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Abstract

The mathematically traceable Boltzmann machine approach as a description for
neuronal networks requires symmetric synaptic connections. On neuromorphic hard-
ware, which emulates leaky integrate-and-fire neurons, connections are unidirectional
and the weight symmetry gets broken by individual weight variations. In order to
simultaneously benefit from the framework of Boltzmann machines, which is success-
fully used in machine learning, and the inherent parallelism and speed-up compared
to biology, a hardware emulation can sample approximately from a given Boltzmann
distribution.

In this thesis, the effect of relative and asymmetric weight variations in sampling pro-
cesses based on Boltzmann machines is investigated. For sampling with leaky integrate-
and-fire neurons, those effects only prevail for variations above 20% against other limi-
tations. Also the weight variations of three hardware devices designed by the Electronic
Vision(s) Group are characterized. On the Spikey chip they exceed 50%, on the Brain-
ScaleS System they lie about 16.4% and on the HICANN-DLSv2 chip they are 4.91%.
This implies that sampling on the BrainScaleS System and the HICANN-DLS chip is
not primarily restricted by weight variations.

Zusammenfassung

Der mathematisch ergründbare Ansatz einer auf Boltzmann-Maschinen beruhenden
Beschreibung neuronaler Netzwerke erfordert symmetrische synaptische Verknüpfun-
gen. Auf neuromorpher Hardware, welche leaky integrate-and-fire Neuronen emuliert,
sind Verknüpfungen unidirektional und die Gewichtssymmetrie wird von individuellen
Gewichtsschwankungen gebrochen. Um gleichzeitig von dem Framework der Boltzmann-
Maschinen, welches erfolgreich im maschinellen Lernen Verwendung findet, und dem
inhärenten Parallelismus und der hohen Geschwindigkeit verglichen zur Biologie zu
profitieren, kann eine Hardwareemulation annäherungsweise eine gegebene Boltzmann-
Verteilung abtasten.

In dieser Arbeit wird der Effekt von relativen und asymmetrischen Gewichtsschwan-
kungen in Samplingprozessen, welche auf Boltzmann-Maschinen basieren, untersucht.
Bei Sampling mit leaky integrate-and-fire Neuronen überwiegt er nur für Schwankungen
oberhalb von 20% gegenüber anderen Einschränkungen. Zudem werden die Gewichts-
schwankungen auf drei von der Electronic Vision(s) Group entwickelten Hardwaregerä-
ten charakterisiert. Auf dem Spikey-Chip überschreiten sie 50%, auf dem BrainScaleS
System liegen sie bei 16.4% und auf dem HICANN-DLSv2-Chip sind sie 4.91%. Dies
suggeriert, dass Sampling auf dem BrainScaleS System und dem HICANN-DLS-Chip
nicht primär von Gewichtsschwankungen eingeschränkt wird.
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1 Introduction

1.1 Motivation

The functionality of the human brain [1] differs fundamentally from conventional computers
and offers a lot of advantages over it, as for example a more efficient power consumption,
an intrinsically parallel processing of information and a high level of robustness towards
incomplete and noisy external input and damages in the brain itself.

While individual neurons show a deterministic behaviour in laboratory experiments, ma-
jor networks of neurons exhibit stochastic dynamics. Although it is unknown if this stochas-
ticity is "a bug or a feature" and if it is an emerging phenomenon or based on "true" ran-
domness the brain somehow has access to, a descriptive model of the brain should include
it as a key property.

In the first and necessary abstraction step, a manageable set of states the brain can take
is defined. Then the time evolution of the network is interpreted as a sampling process in a
probability landscape.

In machine learning this idea has been used very successfully in an abstract and sim-
plified way with the concept of a Boltzmann machine [2] and Markov chain Monte Carlo
sampling methods [3]. These have the advantage of being mathematically accessible for
many applications, especially in the development of learning algorithms.

Petrovici et al. (2015) [4] succeeded in demonstrating that neuronal networks based on
the leaky integrate-and-fire (LIF) model [5] can be configured in a way that they sample
approximately from a target Boltzmann distribution and therefore benefit from the well
known and powerful framework of machine learning.

As a member of the Human Brain Project, the Electronic Vision(s) Group at the Kirch-
hoff institute in Heidelberg designs neuromorphic hardware that emulates LIF neurons, and
explores its applications. The hardware shares the same advantages of biological neuronal
networks mentioned above, but runs significantly faster because of its purely electric nature.

Due to imperfect production processes the hardware components differ from their target
specifications, thus each neuron and synapse is individual and not all variations can be
compensated with calibrations. In particular, the synaptic connection strength is subject to
those variations. Weights between two units are symmetric in a Boltzmann machine, but a
connection between two neurons is unidirectional and the symmetry has to be implemented
explicitly by using two in principal independent connections with the same strength, whose
individual variations break the symmetry.

This thesis aims to contribute to the investigation of the consequences of asymmetric
weight variations in sampling networks based on Boltzmann machines, both Gibbs sampling
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and LIF sampling networks, and to characterize the weight variations on three different
hardware devices, the Spikey chip, the BrainScaleS System and the HICANN-DLSv2 chip.

1.2 Outline

In the first part I give a brief introduction to the backgrounds. In particular these are
Boltzmann machines, Markov chain Monte Carlo sampling, Gibbs sampling, the Kullback-
Leibler divergence, biological neurons and synapses, the leaky integrate-and-fire model and
the neuromorphic hardware used.

As a theoretical analysis of weight variations, I then take a look at the Markov chain
which originates from the Gibbs sampling network designed to sample from a Boltzmann
distribution but uses asymmetric weights.

