
Department of Physics and Astronomy

University of Heidelberg

Bachelor Thesis

in Physics

submitted by

Arthur Heimbrecht

born in Speyer

Compiler Support for the BrainScaleS

Plasticity Processor

This Bachelor Thesis has been carried out by Arthur Heimbrecht at
the

Kirchhoff Institute for Physics

Ruprecht-Karls-Universität Heidelberg

under the supervision of

Prof. Dr. Karlheinz Meier

Compiler Support for the BrainScaleS Plasticity Processor

The BrainScaleS wafer-scale system is an approach to accelerated analog neuromorphic
computing that supports online plasticity with fixed update rules. For its next generation
the current prototype(HICANN-DLS) features a programmable plasticity processor, that
is designed for a wide range of plasticity rules. It is based on a Power7 architecture
and includes a vector extension for SIMD-parallelization. Together with a custom I/O-
interface it is able to access and update synaptic weights, correlation measurements and
chip configuration in the system. This allows for fast and flexible application of plasticity
rules during experiments. This architecture is also capable of performing additional tasks
in experiments.

This thesis will focus on bringing high-level programming to the architecture by ex-
tending the PowerPC back-end of the GNU Compiler Collection (GCC). This allows for
programming the vector extension using important features of GCC, such as vector in-
trinsics, inline assembly and optimization. First tests of the extended back-end have been
successful and pinned down bugs in the current processor, which could be worked around.
The extended back-end is already in use for different synaptic plasticity experiments.

Compiler Support für den BrainScaleS Plastizitäts Prozessor

Das Brainscales Wafersystem ermöglicht beschleunigtes analoges neuromorphes Rech-
nen mit fest eingebauten synaptischen Plastizitätsregeln. Der Prototyp für die nächste
Generation des Systems (HICANN-DLS) verwendet einen programmierbaren Plastiz-
itätsprozessor, der zukünftig verschiedenste Plastitzitätsregeln ermöglichen soll. Dieser
Prozessor basiert auf der Power7 Architektur und wurde um eine spezielle Vektorein-
heit zur SIMD-Parallelisierung erweitert. Zusammen mit einer eigenen I/O-Schnittstelle,
kann der Prozessor auf Synapsengewichte, Korrelationsmessungen und die Chipkonfig-
uration zugreifen und updaten. Das ermöglicht schnelle und flexible Plastizitätsregeln
während eines Experiments. Zusätzlich ist der Prozessor in der Lage weitere Aufgaben
in Experimenten zu übernehmen.

In dieser Bachelorarbeit wird die Anpassung des GNU Compiler Collection (GCC)
Backends für diese Architektur beschrieben. Dies ermöglicht die vollständige Nutzung
höherer Programmiersprachen und weitere Vorteile, wie Optimierung, Unterstützung von
integriertem Assembler und intrinsische Vektorfunktionen. Mit dem Backend wurden
bereits erste Tests der Vektoreinheit durchgeführt, wodurch Bugs im aktuellen Prozes-
sordesign entdeckt werden konnten, die jedoch mit Software zu lösen sind. Mittlerweile
wird das erweiterte Backend von Anwendern für verschiedene Experimente genutzt.

Contents

1. Introduction 1

2. Fundamentals and Applications of Computer Architectures and Compiler De-
sign 3
2.1. Hardware Implementation of Neural Networks 3
2.2. Processor Architectures and the Plasticity Processing Unit 6
2.3. Basic Compiler Structure . 14

2.3.1. Back-End and Code Generation . 16
2.3.2. Inline Assembly . 18
2.3.3. Intrinsics . 19
2.3.4. GNU Compiler Collection . 19

Insn Definition and Register Transfer Language 20

3. Extending the GCC Back-End 23
3.1. Adding the s2pp Option Flag and nux Target 24
3.2. Creating Macros . 28
3.3. Registers . 31
3.4. Reload . 39
3.5. Built-ins, Insns and Machine Instructions 41
3.6. Prologue and Epilogue . 50
3.7. Overview . 52

4. Results and Applications 53

5. Discussion and Outlook 57

Appendix 61

A. Appendix 61
A.1. Acronyms . 61
A.2. Assembly Mnemonics . 62
A.3. List of nux Intrinsics . 64

Bibliography 69

III

1. Introduction

Neuromorphic computing has developed into a popular scientific field throughout the
last years and finds more and more applications and implementations in science and
industry, e.g. [14]. These systems already show advantages over traditional computer
architectures, like the von-Neumann architecture, in specific applications and continue
to improve. In its current generation, neural networks abandon discrete time steps
and states, but gain more computational power [18]. They use spikes and continuous
time scales that resemble nature more closely and allow for efficient implementations
as analog hardware which offers high performance at low energy consumption [5]. Still,
new architectures also require novel styles of programming [2] and users need to adapt
to these. This can be a hurdle for many users when developing new experiments, that
initially take a significant amount of time.

One example for this is the current way of programming for the plasticity processing unit
of the High Input Count Neural Network - Digital Learning System (HICANN-DLS).
The HICANN-DLS is a small scale system that features analog emulation of neu-
rons and synapses in networks [8]. The Plasiticty Processing Unit (PPU), as part
of HICANN-DLS, can be used for implementing plasticity rules in such networks. It
resembles a traditional processor architecture, which was modified for this task. Imple-
menting such plasticity rules differs from conventional high-level programming styles.
When creating code for the PPU, users are partially pushed back to the origins of
computing; instead of assigning values like d = a + b, one must first read the variables
from memory, then operate on their values and finally write the result back to memory.
Therefore coding for the PPU works on a low level and brings new challenges to users,
that are already challenged by neuromorphic programming.

Ultimately, the more a system abandons conventional elements of programming, the
more challenges emerge from this. Although experienced programmers can create highly
efficient code like this, normal users will not be familiar with this. This can cause
fewer users to take the initiative of writing code for such systems, but also can code get
confusing, hard to debug and even inefficient.

Compilers usually save users from these problems by offering high-level languages.
Over decades compilers have been developed and became a standard tool for program-
mers. At the same time compilers became more and more of a black box that transforms
a program into an executable file. For this reason it may be difficult for some users to
abandon this convenience and go back to low-level programming.

Though the PPU is not completely without compiler support, its distinct features are
only usable on a low level. As these features are necessary to implement plasticity rules

1

1. Introduction

on the HICANN-DLS, this can easily cause inconveniences for users. Users repeatedly
have to mix high-level and low-level code, which is an atypical style of programming. It
can cause different problems, as users have to adapt to this and, in the beginning, likely
create bugged or inefficient programs. As performance is important for neuromorphic
programming, users may need an unreasonable amount of time and work to achieve
simple results with this.

Until now full compiler support does not exist for the PPU because of its modified
processor architecture, which was developed solely for neuromorphic hardware. It offers
a partly customized instruction set that is optimized for its applications.
The HICANN-DLS already is an experimental platform, which is used by several users,
even though of PPU-related challenges. Applications like in-the-loop training or Spike
Timing Dependent Plasticity (STDP) have been developed and mostly do not involve
the PPU . Even when taking the effort of learning to code for the PPU, users are
constantly challenged by missing programming features such as creating parameterized
functions. This leads to repetitive code or difficulties when integrating calibration into
experiment-related code.

Figure 1.1.:
Set-Up of a HICANN-DLS Test System

(taken from Friedmann et al.)

Offering more tools for PPU programs
could reduce the effort of developing for
the PPU, while at the same time in-
creasing capabilities of programs. Be-
sides allowing full high-level program-
ming, compiler support could also offer
tools like code optimization and debug-
ging features. At some point compiler
support may also facilitate automatic
code generation as a prerequisite for
implementation of very high-level lan-
guages. Users then could create plas-
ticity rules in existing program environ-
ments, from where code is translated
into PPU programs. This creates the
need for optimization of PPU code, like
those built into virtually every com-
piler.

This thesis will focus on achieving aforementioned compiler support and briefly ex-
plain the process itself. As fundamental knowledge of both, processors and compilers,
is needed along the way, the second chapter will start with a very basic introduction
to both topics. This involves basic information about the PPU, as well as the GCC,
and should explain the basic concepts to an extend which is sufficient. Afterwards, the
process of extending the compiler is explained, followed by a presentation of results as
well as first test cases. The thesis will conclude in a resume and give an outlook to future
applications and development of the compiler and the PPU.

2

2. Fundamentals and Applications of
Computer Architectures and Compiler
Design

2.1. Hardware Implementation of Neural Networks

This thesis mainly focuses on a processor that is an essential part of the High Input
Count Neural Network - Digital Learning System (HICANN-DLS) chip. The
following chapter will deal with the HICANN-DLS as a whole and then look into the
Plasiticty Processing Unit (PPU) in detail while also addressing processor architec-
ture in general.

The HICANN-DLS is a spike based system and was built to emulate neural networks
at high speeds with low power consumption. This means that neuronal activities do not
follow discrete time steps and neurons send out spikes when activated.

Neurons are interconnected through dendrites, synapses and axons where synapses
can be of different coupling strength. This means that a neuron is activated only for a
short time, called a spike, and sends out this spike through its axon to neurons that are
connected via synapses. Between those spikes, the neuron is in a sub-threshold state and
not sending any signals, while still receiving input spikes from other neurons. Synapses
can work quite differently, but have in common that there is a certain weight associated
to them, which will be call synaptic weight. The synaptic weight either amplifies or
attenuates the pre-synaptic signal. The signal is then passed through the dendrite of
the post-synaptic neuron to the soma where all incoming signals are integrated. If the
integrated signals reach a certain threshold the neuron spikes and sends this signal to
other neurons [23].

The HICANN-DLS system implements a simplified neural model in analog electronics,
in order to emulate neuronal networks in a biologically plausible parameter range.

At its core HICANN-DLS has a so called synaptic array (see figure 2.1) that connects
32 neurons which are located on a single chip to 32 different pre-synaptic inputs). They
enclose a 2D field which is the synaptic array as it mainly consists of synapse circuits.
All neurons reach into the array through input lines that are organized in columns. The
pre-synaptic inputs respectively have wires that resemble rows in the array. At each
intersection of those rows and columns a synapse is placed, that thereby connects a
neuron and a pre-synaptic input. Overall this gives 1024 synapses, that interconnect
neurons with the synaptic input.

A Field Programmable Gate Array (FPGA) is connected to all pre-synaptic
inputs and routes external spikes to these inputs. Synapses are realized as small repetitive

3

2. Fundamentals and Applications of Computer Architectures and Compiler Design

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Sy
na

pt
ic

In
pu

t

Neurons

Row

Column

Synapse

Figure 2.1.: The synaptic array consists of pre-synaptic inputs (left), neurons (bottom) and
1024 synapses. All synapses along a column are connected to the respective neuron.
Pre-synaptic inputs send their signal to all synapses along their respective row.

circuits that contain 16 bits of data (see figure 2.2). 6 bits of those are used as synaptic
weight and the spare two upper bits of that byte are used for calibration. Each synapse
also holds a 6-bit wide internal decoder address. Decoder Address and synaptic weight
can both be changed from outside.

The synapse array can also be used in 16-bit mode for higher weight accuracy, that
combines the weights of two synapses to a 12-bit weight.

The FPGA sends a 6-bit address, whenever it sends a spike to a pre-synaptic input,
which then is compared by each synapse to the decoder addresses, they hold them-
selves. In case the addresses match, each synapse multiplies an output signal with
the weight it stores and sends the result along a column where it reaches the neuron.
Along those columns signals from different synapses are collected. Inside the neurons

4

2.1. Hardware Implementation of Neural Networks

6 bit SRAM
address

6 bit SRAM
weight

6 bit
DAC

co
m

-
pa

ra
to

r

correlation
sensor

pre-synaptic enable signal

pre-synaptic
neuron
address (6 bit)

neuron dendritic inputs
A B post-synaptic event from neuron

causal and anti-causal
correlation readouts

analog gmax
control input

4 bit SRAM
digital

calibration

Figure 2.2.: Block Diagram of the Synapse Circuit (modified from Friedmann et al.).

the resulting current input is integrated and if it exceeds a certain threshold, the neu-
ron spikes. If the neuron is spiking, it sends an output signal to the FPGA, which
is responsible for spike routing in the first place. All of this is done continuously and
does not follow discrete time steps, as mentioned earlier. Along each column sits a
Correlation Analog Digital Converter (CADC) that measures correlation of post-
and pre-synaptic spikes and can be accessed by the PPU, similar to the synaptic array.

General-purpose part

16 kiB memory

4 kiB instruction cache

Synapse array access unit

Vector
Control

Memories
Processor
Vector unit
IO unit

Vector
slice

VRF

Vector
slice

VRF

32 bit
128 bit

Figure 2.3.:
Structure of the nux Architecture (taken

from Friedmann et al.).

The PPU is the processing unit of
HICANN-DLS and is equipped with a
Vector Extension (VE) that is named
synaptic plasiticity processor (s2pp). It
has also access to the digital information
in the synapse array.

The following naming convention will be
used throughout this thesis:

PPU is the processor which is part of
HICANN-DLS and mainly responsi-
ble for plasticity.

nux refers to the architecture of the PPU,
see figure 2.3.

s2pp describes the PPU’s VE and is part
of the nux architecture.

Digital configuration of the synapses and writing PPU programs to the memory is
handled by an FPGA, that has access to every interface of a HICANN-DLS chip.

It was developed to handle plasticity and can apply different plasticity rules to synapses
during or in between experiments. This is done much faster by the PPU than by the

5

2. Fundamentals and Applications of Computer Architectures and Compiler Design

FPGA, which is important for achieving experimental speeds, that are 103 times faster
than their biological counterparts. In general the PPU is meant to handle plasticity of
the synapses during experiments, while the FPGA should be used to initially set up an
experiment, manage spike input and record data.

2.2. Processor Architectures and the Plasticity Processing
Unit

Although the main goal of HICANN-DLS is to provide an alternative analog architecture,
there are advantages to classic computing which are needed for some applications and
almost all contemporary processors are built using the so called von-Neumann architec-
turei [26] (figure 2.4).

The main advantage of digital systems over analog systems, such as the human brain,
is the ability to do numeric and logical operations at much higher speeds and preci-
sion as well as the availability of existing digital interfaces. For this reason “normal”
processors are responsible for handling experiment data as well as configuration of an
experiment in the HICANN-DLS. This section will explain the basics of such proces-
sors and common terms, while referring to the PPU at times when it is convenient.

Control Section

ALU

Register File

Operational Section

Processor

Memory
Data

In

Data
Out

Machine
Instructions

Figure 2.4.:
Structure of a Processor in

von-Neumann Architecture

The PPU, which was designed by Fried-

mann et al., is a custom processor, that is
based on the Power Instruction Set Archi-
tecture (PowerISA), which has been devel-
oped by IBM since 1990. Specifically the
PPU uses POWER7 which was released in
2010 as a successor of the original POWER
architecture.

In general, a microprocessor can be seen
as a combination of two units which are
an operational section and a control sec-
tion [6, p. 26]. The control section is
responsible for fetching instructions and
operands, interpreting them, controlling
their execution and reading/writing to the
main memory or other buses. The opera-
tional section, on the other hand, creates
results from instructions and operands by
performing logic or arithmetic operations
on these, as instructed by the control sec-
tion. Prominent parts of the operational
section are the Arithmetic Logic Unit (ALU) and the Register File (RF).

The RF can be seen as short-term memory of the processor. It consists of several
repeated elements, called registers, that save data and share the same size, which is

6

2.2. Processor Architectures and the Plasticity Processing Unit

determined by the architecture — the 32-bit architecture of nux for instance has 32-bit
wide registers.

Typically the number and purpose of registers varies for different architectures. Com-
mon purposes of registers are:

General Purpose Register (GPR) These registers can store values for various causes,
but in most cases are soon to be used by the ALU. Most registers on a processor
are typically GPRs. Any register that is not a GPR is called a Special Purpose
Register (SPR)

Linker Register (LR) This register marks the jump point of function calls. After a
function completes, the program jumps to the address in the link register.

Conditional Register (CR) This register’s value is set by an instruction that compares
one or two values in GPRs. Its value can condition some instructions if they are
executed or not.

The ALU uses values, which are stored in the RF, to perform the aforementioned logic
or arithmetic operations and saves the results there as well.

Some architectures also have an accumulator that is often part of the ALU. Interme-
diate results can be stored there because access to the accumulator is the fastest possible
but it can only holds a single value at a time.

Memory of a von-Neumann machine contains both, the program and data. Usually this
memory is displayed as equal-sized blocks of information with addresses as in figure 2.5.

0 7

0x0001

0x0002

0x0003

...

0x3fff

0x4000

Figure 2.5.: Illustration of Word Sizes for 32-bit Words

Each address is equivalent to one byte in memory. The program is normally in a
different location in memory than data and the processor goes through the program step
by step. Each of these steps is represented by a machine instruction, which consists
of several elements that occupy a fixed amount of memory (see figure 2.6).

A machine instruction like in figure 2.6 combines several elements. A program is simply
a list of these instructions in memory that belong to the instruction set. Each machine
instruction requires a fixed amount of memory and consists of an opcode and multiple

7

2. Fundamentals and Applications of Computer Architectures and Compiler Design

07152331

opcode operand 0
return operand

operand 1 operand 2

Figure 2.6.: Representation of a Machine Instruction in Memory

operands. The opcode is the first part of the instruction and is typically an 8-bit number
that identifies the operation.

Opcodes are often represented by an alias string like add, that is called a mnemonic.
The opcode is followed by several addresses, that refer to the location of value, or where
it should be stored. These addresses are called operands and can either be a memory
address or a register number. The ALU reads the opcode and operands and performs a
set of so called micro instructions accordingly [6, p. 23ff.].

During a single clock cycle a chip can perform a single micro instruction. An example
for micro instructions in an add instruction (d = add(a,b)) would be:

Listing 2.1: Example of Micro Instructions in an add Instruction
1 fetch instruction from memory
2 decode instruction
3 fetch first operand a
4 fetch second operand b
5 perform operation on operands
6 store result

The complexity of an instruction set is important for performance. As complex in-
struction sets feature highly specialized circuits and microinstructions, they are able to
complete complex computation in only a few clock cycles. But a complex instruction set
often relies on a small set of basic arithmetic instructions and rarely use complex ones.
Because every micro instruction must be represented by a circuit in the ALU, a smaller
instruction set would safe space and be easier to design.

