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Abstract

The Boltzmann machine is an artificial neural network of stochastic binary units.
It is a very general model which allows the implementation of efficient machine
learning algorithms. These algorithms make the Boltzmann machine a powerful
discriminative and generative model. The sampling steps of a Boltzmann machine
can be calculated highly in parallel and are typically limited by the Von-Neumann
bottleneck of conventional computer architectures.
To overcome this limitation, this thesis aims to implement a Boltzmann machine of

three sampling units on the Spikey neuromorphic computing platform. This device
emulates leaky integrate-and-fire neurons highly accelerated compared to neurons
in the human brain. Every sampling unit is modeled as a thoroughly calibrated
network of 61 neurons.
There are two networks implemented which closely approximate the Boltzmann

distribution: one with positive weights and another with negative weights. Meas-
urements of the probability distributions of the different states are consistent with
the fitted Boltzmann distribution. Further high precision measurements with rel-
ative uncertainties less than 0.5% show systematic deviations from the Boltzmann
distribution.

Zusammenfassung

Die Boltzmann-Maschine ist ein künstliches neuronales Netzwerk welches aus bi-
nären Zufallsvariablen besteht. Für dieses sehr allgemein formulierte Netzwerk sind
effiziente Lernalgorithmen bekannt. So erzielt die Boltzmann-Maschine gute Ergeb-
nisse sowohl als diskriminatives als auch als generatives Modell. Die Berechnungen
sind stark parallelisierbar und auf konventionellen Systemarchitekturen typischer-
weise durch den Von-Neumann-Flaschenhals limitiert.
In dieser Arbeit wird versucht eine Boltzmann-Maschine auf dem Spikey Chip

umzusetzen, um diese Parallelisierbarkeit auszunutzen. Dieser integrierte Schaltkreis
emuliert „Integrate-and-Fire-Neuronen“, welche stark beschleunigt sind, verglichen
mit Neuronen im menschlichen Gehirn. Jede Zufallsvariable der Boltzmann-Maschi-
ne wird von einem sorfältig kalibrierten Netzwerk aus 61 Neuronen repräsentiert.
Während dieser Arbeit wurden zwei Netzwerke erstellt, deren Zustandsverteilung-

en der Boltzmann-Maschine sehr nahe kommen: ein Netzwerk mit positiven, ein wei-
teres mit negativen Gewichten auf den Verbindungen. Die zugehörigen gemessenen
Wahrscheinlichkeiten der Zustände stimmen mit den angepassten Boltzmann Vertei-
lungen im Rahmen der erwarteten Fehler überein. Systematische Abweichungen zur
Boltzmann Verteilung zeigen sich bei weiteren Präzisionsmessungen mit relativen
Fehlern der Wahrscheinlichkeiten von unter 0.5%.
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1. Introduction

The analysis of noisy or incomplete data as performed in the brain is a difficult task
for computer algorithms. The Boltzmann machine – an artificial neural network intro-
duced by Ackley et al. [1985] – is capable of learning important aspects of such a data
set [Fischer and Igel, 2012]. The trained Boltzmann machine can be used for classifica-
tion of unknown samples and furthermore as a generative model. It was shown that it
outperforms other common machine learning algorithms, such as Support Vector Ma-
chines and Linear Discriminative Analysis models, for particular tasks [Srivastava and
Salakhutdinov, 2014].
The learning and sampling process of the Boltzmann machine has a high computa-

tional cost [Fischer and Igel, 2012], however it can be processed highly in parallel [Ackley
et al., 1985]. This thesis aims to implement a Boltzmann machine on the neuromorphic
Spikey chip [Pfeil et al., 2013]. The sampling process emulated by this integrated circuit
is not only parallel by design for all neurons, but is also performed at a speed-up factor
of ≈ 104 compared to biological neurons.
Additionally, this work is as test of the usability of the Spikey device and the PyNN

programming interface. It is one the first experiment carried out on Spikey v5 that
involves a large number of neurons and synapses. Methods were developed to efficiently
correct the hardware variations. This project may therefore serve as a reference for
future network emulation experiments with Spikey.

2. Emulation Platform and Computational Model

Section 2.1 introduces the Spikey chip and the implemented leaky integrate-and-fire
(LIF) neuron model with conductance-based synapses. The Boltzmann machine is de-
scribed in section 2.2 and its emulation with LIF neurons in section 2.3.

2.1. The Spikey Neuromorphic Computing Platform

The network emulations for this thesis were run on a Spikey v5 chip [Pfeil et al., 2013].
This is the latest generation of a neuromorphic chip with 384 analog neurons. In sec-
tions 2.1.1 and 2.1.2 the implemented neuron and synapse model are discussed. A short
overview of the layout and signal paths on the chip is given in the following. The chip
design is described in detail in [Schemmel et al., 2006, 2007, Indiveri et al., 2011].
Figure 1 shows a photo of the microchip with the signal path highlighted for one

neuron. The chip is separated into a left and a right block of synapses and neurons
each consisting of 192 neurons and 256 synapse line drivers. Therefore, every neuron
can receive input from up to 256 different sources. The way these neurons are addressed
with the PyNN [Davison et al., 2009] interface is shown in a sketch of the Spikey layout in
appendix A. The neuron acquires its input with an excitatory and an inhibitory vertical
input line that crosses the horizontal input lines. These horizontal input lines are fed by
the synapse line drivers which convert a binary spike input signal into a voltage curve.
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Figure 1: Photograph of the Spikey chip with a signal path for one neuron high-
lighted [Pfeil et al., 2013]. The neuron is indicated with a blue triangle. It
receives its input from two input lines which cross the horizontal input lines.
At the crossings which represent the synapses – colored in green – one can
choose a 4 bit connection weight.

For each horizontal line the signal is either excitatory or inhibitory. The crossings of the
horizontal lines with the neuron input lines represent synapses with a 4-bit connection
weight each. The synapses convert the voltage curve into a current curve with the
synaptic weight as a scale factor.

2.1.1. Implemention of the Leaky Integrate-and-Fire Neuron Model

The implemented neurons are designed to approximate conductance-based leaky inte-
grate-and-fire (LIF) neurons. Such a neuron is modeled by a membrane capacitance
Cmem that is charged or discharged by a current resulting from the leakage conductance
gl towards the rest potential El. The capacitor can also receive excitatory or inhibitory
current input Iexc/inh through the synaptic conductances. If the membrane voltage Umem
reaches the threshold potential Uthresh, the neuron spikes and excites or inhibits neurons
connected through the synaptic connections. At the same time the membrane voltage is
clamped to the reset potential Ureset for a refractory time τref . This temporal evolution
of the membrane potential is defined by

−Cmem
dUmem
dt

= gl (Umem − El) + Iexc(t) + Iinh(t) (1)

and the reset condition

Umem(t) = Ureset for t ∈ (tspike, tspike + τref) if Umem(tspike) = Uthresh . (2)
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Figure 2: Circuit representation of the conductance-based LIF neuron model. If the
membrane potential reaches the threshold potential it is clamped to the reset
potential and a pulse is sent to the synaptic network.