In the next part, I present the effects on calculated and simulated stationary distribu-
tions of asymmetrically pertubated networks based on Boltzmann machines compared to the
unpertubated Boltzmann distribution.

Then, I characterize the weight variations on the neuromorphic hardware via measure-
ments of post-synaptic potentials for different combinations of neurons and synapse drivers
and compare it to the results gained with the simulations.

Finally, I discuss the results and give a short outlook on further investigations.

1.3 Boltzmann machines and sampling methods

1.3.1 Boltzmann machines

A Boltzmann machine [2] is a set of n binary random variables together with a joint prob-
ability distribution. The two states of each random variable are defined as 0 and 1. Each
random variable zi is associated with a bias bi and each pair of random variables zi, zj, i 6= j

with a weight wij = wji. The probability distribution p(z) is defined as:

p(z) =
1

Z
exp(−E(z)) with Z =

∑
z∈{0,1}n

exp(−E(z)), (1)

where E(z) = −
n∑
i=1

bizi −
n∑
i=1

n∑
j=1

j 6=i

1

2
wijzizj. (2)

The expression E(z) can be interpreted physically as an energy of the whole system being
in the state z. It is also closely related to the Ising spin model [6].

The probability distribution describes a landscape in the state space with regions of

2



high and low probability and correlations between different units and groups of units in
terms of its conditional distributions. Since there are 2n possible states, the complexity of
the Boltzmann machine grows rapidly with an increased number of units. That enables a
Boltzmann machine to represent a broad spectrum of data sets in an abstract and convenient
way, for example a set of images with a common motive [7]. The simple analytic expression
for the probability distribution (1) makes learning algorithms mathematically traceable.

1.3.2 Markov chain Monte Carlo sampling

The downside of the complexity of Boltzmann machines are huge computational costs. In
applications we are interested in conditional and marginal distributions to extract desired
informations, but in larger networks it is not possible to compute them directly. One ap-
proach to this problem is sampling. The marginal distribution for a subset of the units is
obtained by simply ignoring the other units, and the conditional distribution can be obtained
by clamping the corresponding units to fixed values, which is called stochastic inference.

A Markov chain [3] is a random time series of states z(0) → z(1) → z(2) → . . . drawn from
a fixed countable set Ω, where transition probabilities P (z(t+1) = z|z(t)) are independent of
the history and can only depend on the current state z(t). We restrict ourselves to discrete
time and a finite state space. The time evolution of states is fully given by all transition
probabilities from one state into another. While the chain evolves, it produces occurrences
of states which define a probability distribution over all possible states. This distribution
will be called sampled distribution.

Instead of considering one single state at each time step, we can introduce a probability
distribution and use the transition probabilities to define a (deterministic) probability flow
per time step. A probability distribution that does not change that way is called a stationary
distribution.

Since we are interested in finite state spaces, we can enumerate the states as z0, z1, z2, . . . ,
a probability distribution can be represented by a vector p ∈ [0, 1]#Ω with a 1-norm (=∑
i

|pi|) equal to 1 and the transition probabilities tij := P (z(t+1) = zi|z(t) = zj) can be

combined to a quadratic matrix T such that

p(t+1) = Tp(t). (3)

A distribution p is stationary if and only if

Tp = p (4)
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holds. This is the condition for an eigenvector with the eigenvalue 1. In the case that T
contains only strictly positive entries, which will be the case for all of our purposes, the
Perron-Frobenius theorem [8] ensures that an unique real positive eigenvalue exists, whose
eigenvector consists of non-negative entries. The matrix T preserves the 1-norm of p (if
all entries are non-negative, as given here), therefore that eigenvalue must be 1 and the
corresponding normalized eigenvector the unique stationary distribution.

Further, the non-zero transition probabilities assure the Markov chain to be aperiodic
(all states can turn into themselves within one evolution step), which in turn tells us that
its sampled distribution converges towards its stationary distribution.

This property is the reason why we can use Markov chains to approximate a target
distribution. If the target distribution is the stationary distribution of the Markov chain, we
can take a state, let it evolve and gather samples. This sampling method is called Monte
Carlo sampling. It allows the usage of a complex probability distribution if we are able to
construct a Markov chain with the desired stationary distribution.

While analytically the computation cost of Boltzmann distributions and their conditionals
and marginals grows exponentially with the amount of units in the network, the needed time
for the sampling process grows linearly (in the limit of many units).

1.3.3 Gibbs sampling

Gibbs sampling is a special case of Markov chain Monte Carlo sampling for joint distributions
of two or more random variables zi that offers a generic way to find a proper Markov chain
making use of the conditional probabilities of one random variable given the state of all
others.

A time step, in this context called global update, is composed of sequential local updates
of the individual random variables according to their conditional probabilities:

P (z′i = x) = p(zi = x|z\i). (5)

Here P (. . . ) denotes the probability for a given event, z′i the state after the local update of the
i-th random variable, p(z) the target stationary distribution and z\i = (z1, z2, . . . , zi−1, zi+1, . . . )

T .
The property p(zi = x|z) = p(zi = x|z\i) is a crucial one: The probability P (z′i = x) is not
allowed to depend on zi.

A local update of zi satisfies the detailed balancing condition (here for z ∈ {0, 1}n where
z = (z0, . . . , zi−1, 0, zi+1, . . . )

T and z′ = (z0, . . . , zi−1, 1, zi+1, . . . )
T )

P (z′|z)p(z) =
p(z′)
P (z\i)

p(z) =
p(z)

P (z\i)
p(z′) = P (z|z′)p(z′). (6)
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This means that the probability flux from state z to state z′ and the other way around is the
same, therefore conserving their probabilities. That property extends to a global update,
therefore (5) leads to the desired stationary distribution p(z).

