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Commissioning of an FPGA-based prototyping environment for
neuromorphic hardware

To ease the development of neuromorphic hardware a prototyping environment is
highly useful. A straightforward approach is the use of an FPGA as a testing plat-
form. This thesis presents the first version of such a system which consists of a Xilinx
Spartan-6 FPGA that is connected to the BrainScaleS communication infrastructure.
The main focus lies on the communication interface which required a partial re-design
of the existing implementation to facilitate compatibility to the existing system. Exten-
sive verification using software simulation demonstrates the successful implementation.
Experimental testing was also attempted, but was strongly encumbered by technical
constraints on the physical communication link. Further investigations identify possible
explanations and suggest further improvement.

Inbetriebnahme einer FPGA-basierten Prototypumgebung für neuromorphe
Systeme

Das Aufsetzen einer Prototypumgebung erleichtert die Entwicklung neuromorher Hard-
ware erheblich. Eine FPGA-basierte Testplattform stellt hierfür einen naheliegenden
Kandidaten dar. Diese Arbeit stellt die erste Version eines solchen Systems vor, das aus
einem Xilinx Spartan-6 FPGA besteht welcher mit der Kommunikationsinfrastruktur des
BrainScaleS Projektes verbunden ist. Im Fokus liegt die Kommunikationsschnittstelle,
die teilweise angepasst werden musste um Kompatibilität zum bisherigen System zu
gewährleisten. Ausführliche Verifikation mit Softwaresimulationen belegt eine erfolgre-
iche Implementierung. Experimentelle Tests wurden durch technische Einschränkungen
an der physikalischen Verbindung beeinträchtig. Untersuchungen weisen auf mögliche
Erklärungen hin und diskutieren Verbesserungspotential.
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1 Introduction

When taking a look at the mammalian brain as a computational machine, something
fascinating can be observed. While nowadays vastly outperformed in terms of raw
computational speed by man-made semiconductor technology, the brain’s ability to
learn and process sensory data remains unparalleled by state of the art computers. In
an attempt to bridge this gap, the field of computational neuroscience has recently
witnessed the development of a radically new type of technology: in addition to simu-
lating neural networks on conventional computers, researchers are now starting to use
so-called neuromorphic hardware. These devices aim to replicate various architectural
and dynamical aspects of spiking neuronal networks using analog electronic circuits.
As some of these platforms are aimed at studying developmental processes in
the human brain (in contrast to, e.g., robotics applications), they are supposed
to emulate scenarios that take hours, days, or even years of biological real
time. Such experiments would therefore have to run faster than their biologi-
cal counterparts. In the particular case of the hardware developed in the Elec-
tronic Vision(s) group in Heidelberg, this acceleration factor lies between 103

and 105, thereby imposing high demands on the communication infrastructure.

HOST

FPGA

current

HICANN

HOST

FPGA

planned

FPGA
emulates
HICANN

Figure 1.1: Current setup used to
test the HICANN Chip,
and planned setup for
prototyping.

Over the years, several different chip designs have
been developed and produced, with the most re-
cent being the High Input Count Analog Neural
Network chip (HICANN). Tests for these chips are
controlled via a host PC, which is linked to the
HICANN over a Field Programmable Gate Array
(FPGA) (see Figure 1.1). The functionality of an
FPGA is freely programmable by a user, and is used
here in order to serve as a bridge between host and
hardware. It serves many functions including pro-
tocol conversions, sorting and general management
of the data that is exchanged between host and neu-
romorphic hardware.
On the host side, an extensive software environ-
ment is used which provides access to neuromorphic
hardware on several levels of abstraction. Ensuring
correct functionality of the HICANN is crucial for
the project since bug-fixing of Application-Specific
Integrated Circuits (ASICs) is a costly and time-
consuming endeavour. Adding to the currently em-
ployed extensive software verification scheme, the
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1 Introduction

possibility of testing HICANN-components in a realistic setup with a low investment in
time and effort seems invaluable. In order to achieve this, a testing platform is currently
being developed, in which the HICANN is replaced by a second FPGA. This FPGA
can be loaded with any design, for example with a prototype for a new HICANN chip.
Such a prototyping environment will certainly prove useful for the further development
of neuromorphic chip designs which contain digital components.
The first stage of commissioning the prototyping platform is establishing high speed
communication between the two FPGAs. As the communication between the HICANN
chip and the bridge FPGA has already been established, one would desire the emulating
FPGA to possess an interface as similar to the HICANN as possible. The goal of this
thesis was to design, implement and test the units necessary for such communication.
These units are required to provide high bandwidth, while using as little FPGA resources
as possible in order to leave space for prototyping modules.

1.1 Thesis outline

We begin by describing the units that are involved in the high-speed communication used
to connect the HICANN. Of special interest are those submodules that needed adaptation
to a new FPGA device. The new L2-ARQ unit, which facilitates communication in the
emulating FPGA is then introduced. Next, we list the several simulation setups used for
verifying the functionality of the L2-ARQ. Following a report on hardware testing, we
then discuss the measurements and take an outlook towards improving functionality and
proposing future development.
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2 Design Implementation

The first step in establishing an FPGA-to-FPGA communication is the design and im-
plementation of a module written in a Hardware Description Language (HDL). FPGAs
are versatile tools that are capable of modeling virtually any kind of digital Integrated
Circuit (IC). The new design will be implemented into a Spartan-6 FPGA, which can
serve many purposes. Yet the main intention is the prototyping of ICs specific to the
HICANN-DLS1. In order to be compatible with previous designs, the desired interface
and modules should resemble the current implementation in the already utilized FPGA
Communication PCB (FCP). The FCP consists of a Kintex-7 FPGA incorporated into
a custom Printed Circuit Board (PCB).
Figure 2.1 depicts a schematic of the planned system. The Reticle-ARQ serves as a
wrapper for a HICANN Automatic Repeat Request protocol (HICANN-ARQ) module,
whose counterpart is located in the Spartan 6. ARQ, a communication protocol capable
of transmitting data over a lossy medium by resending lost words, is explained further
in Section 2.3. Similarly, a Serializer-Deserializer module (SerDes) is located in both
FPGA’s as part of the FPGA interface module. This module is capable of converting
incoming parallel bitstrings into a serial stream of data to transmit it over the physical
link as well as parallelizing incoming serial data. In the current setup, data sent by the
FCP arriving at the Spartan-6 FPGA interface is handed to the HICANN-ARQ. The
HICANN-ARQ receives it, and loops it back through the FPGA interface to be trans-
mitted to the FCP. In the future the HICANN-ARQ’s interface will be used to handle
data communication to whatever logic is residing in the Spartan-6.

