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Deep Learning Architectures for Neuromorphic Hardware

Networks that perform stochastic inference lie at the intersection of neuroscience and
machine learning. For the former, they hold the potential of explaining how inference
is performed by the mammalian neocortex. For the latter, they offer a very powerful
solution to hard problems such as image recognition and classification. During the past
several years, theories have been developed that connect the dynamics of biological neural
networks to those of the so-called Boltzmann machines that are widely used in machine
learning. Based on the theory developed in Petrovici et al. (2013), we demonstrate the
implementation of deep Boltzmann machines with leaky integrate-and-fire (LIF) neu-
rons. Beyond simply translating parameters between classical and neural Boltzmann
machines, we also implement a combination of several powerful learning algorithms and
demonstrate its efficiency by training LIF-based Boltzmann machines as a generative
model of a set of handwritten digits from the MNIST database. In building these learn-
ing neural networks, we identify and discuss several effects that are unique to our choice
of neural implementation. We propose that, with proper modifications to our suggested
algorithms, our architectures can be embedded in accelerated neuromorphic hardware,
thereby fostering the development of powerful, fast and low-power learning machines.

Lernfhige Netzwerke füüür neuromorphe Hardware

Netzwerke, die stochastische Inferenz ausführen, liegen im bergangsbereich zwischen
Neurowissenschaft und maschinellem Lernen. Aus neurowissenschaftlicher Perspektive
sind diese Architekturen gute Kandidaten, um Inferenzprozesse im Neokortex zu erklren.
Aus der Perspektive künstlicher Intelligenz bieten diese Modelle eine effiziente Lsung
für schwierige Probleme, wie zum Beispiel Mustererkennung und -klassifizierung. In den
vergangenen Jahren wurden Theorien entwickelt, die przise Analogien zwischen der Dy-
namik von biologischen neuronalen Netzwerken und der von, im maschinellen Lernen weit
verbreiteten, sogenannten Boltzmann-Maschinen ermglichen. Ausgehend von der Theo-
rie aus Petrovici et al. (2013), entwickeln wir eine Implementierung von mehrschichti-
gen Boltzmann-Maschinen mit "leaky integrate-and-fire" (LIF) Neuronen. Zustzlich
zur direkten bersetzung der Parameter zwischen klassischen und neuronalen Boltzmann-
Maschinen, implementieren wir eine Kombination verschiedener mchtiger Lernalgorith-
men und demonstrieren ihre Effizienz durch Trainieren vom Boltzmann-Maschinen als
generatives Modell zur Reprsentation einer Auswahl handgeschriebener Ziffern aus der
MNIST-Datenbank. Bei der Beschreibung dieser lernenden neuronalen Netzwerke werden
Effekte identifiziert und diskutiert, welche für unsere Wahl einer neuronalen Implemen-
tierung einzigartig zu sein scheinen. Unsere Ergebnisse legen nahe, dass durch gezielte
Modifikationen der vorgestellten Lernalgorithmen, sich unsere Netzwerke auf beschleu-
nigter neuromorpher Hardware implementieren lassen, was die Entwicklung mchtiger,
schneller und energieeffizienter lernender Maschinen erlauben würde.
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1. Introduction

Today, the human brain remains a scientific puzzle. Constant efforts during the past
century, coming from multiple disciplinary fields, have expanded the knowledge base
of neuroscience enormously. However, most of this knowledge is either markedly mi-
croscopic (concerning the biochemistry and electrophysiology of individual neurons and
synapses) or very high-level macroscopic (such as mm-resolution FMRI data). The
intermediary, network level, which arguably holds the key to understanding computation
in the brain, is still largely unknown.

Owing to the technological developments of the computer era, the “brain problem”
can be attacked from a different angle. By formulating hypotheses about the structure
of neural networks, computational neuroscientists can simulate their model networks
at various spatial-temporal levels to produce predictions that can then be validated
by biological data. Furthermore, even if they do not accurately describe structures
found within the brain, such biologically inspired neural networks have found various
applications in the fields of robotics, machine learning and AI.

