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Abstract

In the development of accelerated analog neuron circuits, a trade-off between energy
efficiency and area consumption on the one hand and precision and configurability of
the emulated neuron model on the other hand has to be made. It is therefore essential
to verify that the designed circuits capture the most relevant characteristics of their
ideal mathematical description.
To this end, we present a simulation-based, application-oriented characterization me-
thodology for analog neuron circuit dynamics which was applied during the design
phase of the HICANN DLS 3 prototype chip. As high-level test cases for the neuron
circuits we choose three different biologically inspired single-neuron experiments,
each focused on a different aspect of neuron functionality. The application of these
test cases in transistor-level simulations of the neuron circuits is preceded by a de-
tailed verification and characterization which is focused on the practical applicability
and usability of the neuron circuits. The combination of high- and low-level inves-
tigations of the full neuron circuit yielded valuable information ensuring the correct
implementation during the development as well as a set of improvements guiding the
design of future circuit generations.

Zusammenfassung

Während der Entwicklung von beschleunigten analogen Neuronschaltungen erfolgt
eine Gratwanderung zwischen Energieeffizienz und Flächenverbrauch einerseits und
Präzision und Konfigurierbarkeit des Neurons andererseits. Daher ist es unumgäng-
lich sicherzustellen, dass die entwickelten Schaltungen die wichtigsten Charakteris-
tika ihres mathematischen Modells abbilden. Zu diesem Zweck präsentieren wir ei-
ne simulations-basierte, anwendungsorientierte Methodik um analoge Neuronschal-
tungen zu charakterisieren, die während der Entwicklungsphase des HICANN DLS
3 Prototyp Chips angewandt wurde. Als umfassende Tests für die Neuronschaltung
verwenden wir drei biologisch inspirierte Einzelneuron-Experimente. Jedes testet da-
bei einen anderen Aspekt der Neuronfunktionalität. Ein detaillierter, auf praktische
Anwendbarkeit fokussierter Verifikations- und Charakterisierungsprozess geht der
Anwendung dieser Experimente in Schaltungssimulationen voraus. Die Kombination
aus umfassenden und spezialisierten Untersuchungen des gesamten Neuronschalt-
kreises lieferte wertvolle Informationen, welche sowohl die korrekte Implementation
des Neurons in der Designphase ermöglichten als auch zu Verbesserungsvorschlägen
für zukünftige Chipgenerationen führten.
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1 Introduction

In March 2016 the neural network AlphaGo beat Lee Sedol, who ranked fourth in the
international ranking list, in four out of fivematches (DeepMindweb page, 2017; BayesElo-
rating, 2017). Before the appearance of AlphaGo a computer program mastering the game
of Go was thought to be at least a decade away (Silver et al., 2016). Impressive results such
as this demonstrate the potential of artificial neural networks.
However, although these networks are called neural networks, they are heavily simplified
compared to their biological counterparts. Understanding the mechanisms that allow the
brain to perform and especially learn tasks that still pose a challenge for artificial neural
networks could lead to even more powerful computing technologies.
The field of computational neuroscience tries to obtain an understanding of the mecha-
nisms in the brain by performing simulations on different levels of detail and abstraction.
To this end neurons and their interactions are described by mathematical equations that
can be solved numerically. Typically, very detailed models that capture a multitude of bi-
ological features, such as the different ion channels governing the neuron dynamics, are
only used for small-scale or even single neuron simulations. For the investigation of large
networks, these models are too computationally intensive and therefore more abstract and
thus simple neuron models are used. However, even this becomes unfeasible in terms of
power consumption and simulation time, for increasing network sizes or studies of neuron
behavior over longer time scales than a few seconds in biology. Using the full K super-
computer, simulating a network of 1.86× 109 neurons and 1.1× 1013 synapses for one
biological second required forty minutes simulation time (Kunkel et al., 2014).
The approach of accelerated, analog neuromorphic hardware can provide an alternative to
numerical simulations (Schemmel et al., 2010). In analog neuromorpic hardware, neurons
and synapses consist of electrical circuits that are designed to emulate the dynamics of
mathematical neuron models. In contrast to a numerical simulation the states of the dy-
namic variables in those physical models are not calculated at discrete time steps but they
evolve in continuous time as they are represented by electrical quantities in the circuits.
The membrane potential of a neuron, for example, is a physical voltage which is stored on
a capacitor in the neuron circuit. By designing the size of the whole neuron circuit to be
approximately 200 × 12 µm (Aamir et al., 2016), the neuron and synapse time constants
are reduced to micro seconds in comparison to milli seconds in biology, which results in
an acceleration factor compared to biology of approximately one thousand.
This acceleration, however, comes at a cost: in the design of the neuromorphic neuron and
synapse circuits we sacrifice configurability and precision of the implemented mathemati-
cal neuron model for energy efficiency and emulation speed. Therefore, it must be ensured
that in spite of this trade-off the essential features of the emulated neuron model are still
captured.
In this thesiswe describe a simulation-based, application-oriented characterization process
for the neuron circuit dynamics which was applied in the design phase of the HICANN
DLS 3 prototype chip developed in the Electronic Vision(s) Group at the Kirchhoff-Institute
for Physics in Heidelberg. The characterization is based on three different biologically
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inspired single neuron experiments that are used as high-level test cases for the neuron
circuit: we present an extension to the single neuron modeling competition by Jolivet
et al. (2008b) making it suitable for the application to analog neuromorphic hardware.
As a second test case we choose the firing patterns exhibited by an adaptive exponential
integrate-and-fire neuron (Naud et al., 2008) and finally use the backpropagation-activated
calcium spike firing mechanism measured described by Larkum et al. (1999) as test for the
newly implemented multi-compartment and plateau potential features on the chip. The
execution of these high-level experiments is preceded by a low-level verification of the
general functionality and an application-focused characterization of the neuron circuits.
As these evaluations of the neuron circuits take place during the design phase of the chip,
all investigations are performed in simulation. We use a combination of a fast, ideal neuron
simulation in the NEST simulator (Gewaltig and Diesmann, 2007) and detailed transistor-
level simulations of the circuit.
The applied combination of high- and low-level investigations of the full neuron circuit
yields valuable information such as the detection of errors in the circuits during the design
process and a set of improvement suggestions for future chip generations.
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2 Modeling Neurons

2.1 Mathematical Neuron Models

2.1.1 LIF and AdEx

A simple and widely used mathematical neuron model is the leaky integrate-and-fire (LIF)
neuron (Dayan and Abbott, 2001). The membrane voltage of a LIF neuron is described by

Cm
dV

dt
= −gL · (V − EL) + Isyn + Iext (2.1)

where Cm describes the membrane capacitance, Iext is an external- and Isyn the synaptic
current onto the membrane capacitance, gL the leakage conductance and EL the leakage
potential. The membrane time constant τm can be calculated as τm = Cm

gL
. If the membrane

voltage crosses a threshold Vth, i.e. if the neuron emits a spike t0, V is reset to Vreset and
kept there for the time τrefrac:

V (t0) = Vth (2.2)

V (t) = Vreset ∀t ∈ (t0, t0 + τrefrac] (2.3)

In equation (2.1) all synaptic input is comprised in Isyn. For a LIF neuron with current
based, exponential synapses the synaptic input, separated in excitatory (exc) and inhibitory
(inh) input, can be written as

Isyn, exc(t) =
∑
i

∑
j

wi · exp

(
tij − t

τsyn, exc

)
·Θ(t− tij) (2.4)

Isyn, inh(t) = −
∑
k

∑
l

wk · exp

(
tkl − t

τsyn, inh

)
·Θ(t− tkl) (2.5)

Isyn = Isyn, exc + Isyn, inh. (2.6)

The sum over i and k adds all presynaptic partners while j and l run over all spike times
of one presynaptic partner. τsyn, exc and τsyn, inh are the synaptic time constants and wi and
wk denote the synaptic strength. An alternative model with conductance based synapses
includes a dependency of the synaptic current on the membrane potential:

Isyn, exc(t) =
∑
i

∑
j

wi · exp

(
tij − t

τsyn, exc

)
·Θ(t− tij) ·

(
Erev, exc − V (t)

)
(2.7)

Erev,exc is the excitatory reversal potential. The synaptic current for the inhibitory case
can be calculated accordingly using the inhibitory reversal potential Erev,inh and τsyn,inh.
To model more biological features the LIF model can be extended to the adaptive exponen-
tial integrate-and-fire (AdEx) model (Brette and Gerstner, 2005). It includes an exponential
term which causes a strong rise of the membrane voltage if a soft threshold VT is crossed.
Additionally, the adaptation variable w is added. The adaptation allows a change in the
behavior of the neuron (e.g. the spike frequency) while being stimulated with the same
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stimulus all the time (see for example figure 18). The differential equations for the AdEx
neuron model are

Cm
dV

dt
= −gL · (V − EL) + gL ·∆T exp

(
V − VT

∆T

)
+ Isyn + Iext − w (2.8)

τw
dw

dt
= a · (V − EL)− w (2.9)

with ∆T and VT as voltage parameters for the exponential term and the adaptation con-
ductance a. Both variables V and w are reset if the threshold Vth is crossed:

V (t0) = Vth (2.10)

V (t) = Vreset ∀t ∈ (t0, t0 + τrefrac] (2.11)

w → w + b (2.12)

The increasing of w by a fixed amount of b is called spike-triggered adaptation.
Figure 1 shows a simulation of an exemplary voltage trace that demonstrates the behavior
of an AdEx neuron. The neuron receives synaptic input at irregularly spaced intervals.
For each arriving input a post synaptic potential (PSP) is visible on the membrane voltage.
If the inputs arrive shortly after each other, the PSPs integrate. When the soft threshold
voltage of VT = −50mV is crossed a sharp increase in the membrane voltage caused by
the exponential term is visible. The neuron then reaches the spike threshold and is reset.
After the reset follows a small downswing of the membrane potential which is caused by
the spike-triggered adaptation.

2.1.2 Multi-compartment neurons

The neuron models covered in section 2.1.1 are called point neuron models. This means
that the spatial structure of a biological neuron as shown in figure 2 is reduced to a single
point. A biological neuron has multiple dendrites and an axon connecting to the cell body
called the soma. The synapses which connect the neuron to its presynaptic partners are
located at the dendrites. Arriving signals travel from the dendrites to the soma. If the
accumulated input is sufficiently strong, a spike is generated in the axon and travels down
the axon to the synapses which connect the neuron to its postsynaptic partners.
A simple way to add spatial structure to the neuron models described in section 2.1.1 is
to connect point neurons with an intercompartment conductance gic as shown in figure 3
(Gerstner and Kistler, 2002). This couples the differential equations of the neuron mod-
els by adding an additional current Iic. For a compartment that is connected to n other
compartments the sum of all intercompartment currents is

Iic =
n∑

i=0

gic, i ·
(
Vcomp, i − V

)
(2.13)

which depends on the voltage differences between the membrane voltages of the neuron V
and the other compartments Vcomp, i. By that the former point neurons become compart-
ments of a larger neuron which interact passively via the intercompartment conductances.
Depending on the location in the compartment tree and parameter choices, the individual
compartment can mimic the roles of dendrites, soma or axon on a basic level.
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Figure 1: Top: Software simulation of an exemplary AdEx neuron using the PyNN simulator
(Davison et al., 2009) with NEST as back-end (Gewaltig and Diesmann, 2007). The neu-
ron is stimulated by spike input (bottom). When the inputs arrive in short succession the
PSPs sum up. When themembrane voltage reaches VT = −50mVwhich triggers a sharp
upswing of the membrane potential caused by the exponential term. After reaching the
threshold the membrane voltage is reset and kept at the reset voltage for the duration
of the refractory period. The spike-triggered adaptation causes the small downswing of
the voltage after the reset.
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Figure 2: Drawing of a biological neuron by Rougier (2007). It shows the basic structure of a
neuron. There are three main parts, the dendrites, the cell body (soma) and the axon.
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Figure 3: Illustration of a simple multi-compartment neuron consisting of multiple LIF neurons
(gray boxes picturing membrane capacitance Cm, leakage conductance gL and the leak-
age potential EL) connected to a chain via intercompartment conductances gic.

2.1.3 Dendritic plateau potentials

Physiological measurements have shown an important communication mechanism be-
tween dendrites and soma, which passively connected compartments lack, the dendritic
spikes (Antic et al., 2010). Figure 4 shows a collection of spike types, their typical location
of occurrence and their waveform in a cortical pyramidal neuron.
The waveform of the action potential, which is initiated in the axon consists of a sharp and
short rise in the membrane voltage. This is the signal which allows interneuron commu-
nication. Its characteristic sharp rise and short duration are modeled by the exponential
term and the threshold in the AdEx equations.
The calcium and N-methyl-D-aspartate (NMDA) plateau potentials are initiated in the den-
drites and the apical trunk. The apical trunk is, as shown figure 4 B, the connection be-
tween the tuft dendrites and the soma. Their shapes differ strongly from the shape of
the action potential. Typically, they show a plateau shape of a length in the order of
50 to 100ms. The addition of active and nonlinear components is believed to play a signif-
icant role in cortical information processing Antic et al. (2010); Larkum (2013).

2.2 Accelerated Mixed-Signal Neuromorphic Hardware

The neuromorphic hardware discussed in this thesis uses a mix of analog and digital cir-
cuits (mixed-signal design). The neurons and synapses consist of analog circuits that are
designed to mimic the dynamics of mathematic neuron model e.g. the AdEx neuron. In
contrast to a numerical simulation the state of the variables is not calculated at discrete
points in time but they evolve in continuous time since they are represented by electrical
quantities in the circuit. The membrane potential of a neuron, for example, is a physical
voltage which is stored on a capacitor in the neuron circuit. The components of the neu-
ron and synapse circuits are extremely small, which allows for small capacitances and high
conductances. Therefore, the neuron time constants such as the membrane time constant
τm = Cm

gL
are up to a factor of ten thousand times shorter than in biology. This allows to

reduce the duration experiments which would take years in biological real time to hours.
But the high acceleration factor also increases the difficulty of digital communication on
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Figure 4: Overview of spike types in a cortical pyramidal neuron, taken from Antic et al. (2010). A
shows an overlay of the shapes of an excitatory post synaptic potential (PSP), an NMDA
spike and a calcium plateau potential. In B the waveforms of calcium plateau potential
(initiation in the apical trunk) and NMDA spike (initiation in the dendrites) are compared
to an action potential initiated in the axon.
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Figure 5: Photograph of the HICANN DLS 2 prototype chip, taken by Matthias Hock.

the hardware itself, e.g. spikes, or between the hardware and host computer, since high
bandwidths and precision are required.

2.2.1 HICANNWafer System

The High Input Count Analog Neural Network (HICANN) chip (Millner, 2012) is the ba-
sis of the BrainScaleS system which is developed in the scope of the BrainScaleS project
(BrainScaleS, 2012) and the Human Brain Project (HBP SP9 partners, 2014). The HICANN
contains 512 neurons and 512 × 224 synapse circuits that are fabricated in 180 nm CMOS
process. The circuits are designed to mimic the dynamics of AdEx neurons with conduc-
tance based synapses. In order to be able to emulate networks with more than 512 neurons
multiple chips must be used simultaneously. To this end, the wafer of HICANN chips is
not cut into single chips after production but instead a post-processing layer is added that
allows communication between the chips. A full wafer contains 200000 neurons and 44
million synapses that can be connected to a network (Schemmel et al., 2010, 2008).

2.2.2 HICANN DLS

The area consumption of the circuit components can be reduced by using the 65 nm fab-
rication process. This allows the addition of more complex circuitry as for example the
plasticity processing unit (PPU) (Friedmann et al., 2016). New versions of the HICANN
chips fabricated in 65 nm process and with added PPU are called HICANN Digital Learn-
ing System (HICANN DLS). HICANN DLS wafers will in the future replace the HICANN
wafers currently in use. Before the final wafers are being produced a row of test chips
were (HICANN DLS 1, 2 and 3) and will be fabricated. Figure 5 shows a photograph of the
second test chip, the HICANN DLS 2.
The HICANNDLS 3 is the newest test chip. It adds several new features to HICANNDLS 2
(Aamir et al., 2016). In the following we introduce additions to the neuron circuit that will
be treated in the following chapters.
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Figure 6: Schematic of the adaptation term onHICANN, taken from (Millner, 2012). On the top-left
the mechanism for spike-triggered adaptation (enabled by the fire signal of the neuron)
is shown. The adaptation variable Vw is stored on the capacitorCa. The decay of Vw with
the time constant τw = Ca

gw
is modeled with the OTA on the bottom right. The adaptation

current onto the membrane is produced by the OTA on the top right.

Switchable Adaptation The circuit in figure 6 shows the functional principle of the
adaptation term on the HICANN chip (Millner, 2012). In hardware the adaptation current
w is modeled as a voltage Vw which is stored on the capacitor Ca. The transformation
between hardware and AdEx adaptation (see equation (2.9)) is

w = a · (Vw − EL) (2.14)

which changes the differential equation of the adaptation variable to

dVw

dt
=

1

τw
· (V − Vw) (2.15)

where τw = Ca
gw

. In contrast to the AdEx model the spike-triggered adaptation value b is
not added directly to the adaptation current w flowing onto the membrane, but rather as
a voltage step to Vw. The resulting adaptation current onto the membrane is Iadapt = a ·
(Vw − EL). As the circuit for adding the spike-triggered adaptation b to Vw only allows for
a positive b and the conductance a, realized by an operational transconductance amplifier
(OTA), is also always positive, the hardware neuron realizes only one out of four possible
sign combinations of a and b.
Compared to the adaptation circuit on the HICANN chip the new circuit for HICANN
DLS 3 (designed by Syed Ahmed Aamir) allows more flexibility: The spike-triggered adap-
tation b can now be modeled by a positive or a negative current onto Ca. The sign switch
is controlled by the digital parameter en_pos_vw. Additionally, the input into the OTA
that emulates the adaptation conductance a is switchable (see figure 7) to allow both signs
for a. The sign switch is realized by the digital parameter en_neg_va.

9



Iw

a

+

-
EL

EL

Vw

Vw

en_neg_va

0

1

1

0

Figure 7: Schematic of new circuit for the production of the adaptation current. The inputs of
the OTA are connected to two multiplexers (MUX) which choose, depending on their
parameter en_neg_va the upper or lower of their inputs. This effectively switches the
sign of the adaptation conductance a modeled by the OTA.

Neuron
0

Neuron
1

Neuron
2

Neuron
3

en_scon

en_right en_right en_right

en_scon en_scon

Figure 8: Schematic drawing of multi-compartment circuit on HICANN DLS 3. The neuron cir-
cuits except for themembrane capacitance are summarized in the gray boxes. To connect
the neurons to one larger single-compartment neuron the en_right switches can be
enabled. The en_scon switches connect the individual neurons via configurable con-
ductances to a multi-compartment neuron.

Multi-compartment Circuits In addition to the AdEx features, multi-compartment
circuits by Johannes Schemmel have been added to HICANN DLS 3 (Schemmel et al.,
2017). Figure 8 shows a schematic drawing of the circuit. There are two possibilities
of connecting the membrane capacitances of two neurons: First, they can be connected
via the en_right switches, which connect the capacitances directly and merge the neu-
rons into one neuron with a larger membrane capacitance. This can be useful to achieve
for example longer membrane time constants τm and allows a higher number of synaptic
inputs per neuron. Secondly the neurons can be connected to the soma line via a con-
figurable conductance using the en_scon switches. This couples the individual neurons
with a conductance and connects them to a multi-compartment neuron as described in
section 2.1.2.