In general developing a processor architecture involves factors like: available chip
space, instruction set and design complexity, energy consumption and maximum clock
frequency. Because of this, processors can be classified into two main groups:

Complex Instruction Set Computing (CISC) e.g. x86, MC68000, and i8080

Reduced Instruction Set Computing (RISC) e.g. POWER, ARM and MIPS

The latter usually has an instruction set, that is reduced to simple instructions like
add or sub, and connects these to create more complex instructions. This is similar to
how micro instructions work and makes programs on a RISC processor more complicated.
This architecture also features more registers than CISC and instruction pipelining, which
will be discussed later on.

The PPU is a RISC architecture, therefore this chapter will focus on RISC’s key
features.

Low-level code, that is written with machine instructions, is called assembly code,
which is the lowest level of representation of a program that is still is human-readable.
Assembly instructions follow the same scheme as machine instructions do:

8

2.2. Processor Architectures and the Plasticity Processing Unit

07152331

mnemonic operand operand operand
07152331

addi

r1

register address
r2

register address
5

immediate operand

Figure 2.7.: Representation of Assembly Instruction addi as a Machine Instruction in Memory.
The immediate value 5 is added to register r2 and the result written in r1. Table A.1
shows a list of important instructions in the PowerISA.

Listing 2.2: Assembly in Written Form
addi r1, r2, 5

In RISC architectures instructions typically consist of 3 operands and are between reg-
isters only (except for load/store memory instructions). Instructions, that have less
operands, are usually mapped on different instructions. Its operand can be of two dif-
ferent types which are shown in figure 2.7. They either represent a specific register (r1
= register 1) or an immediate value (5 = the integer 5). RISC architectures often sup-
port only one load (memory to register) and one store (register to memory) instruction,
which qualifies them as load/store architectures. In order to access memory, operands
must be used indirectly:

A memory address is given by an immediate value, that is saved to a register. The
registers content is then used by a memory instruction instead of the register address, as
shown in listing 2.3.

Listing 2.3: Example Code for Load and Store Instruction. The contents of memory address
0x0000 are loaded into register r0 and then stored at address 0x1000. See table A.1
for information on used mnemonics.

1 ls r1, 0x0000
2 lw r0, 0(r1)
3 li r1, 0x1000
4 stw r1 , 0(r1)

It takes up to several hundred cycles for instructions to access memory, which effectively
stalls the processor until the memory instruction has finished.

speed(accumulator) > speed(register) � speed(memory)

Therefore a user should try to avoid memory access as much as possible and use registers
instead.

Since instructions on RISC are all very simple, they all follow the scheme in listing 2.1.
The processor therefore start pipelining instructions, which means starting the next
machine instruction as the previous machine instruction just performed the first micro
instruction. Ideally, this will increase the performance by a factor that is equal to the
number of micro instructions in a machine instruction.

It must be noted though, that the processor has to implement detection of hazards,
which are data dependencies between instructions; e.g. one instruction needs the result
of another. Such an instruction is then postponed to a delay-slot and other instructions

9

2. Fundamentals and Applications of Computer Architectures and Compiler Design

that do not cause hazards are executed instead. The result is reordering of instructions
on a processor level [6, p. 54f].

Processors sometimes have so called co-processors for complex instructions that are
not included in the instruction set, but are still useful. An example would be multi-
plication on RISC, which would need many cycles, when split into add instructions. A
co-processor can perform this in just a few cycles. In such a case the control section
recognizes the mult opcode and passes it to the co-processor instead of the ALU.

This can be extended to whole units similar to the ALU existing in parallel. One
example would be a Floating Point Unit (FPU), which is nowadays standard for
most processors and handles all instructions on floating point numbers. For this reason
has the FPU its own Floating Point Registers (FPRs) in a separate register file.

A different kind of extension are Vector Extensions (VEs) that do the same as
the FPU, but for vectors instead of floats, and allow for Single Input Multiple Data
(SIMD) processing. This is mostly wanted for highly parallel processes such as graphic
rendering or audio and video processing [17]. Early supercomputers such as the Cray-1
also made use of vector processing, to gain performance by operating on multiple values
simultaneously through a single register [19]. This could either be realized through a fully
parallel architecture or more easily through pipelining instructions for vector elements.
The latter one is possible since there are typically no dependencies, hence no hazards,
between single elements in the same vector. Nowadays basically all common architectures
support vector processing. A few examples are:

• x86 with SSE-series and AVX

• IA-32 with MMX

• AMD K6-2 with 3DNow!

• PowerPC with AltiVec and SPE

• ARM with NEON

The s2pp VE on the nux architecture is the PPU’s distinct feature that allows for
SIMD operations on synaptic weights. The VE is weakly coupled to the General Purpose
Processor (GPP) of the PPU. Both parts can operate in parallel while interaction is
highly limited. To handle the vector unit, the instruction set was extended by 53 new
vector instructions. The Vector Register File (VRF) contains 32 new vector registers
which are each 128-bit wide [20]. This allows for either use of vectors with 8 halfword
(see figure 2.8) sized elements or 16 byte sized elements, which are 128 bits long as seen
in figure 2.9.

This section takes a special interest in the AltiVec vector extension itself which was
developed by Apple, IBM and Motorola in the mid 1990’s and is also known as Vector
Media Extension and Velocity Engine for the POWER architecture. The AltiVec exten-
sion provides a similar single-precision floating point and integer SIMD instruction set.
Its vector registers can hold sixteen 8-bit char (V16QI), eight 16-bit short (V8HI), four
32-bit int (V4SI) or single precision float (V4SF) — each signed and unsigned [20].

It resembles most characteristics of the s2pp vector extension, like a similar VRF, and
is already implemented in the PowerPC back-end of GNU Compiler Collection (GCC),

10

2.2. Processor Architectures and the Plasticity Processing Unit

0 1 7 15 31

bit

byte

halfword

word

Figure 2.8.: Illustration of Word Sizes for 32-bit Words
0 7 15 31 63 127

QI Quarter
Integer

V16QI

0 7 15 31 63 127

HI Half
Integer

V8HI

0 7 15 31 63 127

SI Single
Integer

V4SI

0 7 15 31 63 127

SF Single
Float

V4SF

Figure 2.9.: Vector structures are 128 bits wide and split into common word sizes.

but both VEs also feature differences.
The s2pp VE features a double precision vector accumulator and a Vector Conditional

Register (VCR) which holds 3 bits for each half byte of the vector, making 96 bit in total.
The bits represent the result of a previous comparison instruction for vector elements.
If the first bit is set, the compared element was larger than 0, if it was less than 0 the
second bit is set and if the element is equal to 0, the third bit is set. For more information
see the nux manual [7, p. 23].

Instructions on the s2pp VE can be specified to operate only on those elements of a
vector, that meet the condition in the corresponding bits in the VCR, while the AltiVec
VE utilizes the CR of the PowerPC architecture. If element-wise selection is needed,
AltiVec offers this through vector masks.

The AltiVec VE has two registers that are not featured on s2pp. The Vector Status and
Control Register (VSCR) is responsible for detecting saturation in vector operations and
decides which floating point mode is used. The Vector Save/Restore register (VRSAVE)
assists applications and operation systems by indicating for each Vector Register (VR)
if it is currently used by a process and thus must be restored in case of an interrupt [20].
Both of these registers are not available in the s2pp VE but would likely not be needed
for simple arithmetic tasks which the PPU is meant to perform.

It was already stated that all instructions of VEs must first pass the control unit,
which detects vector instructions and then passes them to the VE. These instructions
then go into an instruction cache for vector instructions. On nux the instructions then
shortly stay in a reservation station that is specific for each kind of operation and thus

11

2. Fundamentals and Applications of Computer Architectures and Compiler Design

allows for little out-of-order operation of instructions in these reservation stations, which
is illustrated in figure 2.10. This allows for performing some arithmetic operations on
a vector during the process of accessing a different vector in memory. This results in a
faster processing speed, as pipelining for each instruction is also supported. Though the
limiting factor for this remains the VRF’s single port for reading and writing. An even
more limiting factor is the shared memory interface of the s2pp and GPP.

Instruction
queue

VALU RS

VALU CTRL

x

+

A B

Y

ACC

VALU

ready

Single-port
Vector Register File

32x128 bit

Co
m

pa
re

Pe
rm

ut
eLS CTRL

CMP CTRL

Permute CTRL

LS RS

CMP RS

Permute RS

Instruction 32 bit Operand

VR
F

Ac
ce

ss
ar

bi
tr

at
io

n

PLS CTRLPLS RS

Decoding

Lo
ad

/S
to

re

Pa
ra

lle
l

Lo
ad

/S
to

re

Lo
ad

/S
to

re
sh

ar
ed

 p
ar

t

main memory

synapse array

Figure 2.10.: Detailed Structure of the s2pp Vector Extension (taken from Friedmann et al.)

Normally processors themselves do not keep track of memory directly. This is done by
a Memory Management Unit (MMU) or a Memory Controller (MC). It handles
memory access by the processor and can provide a set of virtual memory addresses which
it translates into physical addresses. Most modern MMUs also incorporate a cache that
stores memory instructions while another memory instruction is performed. It detects
dependencies within this cache and resolves them. Ultimately, this results in faster
transfer of data because the MMU can return results from the cache, without accessing
the memory [6, p. 435ff.]. Not all MMUs support this though, which might lead to certain
problems when handling memory. If instructions are reordered due to pipelining while
dependencies on the same memory address are not detected correctly, an instruction
may write to memory before a different one could load the previous value, it needed from
there. Another reason could be delayed instructions, which were mentioned earlier. For
this reason memory barriers exist.

A memory barrier is an instruction that is equal to a guard, placed in code, that waits
until all load and store instructions issued to the MMU are finished. It therefore splits
the code into instructions issued before the memory barrier and issued after the memory
barrier. This prohibits any instruction from being executed on the wrong side of the
barrier due to reordering and thereby generally prevents conflicting memory instructions.

12

2.2. Processor Architectures and the Plasticity Processing Unit

One kind of memory barrier is called sync which is used in listing 2.4. This and other
memory barriers are also described in table A.1.

Listing 2.4: The memory barrier ensures that the first store has been performed before the second
store is issued.

1 stw r7 ,data1(r9) #store shared data (last)
2 sync #export barrier
3 stw r4 ,lock(r3) #release lock

Using sync can result in up to a few hundred cycles of waiting for memory access to
finish and therefore should only be done if necessary.

The PPU’s memory is 16 kiB which is accompanied by 4 kiB of instruction cache. The
MMU of this system is very simple as it does not cache memory instructions and also has
matching virtual and physical addresses, thus memory barriers can become necessary at
times.

Another feature of the PPU is the ability to read out spike counts and similar infor-
mation through a bus which is accessible through the memory interface of the MMU.
It uses the upper 16 bits of a memory address for routing These are available because
the memory is only 16 kiB large, which is equivalent to 16-bit addresses. A pointer to a
virtual memory address allows to read for example spike counts during an experiment.
This is possible for the whole chip configuration, such as analog neuron parameters. One
of the main feature of the PPU is the access to the synaptic array through an extra bus,
which can be seen in figure 2.10.

The memory bus is also accessible by the FPGA. This is needed for writing programs
into the memory as well as getting results during, or after experiments. It also allows for
communication between a “master” FPGA and a “slave” PPU.

A bus is the connection between parts of a processor and used for data transfer.
When using vector instructions for nux, one must always keep in mind that the weights

in the synaptic array only consist of the latter 6 or 12 bits which are in a vector register
and are right aligned.

01234567

2�1 2�2 2�3 2�4 2�5 2�6

a)
01234567

�1 2�1 2�2 2�3 2�4 2�5 2�5 2�7

b)

Figure 2.11.: Comparison of 2.11a) Representation of Weights in Synapses and 2.11b) Fractional
Representation of Vector Components for Fixed-Point Saturational Arithmetic

Figure 2.11 displays the representation of values in the synapses and in vectors. The
weight is the sum of the values where the bits are set to one. A user must shift the

13

2. Fundamentals and Applications of Computer Architectures and Compiler Design

vector’s elements when reading/writing to the synapse array, as only then do special
attributes of instructions work properly.

An example would be instructions that rely on saturation which predefines a mini-
mum and maximum value. In case, the result is out-of-range, the instruction will return
either the minimum or the maximum (whichever is closer). For this to work properly the
bit representation must match the intended one, which is the fractional representation,
and the values must also be correctly aligned.

An overview of all vector opcodes is provided in the nux manual [7, ch. 5], which is
recommended as accompanying literature to this thesis. In general these vector opcodes
are divided into groups of instructions:

modulo halfword/byte instructions apply a modulo operation after every instruction
which causes wrap around in case of an overflow at the most significant bit position.
Each instruction is provided as halfword (modulo 216) and as byte instruction
(modulo 28).

saturation fractional halfword/byte instructions allow for the results only to be in the
range [�1, 1� 2�7] for byte elements and [�1, 1� 2�15] for halfword elements.

permute instructions perform operations on vectors that handle elements of vectors as
a series of bits.

load/store instructions move vectors between vector registers and memory or the
synapse array.

2.3. Basic Compiler Structure

At its core every compiler translates a source-language into a target-language as fig-
ure 2.12 illustrates [1, p. 3]. Most often it translates a high-level, human readable pro-
gramming language into a machine languages.

Compiler

program code

machine files

Figure 2.12.:
Compiler Representation

What differs compilers from interpreters is the sepa-
ration of compile-time and run-time. Interpreters
combine these two and translate a program at run-
time. A compiler reads the source-language file com-
pletely (often several times) and then creates the exe-
cutable files, which are executed after the process has
finished. This has certain advantages to it: While a
compiler takes some time at first until the program can
be started, the resulting executable is almost always
faster and more efficient. This is due to the possibility
of optimizing code during the compilation process and
the chance of reading through the source file several
times if this is needed (with each time the code is read
being called a pass). Of course there do exist many dif-
ferent compilers today and what matters to the user is

14

2.3. Basic Compiler Structure

the combination of the amount of time it takes to compile a program and the performance
of that program.

A compiler is not the only contributor to translation of a program into an executable
program, although it is the most prominent one. Figure 2.13a) illustrates the chain of
tools that is involved into this process: First the preprocessor modifies the source code,
before it is processed by the compiler. It removes comments, substitutes macros and also
includes other files into the source before it passes the new program code to the compiler.

Preprocessor

Front-End

Middle-End

Back-End

Assembler
Linker
Loader

program code

machine files

a)

Scanner

Parser

Semantic Analyzer

Source Code Optimizer

Middle-End

Code Generator

Target Code Optimizer

b)

Figure 2.13.: Overview of Compilation Steps
2.13a) Stages of the Compilation Process. 2.13b) Different Phases in the Compiler.

The compiler then passes its output to the assembler. It translates the output of
the compiler which is written in assembly into actual machine code by substituting the
easy-to-read string alternatives with actual opcodes. The linker combines the resulting
“object-files” that the assembler emitted with standard library functions, that are already
compiled, and other resources. The only task which is left for the loader, is assigning a
base address to the relative memory references of the “relocatable” file. The code is now
fully written in machine language and ready for operation [1].

Figure 2.13b) shows the separation of a compiler into front-end, back-end and an
optional middle-end. This structure makes a compiler portable, which means allowing
the compiler to accept different source-languages, which are implemented in the front-

15

2. Fundamentals and Applications of Computer Architectures and Compiler Design

end, and produce different target-languages, which must be specified in the back-end.
Therefore if one wants to compile two different programs e.g. one in C, the other in
FORTRAN, it is necessary to change the front-end, but not the back-end, because the
machine or target stays the same. The middle-end in this regard is not always needed,
but could be responsible for optimizations, that are both source-independent and target-
independent.

Of course, the different parts of the compiler have to communicate through a language
that different parts can understand or speak. Such a language is called Intermediate
Representation (IR) and also used during different phases of the compilation process.
It may differ in its form but always stays a representation of the original program code [3,
p. 8].

The different phases of a compilation process are illustrated in figure 2.13b. First the
preprocessed source code is given to the scanner that performs lexical analysis, which
is combining sequences of characters, like variables, and attributes, such as “number”
or “plus-sign”, to so called tokens. Next, the parser takes the sequence of tokens and
builds a syntax tree, that represents the structure of a program and is extended by the
semantic analyzer, which adds known attributes at compile-time like “integer” or “array
of integers” and checks if the resulting combinations of attributes are valid. This already
is the first form of IR. The source code optimizer which is the last phase of the front-
end takes the syntax tree and tries to optimize the code. Typically only light optimization
is possible at this point, such as pre-computing simple arithmetic instructions. After the
source code optimizer is done, the syntax tree is converted into a different IR in order to
be passed to the back-end.

The code generator takes this IR and translates it to machine code that fits the
target — typically this is assembly. At last the target code optimizer tries to apply
target-specific optimization, until the target code can be emitted [3, 1].

2.3.1. Back-End and Code Generation

The last two phases of the compiler, which are part of the back-end, are the most inter-
esting with respect to this thesis. Usually, the processes of code generation and target
optimization in the back-end are entangled, as optimization can take place at differ-
ent phases of code generation. This section will take a look at code generation in the
back-end.

The source program reaches the back-end in form of IR. Often the IR is already
linearized and thereby again in a form, that can be seen as sequence of instructions.
Because of this, the IR may also be referred to as Intermediate Code. The process of
generating actual machine code from this is again split into different phases:

• instruction selection

• instruction scheduling

• register allocation

16

2.3. Basic Compiler Structure

At first the back-end recognizes sets of instructions in intermediate code that can be
expressed as an equivalent machine instruction. Depending on the complexity of the
instruction set, a single machine instruction can combine several IR instructions. This
may involve additional information, that the front-end aggregated and added to the IR
as attributes. At the end of this, a compiler typically emits a sequence of assembly
instructions, which will be explained later. In order to fulfill this task, the compiler
needs the specifications of the target it compiles for. This is called a target description
and can contain things like specifications of the register-set, restrictions and alignment
in memory and availability of extensions and functionalities. The compiler also needs
knowledge of the instruction set of a target, which is determined by the Instruction Set
Architecture (ISA) and is a list of instructions, which are available. It also needs to know
what functions certain instructions have. The compiler picks instructions according to
their functionality from this list and substitutes the IR with this. Ideally a compiler
should support different back-ends just by exchanging the machine description and the
ISA as the basic methods of generating code are the same for most targets.