In the case of a Boltzmann distribution (1) we can calculate (5):

P (z′i = 1) = p(zi = 1|z\i) =
p(zi = 1|z\i)

p(zi = 1|z\i) + p(zi = 0|z\i)
(7)

=
1

1 +
p(zi=0|z\i)
p(zi=1|z\i)

=
1

1 + exp

−bi − n∑
j=1

j 6=i

wjizj


(8)

⇒ P (z′i = 1) = σ(ui(z)) (9)

with σ(x) =
1

1 + exp(−x)
(10)

and ui(z) = bi +
n∑

j=1

j 6=i

wjizj. (11)

The quantity (11) is called the abstract potential of the random variable zi, since it
corresponds directly to the membrane potential of a biological neuron (see section 1.4.1).

1.3.4 Kullback-Leibler divergence

In this thesis, stationary distributions of asymmetrically pertubated Gibbs samplers and their
LIF counterparts (see section 1.4.3) will be compared to the Boltzmann distribution they
originate from. In machine learning, an usual measure for the difference of two probability
distributions p and q over a common state space Ω, the Kullback-Leibler divergence [9], is
defined as:

DKL(p||q) =
∑
x∈Ω

p(x) · ln p(x)

q(x)
. (12)

The base of the logarithm is arbitrary in principal, since it is only a scale for the measure.
Here we choose the natural logarithm because of better comparison to other results of the
Electronic Vision(s) Group. [10]

The DKL is asymmetric in its two arguments. It describes the degree of discrepancy when
using the distribution q instead of p. In our case, the stationary distribution of a pertubated
network is regarded as the true distribution, which is approximated by the ideal Boltzmann
distribution for matching experiment and theory. A second reason for that assignment is the
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Figure 1: a) On the left side, the plot shows a sketch of a neuron. The nucleus can be found
in the centre of the main cell body. The cell membrane ramifies and forms its dendrites. To
the right the axon extends from the cell. It is wrapped in myelin sheaths to isolate the axon
electrically from the outside. b) On the right side we can see a synaptic gap between a pre-
and a post-synaptic neuron. The pre-synaptic neuron ends in an axon terminal. It is filled
with vesicles that contain the neurotransmitter, in this case acetylcholine, and Calcium ion
channels are located on its membrane. The post-synaptic neuron’s dendrite’s membrane has
potassium and sodium ion channels with acetylcholine receptors. Images taken from [12]
and [13].

limit
lim

p(x)↘0
p(x) · ln p(x)

q(x)
= 0, (13)

that leads to a natural treatment of states which were not sampled at all. So all values for
a Kullback-Leibler divergence will refer to p as the distribution of the pertubated network,
while q is an analytic Boltzmann distribution.

1.4 Biological background

1.4.1 Neurons and synapses

Nerve cells [11], called neurons, are the central components of the human brain, it contains
about a 100 billion of them. They are connected via synapses, through which they exchange
information. In figure 1 we see the most important components of a neuron and a synapse.

A neuron has dynamic properties that modulate the voltage between its inside and the
outside medium across its membrane, which is called membrane potential. The so called
Na+-K+-pump transports 3 Na+-ions to the cell outside and 2 Ka+-ions to the cell inside per
pump cycle, therefore the resting potential is negative. Permanently opened ion channels
stabilize the process. This process maintains a chemical potential in order to be able to
quickly decrease and increase the membrane potential when it opens a corresponding ion
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Figure 2: A spike is a sharp electric peak, the
neuron first increases its membrane potential
strongly and then causes a quick drop-off even
below the resting potential. There it takes
a while to recover the chemical potential and
to return to the resting state. In between, it
hardly reacts to further input, hence the neu-
ron is refractory. Image taken from [14].

channel.
When the membrane potential reaches a threshold, the neuron triggers a spike (this

description is an approximation; the mechanism is more complex and under special circum-
stances a spike can be triggered without reaching the typical threshold). The stereotypical
shape of a spike, also called action potential, can be seen in figure 2.

The spike travels down the neuron’s axon and effects all post-synaptic neurons via
synapses.

In a chemical synapse (see figure 1), an arriving spike opens Ca++-ion channels in the
membrane of the axon which cause vesicles filled with neurotransmitters to merge with the
membrane and release the neurotransmitter into the synaptic gap. There it diffuses towards
the dendrite of the post-synaptic neuron and is detected by specific receptors which in turn
open attached ion channels. Depending on the ion type, the effect and the synapse are
called either excitatory, if the membrane potential increases, or inhibitory, if it decreases.
The resulting membrane potential and its time course is called post-synaptic potential (PSP).

Each synapse holds a sensitivity that regulates the synaptic process individually. This
synaptic weight is not fixed but is subject to changes the brain performs in learning processes
to improve its ability to solve certain tasks. This phenomenon is called synaptic plasticity.

1.4.2 The leaky integrate-and-fire neuron model

The behaviour of a biological neuron is complex due to the amount of components contribut-
ing to it. A precise description is given by the Hodgkin-Huxley neuron model [15], but it
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uses four differential equations, and therefore it is hard to do exact computations. Another
model, the Leaky Integrate-and-Fire neuron model (LIF) [5], offers the simplest description
which still preserves crucial biological properties. Due to only one single linear differential
equation, it is a mathematically convenient choice.

