Department of Physics and Astronomy
Ruprecht-Karls-Universitat Heidelberg

Bachelor’s Thesis
in Physics
submitted by
Lukas Pilz

born in Berlin, Germany

Towards Fast Iterative Learning On The
BrainScaleS Neuromorphic Hardware

System

This Bachelor’s Thesis has been carried out by Lukas Pilz at the
KIRCHHOFF INSTITUTE FOR PHYSICS
RUPRECHT-KARLS-UNIVERSITAT HEIDELBERG

under the supervision of

Prof. Dr. Karlheinz Meier

Towards Fast Iterative Learning On The BrainScaleS Neuromorphic Hardware

System

To fully exploit the accelerated operation of the BrainScaleS neuromorphic hardware system, fast
configuration, reconfiguration and read-out of experiments is crucial. In particular, many offline
learning experiments require frequent modifications of the neuronal network topology and its in-
put. This thesis presents the implementation and integration of a communication module using
the FPGA’s Playback Memory in the custom software stack supporting the BrainScaleS system,
which enables a fast hardware reconfiguration. The full reconfiguration of all synaptic weights now
takes 1.4 ps per synapse row, a O(10%) improvement compared to the previous busy-wait communi-
cation scheme. The correct functionality of the communication module was verified using low-level
hardware tests. The executed benchmarks show a significant increase in performance at larger
configuration sizes compared to the currently used asynchronous communication. Measurements of
parameters required for correct Playback Memory operation have been executed and are discussed.
Further suggestions for improvements of the communication module and for future measurements

are provided.

Schritte hin zu schnellem iterativen Lernen auf der neuromorphen BrainScaleS

Hardware

Um den beschleunigten Betrieb des neuromorphen BrainScaleS Systems vollstdndig ausnutzen zu
konnen ist eine schnelle Konfiguration, Rekonfiguration und Datenauslese des Experiments essen-
tiell. Insbesonderte bendtigen viele Offline-Lernexperimente hiufige Anderungen des neuronalen
Netzwerks und seines Inputs. Diese Arbeit préasentiert die Implementierung und Integration eines
Kommunikationsmoduls, welches das Playback Memory des FPGAs benutzt, in die existierende
Software um das BrainScaleS System. Hiermit wird eine schnelle Rekonfiguration der Hardware er-
moglicht. Eine komplette Rekonfiguration aller synaptischen Gewichte braucht nun 1.4 ps pro Syn-
apsenzeile, was die Zeit des bisherigen Kommunikationsschemas um O(10%) verbessert. Die korrekte
Funktionalitdt des Kommunikationsmoduls wurde mit hardware-nahen Tests iiberpriift. Mittels ei-
nes Benchmarks konnte, insbesondere fiir grofle Konfigurationen, eine signifikante Leistungsverbes-
serung gegeniiber der momentan verwendeten asynchronen Kommunikation demonstriert werden.
Die fiir einen stabilen Betrieb nétigen Parameter wurden gemessen und die Ergebnisse diskutiert.
Abschlielend werden in dieser Arbeit weitere Optimierungsmoglichkeiten fiir das Kommunikations-

modul und zukiinftige Messungen vorgestellt.

Contents

1 Introduction

2 Platform
2.1 Hardware
2.2 Software

3 Implementation of the communication module

3.1 Imtroduction e e e
3.2 Prerequisites
3.2.1 Implementation of a time container
3.2.2 Implementation of data types for the PbMem Program
3.23 Delay e
3.3 Implementation

4 Testing of the communication module

4.1 Introduction e e e e
4.2 Benchmark e
4.3 Delay Characterization L
4.3.1 Introduction
4.3.2 Register SRAM tests
4.3.3 Controller access time tests

4.3.4 Linearity

5 Discussion & Outlook

A Appendix
A.1 Repository Listing
A.2 Image Appendix

Glossary

B Bibliography

10

13
13
13
13
15
16
16

21
21
21
23
23
24
29
32

34

38
38
39

47

49

2 1 INTRODUCTION

1 Introduction

Neuroscience as a scientific discipline with the aim to enhance our understanding of the brain, is in
need of tools allowing a detailed investigation of the complex processes governing brain functions.
Because complex systems like the human brain are difficult to understand analytically, simulation
is one of the most efficient tools to test hypotheses and observe the development of brain-inspired
networks. With the rise of computers at the dawn of the 21st century, computer simulation gained
importance in the description of neural dynamics and the solution of differential equations abstract-
ing the behavior of single neurons. However, it soon became apparent that this method of observing
neural dynamics does not scale well on bigger networks, not only in the sense of simulation time
but also in the realm of energy consumption. Even the most advanced supercomputers are merely

0'0 neurons and 10'° synapses at energy costs

capable of simulating small fractions of the brain’s 1
orders of magnitude higher and simulation speeds orders of magnitude lower than its biological

equivalent.

One alternative to computer simulation is implementing the aforementioned neural networks in
neuromorphic hardware. These systems are especially designed for neuroscience applications and
aim to improve in key characteristics like low energy consumption, parallel execution and high
scalability. Combining conventional compute units (ARM cores) and a custom interconnect tech-
nology allows the SpiNNaker system (Painkras et al. [2012]) to increase its efficiency compared to
running simulations on supercomputers. SpiNNaker provides a fully programmable framework for
large-scale simulations at the drawback of higher power usage compared to other more specialized

neuromorphic systems.

The TrueNorth chip manufactured by IBM tackles this issue by using Complementary Metal-
Oxide-Semiconductor (CMOS) technology to implement neurons with a fixed digital neuron model
in a custom architecture. At the cost of flexibility, TrueNorth provides a platform for energy-
efficient simulation of Leaky Integrate-and-Fire (LIF) networks at biological time-scales (cf. Furber
[2016]).

In contrast to the previously mentioned systems, the BrainScaleS system focuses on analog neuron
and synapse circuits. This allows neuronal network emulations running at a speedup factor of
10* with lower energy consumption per action potential than digital systems like SpiNNaker. It
also incorporates further key features from biology like a temporally continuous development of
neuron state variables, as analog circuits evolve according to their design continuously over time.
To increase the connection density, decrease the energy needed for signal transmission and minimize
the amount of post-processing steps, these circuits are integrated using wafer-scale technology. All

of these traits allow for the implementation of neural networks, which are near to the biological

equivalent in a scalable environment at the aforementioned speedup, making this system ideal for

learning applications.

A custom software stack manages experiment setup and execution on the BrainScaleS wafer system
by generating, among other things, the configuration of on-chip components. These are sent via
Gigabit Ethernet to the respective Kintex Field-Programmable Gate Arrays (FPGAs), which are
located on the wafer module itself and control data streams between the host computer and groups
of on-chip neurons and components. The chip configuration data consists of commands, which then
can be either routed directly to the chip or stored in the FPGA’s Playback Memory (PbMem)
module. When using the PbMem module, the correct inter-command timing is guaranteed by the

PbMem itself, as it sends the commands at previously specified timestamps.

The goal of this thesis is the implementation of a PbMem-based communication module in the
software stack, granting a high degree of robustness and control over experiments on the wafer
system. This is important for experiments, which rely on iterative reconfiguration of the setup,
e.g. offline learning experiments. In particular, the so-called In-the-loop experiment, which employs
machine learning techniques can benefit from the high reconfiguration speeds granted by PbMem

configuration.

In chapter 2 the hardware and software environment are presented to describe the context of
the PbMem communication module. Chapter 3 then describes the actual implementation of the
communication module and some prerequisite structures. In chapter 4 the characterization of
parameters belonging to different hardware abstraction classes and components is presented. Finally

chapter 5 sums up the results and provides suggestions for further improvements.

4 2 PLATFORM

2 Platform

2.1 Hardware

The Neuromorphic Physical Model version 1 (NM-PM1) system consists of a conventional comput-
ing part, which entails a cluster of 20 nodes and two front ends and supports the neuromorphic
part, comprised of 20 BrainScaleS wafer modules. On these wafer modules the wafer itself and its
communication infrastructure are located, which consists of on-chip as well as off-chip components.
The Xilinx Kintex 7 FPGAs are the most important off-chip components, as they provide an inter-
face to the wafer via the Joint Test Action Group (JTAG) protocol and the high-speed serial link
of the Digital Network Chip (DNC) (which was integrated into the FPGA).

At its core, the BrainScaleS wafer-scale module’s building blocks are 384 High-Input Count Analog
Neuronal Network Chips (HICANNSs), each containing 512 neurons and 512 x 224 synapses in
a synapse array (in HICANNv2!; 512 x 220 in HICANNv4). The analog neuron circuits follow
the Adaptive Exponential Integrate-and-Fire (AdEx) model, which was developed by Brette and
Gerstner (Brette and Gerstner [2005]) as an expansion of the basic LIF point neuron model. The
input spikes are filtered out of the data stream and processed by the synapse drivers. These convert
the spike information from the presynaptic neurons into an excitatory or inhibitory postsynaptic
potential (EPSP / IPSP). If the neuron fires, it generates a digital spike, which is then sent to the

respective target neurons via the communication infrastructure.

There are multiple different on-chip components, which support the neuron circuitry in distinct
ways. To supply the biological neuron model with parameters and for calibration of the hardware,
four floating gate blocks with 24 columns and 129 rows each are located on every HICANN. The
individual floating gate cells are standard Positive Metal-Oxide Semiconductor (PMOS) transis-
tors with a non-connected gate, where a specific amount of charge is stored to represent a given
parameter. A hardware state machine called the floating gate controller takes care of loading and

unloading of the cells and their connection to the Analog-to-Digital Converters (ADCs).

The Layer 1 (L1) bus is a system of differential lanes, which span the wafer horizontally and
vertically, carrying pulses from HICANN to HICANN. Six blocks of L1 switches are used to link
horizontal to vertical connections and vertical connections to the synapse drivers. This allows
pulses, which are injected by the Synchronous Parallel Layer 1 (SpL1) repeaters onto the horizontal
lines to take complex paths across the wafer. The SpL1 repeaters mentioned above are a special

type of L1 repeater and differ mainly in their ability to inject signals into the L1 bus. The common

LAll of the following statements refer to HICANN version 2 (HICANNv2), as this was the chip revision used
during development and testing.

2.1 Hardware 5

L1 repeaters are grouped in six blocks, which are located on the edges of one HICANN. Because
the signal timing and amplitude deteriorate with the amount of wire traversed (due to the wire
acting like a low-pass filter), repeaters are used to resample and reinject the signal onto the L1 bus.
They also provide cross-talk compensation by being able to connect neighboring lines via far-end
crosstalk (FEXT) capacitors.