The excitatory or inhibitory synaptic input (cf. section 2.1.2) from the i-th connected
neuron is given by the conductance gexc/inh

i (t) and the reversal potentials Eexc/inh:

Iexc/inh(t) =
∑
i

g
exc/inh
i (t)

(
Umem(t)− Eexc/inh

)
. (3)

Figure 2 shows a schematic of the circuit representation of the LIF neuron.

2.1.2. Synaptic Input and Spike Routing

The synaptic circuits on the device model conductance-based exponentially decaying
synapses. Figure 3 shows a schematic of the synapse array and the spike routing. The
excitatory and inhibitory conductances gexc/inh(t) are proportional to the control currents
from the input lines. Since the input line sums up all input currents from the synapses,
the resulting conductance is a linear sum over the feedback lines i that it crosses:

gexc(t) = const ·
∑
i

ciIi(t) . (4)

The synaptic weight ci is a programmable 4-bit value and the current curve Ii(t) is
generated by the i-th synapse from the voltage curve of the i-th synapse line driver.
This equation holds for the inhibitory input as well. At each incoming spike a synapse
line driver generates a voltage curve. Its shape can be configured for each driver in its
rise time, fall time and amplitude. Additionally, all line drivers share one parameter
that sets the voltage offset from which the voltage rises within the rise time. In [Petkov,
2012, p. 79] a sketch of the voltage curve and the resulting current curve generated by
the synapses can be found.
The routing of the spikes to the synapse line drivers underlies some constraints of the

hardware routing architecture. Each block has 256 synapse line drivers of which each
can take input from one of four different spike sources. The first 192 synapse line drivers
can be connected to:
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Figure 3: Schematic of the synapse array and the generation of the current curve to
generate the excitatory and inhibitory conductance (cf. [Petkov, 2012, Figure
4.7]).

• the neuron on the same block with the same index.

• the neuron on the adjacent block but with even and odd indices permuted, partic-
ularly neuron 0 connects to driver 1, neuron 1 connects to driver 0, etc..

• the same input as the neighboring synapse line driver.

• externally generated events.

Those input switches are illustrated in Figure 3 as well. The synapse line drivers 192 to
255 cannot get input from neurons of the same or adjacent block. However, there is the
additional option to receive an input signal from one of the pins as spike input as well.
The routing options for the neuron feedback to the synapse line drivers are summarized
in appendix B.

2.2. The Boltzmann Machine

A Boltzmann machine is an artificial neural network consisting of stochastic units which
are symmetrically connected. The state zk ∈ {0, 1} of every unit k is a binary random
variable, where zk = 1 is called on-state. The probability to be in the on-state is
determined by the neuron’s bias bk, the connection weight wkj and the state of the
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connected neurons zj :

p (zk = 1|zj , j 6= k) = 1
1 + exp

[
−
(
bk +

∑
j 6=k wkjzj

)] . (5)

For such a network the probability distribution of the states will converge towards the
Boltzmann distribution as a stationary distribution [Hinton, 2007]. Then, the probability
of a state ~z = (zi)Ni=1 in a network of N sampling units is given by the Boltzmann
distribution

p(~z ) = 1
Z

exp [−E (~z )] (6)

with the energy function

E(~z ) = −1
2
∑
i 6=j

wijzizj −
∑
i

bizi . (7)

The partition function
Z =

∑
~z

exp [−E (~z )] (8)

ensures the correct normalization.
This neural network can be modeled with spiking neurons [Buesing et al., 2011]. The

state zk(t) is given by the spike times of neuron k. It is switched to one when the neuron
fires and switched back to zero after the refractory period τ :

zk(t) =
{

1, if neuron k fired in (t− τ, t]
0, otherwise

. (9)

Within the on-period the neuron cannot spike again. This is ensured by the instanta-
neous firing rate defined by

rk(t) = lim
∆t→0

p(spike in [t, t+ ∆t))
∆t =

{ exp(vk(t))
τ , if zk(t) = 0

0, if zk(t) = 1
. (10)

The variable vk(t) is called the abstract membrane potential and is calculated to be

vk(t) = bk +
∑
j 6=k

wkjzj(t) , (11)

given the previous definitions (9), (10) and the target distribution (6). The stochastic
firing behavior (10) of a neuron is therefore controlled by its membrane potential. It
is the sum of a constant offset bk and the rectangular postsynaptic potentials wkjzj(t).
The probability

p(zk = 1|vk) = 1
1 + exp [−vk]

(12)

to be in the on-state, given the membrane potential, is called the activation function. It
is proportional to the mean firing rate νk of the neuron.
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Figure 4: Sketch of the implemented Boltzmann machine with sampling units S, states
z, biases b and weights w.

2.3. Boltzmann Sampling with Deterministic Spiking Neurons
Petrovici et al. [2013] showed that deterministic leaky integrate-and-fire neurons in a
noisy spiking environment can sample from Boltzmann distributions. This holds for
the high-conductance-state (HCS) approximation that assumes that a neuron’s total
conductance

gtot(t) = gl + ginh(t) + gexc(t) (13)

is large compared to the leakage conductance gl. In the high-conductance-state the
membrane voltage follows the effective leak potential

ueff = glEl + ginh(t)Einh + gexc(t)Eexc
gtot(t)

(14)

nearly instantaneously since the effective time constant of the membrane dynamics,

τeff = Cmem
gtot(t)

(15)

goes to zero. With this approximation the activation function (12) can closely be re-
produced [Petrovici et al., 2013] if the abstract membrane potential vk is identified with

vk = ūk − ū0
k

α
, (16)

where ū0
k and α are constants and ūk denotes the average membrane potential. The

constant ū0
k is equivalent to the zero-bias condition, i.e.: p(zk = 1|vk = ū0

k) = 1
2 .

3. Methods
This thesis aims to implement a Boltzmann machine with three sampling units on the
spikey chip. Figure 4 sketches this network with sampling units S1 to S3, states z1 to
z3, biases b1 to b3 and weights w12, w13 and w23. The implementation of the sampling
units is described in section 3.1, the implementation of the connections in section 3.2.
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The calibration of those network components is explained in section 3.3. Section 3.4
covers the evaluation of the sampling statistics of the network and the comparison to
the Boltzmann distribution.
All network emulations were implemented with PyNN. PyNN is a simulator-independent

description language for building neural network models. In this thesis a back-end of
PyNN was used that maps the neural network on the Spikey chip and records the spike
trains. The spikey_sampling python module created during this thesis is thoroughly
documented in [Stöckel, 2014].

3.1. Boltzmann Sampling Unit Implementation

The implementation of the abstract Boltzmann sampling unit with LIF neurons is de-
scribed in two parts. Section 3.1.1 covers the implementation of the refractory mechanism
while section 3.1.2 describes the implementation of the bias and the stochastic behavior.