The term "computational neuroscience" was introduced by Eric L. Schwartz in 1985
However, research related to this field can be traced back to as far as the early 20th
century. In 1907, Lapicque introduced the integrate and fire neuron model, which is still
one of the most popular models in computational neuroscience. Despite its simplicity –
which is of great advantage from both a theoretical and a computational point of view
– it offers a remarkably good approximation of neural membrane dynamics. About 40
years later, Hodgkin & Huxley created the first biophysical model of the action potential,
and described it with a set of nonlinear differential equations. However, many of today’s
network models are based essentially on Lapicque’s neuron, augmented by a simple
threshold for triggering an action potential, which is modeled simply as a δ-function.

1.1. Neural networks, probabilistic inference and sampling

It is, in some way, a truism, to say that the brain performs, on some level, probabilis-
tic inference. After all, each conscious movement is the result of processed sensory
data, combined with an expectation of the future state of the body within the envi-
ronment. However, inference is likely to play a role in many more areas besides the
sensorimotor apparatus. The inference hypothesis has, indeed gained support by recent
experiments, such as, e.g., Knill and Pouget (2004). Additionally, Fiser et al. (2010)
has suggested a sampling-based framework for inference in the cortex of the human brain.
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1. Introduction

In 2011, the so-called neural sampling theory was proposed (Buesing et al., 2011),
which took an essential step towards understanding the microscopic implementation of
sampling-based probabilistic inference. The authors provided a mathematical framework
in which the stochastic firing activity of a network based on abstract model neurons can
be interpreted as Markov chain Monte Carlo sampling. However, a certain gap towards
biology remained: the largely deterministic nature of biological neuron membrane dy-
namics stands somewhat in contrast to their inherently stochastic, abstract neuron model.

Building on the work from Buesing et al. (2011), Petrovici et al. (2013) refined the
neural sampling theory and extended it to a more biologically plausible neuron model.
Their work demonstrated that in a spiking noisy environment, leaky integrate-and-
fire (LIF) neurons can indeed perform probabilistic inference through sampling from
well-defined probability distributions. In particular, they have shown that such neural
networks can emulate Boltzmann machines, thereby creating a rigorous link between
this powerful machine-learning model and the dynamics of biological spiking neurons.

1.2. Exploring the potential of sampling neurons: LIF-based
Boltzmann machines

Proposed by Hinton and Sejnowski in 1985, a Boltzmann machine is a type of recurrent
network consisting of stochastic binary units. With certain constrains on its connectiv-
ity, a general Boltzmann machine becomes a so-called “restricted” Boltzmann machine,
which allows the implementation of efficient learning algorithms, thereby becoming
useful for many practical problems. Recently, RBMs were proposed in Hinton et al.
(2006) as building blocks of multi-layer learning networks called deep belief networks,
and were used in Salakhutdinov and Hinton (2009) to construct so-called “deep” Boltz-
mann machines. Studies such as Srivastava and Salakhutdinov (2012) showed that deep
Boltzmann machines combined with state-of-art learning algorithms can outperform
many other often-used machine learning models, such as support vector machines and
linear discriminant analysis, in various classification tasks.

Petrovici et al. (2013) have already shown that networks of LIF neurons can accu-
rately sample from Boltzmann distributions. To further explore their potential for hard
computational tasks, Boltzmann machines with more complex target distributions need
to be studied.

Throughout this work, we investigate the combination of the LIF-based Boltzmann
machines with efficient learning algorithms. We show that powerful machine learning
algorithms are, indeed, applicable to networks of LIF neurons. In demonstrating the
performance of this approach, we follow a twofold long-term agenda. As a more immedi-
ate application, we envision the emulation of such networks on neuromorphic hardware,
which offers significant advantages over conventional computing architectures in terms of
power consumption and speed. On the long run, we hope that our study of these models
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1.3. Outline

will facilitate biological investigations of similar learning and sampling mechanisms in
the mammalian neocortex.

1.3. Outline

In Chapter 2, we discuss general Boltzmann machines and learning rules proposed in
recent literature. After a brief review of Gibbs sampling, we discuss the neural sampling
theory from Buesing et al. (2011) for neurons with an absolute refractory mechanism. In
the end, we sketch the theory of sampling with LIF neurons from Petrovici et al. (2013),
which represents the framework for the LIF-based Boltzmann machines throughout the
rest of this work.

