depending on the
number of feedback taps combined with the specific values of the XORed bits
could lead to a modified architecture, which allows an individual generation
of spike trains. Of course, the number of possible architectures is immense.

The first approach – increasing the number of registers again – can be
especially important for larger networks. All statements in this thesis are
verified for small network sizes as five or ten neurons. There is still the
question of scalability: More neurons originally meant more LFSRs, as each
additional neurons had to be supplied by two additional LFSRs. How far
can one just use an another set of feedback taps and extend the architecture
based on Gold codes to 20, 100 or more neurons? Where are the limitations
of the splitting architecture – what is the limit the rate of the spike generating
register can be set to? Does the network size in general encourage or weaken
the influence of stronger correlated spike trains? The latter question is not
easy to answer, since the neurons are connected with each other such that
the influence of the external input could be reduced.

Second, in this thesis a very theoretical approach was taken. The fo-
cus was on the spike trains, only. No hardware LFSRs were constructed.
That means, all architectures have been assumed to be possible later on the
real chip. Especially, the same holds for the connections between the single
LFSRs and between neurons and LFSRs. For example, the Gold code archi-
tecture uses two feedback taps for each synaptic input, before the feedback
output is XORed with the output from the spike generating register. This

38

means there have to be many connections between these two registers. Again,
space on chip is limited. It could turn out, that for large network sizes there
are just too many of these connections. This could result in the necessity to
find either modified or completely different architectures – though in theory
Neural Sampling basing on this architecture works well. To sum up: Due to
hardware limitations, some restrictions to the presented architectures could
arise, which makes more effort in investigating hardware-orientated setups
necessary.

All in all the foundation has been laid and – despite of the open questions
– the step from externally generated Poisson noise to on-chip LFSR noise
seem to be a step, which can be done in near future.

39

5 Appendix

Histogram for 24bit LFSR

Figure 29: Histogram of the ISIs of spike trains generated by a LFSR with
length 24. Sampling time is 10s with a rate of 1000Hz. The histogram is
more similar to one consisting of ISIs generated by a Poisson Process.

Neuron Parameters
For all experiments the neuron parameters were hold constant:

Membrane Capacity Cm .2
Membrane Time constant τm 0.1
Threshold Potential uthr -50.
Rest Potential urest -50.
Reset Potential ureset -50.001
Offset Current ioffset 0.
Rise Time (Excitatory) τE 10.
Rise Time (Inhibitory) τI 10.
Refractory Time τrefrac 10.

The background noise has an average rate of 1000Hz.

Parameters

Each line in a DKL plot is the average of ten random drafts of bias and
weight sets, where the spike times stayed the same in every draft.

The weights are drawn from a scaled beta distribution: w = 1.2∗Beta(0.5, 0.5)−

40

0.5, where Beta(a, b) has the pdf

p(x, a, b) =
1

B(a, b)
xa−1(1− x)b−1 (13)

and the Beta function

B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt (14)

The biases are drawn from the same distribution.

Proof: a Cox Process with Bernoulli Trials as Rate Generates
Poisson Processes

The following proof follows Siegrist (2016).
Let’s consider a Poisson Process P with rate r. We can describe P by

two different sequences. Firstly we can have a look at the inter-arrival times
X = (X1, X2, ...) and secondly at the arrival times T = (T0, T1, ...). These
sequences fulfill

Tn =
n∑
i

Xi

Xn = Tn − Tn−1

(15)

For P every arrival is independent of all others. If we assume, that each
arrival belongs to one of two classes, we can interpret this as a sequence of
Bernoulli trials. Each arrival is with probability p of class 1 and therefore
with probability 1− p of class 2.

We show, that this splitting gives us two new, independent Poisson Pro-
cesses, each consisting of arrivals of the same class with new rates rp and
r(1− p), respectively.

For the Bernoulli sequence Uk denotes the number of trials from the
(k − 1)st to the kth success, if we define belonging to class 1 as a success.
Vk =

∑k
i Uk denotes the trial numbers of the kth success.