3.1.1. Synfire Chain Refractory Mechanism

The configuration space of the Spikey chip does not provide precise refractory times that
are much longer than the synaptic delay. Therefore, we cannot implement Boltzmann
sampling units with single LIF neurons since the Boltzmann machine assumes an instan-
taneous interaction. To model the sampling units with LIF neurons this thesis therefore
presents a mechanism to implement an effective refractory period with a synfire chain.
At every spike of the sampling unit the synfire chain network is excited and the signal
propagation time defines the refractory period. This prolongs the refractory period sig-
nificantly in a controlled way. This network – called sampling unit network or simply
sampling unit in the following – consists of one LIF neuron that defines the state of the
abstract sampling unit and a synfire chain that implements the refractory mechanism.
Figure 5 illustrates this network. The synfire chain is a feed-forward network of neurons.
Every excitatory pool En excites the next excitatory pool En+1 and the next inhibitory
pool In+1. Therefore, an excitation of the first group starts a sequence of excitations of
the populations along the chain. To enforce the same runtime of each propagating signal
along the neuron populations, it is designed that every neuron in each population spikes
exactly once for each signal. Otherwise, the spiking activity is likely to disperse along
the synfire chain. This dispersion is inhibited by backward inhibition of the excitatory
pools from population In to In−1. Feed-forward inhibition – inhibitory connections from
In to En – as successfully demonstrated by Pfeil et al. [2013] proved to be less reliable
and entailed a higher parameter tuning effort.
If the sampling neuron S spikes, it starts the synfire chain by exciting the two first

populations of the chain which are E1 and I1. The spiking activity propagates along
the synfire chain and therefore the sampling neuron is strongly inhibited due to the
inhibitory connections towards it. The membrane potential is pulled towards the in-
hibitory reversal potential. While the synfire chain is active the sampling neuron is
effectively deactivated since no other presynaptic connection is strong enough to com-
pensate the strong inhibition. The duration of the signal propagation along the synfire
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Figure 5: A network that models a Boltzmann sampling unit. The round circle repre-
sents a single LIF neuron, the rectangles populations of neurons. Grey shaded
rectangles are excitatory neuron pools, the white rectangles are inhibitory neu-
rons. The connection between the neurons are indicated by lines where the
circle indicates the target. These connections between the neuron populations
are all-to-all connections. A black circle represents an excitatory connection
while a white circle represents an inhibitory connection.

chain is therefore interpreted as a refractory period. At the end of the synfire chain
the last excitatory population excites the sampling neuron. This lifts the membrane
potential towards the neuron’s mean free potential quickly. Figure 6 shows the spike
activity within a sampling unit network for one excitation of the sampling neuron. The
membrane potential of the sampling neuron S is shown as well.

3.1.2. Implementation of the Stochasticity of the Sampling Neuron

The close reproduction of the desired activation function (12) shown by Petrovici et al.
[2013] holds for a spiking noisy environment. The sampling neuron of the sampling
unit network is therefore connected to an excitatory and inhibitory input of Poisson-
distributed spikes. To fulfill the HCS assumption, the stimulus has to be at a high rate.
As depicted in Figure 7, the sampling neuron receives also input from another external
spike source called the bias stimulus. It fires regularly at a high rate. Its purpose is to
generate a constant synaptic input current and therefore shift the mean free membrane
potential ū to a higher or lower value according to the connection weights. We can
therefore vary the bias bk of the k-th sampling unit according to

bk = ūk − u0
k

α
. (17)

Equation (17) results from the activation function in terms of the LIF domain (cf. equa-
tion (16)). The constants u0

k and α are fitted to the measured activation function. The
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Figure 6: The upper plot shows the activity of the neurons of one sampling unit network
after an excitation of the sampling neuron. The cross at neuron index 0 is the
spike time of the sampling neuron S. The spike times of neurons of the chain
are indicated by filled squares (excitatory) and circles (inhibitory). In the
lower plot the membrane voltage of the sampling neuron is shown.

N B

S

Figure 7: Schematic of the sampling unit network with the noise stimulus N and bias
stimulus B from the external event generator. Each of the two populations
consist of an excitatory and an inhibitory pool. The Poisson-distributed spikes
of the noise population are sampled independently for the excitatory and the
inhibitory pool. The bias stimuli are regularly distributed spikes at high rates.
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S1 S2

Figure 8: Schematic of the realization of a positive connection weight between two sam-
pling unit networks. The synaptic connections that implement the Boltzmann
connection are drawn with bold black lines. The small black circles within the
excitatory and inhibitory groups indicate single neurons within a population.

scale parameter α corresponds to the dynamic range of the membrane potential and
therefore the strength of the noise input. Parameter u0

k refers to the difference between
the mean free membrane potential and the threshold potential.

3.2. The Boltzmann Connections

The Boltzmann connections between the random variables are implemented with many
synaptic connections between the synfire chains and the sampling neurons. Figure 8
shows a schematic of the connection between two sampling unit networks with a positive
weight. It is implemented with excitatory connections from one neuron of each synfire
chain population to the target sampling neuron. Additionally the connection from the
neuron of the last synfire chain population to the sampling neuron is inhibitory. Its
purpose is to shift the membrane potential of the target neuron back to its mean free
potential. This process approximates a rectangular postsynaptic potential. A connection
with a negative Boltzmann weight is implemented by connecting the selected neurons
from the inhibitory pools I1, . . . , IN−1 to the other sampling neuron. The selected neuron
from the last excitatory population EN is connected excitatorily to the other sampling
neuron.
There are several advantages in constructing the synaptic connections between the

synfire chain and the sampling neuron and not simply between the two sampling neurons.

• The neuron-neuron connection cannot be inhibitory since the sampling neurons
are all defined to be excitatory, as they have to excite their first synfire chain
population.

• The interaction time is in the same order as the refractory time by construction:
one synfire chain implements the refractory period as well as the interaction be-
tween the sampling units.

• The curve of the post synaptic potential (PSP) can be varied to approximate a
rectangular PSP (cf. section 2.2).
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• The dynamic range of the connection strengths between the sampling neurons can
be changed over several orders of magnitude. This is explained in the following
paragraph.

The dynamic range of a single neuron-neuron connection is limited to 16 different values.
The proposed implementation of the connection involves as many synaptic connections
as the length of the synfire chain. Each Boltzmann connection of the network presented
in section 4 therefore consists of 5 synapses in each direction. Furthermore, the strength
of the synapse line drivers can be varied (see section 2.1.2). This cannot be varied for the
sampling neuron since the strength has to be set to the maximum, otherwise it would
not be strong enough to start the synfire chain.

3.3. Calibration of the Network Components
The analog circuits of the Spikey chip are subject to variations due to the manufacturing
process. All measurements were carried out with the uncalibrated Spikey with chip num-
ber 504. Especially handling the variations of the strength of the synaptic connections
is crucial. The same connection strength may excite one neuron to spike twice but may
not be sufficient to excite another neuron to spike. Not only the synapses do vary in
their connection strength but also the synapse line drivers in their pulse shape and the
neurons in the input gain factor and resting potential. These variations influence the
effective connection strength as well.
The weight matrix, which is the result of a calibration, is strongly dependent on the

neural circuits on the hardware the network is mapped to. Therefore all parts of the
Boltzmann machine are calibrated within the complete network and not as an isolated
part.