Chapter 3 focuses on the application of LIF-based Boltzmann machines to model
perceptual multistability. The performance of the LIF implementation is compared
directly to the implementation with abstract neurons proposed by Buesing et al. (2011).
In this section, we also explicitly discuss learning algorithms for LIF-based fully visible
Boltzmann machines.

In chapter 4 we explore the implementation of RBMs with LIF neurons. RBMs and a
series of corresponding learning algorithms are discussed. These learning algorithms are
then be combined to form an efficient learning algorithm: coupled adaptive simulated
tempering (CAST). Based on this algorithm, both abstract and LIF-based RBMs are
trained to learn a set of images of handwritten digits. In the end, our recent progress on
deep Boltzmann machines is presented in brief.

Chapter 5 will give a very brief report on the early investigation of the applicabil-
ity of LIF sampling framework to the currently available BrainScaleS neuromorphic
hardware. We then conclude this work with a summary and outlook in Chapter 6.
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2. LIF-based Boltzmann machines:
theoretical background

In the previous chapter, we suggested that biological neurons can perform stochastic
inference and can therefore be used to implement state-of-the-art machine learning al-
gorithms. As we are interested in ensembles that can represent probabilistic spaces and
perform inference therein, we will first review several fundamental concepts of stochastic
computing. We will start with a short discussion of sampling methods, in particular
Gibbs sampling. Afterwards, we will focus on a particular class of probabilistic distri-
bution, namely Boltzmann distributions, and their physical implementation in so-called
Boltzmann machines. The latter can be realized with abstract model neurons within
the concept of so-called neural sampling. This model can be further refined to include
biologically plausible neuron and synapse models in a framework called LIF sampling.
This final embodiment of Boltzmann distributions will constitute the basis for all further
studies within this manuscript. Throughout this work, we shall use neural sampling as
a theoretically optimal benchmark against which LIF sampling can be characterized.

2.1. Gibbs sampling

Gibbs sampling (GS) is a widely used Markov chain Monte Carlo (MCMC) sampling
method. Named after Andrey Markov, a Markov chain is a mathematical system that
undergoes transitions from one state to another in a well-defined state space. It is a
limited-memory stochastic process: the next state depends only on the a fixed number
of preceding states. This memoryless feature is called the Markov property. A first-order
Markov chain is defined to be a series of random variables z(1), ..., z(N) such that, at any
time, the state of the system only depends on its last state:

p(z(k+1)|z(1), ..., z(k)) = p(z(k+1)|z(k)) , (2.1)

where k ∈ {1, ..., N − 1}.

Consider the distribution p(z) = p(z1, ..., zM ) from which we wish to sample, and
suppose we start from some state in the Markov chain. Each step of GS involves
replacing the value of one of the variables by a value drawn from the distribution of that
variable conditioned on the values of the remaining variables.

For example, suppose we have a distribution p(z1, z2, z3), and at step k of GS we
have the current state z(k)

1 , z
(k)
2 and z(k)

3 . The algorithm first replaces z(k)
1 by a new value

4



2.2. Boltzmann machines

z
(k+1)
1 obtained by sampling from the conditional distribution

p(z1|z(k)
2 , z

(k)
3 ) . (2.2)

Next, it replaces z(k)
2 by a value z(k+1)

2 obtained by sampling from the conditional distri-
bution

p(z2|z(k+1)
1 , z

(k)
3 ) (2.3)

so that the new value for z1 is used directly in subsequent sampling steps. Then it
updates z3 with a sample z(k+1)

3 drawn from

p(z3|z(k+1)
1 , z

(k+1)
2 ) (2.4)

and so on, cycling repeatedly through the three variables in this well-defined order.