All of these components include memory, which stores information concerning their configuration
and a memory controller. The L1 switches’ and floating gate controllers’ memories are registers
implemented as Static Random Access Memories (SRAMs) with standard cells, which in theory have
a read and write access time of one controller clock cycle!. In simulation however, the effective
write and read access times were different (cf. chapter 4.3.2). The memories of the L1 repeaters
in contrast are implemented as full-custom memory arrays, which have significantly longer access
times but use less space than the standard SRAM cells. Their access times are one controller cycle

for a write and 12 controller cycles for a read command (cf. Gribl [2016]).

All of the timings given above refer to one of the three time domains relevant in the context of
this work. The aforementioned HICANN clock drives the digital infrastructure on the chip and is
generated by a Phase-Locked Loop (PLL). The PLL generates a base frequency of 50 MHz, which
can be modified by using a multiplier and a divisor to tune the resulting frequency to values of 50,
83, 100, 125, 150, 200, 225, 250 or 266 MHz. The second time domain is the DNC time, which
is fixed at a frequency of 250 MHz and is used for releasing the packets from the FPGA to the
HICANNS and vice versa. Lastly there is the FPGA time, which is also fixed, albeit at 125 MHz,
and which drives all FPGA operations. The FPGA, DNC and HICANN time are counted in FPGA
cycles (FC), DNC cycles and HICANN cycles respectively.

The configuration data is provided to the on-chip components via an Open Core Protocol (OCP)
bus called the HICANN bus. This bus is constructed as a tree-like structure with three levels, one
clock cycle? additional latency for each level and the components as leaves. Its structure can be
seen in figure 1. Within the tree, a blocking handshake protocol is implemented, which requires the
root controller to wait for the reaction of a leaf controller, verifying the command’s reception, before
sending the next command. The command data is provided to the root via the HICANN ARQ
protocol (HICANNARQ), however the handshake information (whether or not the leaf controller
received a given command) stays internal to the tree (cf. Gribl [2016], Karasenko [2016]).

IThe controller clocks are generated from the HICANN clock and operate at i of its frequency.
2These cycles refer to the HICANN bus clock, whose frequency is also defined as i of the PLL (HICANN clock)
frequency.

6 2 PLATFORM

TN G0 | e
¥ —
1L O | =—

oN —
B —

'ISE):I—I

w5 —
s —
Ay —
(165 —
g —
(aw)—

@
—
pe]

Figure 1: Schematic of the HICANN bus structure. The different colors encode different controller
groups. Yellow represents L1 crossbar switches, green repeaters, red floating gate con-
trollers, blue neuron control and neuronbuilder control and pink represents the DNC
channel (used for spike output). The letters following the abbreviated description refer
to different positions of the controller groups. The first letter encodes whether the group
is at the top (T), in the middle (M) or at the bottom (B) of the HICANN. The second
letter encodes, whether it is the left (L) or the right (R) group. In addition to the SpL1
repeaters there are six different repeater groups on one HICANN. The top and bottom
groups drive the vertical L1 lanes and the middle repeaters drive the horizontal L1 lanes.
The middle crossbar switches are concerned with connecting the horizontal and vertical
L1 lanes and the top and bottom switches get the data from the vertical L1 lanes to the
synapse drivers. Neuron control and neuronbuilder control are used for configuration of
the synapse drivers and the Spike Timing Dependent Plasticity (STDP) controller

4

dl g0
dg 90
diN 90
Yl d
dd o
dg O | =—

In the following paragraphs, the HICANNARQ will be explained in a simplified manner, allowing
the analysis of its effects on the experiments considered in chapter 4. A more detailed and precise
description can be found in Karasenko [2014] and Debus [2016].

The HICANNARQ manages the FPGA - HICANN communication via the FPGA’s highspeed TX-
(transmit port; FPGA to HICANN) and its RX-port (receive port; HICANN to FPGA). Due to the
counterparts of the FPGA’s TX and RX port being the HICANN’s RX and TX port, the following
names will be adapted for the sake of clarity. The TX port of the FPGA (transmitting data to

2.1 Hardware 7

the HICANN) will be called FPGAOut and its RX port will be called FPGAIn. In analogy, the
HICANN’s TX port (transmitting data to the FPGA) will be named HICANNOut and its RX port
will be called HICANNIn.

All of the port controller instances have a first in, first out (FIFO) queue, where up to 16 commands
can be temporarily stored. All words (64 bit packets with 49 bits payload) sent in between the
two sides have a header, which contains their sequence (an individual number, which identifies the
packet) and an acknowledgement information (ACK) number to verify the communication. Within
one side, connected to the receiving instance, a register exposes status information e.g. the last
received sequence number to the transmitting instance. This number gets sent back in the ACK
field of the next packet headed to the other side confirming the reception of the data, allowing the

next word there to be released.

When sending a single word of 64 bits from the FPGA to the HICANN, the HICANNARQ on the
FPGA side starts the tx_timeout (cf. figure 2). When the packet is received by the HICANNIn
instance, the sequence information gets exposed to the HICANNOut instance and the rx_timeout
is started at the same time. The ACK is not sent yet to avoid using two different packets for
transmitting the ACK information and possible HICANN response-data. Upon now receiving the
command, the HICANN bus sends it to its leaf controllers, which in case of a read command
generate a response and send it to the HICANNOut instance, interrupting the rx_timeout. The
sequence information exposed from the HICANNIn instance is then written in the ACK field of the
payload’s header and this packet is now sent back to the FPGA-side of the HICANNARQ), hereby
(upon reception) interrupting the tx_timeout. If the original command however has been a write
command, the HICANN will not return any data. In this case, upon finishing the rx_timeout the
last word is resent with the new ACK and its payload is invalidated by turning off a specific bit in
its header. This again after being received by the FPGAIn instance terminates the tx_timeout.
If no ACK from the HICANN is received at all until this timeout ends, the original packet will be

considered lost and therefore be resent.

This entire structure exists twice for two different communication channels named Tag 0 and Tag
1. They share one input from the PbMem, but send the commands to two different HICANN
structures. Tag 0 supplies the aforementioned HICANN bus (and all components connected to it)
with data, whereas Tag 1 sends data to a pipelined OCP slave which connects to the STDP and
synapse controllers for example. This pipelined slave consists of multiple separate controllers on
different levels, which implement a handshake protocol with their parent and child, but not with
the root controller (as in Tag 0). The bus in between these controllers operates with the same
packet rate as the HICANN bus, namely i of the PLL frequency. These two different Tags are

implemented to separate the (relatively fast) register SRAM accesses from the slower controller

8 2 PLATFORM

FPGA side of HICANN side of
HICANNARQ HICANNARQ HICANN bus
™~
5 5
¢ 3 .| |8
1S = o £ HICANN bus latency +
= = < = controller execution time
% 3
3‘1\036
s
(o} 1
*93\1\06 .
P\C(\ 1
1
]
1
1
1
Y

Figure 2: Schematic of the HICANNARQ protocol for a read command with long tx_timeout
and rx_timeout. When this read command is sent from the FPGA to the HICANN, the
tx_timeout gets started on the FPGA side. Upon receiving the packet at the HICANNIn
controller, the rx_timeout is started. Then the packet is sent to the HICANN bus and
the hardware controllers, where a response is generated. This response is received by
the HICANNOut instance, interrupting the rx_timeout and then gets immediately sent
to the FPGA with the ACK in its header. Upon receiving the packet at the FPGAOut
instance, the tx_timeout is interrupted.

accesses into two distinct communication channels. Because one reticle consisting of 8 HICANNs
is provided with data from one FPGA, 8 data streams (consisting of both Tags) are processed in

parallel there.

As seen in figure 3, the chip data is either directly sent to the host from the FPGAIn instance (as
currently with HICANN configuration data) or stored in the trace module of the FPGA (as spikes
are currently handled).

The data arriving at the HICANNARQ’s FPGAOut instance originates either from the frame
decoder located directly behind the UDP controller or the PbMem module. There are two kinds
of commands: pulses, which are always stored in the PbMem and HICANN configuration packets,

2.1 Hardware 9

Interface logic UDP interface >
\ |
\/
Core logic
DDR3 | gicy J TAG |
interface > Host ARQ interface | |

vi |

Frame decoder/encoder

A

j System ||

_DDR3 4 Trace monitor
interface ["] controller [*] T |
|

DDR3 |« Playback | 1€
interface [[”| controller interface ||
v |
Y

HICANNARQ

y A |
Y Y

8 HICANN interfaces I

Figure 3: Schematic of the FPGA-internal modules. Coming from the host, the data is received at
the User Datagram Protocol (UDP) controller, which forwards it to the frame en- and
decoder. From there on it can either be sent directly to the HICANN (e.g. asynchronous
configuration) or be stored in the PbMem’s DDR3-SDRAM memory (cf. Playback Con-
troller). In either way it ends up at the HICANNARQ), from where it is sent to the
HICANN. The HICANN'’s return data can either be stored in the trace module’s DDR3-
SDRAM memory (cf. Trace Controller) or be sent directly to the host. This figure was
modified from [HBP SP9 partners, 2016).

which can be sent via PbMem or directly to the HICANNARQ. PbMem configuration packets
are sent in groups with a header stating the group size and its release time, whereas non-PbMem
packets merely consist of the HICANN configuration data. After loading all desired pulses and
configuration commands into the 512 MiB Double Data Rate Synchronous Dynamic Random Access
Memory (DDR3-SDRAM), the PbMem can be started. From this moment on the PbMem controller
guarantees the release of the command groups at their prespecified times. After having decoded
the commands (which takes 6 FC) they are written into a FIFO queue from where they are pushed
to the HICANNARAQ. If the FIFO is full, commands get dropped and an error flag is raised, which

is currently not visible to the host.

10 2 PLATFORM

The data arriving at the PbMem module originates from the frame decoder, which gets its data
in turn from the Host ARQ protocol (HostARQ) module. This module implements the HostARQ
protocol structuring the communication between FPGA and host computer and is situated directly
below the UDP interface.

2.2 Software

To keep within the scope of this thesis, the software stack will be presented in a simplified manner.

For a complete software architecture description see Miiller [2014].