3.3.1. Calibration of the Synfire Chain

The synfire chain is calibrated to ensure that every neuron spikes ideally once on every
activation of the chain. Figure 9 shows a flowchart of the calibration process. After
an emulation of the network the spike trains of the neurons in the synfire chain are
evaluated. At first the algorithm determines the times at which the chain should have
started based on the spike times of the initial excitatory synfire chain pool. One cannot
use the spike times of the sampling neuron S due to ghost spikes1. A correct estimate
of count of synfire chain cycles is required for a reliable calibration. The spike times of
the initially activated excitatory group have to fulfill two conditions for triggering that
the chain should have started at time T :

• There are Nthresh different neurons that spiked in [T, T + twindow)

• The first condition was never fulfilled within [T − tsilent, T )
1 Spike events that are accidentally recorded although they never happened on the membrane [Brüderle,
2009, p. 144]. This only happens at very low spike rates all over a block of 64 neurons. This regime
of an activity next to zero is reached for example when measuring the lower part of the activation
function (cf. section 4.4).
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Figure 9: Flowchart of the calibration process. The spike times of the different chains
in the network are evaluated in parallel for each emulation.

The choice of the parameters Nthresh, twindow and tsilent is explained in section 4.2.
Once given the starting times of the chain, the spike times of the next excitatory

and inhibitory group are evaluated. The spike count n of every neuron is compared to
the desired count ntarget which is the number of activations of the synfire chain. This
difference determines an update factor f that was chosen to be

f (n, ntarget) = 2fmax
π

arctan
(
π

2r
n− ntarget
ntarget

)
. (18)

The update factor is a smooth function with a positive derivative that saturates for
large positive and large negative rate differences at ∓fmax. A linear shape was tested as
well. However, the limitation of the factor f increases the robustness. The parameter
fmax determines the largest relative update of the weights. To prevent a change of the
sign of the weight fmax should be less than 1. The factor r sets the slope of the curve
and therefore the strength of the correction. A larger scale factor r results in a weaker
correction. Its curve is sketched in Figure 10. The new weights of the connections to
the neuron that should have fired ntarget times but fired n times is set to

wnew = wold [1 + f (n, ntarget)] . (19)

An update of the weights with ∆w = const ·f was tested as well but was found to be not
as stable as the update equation (19). This calculated weight wnew has to be discretized
to a 4-bit weight for each synapse2. The updated connection is an n to 1 connection.
It is updated such that the first n′ synapses get the weight bwnewc and the remaining

2 The PyNN implementation uses stochastic rounding to yield discrete weights for the connections
when mapping it to the hardware. If the network configuration is written to the chip multiple times
there are variations in synaptic weights due to stochastic rounding. An alternative solution would be
to configure the seed of the random number generator.
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Figure 10: The curve of the update factor to correct for too much or too few spiking of
a neuron within the chain. The horizontal axis shows the relative difference
of the measured spiking rate of one neuron to the desired target spiking rate.
The weight update factor for a given difference is shown on the vertical axis.

n−n′ are set to dwnewe. The functions bxc and dxe denote the floor and ceiling function,
respectively. The integer value n′ is chosen such that the difference of the mean of the
weight array to the desired weight is minimized.
There is a stop condition in the algorithm to abort the weight update for the next

populations. After the update of the weights towards a synfire chain group, the calibra-
tion routine checks if the activity of this group was close enough to the expected one.
This means that the relative variation of the total count of spikes in the group compared
to the desired count of spikes is less than a specific value, e.g. 0.05. If this variation is
smaller than the threshold, the next group of neurons is updated in the same way.
The calibration algorithm is executed for a fixed number of network emulations. This

is done for simplification and modularization of the program code. The synfire chain
network module with its calibration routine is separated from the network emulation
(cf. [Stöckel, 2014]).

3.3.2. Calibration of the Compensation Strength

The compensation group is the last excitatory group in the sampling network’s synfire
chain. This group excites the sampling neuron to lift its membrane potential up to its
mean free potential. The rise time has to be short compared to the refractory time to
fulfill the conditions for the proposed theory of Boltzmann sampling with LIF-neurons
(cf. section 2.3). On the other hand, the compensation must not be too strong to prevent
an overshoot of the membrane potential.
The compensation strength is calibrated manually by evaluating the autocorrelation
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function of the spike train of the sampling neuron. The spike train of a sampling neuron
is defined by its spike times ti:

ŝ~t (t) =
N∑
i=1

δ(t− ti) . (20)

Before the calculation of the autocorrelation this spike train is convolved with a Gaussian
kernel with width σt:

s~t (t) =
N∑
i=1

exp
[
−1

2

(
t− ti
σt

)2
]
. (21)

In the following, the index ~t is omitted due to readability. The unnormalized autocorre-
lation of the spike train function is calculated as

ρs,s(∆t) = (s ? s) (∆t) =
∫ ∞
−∞

s?(t′)s(t′ + ∆t) dt′ . (22)

It is a measure of the similarity of a signal to itself with a time lag ∆t. Since the spike
train signal is real-valued, the complex conjugation s? is omitted in the following. To
analyze finite-lasting spike trains with small computational effort, the autocorrelation
was calculated in discrete time. The signal s(t) with duration T is processed as an array
sn with

sn = s

(
n · T

NT

)
, (23)

where the count of measured points is NT . This array is cross-correlated with itself as
commonly used in signal processing: the mean of the signal 〈s〉 is subtracted and the
result is normalized to the variance of the signal σ2

s :

ρs,s(∆n) = 1
NT

∑NT
i=1 [(si − 〈s〉) (si+∆n − 〈s〉)]

σ2
s

. (24)

At the boundaries where the sum accesses invalid indices the addend is set to zero. The
shift ∆n corresponds to a correlation time ∆t = T∆n/NT .
The autocorrelation function depends on the width σt of the Gaussian function and

the width of the time bins. To prevent overlapping of the Gaussians of two subsequent
spikes, the width has to be chosen shorter than the shortest expected interval between
two spikes.
The autocorrelation is suitable for calibrating the compensation strength since it shows

enhanced or suppressed spiking after a refractory period. An enhanced spiking probabil-
ity after the refractory period τ compared to the average spiking probability is identified
with an autocorrelation larger than zero at |∆t| > τ , a suppression as an autocorrelation
less than zero.
The calibration using the autocorrelation is cross-checked by looking at the spike-

triggered average (STA) of the membrane potential. This is the average of the membrane
potentials where the time dependent potential curves are aligned with the corresponding
spike times. After the refractory period the membrane potential is expected to rise
quickly towards the mean free potential without an overshoot.
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3.3.3. Configuration of the Bias

Each sampling network has a bias that is related to the mean spike frequency in a network
with all weights set to zero. For each sampling network a target spike frequency νtarget
can be set. After the calibration of the synfire chain the bias is calibrated automatically
as well. The network is run 16 times where the synaptic connection strength of the
excitatory and inhibitory bias stimulus is swept over. It is scanned such that the total
conductance of the synapses is constant. The synapse settings that achieved a firing
rate of the sampling neuron that comes the closest to the target rate is chosen for the
experiments.