2.1 The FPGA Interface

In computer science, a commonly reoccurring problem is the communication between two
separate ICs. Since the number of pins on a chip is usually limited, parallel bitstrings are
often converted into high-speed serial streams using a SerDes module. This module then
transmits the serialized data while a receiver converts it back into parallel bitstrings.
The FPGA Interface (FPGA-IF) currently used in the FCP is capable of both transmit-
ting and receiving serialized data. In addition to serving as a SerDes, it also applies a
16-bit header to the data containing additional information such as a cyclic redundancy
checksum that is used to detect data corruption over the physical link.

After deserializing the data that it receives, the FPGA-IF transmits said data to a

1The HICANN neuromorphic network chip has seen multiple versions over time. The most recent
is called HICANN-DLS, with DLS standing for the ending of the german Autobahn 65, ”Dreieck
Ludwigshafen Süd". See Schemmel and Hartel (2015) for more information.
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Figure 2.1: Planned setup for the FCP-Spartan communication. The HICANN-ARQ
and FPGA Interface modules are already present in the FCP, and shall be
implemented in the Spartan-6 as depicted here.
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Figure 2.2: Waveform of the communication between FPGA-IF and HICANN-ARQ. If
the reciever raises a ’ready’ flag, the sender is free to transmit data by applying
it and raising the ’valid’ signal.
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2.1 The FPGA Interface

HICANN-ARQ module. On the other hand, it serializes and sends any data given to it
by the HICANN-ARQ. The communication between the FPGA-IF and HICANN-ARQ
is based on a ready-valid handshake depicted in Figure 2.2. Data is transmitted between
the two in the form of 64-bit strings. The Sender waits until it receives a ready-flag,
when it does, it can signal data it wants to transmit by raising a valid-flag, indicating
the receiver shall store the applied data. After the data is serialized inside the FPGA-IF,
it is transmitted between the two SerDes modules. As previously mentioned the number
of inputs and ouputs is limited, thus the communication between the two SerDes mod-
ules does not utilize a handshake. Hence, the receiver is forced to accept whatever data
arrives at it’s inputs, otherwise it is lost. However, the serial data stream coming out of
the SerDes has to be accompanied by a clock signal as a reference. Only then can the
receiver detect whether a signal corresponds to a logical ’1’ or a logical ’0’.
Before this is possible, the connection has to be initialized. During this time, the FPGA-
IF does not accept data from the HICANN-ARQ, and only communicates with its coun-
terpart in the other FPGA. In order to initialize contact both send a "training pattern",
which is used to determine the local extrema of the signal intensity for different logical
transitions. Using internal delay stages, the receiver can determine the phase shift be-
tween these local extrema and the rising edge of the clock signal. This information helps
the receiver to obtain the clearest differentiation between the two logical states. Once
completed, the FPGA-IF is ready to send and receive data.
After the initialization is complete, both the data and clock signal pass into an IO-Buffer.
They leave it as a differential p-n signal pair, with the original signal being transmitted
along with an inverted version of it. The now differential signals are transmitted with a
small voltage amplitude compared to the 5V voltages normally used in digital systems.
This type of signaling is known as low voltage differential signaling (LVDS). As changing
the voltage of a cable requires comparatively high power, utilizing lower voltages helps
reducing the required energy for communication. It also helps to detect and remove error
sources from the signal by comparing the original and the inverted signal.
When transmitting data over a physical link, it can be influenced by electromagnetic
radiation. Since the differentiation between a logical ’1’ and ’0’ inside a chip is based on
certain threshold voltages, external noise sources influencing said voltages can ’flip’ a ’0’
into a ’1’ and vice-versa. LVDS provides some degree of protection against such errors.
The cables for a differential signal pair are usually very close to each other, resulting
in similar disturbances on both wires caused by external noise, as depicted in Figure
2.3. Disturbances that equally affect each wire are known as common-mode noise which
can be removed by taking the difference between the two inverted signals. While the
influences on a cable are not symmetrical all the time, the fact that the receiver decides
between ’1’ and ’0’ based on the differential voltage helps eliminate most of the occurring
errors.
LVDS helps reducing the error count, but can of course not fully eliminate data cor-

ruption. In order to detect whether the transmitted data was corrupted, the FPGA-IF
furthermore employs a Cyclic Redundancy Check (CRC) to the transmitted data. This
error detection code appends a check value based on the remainder of a polynomial di-
vision to the data before transmitting it. This polynomial division works by interpreting
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2 Design Implementation

Figure 2.3: Compensation for a noise source on a cable using differential signaling. The
received signal is equivalent to the sent signal. As the FPGA interfaces are
located on two different FPGA interfaces, they communicate using differential
signaling to minimize data corruption. Taken from Linear77 (2016)

the to-be-transmitted data as coefficients of a polynomial with same degree as the data
length. A second ’generator’ polynomial is known by both sender and receiver. Before
transmitting the data, the sender calculates a remainder by dividing the data polynomial
by the generator polynomial. A binary representation of this remainder’s coefficients is
appended to the original data and then sent to the receiver. The receiver then performs
a polynomial division with the data including the appended remainder. If no remainder
is left, the data was transmitted correctly and can be passed on. Otherwise the received
data was corrupted and is discarded.
A CRC check makes it possible to detect errors to the transmitted data with a very
high probability. Using a CRC instead of other error detection schemes has two main
advantages. The first is its capability to detect so called ’burst’ errors. These types of
errors corrupt multiple consecutive bits in a word at the same time. An n-bit long CRC
however is capable of detecting all burst errors affecting n bits or less, independent of
the size of the transmitted data. As burst errors are common forms of data corruption
in most communication channels, a CRC has a very high error detection rate. A sec-
ond advantage lies in its ease of computation. Applying a CRC check is very efficient
in terms of resource consumption compared to its error detection rate. Combining this
with the fact that an Automatic Repeat Request protocol (ARQ) protocol is utilized in
our communication, a CRC is well-suited for our application.
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2.2 Porting the FPGA Interface to the Spartan 6
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Figure 2.4: Internal structure of the Spartan-6 FPGA Interface. Data arrives as 64 bit
words, and a 16 bit header is added. After that, the resulting 80 bit are
passed into the LVDS_IF_S6 a byte at a time, where they get serialized
and transmitted by the ddr_tx_if. In the other direction, serialized data
arriving gets parralelized back into bytes by the ddr_rx_if, and follows the
path backwards until 64 bit words arrive at the output.