Plateau Potentials Another new feature of the HICANNDLS 3 neuron is the possibility
to emulate plateau potentials as described in section 2.1.3 (Schemmel et al., 2017). A plateau
potential is realized using the redesigned reset mechanism of the neuron.
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Figure 9: Schematic drawing of the analog part of the reset circuits. The newly designed leak OTA
allows the switching between two modes, the normal leak mode and the second mode,
which is used for the reset. The reset signal from the digital reset circuit triggers the
switching between leak and reset (red switches). The digital parameters highs_leak and
highs_res allow to increase the conductance of the OTA by a factor of 8 to 10.

Figure 9 shows the analog part of the new reset. The leak OTA of the neuron was re-
designed for HICANNDLS 3 in order to allow a switching between two modes, the normal
leak mode and the reset mode. Both modes effectively function the same way, but they
can have different parameters and inputs. The reset signal from the digital reset circuit
switches from the parameter set and inputs of the leak to the parameters and input of the
reset and back. A digital reset signal also has the advantage that it allows a more precisely
timed refractory period compared to an analog circuit as in the HICANN. Typically, the
reset mode is configured to be significantly stronger than the leak mode.
By setting the reset voltage to a value above the threshold voltage and the refractory time
to a high value, a plateau potential similar to the NMDA and Calcium spikes in biology
is realized. Figure 10 shows an exemplary simulation of the circuits (for details on simu-
lation method see section 4.2). The neuron is stimulated with synaptic input, reaches the
threshold and is reset to a voltage above the threshold voltage.
The possibility to set the reset voltage above the threshold requires the addition of a holdoff
time tholdoff during which the reset mechanism is already switched off but the neuron can
not fire again. This is necessary to prevent the neuron from firing continuously as soon it
reaches the threshold once. The holdoff time allows the membrane voltage to decay below
the threshold towards the leak potential before it is allowed to fire again. The refractory
time is then defined as

τrefrac = treset + tholdoff (2.16)

11



0 20 40 60 80 100 120

time [µs]

0.45

0.50

0.55

0.60

0.65

V
m
em

[V
]

Vmem

Vth

Vreset

Figure 10: Exemplary transistor level simulation of a plateau potential, adapted from Schemmel
et al. (2017). The plot shows the result of a circuit simulation, therefore the voltage
and time are given in hardware domain. The neuron is stimulated with synaptic input
(excitatory and inhibitory). When it reaches the threshold (lower dashed line) a spike is
triggered and the reset mechanism pulls up the membrane voltage to the reset potential
(upper dashed line). After a refractory time of approximately τrefrac ≈ 30 µs the reset is
switched of and the membrane potential decays back to the resting potential.
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3 Single-Neuron Experiments

In the development of low-power accelerated neuromorphic hardware a trade-off between
energy efficiency and speed on the one hand and precision and configurability on the other
hand has to be made. It is therefore essential to assess how much the implemented cir-
cuits deviate from the mathematical model and whether the relevant characteristics of the
model are captured by the circuits. This can be done using high-level test cases that are
as similar as possible to the intended use cases of the hardware. However, during the
development of new circuits, a detailed simulation (usually on transistor level) of more
than very few neuron circuits is not feasible due to long simulation times. Therefore, this
chapter presents a set of single-neuron experiments that allows to evaluate the perfor-
mance of neuron circuits with respect to their accordance with the mathematical model
they emulate and their biological plausibility.

3.1 Single-Neuron Modeling Competition

The quantitative single-neuron modeling competition was developed by Renaud Jolivet,
Felix Schürmann, Thomas Berger, Richard Naud and others in an attempt to come up with
a standardized test to quantify the performance of single-neuron models reproducing bio-
logical behavior. The competition took place in the years of 2007 to 2009 and the setup and
results of 2007 and 2008 are extensively described in Jolivet et al. (2008b) and Jolivet et al.
(2008a). Each year, four separate challenges were posed, approximately half of them for
multi-compartment neurons the other half for single-compartment neurons. A challenge
consists of test and training data. The training data contains input for the tested neuron
model and output recordings of a biological neuron which serve as reference. The test data
only contains the input data. In this thesis, we focus on challenge A of the year 2007 as
it deals with single compartment neurons and tests the neuron models’ ability to reliably
reproduce biological spike times. The reliability of spike timing is important, as the spikes
are the only means of communication of neurons in a network on the chip.
The challengeA of 2007 contains 12 data sets (cha, 2017). Eight of them are training sets and
contain an input current for the neuron as well as four membrane voltage and spike time
recordings of the same biological neuron which was stimulated with the given current.
During the competition the test sets contained only the input currents, however, later, the
target spike times of the biological neuron were made public. Figure 11 shows the current
input and the four recordings of the target spike output per data set. The currents are
given by an Ornstein-Uhlenbeck process

I(t+ dt) = I(t)− I(t)

τI
dt+mI dt+sIξ(t)

√
dt (3.1)

with a correlation length τI = 1ms and a time step of 0.2ms (Jolivet et al., 2008a). ξ(t)
is a Gaussian random variable with zero mean and variance one. The mean µI of the
resulting current distribution is µI = mI · τI and the standard deviation can be calculated
as σ2

I = s2I
τI
2 . While µI and σI vary over the different data sets, the same random sequence

was used for the simulation of the stochastic process ξ(t). Each current stimulus is 6.8 s
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long. The goal of the challenge is to reproduce the spike times of the biological neuron
(also shown in figure 11) as closely as possible.

3.1.1 Γ-Measure

As method to determine how well the spike train produced by the neuron model matches
the target spike train of the biological neuron the Γ-measure is chosen by Jolivet et al.
(2008b). It is originally described in Kistler et al. (1997) where it is used to compare the
spike times of different neuron models. The measure is calculated as

Γ =
Ncoinc − 〈Ncoinc〉

1
2 ·
(
Ntarget +Nmodel

) · α with 〈Ncoinc〉 =
2∆

T
NtargetNmodel (3.2)

where Ncoinc is the number of coincident spikes of model and target, ±∆ is the time win-
dow within which spikes are treated as coincident, T is the duration of the experiment,
Ntarget andNmodel are the number of spikes in the target and model spike train respectively
and 〈Ncoinc〉 is the number of coincident spikes that is expected if the model was a Poisson
process. α is a normalization factor.
A score of Γ = 1 denotes a perfect match, Γ = 0 means that the model shows as many
coincidences with the target as a random spike train of the same frequency would and a
negative Γ indicates anti-correlation between model and target spike trains.
The normalization factor α is defined in Kistler et al. (1997) and Jolivet et al. (2008b) as

α =
1

1− 2∆
T Ntarget

, (3.3)

where ∆ is the so-called coincidence window and T is the duration of the experiment.
However, the normalization is defined differently in Jolivet et al. (2008a) and in the MAT-
LAB script for the calculation of Γ provided on the web page of the competition (mat,
2016).

α =
1

1− 2∆
T Nmodel

(3.4)

In addition to the differences in the definition of α, the definition of a coincidence also
varies in different sources. Figure 12 shows a collection of the different coincidence def-
initions and the resulting number of coincidences Ncoinc they produce in an example.
Kistler et al. (1997) defines coincidence by stating “In so doing, we have accepted a spike of
the spike response model to be coincident with the corresponding spike of the Hodgkin-
Huxley model if it arrives within a temporal precision of ±2ms.” Instructions for the par-
ticipants of the year 2009 (ins, 2016) state however “To evaluate this quantity, we calculate
the number of coincidencesNcoinc between the spikes in the data spike train one repetition
at a time (target) and the spike train of the model submitted by a participant. This number
is calculated by counting the number of target spikes for which we can find at least one
model spike within ±4ms.” Finally, the MATLAB script provided for the participants of
competition in 2007 (mat, 2016) behaves differently from the versions described before (see
figure 12). The script counts exactly one coincidence if multiple model spikes are within
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Figure 11: Left: Sections of the input currents in the training sets of challenge A. The means and
standard deviations vary over the sets. Right: Recorded spike times of the biological
neurons when stimulated with the corresponding current on the left. The recordings
were repeated four times. Data taken from cha (2017).
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Figure 12: Different definitions of coincidences. The coincidence windows ∆ are shaded gray
around the target spikes. For the third and fourth group of target spikes the ∆ win-
dows overlap. The numbers below indicate the number of coincidences counted for the
corresponding group of spikes depending on the used definition. The coincidences in
(A) are calculated using the definition by Kistler et al. (1997). (B) follows the instruc-
tions for participants of the year 2009 (ins, 2016). (C) uses the algorithm of the provided
matlab script (mat, 2016).

the ∆ windows of one target spike. If there are is one model spike within the window
of two target spikes, also only one coincidence is counted. However, if the ∆ windows
of n > 2 target spikes overlap one model spike is counted as n − 1 coincidences. This is
most likely due to an implementation mistake. In the following we will, always count one
coincidence if multiple target spike are met by one model spike and vice versa.
Equation (3.2) shows that the value of the Γmeasure depends on the coincidence window
∆. As visible in figure 13, there are three regions of that dependency. For very small ∆,
spikes must happen at nearly the same time to be recognized as a coincidence. This is
rarely the case and therefore Γ is very low. This region is followed by a regime where
Γ is nearly constant due to the fact that all coincidences are recognized and a larger ∆
does not increase Ncoinc. In the third region the denominator of the normalization factor
α = 1

1− 2∆
T

Ntarget
approaches zero and causes a pole in Γ. The Γ measure is not valid in this

region. Unfortunately, the third test data set is, with the ∆ = 2ms given in Jolivet et al.
(2008a) and (Jolivet et al., 2008b), in the invalid region.

3.1.2 Intrinsic Reliability and Performance

In order to estimate how well the biological neuron itself reliably reproduces its own spike
times when stimulated with the same stimulus all recordings were repeated 4 times. As a
measure for the intrinsic reliability Γint is used. It is calculated as the mean of the Γ-values
between different repetitions of the recordings bi, bj of data set s:

Γint, s =
2

Nreps(Nreps − 1)

Nreps∑
i=1

Nreps∑
j=i+1

Γ(bi, bj). (3.5)

Nreps denotes the number of recording repetitions (in our case Nreps = 4). Figure 14
shows that the intrinsic reliability of a data set depends on the variability of the input
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Figure 13: Exemplary evaluation of the Γ measure using different coincidence windows ∆. The
measure is nearly independent of∆ over a wide range. However, for large∆, Γ shows
a pole, which renders the measure unstable and invalid in this region.

current. Irregular spike trains caused by an input current with high variation tend to have
a higher intrinsic reliability than regular spike trains. This tendency can also be observed
in figure 11.
If the biological neuron reproduces its spike times with a low reliability the neuron model
can not be expected to perform well in reproducing the spikes in the 4 recordings. To take
this into consideration, the overall performance of a neuron in the challenge is defined as

P =
1

Nsets

1

Nreps

Nsets∑
s=1

Nreps∑
i=1

Γ(bsi,ms)

Γint(bs)
(3.6)

where bsi are the biological spike times in the i-th repetition of the s-th data set, and ms

are the spike times of the tested model for this data set.
Equation (3.6) shows that the intrinsic reliabilities of the biological measurements must be
known in order to calculate the performance. Jolivet et al. (2008a) give the values for the
four test sets Γint = 0.22, 0.76, 0.85 and 0.99. However, the values for Γint calculated from
the test data published after the competition do not match the given values. We calculate
Γint = 0.99, 0.93, 0.72 and 0.80. As it is not clear how the given values were calculated and
which of them corresponds to which test set, the performance values published in Jolivet
et al. (2008a) can not be used for further considerations in this work.

3.1.3 Parameter Fits

In order to test a neuron model in the single-neuron modeling competition the neuron
parameters that lead to the closest match need to be determined. This is done by fitting the
neuron parameters to the data given in the training data sets. Jolivet et al. (2008a) describes
the method used for the AdEx neuron. An optimal parameter set was determined using a
genetic algorithm (Vanier and Bower, 1999) using the Γ measure as fitness function. The
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Figure 14: Taken from Jolivet et al. (2008a). Comparison of the reliability in spike timing for
strongly varying input (A) and a nearly constant input current (B). For the input with
high variability the spike timing is more reliable.

resulting parameters are given asCm = 72 pF, gL = −13 nS,EL = −60mV, VT = −38mV,
∆T = 0.006mV, a = −0.5 nS, b = 36 pA and τw = −25ms.

Themembrane time constant and the adaptation constant are negative which is most likely
due to a different sign definition in differential equations of the neuron model in the sim-
ulator. Additionally, the values for Vreset and Vth are missing. Due to the very low value of
∆T the exact value of Vth is not relevant. Vreset, however, needs to be determined, as the
parameter set can not be used without it. In order to determine the missing reset voltage a
sweep over Vreset was performed, where, for each value, the neuron’s score in the challenge
test sets was calculated and compared to the test score given in Jolivet et al. (2008a).

Figure 15 shows the results of the sweep. As it is not certain which definition of the
normalization factor α in the Γ measure was used in the paper, Γ was calculated using
both possible definitions. We see that for low reset voltages the resulting Γ is very similar
for both normalizations. For larger voltages the normalization in Jolivet et al. (2008a)
shows a pole at approximately Vreset = −48mV which renders the measure invalid for all
higher reset values. Unfortunately, the only reset voltage, which produces a Γ = 0.7 as
given in the paper, is in the invalid regime.

As the full optimal parameter set could not be determined with certainty, we determine an
own optimal parameter set. Similar to the genetic algorithm used by Jolivet et al. (2008a)
we use an evolutionary algorithm as well. However, in order to reduce simulation time,
we narrow down the possible ranges for some of the neuron parameters beforehand.

By minimizing the squared distance between the simulated neuron model and the biolog-
ical recordings (Vsimulated − Vbio)

2 in a region without spikes, the parameters are deter-
mined. For the fit nine patches of the voltage traces in the third training data set were
used. Each patch was at least 200ms long. The fit allowed to narrow down the parameter
ranges of the membrane capacitance, membrane time constant and the leakage reversal
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Figure 15: Sweep overVreset in order to determine the reset voltage that produces the scoreΓ = 0.7

given in the paper (dashed line). The scores are calculated with both of the possible
normalization factors αkistler (blue circles) and αjolivet (red triangles). The Γ calculated
with αjolivet shows a pole, which renders all the scores produced by larger reset voltages
invalid. The score mentioned in the paper can only be reached in the invalid regime.

Method Simulated Annealing Genetic Algorithm Differential Evolution

Final relative error 6.72× 10−4 2.022× 10−3 1.42× 10−4

Duration 6 d 6 h 1 h 52min 57min

Table 1: Comparison of optimization algorithms used for neuron parameter fitting. Values taken
from Buhry et al. (2011).

potential

Cm = 43.9± 6.8 pF (3.7)

τm = 2.40± 0.69ms (3.8)

EL = −58.5± 1.0mV (3.9)

The values are the averages of the fit results on the individual patches. The errors denote
the standard deviation. Figure 16 shows the fit result on an exemplary patch of the used
voltage traces.
The fit results can be used as a starting point for an evolutionary algorithm. We use the
differential evolution algorithm (Storn and Price, 1997; Price et al., 2006) which was com-
pared to other widely used optimization algorithms in the task of neuron parameter fitting
(Buhry et al., 2011). It outperformed simulated annealing and a genetic algorithm (Vanier
and Bower, 1999) in speed as well as precision (see table 1).
Similar to a genetic algorithm, differential evolution operates on a population that consists
of Npop vectors ~xi in parameter space with i ∈ [1, Npop]. From these vectors an offspring
population ~oi of the same size is created by drawing randomly 3 vectors of the original
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Figure 16: Simulation of neuron using parameters resulting from fit (dashed line) and recorded bi-
ological voltage (solid line) on an exemplary patch of voltages used for the least squares
fit.

population and adding the scaled difference of two to the third:

~oi = ~xj + F · ( ~xk − ~xl) with j, k, l ∈ [1, Npop] (3.10)

The scale factorF typically is smaller than 1. The offspring vectors ~oi are crossed over with
the parent vectors ~xi by replacing, with a crossover probability pc, the j-th component of
the offspring vector j-th component of its parent. Then the fitness of all offspring and
parent vectors is evaluated and for each i the offspring or the parent is chosen depending
on their fitness value.
In our case, each component of the vectors ~xi denotes one neuron parameter. For each pa-
rameter we choose a value range within which it can evolve. The ranges of the parameters
which were predetermined in the least squares fit were set to the fit result± two times the
standard deviation. The ranges for the other parameters can be found in section D.1.
At first, we chose the Γ measure as fitness function. In contrast to the evaluation of the
challenge, we set the coincidence window ∆ to ∆ = 1ms during the evolution, because
the measure is not able to distinguish the quality of a perfect match and, for example,
a spike train that shows deviations from the correct spike times within the coincidence
window. With a smaller coincidence window, the inability to distinguish results appears
in a later stage of the evolution.
This shortcoming of theΓmeasurewas also the reason to repeat the evolutionwith another
fitness function: The reduced Gauss measure (Born, 2012) is inspired by the Schreiber
similarity measure (Schreiber et al., 2003) which convolves the spike trains with gaussian
functions and then calculates the cross correlation. The normalization of the Schreiber
measure fails if multiple model spikes are close to one single target spike. This problem is
solved by the reduced Gauss measure which first deletes all spikes from the model and the
target spike train that do not have a corresponding partner in the other spike train. To be
corresponding, the spikes must lie in the ±1ms interval of each other. The reduced spike
trains are then convolved with a Gaussian, which results in the functions gmodel and gtarget
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Figure 17: Results of the differential evolution. Left: Test and training scores of the resulting
parameter sets calculated with the Γ measure, triangles denote parameter sets where
the Gauss measure was used in the evolution, squares denote parameter sets where the
Γ measure was used as fitness function. Right: Test and training scores of the same
parameter sets but calculated with the reduced Gauss measure.

which are used to calculate the value G of the measure:

G =
2

Nmodel +Ntarget
·
∫ ∞

0
g(t)model · g(t)target dt (3.11)

For the normalization, the original numbers of spikes in the spike trainsNmodel andNtarget

are used. This penalizes spike trains with too few or too many spikes.
Figure 17 shows the results of the parameter fits performed using differential evolution
with the Γ measure as fitness function in comparison to the reduced Gauss measure. The
evolution algorithm was started multiple times and evolved into a similar fitness regime
for each repetition. We see that, although the results produced with the reduced Gauss
measure show worse training scores when evaluated with the Γ measure, the test scores
are better than the one where Γ was used in the evolution. This might be due to an over-
fitting when the Γ measure is used in the evolution.
From the collection of results, we choose three parameter sets for all further investigations.
They can be found in table 2.