3.3.4. Calibration of the Connections

The connections are tuned manually with the help of the cross-correlation of the spike
trains of the two sampling neurons. The cross-correlation of two real valued signals f(t)
and g(t) is given by

ρf,g(∆t) = (f ? g) (∆t) =
∫ ∞
−∞

f(t′)g(t′ + ∆t) dt′ . (25)

The two spike trains ŝi(t) and ŝj(t), which are the sum of δ-functions as in equa-
tion (20), are convolved with a Gaussian kernel with width σt. The cross-correlation
of those two signals is approximately proportional to the probability that the sampling
node j is in the on-state at ∆t given that neuron i fired within −σt < t < σt. As for the
autocorrelation (cf. section 3.3.2) the signals are converted to a time discrete array s(i)

n

with NT sampling points covering the time frame [0, T ) linearily. The index n denotes
the index within the array and i the index of the sampling neuron. The normalized time
discrete cross-correlation with zero padding is given by

ρi,j(∆n) = 1
NT

∑NT
n=1

[(
sin −

〈
s(i)
〉) (

sjn+∆n −
〈
s(j)

〉)]
σiσj

. (26)

The sum is only evaluated for valid indices n that do not access invalid indices of the
array in the second factor. The angular brackets indicate the mean value. The square
roots of the variances of the arrays s(i)

n and s(j)
n are labeled σi and σj , respectively. As in

section 3.3.2, the shift ∆n corresponds to a time lag ∆t = T∆n/NT . Without subtracting
the mean values of the arrays, the denominator is referred to as the unnormalized cross-
correlation.
This cross-correlation of two spike trains is a measure for the spiking of neuron j

induced by neuron i. Since it is symmetric under the exchange of the neuron indices

ρi,j(∆n) = ρj,i(−∆n) , (27)

it is a measure for induced spiking in the backwards direction as well for negative time
lags. Figure 11 shows a sketch of two neurons with a directed connection such that
neuron 2 spikes after neuron 1 with a delay δt. The cross-correlation then shows a peak
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Figure 11: Neuron S1 is connected to neuron S2 such that the second neuron spikes
after the first neuron with a delay δt. The Gaussian convolved spike trains
are shown on the left, the cross-correlation of the spike signals is sketched on
the right.

at ∆t = δt.
The connection weights between the sampling unit networks are tuned with the corre-

lation function of the two sampling neuron spike trains. For excitatory connections the
weights are tuned such that the peaks at the positive correlation time and at the nega-
tive correlation time are of the same height and width. This corresponds to a symmetric
connection in forward and backward direction, in particular with the same strength and
with the same interaction time.

3.4. Evaluation of the Sampling Property
The network of 3 sampling units can be in one of 23 = 8 different states at time t:

~z (t) ∈ Z =


0

0
0

 ,
1

0
0

 ,
0

1
0

 ,
0

0
1

 ,
0

1
1

 ,
1

0
1

 ,
1

1
0

 ,
1

1
1


 . (28)

The state vector ~z (t) is determined by the spike times of the 3 sampling neurons with

z
(t)
i = 1 ⇔ sampling neuron i spiked in (t− τ, t] . (29)

The refractory time τ is given by the duration of the synfire chain run. An emulation
of the network with duration T yields an estimate

psingle(~z ) = t~z
T

(30)

for the probability distribution of the states. Time t~z is the total duration of state
~z being active during the network emulation. Therefore the probability estimates are
properly normalized.
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For N runs of the network the best estimate for the probability p(~z ) is given by the
mean value over psingle(~z ) of each run:

pest(~z ) =
〈
pisingle(~z )

〉
= 1
N

N∑
i=1

pisingle(~z ) . (31)

It is easily shown that the mean values of the state’s probabilities still form a correctly
normalized probability distribution. The expectation value of the error is given by:

∆pest(~z ) = σ~z√
N
. (32)

The enumerator σ~z denotes the standard deviation of the probability estimates for state
~z over the N single runs.

The Boltzmann distribution (6) is fitted to the probabilities by minimizing the sum
of squared normalized residuals

χ2 =
∑
~z∈Z

[(
pest(~z )− p(~z )

∆pest(~z )

)2]
(33)

using the Levenberg-Marquardt algorithm implemented in numpy [Walt et al., 2011].
This fit leaves only one degree of freedom. There are 8 different states and therefore
8 different equations for fitting the 6 free parameters of the Boltzmann distribution.
Additionally, the condition of the normalization of the probability distribution removes
a further degree of freedom. The free parameters of the Boltzmann distribution are the
biases b1 to b3 and the symmetric weights w12, w13, w23.
With only one degree of freedom left, the fit results have to be assessed with care.

This is done by minimizing the uncertainty of the estimated probabilities with multi-
ple runs and comparing the resulting χ2 to its expected distribution. The smaller the
expected error of the estimated probability becomes, the smaller the absolute residuals
should become as well. The χ2-distribution fn(χ2) for n degrees of freedom is the prob-
ability density function of the sum of the squared normalized residuals of n independent
stochastically distributed variables. Figure 12 shows the probability density function
f1(χ2) for an experiment with 1 degree of freedom. The mean χ2 value of fn is n and
the variance is 2n. If the fit yields a large sum of squared residuals where the probability
density function is next to zero, it has to be considered unlikely that the fitted function
models the measured data appropriately.

4. Experiments and Results
The basic configuration for all involved neurons is described in section 4.1. For a specific
neuron configuration the synaptic weights of the synfire chain can be tuned. This is
described in section 4.2. Section 4.3 covers the calibration of the compensation strength
which completes the process of building a sampling unit network. The measurement
of the activation functions of the sampling unit networks is presented in section 4.4.
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Figure 12: Distribution of χ2 for one degree of freedom. The horizontal axis shows the
sum of the squared residuals, the vertical axis denotes the probability density
that the fit with one degree of freedom yields the corresponding χ2-value.
The probability density diverges to infinity for χ2 → 0.

The tuning of the connections between the sampling units is described in section 4.5.
Section 4.6 covers the measurement of the probabilities and the comparison to the Boltz-
mann distribution.
All experiments were emulated on the same Spikey system with chip number 504. The

network as it is presented in the methods section 3 cannot be extended to both neuron
blocks of the spikey chip due to the spike feedback routing constraints in Table 4. A
neuron that is connected to neurons of both blocks disables another neuron effectively
since this neuron cannot be connected to any neuron. The current network topology
does not allow a separation such that the neurons give either feedback to the same or
the adjacent block but not both blocks at once.
Since the emulation results vary due to various noise sources, all measurements were

averaged over multiple executions of the experiment. Although the results of the single
experiments vary in the recorded spike times and rates, the averaged measurements are
reproducible. Over the course of one month no drifts were observed.