2.2 Porting the FPGA Interface to the Spartan 6

While already implemented in the FCP, the FPGA-IF design cannot simply be imple-
mented in the Spartan-6. The two FPGAs possess specific internal components, some of
which differ between the two. A main aspect of this thesis’ work consisted of converting
the FPGA-IF into a Spartan-6-compatible form. This was achieved by exchanging low-
level modules of the FPGA-IF which utilized these so called ’primitive’ components with
versions applicable to the Spartan-6. The resulting design was called Spartan 6 FPGA In-
terface (FPGA-IF-S6) and loaded into the Spartan-6 FPGA. However the original design
for the FPGA-IF stayed unchanged in the FCP.

2.2.1 The Serialization/Deserialization Module

The structure of the FPGA-IF-S6 is depicted in Figure 2.4. The main module of the
FPGA-IF-S6 which utilizes Spartan-6-incompatible FPGA-primitives is the LVDS in-
terface, or LVDS-IF for short. This module manages the main serialization and dese-
rialization of incoming 8-bit words, also called bytes. Other modules in the FPGA-IF
manage the CRC-protocol, and split the resulting 80-bit words into these singular bytes
in order to send them to the LVDS-IF. The original module previously used ’channel’
modules utilizing the Kintex-7 SerDes primitives to serialize and deserialize these bytes.
These channel modules are not usable for the Spartan-6. Instead, the modules DDR-TX-
Interface and DDR-RX-Interface, which had been constructed for the Spartan-6, have
been embedded into the new LVDS-IF-S6 constructed for this thesis. These modules,
utilizing Spartan-6 primitives, perform the same tasks as the channel modules previously
used in the FCP. However the interfaces of these modules changed slightly. They require
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2 Design Implementation

clk

clkdiv

DIN 00101101 XXX

cascade_do

cascade_di

OQ

strobe

Figure 2.5: Waveform of the ddr_tx_if data serialization process. An 8 bit word applied
to the DIN port during the rising edge of clkdiv gets accepted and transmitted
following the next rising edge of the strobe signal. cascade_do transmits
the first four bits of the data input, and appends the serial data given by
cascade_di. OQ outputs the serialized data in the following clockcycle.

further assisting signals, while some signals used for the FCP were unnecessary. The
most important change is the addition of the CLK-RST-GEN module, which supplies
some of these assisting signals.

2.2.2 Serialization: The DDR-TX-IF

The ddr_tx interface handles the transmission of data from the FPGA-IF to the physical
IO-pins. It receives a parallel input with a width of 8 bit, and parallelizes it using 2 output
SerDes primitives (OSerDes) connected in cascade. The master OSerDes observes bits 7
to 4, while the slave observes bits 3 to 0. The exact protocol is depicted in Figure 2.5.
The ddr_tx_if is given two assisting signals by the CLK-RST-GEN module. One is a
clock signal operating at eight times the frequency of the normally used clock ’clockdiv’.
This clocksignal is simply named ’clk’ and is accompanied by the second assisting signal,
’strobe’. When data is applied to the input port, it is not transmitted immediately.
Instead, when the strobe signal is raised in the following cycle of clockdiv, the slave
OSerDes starts to send its serialized data to the master OSerDes via cascade-do. In the
next cycle of clk the master sends his serialized data via cascade-di to the slave, which
appends this serial bitstream to its output of cascade-do. Finally, the master receives
the entire serialized data from the slave, transmitting it to the differential signal output
buffer OBUFDS via OQ.
A second pair of OSerDes primitives is connected in cascade to generate the clock output.
Similarly in functionality to the data OSerDes primitives, they generate a clock signal
with half the frequency of clk, sending it to an output buffer. This clock signal serves as
the mentioned reference clock that accompanies the serialized data to the receiver.

8



2.3 Backward Error Correction

clk

clkdiv

DOUT XXX 00101101

OQ

strobe

Figure 2.6: Waveform of the ddr_rx_if deserialization process. Inverse in behaviour to
the ddr_tx_if, the serialized 8 bits arriving at OQ after the rising edge of
strobe are parralelized and applied to the data output DOUT on the next
rising clock edge after the entire signal has been recieved.

2.2.3 Deserialization: The DDR-RX-IF

Serialized data arriving at the SerDes module gets processed by the ddr_rx interface.
Inverse in behaviour to the tx_if, it receives serial input data, parallelizing it into singular
bytes. The arriving differential serialized data gets transformed into single bites, which
are passed higher instances in the FPGA-IF. Figure 2.6 shows the temporal behaviour
of the connections inside the rx_if. One can see how an incoming data stream is only
transmitted to the outputs as parallel data after the second rise of the strobe signal.

2.2.4 Additional Modules

The clock and reset generator module DNC-CLK-RST-GEN provides multiple signals
necessary for the operation of the tx and rx interfaces. It resides within the LVDS_IF_-
S6 and generates a number of clock signals necessary for the operation of the input SerDes
and output SerDes primitives in the interfaces, along with a reset flag. The most notable
addition are the two strobe signals, which provide a timing orientation for accepting and
sending words. These signals are transmitted to the ddr_tx and ddr_rx_if, and used as
specified in the previous sections.