2.2. Boltzmann machines

A Boltzmann machine (BM) is a type of recurrent neural network which consists of
symmetrically connected stochastic binary units. The energy of the state {z} is defined
as

E(z) = −
∑
i<j

Wijzizj −
∑
i

bizi , (2.5)

where zi and zj are the binary states of units i and j, Wij is the weight connecting units
zi and zj and bi is the bias of unit zi. The weights satisfy Wii = 0 and Wij = Wji (i.e.
the weight matrix is symmetrical and zero-diagonal). The network assigns a probability
to a state vector via an energy function E(z)

p(z) =
1

Z
exp[−E(z)] , (2.6)

where Z =
∑

z exp[−E(z)] represents the so-called partition function. The units can
be further subdivided into a set of visible units v, whose states can be determined by
training data (eg. pixels of a series of images), and a set of hidden units h, whose states
can not be directly determined by training data and act as latent variables (see figure
2.1). The energy of the state {v,h} is then defined as

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

Wijvihj −
∑
i<i′

Lii′vivi′ −
∑
j<j′

Jjj′hjhj′ ,

(2.7)

where vi and hj are the binary states of visible unit i and hidden unit j and ai and
bj are their biases, Wij , Lii′ and Jjj′ represent the visible-to-hidden, visible-to-visible
and hidden-to-hidden connection weights (also see Fig. 2.1 comments). For a BM with

5



2. LIF-based Boltzmann machines: theoretical background

Figure 2.1.: A Boltzmann machine with visible units v and hidden units h. W, L
and J are symmetric, zero-diagnal matrices that contain the visible-to-
hidden, visible-to-visible and hidden-to-hidden couplings (Image is taken
from Salakhutdinov and Hinton, 2009).

visible and hidden units, its output is often related with the visible units’ states. The
probability for a particular state of the visible units to occur in a BM is given by summing
(marginalizing) over all possible hidden vectors

p(v) =
1

Z

∑
h

exp [−E(v,h)] , (2.8)

2.2.1. Learning

Apart from being able to represent well-defined Boltzmann distributions, BMs can also
be trained to sample from particular areas of the state space with high probability. In
other words, given a set of training samples, a BM is able to learn to generate similar
states with high probability. Since the stochastic dynamics of a BM favors state vectors
that have low energy values, during the learning process, its parameters are updated to
lower the energy function of the data vectors in the training set.

By differentiating Eq. 2.6 and using the fact ∂E(z)/∂Wij = −zizj , it can be shown that

∂p(z)

∂Wij
=

∂

∂Wij

[
e−E(z)∑
z′ e
−E(z′ )

]
= e−E(z) · zi · zj ·

[∑
z′ e
−E(z

′
)
]−1
− e−E(z) ·

[∑
z′ e
−E(z

′
)
]−2
·
∑

z′

[
e−E(z

′
) · z′i · z

′
j

]
= p(z) · zi · zj − p(z)


∑

z
′

[
e−E(z

′
) · z′i · z

′
j

]
∑

z
′ e−E(z

′
)

 , (2.9)

6



2.3. Neural sampling

where
∑

z′ is a sum over all possible states of the model. Moving the p(z) from the lhs.
of the equation to the rhs., we get

∂ log p(z)

∂Wij
= zi · zj −


∑

z
′

[
e−E(z

′
) · z′i · z

′
j

]
∑

z
′ e−E(z

′
)

 , (2.10)

which can be further transformed to〈
∂ log p(z)

∂Wij

〉
data

= 〈 zi · zj 〉data − 〈 zizj 〉model , (2.11)

where 〈 · 〉data denotes an average over all the training samples and 〈 · 〉model denotes the
expectation value of the distribution defined by the model. This can lead to a learning
rule (Hinton, 2010) for performing gradient ascent in the log-probability of the training
data

∆Wij = η(〈 zizj 〉data − 〈 zizj 〉model) , (2.12)

where η represents a learning rate. The learning rule for the bias bi is the same as in Eq.
2.11, but with zj omitted:

∆bi = η(〈 zi 〉data − 〈 zi 〉model) . (2.13)

However, the computation of 〈 zizj 〉model requires the calculation of the partition func-
tion of the model, which becomes exponentially expensive as the number of units
increases. As an alternative, an approximation of 〈 zizj 〉model can be made by drawing
an appropriate sample from the model distribution. Proposed by Hinton (Hinton,
2002), contrastive divergence (CD) approximates the expectation value for the model
distribution by initializing the model with a training vector z(0) from the training set
and collecting a number of samples after allowing the BM to freely evolve for k steps
of Gibbs sampling. Although it can be shown that CD actually is not following the
gradient in Eq. 2.11 (Sutskever and Tieleman, 2010), it has been proven to work well
enough in many applications (Hinton, 2010).