4.1. Configuration of the Spikey Neurons

The parameters of LIF neurons on the chip are configurable within a certain range.
These configurable parameters are the resting potential Urest, the threshold potential
Uthresh, the reset potential Ureset, the inhibitory reversal potential Einh and the leakage
conductance gl. The excitatory reversal potential is fixed to 0V in the biological domain.
There can be two types of neurons since all even and all odd neurons share one set of
configuration variables, except for the leakage conductance that can be set individually
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for each neuron. To simplify the PyNN implementation of the network, one neuron con-
figuration was applied to all neurons. This simplifies the mapping of the abstract PyNN
neurons to the hardware neurons. On the other hand, this leads to almost contradicting
requirements to the neuron parameters.

For the sampling neuron, the resting potential should be much lower than the
excitatory reversal potential and much higher than the inhibitory reversal potential. In
this case the excitations and inhibitions are expected to add up almost linearly. The
excitatory and inhibitory neurons of the synfire chain can have an arbitrary resting
potential.

The threshold potential is the most critical parameter due to hardware imperfec-
tions. For the first excitatory and inhibitory populations in the synfire chains it has
to be close to the resting potential, otherwise one spike of the sampling neuron is not
sufficient to excite these populations. However it should be far away from the resting
potential for all other neurons whose excitabilities are not critical. A threshold potential
that lies close to the reset potential causes many neurons to spike continuously due to
variations in the manufacturing process of the analog circuits. These neurons have to
be discarded.

Regarding the inhibitory reversal potential, all neurons require a value that is
much lower than the resting potential. The sampling neuron needs to be inhibited very
strongly, such that it cannot spike during the activity of the synfire chain. The synfire
chain populations need to have a low inhibitory reversal potential as well. A low value
prevents the neurons from spiking twice in one run of the chain.

The same argument as for the inhibitory reversal potential holds for the reset poten-
tial: A low value is suitable for the sampling neuron and for the neurons in the synfire
chain to inhibit spiking twice.

The leakage conductance defines the time constant of the membrane potential. The
synfire chain populations need to have a short time constant and therefore a large leakage
conductance. This pulls the membrane potential of the synfire chain neurons quickly to
the resting potential and allows multiple cycles of the synfire chain after another. The
sampling neuron can have an arbitrary leakage conductance since it is expected to be in
the high-conductance-state, such that the time constant is negligible for the membrane
potential dynamics (cf. section 2.3). However, a high leakage conductance weakens the
influence of the synaptic conductances. This worsens the problem of the choice of the
threshold potential since the effective synaptic weights are lower.

The choice of neuron parameters is given in Table 1. These are the biological parame-
ters as they are set with PyNN. They are translated to a configuration of the device that
emulates this neuron model. The set was found by tuning the functional behavior of the
sampling neuron and the synfire chain and balancing the different problems mentioned
previously. With this configuration, six neurons had to be discarded due to continuous
spiking.
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Parameter Symbol Value
resting potential Urest −65.0mV
threshold potential Uthresh −62.5mV
reset potential Ureset −100.0mV
inhibitory reversal potential Einh −100.0mV
leakage conductance gl 1.0 nS

Table 1: Configuration of the LIF neurons as set with PyNN.

Parameter Description Value
Nthresh number of spikes that trigger a detection of a run 3
twindow time frame for Nthresh spikes 4.0ms
tsilent time frame in which the chain must not run twice 10ms
fmax maximum of relative weight update factor 0.80
r refers to how fast fmax is reached 2.2

Table 2: Parameters of the calibration algorithm of the synfire chain.

4.2. Synfire Chain Configuration and Calibration

The synfire chains which are connected to the sampling neuron consist of 5 excitatory
and 5 inhibitory populations. Each population contains 6 neurons. Therefore, one
sampling unit network consists of 61 neurons: one sampling neuron and 60 neurons in
the synfire chain. The forward excitation is initialized with an arbitrary weight larger
than zero since this one is set to an appropriate value by the calibration algorithm3.
Each backward inhibition connection is given the synaptic weight 1 in units of the 4-bit
weight between 0 and 15 on the device. The synapse line drivers are configured to yield
the largest signal amplitude. The parameter drvifall, which is proportional to the inverse
fall time of the synaptic current, is set to 1.5 times the default configuration. Therefore
every neuron in the synfire chain excites or inhibits the connected neurons with a strong
and short pulse.
The calibration algorithm of the synfire chain takes 5 different parameters. Table 2

lists the parameters and a short description of their purpose. The detailed description
of the parameters is given in the methods section 3.3.1. The value Nthresh was chosen
by comparison of different runs of the synfire chain. It also defines how many spikes of
the first population have to be enough to excite the next population reliably, since the
weights are changed according to the count of runs, that the trigger algorithm detects.
The time window twindow is set to 4.0ms, which is longer than the observed timescale
of a PSP. Therefore, it covers all spikes that are caused by the same excitation of the
sampling neuron. The time tsilent ensures that one excitation of the first group is never
interpreted as two starts of the synfire chain. This time is expected to be longer than

3 The synaptic weight of the synapses of the forward excitation is mostly 4 or 5 in dimensionless units
of the hardware after calibration.
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Figure 13: Autocorrelation for a sampling neuron. The upper plot shows the autocor-
relation function without the tuned compensation strength, the lower plot is
measured with this calibration. The autocorrelation is averaged over 50 runs
with a duration of 5000ms each.

the excitatory synaptic time constant and shorter than the refractory period.
The parameters fmax and r of the weight update factor are found by a manual search.

The calibration of the synfire chains in the two Boltzmann networks is done with 50
iterations. Due to the break condition within the calibration process, the count of
calibration iterations that are necessary rises quickly with the length of the synfire chain.
While 10 iterations already yield a reliable synfire chain with a length of 5 populations,
a chain with 15 populations needs approximate 200 iterations for the same quality.

4.3. Calibration of the Compensation Strength

The compensation strength is tuned manually by increasing it carefully until the corre-
lation function indicates a slight overshoot after the refractory period. This was done for
every neuron individually. It was tuned at the mean firing rate of the sampling unit. The
Boltzmann connections to the other sampling units are set to zero. The mean firing rate
is given by the strength of the bias connection. Figure 13 shows the measured autocorre-
lation for a calibrated sampling neuron in the lower plot. The overshoot was considered
to be small enough to allow meaningful experiments. The upper plot shows the autocor-
relation function of the spike train of a sampling unit without tuning the compensation
strength. The suppressed spiking probability for correlation times between −50ms and
50ms shows a compensation strength that is too weak.
With the spike-triggered average of the membrane potential of the calibrated sampling

neuron, the refractory period is determined. Figure 21 in the appendix shows the spike
triggered average for one sampling neuron. The refractory period is determined to be
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Figure 14: Measured activation function for the three sampling unit networks. The
horizontal axis shows the mean free membrane potential. The fitted activa-
tion function is given in equation (34). The activation function of the first
sampling unit is fitted only for voltages lower than −55mV. The measured
deviations at higher rates are considered to be systematic errors and are there-
fore discarded for the fit. An explanation is given in section 4.4. The second
and third activation functions are fitted with all measured data points.

(28± 2)ms. This corresponds to a maximum firing rate of (36± 3)Hz.