After the IR is converted into machine instructions the back-end now rearranges the
sequence of instruction. This needs to be done, as different instructions take different
amounts of time to be executed. If a subsequent instruction depends on the result of
a previous instruction the compiler has two alternative approaches to solve this. First
it can stall the programs execution as long as the instruction is executed and feed the
next instruction into the processor when the dependency is solved. This means that the
compiler adds nop before an instruction that needs to wait for an operand. For critical
memory usage the compiler can also insert sync as memory barriers before hazardous
memory instructions. Alternatively, it can stall only the instruction which depends on
the result which is currently computed, but perform instructions that do not depend on
the result in the mean time. By doing so, the scheduler increases performance noticeably
and thus can be seen as part of the optimization process. On RISC architectures this is
especially important as load and store instructions take noticeably longer than normal
register instructions and pipelining depends mainly on the instruction sequence. Thus
the scheduler is also involved in parallelization of code. As a result of this, a compiler
would usually accumulate all load instructions at the beginning of a procedure and start
computing on registers that already have a value, while the others are still loaded. This
is done vice versa at the end of a procedure for storing the results in memory. This
process needs the compiler to know the amount of time it takes for an instruction to be
executed. Usually the workload of an instruction is described as cost. All of this works
hand in hand with hazard detection on processor level.

At last the compiler handles register allocation, which also includes memory han-
dling. Typically, the previous processes expects an ideal target machine, which provides
an endless amount of registers. As in reality, the processor only has k registers. The
register allocator reduces the number of “virtual registers” or “pseudoregisters”, that are
requested, to the available number of “hard registers” k. For this to be possible the
compiler decides whether a value can live throughout a procedure in a register, or must
be placed in memory if there are not enough registers available. This results in the al-
locator adding load and store instructions to the machine code, in order to temporarily

17

2. Fundamentals and Applications of Computer Architectures and Compiler Design

Listing 2.5: Exemplatory Assembly Invokation
1 int dst , src1 , src2;
2 asm volatile ("add %0, %1, %2"
3 : "=r" (dst)
4 : "r" (src1), "r" (src2)
5 : /*no clobbered regs*/);
6 return dst; /*would return src1 + src2*/

save those registers in memory, which is called spilling. This can hurt performance and
therefore the compiler tries to keep spilling of registers to a minimum and inserts spill
code at places where it delays other instructions as little as possible. At the end of
register allocation, the compiler assigns hard registers to the virtual registers which are
now only k at a time [3, 1].

During and after code generation the compiler also applies optimizations to the
machine code. Any optimization to the code must take three things into consideration,
which are safety, profitability and risk/effort. First of all, safety of optimizations should
always be given. Only if the compiler can guarantee that an optimization does not
change the result of the transformed code, it may use this optimization. If this applies,
the compiler may check for the profit of an optimization, which most often is a gain in
performance, but could also be reducing the size of the program. At last the effort or
time, it takes for the compiler to perform this optimization, and the risk of generating
actually bad or inefficient code must be taken into account as well. If an optimization
passes these three aspects, it may be applied to the code. In the end there exist some
simple optimizations, that always pass this test like the deletion of unnecessary actions
or unreachable code, e.g. functions that are never called. Another example is reordering
of code, like the scheduler did before, or the elimination of redundant code, which applies
if the same value is computed at different points and thus the first result simply can be
saved in a register. If a compiler knows the specific costs of instructions, it can also
try to substitute general instructions with more specialized but faster instructions, like
substituting a multiplication with 2 by shifting a value one position to the left. There
exist many more ways of optimization but one more major type shall be discussed.

In peephole optimization the compiler looks at small amounts of code at a time
through a “peephole” and tries to find a substitution for the specific sequence of in-
structions it “sees”. If the sequence can be substituted, the peephole optimizer does so,
otherwise the peephole is moved one step and a new sequence is evaluated. These sub-
stitutions must be specified by hand and are highly target-dependent in contrast to the
optimizations which were mentioned before, that are target-independent [3].

2.3.2. Inline Assembly

Some compilers, like GCC, offer the possibility, to include low-level code into high-level
programs. This is called inline assembly and uses the function asm.

Listing 2.5 generates the instruction add in the assembly output of the compiler, which

18

2.3. Basic Compiler Structure

is followed by three operands.
First, one must write an assembler template, that is based on assembly. The integer in

%n indicates the order, in which the operands are specified after the assembler template.
Output operands are specified after the first : as a list of comma separated constraints

and variables. "=r" is such a constraint, that determines that the operand must be
stored in a register (r for register operand) and that the register is written (= is called
a modifier). The variable in parentheses must be declared before this and must be of
matching type (float would not be allowed in this case).

The second : separates the input operands, which are specified the same way. r again
represents a register operand and the variable is in parentheses, the different operands
are separated by commas. The third : separates operands from clobbered (=temporarily
used) registers which would also be in quotes, but in this case no registers are clobbered,
which are not also operands. volatile means that the compiler must not delete the
following instructions due to optimization.

2.3.3. Intrinsics

Intrinsics are sometimes also called built-in functions and resemble an intermediate
form of inline assembly and a high-level programming language. By calling an intrinsic
function, the compiler is ordered, to use a certain machine instruction that typically
shares its name with the intrinsic. What differs an intrinsic from asm() is, that there is
no need, to specify constraints, as only argument types must match. One could easily
mistake them for normal library functions but they are directly integrated into the back-
end of a compiler and thus independent of the programming language. In order to
implement intrinsics into a back-end, the compiler needs certain knowledge of what the
asm instruction does and what kind of operands it needs.

A typical application for intrinsics would be vectorization and parallelization of code
through processor extensions. Sometimes this is the sole option of using the machine
instructions associated with them.

2.3.4. GNU Compiler Collection

GCC is a compiler suite that supports different programming languages and targets. A
single build of GCC can support a variety of front-ends while it was built for a specific
target. This target, in most cases, is the processor architecture on which the user runs
the compiler. But GCC also supports the idea of a cross-compiler, which is the concept
of compiling code on one machine but running the code on another machine that may
be based on a different architecture.

One build of GCC does not support different back-ends though and therefore GCC
must be built individually for every back-end, it wants to compile code for. This is
realized through a modular structure which follows the idea of a front-end, middle-end
and back-end which was described in section 2.3. Some information that belongs to a
back-end is also needed at the front-end, hence the compiler is built back-end specific
but supports a wide variety of back-ends to choose from.

19

2. Fundamentals and Applications of Computer Architectures and Compiler Design

GCC itself is programmed in C++ and is part of the GNU project of the Free Software
Foundation. It is wide-spread and one of the most popular compilers especially among
academic institutions and small scale developers. Every major UNIX distribution and
many minor ones include GCC as a standard compiler [27].

There is one major competitor to GCC as an open source compiler suite. This is
Low Level Virtual Machine (LLVM) together with Clang. Both support running
the same source code on different architectures, while LLVM actually runs intermediate
code rather than actual machine code and uses GCC to generate this intermediate code
for some front-ends. There are ongoing discussions on which compiler is better suited for
which application but regarding performance, GCC takes the slight edge [22, 16]. These
results have to be viewed with care though, as they are based on different processor
architectures and both compilers provide similar performance.

In this thesis GCC was chosen over LLVM for two main reasons. One is that GCC
follows the concept of a traditional compiler that generates machine code. The other
is that GCC support for the PPU existed to a minimum with a working cross-compiler
when starting with this thesis.

During this thesis, GCC was at stable release version 6.3 and development is ongoing
for version 7, but this thesis uses the older version 4.9.2, which has been used internally
by the working group. Additionally binutils 2.25 will be used, which was patched by
Simon Friedmann and since includes the opcodes and mnemonics for nux.

Because it is the base architecture of nux, the PowerPC back-end of GCC, which is
called RISC system/6000 (rs/6000) and is equivalent to POWER, will be emphasized
throughout the rest of this thesis. According to GCCs Internals manual [11], which will
be referred to as the sole source of information in this regard, the back-end of GCC has
the following structure:

Each architecture has a directory with its respective name gcc/config/target/ (i.e.
gcc/config/rs6000/), that contains a minimum amount of files. These are the machine
description target.md, which is an overview of machine instructions with additional
information to each instruction, the header files target.h and target -protos.h, which
define mostly macros, and a source file target.c that implements functions for the
target. Every back-end is built from such files. Most back-ends include additional files
which simplify a back-ends complex structure.

One of the most prominent functions in a GCC back-end is reload. It is specifically
meant to do register spilling but is an active part of the whole register allocation phase [9].
Through multiple releases of GCC it became more and more complex and incorporated
more functionalities. This involves for example moving the contents of different registers
and memory around. It thus became a main source for errors when constructing a back-
end and was replaced in newer releases by the Local Register Allocator (LRA). GCC
4.9.2 is not impacted by this and still features reload.

Insn Definition and Register Transfer Language

Register Transfer Language (RTL), which is not to be mixed up with Register Transfer
Level, is a form of IR, the back-end uses to generate machine code. Usually GCC uses

20

2.3. Basic Compiler Structure

Listing 2.6: Definition of a General add Insn
1 (define_insn "add <mode >3"
2 [(set (match_operand:VI2 0 "register_operand" "=v")
3 (plus:VI2 (match_operand:VI2 1 "register_operand" "v")
4 (match_operand:VI2 2 "register_operand" "v")))]
5 "<VI_unit >"
6 "vaddu <VI_char >m %0,%1,%2"
7 [(set_attr "type" "vecsimple")])

Listing 2.7: Definition of add Insn for float
1 (define_insn "*altivec_addv4sf3"
2 [(set (match_operand:V4SF 0 "register_operand" "=v")
3 (plus:V4SF (match_operand:V4SF 1 "register_operand" "v")
4 (match_operand:V4SF 2 "register_operand" "v")))]
5 "VECTOR_UNIT_ALTIVEC_P (V4SFmode)"
6 "vaddfp %0,%1,%2"
7 [(set_attr "type" "vecfloat")])

the IR GIMPLE which resembles stripped down C code with 3 argument expressions,
temporary variables and goto control structures. The back-end transforms this into a
less readable IR, that inherits GIMPLEs structure, but brings it to a machine instruction
level. It is inspired by Lisp and for this thesis mainly used as template when defining
insns.

An insn (short for instruction) has several properties like a name, an RTL template,
a condition template, an output template and attributes [11, ch. 16.2]. It is used for
combining RTL IR with actual machine instructions.

define_insn defines an RTL equivalent to a machine instruction as an insn. The name
of the insn in listing 2.6 is add <mode >3 (3 for three operands), where <mode > is to be
replaced by a set of values that describe modes [11, ch. 16.9].

A mode is the form of an operand, e.g. si for single integer, qi for quarter integer
(quarter the bits of a single integer), sf for single float or v16qi for a vector of 16 elements
which are quarter integers each [11, ch. 13.6]. There are many more modes that follow
the same scheme. In this case the mode is not defined explicitly but uses an iterator that
creates a define_insn for every valid mode that is specified [11, ch. 16.23]. The insn in
listing 2.7 shows this with a specific mode.

Next follows the RTL template, which is in square brackets. All RTL templates
need a side effect expression as a base, which describes what happens to the operands
that follow. In this case set means that the value which is specified by the second
expression, is stored into the place specified by the first expression [11, ch. 13.15]. The
next expression that follows is a specified operand. match_operand tells the compiler
that this is a new operand. VI2 belongs to the mode iterator and is to be substituted by
the equivalent mode to <mode > but in capitals, which can be seen in listing 2.7. After this
comes the index of an operand which starts at 0 for every define_insn. The following

21

2. Fundamentals and Applications of Computer Architectures and Compiler Design

string describes a predicate, which tells the compiler more about the operand and which
constraints it must fulfill. Operands typically end in _operand and a single predicate
is meant to group several different operand types. In this case any register would be
a valid operand [11, ch. 16.7]. The next string specifies the operands further and is
meant to fine tune the predicate. It is called a constraint and matches the description
in section 2.3.2 (again, = means that the register must be writable and v stands for an
AltiVec vector register) [11, ch. 16.8]. This pattern is repeated for every operand and
only changes slightly. The second expression of the set side effect has an additional pair
of parentheses because of the plus statement. This is an arithmetic expression and
tells the compiler that the following operands are part of an operation that results in a
new value. It is also followed by a mode that specifies the result [11, ch. 13.9].

The RTL template is matched by the compiler against the RTL, which is generated
from GIMPLE and if the template matches, the RTL is substituted by the output tem-
plate.

After the RTL template is finished, the condition specifies if the insn may be used.
It is a C expression and must render true, in order to allow the matching RTL pattern
to be applied. In this case the condition is also depending on the mode iterator which
substitutes <VI_unit > for equivalent code to that of 2.7 [11, ch. 16.2], with a matching
mode.

The output template usually is similar to the assembler template in inline assembly.
The string contains the mnemonic of a machine instruction and the operands which are
numbered according to the indexes of the RTL template. Again this is depending on
the mode iterator and <VI_char > will be substituted by a character that belongs to a
machine mode [11, ch. 16.2].

At last the insn is completed by its attributes, which hold further information about
the insn. Attributes are used by the compiler internally to detect effects of an insn on
certain registers and similar properties [11, ch. 16.19].

22

3. Extending the GCC Back-End

The previous chapter dealt with processors, the PPU, compilers and GCC, which was
preparation for this chapter. This chapter will emphasize the task of extending the GCC
back-end. There is a number of files, which will be systematically edited and referenced
as they are important parts of the rs/6000 back-end and are changed in the process of
extending the back-end.

rs6000.md is the machine description of the back-end in general and contains insn defi-
nitions for all scalar functions

rs6000.h is a header file which contains macros and declarations for registers

rs6000.c is the source file which implements the back-end’s functions

rs6000.opt lists the options and flags for the target

rs6000-builtins.def contains the definitions of intrinsics

rs6000-cpus.def lists sub-targets that belong to the rs/6000 family

rs6000-c.c links built-ins and overloaded built-ins

rs6000-opts.h contains a set of enumerations that represent option values

rs6000-protos.h makes functions in rs6000.c globally available

rs6000-tables.opt lists values to a processor enumeration

driver-rs6000.c a collection of driver details for different targets

ppc-asm.h sets macros for the use of asm

s2pp.md is a new machine description of s2pp and contains insn definitions

s2pp.h is the header file that defines aliases for built-ins

constraints.md contains definitions of constraints

predicates.md contains definitions of predicates

vector.md defines general vector insns

sysv4.h initializes a variety of option flags and sets default values

t-fprules sets soft-float as default for certain targets

23

3. Extending the GCC Back-End

It is recommended to have chapter 5 of the nux manual [7, ch. 5] at hand, as it
contains an overview of existing s2pp vector instructions.

Before extending the GCC back-end a few things must be stated:
Due to the limited documentation of the back-end itself, one must rely on comments

in code and the GCC internals manual [11] As a full implementation for a vector
extension already exists, the AltiVec extension should be used as a guideline for a new
extensions [20]. Still, it should be avoided to change exiting code as much as possible.
Code is often referred to from different places in the back-end and modifying existing code
can therefore easily lead to compiler errors. Especially since the back-end is not extended
completely right away but rather step by step. This applies particularly to functions that
are implemented for AltiVec only. It is recommended to rather duplicate functions and
distinguish them, before they are called. This will make it easier to find bugs, as usually
the function that generates an error is indicated in the error message. Also, there do
exist enough differences between these two vector extensions, that combining functions
would not save work.

It will therefore occasionally be pointed out when functions or other code can be
inherited from AltiVec and which modifications are needed.

3.1. Adding the s2pp Option Flag and nux Target

Extending the rs6000 back-end starts by adding the nux processor to the list of targets
and also including mandatory flags with this. Ideally the user only has to add the flag
-mcpu=nux when compiling, in order to produce machine code for the nux. The flags
which have to be set when using the nux are:

-msdata=none disables the use of a small data section which is like a data section but
has a register constantly referring to it and thus has faster access than the normal
data section. Globals, statics and small variables that are often used are preferably
stored there. It is turned off because the base pointer is not initialized by the linker
and the effect of a small data section would likely be small for the PPU [7, 15, 4].

-mstrict-align aligns all variables in memory which means that a variable always starts
at a memory address which is a multiple of its size. E.g. a vector has always an
address that is dividable by 16 bytes or 128 bits. Memory management is far easier
for aligned variables.

-msoft-float tells the compiler that there is no FPU and all floating point operations
have to simulated by software.

-mno-relocatable states that the program code has a fixed memory address that may not
be altered. Relocatable code is not needed as the PPU runs only one program that
is loaded into memory and uses no environment on top.

But first there should be an option flag that activates nux’ VE like -maltivec does
for the AltiVec VE. The name for this new option flag will be -ms2pp and it will define
an option mask along with it. In rs6000.opt and we simply need to add:

24

3.1. Adding the s2pp Option Flag and nux Target

1 ms2pp
2 Target Report Mask(S2PP) Var(rs6000_isa_flags)
3 Use s2pp instructions

This adds ms2pp to the list of option flags and the next lines defines a macro, that is
associated with it. Target means that the option is target specific, therefore only certain
architectures support the option flag. Report means that the option is printed when
-fverbose -asm is is set. Mask(S2PP) initializes a bitmask, that is available through
OPTION_MASK_S2PP. That macro is attached to rs6000_isa_flags, which is specified by
Var. It simultaneously specifies a macro TARGET_S2PP that is set to 1 [11, ch. 8].

This needs also specification of
1 #define MASK_S2PP OPTION_MASK_S2PP

in rs6000.h as macros with MASK_ are a standard from earlier versions of GCC.
Although this option flag shall later enable s2pp support, it needs the aforementioned

flags as well, to compile nux programs. For this reason exists a processor type which
combines those flags. There exist several lists that contain available targets and nux
shall be included. First an inline assembly (see section 2.3.2) flag is created, which tells
the assembler which system architecture is used. As nux is based on POWER7, one can
copy the flag -mpower7 in driver -rs6000.def:

Listing 3.1: rs6000.h
1 #define ASM_CPU_SPEC \
2 ...
3 %{mcpu=power7: %(asm_cpu_power7)} \
4 ...
5 %{mcpu=nux: %(asm_cpu_power7)} \
6 ...

Listing 3.2: driver-rs6000.c
1 static const struct asm_name asm_names [] = {
2 ...
3 { "power7", "%(asm_cpu_power7)" },
4 ...
5 { "nux", "%(asm_cpu_power7)" },
6 ...