Since the training samples do not give any information about the states of hidden
units, the learning algorithms for multilayer BMs are more complicated and will be
introduced in chapter 4.

2.3. Neural sampling

Recently, a theory (Buesing et al., 2011) has been suggested, which implements MCMC
sampling in networks of abstract model neurons (AMNs). This made it possible to build
a BM based on spiking neurons.

In AMNs, a binary vector (z1, ..., zK) is represented by the firing activity of the

7



2. LIF-based Boltzmann machines: theoretical background

network at time t as follows:

zk(t) = 1⇔ vk has fired within the time interval (t− τ, t] ,

which means that any spike of neuron vk sets the value of the associated binary variable
zk to 1 for a duration of length τ .

For the construction of the sampling network, a so-called neural computability con-
dition (NCC) is assumed, which defines the membrane potential uk(t) of neuron k at
time t as

uk(t) = log
p(zk = 1|z\k)
p(zk = 0|z\k)

, (2.14)

where zk = zk(t) and z\k are the values zi(t) of all other units with i 6= k. For the
Boltzmann distribution (Eq. 2.6), the NCC requires neuron k to have the membrane
potential

uk(t) = bk +
K∑
i=1

Wkizi(t) , (2.15)

where bk is the bias of neuron k and regulates its excitability,Wki is the synaptic strength
between neuron k and i and Wkizi(t) represents the time course of the postsynaptic
potential in neuron k caused by a firing of neuron i. To specify exactly when the neuron
has fired during the time interval (t − τ, t], additional non-binary variables (ζ1, ..., ζK)
are introduced. It is because of these auxiliary variables that the sampling process of
the AMNs has the Markov property: if a neuron only had zk as a state variable, it would
not ’know’ when to exit a refractory state.

In discrete time and for a neuron model with an absolute refractory mechanism ,
the dynamics of ζk are defined in the following way: ζk is set to τ (which is the refractory
period) when neuron vk fires, and decays by 1 in each subsequent discrete time step (see
figure 2.2).

8



2.3. Neural sampling

Figure 2.2.: A schematic of the internal state variable ζk of a spiking neuron vk with an
absolute refractory period. During the refractory period, ζk decays by 1 in
each subsequent discrete time step and is reset to τ when the neuron fires.
The neuron can only fire in the resting state ζk = 0 and in the last refractory
state ζk = 1, with a probability defined by a logistic function. (Image is
taken from Buesing et al., 2011).

The neuron can only spike if ζk ≤ 1 and the spiking probability is defined by

p [zk(t) = 1|ζk(t) ∈ {0, 1}, uk(t)] = σ(uk − log τ) , (2.16)

where σ(x) = (1 + e−x)−1 is the logistic function. To better illustrate how zk, ζk and uk
evolve during a NS process in discrete time, traces of the three variables of one neuron
are shown in figure 2.3.

9



2. LIF-based Boltzmann machines: theoretical background

Figure 2.3.: The figure shows an example of the trace of z, ζ and u of a single selected
AMN for 100 sample steps in an NS process in discrete time with randomly
selected weights and biases. The refractory period τ is chosen to be 20 and
total neuron number is 100.
While the membrane potential u is updated at every discrete time step, ζ
decreases from τ to 1 in a fixed manner during the refractory period, and is
reset to τ at z = 1 or z = 0 with a probability depending on the value of
u at that time. The state of the neuron z is set to 1 during the refractory
period, otherwise 0.

2.4. LIF sampling

The sampling dynamics of AMN networks depends on the stochastic nature of their units.
Seemingly in contrast to that, in vitro experiments have shown the largely deterministic
nature of single neurons. Besides, microscopic models of neural circuits consisting of
biologically plausible neuron models typically rely on deterministic dynamics of their
constituents: a neuron spikes when its membrane potential is above a certain threshold,
rather than according to a certain probability. An often-used model with such properties
is the leaky integrate-and-fire (LIF) neuron model, described by the ODE

Cm
duk
dt

= gl(El − uk) + Ik , (2.17)

with capacitance Cm, leak potential El, leak conductance gl and input current Ik. The
spiking condition is deterministic: When uk crosses a threshold ϑ from below, a spike is
emitted and uk is reset to % for a refractory period τref . For conductance-based synapses,