The setup of experiments is being described in PyNN (Davison et al. [2008]), a common tool
in neuroscience. This provides an Application Programming Interface (API) front end for many
different back end solutions e.g. software simulators like NEST or NEURON or neuromorphic
hardware systems like BrainScaleS or SpiNNaker. For BrainScaleS a custom PyNN back end called
PyNN for the BrainScaleS Hybrid Multiscale Facility (PyHMF) was implemented to expose
the populations, projections and parameters defined in PyNN to the software stack. This infor-
mation has to be mapped onto the hardware and the neural connections have to be routed on
the wafer, which is the task of the next layer called marocco (cf. Jeltsch [2014], Klihn [2016]).
After having generated a chip configuration and having defined the course of the experiment, the
Stateful Hardware Abstraction Layer (stHAL) (cf. Koke [2016)) is used to represent this con-
figuration by using Hardware Abstraction Layer Backend (HALbe) containers and coordinates
(cf. Jeltsch [2014], Miller [2014], Koke [2016]). It then uses the functions exposed in HALbe for
the actual configuration of the hardware. HALbe itself is used to abstract hardware properties by
providing component and coordinate abstractions. The configuration functionality it provides is
concentrated in FPGABackend and HICANNBackend, which expose functions from hicann-system.
The last layer before the Ethernet and HostARQ implementation is hicann-system, which ab-
stracts hardware control units and the hardware access. Its functionality is mainly defined by three

major classes named ControlModule, Stage2Ctrl and Stage2Comm.

ControlModule is a mixed hardware abstraction and control class and its derivatives can be split

into three parts.

Firstly there is ReticleControl, which is the only access point for HALbe and enables it not only
to use all hardware abstraction classes but also the communication classes which are going to be

discussed later.

The second group is mostly deprecated and contains DNCControl, FPGAControl and HICANNCtrl.

At the moment DNCControl and FPGAControl are only used in old low-level hardware tests and

2.2 Software 11

e ™
PyNN / PyHMF (Neuronal network construction)

. ‘ J
e ™

marocco (Mapping & Routing)
. ; J
e ™

StHAL (Hardware configuration representation)
. ‘ J
e ™
HALbe
J

; (Configuration and Communication)

e ™
hicann-system
. ‘ J
-
Hardware

HOSEARQ H (FPGA, HICANN, etc.)}

N

Figure 4: Schematic of the Neuromorphic Physical Model (NM-PM) software call stack (further
details can be found in the text). The user constructs neural networks using the PyNN
API, which are translated into a hardware configuration by marocco. This is held in
stHAL, which uses HALbe’s hardware abstraction and functions for communication to the
hardware. This communication is using hicann_system and the host-side HostARQ),
which then in turn sends the data to the FPGA (and subsequently to the HICANN).

don’t play a role in the newer code. The HICANNCtr1l class however provides ReticleControl access

to all hardware abstraction classes.

Lastly, there is the real hardware component abstraction as for example in RepeaterControl or
LiSwitchControl (referred to as hardware control classes). These classes provide an API for the
configuration of the corresponding on-chip components e.g. by transforming coordinate parameters
or exposing functions which provide access to subcomponents. The arguments given to these
functions are then processed and used to call the base class methods write_cmd () and read_cmd().

From there they are passed on to Stage2Ctrl.

Stage2Ctrl is used to provide the hardware abstraction classes mentioned above with access to
the correct communication class. It combines information about the HICANN number and the

communication channel to be used.

Lastly there are the communication classes, which are all derived from Stage2Comm and pro-
vide different communication protocols on a per-reticle basis. The currently available commu-

nication modes include JTAG-based and HostARQ-based access, which are implemented in the

12 2 PLATFORM

base class and the derived S2C_JtagPhys2Fpga_Arq class. The latter one uses HostALController
to implement its communication functions and provides a wrapper for the methods implemented
there. HostALController is implementing the packet-formatting and provides asynchronous (non-
PbMem) access for HICANN configuration commands and PbMem based access for pulses.

13
3 Implementation of the communication module

3.1 Introduction

Because there are several different ways to set up experiments on the BrainScaleS wafer system, a
flexible and well defined construct for abstracting PbMem programs is needed. The communication
module presented in this chapter tries to provide a high-performance framework with a clean API,
which is able to support existing asynchronous as well as PbMem optimized experiments. It uses
well-structured data containers to future-proof the module for tasks like changing single commands
in an already assorted program. Parts of the implementation were already started in Mauch [2016]

for pulse handling.

3.2 Prerequisites
3.2.1 Implementation of a time container

A very important - but before the start of this thesis still missing - feature is a container providing
a universal description of time. This container has to support any of the multiple units being used
in the code like DNC cycles, FPGA cycles or nano seconds. Up to now, in every time-dependent
function untyped integers were used and the variable’s name or a comment next to its definition
had to provide information regarding its unit, which was error-prone. This issue was addressed
by implementing two containers, which aim to provide a more robust framework for measures of

time.

These two containers named global_time and global_time_diff are data structures, which de-
scribe absolute points in time as well as durations. A clear separation between both is essential
to avoid confusion and to prevent accidental mixups in their usage. Factory create methods (cf.
Stroustrup [2013]) are used to enforce time unit specific object construction and are (next to the
default constructor needed for compatibility to some of the serialization and deserialization func-
tions within HALbe) the only creation methods being exposed. Access to the respective numerical

values is limited via unit-specific getter member methods.

The arithmetic operators connecting global_time and global_time_diff are loosely based on

C++11’s std: :chrono library, where similar objects are being described (cf. table 1).

However, because the time points of entries in the PbMem program are not absolute like the ones in
std: :chrono, an explicit conversion operator is required to allow operations like the one described

in excerpt 1.

© 00 N O U A W N

e el el
T W N = O

14 3 IMPLEMENTATION OF THE COMMUNICATION MODULE

left hand side operator right hand side result
global_time + global_time_diff global time
- global_time global_time__ diff

- global time_diff global time

global_time_ diff + global_time diff global time_ diff
+ global_ time global_ time
- global time diff global time_ diff
- global_time global_time

Table 1: Relationship between time containers and the return values of different arith-
metic operators. Because the addition of two time points does not make sense,
the global_time::operator+(global_time) was not implemented. The opera-
tors describing the addition and subtraction of global_time objects to and from
global_time_diff objects were implemented according to std::chrono’s implementa-
tion of std: :chrono::time_point and std::chrono::duration.

PbTraceEntry packet;

global__time max_ command_ time_ last_ chunk;
global_time_ diff fpga_ hicann__delay;
global_time release_ time;

release_time = packet.getTime() — max_command_time_ last chunk — fpga hicann_ delay;
// This gets interpreted by the compiler as the following:

release_time = (packet.getTime() — (max_command_time_last_chunk + fpga_hicann_delay));

release_time = (packet.getTime() — temp);

// unit of temp is global_time and difference of two global times is global time_diff —> compiler error

// —> explicit conversion operator is needed

release_time = (global time)(packet.getTime() — temp);

Excerpt 1: Illustration of the need for an explicit conversion operator. The release_time of an
entry is calculated from its event time in the PbMem program minus the maximum
command time of the last chunk already executed and the FPGA-HICANN delay.
After the compiler has collapsed this equation, the unit of the resulting object is
global_time_diff, which has to be casted to global_time.

3.2 Prerequisites 15

3.2.2 Implementation of data types for the PbMem Program

Necessarily, the PbMem communication module has to store the PbMem program, which is pro-
duced by calling HALbe back end functions. These in turn generate write and read commands to the
HICANN. To properly implement this, one container for the individual entries of the program and
another for the program itself is needed. The struct PbTraceEntry seeks to provide the former
by using a union of raw 64 bit unsigned integers for storage of the payload information containing
four different members for multi-purpose usage. Base members are the raw data, which is just an
unsigned 64 bit integer and the generic instance, which holds information common to all types of
entries (like the HICANN or DNC address and packet type information). Additionally there are
the pulse data representing the information storage for software-generated pulses and the HICANN

configuration storage, holding the information of the configuration packets.

The PbTraceEntry objects are created by explicit constructors, whose interfaces are based on the
existing HostALController interface for pulses and the Stage2Ctrl interface for configuration
packets. One constructor for HICANN configuration packets and two constructors for pulse events
were implemented to provide support for either assembling pulses from the raw information or using

a preformatted 16 bit label, which incorporates this information.

The access to this container is designed to be open, to ensure that every parameter is modifiable
even after the construction through the explicit single-purpose constructors. In the future this
might allow selectively altering individual entries without having to rewrite the whole program.
This would be very useful during parameter sweeps, as long as the FPGA and its firmware do not

provide this functionality (cf. chapter 5).

The PbTraceEntry objects are stored in the struct EventChunk, which uses a std:vector to hold
this data. Some of the standard functions like std: :vector: :at () or std: :vector: :{begin,end}()
are exposed for convenient access. It also implements an optional sorting functionality based on

std: :sort (), which prepares the program for sending to the FPGA.

Currently, single pulses get abstracted using the PulseEvent container and pulse groups are stored
in the PulseEventContainer object, which will be replaced by PbTraceEntry and EventChunk.
However, due to time constraints this change was not completed as of now because this would

require major changes to HALbe and stHAL.

16 3 IMPLEMENTATION OF THE COMMUNICATION MODULE

3.2.3 Delay

Due to finite hardware controller access times on component SRAMs and infrastructure latencies
it is necessary to implement delays, which belong to a specific command and define when the
following command can be sent at the earliest. For PbMem communication these delay parameters
become increasingly important, as the latencies between FPGA and HICANN are much smaller
than the host - HICANN latency dominating in the case of asynchronous usage. Thus hardware
controller execution times get relevant. Because of different controller implementations, SRAM
access times and the HICANN bus topology, the delay is hardware component-specific and was
therefore implemented in the base class CtrlModule as a protected member. Its derivatives are
able to modify the delay value in their respective constructors if necessary. The default delay is set

to a minimal value which guarantees error free execution.

A previously existing (but non-functional) delay argument was removed from high-level ac-
cess methods in hicann-system and can now only be passed on to CtrlModule’s write_cmd()
and read_cmd() methods. It is necessary to expose this argument here to ensure backwards-
compatibility to the hicann-system testmodes, which for historical reasons use CtrlModule’s low-
level methods with explicitly specified delays rather than the derivative’s access methods. Addi-
tionally a public getter method was added, which allows the user to look at (but not modify) this
variable. In chapter 4.3, delays for most of the control modules in hicann-system are characterized

and default values are defined.

To grant the user a high degree of control over the program whilst not changing the API for
backwards compatibility reasons, it is now also possible to define the exact event time of a packet.
This is achieved by introducing a global_time event_time variable to all access functions in
hicann-system and in HALbe, which is defaulted to a non-valid value. The value of the event_time
parameter gets checked in the write_cmd() and read_cmd() methods in hicann-system and the

respective implementation of Stage2Ctrl’s issueCommand () method is called.