This will set the assembler -mpower7 when using -mcpu=nux.
The nux target should also be recognized by preceding phases of the compiler and set

option flags accordingly. These options flags can be set in rs6000 -cpus.def.
1 ...
2 RS6000_CPU ("nux", PROCESSOR_POWER7 , MASK_SOFT_FLOAT | MASK_S2PP |

MASK_STRICT_ALIGN | !MASK_RELOCATABLE)

This uses the macro RS6000_CPU (NAME , CPU , FLAGS) and adds nux to the
processor_target_table []. Since option flags usually set masks, one can set the
respective masks directly. The masks will tell the compiler that the processor is
a POWER7 architecture and uses soft -float, strict -align and no -relocatable
(negated relocatable) as well as the new s2pp mask.

25

3. Extending the GCC Back-End

It is not possible, to set the -msdata=none flag before since the -msdata flag is initial-
ized differently. Also since it is not simply set “on” or “off” but accepts several values,
it is handled in sysv4.h. rs6000_sdata will be set according to the string that follows
-msdata=.

1 #define SUBTARGET_OVERRIDE_OPTIONS \
2 ...
3 if (rs6000_sdata_name) \
4 { \
5 if (! strcmp (rs6000_sdata_name , "none")) \
6 rs6000_sdata = SDATA_NONE; \
7 ...
8 else \
9 error ("bad value for -msdata =%s", rs6000_sdata_name); \

10 } \
11 else if (OPTION_MASK_S2PP \
12 && OPTION_MASK_SOFT_FLOAT \
13 && OPTION_MASK_STRICT_ALIGN \
14 && !OPTION_MASK_RELOCATABLE) \
15 { \
16 rs6000_sdata = SDATA_NONE; \
17 rs6000_sdata_name = "none"; \
18 } \
19 else if (DEFAULT_ABI == ABI_V4) \
20 ...
21)\todo{looose this !!!!!!!!!!!!!!!!!!!!!!}

It is not possible to detect in this file, if the nux flag is set. It therefore needs a little
workaround that helps setting the value of rs6000_sdata. If -msdata is not set, i.e. only
-mcpu=nux is set, the compiler will use if-clauses that determine which value is assigned
to rs6000_sdata. It is possible, to add a case that checks for all flags, that are set by
-mcpu=nux and set rs6000_sdata to SDATA_NONE if this applies. Hence the target options
will set rs6000_sdata to SDATA_NONE.

There exists a case for which this condition applies even when nux is not set as target,
but all flags are set by hand. If one chooses an explicit value for -msdata, this case does
not apply though and the value of -msdata is set accordingly.

This is not an ideal solution, but a trade-off with as few side effects as possible.

Already this would allow for the use of -mcpu=nux as target and -ms2pp as option
flag. But since the flags we used are basically mandatory to the s2pp extension, the
compiler should check for these flags before starting compilation. First though for each
flag needs a macro, which the back-end can identify. This is done in rs6000 -c.c where
global macros can be defined:

1 rs6000_target_modify_macros (bool define_p , HOST_WIDE_INT flags ,
2 HOST_WIDE_INT bu_mask)
3 {...
4 if ((flags & OPTION_MASK_S2PP) != 0)
5 rs6000_define_or_undefine_macro (define_p , "__S2PP__");
6 if ((flags & OPTION_MASK_STRICT_ALIGN) != 0)
7 rs6000_define_or_undefine_macro (define_p , "_STRICT_ALIGN");

26

3.1. Adding the s2pp Option Flag and nux Target

8 if ((flags & OPTION_MASK_RELOCATABLE) != 0)
9 rs6000_define_or_undefine_macro (define_p , "_RELOCATABLE");

10 if (rs6000_sdata != SDATA_NONE)
11 rs6000_define_or_undefine_macro (define_p , "_SDATA");
12 ...}

If flags and the respective option masks are set, rs6000_define_or_undefine_macro
will define a macro that is specified by the second argument. Whether a macro is defined
or undefined depends on the boolean define_p, which is set by the compiler.

These new macros can be used to check if flags are set. This needs a new file, that
will also be needed later on as the s2pp header file. s2pp ,h must be indexed in gcc/
config.gcc under extra_headers.

1 ...
2 powerpc *-*-*)
3 cpu_type=rs6000
4 extra_headers="ppc -asm.h altivec.h spe.h ppu_intrinsics.h paired.h

spu2vmx.h vec_types.h si2vmx.h htmintrin.h htmxlintrin.h s2pp.h"
5 need_64bit_hwint=yes
6 case x$with_cpu in
7 xpowerpc64|xdefault64|x6 [23]0| x970|xG5|xpower [345678]| xpower6x|xrs64a

|xcell|xa2|xe500mc64|xe5500|Xe6500)
8 cpu_is_64bit=yes
9 ;;

10 esac
11 extra_options="${extra_options} g.opt fused -madd.opt rs6000/rs6000 -

tables.opt"
12 ;;
13 ...

This is done, so GCC invokes the header file, as it is not referenced elsewhere.
s2pp.h can now be used to check the compiler flags.

1 /* _S2PP_H */
2 #ifndef _S2PP_H
3 #define _S2PP_H 1
4
5 #if !defined(__S2PP__)
6 #error Use the "-ms2pp" flag to enable s2pp support
7 #endif
8 #if !defined(_SOFT_FLOAT)
9 #error Use the "-msoft -float" flag to enable s2pp support

10 #endif
11 #if !defined(_STRICT_ALIGN)
12 #error Use the "-mstrict -align" flag to enable s2pp support
13 #endif
14 #if defined(_RELOCATABLE)
15 #error Use the "-mno -relocatable" flag to enable s2pp support
16 #endif
17 #if defined(_SDATA)
18 #error Use the "-msdata=none" flag to enable s2pp support
19 #endif
20 ...

27

3. Extending the GCC Back-End

If for example __S2PP__ is not defined but s2pp.h included, the compiler will emit an
error that tells the user to set the target flag. Since hard floats are not supported on nux
regardless of s2pp.h, nux can be added to the list of soft-float processors in t-fprules.

1 SOFT_FLOAT_CPUS = e300c2 401 403 405 440 464 476 ec603e 801 821 823 860
nux

3.2. Creating Macros

Since the preliminary requirements are now met, the back-end needs a vector attribute
for specifying vectors in program code. Attributes are used to specify various variables
and can be used for example to control alignment [11, ch. 16.19].

First a new vector unit is needed. It will be called VECTOR_S2PP and added to the
enumeration rs6000_vector in rs6000 -opts.h.

1 enum rs6000_vector {
2 VECTOR_NONE , /* Type is not a vector or not supported */
3 VECTOR_ALTIVEC , /* Use altivec for vector processing */
4 VECTOR_VSX , /* Use VSX for vector processing */
5 VECTOR_P8_VECTOR , /* Use ISA 2.07 VSX for vector processing */
6 VECTOR_PAIRED , /* Use paired floating point for vectors */
7 VECTOR_SPE , /* Use SPE for vector processing */
8 VECTOR_S2PP , /* Use s2pp for vector processing */ //s2pp -

mark
9 VECTOR_OTHER /* Some other vector unit */

10 };

To put this to use, it needs macros in rs6000.h which compare vector units to the
newly created VECTOR_S2PP.

1 ...
2 #define VECTOR_UNIT_S2PP_P(MODE) \
3 (rs6000_vector_unit [(MODE)] == VECTOR_S2PP)
4 ...
5 #define VECTOR_MEM_S2PP_P(MODE) \
6 (rs6000_vector_mem [(MODE)] == VECTOR_S2PP)
7 ...

VECTOR_UNIT_S2PP_P(MODE) and VECTOR_MEM_S2PP_P(MODE) are identical as identical
entries in rs6000_vector_unit [] and rs6000_vector_mem [] are created. This is a relict
from the AltiVec implementation as vector units in memory may differ in certain cases.

Checking for specific vector modes, which are supported by s2pp, will also be added.
The nux hardware only supports two types of vectors which are vectors with byte elements
(V16QI) and vectors with halfword elements (V8HI).

1 #define S2PP_VECTOR_MODE(MODE) \
2 ((MODE) == V16QImode) \
3 || (MODE) == V8HImode)

Some uses of TARGET_ALTIVEC must now be accompanied by TARGET_S2PP to handle
vectors correctly. There exist five such cases:

28

3.2. Creating Macros

rs6000_builtin_vectorization_cost , rs6000_special_adjust_field_align_p
and expand_block_clear handle alignment of vectors. Alignment refers to the posi-
tion of data blocks in memory; 16-bit alignment means that variables may only start at
addresses that represent multiples of 16 bits. AltiVec vectors and s2pp are aligned the
same way and it is desirable to reduce misalignment of 128-bit vectors to a minimum.

rs6000_common_init_builtins initializes common built-ins and is needed by all ex-
tensions that use built-ins (see section 3.5). In these cases the condition can be extended
for TARGET_S2PP.

Other conditions that will later be extended for TARGET_S2PP need further modification
and thus are not mentioned here.

It is necessary, to do the same for VECTOR_UNIT_S2PP_P and other macros that
have AltiVec counterparts: In reg_offset_addressing_ok_p cases for V16QImode

and V8HImode return false if VECTOR_MEM_S2PP_P or the AltiVec version ap-
ply. In rs6000_legitimize_reload_address and rs6000_legitimate_address_p

offset addresses are handled the same way they are handled for AltiVec. In
rs6000_secondary_reload indirect addressing is enforced. In print_operand operand
modifier y is validated for s2pp. rs6000_vector_mode_supported_p returns true if a
mode is supported by s2pp.

All of these cases handle addressing of vectors in memory which is equivalent for
AltiVec and s2pp. It is therefore quite simple to support this for s2pp.

Since vector modes and units have been established by now, it is possible to connect
these in rs6000_init_hard_regno_mode_ok . In case TARGET_S2PP is set VECTOR_S2PP
is assigned to modes V16QImode and V8HImode.

1 ...
2 if (TARGET_S2PP)
3 {
4 rs6000_vector_unit[V8HImode] = VECTOR_S2PP;
5 rs6000_vector_mem[V8HImode] = VECTOR_S2PP;
6 rs6000_vector_align[V8HImode] = align32;
7 rs6000_vector_unit[V16QImode] = VECTOR_S2PP;
8 rs6000_vector_mem[V16QImode] = VECTOR_S2PP;
9 rs6000_vector_align[V16QImode] = align32;

10 }
11 ...

Preferred modes when vectorizing a non-vector mode in rs6000_preferred_simd_mode
can be set.

1 ...
2 if (TARGET_S2PP)
3 switch (mode)
4 {
5 case HImode:
6 return V8HImode;
7 case QImode:
8 return V16QImode;
9 default :;

29

3. Extending the GCC Back-End

10 }
11 ...

It is now possible to create vector attributes, as mentioned before. GCC already
supports a vector attribute which is also used by AltiVec. Thus s2pp can be added to
rs6000_attribute_table and rs6000_opt_masks [] array with the same values as for
AltiVec but changing the keyword.

1 static const struct attribute_spec rs6000_attribute_table [] =
2 {
3 /* { name , min_len , max_len , decl_req , type_req , fn_type_req , handler

,
4 affects_type_identity } */
5 { "altivec", 1, 1, false , true , false ,

rs6000_handle_altivec_attribute ,
6 false },
7 { "s2pp", 1, 1, false , true , false , rs6000_handle_s2pp_attribute ,
8 false },
9 ...}

10 struct rs6000_opt_mask {
11 const char *name; /* option name */
12 HOST_WIDE_INT mask; /* mask to set */
13 bool invert; /* invert sense of mask */
14 bool valid_target; /* option is a target option */
15 };
16
17 static struct rs6000_opt_mask const rs6000_opt_masks [] =
18 {
19 { "altivec", OPTION_MASK_ALTIVEC , false , true },
20 ...
21 { "s2pp", OPTION_MASK_S2PP , false , true },
22 ...}

The function rs6000_handle_s2pp_attribute is also copied from AltiVec, but
stripped off unsupported vector modes.

This would make these attributes already usable but defining built-ins in rs6000 -c.c
shortens the attribute from __vector=__attribute__ ((s2pp(vector__))) to __vector
:

1 void
2 rs6000_cpu_cpp_builtins (cpp_reader *pfile)
3 {
4 ...
5 if (TARGET_S2PP){
6 builtin_define ("__vector=__attribute__ ((s2pp(vector__)))");
7 if (! flag_iso){
8 builtin_define ("vector=vector");
9 init_vector_keywords ();

10 /* Enable context -sensitive macros. */
11 cpp_get_callbacks (pfile)->macro_to_expand =

rs6000_macro_to_expand;
12 }
13 }
14 ...

30

3.3. Registers

__vector is then used to define vector in s2pp.h.
1 #define vector __vector

At last it must be indicated to the front-end, that special attributes are handled by
the back-end.

1 static bool
2 rs6000_attribute_takes_identifier_p (const_tree attr_id)
3 {
4 if (TARGET_S2PP)
5 return is_attribute_p ("s2pp", attr_id);
6 else
7 return is_attribute_p ("altivec", attr_id);
8 }

3.3. Registers

This section will describe, how s2pp registers are added to the back-end. It will also add
constraints and predicates (see section 2.3.4) for these registers.

There are three types of registers in the s2pp VE:

32 vector registers these are normal vector registers that hold vector values

1 accumulator which is used for chaining arithmetic instructions and cannot be accessed
directly

1 conditional register which holds conditional bits and also cannot be accessed directly

During extension of the GCC back-end, it becomes apparent that a reserved vector
register, that is all zeros the entire time, will be necessary for some implementations of
the back-end. This is necessary since the nux instruction set does not include logical
vector instructions. Normally the instructions XOR and OR are used by the back-end to
implement simple register features. OR is used for moving around the content of a register,
as ORing the same first register to a second register will simply copy the contents of the
first register. On the other side, does XORing the same register result in writing all zeros
to the return register.

Since these instructions are not available, “nulling” a register becomes a problem.
Therefore the first register is reserved and splatted with zeros. Moving this register, will
have the same effect as XORing a register. As OR is also not available, an alternative
instruction is used, which is fxvselect. fxvselect selects either elements of the second
or the third operand depending on the condition register and its forth operand [7, ch. 5].
Having identical second and third operands thus will simply generate the same vector
as return value. By setting the forth operand 0, fxvselect will always choose elements
from the second operand. This gives a simple work-around, as fxvselect also takes only
one clock cycle for execution. An alternative idea would be subtracting the same register
from itself with fxvsubm, which also nulls the return operand. This would take more
clock cycles though and is unfavorable, as it is not clear, how often registers need to be

31

3. Extending the GCC Back-End

nulled. Ultimately it is a trade-off between having one less register at hand and possibly
wasting clock cycles continuously. In this case it is preferable to give up a single register,
as the amount of nulling instructions is unknown. At a later point in time, this could be
reviewed for performance, which might overturn this decision.

It is not possible to splat zeros constantly because this would require an extra instruc-
tion to load a zero into a GPR. This is not possible at late stages of code generation as
all registers are already allocated at that time.

When talking about reserved registers, one must also think about saved, call-used
and fixed registers:

fixed registers serve only one purpose and are not available for allocation at all.

call-used registers are used for returning results of functions. They are not available to
general register allocation but are used when calling functions.

saved registers are available globally and may hold values throughout function calls.

Usually about half of all registers are declared call-used and the other half saved. This
is done for AltiVec, as well as FPRs, but might be optimized in the future, depending
on requirements of applications (e.g. are many function calls used).

Register indexes are declared in rs6000.md:
1 (define_constants
2 [(FIRST_GPR_REGNO 0)
3 ...
4 (LAST_GPR_REGNO 31)
5 (FIRST_FPR_REGNO 32)
6 (LAST_FPR_REGNO 63)
7 (FIRST_S2PP_REGNO 33)
8 (LAST_S2PP_REGNO 63)
9 (S2PP_COND_REGNO 32)

10 (S2PP_ACC_REGNO 64)
11 (LR_REGNO 65)
12 ...])

Each register index is a unique identifier of registers and is given in incrementing order.
Registers which may be available on the same processor must not share and index!
s2pp reuses the reserved vector register’s index 32 (this register is always null) for the
conditional register and uses the free index 64 for the accumulator. As the GPRs need
the first 32 registers numbers (0-31) and there is never an FPU on nux, it is possible, to
use the 32 registers normally reserved to FPRs.

It then is decided, which registers shall be used for function calls, and therefore reserved
for call-use. This is declared by macros that are assigned a register number in rs6000.md.

1 /* Minimum and maximum s2pp registers used to hold arguments. */
2 #define S2PP_ARG_MIN_REG (FIRST_S2PP_REGNO + 2)
3 #define S2PP_ARG_MAX_REG (S2PP_ARG_MIN_REG + 12)
4 #define S2PP_ARG_NUM_REG (S2PP_ARG_MAX_REG - S2PP_ARG_MIN_REG + 1)

32

3.3. Registers

5 ...
6 #define S2PP_ARG_RETURN S2PP_ARG_MIN_REG
7 ...
8 #define S2PP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? S2PP_ARG_RETURN \
9 : (S2PP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))

10 ...
11
12 #define FUNCTION_VALUE_REGNO_P(N) \
13 ((N) == GP_ARG_RETURN \
14 || ((N) >= FP_ARG_RETURN && (N) <= FP_ARG_MAX_RETURN \
15 && TARGET_HARD_FLOAT && TARGET_FPRS) \
16 || ((N) >= ALTIVEC_ARG_RETURN && (N) <= ALTIVEC_ARG_MAX_RETURN \
17 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
18 || ((N) >= S2PP_ARG_RETURN && (N) <= S2PP_ARG_MAX_RETURN \
19 && TARGET_S2PP) \
20)
21 ...
22 #define FUNCTION_ARG_REGNO_P(N) \
23 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
24 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
25 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
26 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
27 && TARGET_HARD_FLOAT && TARGET_FPRS) \
28 || ((unsigned) (N) - S2PP_ARG_MIN_REG < S2PP_ARG_NUM_REG \
29 && TARGET_S2PP) \
30)
31 ...

The only use of these macros is in the prologue and the epilogue, which will be discussed
in the next section.

After all register indexes are declared, they can be specified further. Each register
type (or register class) needs an entry to the enumeration reg_class and a definition
of identical register names in REG_CLASS_NAMES.