3.1.4 Extension to Spike Input

On the current HICANN and HICANN DLS chips, there is no possibility to stimulate the
neuron with a varying current. Therefore, we extend the data sets of the single-neuron
modeling competition by data sets that use spike input. In order to mimic the challenge
data as closely as possible, the spike input is designed in a way, that the synaptic currents
produced by the spikes show means and variances in the same range as the competition
currents. For one excitatory and one inhibitory Poisson spike train with rates νexc and
νinh the mean and variation of the resulting current can be calculated using the Siegert
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Parameter AdEx 0 AdEx 1 AdEx 2

Cm [pF] 0.044 0.044 0.044
τm [ms] 2.84 2.63 2.49
EL [mV] -59.05 -59.18 -58.81
VT [mV] -37.13 -38.60 -39.36
Vth [mV] -36.53 -37.43 -37.92
Vreset [mV] -57.55 -60.56 -60.85
∆T [mV] 2.51 1.74 1.86
τw [ms] 89.4 62.3 91.6
a [nS] 1.67 1.09 2.49
b [nA] 0.012 0.016 0.010

Table 2: Parameter sets determined by the differential evolution algorithm.

approximation (Siegert, 1951; Stromatias et al., 2015)

µI = τsyn · (wexc · νexc + winh · νinh) (3.12)

σ2
I =

τsyn
2

·
(
w2

exc · νexc + w2
inh · νinh

)
(3.13)

wherewexc,winh are the excitatory and inhibitory synaptic weights and τsyn is the synaptic
time constant. The competition currents cover a range of 0 < µI < 650 pA and 0 <

σI < 350 pA. A choice of the Poisson rate ν and the synaptic time constant then allows
the calculation of the synaptic weights for a given mean and variation, if excitatory and
inhibitory input rates and time constants are chosen to be equal. However, a solution only
exists if

σ2
I τν

µ2
I

>
1

4
(3.14)

is fulfilled. This may for example not be the case for a high mean and low variance. If the
solution does not exist the data set can nevertheless be created by stimulating the neuron
with a constant current Ioffset = µI in addition to the spike input. Then the excitatory and
inhibitory synaptic weights are symmetric wexc = −winh.
We created data sets for the Poisson frequencies ν = 100Hz, 500Hz and 2 kHz and the
synaptic time constants τsyn = 1ms and 5ms. For each combination of τsyn and ν the range
of µI and σI is covered by 11 different input spike trains and their corresponding weights.
As references we use simulated AdEx neurons with the optimal neuron parameter sets
determined in section 3.1.3.

3.2 AdEx Firing Patterns

The collection of firing patterns that can be achieved with an AdEx neuron, which is stim-
ulated with a step current, described in Naud et al. (2008) can serve as a test case for analog
implementations of the AdEx model. To reproduce the patterns, the neuron parameters,
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especially the adaptation parameters, are required to be precisely tunable over awide value
range. Figure 18 shows a software simulation of the eight different firing patterns using an
adapted version of the neuron parameter sets given in (Naud et al., 2008) by Paul Müller.
A table with all neuron parameters can be found in section B.1.
In figure 18 the voltage traces of the patterns tonic spiking, adaptation, initial bursting, reg-
ular bursting, delayed accelerating, delayed regular bursting and irregular firing are shown.
Additionally, figure 19 shows the phase space plots of the patterns together with the null-
clines of the differential equations of the AdEx neuron. The V -nullcline can be calculated
as

w = −gL · (V − EL) + gL ·∆T exp
(
V − VT

∆T

)
+ Iext (3.15)

and the w-nullcline as

w = a · (V − EL) . (3.16)

Tonic spiking is characterized by equidistant spikes followed by exclusively sharp resets
or exclusively broad resets. After a sharp reset, the membrane potential rises immediately
after the end of the refractory period, while after a broad reset the membrane potential first
decreases below the reset potential and afterwards rises more slowly. A broad reset occurs
when the neuron is reset above the V-nullcline and it must return below the nullcline
before being able to spike again. The tonic spiking in figure 18 shows sharp resets since
the neuron is (as visible in figure 19) far below the V-nullcline.
The adaptation pattern is characterized by increasing interspike intervals (ISI) and exclu-
sively sharp resets. The phase space plot shows that a strong spike-triggered adaptation is
necessary for this pattern: When the neuron reaches the threshold, the membrane voltage
is reset to Vreset but the adaptation variable is increased by a large amount. As −w is the
current onto the membrane, a larger w increases the time until the neuron reaches the
threshold again.
The initial bursting consists of a burst at the beginning, which is characterized by multi-
ple spikes with short ISI and sharp resets, followed by single spikes with broad resets in
between. During the burst all resets are below the V-nullcline, the burst ends when the
nullcline is crossed. After the initial burst the neuron is close enough to the nullcline to
cross it with every spike. Because of that, all following spikes are followed by a broad
reset.
The regular bursting pattern is similar to initial bursting except for the fact that the first
burst is followed by other bursts instead of single spikes with broad resets in between.
This is due to the fact that in contrast to the initial bursting a single spike is not enough
to reset the neuron above the V-nullcline. Initial bursting and regular bursting require a
fine tuning of the adaptation parameters a and b.
Delayed accelerating is characterized by a long time difference between the onset of the
stimulating step current and the first spike of the neuron. Additionally, the ISIs decrease
in this pattern. In contrast to the previous patterns, a is negative here. This causes the
neuron to move faster in the phase space the further away it is from the w-nullcline, i.e.
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the higher V is, which causes the slow onset of the firing. The delayed regular bursting
is similar to the regular bursting but shows a delayed onset such as delayed accelerating,
which is due to the negative a.
A transient spiking pattern shows only one single spike followed by the membrane poten-
tial settling on a constant value. This is caused by the fact that the nullclines cross in the
phase space, which produces a fixed point. Once the neuron reaches this fixed point after
the first spike it stays there until the current stimulus ends and the fixed point disappears.
The irregular firing pattern shows chaotic firing behavior of the neuron. The ISIs change
without any periodicity and there are sharp and broad resets. This pattern appears only
for a set of parameters that seems not to be connected in the parameter space although
mostly it appears for negative a, large positive spike-triggered adaptation b and high resets
(Naud et al., 2008).
In order to reproduce all firing patterns on a neuromorphic implementation of the AdEx
model, the parameter ranges especially for the adaptation but also for example for the leak-
and exponential term must be chosen appropriately and need to be precisely tunable.

3.3 Backpropagation-Activated Calcium Spike Firing

Backpropagation-activated calcium spike (BAC) firing is a spike mechanism measured in
layer 5 pyramidal neurons (Larkum et al., 1999). It allows a coincidence detection between
the basal and apical input of a neuron. Themechanism is hypothesized to be the foundation
of cortical associations on a cellular level (Larkum, 2013).
Figure 20 shows the BAC firing mechanism as measured in a layer 5 pyramidal neuron.
Stimulating the dendrite of the neuron with a current mimicking synaptic input produces
a PSP in the dendrite which travels passively into the apical trunk and the soma. On the
way, the PSP is strongly attenuated and results in a marginal effect at the soma. When the
soma is stimulated with a step current a somatic spike is triggered. The action potential
propagates back into the apical trunk and the dendrites. A combined stimulation of soma
and dendrites triggers first a spike in the soma, which propagates into apical trunk and
dendrites and triggers, in combination with the dendritic stimulation, a calcium spike and
an NMDA plateau potential. These, in turn, increase the membrane potential in the soma
and cause the soma to emit a burst of spikes.
The BAC firing mechanism can serve as a biologically inspired test case for the novel
multi-compartment and plateau potential features of the HICANN DLS 3 as it requires
configurable intercompartment connections aswell as different plateau potential durations
and heights.
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Figure 18: AdEx firing patterns as described in (Naud et al., 2008) simulated using PyNN. From top-
left to bottom right the plots show tonic spiking, adaptation, initial bursting, regular
bursting, delayed accelerating, delayed regular bursting, transient spiking and irregular
firing.
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Figure 19: The trajectories in the phase space of the firing patters shown in figure 18 (blue). From
top-left to bottom right the plots show tonic spiking, adaptation, initial bursting, regular
bursting, delayed accelerating, delayed regular bursting, transient spiking and irregular
firing. The nullclines are drawn with dashed lines, the V-nullcline in red and the w-
nullcline in green.
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Figure 20: BAC firing mechanism measured in a layer 5 pyramidal neuron, taken from (Larkum,
2013). Three different stimulation patterns are applied to the neuron: A current stim-
ulus mimicking synaptic input is applied to the dendrites and produces a PSP in the
dendrite (top right, red). Stimulating the soma with a step current produces a single
somatic spike (middle right, blue) that travels into the apical trunk and the dendrites
(middle right, black and red). The combination of both stimuli triggers a somatic burst
(bottom right, blue) and a plateau potentials in the apical trunk and dendrites.
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4 Simulation Back-Ends

In this chapter we present two back-ends that are used for the analyses performed in
the following chapters. First, the Extended Executable System Specification (Exess), a
hardware system simulation tool and secondly the transistor-level circuit simulations for
the HICANN DLS 3 chip.

4.1 Exess

The development of the hardware platform is accompanied by the implementation of
an executable system specification, the successor of the ESS for the BrainScaleS system
(Petrovici et al., 2014). The new, NEST-based simulator Exess (implemented by Oliver Bre-
itwieser) is intended to simulate hardware platform restrictions such as bandwidth limi-
tations and synapse loss. These simulations can provide a basis for hardware design deci-
sions and give an insight into the influence of hardware restrictions on the performance
of networks. The used neuron model (implemented by Paul Müller) is based on the im-
plementation of the AdEx neuron in NEST but models the circuits of the HICANN DLS
3 neuron assuming ideal electrical components. This includes for example modeling the
adaptation variable as a voltage (see section 2.2.2) instead of a current and implement-
ing ideal models of electrical circuits. The leakage current for example is produced by a
function modeling an ideal OTA, with output current Ileak

Ileak =
Ibias,leak
fota,leak

· (V − EL) (4.1)

where Ibias,leak is the bias current of the OTA and fota,leak an internal scaling voltage. The
Exess neuron also contains additional features compared to the HICANN DLS 3 neuron
such as conductance based input and different adaptation circuits. As the Exess neuron is
supposed to mimic the behavior of a hardware neuron, it operates in hardware time and
voltage domain. This means that the time constants are 103 times shorter than in biology
and the membrane voltage for example can have values in the range from 0 to 1.2V. To
compare Exess simulations to a PyNN simulation or biological recordings hardware times
and voltages must be transformed into biological time and voltage domain:

thw =
tbio
αt

(4.2)

Vhw = Vbio · αv + ωv (4.3)

Typically, αv is on the order of 10 and ωv is on the order of 1 V. The acceleration factor αt

is 103 for the HICANN DLS 3.
The AdEx neuron in the PyNN simulator and the Exess neuron are parameterized differ-
ently, as shown in table 3. In the following a set of transformations that allows to trans-
late PyNN parameters into the parameters for Exess neuron are introduced. The reversal
potentials, the threshold voltages and the reset voltage can be transformed according to
equation (4.3). The transformation parameters αv and ωv can be calculated by mapping the
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PyNN inhibitory reversal potential to a hardware voltage of 0.2V and the spike threshold
to 1.2V.

αv =
1

Vth,bio − Erev,bio
(4.4)

ωv = 1.2− Vth,bio · αv (4.5)

The resistances controlling the synaptic time constants are calculated as

Rsyn =
τsyn

αt · Csyn
. (4.6)

Conductance based weights are transformed as

w =
Cm,hw

Cm,bio
· αt · wbio ·

fota,syn · fsyn,res
Ibias,cond

· Csyn (4.7)

with fixed value for Ibias,cond = 1 µA. The membrane time constant is controlled by

Ibias,leak = fota,leak ·
Cm,hw

τm,bio
· αt. (4.8)

The adaptation parameters are:

Ibias,adapt = abio · fota,adapt ·
Cm,hw

Cm,bio
· αt (4.9)

Itau,w = fota,adapt ·
Cw

τw
· αt (4.10)

b =
bbio
abio

· αv (4.11)

The exponential parameters are transformed as

∆T = αv ·∆T,bio (4.12)

Iexp0 =
Cm,hw · αt ·∆T

τm,bio
. (4.13)

Figure 21 shows the result of a simulation in PyNN and a simulation in Exess with trans-
formed parameters. In order to make the traces comparable the PyNN trace was translated
into hardware time and voltage domain. The untransformed trace can be found in figure 1.
Thenovelmulti-compartment and plateau potential features of theHICANNDLS 3 (Schem-
mel et al., 2017) are supported in the Exess neuron as well. Similar to the chip the plateau
potential are realized by a high reset voltage. The connection of neurons via an inter-
compartment conductance is realized by the NEST feature of gap-junctions (Hahne et al.,
2015), which are voltage dependent channels between neurons.

4.2 HICANN DLS 3 Simulation

4.2.1 Transistor-level simulations

Transistor-level simulations are a valuable verification tool during the design phase of a
chip. The simulations allow a detailed investigation of a circuits behavior for example
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Neuron parameter PyNN PyNN unit Exess Exess unit

Membrane capacitance cm nF C_m F
Membrane time constant tau_m ms I_bias_leak A
Leakage reversal potential v_rest mV E_L V
Reset potential v_reset mV V_reset V
Spike threshold v_spike mV V_peak V
Exponential threshold v_thresh mV V_th V
Synaptic reversal potential e_rev_E,I mV E_rev_x,i V
Synaptic time constant tau_syn_E,I ms R_syn_x,i Ω
Synaptic weight weight µS weight C
Slope of exponential term delta_T mV Delta_T V
Adaptation conductance a nS I_bias_adapt A
Spike-triggered adaptation b nA b V
Adaptation time constant tau_w ms I_tau_w A
Refractory time tau_refrac ms t_ref s

Scaling factor exponential term - - I_exp0 A
Capacitance synaptic input - - C_syn A
Capacitance adaptation term - - C_w A
Scaling voltage leak OTA - - F_ota_leak V
Scaling voltage synaptic OTA - - F_ota_syn V
Scaling voltage synaptic resistor - - F_ota_syn_res V
Scaling voltage adaptation OTA - - F_ota_adapt V

Table 3: Top: Collection of the names and units of the AdEx parameters in PyNN and Exess. Bot-
tom: Additional parameters only used in Exess controlling circuit specific quantities, e.g.
the size of a capacitor in the synaptic input circuit. The Exess specific parameters (scal-
ing voltages and additional capacitances) are fixed to characteristic circuit values (we use
Cw = 1 pF, Csyn = 1 pF, F_ota_leak = F_ota_syn = F_ota_adapt = 0.5 and F_ota_syn_res
= 0.15).
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Figure 21: Comparison of voltage traces recorded using PyNN and, after parameter transforma-
tion, using Exess. The trace is shown in hardware time- and voltage domain. The PyNN
result transformed according to equation (4.3).
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under different parameter settings, varying input signals or changing temperature. Each
individual transistor is parameterized using detailed physical characteristics provided by
the manufacturer (in the case of HICANN DLS3 TSMC, Taiwan Semiconductor Manufac-
turing Company, Ltd., Hsinchu, Taiwan). The physical models include process variations
and mismatch, see for example (Drennan andMcAndrew, 2003). The circuits are simulated
using the Spectre-simulator (Cadence Design Systems, Inc., San Jose, CA, USA).
Process variations describe the fact that variations in doping or film thicknesses can occur
from one wafer to another. These variations are described by the so called process corners
tt, ss, ff, fs and sf. The s stands for the slow, the f for the fast and t for the typical case.
In the fs corner for example the nMOS transistors in the circuit are fast and the pMOS
transistors are slow. Fast and slow describe mobility of the charge carriers, the higher the
mobility, the faster the transistor.
In a corner simulation a transistor is either typical, slow or fast and two transistors that
lie in the same corner and with the same parameters (e.g. width and length), are exactly
identical. However, this does not account for the fact, that due to imperfections in the
production process, all transistors on a chip are different, an effect called mismatch. This
can be simulated in mismatch Monte Carlo simulations, where the transistor parameters
are changed randomly. Many repetitions of Monte Carlo simulations allow to gain statis-
tical insight about the circuit behavior under parameter variations that will occur during
production.

4.2.2 HICANN DLS 3 Simulation Setup

The transistor-level simulation setup for the HICANN DLS 3 neuron uses the Cadence
interface Teststand implemented by Sebastian Billaudelle. Using Teststand, simulations of
a circuit can be parameterized and executed using a Python API which makes parameter
sweeps and the analysis of the simulation data more convenient.
With the DLS 3 neuron testbench it is possible to simulate up to 4 neuron circuits with
up to 8 synapses each. As the simulation time increases with the number of components,
only the circuits that are necessary for verification are simulated in full detail. To reduce
simulation time, the digital components are replaced by behavioral models. In addition
to the increasing number of components it is more time-consuming to simulate digital
circuits than analog ones. This is due the fact that the simulator uses adaptive time steps.
If all signals change slowly in time, the time step is chosen to be large and the simulation
time is short. However, digital circuits such as the digital reset mechanism have a clock
signal, which changes quickly at every clock cycle. Therefore, there is always at least one
fast signal which prevents the increasing of time steps.
Figure 23 shows a detailed view of the simulated components. All neuron circuits except
for the digital reset mechanism are fully simulated on transistor level. The circuit which
pulls the membrane towards the reset potential is analog and part of the simulation, the
digital counters which determine the length and which trigger the beginning and end of
the refractory period are implemented as behaviorals. The neurons receive their voltage
and current parameters, e.g. the bias currents for the OTAs, from the capacitive memory
(Hock, 2014). It is replaced by a behavioral, designed by Matthias Hock, which is shown in
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C = 4 fF

Figure 22: Behavioral circuits for the capacitive memory, designed by Matthias Hock. The circuit
on the left is used to replace the voltage cells, the circuit on the right models the current
cells.

figure 22. The voltage cells are modeled by an ideal capacitor and is charged over an ideal
resistor, which stands in place for the periodic update of the capacitance by the refresh
mechanism. The current cells are modeled as a current mirror with the output transistors
of the same dimensions as in the original circuits (Hock, 2015). The SRAM, where the dig-
ital parameters for the circuits are stored, is initialized in the beginning of the simulations.
The process of writing the SRAM is omitted.
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Figure 23: Simulation setup for the HICANN DLS 3 neuron. 4 Neuron circuits (gray boxes) in-
cluding the multi-compartment features, with up to 8 synapses (gray circles) each can
be simulated. The digital reset mechanism and the capacitive memory are replaced by
behavioral to reduce simulation time (red boxes) 8 synapses (gray circles) each can be
simulated. The digital reset mechanism, the capacitive memory and the SRAM are re-
placed by behavioral to reduce simulation time (red boxes). Adapted from Kriener et al.
(2017).
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5 Circuit Verification

Before high-level experiments, such as the ones described in section 3, can be performed,
a general verification of the circuit functionality is necessary. The neuron circuit simula-
tions described in section 4.2 are a valuable tool for this task. During the design process of
individual components like the adaptation term, usually only the subcircuit in question is
simulated. This might allow interdependencies of one subcircuit onto another stay undis-
covered. A simulation of the full neuron design can uncover such effects while testing the
circuits in situations similar to the intended use cases. In the following, the verification
results of the new circuits in HICANN DLS 3, in particular, the discovered errors and the
implemented solutions, are presented.