3.3 Implementation

The starting point of the implementation was S2C_JtagPhys2Fpga, as this class already provided
the necessary initialization functionality and JTAG access to the derived asynchronous module
S2C_JtagPhys2FpgaArq. A decision was made to change the current naming scheme and to call
the new class, which would also be derived from S2C_JtagPhys2Fpga, S2C_HostArq_PbMem. It is in-

tended to change the name of the asynchronous module to S2C_HostArq_Async in the future.

3.3 Implementation 17

1| // Interfaces for configuration packets

void issueCommand(uint jtag_hicann_ nr, uint tagid, ci_payload *data, global time_ diff del);

void issueCommand(uint jtag__hicann_ nr, uint tagid, ci_payload *data, global_time_ diff del, global__time
event__time);

// Interfaces for pulse events

void issueCommand(global__time event_ time, uint8_t dnc, uint8_t jtag_hicann_ nr, uint8_t gbit_link, uint8_t
11address);

void issueCommand(global_time event_ time, uint16_t label);

Excerpt 2: Interfaces of the communication module’s issueCommand() member method. These
four implementations show the different possibilities of adding entries to the PbMem
program. Next to the payload and addressing information commands can either only
provide their delay or additionally the time, at which they are to be inserted into the
PbMem program. Pulse events always have to provide their event_time, but their
addressing information can either be passed on individually or compressed into the 16
bit label.

The delay mentioned in chapter 3.2.3 is implemented by storing the time of the last packet in-
serted into the PbMem program and the time the next packet is allowed to be sent. However,
because one communication module serves one FPGA (i.e. eight different HICANNSs on the current
system) these two variables are held HICANN-wise in two std::arrays, last_event_times and
next_event_times. This information is used in the multiple overloaded issueCommand () methods
that are implemented in S2C_HostArq_PbMem, to check if the event_time of a command is valid and

if not, to shift the command to the next valid time (not without warning the user of course).

The interface of these issueCommand() methods is based on the constructors of PbTraceEntry
and is shown in Excerpt 2. As shown there, HICANN configuration packets can be inserted into
the PbMem program without explicitly stating when they are to be released. In this case the
issueCommand () method generates the next possible event time from next_event_times and the
HICANN number. However, if an event_time is given, the method checks whether the given time
is allowed (i.e. larger or equal than the next_event_time for this HICANN). Should this not be

the case, it shifts the packet to the next allowed event time whilst warning the user.

One tricky part of the implementation was the need to have full backwards compatibility to the
existing asynchronous tests. This is difficult because in the asynchronous case the configuration
is done incrementally and data is requested from the chip whilst reconfiguring it. It is possible
to provide this compatibility by modifying the existing recvData() method to check whether all
commands in the program were sent to the chip. Should this be the case, data is just requested

in the usual way from the data buffers. However, if there are unsent commands in the software

18 3 IMPLEMENTATION OF THE COMMUNICATION MODULE

PbMem program, they have to be sent down before trying to receive data. To check this condition,
the index of the last command sent to the chip is stored and compared to the total size of the
PbMem program. To retain a logically (and chronologically) consistent program it now becomes
important to ensure that the event_time of new commands, which are to be added is larger than
the maximum event_time of the last part. If this is the case, it is possible to resend the program
being assembled in its entirety. This prerequisite is enforced by setting the next_event_times of
all HICANNSs to their maximum value after the program is sent and using the already implemented

checks of the aforementioned next_event_times in the issueCommand () methods.

After having checked the given event_time against the next_event_time of the specified HICANN
and having generated the correct event time from the next_event_times and the HICANN number
(if necessary), the payload gets assembled from the provided information. Then the PbTraceEntry is
constructed and stored in the EventChunk pbmem_program member variable of the communication
module. Now the last_event_time and next_event_time variable of the given HICANN have to

be updated to store the packets delay information.

The sortAndSend () method is the most complex method of the communication module, as it has
to convert the abstracted PbMem program into correctly formatted groups and overflow packets
within one Ethernet frame according to the specification (as seen in figure 5). These groups are
consisting of up to 128 64 bit words, which corresponds to a maximum of 255 pulse events (& 32
bit) or 127 configuration packets (& 64 bit). Each group has its own header (64 bit for configuration
and 32 bit for pulse packets), which stores the release time of the group from the FPGA’s PbMem
module and the number of its pulses or configuration commands. Because the Host ARQ provides
a streaming interface, i.e. is agnostic to the distribution of the group within the respective frames,
it is possible that the data is spread out across two frames. Overflow packets are added, if the
distance between two consecutive events is larger than one half of the width of the FPGA’s clock

counter.

The implementation of sortAndSend() is based on the addPlaybackPulse() method from
S2C_JtagPhys2FpgaArq’s HostALController, which adds a single pulse event to a preexisting
buffer. The combination of the algorithm parsing the PbMem program, filling the Ethernet buffer
element-wise and the possibility of commands occurring in groups creates the necessity of updating
the group header when a new word is to be appended to a group. This requires sortAndSend ()
to use a double buffering scheme, as one group might stretch over two frames. After the first
Ethernet frame is completely assembled (apart from maybe updating some of the group headers)
it is swapped with the second frame buffer, which then is being assembled as well. When this is

finished, the old frame immediately gets sent to the HICANN and the buffers get swapped again,

3.3 Implementation 19

Single-Pulse Group:
Labell | | Timestamp1 || Cownt=1 ||| FPGA Time o

50 47 33 31 18 16 14 10

Multi-Pulse Group:
Label 1 I:l Timestamp 1 I:l Count=P I:lOI:l FPGA Time |0‘

o
@
o
fuet

Label P I:l Timestamp P

Label P-1 I:l Timestamp P-1 D
50 47 33 29 18 15 10

HICANN and FPGA configuration:
| Count = C I:lll:l FPGA Time |0‘
...HICANN configuration:

gl

o] |Des| B HICANN Data 1 |
o] |Des| 2 HICANN Data C-1 |
Timestamp Overflow Indicator:

Overflows |0|1‘
63 51 210

Figure 5: Specification of the FPGA Playback Data’s format, taken from [HBP SP9 partners, 2016]

overriding the old frame’s buffer. Some ideas concerning the improvement of this process are being

discussed in chapter 5.

The FPGA’s PbMem module can be started by using the startPbMem() method, which resets
the HICANN time counters via JTAG and subsequently primes and starts the FPGA system time
counters to synchronize them. This is unfortunately very slow', which has a major impact on the
communication module’s performance, as the PbMem program needs to be started relatively often
in non-PbMem optimized cases. The FPGA functionality was changed over the course of this thesis,
as suggested by the author, but due to time constraints these changes could neither be thoroughly

tested nor used. Further information on this subject can be found in chapter 5.

To receive data after an experiment has been started, the recvData() method was adapted from
S2C_JtagPhys2Fpga_Arq’s implementation. As already discussed, this sorts and sends the unsent
commands in the PbMem program and then starts the PbMem module of the FPGA. Although it

1'With the use of C++11’s std: : chrono library, a duration of (2146 4 25)us for the function’s execution time was
measured.

20 3 IMPLEMENTATION OF THE COMMUNICATION MODULE

has not been investigated in detail, the success of the floating gate writing seems to be sensitive to
an added sleep of ~ 2000us after the PbMem start was executed. This has to be investigated in
the future, as this may reflect some behavior of the controller, which is not yet fully understood.
The rest of the implementation was left unchanged, as time constraints did not allow implementing

the new data containers or tweaking the receive functions’ efficiency.

To give the user a high degree of control over the PbMem program, some access functions were built
into the communication module. The get_eventtime () method allows the user to get either the
last_event_time or the next_event_time of the given HICANN e.g. to use it as the timing-offset
of a spike train, which is to be inserted in the PbMem program. The increase_eventtime ()
method can be used to increase either of the event_times of a given HICANN and is used e.g. in
the busy wait methods of SynapseControl or Syn_trans to increase the existing delay of a write

or read command to the controller_timeout, which was characterized in chapter 4.3.

For debugging purposes the print_pbmem_program() method was introduced to enable stream-
ing the PbMem program’s content in human-readable form into any given std::ostream. If no
argument is given, the default is std::cout (the command line). However, if the stream given
is a std::ofstream (for file output), the output is CSV-formatted. Because of time constraints
the HALbe integration of this feature was not finished, as this would require a serialization of
std::ostream. Lastly the Reset () method was implemented to completely reset the entire com-
munication module and all associated parameters to their default values and delete the PbMem

program, which is useful when executing multiple experiments consecutively.

21
4 Testing of the communication module

4.1 Introduction

The aim of the tests presented in this chapter is to demonstrate the benefits of the PbMem com-
munication module and to characterize the delays needed for the hardware abstraction classes’
operation. Unfortunately it was out of scope of this thesis to build a software verification test-
bench for the communication module and as no HICANN configuration loopback exists in the
FPGA, a constrained random testing approach was not possible. The verification of the PbMem
module’s functionality was achieved by executing low-level tests like tmag_switchramtest, which
writes random values in the L1 switch SRAMs of the HICANN and reads them out again as well
as additionally observing the Ethernet packets directly with the tool wireshark.

4.2 Benchmark

The benchmark compares a typical asynchronous test to a PbMem optimized program, namely
the tmag_switchramtest to the tmlp_pbmemcommtest. On one HICANN, there are 112 SRAM
cells in the top left L1 switch block, which in the asynchronous case get written one after another
and then read out in groups of four. The tmlp_pbmemcommtest stores a write command followed
by a corresponding read command for each SRAM cell in one PbMem program. After this has
been sent to the FPGA and the PbMem module has been started, the data is received at once.
The scaling of the tests in the number of commands sent is provided in the asynchronous case by
looping the write, read commands and receive calls a certain number of times determined by a
command-line argument. As for the PbMem case this is done by first assembling one program with
the same amount of write and read commands as in the asynchronous case and then executing the
receive calls in one block at the end. The benchmark executes the tests with 1, 10, 100, 1000 and
10000 loops and repeats every measurement 10 times to gather statistics. The measured time is

the duration from start-time to end-time of the program.

One would expect to see the asynchronous test’s execution times rising faster than the PbMem’s,
because each command is a blocking access to the chip whereas the commands in the PbMem
usecase only have to be sorted and sent. The PbMem test’s execution times should be dominated

by std::sort()’s complexity when increasing the number of commands.

Figure 6 shows the results of this benchmark. As one can clearly see, the PbMem test scales asymp-
totically significantly better than the asynchronous one. At 10000 repetitions the asynchronous ex-

ecution time is (40+1)s vs the PbMem'’s execution time of (8.0+£0.1)s. Initially however, the mean

22 4 TESTING OF THE COMMUNICATION MODULE

execution time of the PbMem test is slightly higher than for the asynchronous test, but remains
within the 1o interval of the PbMem’s data. A reason for the error of the first PbMem execution
being significantly larger than every other one is probably the FPGA being power cycled before the
test execution, as the benchmark starts with the PbMem experiment. It may be caused by the very
first high speed initialization taking longer than the following ones, but this was not investigated

in detail and could not be reproduced reliably.

