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Developed as part of the Human Brain Project's
Neuromorphic Computing platform, the BrainScaleS system
[1] consists of 20 integrated circuit wafer modules (Fig. 1-3).
In the future, these will allow the implementation of large-
scale spiking neural networks on neuromorphic hardware.

Fig. 2 Schematic representation of a 
module including the support hardware 

(FPGAs, power supply, monitoring, 
networking, etc.) and the wafer.

Fig. 1 The BrainScaleS system, consisting of 
5 racks with 20 modules and 2 racks with 

command and control hardware.

In order to circumvent the limited precision of analogue
parameters (e.g., the leak potential El), biases are
implemented as regular spike input. Additionally, to preserve
external bandwidth (about 1.2kHz per HICANN), neurons with
leak above threshold provide this input (Fig. 9). Synaptic
weights are implemented as 4-bit digital values driving
analogue input circuitry. The response functions of sampling
neurons are measured by varying the weight of the bias
synapse (Fig. 10).

After training with a variant of the wake-sleep algorithm [6],
the network approximately samples from the target
distribution (Fig. 11). The final accuracy is limited by the 4-bit
resolution of the weights.

Fig. 9 Illustration of the sampling network on 
hardware. To allow changes in synapse type 

during training, connections have to be 
implemented as excitatory (red) and inhibitory 

(blue) synapses.

Fig. 11 Training a network of four neurons on hardware towards a target
Boltzmann distribution (right, black bars). During training, the DKL between 
sampled and target distribution is reduced (left). After training, the network 
samples from a very good approximation of the sought target distribution.

Fig. 10 Response functions of four
different hardware neurons, 

obtained by changing the weight
of the bias neuron b to s.

Instead of numerically integrating the ODEs that govern the
dynamics of spiking networks, BrainScaleS implements
electric circuits that obey these very equations. The faster
time constants of these electric circuits lead to a speedup of
104 over biological real time, independent of the size of the
emulated system.
Due to fixed-pattern noise on the manufactured transistors
and the nature of the analogue parameter storage, hardware
settings vary both from component to component and from
trial to trial.

To compensate for variations between components, the
relationship between neuron parameters, i.e., potentials and
time constants, and hardware parameters is measured for
every neuron [3].
This so-called calibration can reduce the component-to-
component variation by more than one order of magnitude
(Fig. 5). More than 12,000 adjustable analogue parameters
per HICANN allow flexible control of the emulated network.

Note that BrainScaleS is a continuously running system,
where the recorded start of the simulation is some arbitrary
time after the configuration is completed. Aside from
reconfigurations the system continues to evolve according
to its imprinted ODEs.

Fig. 5 Calibration of the threshold potential (in hardware units) on a HICANN 
chip. Left: before calibration; right: after calibration. The black dashed lines 

represent the respective target values (with courtesy of A. Kugele).

It can be shown that networks of LIF neurons can
approximately sample from binary Boltzmann distributions
[4]. LIF neurons are associated to a binary state according to
their refractory status (Fig. 6, top right). Synaptic connections
represent the weights W of the Boltzmann distribution, while
the biases b are implemented by a shift in the leak El.

Fig. 6 Framework used for sampling with LIF neurons. Individual neurons represent 
binary random variables. Weights Wij and biases bi of the Boltzmann distribution 

are implemented as synaptic connections and leak potentials, respectively.

In order to perform sampling, the neurons receive high-
frequency Poisson noise as input, elevating them to a high-
conductance state [5] resulting in sigmoidal response
functions (Fig. 7). These response functions can then be used
to calculate the translation of weights and biases from the
abstract Boltzmann domain to corresponding synaptic
conductances and leak potentials (Fig. 8).

Fig. 7 Response function of an LIF neuron 
with conductance-based synapses under 

high-frequency Poisson noise.

First results on the BrainScaleS system demonstrate that
ensembles of networks can be set up and trained on hardware
without any external noise, reaching a similar performance as
networks receiving independent Poisson noise (Fig. 9, 11).
Here, we implemented a network of 15 Boltzmann machines,
each consisting of 4 neurons.