2.3 Backward Error Correction

The FPGA-IF is used only for data transmission and corruption checks. It is not capable
of restoring corrupted data, and simply tosses it away. In order to ensure all data is trans-
mitted, and arrives at the receiver in the order it was sent by the transmitter, a method
for Backward Error Correction (BEC) must be used. When using BEC, the sender re-
transmits data if the receiver detects it as corrupted (Peterson and Davie (2003)). A
common protocol used for this purpose is the ARQ. It was implemented into the FCP in
the form of the HICANN-ARQ by Karasenko (2014).
The HICANN-ARQ uses a sliding-window algorithm, depicted in Figure 2.7, for its trans-
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2 Design Implementation

Figure 2.7: HICANN-ARQ sliding window algorithm. The master receives words and
assigns a sequence number SEQ in the order they were received. It proceeds
to send both to the slave, which periodically informs the master of the last
word in a sequence that it received. Image taken from Karasenko (2014).

mission. It stores words sent to it from the upper layer inside a buffer window, and assigns
a sequence number to each word. When the buffer is filled, it starts sending the data
along with the assigned sequence number downwards, where another HICANN-ARQ ac-
cepts them. The receiver ARQ starts sending acknowledgement packages (ACKs) back to
the transmitter ARQ, to confirm which packets have been successfully transmitted. For
this the receiver does not need to ACK every package, if it sends an ack with sequence
number n, it confirms all packages with sequence numbers 0 to n have been transmitted.
In case of a lost packet, the transmitter ARQ waits for an ACK until a certain timeout
value, before it resends all packets with a sequence number higher than the last received
packet. The HICANN-ARQ sends a configurable amount of words from the buffer at a
time. When an ACK with number n is received, the window of packages to send is moved
to n+ 1. This ’sliding window’ algorithm allows for a saturation of the link bandwidth.
As a communication towards upper level modules, it uses a simple valid/next handshake
transmission depicted in Figure 2.8. When the sender has data ready to send, it raises
a valid signal and applies the data, waiting for a response of the receiver. The receiver
processes the supplied data, and when it is done, next is raised to confirm that the packet
was accepted. This is the communication protocol which will later be used to communi-
cate with modules residing within the Spartan-6. At the moment, the HICANN-ARQ’s
sending side of this protocol is connected to its receiving side. This way, data arriving
at the Spartan is looped back, arriving at the FCP unchanged.

10



2.4 The L2-ARQ Wrapper Module

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6

data XXX data1 data2 data3 XXX

next

valid

Figure 2.8: Time diagramm of the valid-next handshake utilized by the HICANN-ARQ.
When the sender is ready to transmit data, it applies it to its outputs and
raises a ’valid’-flag. Once the receiver has processed the data, it raises the
’next’-signal for a single clockcycle. Only then can the sender start to apply
new data.

2.4 The L2-ARQ Wrapper Module

The HICANN-ARQ and FPGA-IF have been introduced into the Spartan-6 as compo-
nents of a wrapping module. This L2-ARQ handles the initialization of the FPGA-IF
using an internal state machine. It furthermore utilizes an internal Phase-locked-loop,
an FPGA component designed to output clock signals with a customizable phase and
frequency relation to a given input clock, to provide custom clock signals for the FPGA-
IF. As of this moment, no modules are connected to the L2-ARQ. In later development
of the Spartan-6, it will be provided with clients to transmit the given data to. For the
time being, it is designed to loop data received by the HICANN-ARQ back into it, in
order to transmit it back through the FPGA-IF-S6. Its basic setup, depicted in Figure
2.9, utilizes only one HICANN-ARQ and one FPGA-IF-S6 instance. After the FPGA’s
powerup, the internal state machine resets the HICANN-ARQ, and prepares the FPGA-
IF for its initialization. The PLL provides the necessary clock signals for both modules,
and once the initialization is complete, the FPGA-IF is capable of accepting data. Any
data received by the FPGA-IF is looped back unchanged to the sender.

2.5 Performance Testing: The ReticleARQ

In order to evaluate the data connection between the two FPGAs, one needs to be able to
easily determine the bandwidth of said connection. The ReticleARQ achieves this pur-
pose while simultaneously providing universal access for up to 8 connections, depending
on the application. It serves as a wrapping module for 8 HICANN-ARQ’s, being able
to simultaneously test the connection of all 8 links while in test mode, or manage their
communication towards the host while idling. This is achieved using an internal state
machine, whose mode can be changed using 2 initiation words being sent from the host
towards the ReticleARQ. Figure 2.10 illustrates the internal setup of the ReticleARQ.
The finite-state-machine possesses 2 main states, idle and PerfTest, and 2 transition
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Figure 2.9: Internal Structure of the L2-ARQ wrapper. As of now, the HICANN-
ARQ loops received data back to the Kintex-7. Both the FPGA-IF-S6 and
the HICANN-ARQ are controlled by a self-initializing Finite State Machine
(FSM). In the future, additional modules will be connected to the L2-ARQ
and the FSM will be replaced by a JTAG port.
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Figure 2.10: Internal structure of the Reticle-ARQ wrapper embedded in the FCP. An in-
ternal Finite State Machine manages the communication between the upper
level modules and the embedded HICANN-ARQs.
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2.5 Performance Testing: The ReticleARQ

states to navigate between the two. While idling, it organizes communication towards
the upper level modules, handling their data towards its 8 embedded HICANN-ARQ
modules if necessary. In case the host sends a 64-bit word targeted towards the Reticle-
ARQ, the state machine switches to the first transition state. The word is interpreted to
contain the HICANN-ARQ’s to be utilized during the performance test. A second word
containing the total amount of words to be sent during the performance test causes the
statemachine to switch into the active PerfTest state. While in this state, words contain-
ing empty dummy-data are given to the HICANN-ARQ’s specified in the first initiation
word. These words are to be transmitted to the receiver, who attempts to send them
back immediately. The state machine measures the time required to send and receive
the specified amount of words, reporting them back to the Host when transitioning back
to the idle state as soon as the Perftest is concluded.
The host is now able to calculate the bandwidth of the connection based on the clocking
speed utilized in the FPGA-Design, and the number of words that were sent. This can
not only be used to calculate the bandwidth of a single connection, but also for all of
them at once. In this case the words get evenly distributed among the clients.
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3 Testbench Verification

One central aspect of HDL design is the task of validating the functionality of the written
code. This verification process eases the detection of errors and faulty designs. When the
design has reached a certain size and communicates with other modules in the chip, the
generated outputs are not trivially linked to the inputs anymore. For this reason tracing
errors once the code has been implemented in a chip is a very difficult task. Hence one
should validate the designs functionality as early and on as many levels as possible. This
paradigm is known as ’test early, test often’ in digital design.
The main tool used for verification is the so called testbench. This tool, used as a
simulation in digital design, stimulates the inputs of the unit under testing, observing
whether the outputs behave as expected. Simulation programs provide further methods
such as a waveform analysis to help observe the designs inner workings, simplifying the
tracing of errors immensely.
Before being implemented in the Spartan-6, the design presented in Chapter 2 was heavily
tested and validated using multiple testbenches. First, it was simulated using a variation
of the testbench used to verify the Reticle-ARQ. After that, it was implemented in a
much larger testbench, which contained the design for the entire FCP communicating
with the L2-ARQ. The HICANN-ARQ inside the L2-ARQ was tested previously to this
thesis. The modified FPGA-IF itself was tested in another version of the Reticle-ARQ’s
testbench.