A neuron’s dynamics are encoded by one scalar, the membrane potential u, and its
electrical properties are abstracted to one quantity, the capacity Cm. Therefore it obeys the
capacitor equation

Cm
du

dt
= Itot, (14)

where Itot is the total current applied to the neuron. The equilibrium mechanism described in
the previous section that pushes the membrane potential to a resting potential is represented
by a leak potential El which is coupled to the neuron trough a leakage conductance gl:

Il = gl(El − u). (15)

There are two possible ways of modelling synaptic input. The first is called current based
(CUBA). An incoming spike leads to a current on the membrane

Isyn = I0

∑
k

wk
∑
s

ε(t− ts), (16)

where I0 is some unit contributing and normalizing constant. The first sum goes over all
pre-synaptic partners k and wk is the corresponding synaptic strength. The second sum
goes over all spikes s of that neuron and ε is the synaptic kernel. Its shape depends on the
decision of the modellers, it can be a delta function, a decaying exponential function or a
difference of exponential functions.

In the second synapse model, the conductance based (COBA) approach, a synaptic input
couples the membrane to a reversal potential Erev through a time dependent conductance.
Because a conductance can only be positive, we have to distinguish between excitatory and
inhibitory reversal potentials Erev:

Isyn = g0

∑
x∈{exc, inh}

(Erev
x − u)

∑
k

wk
∑
s

ε(t− ts), (17)

where again g0 is a constant, Erev
exc > El, E

rev
inh < El and the rest as in the CUBA case, except

that the sum over k only includes the synapses of type x.
Additionally, an external current Iext can be included to Itot which is a way to model
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sensoric input to the neuron. In total, the capacitor equation (14) then reads:

Cm
du

dt
= Il + Isyn + Iext. (18)

Finally a firing mechanism is added with the help of a threshold potential ϑ, a refractory
time constant τref and a rest potential %, together with

neuron spikes at ts ⇔ u(ts = ϑ) (19)

u(ts < t ≤ ts + τref) = % for all spikes s. (20)

Later on, the shape of a post-synaptic potential will be important. It is dominated by two
time constants, the synaptic time constant τsyn that appears in the synaptic kernel and the
membrane time constant

τm =
Cm

gl
. (21)

Then the time course of a post-synaptic potential for a single excitatory spike at ts with
weight w and a exponential decaying synaptic kernel is (see [4] for a derivation):

u(t) = Θ(t− ts)
w

Cm

τmτsyn
τsyn − τm

[
exp

{
−t− ts
τsyn

}
− exp

{
−t− ts

τm

}]
. (22)

In the COBA case, τm has to be replaced with τeff where gl is replaced with the total
conductance

gtot = gl + gsyn. (23)

For COBA neurons, formula (22) is an approximation in the limit |Erev
exc − El| � supt |u(t)− El|.

1.4.3 Sampling with leaky integrate-and-fire neurons

As discussed in the previous section, single LIF neurons behave deterministically. In order
to be able to use LIF neurons to sample from a target distribution (see [4]), we have to make
them stochastic. This is done by feeding them with high frequent and Poisson distributed
external input, excitatory and inhibitory separately. A typical time course of the resulting
membrane potential is shown in figure 3 on the left side.

Also, the mapping to a binary interpretation can be seen. We define the neuron’s state
to be 1 when it is refractory and 0 otherwise. By varying the resting potential with all other
parameters fixed, the neuron spends a varying fraction of the time in its refractory period,
which corresponds to its probability to be in the state 1. This dependency leads to the so
called activation function. A logistic function (see (10)) can be fitted to it. It is a good
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approximation, although in detail the activation function has a deviating shape. In figure 3
on the right side a typical activation function is shown.

In the fit we identify the abstract membrane potential uk (see (11)) with the neuron’s
leak potential El via

uk =
El − E0

l

α
. (24)

The fit parameters E0
l and α enable us to translate the abstract quantities bias and weight

to the LIF domain. Without further input, the abstract membrane potential uk is equal to
the bias bk:

uk = bk =
El,k − E0

l

α
(25)

⇒ El,k = αbk + E0
l (26)

If we require the mean influence on the membrane potential to be the same as in the abstract
domain during the refractory period τref,

wbio
ij τrefα

!
=

τref∫
0

PSP (t)dt, (27)

and set τsyn = τref it follows the translation for the weights (for COBA LIF neurons):

wbio
ij = wtheo

ij

〈gtot〉
glαCm

Erev
ij − 〈u〉
1− τsyn

τeff

[
τsyn

(
1

e
− 1

)
− τeff

(
exp

{
−τsyn
τref

}
− 1

)]
. (28)

The LIF network then samples approximately from a given Boltzmann distribution, where
samples typically are taken in time steps of one refractory period. Therefore we can keep
the descriptive power of Boltzmann machines, while at the same time dealing with a system
that can be transferred to parallel neuromorphic hardware.

The strength of the noise input with given frequency determines α, stronger excitations
and inhibitions lead to a smaller value for α because small changes in El mean big changes
in the activation probability. This dependency is complex and in general not linear. [4]

1.5 Neuromorphic hardware

The neuromorphic hardware designed by the Eletronic Vision(s) Group emulates LIF neu-
rons (or more general models that include LIF neurons) and therefore follows an alternative
computation paradigm compared to established computers. Each neuron’s membrane po-
tential is represented physically by a capacitor and its dynamics, as for example the coupling

10



Figure 3: a) On the left side we see the time course of the membrane potential of a neuron
with excitatory and inhibitory Poisson stimuli with ν = 5000 Hz. The red line marks the
spiking threshold ϑ. On the bottom the assigned binary state is added. b) On the right
side the activation function of the same neuron is plotted (blue crosses). By varying the
leak potential El the mean time spent in the 1-state changes too. A logistic function (orange
curve) is fitted to the data points. Both simulations where done with NEST v2.2.2 [16] and
the PyNN interface [17]. Parameters are listed in the appendix A.1.

to a reversal potential, is performed locally. So the system inherently works in parallel and
execution times do not increase with the network size. Spikes are transferred via synaptic
drivers as digital informations and their effect is produced locally. Synapses are either excita-
tory or inhibitory and carry an individual digital weight. As in contrast to biological neurons
and synapses, electric currents and information transports do not rely on ion streams and
the diffusion of neurotransmitters, the hardware has a huge speed-up compared to biology
of about 103 to 105.