We define Yk as the arrival time between the (k − 1)st and kth class 1
arrival:

Yk =

Vk∑
i=Vk−1+1

Xi (16)

which consists of Uk terms.

41

The Yi are now a random, geometrically distributed sum of variables,
because the arrival times are independent of each other and Bernoulli ex-
periments obey the geometrically distribution. Moreover, the variables are
exponential distributed random variables, because of the underlying Poisson
Process and due to that Y = (Y1, Y2, ...) is itself exponential distributed and
a Poisson Process.

This can be shown by using the moment and probability generating func-
tions:

For calculating the moment generating function of random sums the chain
rules holds: if (Xi)iε is a set of independent random variables, T a random
variable, then Z =

∑T
i=0Xi has the moment generating function

MZ(t) =WT (MXi(t)) (17)

where M denotes the moment and W the probability creating function.
Since for an exponential distribution A with rate r M exp

A (t) = r
r−t for t <

r and for a geometric distribution B with parameter P W geo
B (t) = pt

1−(1−p)t
we achieve as the moment generating function for Y:

MY (t) =W geo(M exp(t)) =

pt
r−t

1− (1− p) r
r−t

=
pr

pr − t
(18)

For that reason, Y is exponential distributed, and since the arrival times
are independent of each other, Y is a Poisson Process with rate pr.

42

References

BrainScaleS (2016a). http://brainscales.kip.uni-heidelberg.de/
public/index.html, visited: 2016-09-12.

BrainScaleS (2016b). The hicann chip. http://www.kip.uni-heidelberg.
de/vision/previous-projects/facets/neuromorphic-hardware/
waferscale-integration-system/hicann/, visited: 2016-09-12.

Brockwell, P. J. and Davis, R. A. (2006). Time series. Springer series in
statistics. Springer, New York , Heidelberg, 2. ed., [repr.] edition. Liter-
aturverz. S. [561] - 566.

Buesing, L., Bill, J., Nessler, B., and Maass, W. (2011). Neural dynamics
as sampling: A model for stochastic computation in recurrent networks of
spiking neurons. PLoS Comput Biol, 7:1–22.

Burnecki, K. and Weron, R. (2010). Simulation of risk processes. Mpra
paper, University Library of Munich, Germany.

Cowan, G. (2016). Derivation of the poisson distribution. https://www.pp.
rhul.ac.uk/~cowan/stat/notes/PoissonNote.pdf, visited: 2016-09-12.

Cox, D. R. (1955). Some statistical methods connected with series of
events. Journal of the Royal Statistical Society. Series B (Methodologi-
cal), 17(2):129–164.

Gerstner, W. and Kistler, W. (2002). Spiking Neuron Models: An Introduc-
tion. Cambridge University Press, New York, NY, USA.

Gold, R. (1967). Optimal binary sequences for spread spectrum multiplexing
(corresp.). IEEE Transactions on Information Theory, 13(4):619–621.

Golomb, S. W. (1981). Shift Register Sequences. Aegean Park Press, Laguna
Hills, CA, USA.

Gruebl, A. (2016). personal communication. ,.

Kingman, J. F. C. (1995). Poisson processes. Oxford studies in probability
; 3. Clarendon [u.a.], Oxford, repr. edition.

Lapicque, L. (1907). Recherches quantitatives sur l excitation electrique des
nerfs traite comme une polarisation. J. Physiol. Pathol. Gen, 9(1):620–635.

43

Petrovici, M. A., Bytschok, I., Bill, J., Schemmel, J., and Meier, K. (2016).
The high-conductance state enables neural sampling in networks of LIF
neurons. ArXiv e-prints.

Siegrist, K. (2016). Poisson process: Splitting. http://www.math.uah.edu/
stat/poisson/Splitting.html, visited: 2016-09-12.

Smirnov, N. V. (1939). On the Estimation of the Discrepancy Between Em-
pirical Curves of Distribution for Two Independent Samples. Bul. Math.
de l’Univ. de Moscou, 2:3–14.

44

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 22.September 2016 ..
Marcel Großkinsky