3.1 The Reticle-ARQ Testbench

The purpose of the Reticle-ARQ was to measure the time it took for a desired number
of words to travel through a configurable amount of links. In order to emulate this,
the original testbench used custom channel modules, which randomly dropped words
traveling through it to simulate data corruption detected by the CRC. The setup depicted
in Figure 3.1 uses HICANN-ARQ modules and First-element-in-First-element-out buffers
(FIFOs) to loop data coming from the channel back to it, representing how the HICANN
processes data and gives an answer to the client.

3.1.1 Validating the FPGA Interface

Validation of a design is best done on multiple levels. If one constructs a design comprised
of a number of smaller modules, these components are best tested separately as well. This
is called ’unit testing’ and helps eliminating errors in the individual modules. Larger
testbenches in turn ensure that the smaller modules are correctly connected to each
other. The HICANN-ARQ is already tested, as it is implemented and in continuous in
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3.1 The Reticle-ARQ Testbench
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Figure 3.1: Structure of the testbench used to verify the Reticle-ARQ. The emulated up-
per level instructs the finite state machine inside the Reticle-ARQ to conduct
a performance test using a specified amount of data. The data is evenly dis-
tributed among the targeted ARQ-modules, which start to transmit it over
the Channel modules. The pseudo HICANNs, comprised of an ARQ module
and a FIFO-buffer, recieve the data and loop it back.
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Figure 3.2: Structure of the Channel-Module used for the validation of the FPGA-IF.
Both instances can receive data from an ARQ module (see figure 3.1), which
they then serialize. The serialized data is tranmitted to the other FPGA-IF,
and a random number generator can randomly disrupt the connection (E).
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3 Testbench Verification

the FCP. As part of the aforementioned internship the Reticle-ARQ itself along with the
FIFO and Channel modules were tested using the testbench depicted in Figure 3.1. The
FPGA-IF, while already tested and implemented for the FCP, had to be validated after
being ported to the Spartan-6. For this, the testbench used to originally verify the Reticle-
ARQ’s functionality was modified. The channel modules previously only emulated the
SerDes behaviour by merely dropping words by chance with a given probability. This was
replaced by 2 FPGA-IF modules communicating with each other, as depicted in Figure
3.2. A random number generator was placed between the two modules, and corrupted
the data transmission between them with a given probabillity. The corruption occured
by inverting singular bits of the signals, which disrupts the clock and data signals. In the
first iteration, two copies of the FPGA-IF-S6 module were implemented and tested. The
second version exchanged one copy with the FPGA-IF module integrated in the FCP.
This verified that the FPGA-IF that was ported to the Spartan-6 was indeed capable to
communicate with its FCP counterpart.

3.1.2 The DoubleArbiter Module
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m
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FPGA-IF

FPGA-IF

DoubleArbiter

DoubleArbiter

configpulse

config pulse

Figure 3.3: Implementation of the Dou-
bleArbiter module inside the
channel. Pulse and input pack-
ets can be applied to the inputs
simultaneously, yet only one is
passed on to the FPGA-IF.

In later development, the physical connec-
tion between Spartan and FCP created
by the FPGA-IF will be used to transmit
both configuration and pulse data. Pulse
data words contain information on neu-
ronal spikes gathered during the experi-
ment. They are also sometimes sent from
the Host-PC to the HICANN in order to
excite the neuron models residing on it.
Previously no module existed to coordi-
nate their transmission, resulting in colli-
sions and packet loss (Karasenko (2014)).
Alongside the construction of the L2-ARQ
a new module called the doubleArbiter
was designed to handle this issue. Im-
plemented in the testbench as part of the
channel module, it buffers both incom-
ing data types, ensuring only one word
is transmitted at any given time. Utiliz-
ing an internal counter, it prioritizes in-
coming pulse data, while granting a mini-
mum bandwidth to the configuration data
communication. Whenever a pulse and a
configuration word are to be transmitted
simultaneously, the configuration word is
buffered, while the pulse word is passed on. In case of the counter reaching 0, the config-
uration word is passed on, while the pulse word is buffered. After this, or in case there
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3.2 The HMF-FPGA Testbench
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HICANN-
ARQ FPGA-IF L2-ARQ

Figure 3.4: Structure of the L2-ARQ-Testbench. The channel module has been halved
so that it contains only one FPGA-IF. Its counterpart resides within the
L2-ARQ, the signals between the two are again disrupted randomly (E).

is no pulse word to transmit, the counter is reset to its starting value n. This ensures a
minimum bandwidth of 1 configuration word per n pulse words sent.

3.1.3 Validating the L2-ARQ

The testbench of Section 3.1.2 was further modified and used to validate the L2-ARQ’s
basic functionality. The new setup shown in Figure 3.4 removed the lower HICANN-
ARQs and FIFOs to replace them with the L2-ARQ. Furthermore, the channel module
was halved, and given a FPGA-IF counterpart to communicate with the L2-ARQ. Data
corruption is again emulated by a random number generator, inverting bits of the clock
and data signals. The testbench is capable of 2 modes of operation. In the first testmode
the already verified Reticle-ARQ is ordered to conduct a performance test. This can be
used to determine the theoretically possible speed of the connection to compare it with
the real-world experiment later. One can also observe the links behaviour under high
load. The second testmode sends ascending data and random data through the Reticle-
ARQ. Data is transmitted and looped back by the L2-ARQ. The testbench then checks
if the data arrived back in the same order it was sent, printing an error otherwise.