5.1 Transmission Gates

Many subcircuits of the HICANN DLS 3 neuron can be individually enabled or disabled.
This is done by disconnecting them from the membrane capacitor via transmission gates
that are controlled by digital neuron parameters.
From a high-level point of view, a transmission gate is a switch. The digital parameter
controlling the switch is stored in the neuron SRAM. Compared to a single pass transistor,
a transmission gate offers a high conductance over the whole voltage range. This is useful
it is expected that voltage differences over the whole voltage range will appear.
A drawing of the transmission gate circuit is shown in figure 24. The transmission gate
consists of a pMOS and an nMOS transistor that are connected in parallel. The nMOS
transistor is conducting if its gate is high (1.2V), while the pMOS transistor is conducting
when its gate is low (0 V). The output voltage of the SRAM cell is connected to the nMOS
gate and the inverted output is supplied to the pMOS transistor. By setting the SRAM cell
to a high value, the transmission gate is opened, while it closed in the other case.
In the neuron circuit, some voltages can rise above 1.2V, which is used to supply the
thin-oxide transistors in the transmission gates. If this happens, the gate-source voltage
of the pMOS transistor in the transmission gate becomes positive, leading to an increased
conductance. This results in a leakage current that can disturb the neuron behavior and
the emulation results.
For some experiments, it might be necessary to have longer time constants than the leak
OTA settings allow. This can then be achieved by merging the adaptation capacitance
with the membrane capacitance. This configurable connection between both capacitors
was implemented with a 1.2 V transmission gate in the first version of the circuit. How-
ever, both voltages can rise above 1.2V therefore potentially resulting in a leakage current
between the adaptation circuit and the membrane as shown in figure 25. This is especially
problematic as such behavior can occur during normal operation of the adaptation circuit
and the only option to prevent it with certainty is to switch off adaptation.
Another site where the leakage occurs is at the voltage readout. In HICANN DLS 3 the
membrane, synaptic input, or the adaptation voltage can be read out. The voltages that are
not read out are separated from the readout circuits by transmission gates. The leakage is
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Figure 24: Circuit of a transmission gate which is controlled by the digital parameter enable. The
transmission gate separates the voltages V1 and V2. The pMOS transistor at the top is
conducting if its gate voltage (here enable_b, which is the inverted enable signal) is
low. The nMOS transistor is conducting if its gate is high. Therefore, the transmission
gate is open, if enable is high, and closed if it is low.
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Figure 25: Demonstration of the leakage through the transmission gate connecting the membrane
capacitance and the adaptation capacitance. The circuits are configured to cause a
“worst-case” scenario, by switching off the adaptation but enabling the spike-triggered
adaptation. The spike-triggered adaptation causes Vw to rise above 1.2V. As soon as
this threshold is reached, a current Itrgate flows through the closed transmission gate.
The short, sharp peaks on Itrgate are caused by the switching between leak and reset
mode of the leak/reset OTA when the neuron spikes.
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undesirable as it distorts the measurement results. This effect can also be observed in chip
measurements on HICANN DLS 2 (Stradmann, 2017).
As the problem was observed in the neuron simulations before the tapeout of the chip,
the transmission gates were changed in order to prevent the leakage. At the sites where
the voltage on either side of a transmission gate can rise above 1.2V the transistors in
the transmission gates were replaced by thick-oxide transistors with a logic level of 2.5V.
The thick-oxide transmission gates require that the high value of the digital parameters is
changed to 2.5V as well. This necessitates the implementation of additional level shifter
circuits. As no voltage in the circuit can rise above the highest supply voltage (2.5V), the
leakage can no longer occur.

5.2 Adaptation

5.2.1 Connection to Capacitive Memory

The adaptation circuit can be configured using multiple analog parameters provided by
the capacitive memory. One of the parameters shown in figure 7 is the leak potential EL

which is used as one of the inputs for the adaptation OTA. However, it is not supplied
by the same storage cell in the capacitive memory as the parameter which is used as leak
potential in the other parts of the neuron circuit. Therefore it will be called Vleak,adapt in
the following. It is convenient to have an additional parameter for the leak potential in
the adaptation term, as it allows, for example, to compensate the offset of the adaptation
OTA by adding an offset to Vleak,adapt. As figure 7 shows, the adaptation OTAwas extended
from the circuit implemented in the HICANN chip by a sign switching mechanism. The
mechanism works by switching the two inputs between the negative and positive input
of the OTA. Each of the two multiplexer circuits consists of two transmission gates. They,
therefore, show the same leakage problem as described in section 5.1. In this case, the
leakage causes the parameter stored in the capacitive memory to change. This is due to
the fact, that the voltage parameter is stored on a capacitor and the local parameter cells of
the capacitive memory are not buffered. A leakage current onto that capacitor therefore
changes the voltage.
Figure 26 shows the effect of the leakage. If the adaptation voltage Vw rises above 1.2V
the parameter Vleak,adapt starts to change its value. This changes the behavior of the circuit
severely as the adaptation current is calculated as

Iadapt = a ·
(
Vleak,adapt − Vw

)
(5.1)

which means that a Vleak,adapt that approaches the adaptation voltage causes a breakdown
in the adaptation current. The problemwas solved by introducing thick-oxide transmission
gates, similar to the solution described in section 5.1.

5.2.2 Spike-Triggered Adaptation

Spike-triggered adaptation is realized by a current pulse onto the adaptation capacitance
Ca, which causes a stepwise increase in the adaptation voltage. In the original design,
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Figure 26: Top: Membrane voltage of a neuron which is stimulated with a constant current. Cen-
ter: Adaptation variable Vw of the neuron above. As spike-triggered adaptation is en-
abled, the voltage is increased with every spike. At approximately t = 280 µs the volt-
age rises above 1.2V. Bottom: Voltage parameter for the leakage potential provided
by the capacitive memory. When Vw crosses 1.2V the current leaks onto the capaci-
tance in the capacitive memory, where the voltage parameter is stored. This causes the
Vleak,adapt to follow the voltage of Vw.

it was planned to use, in analogy to the HICANN design, the fire pulse of the neuron to
time the current pulse of the spike-triggered adaptation. However, the fire pulse is only
tpulse = 8 ns long. The strongest current that can flow onto the adaptation capacitance
during the fire pulse is, by design, Iadapt,w = 1 µA. This yields a maximum increase of Vw

of

∆Vw =
Iadapt,w · tpulse

Ca
= 4mV (5.2)

with an adaptation capacitance of Ca = 2 pF. In a typical experiment, the value of Vw

can vary over a range of 0.5V. A voltage step of 4mV is therefore too small, as it is
much smaller than other changes that occur during an experiment (for a more detailed
treatment of the appropriate range for ∆Vw see section 6.2.2). To allow larger ∆Vw the
pulse length was chosen to be dependent on another digital signal. The adaptation pulse is,
as the fire pulse, generated by the digital neuron back-end (developed by Gerd Kiene) and
can have pulse lengths of up to 14 µs. However, it can not be longer than the refractory
time of the neuron. With the longer adaptation pulse, ∆Vw that cover the whole range of
Vw are theoretically possible (although not used in practice for the reasons described in
section 6.2.2).
The left plot in figure 27 shows that for Iadapt,w > 0.2 µA the steps ∆Vw that can be calcu-
latedwith equation (5.2) do notmatch themeasured steps in∆Vw. This can be explained by
the input part of the spike-triggered adaptation circuit depicted in figure 28. The topmost
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Figure 27: Spike-triggered adaptation before (left) and after (right) extending the range of possible
current pulse strengths. For large Iadapt,w the increasing steps in Vw are much smaller
than the expected values of Vw,th which are calculated from the pulse length and the
set value of Iadapt,w. In the improved circuit on the right, the parameter Iadapt,w controls
the strength of the spike-triggered adaptation more reliably and the expected values
for ∆Vw,th approximately match the observed steps in Vw.
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Figure 28: Part of the spike-triggered adaptation circuit. The three transistors operating as diodes
D1 to D3 separate the circuit from the capacitive memory which provides the param-
eter Iadapt,w. The MUX at the bottom chooses, depending on en_pos_vw whether the
circuit for positive or negative spike-triggered adaptation is provided with Iadapt,w.
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transistor is connected to the capacitive memory which provides the parameter Iadapt,w. In
order to prevent the adaptation voltage to rise up to values close to 2.5V the three tran-
sistors labeled D1, D2 and D3 at the top are connected as diodes. A diode is a device that
blocks current in one direction and allows current to flow in the other direction as long
as a specific voltage drop is ensured. For silicon-based semiconductors this drop is ap-
proximately 0.7V. If the voltage drop is below the threshold only minor leakage currents
can flow through the diode. The output stage of the capacitive memory is a thick-oxide
pMOS transistor with its source connected to 2.5V. For Vw being larger than 0.4V, which
is usually the case, a voltage drop of three times 0.7V can therefore not occur. This limits
the current Iadapt,w that can be provided to a voltage-dependent leakage current.
This problem was observed before the tapeout of the chip and the circuit was adapted. The
topmost diode was removed, which reduces the summed voltage drop over the diodes and
allows more than a leakage current to flow. The right plot in figure 27 shows the same
experiment as before, but with the improved circuit. We see that for high desired values
of Iadapt,w the voltage drop on Vw matches the theoretically calculated values much better
than before. Although, for rising Vw the measured∆Vw still decreases, as with decreasing
difference between Vw and 2.5V the current that can flow through the diodes decreases.

5.2.3 Sign Switches in Adaptation

In comparison to the HICANN circuit, the adaptation on HICANN DLS 3 allows for a
switchable sign for the adaptation parameters a and for the spike-triggered adaptation b.
The sign of the adaptation parameters is configured by the digital parameters en_neg_va,
which switches the sign of a, and en_pos_vw, which allows to choose the sign of the
spike-triggered adaptation. As described in section 2.2.2 the spike-triggered adaption is
realized by a voltage step on Vw which is then converted in a current step using the adap-
tation OTA.Therefore, the configuration of the en_pos_vw switch for a chosen sign of the
spike-triggered adaptation must depend on the sign which was chosen for the adaptation
by the setting of en_neg_va.
Figure 29 shows a demonstration of the effect of the parameters mentioned above. In
each of the four experiments, the neuron is stimulated with a constant current and the
membrane voltage, the adaptation voltage and the adaptation current are recorded. For
en_neg_va=False and en_pos_vw=True (top left) we see positive adaptation and pos-
itive spike-triggered adaptation. The neuron spikes in the beginning, then the spike fre-
quency decreases due to the rising adaptation current and the neuron stops firing. For
en_neg_va=False and en_pos_vw=False we see that the positive adaptation and
the negative spike-triggered adaptation counteract each other. This is also the case for
en_neg_va=True and en_pos_vw=False with negative adaptation but positive spike-
triggered adaptation (bottom right). In the recordings at the bottom left the digital param-
eters are set to en_neg_va=True and en_pos_vw=True. The adaptation is negative,
which causes a positive feedback when the neuron rises above its leak potential. The in-
creasing adaptation current allows the neuron to fire towards the end of the stimulating
current step. As the spike-triggered adaptation is negative as well, the spike frequency
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Figure 29: Simulations demonstrating the functionality of adaptation sign switches. A neuron is
stimulated with a constant current and the membrane potential, the adaptation voltage
and the adaptation current are measured.
Top left: The digital parameters controlling the sign of the adaptation are set to
en_neg_va=False and en_pos_vw=True. This enables positive spike-triggered
adaptation and positive adaptation. Top right: Here the parameters are set to
en_neg_va=False and en_pos_vw=False. The spike-triggered adaptation is neg-
ative while the adaptation is positive. Bottom left: The digital parameters are set
to en_neg_va=True and en_pos_vw=True. The adaptation, as well as the spike-
triggered adaptation, are negative. Bottom right: The digital parameters are set to
en_neg_va=False and en_pos_vw=False. This setting allows negative adaptation
with positive spike-triggered adaptation. The short, sharp peaks on Iadapt are caused
by the switching between leak and reset mode of the leak/reset OTA when the neuron
spikes.
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increases. The simulation indicates that combinations of the digital sign switches show
the intended behavior.

5.3 Exponential Term

In addition to the sign switches in the adaptation circuit, an exponential term circuit with
a three bit digital weight parameter exp_weight_b extends the LIF neuron of HICANN
DLS 2. To test and illustrate the functionality of the exponential term circuit the neuron is
stimulated with multiple step currents of different amplitude. Figure 30 shows the output
current of the exponential circuit as a function of the membrane voltage. We see that for
membrane voltages below Vmem = 1.0V, Iexp is approximately an exponential function
of the membrane voltage (for detailed evaluation see section 6.3). For larger voltages, the
exponential current drops because the transistor in the output stage of the circuit leaves the
saturation as its drain-source voltage decreases towards zero. An exponential current of
nearly zero for a membrane voltage of Vmem ≥ 1.2V is intended, to prevent the membrane
voltage from rising far above 1.2V.
The measurement also shows that the weight parameters modulate the strength of the ex-
ponential current. The weight is given as a tuple of the negated boolean values and there-
fore the setting exp_weight_b=(True, True, True) is the weakest setting, which
switches off the term, while exp_weight_b=(False, False, False) yields maxi-
mum strength. The first value in the tuple is the least significant bit. For a more detailed
investigation of the influence of the weight parameter see section 6.3.

5.4 Bypass Mode

The bypass mode is a debug and test feature that was introduced in HICANN DLS 1. It
allows to bypass the neuron circuits and produce a fire signal of the neuron every time an
input arrives at the neuron. This allows, for example, to test spike routing from neuron to
neuron, external spike input and spike readout independently from the neuron circuits.
Using the neuron simulation setup two errors in the bypass circuit were discovered: At
first, the output signal of the bypass was inverted, due to changes introduced in the inter-
face between the neuron and the new digital reset mechanism. This error could be easily
solved by adding an additional inverter in the signal path.
The second problem arose because the bypass circuit did not change from HICANN DLS 2
to HICANNDLS 3 although the spike signals did. The synaptic input, as well as the bypass
of a neuron, see an incoming spike event as a current pulse. On HICANN DLS 2 the pulse
length was determined by the FPGA, which was used to route spike signals, and was at
least 10 ns long. On HICANN DLS 3 the synapse drivers produce pulses of the length of
maximally 4 ns. The signal with the reduced pulse length is too weak to trigger a response
of the bypass circuit. Figure 31 shows that this can be circumvented to a certain degree by
triggering the bypass using bursts of input spikes with the minimal interspike interval that
can be handled by the synapse drivers of 8 ns. We see that in the typical case (tt corner)
the bypass requires four spikes in short succession to trigger one fireout signal. In the

41



0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Vmem [V]

−0.5

0.0

0.5

1.0

1.5

2.0

I e
xp

[µ
A
]

exp_weight_b=(False, True, True)
exp_weight_b=(True, False, True)
exp_weight_b=(False, False, True)
exp_weight_b=(True, True, False)
exp_weight_b=(False, True, False)
exp_weight_b=(True, False, False)
exp_weight_b=(False, False, False)

Figure 30: Demonstration of the scaling parameter exp_weight_b of the exponential term. For
every possible parameter setting (except (True, True, True) which is equivalent
to switched off) the neuron was stimulated with a series of step currents of different
strengths and the membrane voltage and exponential currents were recorded. The plot
of Iexp over Vmem shows that for all settings the current increases with the membrane
voltage until approximately Vmem = 1.0V the current starts to drop.

ss corner seven spikes per burst are needed, in the ff corner two spikes are sufficient to
trigger the bypass.
This issue was observed shortly before the tapeout of the chip and there was not enough
time for the circuits to be changed.

5.5 Plateau Potentials and Multi-Compartment Circuits

The multi-compartment features described in section 2.2.2 allow connecting the neuron
circuits to a multi-compartment neuron using intercompartment conductances. The left
part of figure 32 shows simulation results of a simple multi-compartment neuron consist-
ing of two compartments. One compartment receives synaptic input and shows a PSP and,
for stronger input, a spike. The membrane voltage of the second compartment passively
follows the membrane of the first compartment. As the multi-compartment circuit acts
as a low-pass filter, the fast features of the membrane of the active compartment are not
visible on the second compartment.
The right part of figure 32 shows a test of the combination of the plateau potential mech-
anism in combination with the multi-compartment connections. The active compartment
is configured to produce a plateau potential if a spike is triggered. The plot shows three
different experiments where the length and the amplitude of the plateau potential as well
as the strength of the intercompartment conductance are varied.
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Figure 31: Simulation of bypass functionality. A neuron is stimulated with spike bursts of in-
creasing size first via the excitatory input then via the inhibitory input. The membrane
voltage (top) and the fire signals (bottom) are recorded with excitatory bypass enabled
(red) and inhibitory bypass enabled (green). The input spikes are shown in blue (cen-
ter). We see that the bypass circuits require a burst consisting of four spikes to emit a
fire signal.
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Figure 32: Demonstration of multi-compartment and plateau potential functionality. Left: One
neuron circuit is stimulated with spike input. The second input is strong enough to
trigger a spike. A second neuron circuit is connected to the first using the multi-
compartment circuits. Its membrane voltage passively follows the voltage of the first
neuron circuit. Right: The reset of the first neuron is now configured for plateau poten-
tials. The experiment is repeated 3 times with different plateau potential lengths and
heights. Adapted from Schemmel et al. (2017).

These tests show that the multi-compartment circuits are functional and that a variation of
the parameters, controlling the height of the plateau potential and the intercompartment
conductance, produce the expected change in behavior.

44



6 Characterization

In addition to the verification process, which, in general, tests whether circuits are func-
tional and behave as intended, the characterization process addresses more detailed ques-
tions. How do the circuits react to changes in parameterization? In what range can the
subcircuits of the neuron be configured? How does the parameterization correspond to
parameters of the mathematical neuron model? Are the available parameter ranges in ac-
cordance with intended use cases? Do the results above change in a critical way in the
process corners? In the following, characterization results for the new reset mechanism,
the adaptation and the exponential term are presented.

6.1 Reset Current

For the emulation of plateau potentials using a long reset with a high reset voltage the
implemented reset mechanism changed in comparison to previous chip versions. The pre-
vious requirements for the reset mechanism however are still valid. Themembrane voltage
must be pulled towards the reset voltage and kept at this voltage for the duration of the
refractory period. This requires at least that the current produced by the reset mechanism
must be larger than the sum of all other currents pulling the membrane voltage away
from the desired reset potential. These other currents can be the adaptation current, the
exponential current, intercompartmental currents and synaptic input currents. If the reset
current does not exceed the other currents, it is not able to pull the membrane voltage
towards the reset potential and it can happen that the neuron stays above the threshold,
which then results in continuous firing of the neuron. If the reset current is only slightly
larger than the sum of the opposing currents, the membrane potential moves slowly to-
wards the reset potential. This can be a problem if the refractory time is too short to reach
the desired voltage, because then effectively the reset potential of the neuron is changed.
The first of the possible outcomes of an insufficiently strong reset, the unintended con-
tinuous firing, is a severe problem, as it completely changes the behavior of the neuron.
In practice it is therefore desirable to have the highest possible reset current that can be
produced with the available settings. The right plot in figure 33 shows the maximum of
the available reset current for different combinations of reset potentials and bias parame-
ter settings for the leak/reset OTA. For each data point we determine the reset current at
Vmem = 1.4V because, as figure 33 shows, the current in this region is nearly independent
of the membrane voltage. We see that the bias current, for which the highest current is
produced, changes with the reset potential. Additionally, for Vreset > 0.89V, the highest
possible current is below 3 µA. This is can lead to a non-functional reset, as the exponen-
tial term alone is able to produce currents of more than 1 µA. As this only occurs, if the
reset potential is high, it is mainly relevant only for the plateau potential use case. The
easiest way to avoid continuous firing in this case is to not use the exponential term and,
if necessary, limit the maximal current produced by the synaptic input.
Figure 33 is simulated for the tt case, figure 34 shows the same simulation but in the other
process corners. We see that in the ss and fs corner the currents are significantly weaker
than in the typical case, while in the other corners, the currents are much higher. The slow
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Figure 33: Left: Reset current over membrane voltage for different settings of Vreset. The bias
parameters are set to Ibias,res = 0.8 µA and Ibias,sd,res = 1.0 µA. The colors correspond to
the legend on the right. Right: Maximum of the reset current that can be provided by
the leak/reset OTA depending on the setting of Ibias,res. The source degeneration bias
Ibias,sd,res is set to 1 µA. The current values at Ibias,res = 0.8 µA correspond to the values
at Vmem = 1.4V in the left plot. For rising values of the reset voltage Vreset, the highest
achievable current drops below 1 µA.
Data provided by Paul Müller.

pMOS corners show a critically low reset current for reset potentials of approximately
Vreset > 0.7V. This can not only affect the plateau potential use case but also the “normal”
reset behavior.
These simulations showed that not only the amplitude of the highest achievable reset cur-
rent but also the parameter i_bias_res, for which it is produced, is different for every neu-
ron. To avoid the effects of an insufficient reset a calibration mechanism must be im-
plemented that ensures the optimal reset setting for each neuron. Additionally, a circuit
change could be implemented that allows to disable the exponential term during the reset.
This significantly reduces the current that has to be produced by the reset OTA.