10 1 :
! = pbmem
+— asynch
10t} 1
o)
©
[0}
(%]
o
©
°
[0}
£
e} 1
10°} 3 1
10-1 | I H |
10° 10* 10° 10° 10*

number of commands sent [*224]

Figure 6: Results of benchmark comparing asynchronous and PbMem test. The elapsed time of
each program in dependency on the number of commands sent (displayed in increments
of 224) is mapped. Mean values and their standard deviations for 10 measurements per
data point are shown. The green data points depict the mean times for the asynchronous
tmag_switchramtest, whereas the mean times measured for the tmlp_pbmemcommtest
using the PbMem are displayed in blue. The dashed vertical line marks the typical size
of a complete HICANN configuration (cf. Karasenko [2014]).

The scaling however is not exactly as theoretically assumed. A short analysis showed that this
data does not match std: :sort()’s theoretical complexity of O(Nlog(N)). Even with an offset to
compensate the initialization time of the program (which of course is independent of the number

of commands sent afterwards) the fits to these measurements did not converge. Further analysis

4.3 Delay Characterization 23

using the Linux performance measurement tool perf reveals that the complexity of std: :sort()

does not exclusively dominate the total execution time as initially assumed.

With a contribution of 67.73% to the total execution time of the program, the method recvData()
is dominating every other method. This is the case because in its first call, the PbMem pro-
gram is sorted, sent to the FPGA and the PbMem module is subsequently started. A portion
of 59.74% of this time in turn is spent in the sortAndSend() method, which is thus (as ex-
pected) the main contributor. Its execution time in turn is mainly dominated by std::sort()
(57.42% vs. the next function with 9.01%). However, 24.35% of the recvData()’s time is also
spent in the getReceivedHICANNConfig() method which is one of the non-optimized methods
from S2C_JtagPhys2Fpga_Arq. This means std::sort() is not exclusively dominating the test

execution time, but getReceivedHICANNConfig() also has a significant influence.

In conclusion it can be stated that even with the non-optimized receive functions from
S2C_JtagPhys2Fpga_Arq the PbMem communication module offers a significant speed advantage
compared to the asynchronous one, especially at a high number of commands sent. As expected,
the two perform nearly equivalent at very low numbers of commands. The PbMem communication

module’s advantage can additionally be increased by optimizing the receive functions.

4.3 Delay Characterization
4.3.1 Introduction

The following section describes the quantification of the delay parameters needed for the different
hardware abstraction classes. Classes considered were L1SwitchControl, RepeaterControl and
FGControl, which provide access to different register SRAMs and SynapseController as well
as SynTrans, which provide access e.g. to the synapse controller. Register SRAMs are used in
components like L1 switches, repeaters and floating gate controllers to store configuration data as
for example the switch connection, repeater direction or parameters for the floating gate access.
More complex controllers like the synapse controller use a buffer register SRAM to preload data for
the controller to be written into a matrix. The synapse controller has access to a weight matrix,
but can configure the synapse drivers as well. In the asynchronous usecase, after the write or read
command is sent to the controller, its status register is continuously polled until the busy bit is 0.
This access time dominates in experiments, where synapse weights are frequently updated e.g. the

offline learning experiment mentioned earlier, which is currently being run asynchronously.

The wait_while_busy() and the arraybusy() methods implement the polling of the respective

controller’s busy bits in the Syn_Trans and SynapseControl classes respectively. The former

24 4 TESTING OF THE COMMUNICATION MODULE

method uses a while loop around the read command for the busy bit, whereas the latter one only
implements the readout without the while loop. Because these methods are called directly after
the controller access, it is guaranteed that this access command is the last in the PbMem program.
Thus, the functionality of these methods was changed to modify the delay of the last command
in the PbMem program to the time the controller needs for this access for experiments using the
PbMem communication module. This decreases the synapse controller access time from timescales
dominating the digital chip reconfiguration (O(ms) per row) to merely the actual controller access
times within the PbMem program (O(us) per row).

The tests implemented to characterize the delays are based on the existing tm_wafertest and are

split into the register SRAM tests and the controller timeout tests.

4.3.2 Register SRAM tests

The basic structure of the SRAM tests is to write data into the respective storage and to read it
out again. The read out data is then compared to the written one. To gather statistics, this process
is repeated 20 times at a predefined delay value before moving on to the next delay. The number
of correctly read entries as well as the number of wrong response data is then written into files and

later evaluated in software.

As explained in chapter 2.1, if the commands arrive at the HICANNARQ FIFO queues faster than
the hardware controllers can process them, it is possible that they get dropped when the FIFOs
are full. If write commands get dropped, the data read back is not correct. If read commands get
dropped, the recvData() method throws an exception because the packet with a certain address
was not received. This causes the sum of correctly and incorrectly read data to be lower than the
total number of expected packets. Hereinafter, the first delay from which on all data is read back

correctly is considered stable.

It was investigated, whether the order of write and read commands sent to the HICANN affects the
measurement. First all write commands were sent down in succession and then all read commands
were sent, whereas in the second execution write and read commands were interleaved by sending
a write command to one SRAM cell, followed immediately by the corresponding read command.

Figure 7 shows the difference in outcome between these two procedures.

Said figure is composed of the subpart (a) showing write and read commands being sent consecu-
tively and part (b) showing write and read commands being interleaved per SRAM cell. Each of
the subparts is again consisting of the three tests for the L1 switch, the repeater and the floating
gate SRAMs. For every subpart, the number of correctly read entries is depicted in green and the

number of incorrectly read back data in red. Because this measurement was repeated 20 times

4.3 Delay Characterization

3

a) 10

10°

(=

1

o

0
109

10°

10°

-

1

o

1

o

0

10°

Number of packets received

10?

(=

1

o

108

[y
o

109

10°

Number of packets received

N

1

o

(=

1

o

100

switchramtest_data

25

L amnnunnnillll

I successes
I errors

!

repramtest_data

oL.n|||||||||II||I|||I|||I|| ;

fg ra mtest_ data

Inter—command delay in FPGA cycles

switchramtest_data

30 35

Emnm||||||||IIIIIIIII

I successes
I errors

repramtest_data

i|||||||||||||||||||IIII|||||| i

fg ra mtest_ data

_ '
[T
[.
-'
Ml B

I
[-
[
I
|
_I
I
I
I
|]
G| . |
I

Inter-command delay in FPGA cycles

35

Figure 7: Test of switch, repeater and floating gate SRAM at PLL frequency of 250 MHz showing
the difference between consecutively sending write and read commands (a) and interleav-
ing them (b). The y-axis in each of the plots shows in green the number of correctly and
in red the number of incorrectly received data on a logarithmic scale (linearized from one

to negative one).

The values are averaged over 20 repetitions and depicted with their

standard deviation. On the x-axis the respective delays in FPGA cycles are shown. The
dashed line represents the number of read commands sent and thus the expected number
of returned data.

26 4 TESTING OF THE COMMUNICATION MODULE

per delay, the values shown are averages with their respective errors. The x-axis represents the
different inter-command delays in FPGA cycles at which this test was executed. If the sum of
correctly and incorrectly read back data is lower than the dashed line (representing the number of
expected commands), at least one read command was dropped and thus no data was received for
this address. A dropped write command is visible as incorrectly read back data, depicted in red.
As seen in figure 7a), the number of dropped write commands and the values of the first stable
delays are much higher for consecutively sent commands than for interleaved commands, shown in
figure 7b).

This difference is caused by the HICANN side of the HICANNARQ. As stated in chapter 2.1 the
data generated by a read packet at the component controllers immediately transmits the ACK
to the FPGA side by terminating the rx_timeout (cf. figure 2). However, when only sending
write packets, the component controllers do not generate response data and hence the rx_timeout
defines the ACK rate. Because all tests in this experiment were executed with standard values for
the HICANNARQ parameters, the rx_timeout is very long and thus causes the FIFO queue of
the FPGAOut instance (cf. chapter 2.1) to stall, resulting in packet loss. Consequently, to grant
more stability and avoid measuring only the rx_timeout, all register SRAM tests considered in

this thesis were executed with interleaved write and read commands.

All tests (also in chapter 4.3.3) were repeated for PLL frequencies of 250, 200, 150, 125, 100 and
50 MHz and were executed on different FPGAs (i.e. different HICANNSs) on wafer 20.

By simulating the L1 switch SRAM test in a software testbench it was shown that at the PLL
frequency of 250 MHz the inter-command delay for which no HICANNARQ resends occurred was
18 FPGA cycles (FC) for write and 22 FC for read commands (cf. Gribl [2016]). The experiment
should yield the maximum value, as only one delay variable was used for both types of commands.

I compared to the

Due to the repeaters using full-custom memory arrays, which are very slow
standard SRAM cells used in the L1 switch and floating gate controller SRAM, it would be expected
to see that the stable delay of this component is systematically larger. Furthermore one would
expect seeing a dependency of the number of read back commands on the location of the respective

component in the HICANN bus, as the latency increases with the depth of this component.

Figures 8 and 9 show the results for the PLL frequencies of 250 and 125 MHz (results for the other
PLL frequencies can be seen in appendix A.2). At a PLL frequency of 250 MHz, the observed
delay for the switch SRAMs is 19 FC, which is smaller than the expected 22 FC. The delay of 24
FC for the repeater SRAM is considerably larger than the switch SRAM’s, but again smaller than

the value of 32 FC, which was measured in simulation. The difference between the observed and

I1The HICANN bus Round Trip Time (RTT) of a read command and its return data to the top right repeater
block was measured as 32 FC in simulation. This should be the maximum value for the repeaters, as this block is
located at the lowest level of the HICANN bus.

4.3 Delay Characterization 27

expected value could be caused by the FIFOs of the HICANNARQ and the PbMem module in the

following ways:

Firstly, it is possible that the FIFOs are deep enough to provide space for the complete program to
execute at a smaller delay than the maximal controller execution time. Because too small delays
are only visible, if a command gets dropped when trying to push it into the HICANNARQ FIFOs
queues, these FIFOs can just fill up slowly due to the difference between the command input rate of
the PbMem and the rate the controller accepts commands. This will not be visible, as the HICANN
can continue processing the remaining commands stored in the FIFOs after the PbMem controller
has finished sending the PbMem program. This problem was investigated by increasing the amount
of write commands sent per cell access and comparing this to the data gathered before (cf. figure 20
in A.2). Interestingly the measured delays decreased even further as opposed to rising as expected.
The reason for this might be the amended HICANNARQ frame usage. Because three to four write
commands and one read command are sent to one address consecutively, the answer of the read
command triggers the sending of the frame consisting of the write and read command ACKs. This
might eliminate a possible residual influence the HICANNARQ has on the result.