3.2 The HMF-FPGA Testbench

The last verification layer consisted of a testbench utilizing the entire design of the FCP
FPGA, called the HMF-FPGA-TOP. Since in later experiments it would only commu-
nicate with the Spartan-6 over the L2-ARQ, only the L2-ARQ has been instantiated in
this testbench. It can be controlled using C++-programs which are used for the physical
system as well. As such, this testbench represents the closest possible emulation of the
physical test setup later used for the conducted experiments. Its structure is visualized
in Figure 3.5. Again the HICANN-ARQ embedded into the Reticle-ARQ transmits data
over the FPGA-IF. The L2-ARQ receives this data and sends it back. The major dif-
ference between this testbench and the testbenches presented in Section 3.1 is that the
Reticle-ARQ itself is controlled via the modules residing in the FCP. A SystemC interface
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3 Testbench Verification

Testbench

HMF-
FPGA-Top

SystemC-
Interface

L2-ARQ

Figure 3.5: Structure of the HMF-FPGA-Testbench. The HMF-FPGA-Top design later
implemented in the FCP communicates with a SystemC interface, which can
be controlled using user-written C++ programs. It furthermore communi-
cates downwards with the L2-ARQ, which represents the Spartan-6’s func-
tionality.

is also part of the testbench. It can be controlled using programs written by the user,
and communicates with the FCP using an emulated ethernet connection. This causes an
interaction with the Reticle-ARQ closely resembling the real-world-example.
One might question why extensive testbenches like this are not used exclusively, and
why the testbenches mentioned in the previous sections are necessary. While it certainly
requires a lot of time and effort to construct the amount of testbenches mentioned here,
their use has two main advantages. The first is the simplicity of testing. The main reason
behind testbench validation in general was already mentioned; tracing errors once a de-
sign has been loaded into the FPGA is very difficult. The same problem arises with large
testbenches; if a problem is encountered, its cause can be hidden deep in the design. A
second advantage lies in the time time required to validate a design. An increased test-
bench size naturally equates to a higher simulation time. If the error only occurs after
a significant amount of simulation time, attempting to remove it takes all the longer.
Errors like these can be fixed much faster in smaller testbenches.
After using the testbenches mentioned, we can safely assume that our design has been
validated. We deem it error free for the situations we expect it to be utilized in.

3.3 Simulation Results

While mainly used for design verification, the presented testbenches can be used to
simulate and measure the behaviour of the unit under testing. As we would like to have
referential measurements to compare our experiment data to later on, the testbenches
have been used to determine the theoretically possible and expected bandwidths for our
design. In its current version the SerDes inside the FPGA-IF is specified to operate at
a clock frequency of 500 MHz. It is capable of double data rate (DDR) communication,
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3.3 Simulation Results

sending 2 bits of information during one clock cycle. Thus, it transmits data with a
bandwidth of 1 Gbit/s. One has to take into account that the FPGA-IF applies a 16
bit header that includes the CRC to every 64-bit word that is sent. This means that
only 80% of the SerDes communication is used to actually transmit data. Therefore the
resulting maximum possible bandwidth for the FPGA-IF communication is 800 Mbit/s,
or 64 bits sent every 80 ns.
These values only apply if no data corruption occurs. This is not the case in real-world
applications, so we set a corruption probability of pcorrupt = 0.0005/bit for our simulation,
which is quite high compared to the drop rate observed during testing with the HICANN.
We performed performance tests of 100000 words, and recorded the time it took to send
and recieve them. The time required to initialize the link before any data can be sent
was observed to be about 1100 µs. We determined the average time for a single word to
be sent as 81 ns. Thus, we expect the average bandwidth for our tests to also be in the
range of 790 Mbits/s.
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4 Operation and Testing

After verifying the design using the testbenches described in chapter 3, the next step was
to implement the design into the Spartan-6. In order to do so, a bitfile was created. When
loaded into the FPGA, this file changes the internal components to behave the way spec-
ified in the HDL design. Furthermore, to enable communication between the FPGA’s, a
physical connection had to be established. After these steps the communication between
the Spartan and a FCP had to be observed.

4.1 Experimental Setup

The Electronic Vision(s) group already utilizes Spartan-6 FPGAs for internal projects.
As such, boards connecting the FPGA to a socket already exist and were utilized for this
section. A smaller mobile version of the BrainScaleS system exists under the moniker
"Cube Setup" incorporating four FCPs and connector boards for single HICANNs. Due
to restrictions in the placement of connector pins in the FPGA designs, a custom con-
nector had to be build. Korbinian Schreiber assisted in the soldering of this cable which
connects a male and a female plug to serve as a bridge between the two FPGA boards.
The experimental setup is depicted in Figure 4.1, a close-up picture of the connector is
shown in Figure 4.2. Four FCPs are present in a cube setup, however only one was used
for the experiment. When performing a test with a HICANN chip, a circuit board is
placed between the FCP and the HICANN. This board supplies the HICANN chip with
power, and connects the two components correctly. In our setup, this circuit board was
not used since the Spartan FPGA is powered by an external USB port. However, if one
desires to connect the Spartan to one of these boards instead, the cable can be separated
in the middle. This makes it possible to connect a plug compatible to the circuit board.
The bandwidth was observed using the Reticle-ARQ module embedded into the FCP.

It was controlled using a custom script written by Christian Mauch, capable of performing
multiple consecutive tests.

4.2 Error Detection and Performance Improvements

In order to create a bitfile to load onto the FPGA, the mapping tool planAhead was used.
It allocates resources of the FPGA to structures specified in the design, and configures
said resources to behave as required. It does this regarding the constraints imposed by
the FPGA’s structure, printing an error should the design not be routable.
While attempting to create a bitfile using said tools, multiple problems were encountered.
The existing schematic after which the designs were connected to the FPGA’s pins had
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4.2 Error Detection and Performance Improvements

Figure 4.1: Picture of the experiment setup inside a ’Cube’. The Spartan-6 is mounted
on a circuit board (1) which is cooled using aluminum plates. It is connected
to the FCP inside the Cube (3) via a two part connector cable (2).

to be edited. The L2-ARQ communicates with the FCP over differential pairs of input
and output pins, carrying the data or clock signals. These pins are located on several
’banks’, sides of the FPGA which connect to the physical cables on the board. The first
design intended to have the data input pins on a different bank from the input pins,
but this was not possible. Instead, pins originally intended for a second differential data
output pair were reconfigured to act as input pins. Another problem had to do with the
Phase-locked loops. Originally it was intended to utilize a new PLL in parallel to one
already in use, but they had to be connected in series to make the design routable.
After these changes, the bitfile was compilable, and loaded into the Spartan-6. However,
no communication between the two FPGAs was observed. The error was traced back to
the software testmode. It was based on the initialization of the Spartan-6, which had
previously been used as a master during operation, but was required to be a slave in the
SerDes initialization protocol.
Now communication between the two FPGA’s was observed, yet it was highly unstable,
requiring almost a minute to send a single 64 bit word and only working in 10% of
attempted performance tests. Another attempt at improving communication was made
by implementing a termination resistance for the input pins. This is normally done for all
input connections in the LVDS communication, but since output pins intended for other
connections had to be used as inputs, this detail had been missed. After terminating the
input pins the performance improved a little, as multiple words could be sent before a
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4 Operation and Testing

Figure 4.2: Picture of the custom soldered cable connecting the FCP and Spartan-6
FPGA.

timeout occurred.