1 enum reg_class
2 {
3 ...
4 GENERAL_REGS ,
5 S2PP_C_REG ,
6 S2PP_REGS ,
7 FLOAT_REGS ,
8 S2PP_ACC_REG ,
9 ALTIVEC_REGS ,

10 ...
11 ALL_REGS}
12 ...

13 #define REG_CLASS_NAMES \
14 { \
15 ...
16 "GENERAL_REGS", \
17 "S2PP_C_REG", \
18 "S2PP_REGS", \
19 "FLOAT_REGS", \
20 "S2PP_ACC_REG", \
21 "ALTIVEC_REGS", \
22 ...
23 "ALL_REGS"}

Then the relation between register classes in specified in REG_CLASS_CONTENTS.
1 /* GENERAL_REGS. */ \
2 { 0xffffffff , 0x00000000 , 0x00000008 , 0x00020000 , 0x00000000 }, \
3 /* S2PP_C_REG. */ \
4 { 0x00000000 , 0x00000001 , 0x00000000 , 0x00000000 , 0x00000000 }, \

33

3. Extending the GCC Back-End

5 /* S2PP_REGS. */ \
6 { 0x00000000 , 0xfffffffe , 0x00000000 , 0x00000000 , 0x00000000 }, \
7 /* FLOAT_REGS. */ \
8 { 0x00000000 , 0xffffffff , 0x00000000 , 0x00000000 , 0x00000000 }, \
9 /* S2PP_ACC_REG. */ \

10 { 0x00000000 , 0x00000000 , 0x00000001 , 0x00000000 , 0x00000000 }, \
11 /* ALTIVEC_REGS. */
12 { 0x00000000 , 0x00000000 , 0xffffe000 , 0x00001fff , 0x00000000 }, \
13 ...
14 /* ALL_REGS. */ \
15 { 0xffffffff , 0xffffffff , 0xffffffff , 0xffe7ffff , 0xffffffff }}

Each hexnumber in these arrays can be viewed as a bit mask, with the least significant
bit representing the first register, the next higher order bit the second register and so on.
As a number is 32-bit wide, it masks 32 registers. Subsequent numbers start where the
previous one ended, therefore are registers 32 through 63 (32 is the 33rd register) masked
by the second number [11, ch. 17.8].

Therefore does 0xfffffffe mask all registers except for the 32nd which is masked by
0x00000001.

One can see that FPRs are masked completely as FLOAT_REGS between definitions of
s2pp registers. Subsequent entries must not be subsets of previous masks but may extend
these. Also should masks for higher register indexes follow masks for lower indexes. Since
a register index which was not masked before, was also added, some subsequent masks
like ALL_REGS need to be updated accordingly.

There exist macros for register classes as well, which need to be implemented. This
is only necessary for general s2pp registers, as other s2pp registers can not be accessed
directly.

1 ...
2 #define S2PP_REG_CLASS_P(CLASS) \
3 ((CLASS) == S2PP_REGS)
4 ...

As all registers are specified, they can be assigned short names, that are used in
assembly. Normally these are the same as the constraints that refer to these registers
and an additional integer.

The constraints are:

kv for S2PP_REGS, the vector registers

kc for S2PP_C_REG, the conditional register

ka for S2PP_ACC_REG, the accumulator

k was chosen as the first character of s2pp constraints because there are very few letters
left which were not used as constraints already and k can be somewhat associated with
the nux (“nuks”). The second character is the respective first letter of a register type.

Register names are defined in rs6000.h.
1 #define ADDITIONAL_REGISTER_NAMES \
2 {

34

3.3. Registers

3 ...
4 {"kc", 32}, {"kv0", 33}, {"kv1", 34}, {"kv2", 35}, \
5 ...
6 {"kv27", 60}, {"kv28", 61}, {"kv29", 62}, {"kv30", 63}, \
7 {"ka", 64}, \
8 }

The strings are names for registers and the integers represent their indexes.
After these names have been defined, one can also define the according constraints in

constraints.md

1 (define_register_constraint "kv" "rs6000_constraints[RS6000_CONSTRAINT_kv]"
2 "s2pp vector register")
3
4 (define_register_constraint "kc" "rs6000_constraints[RS6000_CONSTRAINT_kc]"
5 "s2pp conditional register")
6
7 (define_register_constraint "ka" "rs6000_constraints[RS6000_CONSTRAINT_ka]"
8 "s2pp accumulator")

The first string is the register constraint’s name and the second string will be assigned
a register class later in rs6000.c. The last string is only for documentary purposes [11,
ch. 16.8].

Before register classes can be assigned, an enumeration in rs6000.h must be modified.
1 enum r6000_reg_class_enum {
2 ...
3 RS6000_CONSTRAINT_v , /* Altivec registers */
4 RS6000_CONSTRAINT_kv , /* s2pp vector regsiters */
5 RS6000_CONSTRAINT_kc , /* s2pp conditional register */
6 RS6000_CONSTRAINT_ka , /* s2pp accumulator */
7 ...
8 };

The last step towards completing the register implementation is assigning register
classes and register types to indexes in rs6000_init_hard_regno_mode_ok .

Register types are also defined in rs6000.c and help assigning register classes. The
s2pp registers, which were defined in this section, qualify as standard and vector register
type and thus are added to these macros and afterwards used in register initialization.

1 enum rs6000_reg_type {
2 ...
3 FPR_REG_TYPE ,
4 S2PP_REG_TYPE ,
5 ...
6 S2PP_C_REG_TYPE ,
7 S2PP_ACC_REG_TYPE ,
8 ...
9 };

10 ...
11 #define IS_STD_REG_TYPE(RTYPE) IN_RANGE(RTYPE , GPR_REG_TYPE ,

S2PP_REG_TYPE)
12 ...

35

3. Extending the GCC Back-End

13 #define IS_FP_VECT_REG_TYPE(RTYPE) IN_RANGE(RTYPE , VSX_REG_TYPE ,
S2PP_REG_TYPE)

14 ...
15 static void
16 rs6000_init_hard_regno_mode_ok (bool global_init_p)
17 {
18 ...
19 for (r = 32; r < 64; ++r)
20 rs6000_regno_regclass[r] = FLOAT_REGS;
21
22 if (TARGET_S2PP){
23 for (r = 32+1; r < 64; ++r)
24 rs6000_regno_regclass[r] = S2PP_REGS;
25 rs6000_regno_regclass [32] = NO_REGS;
26 }
27 ...
28 reg_class_to_reg_type [(int)S2PP_REGS] = S2PP_REG_TYPE;
29 ...
30 if (TARGET_S2PP)
31 {
32 reg_class_to_reg_type [(int)FLOAT_REGS] = NO_REG_TYPE; // S2PP_REG_TYPE

;
33 reg_class_to_reg_type [(int)S2PP_REGS] = S2PP_REG_TYPE; //

S2PP_REG_TYPE;
34 rs6000_regno_regclass[S2PP_COND_REGNO] = S2PP_C_REG;
35 rs6000_regno_regclass[S2PP_ACC_REGNO] = S2PP_ACC_REG;
36 reg_class_to_reg_type [(int)S2PP_C_REG] = S2PP_C_REG_TYPE; //

S2PP_REG_TYPE;
37 reg_class_to_reg_type [(int)S2PP_ACC_REG] = S2PP_ACC_REG_TYPE; //

S2PP_REG_TYPE;
38 }
39 ...
40 if (TARGET_S2PP)
41 {
42 rs6000_vector_unit[V8HImode] = VECTOR_S2PP;
43 rs6000_vector_mem[V8HImode] = VECTOR_S2PP;
44 rs6000_vector_align[V8HImode] = align32;
45 rs6000_vector_unit[V16QImode] = VECTOR_S2PP;
46 rs6000_vector_mem[V16QImode] = VECTOR_S2PP;
47 rs6000_vector_align[V16QImode] = align32;
48 }
49 ...
50 if (TARGET_S2PP){
51 rs6000_constraints[RS6000_CONSTRAINT_kv] = S2PP_REGS;
52 rs6000_constraints[RS6000_CONSTRAINT_kc] = S2PP_C_REG;
53 rs6000_constraints[RS6000_CONSTRAINT_ka] = S2PP_ACC_REG;
54 }
55 ...
56 }

Every index in rs6000_regno_regclass [] is given a register class which corresponds
to a register with the same index and also each register class is assigned a register type
in reg_class_to_reg_type [].

36

3.3. Registers

What is left to do, is fixing registers:
1 static void
2 rs6000_conditional_register_usage (void)
3 {
4 ...
5 if ((TARGET_SOFT_FLOAT || !TARGET_FPRS) && !TARGET_S2PP)
6 for (i = 32; i < 64; i++)
7 fixed_regs[i] = call_used_regs[i]
8 = call_really_used_regs[i] = 1;
9

10 if (TARGET_S2PP){
11 fixed_regs [32] = call_used_regs [32] = call_really_used_regs [32] = 1;
12 fixed_regs [64] = call_used_regs [64] = call_really_used_regs [64] = 1;
13 }
14 ...
15 }

It is necessary to prevent the back-end from fixing the FPRs even though
TARGET_SOFT_FLOAT is set but still fix registers 32 and 64 (kc and ka) manually, as
these may not automatically be assigned.

One can also add debugging information for s2pp registers in rs6000_debug_reg_global
. Although this is not necessary, it can be helpful at times, when using the -mdebug
flag.

As all measures of adding the registers to rs6000.c are fulfilled one must add those
registers to the list of possible asm operands in ppx -asm.c.

1 #ifdef __S2PP__
2 #define k00 0
3 #define k0 1
4 ...
5 #define k29 30
6 #define k30 31
7 #endif

This tells the compiler to substitute k0 for 1 as only integers without constraints are
valid assembled machine operands. kc and ka do not need to be declared here, as they
cannot be referenced directly.

All that is missing now, are s2pp specific predicates in predicates.md. These can
be copied from respective AltiVec predicates and change both the vector specific macros
and the predicates’ names.

1 ...
2 (define_predicate "s2pp_register_operand"
3 (match_operand 0 "register_operand")
4 {
5 if (GET_CODE (op) == SUBREG)
6 op = SUBREG_REG (op);
7
8 if (!REG_P (op))
9 return 0;

10
11 if (REGNO (op) > LAST_VIRTUAL_REGISTER)

37

3. Extending the GCC Back-End

12 return 1;
13
14 return S2PP_REGNO_P (REGNO (op));
15 })
16 ...
17 (define_predicate "easy_vector_constant"
18 (match_code "const_vector")
19 {
20 ...
21 if (VECTOR_MEM_S2PP_P (mode))
22 {
23 if (zero_constant (op, mode))
24 return true;
25
26 return easy_s2pp_constant (op , mode);
27 }
28 ...
29 })
30 ...
31 (define_predicate "indexed_or_indirect_operand"
32 (match_code "mem")
33 {
34 ...
35 if (VECTOR_MEM_S2PP_P (mode)
36 && GET_CODE (op) == AND
37 && GET_CODE (XEXP (op, 1)) == CONST_INT
38 && INTVAL (XEXP (op, 1)) == -16)
39 op = XEXP (op , 0);
40
41 return indexed_or_indirect_address (op, mode);
42 })
43 ...
44 (define_predicate "s2pp_indexed_or_indirect_operand"
45 (match_code "mem")
46 {
47 op = XEXP (op , 0);
48 if (VECTOR_MEM_S2PP_P (mode)
49 && GET_CODE (op) == AND
50 && GET_CODE (XEXP (op, 1)) == CONST_INT
51 && INTVAL (XEXP (op, 1)) == -16)
52 return indexed_or_indirect_address (XEXP (op, 0), mode);
53
54 return 0;
55 })
56 ...

If one wants to add more predicates, GCC offers a manuals entry [11, ch. 16.7].
The easy_s2pp_constant function, which is referred to in the listing above, checks if

an operand is “splittable”, ergo that all elements have the same value and the operand can
be synthesized by a split instruction. To check this, the operand is analyzed sequentially
if either of the two available splat instructions can synthesize the same operand. This
function is transferable from an AltiVec equivalent with the exception that there is one
less alternative for splatting a vector.

38

3.4. Reload

1 bool
2 easy_s2pp_constant (rtx op , enum machine_mode mode)
3 {
4 unsigned step , copies;
5
6 if (mode == VOIDmode)
7 mode = GET_MODE (op);
8 else if (mode != GET_MODE (op))
9 return false;

10
11 step = GET_MODE_NUNITS (mode) / 4;
12 copies = 1;
13
14 /* Try with a fxvsplath */
15 if (step == 1)
16 copies <<= 1;
17 else
18 step >>= 1;
19
20 if (vspltis_constant (op, step , copies))
21 return true;
22
23 /* Try with a fxvsplatb */
24 if (step == 1)
25 copies <<= 1;
26 else
27 step >>= 1;
28
29 if (vspltis_constant (op, step , copies))
30 return true;
31
32 return false;
33 }

This is one of two times, an AltiVec function (vspltis_constant) will be used instead
of defining a new function, as this function has not to be altered. A similar function
gen_easy_s2pp_constant can be transfered as it is basically the same but generates
RTL code that will create a constant vector operand from a different operand.

As all registers are now fully implemented, it must be taken care of conflicts with
FPRs. s2pp registers and FPRs share the same indexes and since they are not fixed
could be identified as FPRs. For this reason any use of FP_REGNO_P(N) must be checked
and extended with an exception && !TARGET_S2PP when it is necessary. This is especially
the case when dealing with hard registers and having the compiler emit register moves.

3.4. Reload

As hinted in section 2.3.4, reload mainly performs register allocation. Obviously it
requires special handling for vector registers to reload because register allocation is an
important part of the compilation process. Thus support for S2PP_REGS must be added.

As reload is capable of moving the contents of registers, it must be specified that s2pp

39

3. Extending the GCC Back-End

registers are not directly compatible with GPRs or any other registers. At the same time
do s2pp memory instructions need two indirect operands which are GPRs.

1 static reg_class_t
2 rs6000_secondary_reload (bool in_p ,
3 rtx x,
4 reg_class_t rclass_i ,
5 enum machine_mode mode ,
6 secondary_reload_info *sri)
7 {...
8 /* Handle vector moves with reload helper functions. */
9 if (ret == ALL_REGS && icode != CODE_FOR_nothing)

10 {...
11 if (GET_CODE (x) == MEM)
12 {...
13 if (rclass == GENERAL_REGS || rclass == BASE_REGS)
14 {...
15 /* Loads to and stores from vector registers can only do reg+

reg
16 addressing. Altivec registers can also do (reg+reg)&(-16).

Allow
17 scalar modes loading up the traditional floating point

registers
18 to use offset addresses. */
19 else if (rclass == VSX_REGS || rclass == ALTIVEC_REGS
20 || rclass == FLOAT_REGS || rclass == NO_REGS
21 || rclass == S2PP_REGS)
22 {...
23 ...

Because registers are quite different in their specifications and reload could possibly
ask for any combination of source/destination register, s2pp register moves are restricted
to other s2pp registers or memory. This creates the need for checking the register class
of an RTL expression and eventually correcting it.

1 static enum reg_class
2 rs6000_preferred_reload_class (rtx x, enum reg_class rclass)
3 {...
4 if ((rclass == S2PP_REGS)
5 && VECTOR_UNIT_S2PP_P (mode)
6 && easy_vector_constant (x, mode)){
7 return rclass;
8 }
9 }

10 ...
11 static enum reg_class
12 rs6000_secondary_reload_class (enum reg_class rclass , enum machine_mode

mode ,
13 rtx in)
14 {...
15 if ((regno == -1 || S2PP_REGNO_P (regno))
16 && rclass == S2PP_REGS)
17 return NO_REGS;
18 ...

40

3.5. Built-ins, Insns and Machine Instructions

19 }
20 ...

As reload does not initially support the addressing mode which AltiVec and s2pp
both use, indirect addresses for s2pp must be handled like AltiVec.

1
2 void
3 rs6000_secondary_reload_inner (rtx reg , rtx mem , rtx scratch , bool

store_p)
4 {...
5 switch (rclass)
6 {...
7 case S2PP_REGS:
8 ...
9 }

10 }

At last the mode, which is used, needs to be validated.
1 static bool
2 rs6000_cannot_change_mode_class (enum machine_mode from ,
3 enum machine_mode to,
4 enum reg_class rclass)
5 {
6 if (TARGET_S2PP && rclass == S2PP_REGS
7 && (S2PP_VECTOR_MODE (from) + S2PP_VECTOR_MODE (to)) == 1)
8 return true;
9 ...

10 }

3.5. Built-ins, Insns and Machine Instructions

Basically the back-end is now capable of handling s2pp vector instructions. The only
thing that is left, is specifying machine instructions that move registers or access memory.
For this reason a machine description file s2pp.md is added to the back-end, which will
contain all available vector instructions.

This new file must be declared in rs6000.md and t-rs6000.
1 ...
2 $(srcdir)/config/rs6000/s2pp.md
3 $
4 ...

1 ...
2 (include "s2pp.md")
3 ...

The most important insn is *s2pp_mov <mode >. It is generally used by emit_move_insn
to allocate registers and memory.

1 (define_insn "*s2pp_mov <mode >"
2 [(set (match_operand:FXVI 0 "nonimmediate_operand" "=Z,kv,kv ,*Y,*r,*r,

kv ,kv")

41

3. Extending the GCC Back-End

3 (match_operand:FXVI 1 "input_operand" "kv ,Z,kv,r,Y,r,j,W"))]
4 "VECTOR_MEM_S2PP_P (<MODE >mode)
5 && (register_operand (operands [0], <MODE >mode)
6 || register_operand (operands [1], <MODE >mode))"
7 {
8 switch (which_alternative)
9 {

10 case 0: return "fxvstax %1,%y0";
11 case 1: return "fxvlax %0,%y1";
12 case 2: return "fxvsel %0,%1,%1";
13 case 3: return "#";
14 case 4: return "#";
15 case 5: return "#";
16 case 6: return "fxvsel %0,0,0";
17 case 7: return output_vec_const_move (operands);
18 default: gcc_unreachable ();
19 }
20 }
21 [(set_attr "type" "vecstore ,vecload ,vecsimple ,store ,load ,*,vecsimple ,*"

)])

Insn definitions have been described earlier in section 2.3.4, therefore this insn will
only be explained briefly. The name is preceded by an asterisk that renders the name
not accessible because this insn shall only be referred to by the RTL sequence. Names
starting with an asterisk are in general equal to no name.