Spikey [18] is the first neuromorphic chip based on spiking neurons the Electronic Vi-
sion(s) Group has designed. It emulates COBA LIF neurons. A chip consists of 384 neurons
and 256 synapse drivers which can be connected almost freely. The synaptic weight resolution
is 4 bit.

The long term goal is the large scale integration of more than one chip for building large
networks. In the production process, multiple identical chips are placed on one wafer and
later separated. For the BrainScaleS System [19] the wafer is left intact and the chips get
connected to form one single network. On one wafer there are 48 reticles, per reticle 8
HICANN chips, the successor of Spikey, and per HICANN chip 512 neurons, thus in total
196608 neurons. It is able to emulate COBA LIF neurons and the synaptic weight resolution
is 4 bit.

The idea behind the development of the HICANN-DLS chip [20] is to implement learn-

11



ing algorithms on chip, since the data transfer from the chip to the host computer, their
evaluation and the transfer back to the chip in learning procedures consume the most time
in preparing a network to perform a certain task. Pre- and post-synaptic events are traced,
stored and interpreted locally to apply weight updates. As a prototype chip it is subject
to current development. HICANN-DLS v2, which was used for this thesis, emulates CUBA
LIF neurons and the synaptic weight resolution is 6 bit.
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2 Gibbs like sampling with asymmetric weights

For a Boltzmann machine, the symmetry in the weights is a direct consequence of its physical
relationship. In physics, interactions are symmetric in the sense that we can define an energy,
and the concept of a Boltzmann machine is based on the notion of an energy for each state.
If we would define the weights connecting two units asymmetrically, their difference would
average out in the energy expression (2), yielding the same probability distribution as the
averaged network.

In theory, the construction of the Boltzmann machine comes first and sampling methods
as a computational instrument come second. On the other side, in a biological neuronal
network, as well as in the neuromorphic hardware, a connection from neuron A to neuron B
is inherently independent from the connection the other way around. The consequences of
variations in the weights are clear in terms of the behaviour of a single neuron. The mapping
between neurons and abstract binary random variables still works. The description of a
synaptic connection as a contribution to the (abstract) membrane potential that determines
the activation or spiking probability of the neuron is not affected by asymmetry. The only
thing that changes is the probability distribution the network now samples from. Therefore
the description of the network as a Markov chain with binary random variables and known
update probabilities shall be the starting point.

We aim to find the stationary distribution. We index the states z as

zI0 =(0, . . . , 0, 0, 0)T

zI1 =(0, . . . , 0, 0, 1)T

zI2 =(0, . . . , 0, 1, 0)T

zI3 =(0, . . . , 0, 1, 1)T

...

zI2n−1 =(1, . . . , 1, 1, 1)T

(29)

with corresponding state probabilities ak, k = 0, 1, . . . 2n − 1. Next we shorten (9) for a
given time t with pki and introduce qki = 1− pki , both depending on the current state zk and
all before updated units zj, j < i. The latter dependency will be encoded implicitly in the
preceding factors in a product (for example in {pk1 or qk1} · · · pki · · · the underlying state z
for pki will be composed by z1 = {1 or 0}, . . . and zj = zIk,j for j > i).

The transition probability for a global update is the product of transition probabilities
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for local updates, therefore the stationary condition (4) now reads:
q0

1 · · · q0
n−1q

0
n q1

1 · · · q1
n−1q

1
n . . . q2n−1

1 · · · q2n−1
n−1 q

2n−1
n

q0
1 · · · q0

n−1p
0
n q1

1 · · · q1
n−1p

1
n . . . q2n−1

1 · · · q2n−1
n−1 p

2n−1
n

...
...

...
p0

1 · · · p0
n−1p

0
n p1

1 · · · p1
n−1p

1
n . . . p2n−1

1 · · · p2n−1
n−1 p

2n−1
n

 ·


a0

a1

...
a2n−1

 =


a0

a1

...
a2n−1

 . (30)

Since qk1 · · · qkn−1q
k
n + qk1 · · · qkn−1p

k
n + · · · + pk1 · · · pkn−1p

k
n = (qk1 · · · qkn−1 + qk1 · · · qkn−1 + · · · +

pk1 · · · pkn−1)(pkn + qkn) = · · · =
n∏
i=1

(pki + qki ) =
n∏
i=1

1 = 1 ∀k, the sum of all rows in (30)

yields a trivial expression. This degree of freedom corresponds to the normalization of the
eigenvector a. We therefore can set a0 = 1, eliminate the first row and find a formula for
the (not yet normalized) solution a :

a1

...
aN−1

 = −



q1

1 · · · q1
n−1p

1
n . . . q2n−1

1 · · · q2n−1
n−1 p

2n−1
n

...
...

p1
1 · · · p1

n−1p
1
n . . . p2n−1

1 · · · p2n−1
n−1 p

2n−1
n

− 1


−1

·


q0

1 · · · q0
n−1p

0
n

...
p0

1 · · · p0
n−1p

0
n

 (31)

We see that the system is still stable. Boltzmann distributions are embedded in the above
considerations and the solution for the eigenvector problem is continuous in the matrix entries
which are continuous in all network parameters. Small variations in the weights lead to small
variations in the sampled distribution, even if weights vary asymmetrically.
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3 Effects of weight variations in networks based on Boltz-

mann machines

In section 4 we will motivate the investigation of relative weight variations instead of absolute
ones. For different Boltzmann machines we pertubate the weights, then do Gibbs sampling
and compare the resulting stationary distribution to the original Boltzmann distribution as
discussed in section 1.3.4. This will yield one DKL value each time. The weights wij and wji
will be treated independently, so the pertubations will be asymmetrically.