Figure 10 illustrates the second effect possibly influencing the measured delays. If the sum of
delays of consecutive read and write accesses is greater or equal to the time the controller needs for
execution of the commands, it is possible for both commands to be executed without blocking the
FIFO. If e.g. the delay of the read command is smaller than the execution time the controller needs
for this command, the HICANN bus blocks the following write command until this read command
is finished. This pushes the write command’s execution time slightly backwards, but if its delay is
large enough for it to be finished before the next command arrives, the controller is again ready to

accept the new one.

This problem can be circumvented by splitting the delay into a write and read command delay
and characterizing the two independently of each other (or only one, as the correct value of their
sum is already known). However, for this the HICANNARQ parameters have to be controlled to
ensure real hardware access times being measured. Further thoughts on this subject can be found

in chapter 5.

The HICANN bus latency’s effect on the measurements is visible in figures 8 and 9 by the step-like
increases in correctly read back data. These steps occur when the inter-command delay is large
enough to account for the increased latency to the leaf controller. Its handshake with the root
controller can then be completed before another command arrives at the FIFO queue. Because the
HICANN bus is then ready again for the next command, these don’t get backed up causing them
to get dropped.

28

Number of packets received

4 TESTING OF THE COMMUNICATION MODULE

Characterization of delays with PLL frequency 250 B successes
switchramtest data

[I o B
o o o
o = N

T

E—
[
[-
]
[—— .
e
I
—— |
—
I —— |
E——
—
—— |
—
——— .
— |
E—
— |
— |
— |
E—
—
——

0

103 .

ST T —
10!
10

0

103

102

10!

10
0

Inter-command delay in FPGA cycles

=)

=]

Figure 8: Results of register SRAM delay characterization for PLL frequency of 250 MHz. This
measurement is the same as in figure 7 (a) and (b). The stable delays of the control
module tested are 19 FC for the L1 switches, 24 FC for the repeaters and 17 FC for the
floating gate controllers.

Number of packets received

Characterization of delays with PLL frequency 125 B successes
3 SW|tchramtest data | errors

10°
y IIIIIIIIIIIIIIIIIIIl““l““
10§

repramtest data

10° .

=
o
© -
[/
"
[]
—E
[]
C—a
| — |
—as
(I
B]
I
(I
I
(7]
—o
[]
I
—
| —]
|
| —n]
———m
[]
7]
[]
| —
/7]
/7]
[
|
I
]
7}
[7]
———m
(I
]
]
(I
B]
[
]
[
—]
|
1}

109
3 fgra mtest data

10

1

O o
»-]
O M T
3
—
—e
—
[]
[]
—i
——
[]
|
I
[]
I
(I
I
[]
I
(I
(I
g]
7
7}
[
7}
]
]
[
]
]
|
]
[
]
[
1
| I |
1}

10

Inter- command delay in FPGA cycles

Figure 9: Results of register SRAM delay characterization for PLL frequency of 125 MHz. Here the
same tests as in figure 8 were executed for a different PLL frequency. The stable delays
for the L1 switches, repeaters and floating gate controllers are 37 FC, 44 FC and 34 FC
and are thus significantly larger than for 250 MHz.

4.3 Delay Characterization 29

Write Read
command command

Commands
arriving at
controller

Controller o EEEEEE——E GEED GEEEEEEEEEEED GEED
execution time

Figure 10: Illustration on measured mean delay. The upper row shows the commands arriving at
the controller with a fixed delay and in the lower row the time the controller needs
for execution of the commands is depicted. If the sum of delays for read and write
commands is larger or equal to the sum of execution times of these commands by the
controller, they can be executed without blocking the FIFO.

Considering the measurements for the PLL frequency of 125 MHz it can be demonstrated that the
delays are significantly higher than for the PLL frequency of 250 MHz. However, their general
order stays the same. Compared to the PLL frequency of 250 MHz, the inter-controller differences
are higher than before, the repeater delay for example is now 7 FC greater than the switch SRAM
delay. The additional discrepancy between the delay differences for the 125 and 250 MHz repeater
and switch delays (7 — 5 = 2 FC) is probably caused by asynchronous clock domain crossing (cf.
Gribl [2016]). This can cause the signal, which is edge aligned with the clock in one domain to
arrive in the middle of one clock cycle in the other domain. Its influence on the measured delay is
dependent on the ratio of the frequencies at the domain borders, which changes when changing the

PLL frequency.

Because currently the PLL frequency is not stored as a variable in hicann-system it is not possible
to implement the PLL frequency-dependent delays as such. The default delay would be set per PLL
frequency as the maximal measured delay to avoid data loss. When now choosing a default delay for
all PLL frequencies, one would take the maximum of all these values to ensure the correct timing.
Further thoughts on this subject can be found in chapter 5. The aforementioned maximal delay
value (per PLL frequency) is also the one used in the analysis of the PLL frequency-dependency of
the delays, which is carried out in chapter 4.3.4.

4.3.3 Controller access time tests

The tests for measuring the delays used in SynapseControl and SynTrans send data to the con-
troller’s buffer register SRAMs to be written and then send the write and read commands to the

controller itself. A specific time after each one of these controller commands is sent, the status

30 4 TESTING OF THE COMMUNICATION MODULE

register is queried to check if the controller is still busy. Should this be the case, this iteration of
the test is aborted. Because the execution of these tests took much longer than the register SRAM
tests (dominated by the many JTAG accesses needed to start the PbMem module), they were
only repeated 5 times per value for the controller access time. The time between the controller’s
write or read command and the busy check of the controller (named controller_timeout) is then

varied.

Because the measurements for the controller access times are not based on commands getting
dropped and not showing up in the return data and the fact that the controllers are connected to
a pipelined OCP slave, they are not affected by the HICANNARQ problems mentioned in chapter
4.3.2.

In Schemmel et al. [2015] the theoretical worst case latency for a synapse array operation (the worst
case operation being START_READ) is documented to be 34 controller cycles. Because the controller’s
clock is generated as % of the PLL frequency (which at a PLL frequency of 250 MHz equates to 62,5
MHz) one controller cycle equates to 2 FPGA cycles (because the FPGA clock has a frequency of
125 MHz; cf. chapter 2.1). Therefore, the value of the worst case controller latency is equivalent to
68 FPGA cycles. Because the test only has one controller_timeout parameter for all commands,

it is expected to measure a delay value close to this theoretical worst case expectation.

In figures 11 and 12 the results of the measurements of controller access times are shown. Comparing
the measured value for 250 MHz of 70 FC for SynapseControl to the theoretical value of 68 FC
it is clear that the measurements are very close to the expectation. The discrepancy of 2 FC can
probably be explained again by asynchronous clock domain crossing. However, it is not immediately
clear why there should be delays, at which only some of the data is read back correctly and not all
of it. This could be explained by the duration of this operation being dependent on the location of
its target. Because multiple different rows are read out one by one in this experiment, one could
assume that some rows for which this operation does not take as long are read out first and return
valid data. Afterwards others (for which this operation takes longer) are read out, which causes

the controller to still be busy when checked.

As can be seen in figure 11, the values for the delays of SynapseControl and SynTrans are identical
and the rest of the data is very similar as well. Upon further investigation of this phenomenon and
continued communication with A. Griibl it was discovered that the two hardware abstraction classes
SynapseControl and SynTrans actually access the same controller. It therefore would be expected

to obtain similar results.

The value of the measured minimum controller_timout for stable execution is clearly PLL fre-

quency dependent, as the value for 125 MHz is at 140 FC significantly higher than the one for 250

4.3 Delay Characterization 31

Characterization of delays with PLL frequency 250 B successes

00— I synapsecontroltest_data BN errors
103 | .
102} .
10t]
10° :
O - - - - - . - ____ i
50 55 60 70 75 80

65
105 syntranstest_data

104
103 |

Number of packets received

102 |
10!

10°

o
T T T
| 1
1
! 1
| I
| |
| I
1
| I
| |
| 1
| |
I
|
1
| |
| 1
| |
1
|
1
af | |
| I
| 1
| 1
1
—
N I
o I
—
I
~NL
[
—
I
L L L L L

50 55 60 6
Delay between controller write and busy check in FPGA cycles

80

Figure 11: Results of the controller access time characterization for PLL frequency of 250 MHz.
The basic structure of the plot is the same as in figures 8 and 9. The data that is read
back correctly is shown in green, the incorrect data in red and all values were averaged
over the 5 repetitions and are displayed with their error. Values for the stable delays
are in both cases 70 FC.

Characterization of delays with PLL frequency 125 B successes
synapsecontroltest_data

10— . : : | errors
103k]
10% i
10" F il
0l i
Yof - - — - e
130 135 140 145 150 155 160
5 syntranstest_data

Number of packets received

= e = = =
o O o (=) o
Oo G N W £
T T T T T T
|
|
|
|
|
|
|
|
HE— I
] I
- !
|
|
|
|
|
| I |
|
|
| I |
I
|
|
L L L L L

130 135 140 145 150 155 160
Delay between controller write and busy check in FPGA cycles

Figure 12: Results of the controller access time characterization for PLL frequency of 125 MHz.
Here the same tests as in figure 11 were executed for a different PLL frequency. The
stable delays for both controllers increase to 140 FC, which is double the value of 70 FC
measured for 250 MHz.

32 4 TESTING OF THE COMMUNICATION MODULE

MHz. This is because the controller’s clock frequency is (as mentioned above) directly derived from

the PLL frequency. The linearity of these values is analyzed in chapter 4.3.4.

4.3.4 Linearity

Due to both, the packet rate on the HICANN bus and the clock frequency of all controllers being
defined as i of the PLL frequency, it would be expected to observe a linear correlation between the

two delays and the PLL frequency.

Figure 13 shows the maximal delay and controller_timeout values for each PLL frequency. When
taking the clear outliers at 50 MHz into account, in both cases no linearity at all is visible. These
deviations are caused by the HICANNARQ parameters being far away from their optimum. In
particular the tx_timeout is too small for the large RTTs at such a small HICANN bus transfer
rate and causes unnecessary resends, which stall the FPGAOut FIFO and cause commands to
be dropped. This should increasingly worsen with higher RTT and indeed, when looking at the
measurements for the repeaters at 50 MHz (cf. figure 19 in appendix A.2), it is evident that the
repeater test (which has the maximum RTT due to the long controller access) is never completely

stable. This is an indication to avoid using the frequency of 50 MHz in experiments.