4.4. Activation Function Measurements
The activation functions of the sampling unit networks are measured by increasing and
decreasing the mean free membrane potential of the sampling neuron with the excitatory
and inhibitory bias stimulus. The description of the network layout and the bias stimulus
is given in section 3.1. Figure 14 shows the activation functions for the three calibrated
sampling unit networks. The rate

ν(ū) = νmax

1 + exp
[
− ū−ū0

α

] , (34)

which is the activation function (12) with the mapping of the abstract membrane poten-
tial given in equation (16), is fitted to the emulation results. The mean free membrane
potential 〈Umem〉 of the sampling neuron is abbreviated with ū. The maximum firing
rate νmax is the inverse of the refractory period τ . There are two free parameters which
are α and ū0. Table 3 lists the parameters returned by the Levenberg-Marquard fit
algorithm. The first sampling unit shows the largest deviations from the desired curve.
The large deviations at high firing rates might be due to a too long regeneration time
of the synfire chain. Figure 15 indicates that the inhibitory backward inhibition of the
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Sampling Unit Slope α Bias offset ū0

0 (2.10± 0.12)mV (−57.17± 0.11)mV
1 (2.71± 0.11)mV (−57.40± 0.14)mV
2 (1.04± 0.09)mV (−61.61± 0.16)mV

Table 3: Fit parameters of the activation functions of the three sampling units. The
fit for the first sampling neuron is restricted to membrane voltages lower than
−55mV (cf. section 4.4).
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Figure 15: Early termination of the synfire chain of the first sampling unit network in its
second run. The spikes of the sampling neuron and the synfire chain neurons
are shown in the upper plot. The membrane potential of the sampling neuron
is shown below.

previous run might be still too strong to allow another run. If the activity of the synfire
chain stops before the excitation of the compensation group, the sampling neuron does
not receive any compensation. After such an incomplete cycle, the sampling neuron is
therefore inhibited much longer than the expected refractory period. This limits the
maximum firing rate to a value lower than 1/τ . Although this occurs very often for
the first sampling neuron in the network, this effect is barely seen for the other two
sampling units. A better selection of neurons and an improved calibration of the synfire
chain might solve this problem. To prove the feasibility of Boltzmann sampling with
LIF neurons, only networks with firing rates lower than νmax/2 were tested in order to
avoid further parameter tuning. At this rate, the synfire chain of the first sampling unit
works reliably.
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Figure 16: Cross-correlation between the spike trains of the first and the second sampling
neuron. It is measured for four different configurations which are from the
upper left in clockwise direction: a disabled connection, an enabled forward
connection, an enabled backward connection and both directions enabled.

4.5. Calibration of the Connections

For testing the sampling properties of the entire network of 183 neurons, two types of
networks were tested: a network with a high bias and inhibitory connections and a
network with a low bias and excitatory connections.
The tuning of the symmetry of the connections is done with the help of the cross-

correlation function as described in section 3.3.4. It was configured such that the con-
nected sampling unit does not reach the saturation regime in its activation function after
a spike of the presynaptic neuron. For a positive connection weight this refers to an ex-
citatory connection that excites the connected neuron with a conditional probability less
than 1. Figure 16 shows the unnormalized cross-correlation of a calibrated excitatory
connection. The plot for the same connection before the calibration can be found in
appendix D.

4.6. Measurements of the Sampling Properties

The sampling probabilities of the 8 different states the network can attain, are measured
as described in section 3.4. The Boltzmann distribution is then fitted to these probabil-
ities. The fit is done with one degree of freedom (cf. section 3.4). Therefore the sum of
the squared residuals χ2 is expected to be very small. Figure 12 shows the probability
density function for χ2 for one degree of freedom.
The probabilities are also averaged over many emulations of the network such that

the expected error of the mean values is small according to Equation (32). Figure 17
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Figure 17: Measured probabilities and deviations from the fitted Boltzmann distribu-
tion. The probabilities are averaged over 100 emulations of the network. The
deviations are normalized to the uncertainty ∆p of the mean value. For this
fit, the sum of squared residuals is χ2 = 0.295.

shows the measured probabilities averaged over 100 emulations in the upper plot and
the normalized residuals below. The error bars of the probabilities are not drawn since
they cannot be seen on this scale. The sum of squared residuals is χ2 = 0.295 for this
fit. For one degree of freedom the probability that χ2 is larger than 0.295 is 58.7%.
Figure 18 shows the probabilities averaged over 10000 emulations of the network. The

relative uncertainties of the probabilities are less than 0.3%. Although the deviations to
the fitted Boltzmann distribution are less than 1%, these differences cannot be explained
with the statistical uncertainty of the measurement. The sum of squared residuals be-
tween fitted and measured probabilities in Figure 18 is χ2 = 25.6. Such a large χ2 due
to statistical fluctuations is likely to happen in one of 1.8 × 106 cases. These system-
atic deviations are expected to be due to the simplifying assumptions made in theory
(cf. [Petrovici et al., 2013]). In section 5 these systematic errors are discussed in detail.
It should be noted that the execution and evaluation of the 10000 experiments took

13min. This time covers retrieving the spike times from the device and writing new
Poisson spike trains to the device for each run as well. The biological time of those
10000 experiments is 14 h.
The network was also emulated with a higher bias and negative Boltzmann weights.

The Boltzmann distribution fits the measured probabilities for 10000 runs within the
expected error if one assumes a refractory period of 20ms. This is much shorter than
the observed refractory period which is (28± 2)ms. Figure 19 shows the measured
probabilities and the deviations to the fitted Boltzmann distribution. The sum of the
squared residuals is 2.06. The probability to get χ2 > 2.06 with one degree of freedom
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Figure 18: Measured probabilities and deviations from the fitted Boltzmann distribu-
tion. The probabilities are averaged over 10000 emulations of the network.
The deviations are normalized to the uncertainty ∆p of the mean value. The
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Figure 19: Probabilities of the 8 network states for 10000 runs of the network with
negative connection weights. The errors which are less than 0.5% are not
shown since they are not visible on this scale. The lower plot shows the
deviations to the fitted Boltzmann distribution.
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is 15%. With the correct refractory period of 28ms used for the analysis of the states,
the (1, 1, 1) state is enhanced compared to the fitted Boltzmann distribution.
The fit parameters for the two calibrated networks are listed in Table 5 in the ap-

pendix.

