
Spike-based inference with correlated noise

Increasing evidence suggests that trial-to-trial variability in neural 
activity patterns is not merely a byproduct of computation, but rather 
a hallmark of ongoing probabilistic inference to interpret and respond 
to sensory input [1,2,3]. 
The neural sampling hypothesis [4] interprets neural states zi of 
neurons ui as binary random variables                and the network firing 
activity as sampling from underlying probability distributions (Fig. A).

In cortical networks and on neuromorphic devices, neurons may share 
significant portions of presynaptic inputs with other neurons, introducing 
additional correlations.

The mapping allows to interpret the 
presence of shared noise in {0,1} as 
a parameter shift in the {-1,1} 
domain, which can be trained from 
data. This causes differences 
between the network distribution 
(Fig. D, red bars) to the desired 
distribution (blue bars). We train 
the network to match the target 
distribution and measure the error 
(Fig. D, red curve).  

Since shared noise and synaptic weights in the {-1,1} state space 
produce the same distribution, we can change the weight by          to 
match the correlation coefficient r of a joint firing pattern with  shared 
noise ratio s (Fig. A). We find a bijective mapping between the two 
parameters,                     , with

To recover sampling from the original distribution, we first transform the 
state space to                   without shared noise and find that p(z') is still 
a Boltzmann distribution by means of a bijective mapping: 

The underlying distribution remains in the class of Boltzmann 
distributions and can be compensated by appropriate changes of the 
network parameters. In the new domain (Fig. C), we see that synaptic 
weights W' can be set to produce the same effect on the distribution as 
in the shared noise case (Fig. A).

The         represents the sought compensation of the shared noise. We 
find suitable parameters over a broad range of s (Fig. B), resulting in a 
good performance even for large portions of shared noise and larger 
network sizes (Fig. C).

After training,            matches the desired distribution. By further 
compensating parameter mismatch [8], this additional training phase 
allows a transfer of network implementations.
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Mixed-signal neuromorphic devices are ideally suited for a physical 
implementation of such networks. In these systems, neurons and 
synapses are implemented in silico as analog circuits, while the spike 
transmission is handled digitally [8] (Fig. B). 
Biology-inspired plasticity mechanisms (Fig. C) and the advantage 
of a 104 runtime speed-up compared to biological networks allows 
fast inference and learning compared to conventional simulation setups.

Since controllable sources of randomness are 
difficult to implement in hardware, these 
devices usually receive noisy stimuli from 
external sources. Due to limited on-chip 
bandwidth, shared stochastic input among 
hardware neurons is inevitable.
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with translation rules

To induce stochastic firing activity in Leaky Integrate-and-Fire 
networks, every neuron is elevated into a high-conductance state by 
high-frequency Poisson input. With an appropriate choice of network 
parameters, this makes it possible to sample from probability 
distributions that are either specified explicitly (Fig. B, C) or learned 
from data (Fig. D) [5, 6, 7].

Example: Two connected LIF neurons with increased probabilities of 
synchronous states {00} and {11} share noise (Fig. A). The underlying 
distribution              differs from the one resulting from additional 
synaptic connections W12 = W21 (Fig. B). Hence, this effect cannot be 
compensated only by modifications of the synaptic weight matrix.
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It has been shown that layered sampling LIF networks can be trained to  
generate and classify data sets utilizing diffuse noise (Fig. A). Short-term 
plasticity enables such spiking networks to simultaneously exhibit good 
mixing properties and classification rates (Fig. C) [6].

To ensure the convergence towards the desired distribution, we have 
developed a method to compensate for the harmful effects of shared 
inputs.
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