6.2 Adaptation

6.2.1 Adaptation Conductance

The adaptation circuit on the HICANN DLS 3 (see figure 6 and figure 7) is controlled by
the digital parameters described in section 5.2.3 and by the current parameters i_adapt_w
controlling the spike-triggered adaptation, i_bias_adapt, i_bias_adapt_sd and i_bias_ad-
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Figure 34: Maximum of the reset current that can be provided by the leak/reset OTA depending
on the setting of Ibias,res in the process corners. The source degeneration bias Ibias,sd,res
is set to 1 µA. For rising values of the reset voltage Vreset, the highest achievable current
drops below 0.5 µA in the slow pMOS corners.
Data provided by Paul Müller.
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apt_res. i_bias_adapt_res controls the adaptation time constant and is treated in sec-
tion 6.2.3. i_bias_adapt and i_bias_adapt_sd are the bias currents for the adaptation OTA,
which models the adaptation conductance a. The source degeneration bias can be config-
ured per neuron while the bias current is a global parameter, i.e. it is shared between all
neurons.
Figure 35 shows the dependency of a on the source degeneration bias of the adaptation
OTA. In the simulation a neuron was stimulated with a step current starting at t1 and
ending at t2 then the experiment was repeated with the adaptation switched off. The
signals Vmem, a, Vw, a and Iadapt,a for the simulation with enabled adaptation and Vmem, Vw

and Iadapt for disabled adaptation were recorded. As a is a conductance it can not be
measured directly in the simulation. To calculate its value from the recorded current and
voltage signals two different methods were used.
The first method derives a formula for a assuming an ideal AdEx neuron (equation (2.9))
that requires only the signals Vmem, a and Vmem. We use the fact that, if the applied current
step is long enough, the membrane voltage reaches a steady value during its application.
It was ensured that the steady state is reached during the current step, by choosing a short
adaptation time constant. This means that the applied current stimulus Istim and the leak
and adaptation current cancel each other.

Istim = −gL · (Vmem,a − EL)− a · (Vw,a − EL) (6.1)

As the adaptation voltage slowly follows the membrane voltage we can assume

(Vmem,a − EL) = (Vw,a − EL) = ∆a. (6.2)

When the adaptation is switched off, the stimulating current is canceled only by the leak
current.

Istim = −gL · (V − EL) (6.3)

We write (V − EL) = ∆. As the stimulating current is the same in both simulations we
can calculate a from the leak conductance gL and ∆, ∆a:

a = gL ·
(

∆

∆a
− 1

)
(6.4)

The second method estimates the transconductance of the adaptation OTA with a differ-
ence approximation using the adaptation current and adaptation voltage before the current
stimulus Iadapt,1, Vw,1 and during the current stimulus Iadapt,2, Vw,2

Iadapt,1 = a · (Vw,1 − EL) (6.5)

Iadapt,2 = a · (Vw,2 − EL) (6.6)

Iadapt,1 − Iadpat,2 = a · (Vw,1 − Vw,2) (6.7)

(6.8)

which yields

a =
Iadapt,1 − Iadapt,2

Vw,1 − Vw,2
. (6.9)
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In this simulation Vw,1 = 0.62V and, depending on the setting of i_bias_adapt_sd, 0.63V ≤
Vw,2 ≤ 0.8V.
As we see in figure 35, both methods yield results that differ by approximately 10 %. This
can be explained by the fact, that the first method assumes an ideal AdEx neuron with a
constant leak conductance. The transconductance of the leak OTA however, is not per-
fectly constant over the range of the used membrane voltages, which influences the re-
sults calculated with the first method. The first method has the additional disadvantage
of requiring two measurements, one with and one without adaptation. However, it is still
better suited for actual chip measurements since the second method requires a simulta-
neous recording of Iadapt and Vw while the first method relies on the membrane potential
only.
The results for the parameter range of a on HICANN DLS 3 can be transformed into the
biological domain by

abio =
Cbio

Chw
· 1

αt
· ahw (6.10)

with αt = 1000. AssumingCbio = 200 pF which is a value used in the AdEx firing patterns
(see section B.1) and the full membrane capacitance on hardware Chw = 2.36 pF we ob-
tain a maximum biological adaptation conductance of approximately abio ≈ 805 µS. This
is nearly a factor of 50 larger than the largest conductance required for the AdEx firing
patterns. However, figure 35 also shows that much smaller values for a, as for example
needed for the firing patterns, can be achieved by using i_bias_adapt_sd < 250 nA.
Theoretically, the adaptation current is independent of the membrane voltage Vmem. How-
ever, as figure 36 shows, this is not the case for all situations. For this simulation the
membrane and adaptation voltages were clamped to fixed values and the adaptation cur-
rent was measured. The simulation was performed with a comparatively low adaptation
conductance using a source degeneration bias of 250 nA. We see that for low membrane
voltages the output current of the OTA is not only dependent on its inputs but also on the
output voltage Vmem. Additionally, we notice that for adaptation voltages of Vw > 1.0V
the adaptation current no longer rises with increasing Vw which is expected due to the
saturation of the OTA.
Both effects observed here can alter the behavior of a neuron and should to be avoided
if possible. However, the membrane voltage, below which the adaptation conductance
depends on Vmem depends on i_bias_adapt and i_bias_adapt_sd. The same is the case for
the adaptation voltages, where the adaptation OTA is in saturation. Nevertheless, figure 36
shows that, in general, low membrane voltages as well as high adaptation voltages should
be avoided to stay close to the mathematical model.

6.2.2 Spike-Triggered Adaptation

The mechanism of the spike-triggered adaptation circuit shows a fundamental difference
from the adaptation in the AdEx model. In the model, the spike-triggered adaptation b

is completely independent of the adaptation conductance a. In the hardware implemen-
tation, however, the spike-triggered adaptation is added to the adaptation voltage rather
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Figure 35: Dependency of the adaptation conductance a on the OTA parameter Ibias,adapt,sd. The
global parameter Ibias,adapt is set to 1 µA. To determine a, the membrane is stimulated
with a step current (once with adaptation enabled and once without). Then a is de-
termined using the differences in the membrane voltage before and during the current
(blue circles) or using the increase in adaptation current and adaptation voltage before
and during the current (red triangles). We see that the two methods yield increasingly
different results for larger bias currents.
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Figure 36: Two-dimensional sweep over membrane and adaptation voltage. The resulting adap-
tation current is depicted as color. The adaptation current should be independent of
the membrane voltage, which is the case for most combinations of Vmem and Vw except
for small membrane voltages. The sweep was performed with Ibias,adapt = 1 µA and
Ibias,adapt,sd = 0.25 µA.
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than directly to the adaptation current. As the adaptation current is calculated from the
adaptation voltage using the adaptation conductance, the voltage step ∆Vw and ahw are
not independent given a fixed value of bbio. Assuming a certain combination of biological
parameters abio and bbio need to be realized on the hardware, the required hardware adap-
tation conductance ahw can be calculated using equation (6.10). The required size of the
voltage step for the spike-triggered adaptation then is

∆Vw =
bbio
abio

· αv (6.11)

with the transformation factor αv typically in the range of 5 to 15. This introduces a prob-
lem for combinations of small adaptation conductances and large spike-triggered adap-
tation. The smaller a is, the larger the voltage step ∆Vw needs to be to realize the same
value of b. As Vw has a finite range and can not rise above approximately 1.4V it can hap-
pen, in the case of a large ∆Vw, that after very few spikes of the neuron, spike-triggered
adaptation has pushed Vw to its maximum and further adaptation is not possible. For the
regular bursting pattern for example a = 2 nS and b = 0.1 nA with a transformation factor
of αv = 10 this yields a required voltage step of ∆Vw = 0.5V. Such large steps allow at
most two spikes until the maximum of Vw is reached.
A possibility to avoid this situation is to chose a smaller αv . This however also scales
all other voltages, which might be unwanted and additionally reduces the range of the
membrane voltage. As long spike-triggered adaptation and a are implemented this way,
the dependency of ∆Vw can not be fully avoided.

6.2.3 Adaptation Time Constant

The adaptation time constant τw can be transformed from biological into hardware domain
by

τw,hw = τw, bio ·
1

αt
. (6.12)

On hardware, the time constant is controlled by the parameter i_bias_adapt_res. Figure 37
shows the dependency of τw on this parameter. For this simulation the membrane poten-
tial was first clamped to the leak potential and then increased in a step of 200mV. The
adaptation voltage Vw follows this step on an exponential curve with the time constant
τw. To determine τw, an exponential function is fitted to the measured curve (see figure 37
for an example with one setting of the bias parameter). A sweep over the range of the bias
current shows that the available range of τw values goes from below 10 µs to above 200 µs
(measured for a bias current of 70 nA). The data point for the lowest bias current of 20 ns
is not shown here, because the increase of Vw is so slow for this bias setting, that Vw rises
only 100mV over the whole simulation time. For a reliable fit result a significant increase
would be required. Although the exact value of τw could not be determined, the fact that
the rise of Vw was so slow, shows that significantly larger time constants than τw = 200 µs
are possible.
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Figure 37: Measurement of τw depending on the parameter Ibias,adapt,res. Left: Exponential fit on
the rise of the adaptation voltage Vw which is caused by a voltage step in the membrane
voltage. The time constant of the rise is the adaptation time constant τw. We see that
the rise of the adaptation voltage only approximately follows an exponential curve.
Right: Sweep over the available range of Ibias,adapt,res shows that the possible range of
τw. The measurement result for Ibias,adapt,res = 20 nA is not shown here because the fit
does not work reliably for the very large time constant.

As 1 µs on hardware translates to 1ms in biology the parameter range measured here fits
well to the range of adaptation time constants used in the AdEx firing patters, which range
from 30ms to 300ms.

6.3 Exponential Term

The exponential term in the AdEx model is described by

Iexp = gL ·∆T exp
(
V − VT

∆T

)
(6.13)

with the two exponential term parameters ∆T and VT and the leak conductance gL. The
circuit on the HICANN DLS 3 has no dependency of the exponential current on the leak
conductance and can be configured to eight different strengths using a 3 bit digital param-
eter exp_weight_b. The weight is given as tuple of booleans where (True, True,

True) is the weakest setting and corresponds to a switched off exponential term. The
first value of the tuple is the least significant bit.
To obtain an estimate for the parameters VT and ∆T, which can not be set directly, we
perform a simulation as described in section 5.3 and fit equation (6.13) to the exponential
current using a value for gL which was determined in simulation before. Figure 38 shows
the current produced by the exponential term plotted over the membrane voltage for the
different weight values. We see that the dependency is only exponential for membrane
voltages below 1.0V. Therefore, the exponential fit is only performed over a voltage range
of 0.55V to 1.0V. Figure 39 shows the residuals of the fits shown in figure 38. They show
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Figure 38: Exponential fit (black) to determine the AdEx parameters∆T and VT in the exponential
term circuit. Only data points in the voltage range between 0.55V and 1.0V were used
as the exponential current no longer follows an exponential curve for large voltages.
In this plot the fit curve intentionally has been drawn over a larger voltage range to
show the increasing deviation from an exponential curve. In the chosen voltage range
the dependency of Iexp on Vmem is approximately exponential, which allows to gain an
approximate value for the model parameters ∆T and VT.

that, although the dependency of Iexp on Vmem is only approximately exponential, the fits
are good enough to obtain an estimate for VT and ∆T.
The simulations for the different weight values were performed using the same series of
step currents injected into the membrane. To investigate the influence of changes in the
stimulation protocol to the fit result, the simulation is repeated 10 times, each time with
a different series of step currents. The fit results for all 10 runs can be found in figure 40.
In general, we see that there is a clear dependency of the parameter VT on the weight
parameter. Strong weights (low values) lead to a low VT. This relation is nearly indepen-
dent from the exact measurement protocol (for all stimulation protocols we see low VT for
strong weights and high VT for weak weights). This is different for ∆T. We see that ∆T

changes with the weight, but the dependency between ∆T and the weight is different for
different stimulation protocols.
We therefore conclude that there exists a relation between VT and the exponential weight
and we can estimate the relation with the described fit method. For ∆T we can only de-
termine a rough estimate which is not dependent on the setting of exp_weight_b.

6.3.1 Temperature Variations

Transistor-level simulations allow to simulate a circuit’s behavior at different tempera-
tures. This is important, since a circuit should be designed in a way, that changes in tem-
perature of ±10 ◦C do not significantly alter its behavior. Typically, circuits are simulated
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Figure 39: Residual of the exponential fit to the current produced by the exponential term per-
formed in figure 38. For high voltages the observed residuals are below 10% of the
exponential current. At the lower end of the voltage range, for very small exponential
currents, the relative deviations increase.
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Figure 40: Estimation of the influence of the stimulation procedure. The AdEx parameters∆T and
VT are plotted against their weight parameter exp_weight_b. The tuple of booleans
in exp_weight_b was translated into an integer (0 stands for (False, False, False), i.e.
the strongest weight). The stimulation of the neuron with several current steps and
the fit was repeated 10 times with different combinations of current steps to estimate
the influence of changes in the stimulation protocol. We see that the exact protocol has
very little influence on the resulting dependency of VT on exp_weight_b, the relation
between ∆T and the weight however varies strongly.
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Figure 41: Investigation of temperature dependency of the exponential term circuit. The neuron

was simulated at T = 40 ◦C, 50 ◦C, 60 ◦C. Left: The parameter VT depends only weakly
on the temperature. Still, for lower temperatures the value of VT at the same weight is
consistently higher than for higher temperatures. Right: Even though the variation in
∆T for different temperatures are not much larger than the ones observed in figure 40,
the values for ∆T seem to increase with rising temperature.

at 50 ◦C as expected operation temperature. Figure 41 shows a comparison of simulation
results at the temperatures 40 ◦C, 50 ◦C and 60 ◦C. We see only a decrease of approxi-
mately 10mV per 10 ◦C for VT which is approximately 1 % of the absolute value. Although
the values for∆T are only an estimate, we can nevertheless get a sense for the temperature
dependence of∆T and see an increase in∆T of around 4% for a change of 10 ◦C. The effect
of the described temperature dependencies in an application will be treated in section 7.3.2
(see figure 62).

6.3.2 Process Corners and Mismatch

In addition to temperature sensibility, the influence of process variations and transistor
mismatch was investigated in simulations of the circuit. The upper panels of figure 42
show the behavior of the exponential circuit in the process corners. We see that VT as
well as ∆T vary strongly between different corners, the difference between the sf and fs
corners is greater than 250mV for Vt (roughly 30 %) and nearly 20mV for ∆T (roughly
15 %). Figure 42 top right, suggests that the value for∆T only significantly depends on the
speed of the nMOS transistors but not on the pMOS transistors as the ff and fs corner on
the one hand and the ss and sf corner on the other hand show approximately equal values.
This is due to the fact that the single transistor which is responsible for the exponential
dependency on Vmem is an nMOS transistor.
The bottom panels of figure 42 show the same experiment repeated with 15 Monte-Carlo
samples. We observe a similar spread in VT and ∆T as in the corner simulation. Figure 43
shows the effect of the spread in VT and ∆T by comparing the current produced by the
exponential term at a membrane voltage of 1.0V. We see that for the 15 Monte-Carlo
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Figure 42: Top: Investigation of behavior of the exponential parameters in the process corners.
The left plot shows a strong difference in the VT parameter. The right plot shows that
a fast nMOS corner produces a significantly higher ∆T than a slow nMOS corner. The
pMOS corner seems to have no influence on ∆T.
Bottom: Monte-Carlo simulations with 15 different random seeds. We see a spread of
approximately 200mV for VT and close to 30mV for ∆T.
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Figure 43: Exponential current at a membrane voltage of Vmem = 1.0V over the exponential
weight, for the 15 Monte-Carlo simulations shown in figure 42. The simulations show
that the produced current can vary by a factor of 3 between different Monte-Carlo
samples.

samples the current can differ by a factor of 3. These differences can lead to significantly
different behavior of two neurons with the same parameter settings.

6.3.3 Calibration

The results in section 6.3.2 and figure 43 show the need for a calibration mechanism for
the exponential term that allows to set the digital weight parameter that produces the VT

that is closest to the target value. Without that, two neurons with the same parameter
settings might significantly differ in behavior due to strong differences in the strength of
the exponential term.
To decide which hardware setting is required to achieve a certain set of AdEx model pa-
rameters VT,bio and ∆T,bio we need to consider that in the model, the exponential current
depends on the leak conductance but on the hardware it does not. Additionally, there is no
parameter that controls∆T,hw which is fixed to approximately 0.15V. The transformation
between hardware and biological domain is

∆T,hw = αv ·∆T,bio (6.14)

which yields ∆T,hw = 15mV for αv = 10. This is much higher as for example the ∆T,bio

in the AdEx firing patterns, which is 2mV. The only way to set a certain biological value
is to adjust the transformation factor accordingly. With an αv = 75 the ∆T of the firing
patterns would be realized in the circuit. However, as αv scales all voltages, the difference
between leak and threshold potential would be larger than 1.2V and therefore larger than
the available voltage range on the hardware. With the current circuit is therefore not
possible to set the correct ∆T for the AdEx firing patterns.
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In the circuit VT is controlled by the exp_weight_b settings. The simulations in figure 40
show the dependency of VT on that weight parameter. However, the simulations and fits
were performedwith one setting for the leak conductance. For a different setting the values
for VT change. As it is not feasible to determine the dependency of VT on exp_weight_b

for every possible leak conductance, we need a way to determine VT(wexp) once for one
leak conductance and calculate the relationship for all other leak conductances:
The biological parameter is transformed into hardware domain by

VT,hw = VT,bio · αv + ωv (6.15)

which is the standard voltage transformation. Assuming we measured the dependency
of VT,hw on the weight parameter at leak conductance of gL1 and now want to set VT,hw

for an experiment with a different gL2, we need to translate the values for VT1 measured
with the first leak conductance into the equivalents we would have measured if the leak
conductance would have been gL2. To translate from the measured voltages to the domain
of the target parameter we use that the exponential current on the hardware is independent
of the leak conductance. With

Iexp,1 = ∆TgL1 · exp
(
V − VT,1

∆T

)
(6.16)

Iexp,2 = ∆TgL2 · exp
(
V − VT,2

∆T

)
(6.17)

Iexp,1 = Iexp,2 (6.18)

we get

gL,1
gL,2

= exp
(
V − VT,2 − V + VT,1

∆T

)
(6.19)

VT,1 = ∆T · ln
(
gL,1
gL,2

)
+ VT,2 (6.20)

where VT,1 is the value we need look up in a measurement like in figure 42 which was
performed with gL,1 to get a value of VT,2 if the leak conductance gL,2 is used.
This method allows to determine the dependency of VT on exp_weight_b once for one
leak conductance and calculate the needed parameter for all other leak conductances.