The RTL template is fairly simple and states that operand 0 is set by operand 1.
Still, this insn applies for a number of cases which are specified by its constraints. The
constraints of each operand build pairs. The first pair for example (Z and kv) tells
the compiler that memory, which is accessed by an indirect operand Z, will be set by
the contents of a vector register kv. Which machine instruction is used for each pair
of constraints, is stated in the output template by switch(which_alternative). The
template can also be written in C code.

Each case is indexed according to the list of constraints so case 0’s constraints are
the first pair. This case returns a machine instruction for storing a vector in memory
fxvstax. The second operand of this instruction also contains a character besides its
index, which is an operand modifier [11, ch. 6.45.2] that will cause the operand 0 to be
split into an offset and an address in respective GPRs.

Other alternatives include instructions fxvlax, for loading a vector from memory, and
fxvsel, for moving vector registers. case 6 moves the contents of vector register 0 (this
register is all 0s) and thereby nulls the second operand (j is the respective constraint for
a zero vector).

Returning # as an output template is equivalent to stating, that there is no machine
instruction which can perform the RTL template. This causes the compiler to look for
different RTL templates, that have the same effect but also feature a machine instruction.

This process is called insn splitting and can also be used for optimization. A devel-
oper may define which RTL templates are equivalent by using define_split [11, 16.16].

As there exist non-AltiVec-specific splits for cases 3 through 5, it is not necessary to
define those splits.

42

3.5. Built-ins, Insns and Machine Instructions

Insn splitting is quite common for GCC back-ends because defining insns with unspe-
cific constraints and then splitting them allows for easier generation of code. The back-
end will automatically search for code that fits the operands of the instruction. The same
applies for *s2pp_mov which cannot be referenced by name, but by an RTL template of
mov in vector.md. In order to fulfill the condition, the macro S2PP_VECTOR_MODE_P must
be added to the insn.

1 (define_expand "mov <mode >"
2 [(set (match_operand:VEC_M 0 "nonimmediate_operand" "")
3 (match_operand:VEC_M 1 "any_operand" ""))]
4 "VECTOR_MEM_ALTIVEC_OR_VSX_P (<MODE >mode) || VECTOR_MEM_S2PP_P (<MODE >

mode)"
5 {...})

define_expand is an insn expansion which is similar to insn splitting, but may
combine several RTL templates and cannot specify any machine instruction directly.
Usually this is used to compose built-ins from an instruction sequence [11, ch. 16.15].

define_insn_and_split is a combination of insn definition and insn splitting and is
also described in the GCC manual [11, ch. 16.16].

Besides mov there is number of insn expansions in vector.md that must also apply to
s2pp, which are mostly general instructions that rely on memory, or are standard names.

1 (define_expand "vector_load_ <mode >"
2 [(set (match_operand:VEC_M 0 "vfloat_operand" "")
3 (match_operand:VEC_M 1 "memory_operand" ""))]
4 "VECTOR_MEM_ALTIVEC_OR_VSX_P (<MODE >mode) || VECTOR_MEM_S2PP_P (<MODE >

mode)"
5 "")
6
7 (define_expand "vector_store_ <mode >"
8 [(set (match_operand:VEC_M 0 "memory_operand" "")
9 (match_operand:VEC_M 1 "vfloat_operand" ""))]

10 "VECTOR_MEM_ALTIVEC_OR_VSX_P (<MODE >mode) || VECTOR_MEM_S2PP_P (<MODE >
mode)"

11 "")
12
13 ;; Splits if a GPR register was chosen for the move
14 (define_split
15 [(set (match_operand:VEC_L 0 "nonimmediate_operand" "")
16 (match_operand:VEC_L 1 "input_operand" ""))]
17 "(VECTOR_MEM_ALTIVEC_OR_VSX_P (<MODE >mode) || VECTOR_MEM_S2PP_P (<MODE

>mode))
18 && reload_completed
19 && gpr_or_gpr_p (operands [0], operands [1])
20 && !direct_move_p (operands [0], operands [1])
21 && !quad_load_store_p (operands [0], operands [1])"
22 [(pc)]
23 {
24 rs6000_split_multireg_move (operands [0], operands [1]);
25 DONE;
26 })
27 ...
28

43

3. Extending the GCC Back-End

29 (define_expand "vector_s2pp_load_ <mode >"
30 [(set (match_operand:VEC_X 0 "vfloat_operand" "")
31 (match_operand:VEC_X 1 "memory_operand" ""))]
32 "VECTOR_MEM_S2PP_P (<MODE >mode)"
33 "
34 {
35 gcc_assert (VECTOR_MEM_S2PP_P (<MODE >mode));
36 }")
37
38 (define_expand "vector_s2pp_store_ <mode >"
39 [(set (match_operand:VEC_X 0 "memory_operand" "")
40 (match_operand:VEC_X 1 "vfloat_operand" ""))]
41 "VECTOR_MEM_S2PP_P (<MODE >mode)"
42 "
43 {
44 gcc_assert (VECTOR_MEM_S2PP_P (<MODE >mode));
45 }")
46 ...
47 (define_insn_and_split "*vec_reload_and_plus_ <mptrsize >"
48 [(set (match_operand:P 0 "gpc_reg_operand" "=b")
49 (and:P (plus:P (match_operand:P 1 "gpc_reg_operand" "r")
50 (match_operand:P 2 "reg_or_cint_operand" "rI"))
51 (const_int -16)))]
52 "(TARGET_ALTIVEC || TARGET_VSX || TARGET_S2PP) && (reload_in_progress

|| reload_completed)"
53 "#"
54 "&& reload_completed"
55 [(set (match_dup 0)
56 (plus:P (match_dup 1)
57 (match_dup 2)))
58 (parallel [(set (match_dup 0)
59 (and:P (match_dup 0)
60 (const_int -16)))
61 (clobber:CC (scratch:CC))])])
62 ...
63 (define_insn_and_split "*vec_reload_and_reg_ <mptrsize >"
64 [(set (match_operand:P 0 "gpc_reg_operand" "=b")
65 (and:P (match_operand:P 1 "gpc_reg_operand" "r")
66 (const_int -16)))]
67 "(TARGET_ALTIVEC || TARGET_VSX || TARGET_S2PP) && (reload_in_progress

|| reload_completed)"
68 "#"
69 "&& reload_completed"
70 [(parallel [(set (match_dup 0)
71 (and:P (match_dup 1)
72 (const_int -16)))
73 (clobber:CC (scratch:CC))])])
74 ...
75 (define_expand "add <mode >3"
76 [(set (match_operand:VEC_F 0 "vfloat_operand" "")
77 (plus:VEC_F (match_operand:VEC_F 1 "vfloat_operand" "")
78 (match_operand:VEC_F 2 "vfloat_operand" "")))]
79 "VECTOR_UNIT_ALTIVEC_OR_VSX_P (<MODE >mode) || VECTOR_UNIT_S2PP_P (<MODE

>mode)"

44

3.5. Built-ins, Insns and Machine Instructions

80 "")
81
82 (define_expand "sub <mode >3"
83 [(set (match_operand:VEC_F 0 "vfloat_operand" "")
84 (minus:VEC_F (match_operand:VEC_F 1 "vfloat_operand" "")
85 (match_operand:VEC_F 2 "vfloat_operand" "")))]
86 "VECTOR_UNIT_ALTIVEC_OR_VSX_P (<MODE >mode) || VECTOR_UNIT_S2PP_P (<MODE

>mode)"
87 "")
88 ...

Before other insns can be implemented, case 7 of *s2pp_mov, which applies for con-
stant vectors, should be emphasized.

Constant vectors have a constant value that is known at compile time. GCC will
look for such vectors and check if these vectors can be splatted. This is mainly used by
AltiVec, which offers a special splat instruction that takes a constant immediate value as
operand. Splatting an immediate value saves a GPR and thus boosts performance. This
function can achieve a similar effect for constant zero vectors by moving the zero register
and is therefore used. To distinguish between cases where this applies, the function
output_vec_const_move () in rs6000.c is used. This function is also used by AltiVec
and the second function, that can be used by both VEs, but this time a separate case in
defined inside the function. Only if the vector is a zero vector, this functions returns a
machine instruction for s2pp, otherwise it will return #.

1 const char *
2 output_vec_const_move (rtx *operands)
3 {...
4 if (TARGET_S2PP)
5 {
6 rtx splat_vec;
7 if (zero_constant (vec , mode))
8 return "fxvsel %0,0,0,0";
9

10 splat_vec = gen_easy_s2pp_constant (vec);
11 gcc_assert (GET_CODE (splat_vec) == VEC_DUPLICATE);
12 operands [1] = XEXP (splat_vec , 0);
13 if (! EASY_VECTOR_15 (INTVAL (operands [1]))){
14 return "#";
15 }
16 mode = GET_MODE (splat_vec);
17 if (mode == V8HImode){
18 return "#";
19 }
20 else if (mode == V16QImode){
21 return "#";
22 }
23 else
24 gcc_unreachable ();
25 }

Since the instruction set missing an instruction to use this split, one must define a split
which converts the immediate splat into a normal splat:

45

3. Extending the GCC Back-End

1 (define_split
2 [(set (match_operand:FXVI 0 "s2pp_register_operand" "")
3 (match_operand:FXVI 1 "easy_vector_constant" ""))]
4 "TARGET_S2PP && can_create_pseudo_p ()"
5 [(set (match_dup 2) (match_dup 3))
6 (set (match_dup 0) (unspec:FXVI [(match_dup 2)] UNSPEC_FXVSPLAT))]
7 "{
8 operands [2] = gen_reg_rtx (SImode);
9 operands [3] = CONST_VECTOR_ELT(operands [1], 1);

10 }")
11 ...
12 (define_insn "*s2pp_fxvsplat <FXVI_char >"
13 [(set (match_operand:FXVI 0 "register_operand" "=kv")
14 (unspec:FXVI
15 [(match_operand:SI 1 "register_operand" "r")] UNSPEC_FXVSPLAT))]
16 "TARGET_S2PP"
17 "fxvsplat <FXVI_char > %0,%1"
18 [(set_attr "type" "vecperm")])

The upper RTL template, which moves a constant vector to a vector register, is split
into the bottom RTL template, which inserts an intermediate step. match_dup n means
that the operand should match the operand with the same index, that is specified some-
where else. For this reason are operands 2 and 3 specified in the following C template,
which also converts operand 1 into a single integer element because all values are the
same for splattable vectors. The second RTL template uses the newly created integer
and moves it to a GPR, which is then splatted into a vector register.

An unspec operator together with an UNSPEC_ ... macro tells the compiler that the op-
eration is not specified but has a name to distinguish it from other unspecified operations.

Now that memory insns (fxvstax, fxvlax) for s2pp exist, these can be implement
in rs6000.c as well. In rs6000_init_hard_regno_mode_ok a code for store and load
instructions must be assigned to supported modes in case the target flag is set. As this
is also done for AltiVec, it is possible to differentiate between those option flags.

By now the compiler would already support asm usage as shown in 2.3.2.
This also completes the prerequisites for intrinsic functions or built-ins. The differ-

ent steps of adding built-ins were also described in a previous internship report [12].
Therefore this section will only describe this briefly and refer to the report at times.

First, one must define insns for each vector instruction that is listed in the nux user
guide [7]. Insns that work similar to fxvstax and fxvlax are implemented, in order to
support synram access. These are called fxvoutx and fxvinx.

1 ;;store
2 (define_insn "s2pp_fxvstax <fxvstax_char ><mode >"
3 [(parallel
4 [(set (match_operand:FXVI 0 "memory_operand" "=Z")
5 (match_operand:FXVI 1 "register_operand" "kv"))
6 (unspec [(const_int 0)] FXVSTAX)])]
7 "TARGET_S2PP"
8 "fxvstax %1,%y0,<fxvstax_int >"
9 [(set_attr "type" "vecstore")])

46

3.5. Built-ins, Insns and Machine Instructions

10
11 ;;load
12 (define_insn "s2pp_fxvlax <fxvlax_char ><mode >"
13 [(parallel
14 [(set (match_operand:FXVI 0 "register_operand" "=kv")
15 (match_operand:FXVI 1 "memory_operand" "Z"))
16 (unspec [(const_int 0)] FXVLAX)])]
17 "TARGET_S2PP"
18 "fxvlax %0,%y1,<fxvlax_int >"
19 [(set_attr "type" "vecload")])
20
21 ;; synram
22 (define_insn "s2pp_fxvoutx <fxvoutx_char ><mode >"
23 [(parallel
24 [(set (match_operand:FXVI 0 "memory_operand" "=Z")
25 (match_operand:FXVI 1 "register_operand" "kv"))
26 (unspec [(const_int 0)] FXVOUTX)])]
27 "TARGET_S2PP"
28 "fxvoutx %1,%y0,<fxvoutx_int >"
29 [(set_attr "type" "vecstore")])
30
31 (define_insn "s2pp_fxvinx <fxvinx_char ><mode >"
32 [(parallel
33 [(set (match_operand:FXVI 0 "register_operand" "=kv")
34 (match_operand:FXVI 1 "memory_operand" "Z"))
35 (unspec [(const_int 0)] FXVINX)])]
36 "TARGET_S2PP"
37 "fxvinx %0,%y1,<fxvinx_int >"
38 [(set_attr "type" "vecload")])

All of these insns exist with different conditionals and are named accordingly because
load and store insns are difficult to implement with an additional argument that is the
conditional.

Simple arithmetic instructions exist in multiple versions that either support condi-
tional execution or do not. Due to an issue with nux regarding conditionals and
arithmetic instructions, there exist two different ways of how arithmetic instructions are
implemented:

As tests revealed, the conditional execution of arithmetic instructions gives wrong
results in case a condition does not apply. In this case, the result of a previous instruction
is written to the return operand. Normally the operation should leave the contents of
the operand untouched instead. For this reason a workaround through insn splitting is
implemented, that utilizes fxvselect and its conditional execution, as this instruction
does work as intended [13]. Still, arithmetic operations without splits and thus without
conditionals should be available, as this saves a clock cycle in comparison to having an
additional fxvselect.

This is only done for simple arithmetic operations, fxvadd ..., fxvsub ... and fxvmul
..., as these could be easily tested. More complex operations that make use of the
accumulator, should not be used with conditionals until further testing has been con-
ducted. One must also keep in mind, that an extra instruction that relies on normal

47

3. Extending the GCC Back-End

registers, would render the advantages of an accumulator meaningless. Accumulator
insns still offer a conditional operand in their implementation, although this operand
will be set to 0 when assigning intrinsic names. This is done for later testing purposes
for conditionals.

This completes those insns and allows for creating built-ins in rs6000 -builtins
.def. First, one should specify macros that simplify adding intrinsics. The exact
definition of those macros is described for AltiVec built-ins in the internship report [12]
and can easily transfered to s2pp by adding the RS6000_BTM_S2PP built-in mask in
rs6000.h.

1 #define RS6000_BTM_S2PP MASK_S2PP /* s2pp -mark/s2pp vectors. */
2
3 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
4 ...
5 | RS6000_BTM_S2PP)

Those new s2pp built-in macros are then used to create built-in definitions for each
insn and also each mode (halfword or byte). Most built-ins follow the scheme of a normal
function that has a result and a certain number of arguments. But there is a number
of insns that do not produce an output as they set the accumulator or the conditional
register. These instructions need special handling and thus are defined as special built-
ins.

Besides built-ins, there are also overloads defined in rs6000 -builtins.def. These
are used to differ intrinsics through arguments types, simplify using them and prevent
false usage. Overloads are further explained in the internship report [12].

To make overloads usable, one must link them to existing built-ins, as overloads are
not directly connected to insns. This is done through structures that combine the built-in
and overload names with a return type and up to three arguments.

To use these structures, the functions s2pp_build_resolved_builtin and
s2pp_resolve_overloaded_builtin are needed and must be added to rs6000 -c.c.
These functions resolve overloaded built-ins, which is done the same way as for their
AltiVec counterparts.

Which resolving function is used by the back-end, is decided in rs6000.h

1 #define REGISTER_TARGET_PRAGMAS () do { \
2 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
3 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
4 if(OPTION_MASK_S2PP) \
5 targetm.resolve_overloaded_builtin = s2pp_resolve_overloaded_builtin

; \
6 else \
7 targetm.resolve_overloaded_builtin =

altivec_resolve_overloaded_builtin; \
8 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
9 } while (0)

Also there is the need for functions in rs6000.c that handle built-ins in general. A new
function s2pp_expand_builtin, which is invoked by rs6000_expand_builtin, handles

48

3.5. Built-ins, Insns and Machine Instructions

all special built-ins that belong to s2pp and picks an expander function according to the
built-in’s name. These expander functions must be implemented fors2pp built-ins.

One group of built-ins are memory intrinsics, that handle explicit memory addressing
(fxvlax, fxvstax) and synram intrinsics (fxvinx, fxvoutx). Expanders are needed
because of the special way memory is accessed through indirect register referencing. Since
AltiVec uses the same way of addressing, it is possible to reuse its implementation but
use different function names s2pp_expand_stv_builtin and s2pp_expand_lv_builtin.

Besides memory expander functions a new kind of expander function is needed for s2pp.
These functions should expect a missing return operand, since a great number of instruc-
tions does not return any value because it is written to the accumulator or the conditional
register. These functions are called s2pp_expand_unaryx_builtin for one operand,
s2pp_expand_binaryx_builtin for two operands and s2pp_expand_ternaryx_builtin
for three operands. These can not be easily merged, as operands are handled quite

explicitly.
1 static rtx
2 s2pp_expand_unaryx_builtin (enum insn_code icode , tree exp)
3 {
4 tree arg0;
5 rtx op0 , pat;
6 enum machine_mode mode0;
7 arg0 = CALL_EXPR_ARG (exp , 0);
8 op0 = expand_normal (arg0);
9 mode0 = insn_data[icode]. operand [0]. mode;

10
11 /* If we got invalid arguments bail out before generating bad rtl.

*/
12 if (arg0 == error_mark_node)
13 return const0_rtx;
14
15 if (! (* insn_data[icode]. operand [0]. predicate) (op0 , mode0))
16 op0 = copy_to_mode_reg (mode0 , op0);
17
18 pat = GEN_FCN (icode) (op0);
19 if (pat)
20 emit_insn (pat);
21 return NULL_RTX;
22 }

Such intrinsics qualify as special built-ins and need to be defined in rs6000.c.
s2pp_init_bultins takes care of this, as it is a series of define_builtin functions,
which must be written explicitly.