10



2.4. LIF sampling

the synaptic input current injected into a neuron is typically modelled as

dIsyn
k

dt
= −

Isyn
k

τsyn
+
∑
syn i

∑
spk s

wki (Erev
i − uk)δ(t− ts) , (2.18)

with the synaptic time constant τsyn, the synaptic weight wki and the reversal potential of
the ith synapse Erev

i . It was demonstrated (Petrovici et al., 2013) that in a spiking noisy
environment, by describing the spike response as a first-passage time (FPT) problem, the
dynamics of a single LIF neuron will exhibit the stochastic features required by neural
sampling and therefore are able to implement sampling from well-defined probability
distributions. This directly implies the possibility to build an LIF-neuron-based BM
which can perform stochastic inference on the same class of probability distributions as
the BM based on AMNs.

2.4.1. Deterministic neurons in a noisy spiking environment

In a noisy spiking environment, the total input current Ik to a neuron can be partitioned
into recurrent synaptic input, diffuse synaptic noise and additional external currents:
Ik = Irec

k + Inoise
k + Iext

k . Throughout the analysis of individual neurons, Irec
k and Iext

k are
set to zero.

When a conductance-based neuron receives enough synaptic stimulation, it enters a
so-called high-conductance state (HCS), characterized by accelerated membrane dynam-
ics. In a high input rate regime, the equation governing the membrane potential can
then be written as

τeff
du

dt
= ueff − u (2.19)

ueff =
Iext + glEl

〈 gtot 〉
+

∑
i g

noise
i Erev

i

〈 gtot 〉
, (2.20)

with 〈 · 〉 denoting the mean and gnoise
i representing the total conductance at the ith

synapse. The membrane time constant τm = Cm/gl in Eq. 2.17 is replaced by an
effective time constant τeff = Cm/gtot, with the total conductance gtot subsuming both
leakage and synaptic conductance. In a first-order approximation, τeff can be considered
very small in the HCS, resulting in u ≈ ueff , with the effective potential ueff simply being
a linear transformation of the synaptic noise input.

Based on an approach by Ricciardi and Sacerdote (1979), Petrovici et al. (2013) have
shown that, if stimulated by a large number of uncorrelated spike sources, the synaptic
current Inoise - and therefore, also ueff - can be described as an Ornstein-Uhlenbeck (OU)
process

du(t) = θ · (µ− u(t)) +Σ · dW (t) , (2.21)

11



2. LIF-based Boltzmann machines: theoretical background

with parameters

θ =
1

τsyn
(2.22)

µ =
Iext + glEl + ΣiνiwiE

rev
i τsyn

〈 gtot 〉+ Σiνiwiτsyn
(2.23)

Σ2 =
∑
i

νiw
2
i (E

rev
i − µ)2τsyn/ 〈 gtot 〉 , (2.24)

where νi represents the input rate at the ith noise synapse.

2.4.2. The activation function as an FPT problem

In the AMN, the spiking probability (2.16) can be viewed as an activation function

p(z = 1) = σ(v) := [1 + exp(−v)]−1 . (2.25)

An activation function of the deterministic LIF neuron in a spiking noisy environment can
also be derived (Petrovici et al., 2013). Analogously to the AMN, we define the refractory
state of a neuron as z = 1. For neuron membrane dynamics with a reset mechanism,
two modes of firing can be observed: the "bursting" mode, where the effective membrane
potential after the refractory period is still above threshold, and the freely evolving mode,
where the neuron does not spike again immediately after the refractory period. Denoting
the relative occurrence of burst lengths n by Pn and the average duration of the freely
evolving mode that follows an n-spike-burst by Tn, we can identify the following relation:

p(z = 1) =

∑
n Pn · n · τon∑

n Pn · (n · τon + Tn)
. (2.26)

Given the parameters of the associated OU process, a recursive expression for Pn and Tn
can be derived, which ultimately allows the calculation of p(z = 1):

Pn = p(un < ϑ, ..., u1 ≥ ϑ|u0 = ϑ) (2.27)

=
(

1−
∑n−1

i=1 Pi

) ∫∞
ϑ dun−1p(un−1|un−1 ≥ ϑ)[∫ ϑ

−∞ dunp(un|un−1)
]

Tn =
∫∞
ϑ dun−1p(un−1|un−1 ≥ ϑ) (2.28)[∫ ϑ
−∞ dunp(un|un < ϑ, un−1) 〈T (ϑ, un) 〉

]
.