6.4 Vmem, Vw - Phase space

To compare the mathematical AdEx model with the AdEx neuron realized on the HICANN
DLS 3 we can compare their phase spaces. The phase space has two dimensions, which
are the membrane voltage and the adaptation variable. In the case of the AdEx model the
adaptation variable is the current w, for the hardware it is Vw.
A collection of phase space plots of themathematical AdExmodel can be found in figure 19.
The shape of the V-nullcline depends on the leak conductance and on the exponential
term. For low membrane voltages the leak dominates, for higher voltages the exponential
current is dominant. The w-nullcline is a straight line with positive slope if the adaptation
conductance is positive and a negative slope otherwise.
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The nullclines for the AdEx circuit can not be calculated analytically, but they can be made
visible by plotting the vector field in the state space. To measure the vector field we record
the adaptation current and all other currents flowing onto themembrane capacitancewhile
the membrane voltage and the adaptation voltage are pinned to points on a grid of values
in the phase space. The current onto the adaptation capacitance is proportional to the
derivative of the adaptation variable, while the sum of all currents onto the membrane
(consisting of leak current, exponential current and adaptation current) is proportional to
the derivative of the membrane voltage. We can therefore plot the vector field by drawing
a vector for every grid point. The vectors are calculated as(

˙Vmem

V̇w

)
=

(
Imem
Cmem
Iw
Ca

)
(6.21)

where Imem are all currents onto the membrane capacitance Cm and Iw is the current onto
the adaptation capacitance Ca.
In reality the phase space of the neuron circuit has more than two dimensions as all cur-
rents and voltages in the circuit are dynamic variables of the neuron. However, as figure 55
will show in section 7.2 a reduction to the two dimensions of Vmem and Vw still captures
the relevant characteristics of the neuron.
Figure 44 shows the resulting phase space for positive adaptation and the weakest set-
ting for the exponential weight (exp_weight_b = 6). The adaptation nullcline, i.e. the
points where the sign of the Vw-component of the vectors switch, is denoted by a color
change. As the Vmem component is much larger than the Vw-component, which is to be
expected, as Vmem changes much faster than Vw, the adaptation nullcline would barely
be visible otherwise. We see that the adaptation nullcline shows the expected shape of a
straight line with positive slope. The bent at low membrane voltages is an artefact of the
representation, as the long arrows from very low voltages cover the other arrows and hide
the color change.
The Vmem-nullcline shows a different shape than the model in figure 19. In the model the
nullcline is close to a straight line for low voltages, while for the hardware the nullcline is
curved. This is caused by the fact, that in this region of the membrane voltage, the circuit
implementation deviates from the mathematical AdEx model. Figure 36 shows, that for
low membrane voltages the adaptation conductance is not constant. Additionally, the leak
conductance is dependent on the membrane voltage as well.
Figure 45 shows the repetition of the simulation for a stronger setting of the exponential
weight (exp_weight_b = 5). We see that the increase in the strength of the exponential
current moves the rising and falling slopes of the Vmem-nullcline closer together.
Section 7.2 will show the phase space plots described here can made be useful in the task
of qualitatively reproducing behavioral patterns of the mathematical neuron model the
hardware emulates.
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Figure 44: Phase space of the HICANN DLS 3 neuron with weak exponential term. The Vmem-
nullcline is where the horizontal component of the arrows is zero. The Vw-nullcline is
marked by the color change.
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Figure 45: Phase space of the HICANN DLS 3 neuron with stronger exponential term. The Vmem-
nullcline is where the horizontal component of the arrows is zero. The Vw-nullcline
is marked by the color change. The rising and falling part of the Vmem-nullcline move
closer together compared to figure 44.
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7 High-Level Results

7.1 Single-Neuron Modeling Competition

7.1.1 Exess

TheExess neuron is designed to be an ideal version of theHICANNDLS 3AdEx neuron and
therefore needs to behave exactly as an PyNN or nest AdEx neuron which is transformed
into hardware time and voltage domain. To verify this we use the data sets of the spike-
based extension of the single-neuron modeling competition described in section 3.1.4.
Figure 46 shows a comparison between the Exess neuron and the PyNN.nest reference
neuron for an exemplary data set. The parameters of the PyNN neuron have been trans-
formed to Exess parameters using the transformations given in section 4.1. The plots show
the traces of membrane voltage, adaptation variable and the synaptic input conductances
in biological domain. We see that in this case, after a transformation into the biological
domain, the traces of the Exess neuron perfectly match the PyNN.nest reference.
There are however data sets where the traces do not match perfectly. This does not neces-
sarily mean that the deviations observed in these cases are caused by errors in the imple-
mentation of the Exess neuron. Different simulators use different algorithms to solve the
differential equations of the neurons, can round of values at different stages of the simu-
lations and by that cause different simulation results (Henker et al., 2012). To estimate the
extent of simulator dependent deviations we run all data sets of the spike-based extension
to the single-neuron modeling competition on 3 different simulators: the PyNN.nest ref-
erence, on PyNN with the NEURON simulator as back-end (Carnevale and Hines, 2006)
and with the Exess neuron (which uses nest directly without the PyNN front-end).
Figure 47 shows a comparison of the results. To estimate the differences we compare the
number of spikes produced by the simulators for each data set and plot histograms of the
occurring differences. In this case it is not useful to use the Γ measure as indicator for the
amount of deviation, as the differences are very small and all Γ values therefore are very
close to 1. We see that the changing of the PyNN back-end can cause a change in the num-
ber of produced spikes in one data set by up to 7 spikes. This happens in situations where
the neuron is very close to the threshold and for one simulator crosses the threshold while
for the other stays just below the threshold. Figure 47 shows that the deviations between
the Exess neuron and the PyNN.nest reference are smaller than the deviations between
PyNN.neuron and the reference. We therefore conclude that the observed differences be-
tween the Exess neuron and the reference simulations are not caused by implementation
errors, but by simulator internal differences.
In contrast to a software simulation a neuron on hardware can only stimulated by a spike
at certain points in time. This is due to the fact, that spikes are sent into the chip as
digital events. Therefore, they are arranged on a binned time axis before being sent to the
neuron. The details of this protocol, e.g. the size of the time bins, depend on the specific
implementation and vary between different chip versions.
In order to investigate the influence of the binning of the input spikes we use the Exess
neuron and evaluate its performance in the spike-based modeling competition with pre-
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Figure 46: Comparison between PyNN with NEST as a back-end and an Exess simulation to ver-
ify implementation of the Exess neuron. As input a data set of the spike input exten-
sion of the single-neuron modeling competition is used. From top to bottom we see
the membrane potential, the adaptation variable, the excitatory and inhibitory input
conductances. The Exess traces were transformed into biological domain in order to
compare them to the PyNN result. All traces show a perfect match.
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Figure 47: Comparison of the results in the spike-based competition of different simulators to the
reference which was generated using PyNN.nest. As all simulators produce very high
Γ values (Γ > 0.9), the comparison in the number of spikes produced in each data set
shows differences more clearly. Since the Exess neuron is simulated using nest, it is
not surprising, that the differences between PyNN.nest and Exess are smaller than the
differences between Exess and PyNN.neuron or PyNN.nest and PyNN.neuron.

processed, i.e. time binned input. The Exess neuron allows to investigate the influence of
time binning separately from other disturbances that can occur on the hardware, as we can
be sure, that without the binned input, the Exess neuron reaches a nearly perfect score.

There are two possible ways of binning the original spike input. The first possibility is to
choose a time axis with time step dt and move all spikes within the interval t0± dt

2 to t0. If
multiple spikes are within the same time bin, all except for one are dropped. In the second
case multiple spikes within one bin are not dropped. All second spikes in a bin are sent to
the neuron using a second synapse, all third spikes via a third synapse and so on. It can
however not be guaranteed that this is always possible on hardware, as especially for large
dt the number of spikes in a time bin might exceed the number of available synapses.

Figure 48 shows the results achieved by the Exess neuron in all data sets for all 3 reference
AdEx neuron parameters depending on the size of the time bin dt (as reference data the
PyNN.nest data is used). In this case the simple time binning without multiple synapses is
used. All performance values Γ are calculated with a coincidence of∆ = 1.0ms in biolog-
ical time domain. We see that for high input frequencies the performance measured by the
Γ value drops significantly for dt > 0.05ms. The data sets with a lower input frequency
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Figure 48: Results of time binning in the input without using multiple synapses. The plots from
top left to bottom right show the Γ value the Exess neuron with time binned input
reaches in the data sets with νbio = 100Hz and τsyn,bio = 1ms, νbio = 100Hz and
τsyn,bio = 5ms, νbio = 500Hz and τsyn,bio = 1ms, νbio = 500Hz and τsyn,bio = 5ms,
νbio = 2 kHz and τsyn,bio = 1ms, νbio = 2 kHz and τsyn,bio = 5ms. The dt denotes the
size of the time bin. In each plot the results for all 3 AdEx reference parameters are
shown. The higher input frequencies show a stronger performance drop for increasing
time bins.
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can tolerate a larger bin size of up to 0.1ms. The size of the time bin is given in biological
time domain. For the Exess simulation the time binned input has been transformed into
the hardware domain.
This dependency on the input frequency indicates, that the drop in performance in mainly
caused by the deleting of input spikes that are in the same time bin and not by the binning
itself. For low frequencies fewer spikes are in the same time bin, therefore fewer spikes
are deleted and the neuron performs better. This is indeed confirmed by figure 49 which
shows the performance of the Exess neuron if the second binning procedure with multiple
synapses is used. We see that the performance is nearly perfect, i.e. Γ ≈ 1.0, for dt <

0.5ms. For larger time bins, the performance starts to decrease. In this case no clear
dependence of the performance on the input frequency is visible, instead for very large
time bins dt > 1.0ms the performance seems to depend on the synaptic time constant. For
the data sets with τsyn, bio = 5.0ms (column on the right) on average larger time bins can
be tolerated. This could be explained by the fact that with a larger synaptic time constant
the input spike affects the neuron over a longer time, which makes the exact timing of the
start of the stimulus less important.
Figure 50 illustrates the influence of the time binning on the performance using the voltage
trace of an exemplary data set (all values in this figure are given in hardware domain).
In this case the binning with multiple synapses is used. For small dt the neuron scores
Γ = 1.0 which indicates a perfect reproduction of the reference spike times within the
coincidence window. For dt = 0.5 µs the neuron produces an additional spike (t ≈ 300 µs)
and does not spike at the required time (t ≈ 1650 µs). The additional spike is caused by
the fact, that multiple spikes, that were in different time bins before, are merged into the
same bin and therefore arrive at exactly the same time, which drives the neuron over the
threshold. The missing spike could be explained by two spikes in adjacent time bins. For
smaller bins they arrive at the neuron shortly after each other and are strong enough to
cause a spike, for increasing time bins, they are further apart, which makes the summed
up input for the neuron weaker. If the bin size is increased further they are moved into the
same bin, arrive at the neuron at exactly the same time, and the neuron again produces an
output spike (see dt = 1.0 µs). For dt = 5.0 µs we see that the similarity to the spike train
is completely lost, due to 3 additional and 1 shifted spike compared to the reference.
These evaluations show that a neuron can achieve good scores in these tests even if the
spike input needs to binned. Depending on the binningmechanism (i.e. if multiple synapses
can be used) bin sizes of dtbio = 1.0ms still allow an overall score of Γ ≈ 0.9.

7.1.2 HICANN DLS 3 Simulation

A disadvantage of the transistor-level simulations, namely long simulation times, clearly
shows, when we execute the spike-based extension of the single-neuron modeling com-
petition. It takes close to two hours to run the full 5 s of one data set (ν = 2000Hz,
τsyn = 1ms). As this is not feasible for detailed investigations, we restrict ourselves to the
first 1.5 s of all data sets and additionally limit the number of data sets by using only the
first AdEx neuron as reference and only data sets with ν = 500Hz, τsyn = 1ms. The input
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Figure 49: Results of time binning in the input using multiple synapses. The plots from top left
to bottom right show the Γ value the Exess neuron with time binned input achieves in
the data sets with νbio = 100Hz and τsyn,bio = 1ms, νbio = 100Hz and τsyn,bio = 5ms,
νbio = 500Hz and τsyn,bio = 1ms, νbio = 500Hz and τsyn,bio = 5ms, νbio = 2 kHz and
τsyn,bio = 1ms, νbio = 2 kHz and τsyn,bio = 5ms. The dt denotes the size of the time bin.
In each plot the results for all 3 AdEx reference parameters are shown. Compared to
figure 48 much larger time bins are possible before a strong decrease in performance is
visible.
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Figure 50: Resulting voltage traces for the Exess neuron with time binned input with multiple
synapses in data set number 0 with νbio = 2 kHz and τsyn,bio = 1ms (bottom left in
figure 49) for different sizes of time bins. The voltages and times in this plot are in
hardware domain. The spikes of the neuron are marked in red. For increasing time
bins not only the exact spike times are lost, but also additional spikes occur.
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Figure 51: Voltage traces of the HICANN DLS 3 simulation (red) compared to the PyNN reference
(blue) for 3 different data sets plotted in biological time- and voltage domain. All sets
have an input frequency of 500Hz (in biological time domain) and a synaptic time con-
stant of τsyn, bio = 1ms. The topmost plot shows the result for data set 0, the plot in the
center for data set 1 and the plot at the bottom for data set 2. In each plot, the refer-
ence spikes are marked in gray. We see that the reference of data set 0 is reproduced
very well. For data set 1 more deviations occur, and for data set 2 no reference spike is
matched by a spike of the DLS 3 neuron.

parameters for the used data sets can be found in section D.2. Time binning the input also
speeds up the simulation, we therefore set a bin size of dtbio = 0.1ms.

To obtain the parameter settings for the neuron, we use a calibration algorithm imple-
mented by Paul Müller. We observed that after the calibration the exponential current
was far too large compared to the reference. This is probably due to the fact, that ∆T can
not be configured. The exponential term was therefore switched off and is not used in the
following simulations. Figure 51 shows the voltage traces of the HICANN DLS 3 neuron
in three of the used data sets. The used neuron configuration can be found in section D.3.

We see that for the first data set the HICANN DLS 3 neuron reproduces the voltage trace
very well. Also, the produced spike is coincident with the reference spike. For the sec-
ond data set, the DLS neuron reproduces the reference trace rather closely, although the
deviations are larger than in the topmost plot. Only 1 of 3 reference spikes is matched by
a spike of the DLS neuron. We see that most of the time, the membrane voltage of the
reference neuron is slightly higher, than the membrane voltage of the DLS neuron. This
effect can be observed in a stronger fashion for the last data set. Here, reference and DLS
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Figure 52: Results of a sweep over Vth for the data sets shown in figure 51. For each of the Vth

values the spike times are shown (blue points). The reference spike times are shown
as red + signs. While data set 0 shows too many spikes, the data sets 1 and 2 show too
few.

trace match poorly and none of the reference spikes is reproduced. It is clearly visible that
there is an offset between reference and the simulated DLS trace.

This is caused by too high excitatory weights in the data sets. On HICANNDLS the synap-
tic weight is controlled by a digital 6 bit parameter. The calibration algorithm determines
the weight value that would be required for a certain target weight. If the required value
exceeds the available range, the weight is configured to 63, which is the highest possible
value.

In the case of figure 51 an excitatory weight of 77 for the panel in the center and of 112
for the bottom plot would have been required. For the simulation the weights in both
cases were set to 63. A simple solution for this is to use two synapses with half of the
weight each. However, this was not possible, as the simulation setup only allows for four
excitatory synapses. Three of these four available synapses are already used for the time
binning of the input spike as described in section 7.1.1.

In order to determine whether the observed offsets can be compensated for, we sweep
the threshold voltage. The results for the same data sets as in figure 51 (recorded with
Vth,bio = −32.4mV) can be found in figure 52. We see that, as expected, the lowering
of the threshold does not improve the performance in the first data set, as the available
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Figure 53: Summary of the results of the sweep over the threshold voltage. For each threshold the
neuron’s performance in all data sets was evaluated using the Γmeasure. The data sets
are split into different plots to improve readability.

excitatory synaptic weight was sufficient there. For the other data sets we find that for a
lower threshold more spikes (with the correct timing) are produced.
Figure 53 shows a summary of the results obtained in the sweep over Vth. For each thresh-
old voltage all data sets were simulated and the performance determined using the Γmea-
sure. We see that there are several data sets for which the performance improves with a
decreasing threshold voltage (sets 1, 2, 5). As explained above, this is due to the limitation
of the excitatory synaptic weight.
For most of the other data sets, generally, higher threshold voltages produce a better per-
formance. This is problematic, because the reference for all data sets was produced using
the same AdEx parameters. It should therefore not be necessary to choose different DLS
parameters for the data sets.
Figure 54 shows, for the example of data set 7, why this is the case. In the top panel on the
left we see that the slope of the dependency of the leak current on the membrane voltage
is not constant as in the AdEx reference. Additionally, the slope, which corresponds to the
leak conductance gL is, for voltages between 0.76V and 0.8V significantly lower than in
the reference. The plot of the membrane voltage over time on the right, shows that the
neuron is in this voltage region for most of the simulation.
The center left panel shows that in the beginning of the simulation the adaptation cur-
rent of the circuit and the reference match, but then the adaptation OTA saturates and
therefore the current in the circuit simulation can no longer follow the further increasing
reference. The center right panel shows, for the excitatory case, that the calibration of the
synaptic weights and the synaptic time constants worked well, as the current produced by
the synaptic input circuit and the reference match well. The visible offset is intentional,
as it is used to cancel the offset of the leak OTA. The bottom panel shows a comparison
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between the membrane voltages of the circuits and the reference in biological time and
voltage domain. We see that with increasing time, they differ more strongly. The voltage
of the AdEx reference is below the voltage of the DLS 3 circuits most of the time. This
can be explained by the differences in the leak and adaptation currents, as discussed be-
fore. A weaker adaptation as well as leak lead, for the same threshold voltage, to a higher
spike rate. This explains, why the increase of the threshold improves the performance, as
it partly compensates for the decreased leak and adaptation. Figure 64 and Figure 65 in
section A show the same plot for the fourth and ninth data sets. The fourth data set shows
a good performance of Γ ≈ 0.8 while the performance for the ninth set is the worst with
Γ ≈ 0.2. We see that indeed the effects impairing the performance are the same for these
data sets as well and that only the magnitude of the disturbance differs.
For the described investigations only a subset of the available data sets could be used due
to long simulation times. To allow for more detailed evaluations the simulations must be
sped up. Additionally, the problem of the truncated synaptic weights (in this case for the
data set 1, 2 and 5) needs to be solved, for example by increasing the number of available
synapses in the simulation. As long as the performance in these data sets is impaired by
a decreased input strength a detailed comparison to the other data sets is not meaningful.
The comparison of membrane currents to th reference for the other data sets showed that
the main effects lowering the performance are the saturation of the adaptation current and
the decreased leak conductance. The observed mismatch between the leak conductance in
the AdEx reference and the DLS 3 simulation (figure 54) can be circumvented using the
linear part of the relation between the leak current and the membrane voltage. This may
improve the results shown in figure 53.
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Figure 54: Comparison between the circuit simulation of HICANN DLS 3 and the AdEx refer-
ence in the seventh data set. Top: On the left a comparison of the leak current over the
membrane voltage in hardware domain is shown. In contrast to the reference (red) leak
conductance (slope) is not constant for the circuit (blue). The data is extracted from a
transient simulation and thus noisy. The right plot shows the membrane voltage in the
circuit simulation in hardware domain. Center: The left plot shows a comparison of the
adaptation currents (colors as before). The adaptation current produced by the adap-
tation circuit saturates at t ≈ 30 µs. The right plot shows that the excitatory synaptic
weight and the synaptic time constant match the reference well. Bottom: Comparison
of the membrane potentials over time. The short, sharp peaks on Isyn and Iadapt are
caused by the switching between leak and reset mode of the leak/reset OTA when the
neuron spikes.
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7.2 AdEx firing Patterns