Besides built-ins that are connected to vector instructions, it is also possible to create
intrinsics, that mainly use memory instructions. vec_ext, vec_init and vec_promote
are built-ins, which are compiler-constructed sequences of machine instructions that uti-
lize their memory representation. E.g. vec_ext saves a vector in memory and addresses
a single element of the vector through a normal load instruction, in order to extract the
value. These functions are identical to AltiVec’s implementation since they do not need
a vector extension.

49

3. Extending the GCC Back-End

The definition of built-ins concludes by defining alternative names for built-in functions
in s2pp.h. A complete list of all intrinsic functions that the compiler supports at the
time of this thesis is available in table A.2.

3.6. Prologue and Epilogue

Another problem, that only emerges, when using many registers at the same time, is
missing prologue and epilogue support.

There is a limited number of registers, which the compiler can use for saving values,
and this number is also reduced by the amount of fixed registers Thus the compiler
occasionally must store values in memory before calling a function that needs some of
the available registers by calling a so called prologue [11, ch. 17.9.11]. The compiler
then restores the registers after the function has finished through an epilogue.

Before registers can be saved, it must be checked which registers need to be saved. This
is done by seve_reg_p (). In rs6000_emit_prologue the compiler checks each register
that exists and saves them according to this function. Since the compiler checks register
numbers instead of types, it is necessary to alter the case for FPR and add a target flag:

1 ...
2 if (! WORLD_SAVE_P (info) && (strategy & SAVE_INLINE_FPRS))
3 {
4 int i;
5 if (! TARGET_S2PP){
6 for (i = 0; i < 64 - info ->first_fp_reg_save; i++)
7 ...
8 }
9 else{

10 for (i = 0; info ->first_s2pp_reg_save + i <= LAST_S2PP_REGNO; i
++)

11 if (save_reg_p (info ->first_s2pp_reg_save + i)){
12
13 int offset = info ->s2pp_save_offset + frame_off + 16 * i;
14 rtx savereg = gen_rtx_REG (V8HImode , i+info ->

first_s2pp_reg_save);
15 rtx areg = gen_rtx_REG (Pmode , 0);
16 emit_move_insn (areg , GEN_INT (offset));
17 rtx mem = gen_frame_mem (V8HImode ,gen_rtx_PLUS (Pmode ,

frame_reg_rtx , areg));
18 insn = emit_move_insn (mem , savereg);
19 rs6000_frame_related (insn , frame_reg_rtx , sp_off -frame_off ,

areg ,
20 GEN_INT(offset), NULL_RTX);
21 }
22 }
23 ...
24 }
25 ...

An rtx variable represents an RTL expression and can be used by insns as an argument.
RTL expressions contain information on how the operand is constructed, which allows

50

3.6. Prologue and Epilogue

chaining of operations.
If a register needs to be saved, the compiler computes an offset, that takes the current

frame offset and adds 16 bytes(s2pp register size) for every register. savereg and areg
are two kinds of registers that will later serve as operands for a memory instruction.
savereg is the vector register that needs to be saved and areg is a GPR operand that
holds an offset. emit_move_insn creates IR that stores the offset in areg. A complete
memory operand mem can then be created from offset in areg and frame_reg_rtx,
which is the register holding the frame pointer, and combines them to a single RTL
expression. As both, register and memory, are specified, the compiler can emit a move
insn that stores savereg to mem. Finally, rs6000_frame_related handles the insn which
was just created and performs additional customizations which are needed as the IR
belongs to a function call.

After the prologue has finished, the function is compiled. Next, rs6000_emit_epilogue
is called and does similar operations to prologue but restores the registers from memory.
This function can not work on its but needs other functions that set parameters and
prepare statements as well.

1 ...
2 int first_s2pp_reg_save;
3 ...
4 int s2pp_save_offset;
5 ...
6 int s2pp_size;
7 ...}
8 ...
9 int

10 direct_return (void)
11 {
12 if (reload_completed)
13 {
14 rs6000_stack_t *info = rs6000_stack_info ();
15
16 if (info ->first_gp_reg_save == 32
17 ...
18 && info ->first_s2pp_reg_save == LAST_S2PP_REGNO + 1
19 ...)
20 return 1;
21 }
22
23 return 0;
24 }
25 ...
26
27 static int
28 first_s2pp_reg_to_save (void)
29 {
30 int i;
31
32 /* Find lowest numbered live register. */
33 for (i = FIRST_SAVED_S2PP_REGNO; i <= LAST_S2PP_REGNO; ++i)
34 if (save_reg_p (i))

51

3. Extending the GCC Back-End

35 break;
36
37 return i;
38 }
39 ...
40 static rs6000_stack_t *
41 rs6000_stack_info (void)
42 {...
43 info_ptr ->first_s2pp_reg_save = first_s2pp_reg_to_save ();
44 info_ptr ->s2pp_size = 16 * (LAST_S2PP_REGNO + 1
45 - info_ptr ->first_s2pp_reg_save);
46 ...
47 }

3.7. Overview

This chapter dealt with the task of extending the rs/6000 back-end of GCC for the nux’
s2pp VE. It first discussed a new option flag -s2pp along with a new target flag -mcpu=
nux to enable vector declarations for the nux architecture. This included automatically
setting other option flags for the nux target architecture. Afterwards the vector at-
tribute and mandatory macros for vector usage were created. It was also shown, how
to implement the different vector register types and classes, while reusing FPR indexes,
and fixing these registers for use in functions. Then s2pp registers were added to reload,
which allowed to add elementary insns and new built-in functions to the back-end as well
as implementing s2pp cases for prologue and epilogue functions.

In reality the process of extending the back-end was less streamlined and many at-
tempts ended in internal compiler errors. Some solutions could only be figured out by
trial and error, as there is little documentation on this specific back-end. Still, it is
possible to understand the structure of this back-end over time.

52

4. Results and Applications

In the course of the third chapter, the GCC back-end was extended for the s2pp vector
extension. This chapter will examine features and early applications of the back-end.

So far the compiler back-end can be integrated into a compiler which creates machine
code for the PPU. This enhanced compiler also supports the use of -mcpu=nux and -ms2pp
target flags and a header file named s2pp.h which can be included the same way GCC
standard header files are included. The back-end features a vector variable attribute
which enables vector variables of different types.

These vector variables can serve as arguments for implemented s2pp intrinsic func-
tions that cover every vector instruction which is available on nux. Additionally the
new intrinsics support type detection and map automatically to the according machine
instruction for each vector type if this is demanded by the user.

When using this, assigning registers as well as memory is done automatically and does
not require user interaction. Despite a special bus to the synapse array, the back-end
can also accesses the synapse array through special intrinsics. Specifically the intrinsics
fxv_inx and fxv_outx allow to access the synapse array.

As many of the mentioned intrinsics as possible were designed similar to existing
intrinsics for AltiVec and use the vec_ prefix besides th fxv_ prefix. This was done
to include both, users that are accustomed to the existing vector macros and new users
that are somewhat familiar with AltiVec.

In addition to intrinsics, the compiler also supports inline assembly coding in asm with
vector instructions (as described in section 2.3.2, see listing 4.1). The user does not need
to choose hard registers or implement store and load instructions by himself, as this is
done by the compiler. This is possible through the addition of the kv constraint that
marks vector registers as r does for GRPs. Overall, inline assembly for nux became more
intuitive than it had been before.

This will ultimately make it easier to include low-level coding in high-level programs.
First tests were conducted during extension development and made use of intrinsics
instead of macros. Ideas for more complex tests will be discussed in chapter 5.

David Stöckel further implemented a small series of tests using a newly developed
unit testing framework as part of libnux in order to conduct high-level software tests
(example in listing 4.1).

Through these early tests, it was possible to find a bug in nux for conditional execution
of arithmetic instructions [24]. It was possible to implement a workaround for this which
was already mentioned in chapter 3. The workaround was tested and passed the libnux
tests, while performance was no criteria. At the same time the code size was minimally
affected as only one machine instruction was added.

The back-end was also used by David Stöckel for first experiments that made use of

53

4. Results and Applications

Listing 4.1: Example of a nux Test. This
This test directly loads two values as immediates into registers and splats them into vector
registers. Those vector registers are added and the result is saved in a variable. The result
is then tested and also written into the mailbox for analysis.

1 libnux_testcase_begin("fxvpckbu");
2 vector uint8_t vec1 , vec2 , vec3;
3 asm volatile ("li %3, 0x1258\n\t" /*load value into gpr*/
4 "fxvsplath %0, %3\n\t" /*splat value of gpr*/
5 "li %3, 0x00ff\n\t"
6 "fxvsplath %1, %3\n\t" /*splat value of gpr*/
7 "fxvaddbm %2, %0, %1, 0 \n\t"
8 : "=kv" (vec1), "=kv" (vec2), "=kv" (vec3) ,"=r" (value)
9 :/* handle output operands above*/

10 : "r1"); /* reserve clobbered registers */
11
12 libnux_mailbox_write_string("fxvpckbu\n");
13 for (uint32_t index = 0; index < 16/ sizeof(vec_extract(vec3 ,0)); index ++)
14 {
15 libnux_test_equal(vec3[index], 0x1337);
16 libnux_mailbox_write_string("Index is ");
17 libnux_mailbox_write_hex(index);
18 libnux_mailbox_write_string("\tvalue is ");
19 libnux_mailbox_write_hex(vec3[index]);
20 libnux_mailbox_write_string("\n");
21 }

different functionalities of nux. One experiment used the PPU to increase or decrease
the synaptic weights of all synapses in small steps while measuring the network activity.
In another experiment all synaptic weights were updated, depending on spike counts, to
create homeostatic behavior and yet a different experiment implemented simple Spike
Timing Dependent Plasticity (STDP) that relies on accessing the hardware correlation
data of HICANN-DLS [25]. All these experiments still used inline assembly instead of
intrinsics but may be transferred to intrinsics in the future. Nonetheless did the nux
back-end simplify usage of inline assembly as described earlier and allowed the user to
focus on tests rather than low-level operand management.

All tests used a version of GCC that was patched and then integrated to the waf build
system of the working group. Hence a patched cross-compiler is already available at the
time of this thesis.
As pointed out in the beginning of this thesis we also wanted to support optimization
of vector specific machine code. Until the end of this thesis could be achieved for basic
optimization (with flag -O1) which mainly reduces memory accesses to a minimum but
keeps execution order. This still gives readable assembly code and should achieve similar
performance to code written with the former standard macros.

Since the compiler did not recognize s2pp instructions before, asm statements had to be
volatile to prevent vector instructions from being removed by optimization. volatile
code can still be moved around by optimization. Other optimizations, like loop optimiza-

54

tion or optimizations within a volatile statement are not possible. Efficient machine code
was therefore relying more on the users code than usual. This changed with support of
simple optimization (-O1) by the extended back-end. Optimization going beyond -O1 is
yet to be tested for reliability with the new back-end which will be discussed later on.

Besides these internal improvements to s2pp usage we want to point out the main
advantage of the new back-end for users of nux. The main goal of this thesis was
to simplify programming for nux and listing 4.2 shows this for an exemplary program.

Listing 4.2:
Code with Intrinsics

void start() {
vector uint8_t vec1 , vec2 ,

vec3;
vec1 = fxv_splatb (8);
vec2 = fxv_splatb (11);
vec3 = fxv_splatb (2703);

vec1 = fxv_mul(vec1 , vec2);
vec1 = fxv_add(vec1 , vec3);
return;

}

Listing 4.3:
Code With Macros

void start() {

fxv_splatb (0, 8);

fxv_splatb (1, 11);

fxv_splatb (2, 2703);
fxv_mulbm(0, 0, 1);
fxv_addbm(0, 0, 2);
return;

}

Listing 4.4:
Assembly Output for 4.2

start:
li %r9 ,8
fxvsplatb %f11 ,%r9
li %r9 ,11
fxvsplatb %f12 ,%r9
li %r9 ,2703
fxvsplatb %f10 ,%r9
fxvmulbm %f12 ,%f11 ,%f12
fxvaddbm %f12 ,%f12 ,%f10
blr

One can see that listing 4.2 resembles standard C code and while listing 4.3 still uses
macros for nux programming. Listing 4.4 shows the assembly output by the compiler
for -O1 optimization. Comparing 4.2 and 4.3 shows that intrinsics give more structure
to the program than macros do, especially since variables are supported. Dependencies
between variables are also obvious right away.

When using the macros in listing 4.3, the code is very close to the assembly output in
4.4, which would almost be identical to the assembly output of 4.3. The only differences
would be register numbers, as GCC does not assign the lowest index registers first.

55

4. Results and Applications

Listing 4.5:
Code Example with Function and Com-
plex Intrinsic

vector uint8_t splat_elem(vector
uint8_t vec , uint8_t elem_no)
{

uint8_t elem = vec_extract(vec ,
elem_no);

return fxv_splatb(elem);
}

void start() {
vector uint8_t vec1;
volatile vector uint8_t vec2;

vec1 = (vector uint8_t)
{ 0, 1, 2, 3,

4, 5, 6, 7,
8, 9, 10, 11,

12, 13, 14, 15};

vec2 = splat_elem(vec1 , 11);

return;
}

Listing 4.6:
Optimized Assembly Output for 4.5

start:
stwu %r1 , -48(%r1)
li %r9 ,11
fxvsplatb %f12 ,%r9
li %r9 ,16
fxvstax %f12 ,%r1 ,%r9 ,0
addi %r1 ,%r1 ,48
blr

Another example is listing 4.5, that combines function calls and the new intrinsic
vec_extract. This intrinsic extracts the element, which is indexed by the second argu-
ment, from a vector which is the first argument. It also presents the possibility of vector
intrinsics as function arguments and return types.

Listing 4.6 shows -O1 optimized assembly output, which illustrates the capabilities of
optimization.

Overall the compiler shows promising abilities that could help users create future
software for the PPU.

56

5. Discussion and Outlook

The motivation of this thesis was, to simplify programming for the PPU and provide
tools to users by establishing compiler support for the nux architecture. This should
help the development of new applications for the HICANN-DLS and make the system
accessible to more users.

Already there exist many experiments on HICANN-DLS the addition of compiler sup-
port could help increase their number and complexity. Easy experiments can now be
generated in a short amount of time and need little expertise by the user. There exist
tutorials and examples on using vector types in C [21] that can be used as introductory
reading.

At the same time can experienced users create complex experiments more easily than
before, as functions are available for different purposes and optimization will help improv-
ing performance. This will become even more important, as higher levels of optimization
are yet to be verified for use.

Testing the compiler in general is still a major task for the near future. The back-
end needs high-level tests similar to listing 4.1 that can be run on the PPU and give
comparable results. This should be extended to more complex testing scenarios that
involve various combinations of intrinsics with different arguments and dependencies as
well as conditional branching and looping. Running these tests with various optimization
stages, would proof reliability of optimization as well. The same could be done for inline
assembly code.

Also the number of low level tests should be increased to compare results, especially
if tests fail. These would rather test the nux architecture than the compiler, but only
testing on both sides gives meaningful results. These tests should be similar to existing
tests that are written in assembly.

All tests should be conducted in simulation as well as on hardware, to create a robust
testing environment. It is planned to emulate the nux architecture on hardware in the
future, which would accompany existing software simulation. This would make parallel
testing of hardware faster and allow for continuous testing of future PPU modifications.

Such a testing environment would allow to validate if optimization beyond -O1 is
reliable with the new back-end. This could also involve existing AltiVec tests in GCC,
that are transferable to nux.

Results form these tests as well as new insights from this thesis should be featured in
the nux manual, in order to provide sufficient documentation of the hardware.

As the current back-end requires GCC 4.9.2, the future development of GCC should
also be considered. The most recent version of the GCC 4.9 release series dates back
to August 2016 and maintenance is officially discontinued [10]. There exist newer bugs

57

5. Discussion and Outlook

but these were fixed through patches thanks to an active community behind GCC. It
is highly unlikely that the GCC compiler itself will cause problems in the future but it
might be reasonable to move to the latest 4.9 release 4.9.4 and test the back-end there
as well.

Radical changes in the GCC environment are untypical for this project and the 4.9
release series is likely to be sufficient for a long time. Nonetheless exists an experimental
build of GCC 7 with an early version of the s2pp back-end and also the latest binutils
version by David Stöckel which has not been tested yet and only demonstrates the possi-
bility of porting the back-end to different GCC releases if it ever became necessary. Also
will the POWER architecture likely be supported by GCC to a great extend as there
still exist back-ends for deprecated architectures and very minor target architectures.

Thus the most crucial development is that of the nux architecture. If it is ever de-
cided that the PPU is to be completely redesigned, the current back-end would likely
not support the new architecture. Smaller changes however, i.e. adding logical vector
instructions to the instruction set, may be supported by adding these to the machine
description and creating intrinsics from this as described in section 3.5 and the already
mentioned internship report [12]. The back-ends structure would also allow for adding
custom intrinsics that can be composed from existing machine instructions through the
machine description and RTL code.

Eventually the s2pp extended GCC back-end may be usable for a reasonable amount
of time and even longer if the back-end is maintained.

The PPU will play a key role in future experiments on HICANN-DLS. Experiments
on this system that do not utilize the PPU are usually slower or less flexible and must
be controlled from outside of the HICANN-DLS. The performance of vector processing
on the PPU and direct access to the analog system offer various possibilities for future
experiments. Although the processing power of the PPU is limited when compared to
larger experimental setups, it fulfills the requirements for optimization and algorithms,
simplistic virtual environments, interacting with analog neural networks at minimum la-
tency and managing calibration of the system. This would allow for experiments that run
solely on the PPU and do not need external supervision, which makes the HICANN-DLS
a standalone system. As such, it would be able to run long-term experiments on its own
and create many new testing scenarios.

A limiting factor to this is the small memory of the PPU. As the PPU should gain
access to the FPGAs memory in future HICANN-DLS releases, this limitation will be
resolved.

Future set-ups might feature the PPU in wafer-scale implementation, that allows
for multiple experiments running in parallel or large network experiments, involving
plasticity on major parts of the system.

All of this needs code that is at the same efficient and favorably of small size. Software
should be easy to write, as more complex systems will cause programs to become more
complicated and users should be encouraged to work on this platform.

The s2pp compiler support offers this and could open the way to additional features.