However, even after discarding the values for 50 MHz it is difficult to see a clear linear relationship
in either case, as all values systematically deviate upwards of a hypothetical linear function. This
can possibly be explained by HICANNARQ parameters like the tx_timeout staying constant whilst
the PLL frequency changes. Because the RTT of the HICANN bus is proportional to the increasing
PLL frequency, these parameters move progressively away from their optimal (RTT dependent)
value. This results in more resends by the HICANNARQ), which causes the value of the first stable
delay to increase. However, to effectively back up this hypothesis further measurements would be

required.

4.3 Delay Characterization 33

350} :
+— ram delays

+— controller delays

300

250

200

1501

Delay in FPGA cycles

100f

50 1

50 100 150 200 250
PLL frequency [MHz]

Figure 13: Analysis of the PLL frequency dependency of the delays and controller access times. The
maximum delay of the register SRAMs and the controller timeouts is plotted against
the PLL frequencies. The values for 50 MHz are clearly anomalous (cf. text for further
details).

34 5 DISCUSSION & OUTLOOK

5 Discussion & Outlook

The goal of the first part of this thesis as presented in chapter 3 was to implement a PbMem
communication module and integrate it into the software stack. This goal was achieved, as the
integration into hicann-system, HALbe and stHAL was completed. To ensure correct configuration,
the communication module was implemented with the delays determined in chapter 4. Its function-
ality and stability have been tested using multiple low-level hardware tests from hicann-system
and HALbe. In the near future, the resulting PbMem communication module will replace the asyn-
chronous communication module as the standard for HALbe and stHAL tests. This will speed up

experiments significantly whilst making them more robust and reproducible.

The implementation of the communication module’s sortAndSend () method could be further op-
timized by first parsing the PbMem program for grouped commands and then inserting these into
the frame buffers as a group instead of parsing it on a per-command basis. This would super-
sede the backtracking to update the group header (as the size is known beforehand) and would
eliminate the necessity of holding two frame buffers simultaneously. Another optimization might
be, to look for alternative sorting algorithms, which converge faster for lists very likely to already
be in the right order (as is the case with the PbMem program). A possible candidate might be

insertion sort.

Based on a suggestion made by the author, the FPGA functionality was changed to allow starting
of the PbMem module without having to synchronize the system time counters and reset the
HICANN time counters every time. This now is performed once in the main initialization method.
Afterwards only the experiment start will be triggered without the necessity of the slow JTAG
access. However, this modification to the FPGA was only just ready before the end of this thesis
and so this functionality was implemented, but could neither be thoroughly tested nor used in the

tests mentioned in chapter 4.

For the future it is planned to improve the receive functions, making them more time-efficient
and robust by for example using the new data containers. These new containers will also replace
the currently existing PulseEvent and PulseEventContainer classes to avoid multiple representa-
tions of essentially the same information. Long-term, it is planned to improve the architecture of
hicann-system by separating reticle_control and hicann_control from all hardware control
classes and deleting [fpga,dnc]_control. New functionalities like a user-friendly interface for
setting and storing the current PLL frequency will be integrated to enable PLL frequency-adaptive

delays for the hardware control classes.

The second part, presented in chapter 4, focussed on benchmarking the PbMem communication

module and characterizing the hardware component-dependent inter-command delays. The results

35

from the benchmarks (cf. figure 6) were as expected, the PbMem communication module was
asymptotically significantly faster than the asynchronous module. It seems possible, to further

increase the benefit of the PbMem communication module by optimizing its receive functions.

The results of the experiments conducted to characterize the delays and controller timeouts were
ambivalent. The measured values for the controller timeouts were very close to the expectations,
which proves the PbMem very useful for exact and timing-critical measurements. The achieved
changes speed up the configuration of the synapse controller from ~4 ms per row using the asyn-
chronous communication to 1.4 ps per row! in the PbMem program, a O(10®) improvement. When
characterizing the memory delays however, it became apparent that the HICANNARQ and its pa-
rameters have a major impact on these measurements. After all, even though the HICANNARQ
was never built for real-time experiments and measurements it performed surprisingly well. To
reduce the number of static, user-defined variables, it would be advantageous to implement a self-
adjusting timeout which is dependent on the current transmission rate and expected HICANN bus
RTT into the HICANNARQ of the newer HICANN versions. This is currently being investigated by
V. Karasenko. However, to improve the characterization in the current HICANN version, the reg-
ister SRAM delays have to be split into a write and read command delay and have to be controlled
in connection with the HICANNARQ timeout parameters.

When decreasing the PLL frequency, the experimentally determined values deviated upwards from
the theoretically expected linear relationship. This can be explained by the non-PLL dependent
HICANNARQ parameters (e.g. rx_timeout), which go increasingly out of optimum and cause many
resends, increasing the measured delays. In the case of a PLL frequency of 50 MHz it actually causes
significant instabilities of the repeater SRAM test, suggesting to avoid this specific frequency or else
to change HICANNARQ parameters. However, since tuning these parameters was not the focus of
this thesis, this remains open for further investigation. Because the delays cannot be implemented
depending on the PLL frequency (as stated above), for now all default delays have been set to the

values for 100 MHz, as these were the highest values for a stable execution.

For future optimization, the controller_timeout variable could be split into multiple different
ones based on the worst case latencies of the controllers for these operations. Other improvements
concerning the PbMem operation are on their way. The FPGA PbMem module will be enhanced
to include FPGA configuration packets as a new type, which can not only trigger certain actions
like stopping the PbMem and trace module but can also mark the end of the program. These "End
Of Program’ packets get parsed when they are loaded into the PbMem by the memory controller
and trigger a 'ready’ packet to be sent to the host. This is useful to ensure the complete program

has been loaded into the PbMem module before starting it, which could currently be a source of

IThe standard delay for SynapseControl is set to the value for 100 MHz (175 FC). As one FPGA cycle equates
to 8 ns, the delay for one command (writing one row) is 1.4 ps.

36 5 DISCUSSION & OUTLOOK

random errors. To enable constrained random tests of the software PbMem module, a HICANN
configuration loopback should be implemented in the FPGA. To structure the return data from the
chip, HICANN configuration responses should also be timestamped and stored in the trace module
instead of being directly sent to the host as currently done. Looking further into the future it is also
planned, to implement random access to the PbMem module to support the execution of multiple
experiments in succession, as well as parameter sweeps, where only one packet in the program is
being changed. All this of course requires software support and continued development, for which

the PbMem communication module is well equipped.

These changes to the FPGA also have to go hand in hand with the new generation of HICANN
called HICANN-DLS. As a completely new software stack is required for this revision, it would be
very beneficial to exclusively support PbMem operation, because this mode of communication is
robust and increases the reproducibility of experiments. The techniques employed in this thesis

could then be carried over and lay a solid foundation for the new software.

37

38 A APPENDIX

Appendix

A Appendix

A.1 Repository Listing

The following section aims to provide a complete overview about the code used and implemented in
the course of this thesis. There are two different workspaces. One workspace is used for testing and
the other one is the final version, which can be integrated in the software stack. The repositories can
be found at: https://brainscales-r.kip.uni-heidelberg.de/. As all changes are still under
review, their Gerrit changesets can be found at: https://brainscales-r.kip.uni-heidelberg.
de:9443/.

Table 2: Git Hashes of HEAD state for all supporting repositories. Both workspaces are based on

Repository SHA 1 ID

bitter da89a7ece461ad6e97a6d7£9e9c0abb9fccafbff
calibtic 68b6ef203ccabeb687d2d05743808997a604ddb9
euter ael2b24edb5e73cff22616296a552efb365743e43

lib-boost-patches
lib-ref

1bbccae8107e511£94650c8e13857df5eb7506ef
de6fa72d55¢c186bd89aefd0el1c6b90e4c99323a0

logger 3da08bd6fb00b239a59abde42983018£fe0386bd5
pygeexml 8ae%e19ae00c4152faba381eb9e663561c07345%
pyplusplus 2fe3b869191acbb47afaa33e2112fa83e41e79d5
pythonic £2£162e34d7b024e0de79c55133fef00e82fffe0
pyublas 9£707£60320e20e5a7714d920ba0530d092e1310
pywrap c375009b6950d6b41b59d71b7£4b202df99£8117
rant 4a8acd076fb9531ce61a990ef0£414935886d85d
redman 42d28037a0bcdf1e70c7bbb6734411de63174b3f
sctrltp 42c6d0ead9f91dc44a7aae1017cf4cd935246834
sthal b6a4f583b318f£639dce5e782ea073f9d3fab2fb
vmodule 210885997£0124975cb17cb6710d5fffec585513
ztl 068c18233337711e40027aab51dc667f7ed6cdcd8

these versions.

The following Gerrit changesets provide the working repository state used for testing.

https://brainscales-r.kip.uni-heidelberg.de/
https://brainscales-r.kip.uni-heidelberg.de:9443/
https://brainscales-r.kip.uni-heidelberg.de:9443/

A.2 Image Appendix 39

e hicann-system: change ID Ief8afd94c20d757dd369e0f08d5e6b21d26fae23
— working standard tests: commit hash 07£25ea00775e4edc5ea60fd7e72b8f1cafe9868
— tests provoking FIFO overflow: commit hash c7£0d£791b84cb663580d0e7c5497e4c9ceb8656

The results of these tests and scripts used for benchmarking and data analysis can be found in
/ley/users/lpilz/results_bachelor/.

These Gerrit changesets provide the working repository state planned for upstream integra-
tion

e hicann-system:
— without fast experiment start: change ID I4b49d1f042a5b0994a4b1356c7bb95fb57afd654
* commit hash 01f9ee251calbe16f4c2aeed842¢9fbd598b1a36
— with fast experiment start: change ID ITacc6d1343147bb929becddc6d59270418dfb09c6
* commit hash db3d887a2cb073a891ed7682436dc5d93e9583c9
e halbe: change ID Ib3c9c1d94e6344b5ac31edObe5£0d51ac090cb0d
— commit hash 4a3£547222f0351079dc0269f42f26746191e294
e sthal: change ID d8c7fc3efb59283f3eadcb5937dbf8c5dded4e075

— commit hash 38ea09bb33dc2495b2fd5155f09ecd72¢cc40959d

A.2 Image Appendix

40

Number of packets received

Number of packets received

Characterization of delays with PLL frequency 250
SW|tchramtest data

A APPENDIX

- successes

errors

repramtest data

=
o
-

102
0

103 fgra mtest data

102
10

—

o

10
0

Inter-command delay in FPGA cycles

Characterization of delays with PLL frequency 250
synapsecontroltest_data

I successes

104 ——— S A vt > C I errors
103} i}
102} .
10t } .
10° .
O - — - - ¢ . 0 o - - - __ 4
50 55 60 7 75 80

10°

T

T

T

10* t
103
102
10!
10° t
O = - - - - . 0 o - - - 4

!