7.2.1 HICANN DLS 3 Simulation

Seven out of eight of the firing patterns described in section 3.2 could be reproduced qual-
itatively in transistor-level simulations of the HICANN DLS 3. As starting point, the pa-
rameters in biological domain summarized in section B.1 were translated into the hard-
ware domain. Then the measurements described in section 6 were used to determine the
hardware parameter values that approximately realize the target parameters. For an ideal
circuit this would suffice to reproduce the firing patterns, however with real components
the effects of limited configurability, parameter ranges and saturation effects need to be
taken into account.
In the case of the HICANN DLS 3 circuits the value for ∆T can not be configured and
is larger than the value which is required for the firing patterns. Therefore, the other
parameters need to be adjusted accordingly. Additionally, the leak aswell as the adaptation
conductance are not constant over the complete voltage range of Vmem and Vw. Because of
that a simple parameter transformation from biological to hardware domain is not feasible
here either.
Using the naively transformed parameters as a starting point the parameters were fine-
tuned by hand. Comparing the trajectories in the phase space to the original phase space
paths in figure 19 allowed to ensure that the circuits qualitatively reproduce the correct
AdEx features in the pattern. Figure 55 shows the HICANN DLS 3 trajectory in the phase
space for the regular bursting pattern (the voltage trace can be found in figure 56). We
see that the mechanism producing the pattern is as in the AdEx reference: The neuron
spikes several times until it is reset above the Vmem-nullcline, which causes a longer pause
between the spikes with a downswing of the membrane, as the neuron needs to return
below the nullcline before it can spike again.
Figure 56 shows the voltage traces of the firing patterns in the HICANN DLS 3 simulation.
The parameter settings producing the firing patterns can be found in section B.2. The space
for the irregular firing pattern has been left blank, as it could not be reproduced. Thismight
be due to the fact that as described in Naud et al. (2008) it occurs only for scattered points
in the parameter space, whichmakes it difficult to obtain by hand tuning. It is not excluded
that the pattern can be producedwith the circuits, but the required settings were not found.
In addition to the difficulties in reproducing the irregular firing the delayed regular burst-
ing pattern is instable in the circuit simulation. This is due to the fact that it requires
a negative adaptation conductance of the same absolute value as the leak conductance
a = −gL. Even in a numerical simulation this is unstable and very sensitive to parameter
variations, because, if|a| > gL and the membrane voltage is above the leak potential there
is a positive feedback current onto the membrane and the neuron starts to fire without any
current input. In the circuits it is practically impossible to have a perfectly equal adapta-
tion and leak conductance as the parameters can only be set with a fixed precision and
leak as well as adaptation conductance depend on the membrane and adaptation voltage.
It is therefore not surprising that in the circuit simulation of the delayed regular burst-
ing pattern we see the instability shown in figure 57, where the neuron starts to fire long
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Figure 55: Phase space trajectory of the HICANN DLS 3 reproducing the regular bursting pattern.
The neuron spikes several times and is reset to a higher Vw value due to the spike-
triggered adaptation. When the neuron is reset above the Vmem-nullcline, a broad reset
with a longer spike pause follows. To plot the trajectory the same data as for the regular
bursting pattern in figure 56 is used.

before the current stimulus is applied. In figure 56 the time interval between the start of
the simulation and the start of the current stimulus is chosen to be short, which starts the
current stimulus before the neuron can fire by itself. Setting the time of the start of the
stimulus to a small value hides the instability, but does not prevent the effect.
The other patterns however do not show any instabilities and reliably reproduce the key
characteristics of their model references.

7.3 BAC Firing

7.3.1 Exess

The Exess neuron allows to simulate multi-compartment neuron consisting of ideal hard-
ware neurons. This is done by using the gap junction features of the NEST simulator
(Hahne et al., 2015). In NEST gap junctions are modeled as electrical synapses, that pro-
duce a current

Igap = gij ·
(
Vi − Vj

)
(7.1)

which shows the same voltage dependence as an intercompartment conductance in a sim-
ple multi-compartment neuronmodel. A reset mechanismwhich allows plateau potentials
was implemented as well.
These features allow to set up a 3-compartment neuron, which is configured to reproduce
the key features of the BAC firing mechanism described in section 3.3. Figure 58 shows the
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Figure 56: Simulations of the AdEx firing patterns on the HICANN DLS 3. It was possible to tune
the neuron parameters to qualitatively reproduce 7 of the 8 patterns shown in figure 18.
From top-left to bottom right the plots show tonic spiking, adaptation, initial bursting,
regular bursting, delayed accelerating, delayed regular bursting and transient spiking.
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Figure 57: Demonstration of the instability of the delayed regular bursting pattern. In comparison
to figure 56 only the time before the start of the simulation was varied. The stimulus
starts at t = 3000 µs however the neuron starts to firemuch earlier. This is caused by the
fact that in the model, the leak and adaptation conductance are equal for this pattern.
On the hardware however they vary effectively with changingmembrane voltage. This,
in combination with the negative adaptation, causes a positive feedback and the neuron
fires without additional current input.

3 sub-experiments of the BAC firing mechanism, the dendritic stimulation that produces
a PSP in the dendrite (labeled with NMDA in the figure), the somatic stimulation which
produces a spike in the soma and the combination of both inputs that produces plateau
potential modeling NMDA and calcium spikes and a burst in the soma. The neuron pa-
rameters for this experiment can be found in section C.1.
The influence of the gap junctions functioning as intercompartment conductances can, for
example, be seen in the dendritic stimulation, where the PSP in the dendritic compartment
propagates into the calcium compartment and then into the soma and is attenuated on the
way. The low-pass feature of this connection can be seen in the somatic stimulation, where
the spike of the soma propagates into the other compartments. We see that the signal is not
only attenuated but fast changes are filtered out as well. This shows that the gap junction
implementation in the NEST simulator indeed can be used to model intercompartment
conductances.

7.3.2 HICANN DLS 3 Simulation

The BAC firing mechanism can serve as a high-level test for the new plateau potential
and multi-compartment features of the HICANN DLS 3. The mechanism can be modeled,
as shown in section 7.3.1 using a 3 compartment neuron where the compartments form
a chain. Figure 59 shows a schematic drawing of the realization of this structure on the
chip. Due to the design of the multi-compartment connections it is necessary to merge
two neuron circuits into one compartment, as the chain structure otherwise can not be
realized.
With this setup the result shown in figure 60 can be obtained (Schemmel et al., 2017). As at
the time of this simulation a full neuron calibrationwas not available all neuron parameters
and the input strengths are hand tuned. We see that the compartments in figure 60 show
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Figure 58: BAC firing mechanism simulated with a three-compartment Exess neuron using the
NEST implementation of gap junctions as intercompartment conductances. The mech-
anism is modeled correctly: Dendritic stimulation (top) causes a PSP in the dendritic
compartment (green), somatic stimulation (center) causes a spike in the soma (blue)
and the combination of both stimuli (bottom) causes a plateau potential in the den-
dritic compartment and in the calcium compartment (red) and a burst in the soma.

Figure 59: Multi-compartment switch configuration for BAC firing. The two neuron circuits in
the middle are merged into one compartment in order to allow a chain topology. The
colors correspond to the trace colors in figure 60. Drawing by Paul Müller.
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Figure 60: Transistor-level simulation of the HICANN DLS 3 qualitatively reproducing the BAC
firing mechanism shown in figure 20, adapted from (Schemmel et al., 2017). Dendritic
stimulation using synaptic input induces a PSP (top), somatic stimulation induces a
somatic spike (center) and the combination of both inputs induce plateau potentials in
the Ca and NMDA compartments as well as a spike burst in the soma (bottom). The
neuron parameters for this application can be found in section C.2.

the expected behavior described in section 3.3. As the strength of a single synapse was not
sufficient to provide a sufficiently strong PSP in the dendritic compartment, 3 spike inputs
in short succession were used (see lower plot in top of figure 60). The parameters used to
obtain this result can be found in section C.2.
The BAC firing mechanism is fragile and can break easily if parameters like for example
the leak conductance or firing thresholds are changed without adjustments for the other
parameters. It is therefore interesting to investigate the influence of possible distortions
that can happen on the chip.
First we investigate the influence of temperature changes. As measure for the difference
between functional reproductions of the BAC firing mechanism we use the number of
soma spikes in the burst occurring with the combined stimulation. To have a more mean-
ingful measure we increase the length of the plateau potentials in order to allow more
spikes. A functional reproduction of the mechanism must include: no spikes for the den-
dritic stimulation, a single somatic spike for the somatic stimulation, no plateau potentials
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Figure 61: Left: Voltage traces of combined stimulation for increasing temperatures (from top to
bottom 44 ◦C, 50 ◦C, 63 ◦C). The increasing number of spikes during the burst is clearly
visible. Right: Number of somatic spikes in the burst depending on the circuit temper-
ature. Only temperatures that correctly reproduce the firing behavior are included.

for the somatic stimulation, more than one somatic spike for the combined stimulation
and plateau potentials in the calcium and the NMDA compartment.
Figure 61 shows the variation of the number of spikes produced in the somatic burst de-
pending on the temperature of the circuits. Only the temperature was varied, no neuron or
input parameters were adjusted. For temperatures below 44 ◦C and above 63 ◦C the firing
mechanism can not be reproduced. We see that over a range of 19 ◦C the number of spikes
during the burst increases by more than a factor of two.
The simulations in figure 61 were performed with an earlier version of the schematic com-
pared to the simulations in figure 60, which used the final schematic. However, the old
simulations are still valid, as the later changes in the schematic either influenced the adap-
tation circuit, which is not used here, or are compensated for by neuron parameter changes
(e.g. the parameterization ofCm changed, which is compensated by choosing different set-
tings for the en_mem_cap parameter and adjusting other neuron parameters accordingly).
To investigate the source of the temperature dependency, the current contributions to the
total current onto the membrane were analyzed separately. Figure 62 shows the compari-
son of these currents for theminimal andmaximal temperature for which the correct firing
behavior is produced as well as for the standard simulation temperature of 50 ◦C. We see
that out of leak, synaptic input, intercompartment currents and exponential current only
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Figure 62: Investigation of temperature dependency of spike frequency. Top and center: Com-
parison of currents flowing onto the membrane for different temperatures. The data is
extracted from a transient simulation and thus noisy. The leak current is plotted over
the membrane voltage (top left) and does not show a temperature dependence. The
exponential current is plotted over the membrane voltage but here a temperature de-
pendency is visible. For increasing temperatures the exponential current rises as well.
The plots in the center shows that neither the intercompartment current (left) nor the
synaptic input current (right) show a strong temperature dependency. Bottom: Cur-
rents shown above summed up and plotted together with measures current flowing
onto the membrane. The only visible difference is at T = 150 − 155 µs which is the
current stimulus into the soma. This shows that all currents that affect the evolution
of the membrane are considered above. The short, sharp peaks on Isyn and Imem are
caused by the switching between leak and reset mode of the leak/reset OTA when the
neuron spikes.
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Figure 63: Distribution of number of spikes per burst measured with the same settings as figure 61
but added parameter variations of ±1 LSB to the analog neuron parameters provided
by the capacitive memory. The number of spikes can vary up to a factor of 1.5.

the exponential term shows a visible temperature dependency. As the bottom panel of
figure 62 shows, the sum of above currents is equal to the complete current flowing onto
the membrane, which was recorded directly at the membrane capacitance. This indicates,
that the there is no additional relevant current, that could cause the observed temperature
dependency, which therefore is most likely caused by the exponential term.
The investigation of temperature stability is essential as temperature fluctuations on the
chip can be caused by the PPU. At the moment there are no measurements on the possi-
ble temperature changes caused by the PPU but, depending on cooling, chip size and the
executed code, they can vary strongly. A possible scenario where these fluctuations pose
a problem would be, for example, that the PPU is used to tune a network of neurons to
show the BAC firing behavior with a certain firing rate in the burst. When the parameter
tuning is done, the PPU is switched off to save energy, which causes the temperature on
the chip to decrease. The temperature drop then can, as figure 61 has shown, either break
the BAC firing mechanism or change the firing rate significantly.
In addition to temperature variations, the effect of parameter variation caused by the ca-
pacitative memory (Hock, 2014) were investigated. The analog parameters stored in the
capacitive memory can be set with 10 bit precision, i.e. to 1024 different values. With a
maximum current value of 1 µA this yields a step size (or least significant bit, LSB) of ap-
proximately 1 nA. For the voltage parameters a maximum of 1.8V is given in Hock (2015).
This yields a voltage step size of 1.8mV. Discretizing the desired target parameters of a
neuron configuration can, in the worst case, lead to an error of ±0.5 LSB.
Figure 63 shows an estimation of the influence of capacitive memory induced parameter
variations on the BAC firing behavior. As measure for the difference of measurements
again the number of spikes in the burst is used. To estimate the influence 31 experiments
were performed. For each measurement random numbers within a uniform distribution
between ±1 LSB were added to all current and voltage parameters of the neuron. In all
31 tries the neuron still showed the correct BAC firing behavior, however the number of
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spikes varied up to a factor of 1.5. We chose to add parameter noise of 1 LSB in order to
not only estimate the effect of discretization, as those are not the only disturbances that
can occur in the capacitive memory (e.g. crosstalk as described in section 2.2 of Stradmann
(2016))
This shows that the parameter fluctuations caused by discretization of the analog neuron
parameters are unlikely to break the BAC firing mechanism of a neuron but have a strong
effect on the detailed behavior of the neuron such as the firing rate during a burst. The
investigations can also suggest that the hand tuning of the neuron parameters did not
lead to an instable point in the parameter space, where small changes already lead to a
completely different behavior, but instead yielded a set of neuron parameters, that reliably
produce similar behavior under small disturbances.
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8 Discussion

Summary In this thesis we introduced three different single-neuron experiments that
can be used to characterize neuron circuits in their development phase. Each experiment
is focused on a different aspect of the neuron’s functionality.

First, the single-neuronmodeling competition initiated by Jolivet et al. (2008b) which poses
the challenge for mathematical neuron models to predict the precise spike times of a bi-
ological neuron given an input current. Here, we employed an optimization algorithm
to determine neuron parameters for the Adaptive Exponential Integrate-and-Fire neuron
model in this competition, which complements the findings and solves some of the prob-
lems in Jolivet et al. (2008a). Additionally, we extended the competition by spike-based
data sets in order to make it suitable for the testing of accelerated neuromorphic hardware
neurons.

Secondly, the data set of the competition are supplemented with a set of biologically rel-
evant firing patterns introduced by Naud et al. (2008) which can be used to test neuron
circuits for their adaptation and exponential parameter ranges and precise tuneability of
the circuits.

Finally, the backpropagation-activated calcium spike (BAC) firing mechanism, measured
by Larkum et al. (1999), was used as an exemplary test case for multi-compartment and
plateau potential circuits.

The collection of single-neuron experiments was used to characterize the neuron circuits
in the development phase of HICANN DLS 3. To this end, we used two complementary
simulation back-ends, the NEST-based Exess neuron and transistor-level simulations of
the neuron circuits. The former allows fast, idealized simulations while the latter provides
the basis for detailed investigations.

Before the application of the single-neuron experiments a general verification of the func-
tionality and characterization of the neuron circuits was performed. The verification pro-
cess of the new circuits uncovered errors that would have severely impaired the usability
of the neuron if they had stayed unnoticed.

We found that, due to the possibility of the adaptation and membrane voltage rising above
1.2V, thin-oxide transmission gates do not electrically separate these subcircuits in a reli-
able way. Additionally, it was discovered that the usage of thin-oxide transmission gates
in the multiplexers at the input of the adaptation OTA is harmful, as the occurring leakage
current flows onto the capacitive memory and alters the stored value for the parameter
Vleak,adapt. These issues were addressed by replacing the problematic thin-oxide transmis-
sion gates with thick-oxide transmission gates, which show no significant leakage for all
possibly occurring voltages.

In the original design the voltage steps applied to Vw to model the spike-triggered adap-
tation were significantly smaller than the values required for practical applications. This
was due to a wrongly chosen pulse length of the signal controlling the spike-triggered
adaptation and was solved by introducing another signal. However, the observed voltage
steps ∆Vw were still smaller than theoretically expected, which was due to a too large
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voltage drop over diodes separating the adaptation circuits from the capacitive memory.
By removing one of these diodes, the voltage steps increased.
Finally, it was found that the bypass signal was inverted, which was corrected by the
insertion of an additional inverter into the signal path. All circuit modifications were
performed by the designers of the neuron circuits.
In addition to the uncovered design errors, the verification process allowed to confirm the
basic functionality of the sign-switching mechanism in the adaptation circuit, the expo-
nential term and its weight scaling parameter as well as the multi-compartment connec-
tions and the plateau potential mechanism.
In contrast to the verification process, the characterization of the circuits included more
detailed investigations which are more focused on practical applicability of the circuits.
We found that the new reset current produced by the combined leak-reset OTA depends
strongly on the bias settings of the OTA and the chosen reset potential. Especially in the
slow pMOS corners the highest achievable reset current is critically low, which can lead to
an effectively changed reset potential and in the worst case to non-functional reset with
a continuously spiking neuron. As the reset current depends on the bias currents of the
OTA this also shows the need for a calibration of the reset circuit, as it is critical to choose
the bias settings which allow a stable and robust operation.
A detailed review of the adaptation circuit showed that the adaptation conductances that
can be achieved with the adaptation OTA range from comparatively low values as required
for example for the AdEx firing patterns to approximately 50 times the highest value used
in the firing patterns. It was found that combinations of low adaptation conductances
with strong spike-triggered adaptation can not be realized well with the current design.
The adaptation time constant can cover a wide range from below 10ms to far above 200ms
which fits well to range required by the firing patterns.
The exponential term was characterized by an investigation of the realized parameters of
the AdEx model VT and ∆T. ∆T can not be configured on HICANN DLS 3. Its value was
determined as approximately ∆T,hw ≈ 150mV. VT can be configured to seven different
values using the digital exponential weight parameter. We found that the circuit is strongly
susceptible to production variations and requires a calibration.
The performing of the spike-based extension of the single-neuron modeling competition
using the Exess neuron allowed on the one hand to verify the implementation of the Exess
neuron. On the other hand an investigations on the impact of discretized spike times, as
they occur in hardware due to digital input signals, in the input of the competition could be
performed. We investigated two possible discretization schemes, one where spikes were
dropped, if multiple spikes at the same time step occurred, and one where multiple input
synapses were used to ensure, that no spike loss occurred. The simulations showed that
if no input spikes are dropped due to the binning, for the evaluated data sets and neuron
parameters time steps of up to dtbio ≤ 1ms still allow a Γ ≥ 0.9.
The transistor-level simulations of the full neuron circuit are computationally intensive,
which prohibits the usage of the full competition data sets due to long simulation times.
On a subset of the competition data sets we found that for some data sets the synaptic
input strength is too low which can be partly compensated by the lowering of the firing
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threshold. For the remaining data sets the performance is increased for a higher thresh-
old as this partly compensates for the observed reduced leak conductance and saturated
adaptation current.
With the new adaptation and exponential circuits it was possible to qualitatively repro-
duce 7 out of 8 of the firing patterns introduced in (Naud et al., 2008). In particular, the
newly implemented sign-switching mechanism allowed the reproduction of two patterns
that were not possible in previous hardware generations (Tran, 2013). As ∆T can not be
configured a straight forward parameter translation from the given biological parameters
to the hardware domain is not possible and therefore the parameters for the HICANN DLS
3 simulation needed to be tuned individually. A parameter set that produces the irregular
firing pattern was not found, as the corresponding volume in the parameter space is small
and the long simulation durations are prohibitive for extensive parameter sweeps.
The last of the performed single-neuron experiments, the BAC firing mechanism was sim-
ulated using both the Exess neuron and the HICANN DLS 3 simulation. The simulation
of the multi-compartment neuron was done by connecting Exess neurons with the readily
available gap junctions implemented in NEST. This allowed the reproduction of the BAC
firing mechanism with a three-compartment Exess neuron. This shows that the modeling
of intercompartment conductances using the gap junction model in NEST as well as the
implemented plateau potential mechanism for the Exess neuron function as expected.
Finally, four neuron circuits in the HICANN DLS 3 simulation were connected to form a
three-compartment neuron that was able to qualitatively reproduce the BAC firing mech-
anism as well. Additional simulations showed that the mechanism is susceptible to tem-
perature variations smaller than 10 K. It was also shown, by adding parameter variations
of the magnitude expected from the capacitive memory, that the tuning of the neuron pa-
rameters did not lead to an unstable point in parameter space, but that the found behavior
is reliably reproduced under small parameter fluctuations.