This investigation focusses on asymmetric weights due to variations only in themselves
and not in biases. Those have an important role in the network’s stationary distribution, so
each network will be studied additionally while setting all biases to 0.

On hardware, there are correlations between different effective synaptic weights, because
groups of neurons share the same synaptic driver. Here we simplify the situation and assume
independent and relatively equal weight variations which are normal distributed. Within this
simplification, the mean variability of the network is represented by one scalar. We choose the
standard deviation of one individual variation to quantify it. Therefore, for one computation
or simulation, all weights are pertubated independently with a multiplicative factor drawn
from a normal distribution with µ = 1 and the standard deviation σ.

The abstract parameters of typical networks lie between −2 and 2 or are even smaller [4].
At this point we are not able to use weights with an asymmetry between positive and negative
values or to impose a special architecture like a restricted Boltzmann machine [21], because
that would open a further degree of freedom and exceed the scope of this work. So we consider
fully connected Boltzmann machines with randomly drawn and symmetrically distributed
parameters. The beta distribution [22] with parameters α = β = 0.5 is a sensible choice
for the underlying distribution because it favours large values. In more detail, parameters
are drawn from 2d · (B(0.5, 0.5) − 0.5) with one open coefficient d. In all calculations and
simulations, there are 10 values for the parameter width d, ranging from 0.2 to 2.0 in steps
of 0.2. The network size preferably should be as large as possible, but in order to avoid
long simulation times we use 16 neurons. Because of computational restrictions the analytic
calculations are done for n = 10.

For each combination of d and σ we do calculations and simulations for different network
parameters. In the LIF case, the time did not allow to repeat the simulation for one network
to obtain different weight variations, but in the other two cases there are repetitions. The
amount of data is not sufficient to separate the influence of network parameters and specific
weight variations, therefore all results for the same values of d and σ are treated the same
way and get averaged. As a measure for the error we use the usual standard deviation of
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Figure 4: TheDKL between the computed distribution of the pertubated Boltzmann machine
and the distribution of the original network in dependence of the standard deviation σ of
the pertubation for different widths of network parameters (colours), without (left) and with
(right) biases, linear (top) and logarithmic (bottom) y-axis.

the sample mean.

3.1 Analytic computations of stationary distributions

We consider 10 neurons and compute the exact stationary distribution of the pertubated
network with (31) directly. Per value for d and σ we use 40 networks and do 5 repetitions.

The results can be seen in figure 4. There is no notable difference between the case with
and the case without biases. The curves have a convex shape and therefore grow faster than
linear, but slower than exponential as is obvious looking at the logarithmic scale. Networks
with larger parameters are influenced stronger due to the variations being relative.
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Figure 5: The DKL between the sampled distribution of the pertubated Boltzmann machine
and the distribution of the original network in dependence of the standard deviation σ of
the pertubation for different widths of network parameters (colours), without (left) and with
(right) biases, linear (top) and logarithmic (bottom) y-axis.

3.2 Gibbs like sampling

For 16 neurons we use Gibbs sampling with 226 samples in order to get the stationary
distribution of the pertubated Boltzmann machine. For each value for d there are 10 different
networks. For each network, we perform 6 simulations with different weight variations.

The result can be seen in figure 5. In comparison to figure 4, the values for DKL are
larger because our knowledge of the stationary distribution is imperfect due to sampling.
Also we got finite values for σ → 0, especially for small d. This is probably caused by the
high amount of states with no negligible probability. Aside from those differences, the curves
look qualitatively the same. Here the bias also makes no difference.
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3.3 Sampling with leaky integrate-and-fire neurons

LIF neurons are simulated with the software NEST v2.10.0 [23]. The configuration for using
LIF neurons to sample from a Boltzmann distribution, or in our case from the distribution
(31), is done by the software tool SBS (spike based sampling) v1.5.2 [24]. Parameters are
listed in the appendix A.2.

We use the same 100 networks with 16 neurons as for the Gibbs sampling, but for each
network we only do one simulation. The simulation duration is 1 hour biological time.

In figure 6 we see the results. The region with small σ, where we observe the most
differences to figure 5, especially for large network parameters, is dominated by deviations
due to the approximations in sampling with LIF neurons. With increasing σ, the pertubation
dominates the deviation and the DKL approach the same order of magnitude as in the
earlier results and the curve shapes get similar. Roughly, the transition happens around
σ ≈ 0.2− 0.3.
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Figure 6: The DKL between the sampled distribution of the pertubated LIF network and
the Boltzmann distribution of the original network in dependence of the standard deviation
σ of the pertubation for different widths of network parameters (colours), without (left) and
with (right) biases, linear (top) and logarithmic (bottom) y-axis.
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Figure 7: The membrane trace of one neuron on the BrainScaleS System. The units refer to
the biological domain. a) On the left side all data is shown. It starts with a period where
no spikes are sent to the neuron in order to get the resting potential. b) On the right side
we see four single post-synaptic potentials.