58

One such feature could be the GNU Project Debugger (GDB) which offers code de-
bugging, as this is currently not possible for PPU software. GDB support might also
be possible in the future but it is likely that more work on the back-end is necessary
for this. Until the end of this thesis there have been no tests with GDB and the new
back-end and other features such as optimization and testing would be more important.
Over time this will help realizing experiments with large simulated networks or multiple
standalone experiments in parallel.

Ultimately though, the future of the PPU is welded by users, developers and the
applications they create for HICANN-DLS and other systems. Giving them the right
tools at hand will accelerate its development.

59

A. Appendix
A.1. Acronyms

ALU Arithmetic Logic Unit

CADC Correlation Analog Digital Con-
verter

CISC Complex Instruction Set Computing

CPU Central Processing Unit

CR Conditional Register

DRAM Dynamic RAM

IR Intermediate Representation

FPGA Field Programmable Gate Array

FPR Floating Point Register

FPU Floating Point Unit

GCC GNU Compiler Collection

GDB GNU Project Debugger

GPP General Purpose Processor

GPR General Purpose Register

HICANN-DLS High Input Count Neural
Network - Digital Learning System

ISA Instruction Set Architecture

LLVM Low Level Virtual Machine

LR Linker Register

LRA Local Register Allocator

MC Memory Controller

MMU Memory Management Unit

MSB Most Significant Bit

nux alternative name for PPU

POWER Performance Optimization With
Enhanced RISC

PPU Plasiticty Processing Unit

RAM Random Access Memory

RF Register File

RTL Register Transfer Language

RISC Reduced Instruction Set Computing

rs/6000 RISC system/6000

s2pp synaptic plasiticity processor

SIMD Single Input Multiple Data

STDP Spike Timing Dependent Plasticity

SPR Special Purpose Register

SRAM Static RAM

VE Vector Extension

VCR Vector Conditional Register

VR Vector Register

VSCR Vector Status and Control Register

VRSAVE Vector Save/Restore register

VRF Vector Register File

61

A. Appendix

A.2. Assembly Mnemonics

Mnemonics follow a certain pattern that has letters which can be interchanged to alter
the meaning of the mnemonic, some of these characters are:

i indicates that the instructions uses an immediate value

b stands for byte and references the size of the operand

h stands for halfword and references the size of the operand

w stands for word and references the size of the operand

s indicates that one of the operands is shifted

g, ge, l, le, e stand for greater, greater or equal, less, less or equal and equal which is
the possible content of the conditional register

There are also special operands which might occur in inline assembly, which behave
like pointers, while others contain debugginf information.

@l(C) is equivalent to the lower order 16 bits of of C in the symbol table

@ha(C) is equivalent to the higher order 16 bits of of C in the symbol table and minds the
sign extension

.loc # # # marks a line of code (file, line, column) in the source file

.LVL is a local label which can be discarded

.LFB marks the begin of a function

.LFE marks the end of a function

.LC0 is a constant of the literals table at position 0

62

A.2. Assembly Mnemonics

mnemonic operands description
add RT , RA, RB add RB to RA and store the result in RT
addi RT , RA, SI add SI to RA and store the result in RT
addis RT, RA , SI add SI shifted left by 16 bit to RA and store the result

in RT
and RA , RS, RB RS and RB are anded and the result is stored in RT
b target_addr branch to the code at target_addr
ble BF , target_addr branch to the code at target_addr if BF is less or

equal
blr branch to the code at address in the linker register
cmp BF , L, RA, RB RA and RB are compared and the result (gt ,lt ,eq) is

stored in BF, L depicts if 32-bit or 64-bit are compared
cmplwi BF , RA, SI RA compared logically wordwise with immediate SI

and the result is stored in BF
and RA , RS, RB RS and RB are anded and the result is stored in RT
eieio enforce in-order execution of I/O
isync instruction cache synchronize
la RT, D(RA) load aggregate D + RA into RT
li RT, SI load immediate value SI into RT
lis RT , SI load immediate value SI shifted left by 16 bit into RT
lbz RT , D(RA) load byte at address D+RA into RT, fill the other bits

with zeros
lwz RT , D(RA) load word at address D+RA into RT, fill the other bits

with zeros
mflr RT move from linker register to RT
mr RT, RA move register RA to RT
nop no-operation or an instruction is performed that has

no effect
rlwinm RA , RS, SH, MB , ME rotate left word in RS by immediate SH bits then and

with mask which is 1 from MB+32 to ME+32 and 0 else,
store to RA

stw RS , D(RA) store word from RS to address D+RA
stwu RS , D(RA) store word from RS to address D+RA and update RA

to D+RA
sync synchronize data cache

Table A.1.: Overview of Common Assembly Mnemonics [28, 29].

63

A. Appendix

A.3. List of nux Intrinsics

Table A.2.: List of all implemented built-ins and how they are used. The suffix fs or f represents
fractional saturation instructions and m modulo instructions.

intrinsic name use data types effect
d a b c

fxv_add
vec_add

d = fxv_add(a,b) same as a

vector signed char
vector unsigned char
vector signed short

vector unsigned short

same as a add a and b modulo element-
wise and write the result in d

fxv_sub
vec_sub

d = fxv_sub(a,b) same as a

vector signed char
vector unsigned char
vector signed short

vector unsigned short

same as a subtract b from a modulo
element-wise and write the re-
sult in d

fxv_mul
vec_mul

d = fxv_mul(a,b) same as a

vector signed char
vector unsigned char
vector signed short

vector unsigned short

same as a multiply a and b modulo
element-wise and write the re-
sult in d

fxv_addfs d = fxv_addfs(a,b) same as a

vector signed char
vector unsigned char
vector signed short

vector unsigned short

same as a add a and b saturational
element-wise and write the re-
sult in d

fxv_subfs d = fxv_subfs(a,b) same as a

vector signed char
vector unsigned char
vector signed short

vector unsigned short

same as a subtract b from a saturational
element-wise and write the re-
sult in d

fxv_mulfs d = fxv_mulfs(a,b) same as a

vector signed char
vector unsigned char
vector signed short

vector unsigned short

same as a multiply a and b saturational
element-wise and write the re-
sult in d

fxv_stax
vec_st

fxv_stax(a,b,c)

vector signed char

vector unsigned char

vector signed short

vector unsigned short

int

vector signed char*
signed char*

vector unsigned char*
unsigned char*

vector signed short*
signed short*

vector unsigned short*
unsigned short

a is stored to memory address
c + b

fxv_outx fxv_outx(a,b,c)

vector signed char

vector unsigned char

vector signed short

vector unsigned short

int

vector signed char*
signed char*

vector unsigned char*
unsigned char*

vector signed short*
signed short*

vector unsigned short*
unsigned short

a is stored to synaptic address
c + b

fxv_lax
vec_ld

d = fxv_lax(a,b)

vector signed char

vector unsigned char

vector signed short

vector unsigned short

int

vector signed char*
signed char*

vector unsigned char*
unsigned char*

vector signed short*
signed short*

vector unsigned short*
unsigned short

d is read from memory address
a + b

fxv_inx d = fxv_inx(a,b)

vector signed char

vector unsigned char

vector signed short

vector unsigned short

int

vector signed char*
signed char*

vector unsigned char*
unsigned char*

vector signed short*
signed short*

vector unsigned short*
unsigned short

d is read from synaptic ad-
dress a + b

fxv_sel d = fxv_sel(a,b,c) same as a

vector signed char
vector unsigned char
vector signed short

vector unsigned short

same as a 2-bit int select element from a if c ap-
plies for that index otherwise
select b, store the result in d

64

A.3. List of nux Intrinsics

intrinsic name use data types effect
d a b c

vec_extract d = vec_exctract(a,b)

signed char
unsigned char
signed short

unsigned short

vector signed char
vector unsigned char
vector signed short

vector unsigned short

int d is read from synaptic ad-
dress a + b

vec_insert d = vec_insert(a,b,c)

vector signed char
vector unsigned char
vector signed short

vector unsigned short

signed char
unsigned char
signed short

unsigned short

vector signed char
vector unsigned char
vector signed short

vector unsigned short

int d is a copy of b with element
c replaced by a

vec_promote d = vec_promote(a,b)

vector signed char
vector unsigned char
vector signed short

vector unsigned short

signed char
unsigned char
signed short

unsigned short

int d is an empty vector with a at
element b

vec_sh
fxv_sh

d = fxv_sh(a,b)

vector signed char
vector unsigned char
vector signed short

vector unsigned short

vector signed char
vector unsigned char
vector signed short

vector unsigned short

int d is a with each element
shifted by b to the left

vec_splat_s16
vec_splat_u16
fxv_splatb

d = fxv_splatb(a)
vector signed char

vector unsigned char
int a is splatted into vector d

, vec_splat_u16 returns an
unsigned vector

vec_splat_s8
vec_splat_u8
fxv_splath

d = fxv_splath(a)
vector signed short

vector unsigned short
int a is splatted into vector d

, vec_splat_u8 returns an
unsigned vector

fxv_cmp fxv_cmp(a)

vector signed char
vector unsigned char
vector signed short

vector unsigned short

each element of a is compared
to 0 and the VCR set accord-
ingly

fxv_mtac
fxv_mtacfs

fxv_mtac(a)

vector signed char
vector unsigned char
vector signed short

vector unsigned short

moves the contents of a to the
accumulator

fxv_addactacm
fxv_addactacf

fxv_addactac(a)

vector signed char
vector unsigned char
vector signed short

vector unsigned short

adds a to the accumulator and
stores the value in the accu-
mulator

fxv_addacm
fxv_addacfs

d = fxv_addacm(a)

vector signed char
vector unsigned char
vector signed short

vector unsigned short

vector signed char
vector unsigned char
vector signed short

vector unsigned short

adds a to the accumulator and
returns d

fxv_mam
fxv_mafs

d = fxv_mam(a,b)

vector signed char
vector unsigned char
vector signed short

vector unsigned short

vector signed char
vector unsigned char
vector signed short

vector unsigned short

vector signed char
vector unsigned char
vector signed short

vector unsigned short

multiplies a and b and adds
this to the accumulator, the
result is returned as d

fxv_matacm
fxv_matacfs

fxv_matacm(a,b)

vector signed char
vector unsigned char
vector signed short

vector unsigned short

vector signed char
vector unsigned char
vector signed short

vector unsigned short

multiplies a and b and adds
this to the accumulator. the
result is stores in the accumu-
lator

fxv_multacm
fxv_multacfs

fxv_multacm(a,b)

vector signed char
vector unsigned char
vector signed short

vector unsigned short

vector signed char
vector unsigned char
vector signed short

vector unsigned short

multiplies a and b and stores
the to the accumulator

fxv_addtac fxv_addtacm(a,b)

vector signed char
vector unsigned char
vector signed short

vector unsigned short

vector signed char
vector unsigned char
vector signed short

vector unsigned short

adds a and b and saves the re-
sult in the accumulator

fxv_pckbu
fxv_pckbl

d = fxv_pckbu(a,b)
vector signed short

vector unsigned short
vector signed char

vector unsigned char
vector signed char

vector unsigned char
packs the upper/lower 8 bits
of each element in a and b into
single elements in d

fxv_upckbl
fxv_upckbr

d = fxv_upckbl(a,b)
vector signed char

vector unsigned char
vector signed short

vector unsigned short
vector signed short

vector unsigned short
unpacks the leftmost/right-
most elements of a and b into
d

65

Bibliography

[1] Aho, A. V., Compiler, it Informatik, 2., aktualisierte aufl. ed., XXXVI, 1253 S. pp.,
Pearson Studium, München [u.a.], index S. 1227-1253, 2008.

[2] Amir, A., et al., Cognitive computing programming paradigm: A corelet language
for composing networks of neurosynaptic cores, in The 2013 International Joint

Conference on Neural Networks (IJCNN), 2013.

[3] Cooper, K. D., and L. Torczon, Engineering a compiler, 2. ed. ed., XXIII, 800 S.
pp., Elsevier, Amsterdam ; Heidelberg [u.a.], previous ed.: 2004 ; Hier auch später
erschienene, unveränderte Nachdrucke, 2012.

[4] Davis, G., Back to the basics: Compiler optimiza-
tion for smaller, faster embedded application code, http:

//www.embedded.com/design/debug-and-optimization/4025587/

Back-to-the-Basics-Compiler-optimization-for-smaller-faster-embedded\

-application-code, accessed 2017.03.01, 2005.

[5] Esser, S. K., R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha, Back-
propagation for energy-efficient neuromorphic computing, in Advances in Neural

Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, pp. 1117–1125, Curran Associates, Inc., 2015.

[6] Flik, T., Mikroprozessortechnik und Rechnerstrukturen, 7., neu bearb. aufl. ed., XIV,
649 S. pp., Springer, Berlin ; Heidelberg [u.a.], 2005.

[7] Friedmann, S., nux Manual, 2016.

[8] Friedmann, S., J. Schemmel, A. Grübl, A. Hartel, M. Hock, and K. Meier, Demon-
strating hybrid learning in a flexible neuromorphic hardware system, 2016.

[9] FSF, Gcc wiki, https://gcc.gnu.org/wiki/reload, accessed 2017.02.26, 2013.

[10] FSF, Gcc 4.9 release series, https://gcc.gnu.org/gcc-4.9/, accessed 2017.02.26,
2016.

[11] FSF, GNU Compiler Collection Internals Manual, Free Software Foundation Inc.,
https://gcc.gnu.org/onlinedocs/gccint/index.html, 2017.

[12] Heimbrecht, A., Internship report — implementations of new altivec intrinsics, 2017.

67

https://gcc.gnu.org/wiki/reload
https://gcc.gnu.org/gcc-4.9/
https://gcc.gnu.org/onlinedocs/gccint/index.html

Bibliography

[13] Heimbrecht, A., Bug no.2359 — conditional not working properly for arithmetic
operations, https://brainscales-r.kip.uni-heidelberg.de/issues/2359, ac-
cessed 2017.03.06, 2017.

[14] Hsu, J., Ibm’s new brain [news], IEEE Spectrum, 51 (10), 17–19, 2014.

[15] IBM, Developing PowerPC Embedded Application Binary Interface (EABI) Compli-

ant Programs, IBM Microelectronics, 1998.

[16] Kim, J.-J., S.-Y. Lee, S.-M. Moon, and S. Kim, Comparison of llvm and gcc on the
arm platform, IEEE, pp. 1–6, 2010.

[17] Kozyrakis, C. E., and D. A. Patterson, Scalable, vector processors for embedded
systems, IEEE Micro, 23 (6), 36–45, 2003.

[18] Maass, W., Networks of spiking neurons: The third generation of neural network
models, Neural Networks, 10 (9), 1659 – 1671, 1997.

[19] Matlis, J., A brief history of supercomputers, http://www.computerworld.com.au/
article/132504/brief_history_supercomputers/, accessed 2017.03.03, 2005.

[20] NXP, AltiVec

TM
Technology Programming Environments Manual, Freescale Semi-

conductor, 2006.

[21] Ollmann, I., Altivec, http://web-docs.gsi.de/~ikisel/reco/Systems/Altivec.
pdf, accessed 2017.03.06, 2003.

[22] Park, C., M. Han, H. Lee, and S. W. Kim, Performance comparison of gcc and llvm
on the eisc processor, IEEE, pp. 1–2, 2014.

[23] Silbernagl, S., and A. Despopoulos, Color Atlas of Physiology, Basic sciences,
Thieme, 2009.

[24] Stöckel, D., Gerrit repository libnux, https://brainscales-r.kip.

uni-heidelberg.de:9443/gitweb?p=libnux.git;a=summary, accessed 2017.03.06,
2017.

[25] Stöckel, D., Gerrit repository ppu-software, https://brainscales-r.kip.

uni-heidelberg.de:9443/gitweb?p=ppu-software.git;a=summary, accessed
2017.03.06, 2017.

[26] Tanenbaum, A. S., Computerarchitektur, i - informatik : rechnerarchitektur, 5. aufl.
ed., 829 S. pp., Pearson Studium, München [u.a.], 2006.

[27] von Hagen, W., The Definitive Guide to GCC, section Introduction, pp. xxiii–xxix,
second ed., Apress, 2006.

[28] Wetzel, J., E. Silha, C. May, J. Furukawa, and G. Frazier, PowerPC User Instruction

Set Architecture Book I, IBM Microelectronics, version 2.02 ed., 2005.

68

https://brainscales-r.kip.uni-heidelberg.de/issues/2359
http://www.computerworld.com.au/article/132504/brief_history_supercomputers/
http://www.computerworld.com.au/article/132504/brief_history_supercomputers/
http://web-docs.gsi.de/~ikisel/reco/Systems/Altivec.pdf
http://web-docs.gsi.de/~ikisel/reco/Systems/Altivec.pdf
https://brainscales-r.kip.uni-heidelberg.de:9443/gitweb?p=libnux.git;a=summary
https://brainscales-r.kip.uni-heidelberg.de:9443/gitweb?p=libnux.git;a=summary
https://brainscales-r.kip.uni-heidelberg.de:9443/gitweb?p=ppu-software.git;a=summary
https://brainscales-r.kip.uni-heidelberg.de:9443/gitweb?p=ppu-software.git;a=summary

[29] Wetzel, J., E. Silha, C. May, J. Furukawa, and G. Frazier, PowerPC User Virtual

Environment Architecture Book II, IBM Microelectronics, version 2.02 ed., 2005.

69

Statement of Originality (Erklärung):

I certify that this thesis, and the research to which it refers, are the product of my own
work. Any ideas or quotations from the work of other people, published or otherwise, are
fully acknowledged in accordance with the standard referencing practices of the discipline.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die ange-
gebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, March 7, 2017
.......................................

(signature)

	Introduction
	Fundamentals and Applications of Computer Architectures and Compiler Design
	Hardware Implementation of Neural Networks
	Processor Architectures and the Plasticity Processing Unit
	Basic Compiler Structure
	Back-End and Code Generation
	Inline Assembly
	Intrinsics
	GNU Compiler Collection
	Insn Definition and Register Transfer Language

	Extending the GCC Back-End
	Adding the s2pp Option Flag and nux Target
	Creating Macros
	Registers
	Reload
	Built-ins, Insns and Machine Instructions
	Prologue and Epilogue
	Overview

	Results and Applications
	Discussion and Outlook
	Appendix
	Appendix
	Acronyms
	Assembly Mnemonics
	List of nux Intrinsics

	Bibliography