Conclusion Thedescribed improvements to the HICANNDLS 3 neuron circuits demon-
strate the value of full-neuron-circuit simulations during the development phase of analog
neuron circuits. These simulations accompany the verification of the subcircuits usually
performed by the designers and allow to uncover harmful interdependencies between sub-
circuits that can otherwise stay unnoticed.
Additionally, the goal of performing a small-scale application already during the design
phase enables a verification and characterization focused on functionality as well as con-
figurability and usability. An example for this is the spike-triggered adaptation, where
the calculation of the required values for ∆Vw for the AdEx firing patterns showed the
mismatch between achievable and required parameter range. The application of the fir-
ing patterns also revealed that the present implementation is not suited for the emulation
of small adaptation conductances in combination with strong spike-triggered adaptation.
The fact that this information on necessary improvements is available now, before the first
measurement on the chip is performed, allows to include them in the planning of experi-
ments as well as in the design of future chip versions.
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The investigation of possibly harmful effects such as temperature variations in the context
of an application, in this case the BAC firing mechanism, yields valuable information in
comparison to a simple investigation of the temperature stability of a circuit. In the case
of the exponential term the simulations of the effect of temperature changes revealed a
variation in the parameters of below 5% for a temperature change of 10 K. However, the
demonstration in the BAC firing mechanism showed that, although the variation is low,
the impact on the neuron behavior can still be significant.
The extension of the single-neuron modeling competition by a spike-based data set and a
set of AdEx neuron references made it applicable to the development of our analog neuron
circuits. However, as at the moment the simulation times are too long for practical usage
of the full data set, a way for faster execution has to be found. Already with the limited
data sets, important information could be gained: The simulation setup for the HICANN
DLS 3 needs to be extended to allow for more synapses. Additionally, we found that the
saturation of the adaptation OTA, which was observed in the characterization of the cir-
cuit, indeed impairs the performance of the neuron and an improvement of the circuit
should be considered.
The strategy of using functional experiments with simulated neuron circuits as component
of the hardware design process is validated by the results outlined in this thesis. The
continuation of this strategy is encouraged for future hardware generations.
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9 Outlook

With the HICANN DLS 3 chip soon being available for the first measurements, work can
continue by reproducing the single-neuron experiments described in this thesis in hard-
ware measurements. As in simulation, this should be preceded by general functionality
tests similar to the ones described in section 5 and section 6. The measurements to be
performed can confirm the simulation results or, if errors are uncovered that were not vis-
ible in the transistor-level simulations, point to necessary improvements in the simulation
setup. In parallel to the reproduction of the simulation results, already confirmed issues,
as for example the bypass mode which can only be triggered by multiple input events in
short succession, can be improved for the next circuit generation.
The execution of the spike-based extension of the single-neuron modeling competition
on HICANN DLS 3 must be preceded by an implementation of calibration algorithms for
the neuron circuits. During that process the data sets can serve as a test setup for the
calibration. Due to the accelerated nature of the circuits, the long execution times observed
in the transistor-level simulations do not pose a problem on hardware. This should allow
to run the full data sets. Additionally, the availability of 32 synapses per neuron allows
to avoid the issue of truncated synaptic weights by using multiple synapses. However, in
comparison to transistor-level simulations, it is more difficult in hardware measurements
to find the causes of decreased performance such as the saturating adaptation current. In
these cases, the hardware measurements can be accompanied by fast software simulations
of the Exess neuron, where the impairing effects can be investigated in an isolated fashion.
To this end, the implementation of the Exess neuron needs to be extended to allow for the
modeling of hardware restrictions. One aspect, a more realistic modeling of OTA circuits,
which allows for example to simulate their saturation, has already been implemented by
Maria Susanna Fuhrmann (Fuhrmann, in prep.).
For the reproduction of the AdEx firing patterns on chip the circuit parameters found in
the transistor-level simulation can be used as a starting point, however, as the simula-
tions were performed for a typical neuron, the parameters will most likely not directly
produce the desired patterns without additional tuning. Due to fast emulation times the
parameter tuning and the necessary parameter space explorations are significantly less
time-consuming and might even allow to find a parameter set for the irregular firing pat-
tern, which was not possible in simulation due to prohibitively long simulation times.
If the newly designed multi-compartment and plateau potential circuits are functional as
suggested by the performed simulations, the BAC firing mechanism is a natural test case
of moderate complexity. As the BAC firing mechanism showed to be sensitive to tem-
perature variations in simulation, a detailed measurements on the magnitude of possible
temperature effects and especially their dependence on PPU operation, on the chip should
be performed. Additionally, it should be evaluated to what extend the circuit behavior is
stable within the temperature range that can be measured during normal operation.
The next step is to include the BAC firing mechanism in a practical application example
that uses the capability of a single neuron to act as a coincidence detector between its
dendritic and somatic input. This can yield information on the necessity of possible circuit
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extensions such as, for example, plateau potential lengths that vary depending on the
intensity of glutamatergic stimulation (Antic et al., 2010). A high-level description of a
use case can be found in Larkum (2013), where it is hypothesized that the BAC firing
mechanism can be the basis for associative computations in the cortex.
A key challenge for accelerated spiking neuromorphic hardware is to realize efficient learn-
ing mechanisms for computational tasks. A mapping of a backpropagation algorithm to
the HICANN chip has been demonstrated by Schmitt et al. (2017) with the weight updates
being calculated off-chip. To fully exploit the speedup of the hardware system the cal-
culation of the weight updates must be performed on chip, as has been demonstrated by
Friedmann et al. (2016).
One possible candidate for a hardware experiment can be found in Schiess et al. (2016),
where the authors describe a plasticity rule for supervised and reinforcement learning that
makes use of a multi-compartment neuron model with active dendrites. A mapping of this
learning rule onto the HICANN DLS can allow to explore the computational potential of
the newly implemented multi-compartment and plateau potential circuits.

88



Appendices

A Additional Figures
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Figure 64: Comparison between the circuit simulation of HICANN DLS 3 and the AdEx reference
in the fourth data set, which shows a high performance. Top: On the left a comparison
of the leak current over the membrane voltage in hardware domain is shown. In con-
trast to the reference (red) leak conductance (slope) is not constant for the circuit (blue).
The data is extracted from a transient simulation and thus noisy. The right plot shows
the membrane voltage in the circuit simulation in hardware domain. Center: The left
plot shows a comparison of the adaptation currents (colors as before). The right plot
shows that the excitatory synaptic weight and the synaptic time constant match the
reference well. Bottom: Comparison of the membrane potentials over time.
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Figure 65: Comparison between the circuit simulation of HICANN DLS 3 and the AdEx reference
in the ninth data set, which shows the lowest performance. Top: On the left a compar-
ison of the leak current over the membrane voltage in hardware domain is shown. In
contrast to the reference (red) leak conductance (slope) is not constant for the circuit
(blue). The data is extracted from a transient simulation and thus noisy. The right plot
shows the membrane voltage in the circuit simulation in hardware domain. Center:
The left plot shows a comparison of the adaptation currents (colors as before). The
right plot shows that the excitatory synaptic weight and the synaptic time constant
match the reference well. Bottom: Comparison of the membrane potentials over time.
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B Neuron parameters for AdEx firing patterns

B.1 PyNN

PyNN parameter PyNN unit A B C D E F G H

cm nF 0.2 0.2 0.13 0.2 0.2 0.1 0.1 0.1
tau_m ms 5 5 5 5 5 5 5 5
v_rest mV -70 -70 -58 -58 -70 -65 -65 -60
v_reset mV -58 -58 -50 -46 -58 -47 -47 -48
v_thresh mV -50 -50 -50 -50 -50 -50 -50 -50
delta_T mV 2 2 2 2 2 2 2 2
a nS 2 2 4 2 -10 -10 15 -11
b nA 0.0 0.06 0.12 0.1 0.0 0.03 0.3 0.03
tau_w ms 30 300 150 120 300 90 90 130
tau_refrac ms 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I_stim nA 0.5 0.5 0.4 0.41 0.21 0.11 0.35 0.16

Table 4: Collection of PyNN parameters for the AdEx firing patterns, originally from Naud et al.
(2008), modified to match figures in Naud et al. (2008) by Paul Müller. A: tonic spiking,
B: adaptation, C: initial bursting, D: regular bursting, E: delayed accelerated, F: delayed
regular bursting, G: transient spiking, H: irregular firing.
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B.2 HICANN DLS 3

DLS 3 parameter Unit A B C D E F G

v_leak V 0.60 0.60 0.60 0.60 0.60 0.60 0.60
v_leak_adapt V 0.60 0.60 0.60 0.60 0.60 0.60 0.60
v_reset V 0.72 0.62 0.78 0.80 0.72 0.806 0.806
v_thresh V 1.00 1.00 0.83 1.00 1.00 1.00 0.95
i_bias_leak µA 1.00 1.00 1.00 1.00 1.00 1.00 1.00
i_bias_leak_sd µA 0.74 0.76 0.76 0.77 0.76 0.77 0.77
i_bias_res µA 1.00 1.00 1.00 0.70 1.00 1.00 1.00
i_bias_res_sd µA 1.00 1.00 1.00 1.00 1.00 1.00 1.00
i_bias_adapt µA 1.00 1.00 1.00 1.00 1.00 1.00 1.00
i_bias_adapt_sd µA 0.05 0.25 0.25 0.25 0.21 0.22 0.25
i_bias_adapt_res µA 0.50 0.11 1.00 0.05 0.08 0.15 0.15
i_bias_adapt_w µA 0.02 0.05 0.08 0.14 0.02 0.14 0.35
i_stim µA 0.071 0.077 0.133 0.080 0.025 0.030 0.094
en_neg_va digital False False False False True True False
en_pos_vw digital True True True True True False True
en_exp digital False True True True True True True
exp_weight_b digital 7 6 7 5 7 6 7

en_mem_cap digital (True, True, True, True, True, True)
en_adapt digital (True, True)
en_ana_in digital True
highs_leak digital False
highs_res digital True
en_syn_i_exc digital False
en_syn_i_inh digital False
i_bias_syn_gm_exc µA 0.02
i_bias_syn_gm_inh µA 0.02
i_bias_syn_res_exc µA 0.8
i_bias_syn_res_inh µA 0.8
holdoff_time clk cycles 1
adaptation_time clk cycles 13
refrac_time clk cycles 15
refrac_clk_freq MHz 10

Table 5: Collection of HICANN DLS 3 parameters for the AdEx firing patterns. A: tonic spiking,
B: adaptation, C: initial bursting, D: regular bursting, E: delayed accelerated, F: delayed
regular bursting, G: transient spiking. As these experiments are performed with a single
neuron, all multi-compartment switch parameters are set to False.
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C Neuron parameters for BAC firing

C.1 Exess

PyNN parameter PyNN unit NMDA Ca Soma

cm nF 0.2 0.2 0.2
tau_m ms 10.0 10.0 10.0
v_rest mV -70.0 -70.0 -70.0
v_reset mV -25.0 -25.0 -70.6
v_thresh mV -55.0 -55.0 -55.1
v_spike mV -54.9 -54.9 -5.0
delta_T mV 1.0 1.0 1.0
a nS 4.0 4.0 4.0
b nA 0.08 0.08 0.08
tau_w ms 150.0 150.0 150.0
tau_refrac ms 60.0 60.0 1.0
tau_syn_E ms 5.0 5.0 5.0
E_rev_E mV 0.0 0.0 0.0
w_exc µS 0.02 0.0 0.0

Table 6: Collection of PyNNparameters for the BACfiringmechanism, whichwere then translated
into exess parameters using the transformations in section 4.1. For the transformation
αv = 13.33 and ωv = 1.27 was used. The intercompartment conductances in hardware
domain were set to gicc = 0.5 µS and the current stimulus for the soma was Istim =

0.25 µA.

C.2 HICANN DLS 3
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DLS 3 parameter Unit NMDA Ca1 Ca2 Soma

v_leak V 0.65 0.65 0.65 0.60
v_leak_adapt V 0.65 0.65 0.65 0.60
v_reset V 1.20 1.20 1.20 0.60
v_thresh V 0.75 0.75 0.75 1.10
i_bias_leak µA 1.00 0.80 0.80 0.80
i_bias_leak_sd µA 1.00 0.80 0.80 0.80
i_bias_res µA 1.00 1.00 1.00 1.00
i_bias_res_sd µA 1.00 1.00 1.00 1.00
i_bias_adapt µA 1.00 1.00 1.00 1.00
i_bias_adapt_sd µA 0.02 0.02 0.02 0.02
i_bias_adapt_res µA 0.02 0.02 0.02 0.02
i_bias_adapt_w µA 0.00 0.00 0.00 0.00
i_bias_nmda µA 0.70 1.00 0.90 1.00
i_stim µA 0.00 0.00 0.00 1.50
en_neg_va digital False False False False
en_pos_vw digital True True True True
en_exp digital False False False True
en_nmda digital True False True False
en_scon digital True False True False
en_soma digital False True False True
en_bot digital False False False False
en_right digital False True False False
en_ana_in digital False False False True
exp_weight_b digital 0 0 0 0
holdoff_time clk cycles 10 10 10 1
refrac_time clk cycles 30 30 30 10
refrac_clk_freq MHz 1 1 1 10

en_mem_cap (soma) digital (True, True, False, True, False, False)
en_mem_cap (others) digital (False, False, False, False, True, True)
en_adapt digital (False, False)
highs_leak digital False
highs_res digital True
en_syn_i_exc digital True
en_syn_i_inh digital True
ib_nmda_mul4 digital True
i_bias_syn_gm_exc µA 1.00
i_bias_syn_gm_inh µA 1.00
i_bias_syn_res_exc µA 0.1
i_bias_syn_res_inh µA 0.1
adaptation_time clk cycles 1

Table 7: Collection of HICANN DLS 3 parameters for BAC firing.
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D Single-Neuron Modeling Competition

D.1 Differential Evolution

Parameter AdEx 0 AdEx 1 AdEx 2

τm [ms] 2.84 2.63 2.49
EL [mV] -59.05 -59.18 -58.81
VT [mV] -37.13 -38.60 -39.36
Vth [mV] -36.53 -37.43 -37.92
Vreset [mV] -57.55 -60.56 -60.85
∆T [mV] 2.51 1.74 1.86
τw [ms] 89.4 62.3 91.6
a [nS] 1.67 1.09 2.49
b [nA] 0.012 0.016 0.010

Cm [pF] 0.044
Erev,exc [mV] 0.0
Erev,inh [mV] -80.0
τrefrac [ms] 0.1

Table 8: Parameter sets determined by the differential evolution algorithm. The parameters in the
lower part were fixed during evolution (Erev,exc/inh as no spike inputs is used in simulation,
Cm as only the leak conductance needs to be determined which is gL = τm

Cm
. As τm evolves

the membrane capacitance can be kept constant).

Parameter Min Max

VT [mV] -41.0 -37.0
Vth [mV] -45.0 -15.0
Vreset [mV] -65.0 -45.0
∆T [mV] 0.0 5.0
τw [ms] 50.0 200.0
a [nS] -10.0 10.0
b [nA] 0.0 0.15

Table 9: Parameter ranges within which the neuron parameters can evolve. Wherever possible
the parameter ranges were narrowed down by comparison to the voltage recordings of
the biological neuron (e.g. spike threshold and reset voltage).
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D.2 Input Parameters for Spike-Based Extension

Parameter 0 1 2 3 4 5

wexc [µS] 5.0e-3 8.8e-3 1.3e-2 5.0e-3 8.8e-3 1.3e-2
winh [µS] 5.0e-3 8.8e-3 1.3e-2 5.0e-3 8.8e-3 1.3e-2
Ioffset [nA] 0.1 0.1 0.1 0.3 0.3 0.3

Parameter 6 7 8 9 10

wexc [µS] 5.0e-3 8.8e-3 1.3e-2 5.0e-3 1.3e-2
winh [µS] 5.0e-3 8.8e-3 1.3e-2 5.0e-3 1.3e-2
Ioffset [nA] 0.5 0.5 0.5 0.7 0.7

Table 10: Input parameters for spike-based extension for the data sets with input frequency ν =

500Hz and τsyn = 1ms.
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D.3 HICANN DLS 3 Neuron parameters

DLS 3 parameter Unit AdEx0

v_leak V 0.705
v_leak_adapt V 0.705
v_reset V 0.713
v_thresh V 0.831
i_bias_leak µA 1.000
i_bias_leak_sd µA 0.827
i_bias_res µA 0.777
i_bias_res_sd µA 1.000
i_bias_adapt µA 1.000
i_bias_adapt_sd µA 0.142
i_bias_adapt_res µA 0.085
i_bias_adapt_w µA 0.699
en_neg_va digital False
en_pos_vw digital True
en_exp digital False
exp_weight_b digital 7
en_mem_cap digital (True, True, True, True, True, True)
en_adapt digital (True, True)
en_ana_in digital False
highs_leak digital False
highs_res digital True
en_syn_i_exc digital False
en_syn_i_inh digital False
i_bias_syn_gm_exc µA 1.000
i_bias_syn_gm_inh µA 1.000
i_bias_syn_res_exc µA 0.550
i_bias_syn_res_inh µA 0.565
holdoff_time clk cycles 1
adaptation_time clk cycles 1
refrac_time clk cycles 3
refrac_clk_freq MHz 10

Table 11: Neuron parameters for the typical neuron used in the spike-based extension of the
single-neuron modeling competition. They were determined from the first AdEx pa-
rameters in table 2 using the calibration algorithms.
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E Software Versions and HICANN DLS 3 Schematic

Experiment hicann-dls-fc hicann-dls-testbench single-neuron-benchmarks

Figure 10 298ba44b8d 832095da5c e2fedee2193
Figure 25 a6b81712b9a 46641365ab2 e2fedee2193
Figure 26 a6b81712b9a 46641365ab2 e2fedee2193
Figure 27 (left) a6b81712b9a 4051733eded c5953085720
Figure 27 (right) d771a338707 984d3a5639f e8043311465
Figure 29 d771a338707 984d3a5639f e8043311465
Figure 30 d771a338707 984d3a5639f e8043311465
Figure 31 298ba44b8d 832095da5c e2fedee2193
Figure 32 298ba44b8d 832095da5c e2fedee2193
Figure 33 - Figure 45 d771a338707 984d3a5639f e8043311465
Figure 51 - Figure 57 d771a338707 984d3a5639f e8043311465
Figure 60 d771a338707 984d3a5639f e8043311465
Figure 61 - Figure 63 15f87b990ca 99666e699c8 c814220c02a

Table 12: Git commit ID for the used repositories to create corresponding figures. The neuron
schematic is in the hicann-dls-fc repository, the neuron testbench and calibration algo-
rithms are in hicann-dls-testbench and the experiments in single-neuron-benchmarks.
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