!

!

!

!

50 55 60

80

Delay between controller write and busy check in FPGA cycles

Figure 14: Results of delay characterization for PLL frequency of 250 MHz

A.2 Image Appendix 41

Characterization of delays with PLL frequency 200 - successes
SW|tchramtest data

errors

repramtest data

102
0

fgra mtest data

103
102
10

Number of packets received
=
o

—

o

10
0

Inter-command delay in FPGA cycles

Characterization of delays with PLL frequency 200 B successes

00— N synapsecontroltest_data BN errors
103} i
102} .
10t F i
10° .
o——- - — — 4
70 75 80 95 100

W
10% +
103
102
10? '
10°
o——- - — — 4
70 75 100
Delay between controIIer write and busy check in FPGA cycles

I

T
I

Number of packets received

T
I

T
I

I

Figure 15: Results of delay characterization for PLL frequency of 200 MHz

42

Number of packets received

Number of packets received

A APPENDIX

Characterization of delays with PLL frequency 150 B successes
10° switchramtest_data BN crrors

repramtest_data

103 . .

=
o
-

10°
0

fgramtest_data

103
102
10

—

o

10
0

Inter-command delay in FPGA cycles

Characterization of delays with PLL frequency 150 B successes

104 ———— — synapsecontroftest data B errors
103
102 +
10* +
100t

oben i i o

90 95 100 105 110 115 120
105 syntranstest_data

T

T

104}

103}

102

10!

100}

o----——
90 95 100 105 110 115 120
Delay between controller write and busy check in FPGA cycles

Figure 16: Results of delay characterization for PLL frequency of 150 MHz

A.2 Image Appendix 43

Characterization of delays with PLL frequency 125 B successes
3 switchramtest_data | errors
10p

10 B L——— T
100 L L L L

3 repramtest_data
10° fgramtest_data
10
o IIIIlIlIIIIIIllIlll

0
100 L L L L L

0 10 20 30 40 50 60

10 T T
Inter-command delay in FPGA cycles

10

(.

10

10

[

10

o

Number of packets received

-

Characterization of delays with PLL frequency 125 B successes

10° synapsecontroltest data BN crrors
10° | ;
10% :

3

> 1L]

= 10

9]

2o

7)) 10 B n

+ O r — - -=- I_ - L L L L 1

%‘j 130 135 14 145 150 155 160

° syntranstest_data

.— 10 S T T = T T

o

5 4

910" F 5

€ 3

= 107 F E
10% :
10" f ;
103 | ;

O ———— I— I I I I]
130 135 140 145 150 155 160

Delay between controller write and busy check in FPGA cycles

Figure 17: Results of delay characterization for PLL frequency of 125 MHz

44

Number of packets received

Number of packets received

Characterization of delays with PLL frequency 100
switchramtest data

103 ;

A APPENDIX

I successes
I errors

10°

0 IIIIIIII IIIIIII|||I|||I|||I|||I||||||||||||||‘|“‘““|‘|l

103 fgra mtest data

102
10

—

o

10
0

Inter-command delay in FPGA cycles

Characterization of delays with PLL frequency 100

I successes
I errors

104 synapsecontroltest_data

103
102 +
10* +
100t
o—-——
1

160 165 170 175 180
syntranstest data

85 190

= B R R R

©o o o o o

o o [N w IS
| T T T T T T
I
l I
| I
| |
! !
N I
| |
| I
| |
I
l I
N |
| I
I '
— :
| I |
_
I
| I |
I
R 1

160 165 170 175 180

90

Delay between controller write and busy check in FPGA cycles

Figure 18: Results of delay characterization for PLL frequency of 100 MHz

A.2 Image Appendix

Number of packets received

Number of packets received

Characterization of delays with PLL frequency 50 B successes

_____ switchramtest_data BN crrors

ATRTMAT,

repramtest data

103 .
102
10°

0

103

102
10
10
0
130

150

=
o
-

—

o

Inter-command delay in FPGA cycles

Characterization of delays with PLL frequency 50 B successes

10 synapsecontroltest_data B errors
103
102 +
10* +
100t
o
335 340 345 355 360
105 syntranstest data

=
o o

L N

T T T

104
103
10° I
o———
335 340 345 350 355 360

Delay between controller write and busy check in FPGA cycles

Figure 19: Results of delay characterization for PLL frequency of 50 MHz

45

46 A APPENDIX

Characterization of delays with PLL frequency 250 B successes

10° . ISW|tchrarr|1test_datal | mmm errors
10°
o III||||I||||||||
k> 108 L
T s repramtest_data
v 10 T T T T T
g
)]
% 10°
V4
(O]
8 10'
‘s
5 100
9 K K K
€ 3 fgramtest_data
210

N

10

(=

10

0
109

60

Figure 20: This test was executed at the PLL frequency of 250 MHz and differs from the other tests
in so far as three or four write commands were sent to one SRAM cell (depending on the
amount of cells per block). This was done in order to reliably overflow the HICANNARQ
FIFOs by increasing the overall number of commands sent. More details concerning this
experiment can be found in chapter 4.3.2

Inter-command delay in FPGA cycles

Glossary

ACK acknowledgement information. 5-7, 21, 23
ADC Analog-to-Digital Converter. 4

AdEx Adaptive Exponential Integrate-and-Fire. 4 4.
APIT Application Programming Interface. 8, 10, 13

. 21, 23, 27, 28, 30, 48
CPU Central Processing Unit. 2

DC DNC cycles. 5, 23
DDR3-SDRAM Double Data Rate Synchronous Dynamic Random Access Memory. 7

DNC Digital Network Chip. 4-7, 10, 12

FC FPGA cycles. 5, 7, 23, 26, 27
FEXT far-end crosstalk. 5
FIFO first in, first out. 6, 7, 21, 23, 26, 48

FPGA Field-Programmable Gate Array. 3-5, 7, 10-16, 18, 19, 21, 23, 29-31

HALbe Hardware Abstraction Layer Backend. 8, 10, 12, 13, 17, 29

HICANN High-Input Count Analog Neuronal Network Chip. 3-7, 9, 11-18, 21, 23, 26, 29-31
HICANN-DLS HICANN-DLS. 30

HICANNARQ HICANN ARQ protocol. 5, 7, 13, 21, 23, 30

HostARQ Host ARQ protocol. 7-9, 15
JTAG Joint Test Action Group. 4, 9, 13, 16, 19, 29

L1 Layer 1. 4-6, 18, 20, 21, 23

LIF Leaky Integrate-and-Fire. 2, 4

47

48

marocco marocco. 8

NM-PM Neuromorphic Physical Model. 9

NM-PM1 Neuromorphic Physical Model version 1. 4

OCP Open Core Protocol. 5, 23

PbMem Playback Memory. 3, 7, 9-20, 23, 26, 29, 30

PLL Phase-Locked Loop. 5, 21-30, 42-48

PMOS Positive Metal-Oxide Semiconductor. 4

PyHMF PyNN for the BrainScaleS Hybrid Multiscale Facility. 8

PyNN PyNN. 8

RAM Random Access Memory. 3

RTT Round Trip Time. 7, 27

SpL1 Synchronous Parallel Layer 1. 4, 6
SRAM Static Random Access Memory. 5, 6, 13, 18, 20-23, 26, 28, 30, 48
STDP Spike Timing Dependent Plasticity. 6, 20, 21

stHAL Stateful Hardware Abstraction Layer. 8, 12, 29

UDP User Datagram Protocol. 7

A APPENDIX

49

B Bibliography

Brette, R., and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective descrip-
tion of neuronal activity, J. Neurophysiol., 94, 3637 — 3642, doi:NA, 2005.

Davison, A. P., D. Briiderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet, and P. Yger,

PyNN: a common interface for neuronal network simulators, Front. Neuroinform., 2(11), 2008.

Debus, J., Comissioning of an FPGA-based prototyping environment for neuromorphic hardware,
Bachelor thesis, Ruprecht-Karls-Universitat Heidelberg, 2016.

Furber, S., Large-scale neuromorphic computing systems, Journal of Neural Engineering Std 1741-
2560, doi:10.1088/1741-2560/13/5/051001, 2016.

Gribl, A., personal communication, 2016.
HBP SP9 partners, Neuromorphic Platform Specification, Human Brain Project, 2016.

Jeltsch, S., A scalable workflow for a configurable neuromorphic platform, Ph.D. thesis, Universitét
Heidelberg, 2014.

Karasenko, V., A communication infrastructure for a neuromorphic system, Master’s thesis (En-
glish), University of Heidelberg, 2014.

Karasenko, V., personal communication, 2016.

Kldhn, J., Tuning of functional networks on neuromorphic hardware, Masterarbeit, Universitét

Heidelberg, in preparation, 2016.

Koke, C., Device variability in synapses of neuromorphic circuits, Ph.D. thesis, Universitidt Heidel-

berg, in preparation, 2016.

Mauch, C., Commissioning of a neuromorphic computing platform, Masterarbeit, Universitit Hei-
delberg, 2016.

Miiller, E. C., Novel operation modes of accelerated neuromorphic hardware, Ph.D. thesis,
Ruprecht-Karls-Universitat Heidelberg, hD-KIP 14-98, 2014.

Painkras, E., L. A. Plana, J. Garside, S. Temple, S. Davidson, J. Pepper, D. Clark, C. Patterson, and
S. Furber, Spinnaker: A multi-core system-on-chip for massively-parallel neural net simulation,
in Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, pp. 1-4, doi:10.1109/
CICC.2012.6330636, 2012.

Schemmel, J., A. Griibl, S. Millner, and S. Friedmann, Specification of the HICANN microchip,
FACETS and BrainScaleS project internal documentation, 2015.

Stroustrup, B., The C++ programming language, 4th ed ed., Online-Ressource (xiv 1346 p.) pp.,
Addison-Wesley, Upper Saddle River, NJ, 2013.

50

	Introduction
	Platform
	Hardware
	Software

	Implementation of the communication module
	Introduction
	Prerequisites
	Implementation of a time container
	Implementation of data types for the PbMem Program
	Delay

	Implementation

	Testing of the communication module
	Introduction
	Benchmark
	Delay Characterization
	Introduction
	Register SRAM tests
	Controller access time tests
	Linearity

	Discussion & Outlook
	Appendix
	Repository Listing
	Image Appendix

	Glossary
	Bibliography