5. Discussion and Outlook

The presented work indicates that Boltzmann sampling might be realizable on the Spikey
microchip. In this thesis, several achievements towards Boltzmann sampling are pre-
sented.
The refractory mechanism proved to be successful and applicable. This includes the

implementation of reliable synfire chains that were tuned with a robust calibration algo-
rithm – especially without any need of adjusting the connection weight matrix manually.
The calibration algorithm does not need any calibrated mapping of the LIF parameters
to the hardware parameters. For tuning the compensation strength and connection
strength, the autocorrelation and cross-correlation proved to be helpful tools. With
these methods, the compensation and connection strengths can be calculated through
the recorded spike times. Those can be read from the device quickly for all neurons at
once. Using this flexible framework, there is no need to record the membrane potential.
The membrane potential has the disadvantage of being accessible for only neuron at a
time. With the calibrated synfire chain and the tuned compensation strength, the de-
sired activation function can be reproduced for two of the three sampling unit networks.
Although it does not fit for the third sampling unit an explanation for the deviations is
given in section 4.4. They are expected to be minimized with further calibration effort.
The final measurements indicate that the two networks sample from the Boltzmann

distribution. The first tested Boltzmann machine has a low bias and positive weights
and the second a high bias with negative weights. The sampling units of both networks
operate in the lower half of their activation function. Since the fit of the Boltzmann
distribution to the measured probabilities is done with one degree of freedom, the errors
were analyzed carefully. Although deviations between the measurements and the fit are
less than 1% in all cases there are systematic deviations if the measured probabilities
were averaged over 10000 emulations. This reduces the uncertainty of the mean value.
At this precision, the deviations to the Boltzmann distribution are higher than the
expected uncertainty. The measured deviations between measurement and fit for the
network with excitatory connections are likely to happen in one of 1.8×106 cases due to
statistical reasons. Therefore, these deviations are likely to be systematic errors. There
are many possible reasons for those systematic deviations which are mentioned in the
following paragraph.
The theory assumes the high-conductance-state approximation. It should be measured

if this approximation holds for the chosen configuration of the network as well. The
synaptic delay may also be a reason for the systematic deviations since an instantaneous
interaction is assumed in theory. It takes 3− 4ms for one synfire chain group to excite
the next one (cf. Figure 6). This time is not only the signal traveling time but also
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the rise time of the membrane voltage towards the threshold potential. However, it
may indicate the timescale of the interaction time. Furthermore, the refractory period
is assumed to be constant. In the presented networks the refractory period may vary
due to the background noise, the bias and the synaptic input of the other neurons. The
finite rise time of the sampling neuron’s membrane potential from the inhibitory reversal
potential back to its mean free potential is changed by these current inputs. For the
same reason the interaction time of the Boltzmann connection varies as well. Ideally, it
is assumed be as long as the refractory period. Since it was tuned for symmetry and
strength but not for its precise temporal evolution it can happen that the interaction has
a different duration than the refractory period. This is not the case for the Boltzmann
machine. As shown in section 4.4, the configuration of the synfire chains of the sampling
unit networks highly influences the sampling units behavior. An incomplete run of the
synfire chain increases the effective refractory period significantly and therefore strongly
influences the sampling properties.
These proposed reasons for the systematic deviations between the Boltzmann distribu-

tion and the measured probabilities each leave room for further investigation. Especially
further tuning of the synfire chain robustness, of the compensation strength and of the
curve of the interaction strength are three promising approaches to minimize the sys-
tematic deviations. The results could also be cross-checked by simulations of the same
setup to see if the same systematics occur with ideal LIF neurons as well.
If the network did not sample from the Boltzmann distribution, these deviations should

get larger if the sampling network contains more than 3 sampling units. For 4 neurons
there are 16 different states in the Boltzmann domain and therefore 15 independent
probabilities that could be measured. The probabilities of the 16 states are given in the
Boltzmann distribution by 10 independent variables leaving 5 degrees of freedom for the
fit algorithm. This could be realized on one Spikey block by reducing the size of the
inhibitory synfire chain populations. The current implementation uses 3× 61 = 183 out
of 191 neurons of one neuron block. Six neurons had to be discarded due to continuous
spiking. The adjacent block of the chip could be used as well if the network topology was
adjusted accordingly. The network as it is described in this thesis cannot be extended
to both halves due to the constraint of the spike feedback routing to the synapse line
drivers.
The Spikey device proved to be a sufficiently reliable computing platform for the

given task. It allows an impressively fast emulation of the experiments – the runtime of
10000 experiments covering 14 h biological time was done within 13min, including the
configuration of the device for each run and the evaluation of the probabilities. The
short runtime of the network emulations comes at the disadvantage of the high effort
of configuration and tuning. The PyNN network description language is a useful tool
for the network description. A helpful improvement of the Spikey back-end could be an
improved warning system for ambiguous neuron configurations. The neuron mapping
could be improved as well. In the current version, the neuron populations with the same
parameter configuration have to be mapped manually to the Spikey chip such that the
correct neurons share the same parameters.
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This thesis provides not only a well-documented python module that aims towards
Boltzmann sampling with neuromorphic hardware, it may also serve as an example code
base for further Spikey projects.
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Appendix
A. PyNN Indices of Neurons and Synapse Line Drivers on Spikey
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Figure 20: Indices of the hardware neurons and synapse line drivers as they are used by
the PyNN interface. The synapse line drivers are on the left of each synapse
array, the neurons at the bottom. The line drivers 0 to 191 and 256 to 447
can take the feedback from the neurons. Externally generated spikes can be
fed to the network with all drivers. These external sources are mapped to the
line drivers in decreasing order as they are build with PyNN from index 256
or 511 on.
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B. Routing of Neuron Feedback
Each synapse line driver can take input from one of four spike sources as described in
section 2.1.2. The following table lists the routing options for the spike feedback from
the neurons.

Driver Index Feedback neuron index
same block adjacent block

0 0 193
1 1 192
2 2 195
3 3 194
... ... ...

191 191 342
192 None None
... ... ...

255 None None
256 192 1
257 193 0
258 194 3
259 195 2
... ... ...

447 383 190
448 None None
... ... ...

511 None None

Table 4: Connection options for feedback from neurons to the synapse line drivers. One
synapse line driver cannot take feedback from more than one source. While the
neurons of the same block connect to the synapse line drivers in the same order,
the even and uneven indices are interchanged for feedback from the adjacent
block.
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C. Spike Triggered Average
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Figure 21: Spike triggered average of a sampling neuron with a tuned compensation
strength. The membrane potential is averaged over 50 runs of the network
with a target firing rate of 5Hz. The error of the mean membrane potential
is not drawn since it cannot be seen on the given scale.
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D. Cross-correlation for an Uncalibrated Connection
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Figure 22: Cross-correlation between the spike trains of the first and the second sam-
pling neuron with an excitatory connection. It is measured for four different
configurations which are from the upper left in clockwise direction: a disabled
connection, an enabled forward connection, an enabled backward connection
and both directions enabled.
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E. Boltzmann Parameters
The table shows the fit results for the two networks. One with a low bias and positive
weights and one with a high bias and negative weights. The Boltzmann distribution is
fitted to the probabilities which are averaged over 10000 emulations of the network.

Parameter Positive Weights Negative Weights
b0 2.139 33± 0.000 22 1.117 476 0± 0.000 002 3
b1 1.910 72± 0.000 22 1.538 805 7± 0.000 003 4
b2 1.291 17± 0.000 18 1.174 067 9± 0.000 003 0
w23 2.406 83± 0.000 24 −0.141 420± 0.000 027
w13 1.849 05± 0.000 23 −0.298 583± 0.000 023
w12 2.125 72± 0.000 17 −0.286 901± 0.000 028

Table 5: Fitted parameters of the Boltzmann distribution for the network with positive
and with negative connection weights.
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