The transfer function p(un|un−1) is the Green’s function of the OU process for t = τref :

p(un|un−1) = Ce
− θ
Σ2

[
(un−(un−1−µ) exp(−θτref)−µ)2

1−exp(−2θτref)

]
, (2.29)

with the normalization C =
√
θ/πΣ2(1− e−2θτref ). T (ub, ua) denotes the time the mem-

brane needs to reach ub starting from ua. To improve the prediction of the activation
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2.4. LIF sampling

function, one needs to take into account small, but finite τeff , in which case the membrane
potential no longer directly follows the input current, but is low-pass-filtered value due
to a non-zero τeff . By using an expansion in

√
τeff/τsyn, a first-order correction to the

FPT can be calculated (see Brunel and Sergi (1998)):

〈T (ϑ, u) 〉 = τ
√
π

ϑeff−µ
σ∫

u−µ
σ

dx exp(x2)[erf(x) + 1] , (2.30)

with the effective threshold ϑeff ≈ ϑ − ζ(1
2)
√

τeff
2τsyn

, where ζ denotes the Riemann Zeta

function. A comparison of the predicted p(z = 1) with results from a numerical simulation
is shown in Fig. 2.4.

Figure 2.4.: The activation function of an LIF-neuron. Theoretical prediction (red) vs.
simulation results (blue). A logistic function σ(ū) (green) is fitted to the
prediction. (Image is taken from Petrovici et al., 2013).

For the translation from the LIF neuron to the AMN,

v = (ū− ū0)/α , (2.31)

where ū0 denotes the value of ū for which p(z = 1) = 1
2 and α represents a scaling factor

between the two domains. At this point, one can conclude that a single LIF neuron in a
spiking noisy environment can closely reproduce the activation function (2.25).

2.4.3. Sampling via recurrent networks of LIF neurons

In addition to the discussed synaptic noise stimulus, an LIF neuron k in a recurrent
network receives synaptic currents Irec

k from other network neurons. Based on the
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2. LIF-based Boltzmann machines: theoretical background

activation function derived in the previous section, an unconnected LIF neuron exhibits
a well-defined spiking probability. For Boltzmann distributions as defined in (2.6), LIF
neurons in a spiking noisy environment can closely approximate the logistic activation
function defined by (2.25) if the mean membrane potential ūk is mapped in the LIF
domain according to the linear translation in (2.31).

Using (2.31) to translate the bias bk to a modification in the mean ūk (implementable
by, e.g., a bias current or a modified leak potential) and estimating the impact of a
pre-synaptic spike on the post-synaptic neuron through conductance-based synapses of
weight wkj , the following parameter translations between the abstract and the LIF
domain can be written down (Petrovici et al., 2013):

bk = (ūbk − ū0
k)/α (2.32)

Wkj = 1
αCm

wkj(Erev
kj −µ)

1− τsyn
τeff

[
τsyn(e−1 − 1)−τeff

(
e
− τsyn
τeff − 1

)]
. (2.33)

where ūbk denotes the mean free potential ūk in Fig. 2.4, and Erev
kj is the reversal potential

for synapseWkj . The idea of Eq. 2.33 is to match the integrals of individual postsynaptic
potentials on vk and ūk. Furthermore, short-term synaptic depression was employed
to approximate the theoretically optimal rectangular PSP shape for consecutive spikes
(bursts).

The above formalism allows the precise individual configuration of every neuron and
afferent synapse in the network, as long as the activation function of individual neurons
can be measured. This renders parameter variations almost completely irrelevant, re-
quiring precision only for leak potentials and synaptic weights. Evidently, this kind of
robustness offers major advantages for an implementation in analog neuromorphic hard-
ware, which always exhibits some degree of fixed-pattern noise. A software framework
that implements this automated tuning protocol (Petrovici , 2014, in preparation) has
been used throughout this work.