After training, most networks are able to approximately
sample from their target distribution, with some networks
showing bad performance due to single hardware neuron
deficiencies (Fig. 15).

With a more carefully chosen network-to-hardware mapping,
the incidence of such singular sources of disruption can be
easily reduced. Once BrainScaleS becomes operational at full
scale, this approach will enable the emulation of large and
computationally powerful spiking inference machines.

Fig. 15 Sampling on hardware without external noise and post-training. Top: the
median DKL of the ensemble before (black) and after training (red) during a 
single network emulation. The opaque lines show the DKL of the individual 
networks. Bottom: for every network, the sampled (red) and target (blue) 

distribution are shown.

Fig. 4 Photograph of a 
single HICANN-chip. 

Chip area is dominated 
by the synapse arrays, 
with the neurons and 

their analogue storage 
(floating gates) in the 
center. Surrounding 

area is used for 
communication.

Fig. 3 Photograph of a single silicon
wafer, consisting of 384 HICANN chips. 

As an alternative to using external Poisson input, one can
construct ensembles of networks where each neuron receives
irregular input from neurons of adjacent networks (Fig. 12).
This way, the functional activity of each network can provide
some of the noise required for computation by others.

Fig. 12 Neurons of adjacent 
networks provide noise to 
each other, replacing the 

Poisson sources. For instance, 
the red neuron receives noise 
from three adjacent neurons.

Fig. 13 Hierarchical spiking networks generating 
handwritten digits without external noise. Only 2 out of 
5 networks are shown here. The generated images are 

illustrated with t-SNE [7].

Fig. 14 Training of an ensemble consisting of 100 6-neuron spiking networks that receive no 
external noise. Left: during training, the median DKL (blue) approaches the one of networks 

with Poisson noise (black). Right: the sampled distribution (red) of a single network is 
compared to the target (blue) after 100 (top) and 2000 (bottom) training steps.

Fig. 8 The synaptic interaction is chosen to 
approximate, on average, the 

corresponding Boltzmann weight.

This work has received funding from the European Union 7th Framework Programme under grant agreement 604102 (HBP), the Horizon 2020 Framework Programme under grant agreement 720270 (HBP) and the Manfred Stärk Foundation.

[1] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner. A Wafer-Scale Neuromorphic Hardware System for Large-Scale Neural Modeling. Proceedings of the 2010 IEEE International Symposium on Circuits and 
Systems, 2010, 10.1109/ISCAS.2010.5536970
[2] R. Brette, W. Gerstner. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 2005, 10.1152/jn.00686.2005
[3] C. Koke. Device Variability in Synapses of Neuromorphic Circuits, Dissertation, Heidelberg University, 2017
[4] M. A. Petrovici, J. Bill, I. Bytschok, J. Schemmel, and K. Meier. Stochastic inference with spiking neurons in the high-conductance state. Physical Review E, 2016, 10.1103/PhysRevE.94.042312
[5] M. A. Petrovici, J. Bill, I. Bytschok, J. Schemmel, and K. Meier. The high-conductance state enables neural sampling in networks of LIF neurons. In BMC Neuroscience 2015, 2015, 10.1186/1471-2202-16-S1-O2
[6] D. H. Ackley, G. Hinton, T. J. Sejnowski. A learning algorithm for Boltzmann machines. Cognitive Science, 1985, 10.1207/s15516709cog0901_7
[7] L. Maaten, G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008
[8] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 10.1109/5.726791

Such networks are capable of performing discriminative and
generative tasks on the trained data spaces without external
noise. This is demonstrated in simulations (Fig. 13) for the case
of five networks trained on the MNIST dataset [8].
The network parameters can either be translated from those
of trained Boltzmann machines (Fig. 13), or can be trained
directly within the ensemble of networks (Fig. 14).
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A single module contains 384 mixed-signal HICANNs (Fig. 4),
each implementing up to 512 analogue neurons based on the
Adaptive Exponential Integrate-and-Fire model [2]. The
112,640 possible synapses per chip allow a large variety of
connectivity patterns.
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