4.3 Measuring the Bandwidth

In order to evaluate the connection between the two FPGA’s, the custom script was used.
It begins with the initialization of the FCP, including its FPGA-IF. Once the connection
is initialized, the program initiates a performance test and reports the results. Using this
program, we observed extremely low bandwidths, sometimes sending a single word of 64
bits length would cause a timeout. This timeout was issued when a response had not
been heard for more than 60 seconds. As performance tests with more than 10 words
would time out more often than not, only tests with a maximum amount of 10 words
were conducted.
The first test was an observation of the bandwidth over time. The program issued a
performance test for 1 word every minute, and repeated this 1000 times. The time de-
pendency of the communication speed was plotted in Figure 4.3. The average bandwidth
was observed as 23 bits/s, the maximum reached was 1010 bits/s. Another test was
conducted, this time using 8 words per performance test. The average bandwidth was
observed as 36 bits/s, while the maximum was 246 bits/s. Its time dependency is visible
in Figure 4.4.
The very low average together with a very high variance prompted the need to collect
more data for further investigation. We executed a performance test for 1 to 10 words
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4.4 Conclusion

Figure 4.3: Communication bandwidth for single-word communication plotted over time.
One can clearly see the large fluctuation in the transmission speed.

with 1000 trials each. The distributions for the reported times are shown in Figure 4.5.
Each point represents a single trial with the coordinates denoting the time it took to
send that amount of words. The color is an indicator of the trial-to-trial variability. It
encodes the relative frequency of occurrence for the particular perftest result. It should
be noted however, that there were a lot more timeouts i.e the perftest took more than 60s
to complete at larger experiment sizes. This effectively reduces the number of samples
by a significant margin, however we calculate the colorplot correctly by normalizing to
the number of samples in each bin. The timeout probability is listed in Table 4.1
The plot shows that the average time to execute longer performance test is roughly
proportional to the number of transported words. At the same time, the trial-to-trial
variability increases with the experiment length.

4.4 Conclusion

As Section 4.3 shows, the established connection between Spartan-6 and FCP did not
meet our expectations. The time required to transmit a single word was several orders
of magnitude higher than what we observed in simulation. Since the simulation we
conducted resembled the test setup as closely as possible, the error has to lie in factors
out of reach for the simulation.
We believe that the main cause for this issue must be the physical link. The demands
on the cable increase with transmission frequency because dynamic effects start to come
into play. Whenever there is a change in impedance in the signal path there is a reflection
which superimposes on the original signal. Following

r =
ZL − Z0

ZL + Z0
(4.1)
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4 Operation and Testing

Figure 4.4: Communication Bandwidth for an eight-word communication plotted over
time. Similarly to Figure 4.3, the measurements show a high amount of
fluctuation.

with ZL and Z0 representing the impedances at a connection, an incoming signal is
reflected with an amplitude of Ur = U0 · r Bogatin (2004). Considering the fact that
multiple impedance jumps are present in the link, for example at the connectors, we
assume that the suboptimal bandwidth is a result of a high data corruption rate caused by
reflection noise of the physical link. This is further emphasized by the operation frequency
for the communication. Operating at fsignal = 500 MHz, the estimated wavelength for a
signal in a copper cable is around

λ =
CCopper

fsignal
(4.2)

=
2 × 108 m/s

5 × 108 Hz
(4.3)

= 0.4 m (4.4)

The utilized cable in our experiment was about 15 cm long, setting these in the same
order of magnitude. This means that stationary waves are likely to form at least
temporarily. These kinds of effects are normally mitigated by terminating the receiver
endpoints as we have tried during testing. The observed small improvements can be
explained by assuming that the effective impedance of the connector was quite far off
the 100 Ω that the internal termination resistors possess in the FPGA.

The high rate of data corruption caused by these distortions can be explained when on
recalls the working principles behind a flip flop. These 1 bit storage units are paramount
for data storage in an integrated circuit. The LVDS data arriving at the Spartan 6 is
stored in flip flops, and once stored is read from them in the next clock cycle. However,
for a flip flop to be functioning properly certain constraints have to be met. Flip flops
require a clock signal to detect the data that shall be stored in them. The current data
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4.4 Conclusion

Figure 4.5: Times required to receive a response plotted against the number of words sent
in each measurement. The colour denotes the relative amount of data points
that were measured in the specified one second time interval. The relative
maxima for each amount of words have been indicated using a black dashed
line.

value applied to the flip flop is accepted during the rising edge of the clock signal. In
order to be properly stored, the input has to be held steadily for a certain interval before
and after the rising edge of the clock. Depicted in Figure 4.6, this time interval is known
as the aperture and consists of the setup time tsu and the hold time thold.
The reflections existing in the cable could affect this time interval in multiple ways.

A superposition of the main signal with its reflections can cause the resulting signal to
be unstable during the aperture. The reflections could also influence the clock signal
in such a way that a data value is detected to late or too early. It is also possible that
the clock edge is disrupted in such a way that the receiving flip flop cannot detect it
as such. These are just some possible issues which could cause the flip flop to accept a
false or unusable value. The CRC-check of the FPGA interface would detect this false
information, resulting in a packet loss.
The second possible reason is that the FPGA-IF takes an immense amount of time to
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4 Operation and Testing

No. words Timeout %
1 12.8
2 1.6
3 1.5
4 3.5
5 17.0
6 30.6
7 41.7
8 47.3
9 56.5
10 59.6

Table 4.1: Timeout probability for performance tests depending on the amount of sent
words.