4 Weight variability on three different hardware devices

As the variation of network parameters on the hardware depends on multiple factors and
affects different quantities, the question arises how to characterize it. Since in the end we
want to compare the synaptic connection strength to the corresponding abstract weight
in the theoretical domain of Boltzmann machines, it would be necessary to first build up
the stochasticity with the help of Poisson input, measure the activation function and then
compute the conversion factor between biological and theoretical parameters, if we wanted
to consider absolute values for the weights and their variations.

Without noise or other input the shape of one single post-synaptic potential is linear in
the synaptic weight (see (22)), which is proportional to its abstract counter part (see (28)).
That throughout linearity allows us to investigate relative weight variations, so we not need
to worry about units and constant factors. We measure single post-synaptic potentials with
a fixed digital hardware weight and determine their synaptic strength. For no particular
reason, we choose them to be excitatory.

Parameters are listed in the appendices B.1, B.2 and B.3, respectively.
Since measurements are not perfect, for example due to readout and thermal influences,

we measure 250 post-synaptic potentials. An example trace can be seen in figure 7. The 250
post-synaptic potentials then get averaged.

The shape of a post-synaptic potential depends on multiple quantities and their variations
have different effects on the network’s dynamic. In this thesis, we investigate variations in
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Figure 8: Averaged PSPs on the BrainScaleS System. The units refer to the biological
domain. The resting potential is set to 0 V. a) On the left side the averaged PSP for neuron
11 and synapse 4 (blue) and the fit (orange) are shown. b) On the right side are the averaged
PSPs for all measured combinations of neurons and synapses.

the multiplicative strength of synaptic connections, that is the scalar factor w in (22). It
can be extracted from the whole post-synaptic potential via fitting. The term 1

Cm
cannot be

separated from w, so we combine them into one parameter

A =
w

Cm
. (32)

Cm is assumed to be constant and therefore will cancel out in relative quantities. The
remaining parameters ts, τm, τsyn and an offset b will be ignored in further evaluations. A
typical fit is shown in figure 8 on the left side; it matches the data well.

This measurement is repeated for different pairs of neurons n and synapses s, therefore
yielding values Ans. The square root of the corresponding diagonal element of the covariance
matrix gives an error ∆Ans.

As the effective weight, concerning the influence on the activation probability, is deter-
mined relatively to the Poisson input, a global factor on all synaptic weights specific for each
single neuron cancels out to some extend. There is no linear dependency (as mentioned in
section 1.4.3), but it is monotonous. An individual calibration (measuring the activation
function for each neuron in terms of the digital weight) would even compensate such a factor
completely.
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Therefore, we first compute the relative standard deviation for each neuron separately,

σn =
stds(Ans)

µn
, (33)

where µn = means(Ans), (34)

and then take the mean:
σ = meann(σn). (35)

The errors ∆σn are derived via Gaussian error propagation to

∆σn =
1

Snµn

√√√√ Sn∑
i=1

[
∆Ani

(
1

µnσn

Sn∑
j=1

(Anj − µn)

(
δij −

1

Sn

)
− σn

)]2

, (36)

where Sn = #sAns (37)

⇒ ∆σ =
1

N

√√√√ N∑
i=1

(∆σn)2, (38)

where N = #σn. (39)

Since all errors ∆σ
σ

are smaller than 1%, they will be neglected.
The three hardware devices will be presented in order of increasing difficulty of dealing

with outlier values. Clearly, some components are broken, as can be seen in figure 8 on
the right side, and should be excluded from calculations. Others are not completely broken,
but give extreme results. The indication of a final value for σ will be a trade-off between
the amount of considered units, which therefore are declared as "usable", and the weight
variation in comparison to the DKL’s from simulations.

First we start with HICANN-DLS, where the measurement was performed for 32 neurons
and 32 synapses by Yannik Stradmann. In figure 9, a histogram of all values Ans is plotted.
They are normalized to their mean value.

There are two clearly separated peaks. So making a cut-off in between (in the plot
arbitrarily set at 0.4) and then discarding the small peak at 0.1 is a natural choice. 32 of
the 33 discarded values stem from neuron 19.

We are left with:
σDLS = 4.91%. (40)

Next we take a look at the BrainScaleS System. 35 neurons and 35 synapses were
measured. The distribution of Ans is shown in figure 10 on the left side.

Here we also get two peaks, but this time they intersect each other. Since the left peak
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Figure 9: Weight distribution on HICANN-
DLS. Beside an apparently normal distributed
peak around 1, there is a second, small peak
at 0.1. With one exception, they all stem from
neuron 19. They will be discarded (red area)
since the peaks are clearly separated without
intersection.

Figure 10: a) On the left side the weight distribution on the BrainScaleS System is shown.
The red area marks the discarded values. b) On the right side is the resulting relative
standard deviation σ in dependence of the discarding threshold. At 0.35 there is a notable
bend.
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Figure 11: a) On the left side the weight distribution on Spikey without synapse 27 is
shown. The red area shows the discarded values. b) On the right side is the resulting
relative standard deviation σ in dependence of the discarding threshold, after discarding all
values above 6. An arguable bend can be seen around 0.065.

lies around 0 and even includes negative values, we again choose a threshold and discard all
values below. In figure 10 on the right side we see the resulting value for σ while varying
the threshold. Around 0.35 the curve bends and starts falling more gently. It marks the
transition from real outliers to normal boundary values, so we do the cut-off there and get:

σBrainScaleS = 16.4%. (41)

96 of 1225 pairs of neurons and synapses were discarded this way. Mainly, they include
neuron 8 or synapse 17, 18 or 25.

On Spikey 50 neurons and 50 synapses were measured. The histogram and the threshold
curve are shown in figure 11.

Instead of one or two peaks, we see an exponential decay with an accumulation near 0.
There is a more than 3 units large gap around 6, followed by all 50 values of synapse 27 which
have a mean value of 9.7. They will be discarded before the threshold curve is evaluated.