Figure 4.6: Timing diagram of a flop data acquisition cycle. A data value applied to
the flip flop needs to remain stable for a setup time tsu before and a hold
time thold after a rising edge of the clock signal. Only then can the flip flop
correctly output the value. Picture taken from Michagal (2007).
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4.4 Conclusion

initialize before it can be used for communication. As mentioned in Chapter 2, the
FPGA-IF initializes in order to configure the time when it choses to detect a data value.
The reflections in the physical link can cause the clock and data signals to shift wildly.
Thus, the algorithm that determines the optimal point at which data should be detected
can take very long, and is sometimes not able to terminate.

4.4.1 Estimating the Drop Probability

The flip flop capturing failures caused by the noisy cable effectively result in a Bernouilli
process that randomly corrupts individual bits on the wire. This is exactly the kind of
corruption that has been modeled in the simulations. However, the corruption probabili-
ties used during verification were never so high as to significantly reduce the throughput.
Using the data in Figure 4.5 we can estimate the drop probability in the current setup.
We begin by noting that executing a performance test for one word has a quite sharp
peak at about two seconds duration. Since the performance test actually loops the data,
we experience the faulty link twice. Assuming symmetry, this means that it will take
around one second to sequentially transmit 80 bits through the link without a single cor-
ruption. Since the HICANN-ARQ has a resend timeout of around 8 µs, that translates
to about 125000 resends until successful transmission. A small calculation yields

pcorrupt = 1 −
(

1

125000

) 1
80

= 0.136/bit (4.5)

This probability is about 300 times larger than what we have used in simulations.
Attempts have been made at slowing the clockspeed for the operation in the hopes

that this might reduce the amount of data corruption. But whereas the Spartan-6 is
easily configurable to operate at lower frequencies, the design for the FCP cannot be
changed that easily. It would require an enormous amount of changes in the software
used to operate the FCP, as well as changes to the designs in the FCP themselves, to
enable a slower operation. Furthermore, the aim was to establish communication with as
little changes to the original setup as possible. Thus, the clockspeed remained unchanged.
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5 Discussion and Outlook

5.1 Summary

The main goal of this thesis was the construction of a HDL module capable of establishing
a high-speed data connection between two FPGAs. A design similar to the communi-
cation interface used by the Electronic Vision(s) group in a FCP has been constructed.
Using multiple simulation testbenches, the design’s functionality has been validated, in-
dicating that it is working as intended. It has been implemented into a Spartan-6 FPGA,
and communication between said Spartan-6 and a FCP has been observed. The speed
of the established communication fluctuates heavily, and reaches an average speed of
around 23 bits/s. However, the design has been observed performing at speeds of 1
kBit/s, and extensive testing suggests that these slow speeds are the result of a faulty
physical connection between the FPGAs due to electrical effects. Simulations suggest
that exchanging said link with a cable capable of carrying signal frequencies of around
500 MHz will greatly improve the reached communication speed. Analysis of the con-
structed bitmap yields a 10 % consumption of the Spartan-6’s resources, leaving a lot of
space for further designs inside. While not performing in its theoretical limits, the design
was proven functional.

5.2 Improving the FPGA-Implementation

As of this point in time, the design inside the Spartan-6 is initializing itself on powerup,
given that the FCP-side of the connection is being initialized as well and transmitting a
training pattern. For further experiments with the Spartan-6 one will most likely desire
a feature to reset the connection using a host-driven command. This would require
connecting the FPGA Interface over a JTAG side channel, as it is done already for the
HICANN chip. This communication chain is used in multiple scripts to control the
configuration of the FPGA-components during the FPGA’s startup.
Furthermore, it might prove useful to revisit the design’s routing in the Spartan-6. As
of this moment, certain FPGA-primitives like a Phase-locked-loop are used exclusively
for the L2-ARQ, and posses multiple clock outputs that are unused. More PLLs with
unused outputs are used for other components in the FPGA’s design, and some could be
combined to optimize utilization of the FPGA’s resources.
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5.3 The Adapter Cable

The main problem of the current setup lies within the physical link connecting the two
FPGAs. In the short timespan available for this thesis, it was only possible to construct
a mere prototype. The resulting communication observed over this adapter cable was
much slower than simulations predicted, and suffered from a very high variation in speed.
We suspect that this is a result of a high amount of data corruption, caused by noise
in the LVDS-connection due to impedance jumps along the cable. These impedance
jumps caused by the variation in conductor material of the custom soldered cable make
the connection unfit for communication at the required frequencies. Replacing it with
a connection capable of carrying these frequencies with very little noise compared to
the LVDS voltage amplitude will most likely result in a much higher bandwidth closely
resembling the bandwidth observed in the current FCP-HICANN communication. One
possibility for such a connection would be a circuit board that connects the two FPGAs.

5.4 Establishing the Spartan-FPGA Prototyping
Environment

While a connection between the two FPGAs has been established, this is only the first
step towards building a suitable testing environment inside the Spartan-6. A first ap-
proach would be the implementation of an OCP-based communication protocol as de-
signed by Friedmann (2013). This would enable the HICANN-ARQ to communicate with
all other clients in the Spartan-6. As of this moment, the connection has been imple-
mented via a generic ARQ-protocol using a module created by Karasenko (2014). In the
event that the physical connection between the two FPGAs is improved, this module can
be exchanged for other versions. The most notable example would be the Stream-ARQ
designed by Gaetan Deletoille, which achieves higher net communication speeds at lower
corruption rates. Since both modules are designed to be easily interchangeable, little
effort would be required for this adjustment.
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List of Acronyms

ARQ Automatic Repeat Request protocol. 6, 9

ASIC Application-Specific Integrated Circuit. 1

BEC Backward Error Correction. 9

CRC Cyclic Redundancy Check. 5–7, 14

FCP FPGA Communication PCB. 3, 7–10, 12, 14, 16–18, 20–23, 27–29

FPGA Field Programmable Gate Array. 1–3, 5, 7, 11, 13, 17, 18, 20–22, 25, 28, 29

FPGA-IF FPGA Interface. 3, 5, 7–9, 11, 14, 16–19, 22, 25, 27

FPGA-IF-S6 Spartan 6 FPGA Interface. 7, 12, 16

HICANN High Input Count Analog Neural Network chip. 1–3, 14, 16, 19, 20, 28, 29

HICANN-ARQ HICANN Automatic Repeat Request protocol. 3, 5, 9–14, 17, 27, 29

IC Integrated Circuit. 3

PCB Printed Circuit Board. 3
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