Besides an arguable bend around 0.065, the threshold curve is very regular. Doing a
cut-off at that value, we get:

σSpikey = 97.3%. (42)

415 values were discarded this way, mainly values with synapse 7, 17, 25, 28, 43 or 49.
Although the cut-off seems to filter completely broken units reliably, there is no peak

whose boundary corresponds with the bend in the threshold curve. Hence, the cut-off is
based on more arbitrariness than in the previous cases. Nonetheless, we can say that the
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weight variation is greater than 50%.
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5 Discussion and outlook

In the theoretical part, formula (31) summarizes all results. Gibbs like sampling with asym-
metric weights extends the special case with complete symmetry and leads to a stationary
distribution which is continuous in all parameters. The system stays stable and converges
towards its target behaviour for small weight variations.

As a next step, a nicer expression for (31), similar to the Boltzmann distribution (1),
would be very useful. Probably, it would make analytic calculations forDKL(ppertubated||ptarget)
possible and enable results as shown in figure 4 with more units and higher precision in far
less time.

All computations and simulations coincide in the investigated phenomenon apart from
their individual additional effects. Small deviations in the Gibbs sampling and big deviations
in the LIF case from exact computations were expected and are explainable. The different
network size apparently caused no significant difference, although for larger networks that
relation might change.

The plots show that biases in the same order of magnitude as the weights make no
important difference. In the LIF case they may do slightly, but it is hard to tell due to the
large uncertainty.

Below a transition phase starting at a weight variation of σ ≈ 20%, the deviations from
the target distribution caused by the the approximations in LIF sampling dominate the
effects of pertubated weights.

Further investigations should start to separate all assumptions made in this thesis, as
for example introduce correlations in the weight variations or impose a specific network
structure.

The weight variability has improved significantly over the generations of neuromorphic
hardware. On Spikey we have σ = 97.3% and even with an unreasonable amount of discarded
units it stays above 50%. On the BrainScaleS System we have σ = 16.4% and on HICANN-
DLS σ = 4.91%.

Compared to the transition phase mentioned above, the weight variability on the Brain-
ScaleS System and its successor, the HICANN-DLS chip, is not the most limiting factor, if
outlier neurons and synapses are not used. On Spikey, sampling is not feasible. Note that
these statements refer to networks where each random variable is represented by one neuron.

This thesis has focussed on the variations in the synaptic strength. There are more
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important quantities that vary on the hardware and have complexer consequences. For
example, variations in the time constants cannot be translated directly to variations in the
abstract Boltzmann parameters. Instead, they have to be varied in the LIF simulations. For
support from abstract results, one could use neuronal sampling [25].
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Appendices

A Simulations with NEST

A.1 Single neuron

Program parameter Value Description
i_offset 0.0 external current

tau_refrac 10.0 refractory time
tau_syn_E 10.0 excitatory synaptic time constant
tau_syn_I 10.0 inhibitory synaptic time constant

cm 0.1 membrane capacity
tau_m 0.02 membrane time constant
v_rest -52.2 leak potential (for figure 3 a))
v_reset -53.0 rest potential
e_rev_E 0.0 excitatory reversal potential
e_rev_I -90.0 inhibitory reversal potential
v_thresh -52.0 spiking threshold

rate 5000 Poisson input frequency
w_E 0.0035 excitatory synaptic weight
w_I 0.0055 inhibitory synaptic weight
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A.2 Sampling network

Program parameter Value Description
cm 0.2 membrane capacity

tau_m 1.0 membrane time constant
e_rev_E 0.0 excitatory reversal potential
e_rev_I -100.0 inhibitory reversal potential
v_thresh -52.0 spiking threshold
v_thresh -50.0 spiking threshold

tau_syn_E 10.0 excitatory synaptic time constant
v_rest -50.0 leak potential

tau_syn_I 10.0 inhibitory synaptic time constant
v_reset -50.001 rest potential

tau_refrac 10.0 refractory time
i_offset 0.0 external current
rate 3000 Poisson input frequency
w_E 0.001 excitatory synaptic weight
w_I 0.001 inhibitory synaptic weight

B Hardware measurements

B.1 Spikey

The Spikey station 503 was used.

Program parameter Value Description
v_reset -80.0 rest potential
e_rev_I -80.0 inhibitory reversal potential
v_rest -75.0 leak potential

v_thresh 0.0 spiking threshold
g_leak 20.0 leakage conductance
weight 10 digital weight

B.2 BrainScaleS System

The HICANN 92 on the Wafer 21 of the BrainScaleS System was used.
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Program parameter Value Description
cm 0.2 membrane capacity

v_reset -70.0 rest potential
v_rest -20.0 leak potential

v_thresh 50.0 spiking threshold
e_rev_I -100.0 inhibitory reversal potential
e_rev_E 60.0 excitatory reversal potential
tau_m 20. membrane time constant

tau_refrac 0.1 refractory time
tau_syn_E 5.0 excitatory synaptic time constant
tau_syn_I 5.0 inhibitory synaptic time constant

weight 10 digital weight

B.3 HICANN-DLS

The HICANN-DLSv2-chip 22 was used.

Program parameter Value Description
inh_synin_timeconstant 10E-6 inhibitory synaptic time constant
exc_synin_timeconstant 10E-6 excitatory synaptic time constant
membrane_timeconstant 0.5E-6 membrane time constant

leak_potential 0.3 leak potential
spike_threshold 0.8 spiking threshold
refractory_time 10E-6 refractory time

global_reset_potential 0.3 rest potential
weight 24 digital weight
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