In order to translate synaptic interactions in the form of (Wkj , wkj) and a neuronal
excitability (bk, ū

b
k) between the two domains (AMN, LIF neuron), the parameters ūb0

and α can be read out from the form of the activation function. Its inflection point ūb0
and slope α can then be used according to Eq. 2.32, 2.33.

Since the performance of neural sampling has already been evaluated in (Buesing
et al., 2011) for implementations with AMNs for several inference tasks, this model will
be employed as a benchmark for LIF-based implementations. For the presented inference
tasks in the following chapters, this will be the general working protocol.
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3. Perceptual multistability as a
probabilistic inference task

Based on the theoretical foundations from the previous chapter, in the following sections
we will evaluate the sampling performance of leaky integrate- and-fire (LIF) neurons ap-
plied to a "fully visible" BM (without hidden units). As a specific application, we choose
a perceptual multistability setup, which has already been discussed in (Buesing et al.,
2011) for an implementation with abstract model neurons (AMNs). These results will
be used as benchmarks for evaluating the LIF results. At first, we perform the train-
ing of an AMN-based BM to model perceptual multistability, then translate the trained
model parameters to the LIF-based BM to compare the results of both implementations.
Due to the characteristics of the conductance-based LIF model, a straightforward weight
translation (as proposed in section 3.2.1) will introduce additional deviations to the LIF
network, impairing its sampling performance. To solve this problem, a method for rescal-
ing synaptic weights is proposed, which improves the sampling performance visibly, but
still not quite to the level of the AMN-based implementation. Therefore, the next step
is to train the LIF-based BM directly. To achieve this, we use a CD learning algorithm
based on LIF samplers, and the result after the training of the model proves its feasibil-
ity. Additionally, the good results achieved with this training method when applied to
LIF neurons with noised parameters shows its potential for a future implementation on
neuromorphic hardware.

3.1. Modeling perceptual multistability with AMN-based
BMs

Perceptual multistability is a phenomenon evoked by ambiguous sensory stimuli, such as
a 2D picture (e.g.,a Necker cube, see Fig. 3.1) that will cause different consistent 3D
interpretations. When under such stimulus, the perception of humans and non-human
primates will switch between different self-consistent global percepts, rather than produce
a superposition of different possible percepts (Buesing et al., 2011).
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3. Perceptual multistability as a probabilistic inference task

Figure 3.1.: Ambiguous sensory stimulus: the Necker cube (on the left). A perceptual
switch of the perceived orientation can be triggered voluntarily, but a super-
position of both percepts can never happen.

A standard experimental paradigm for studying this effect is binocular rivalry, where
different images are presented to the left and right eye. A typical pair of stimuli are the
two images shown in Fig. 3.2.

Figure 3.2.: Typical visual stimuli for the left and right eye in binocular rivalry exper-
iments. When presented with such contradictory stimuli, human percep-
tion switches between the two presented orientations. (Image is taken from
Buesing et al., 2011)

Simulations by (Buesing et al., 2011) suggested that perception can be interpreted as
probabilistic inference carried out by MCMC sampling. In particular, they have shown
how these phenomena can be reproduced within the neural sampling framework.

3.1.1. Experimental setup

To model perceptual multistability, 217 abstract model neurons were arranged on a
hexagonal grid (see Fig. 3.3a). Neighboring units had distance 1 and any two neurons
with distance ≤ 8 were connected. Each neuron was randomly assigned a preferred
orientation ϕk and all the preferred orientations were chosen to cover the entire interval
[0, π) with equal spacing. A corresponding tuning curve centered around the neuron’s
preferred orientation (see Fig. 3.3b) defined its firing probability under external stimuli

Vk(ϕ) = ν0 + C exp[κ cos(2(ϕ− ϕ̄k))− κ] , (3.1)

where C denotes the sensitivity contrast, κ denotes the peakedness and ν0 denotes the
base sensitivity. In this particular implementation, the values of C, κ and ν0 were chosen
to be 0.9, 3 and 0.05, respectively.
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3.1. Modeling perceptual multistability with AMN-based BMs

(a) (b)

Figure 3.3.: Experimental setup.
(a): 217 AMNs arranged on a hexagonal grid. The distance between neigh-
boring units is 1 and any two neurons with distance ≤ 8 are connected. Each
neuron is randomly assigned a preferred orientation and its firing probabil-
ity under external stimuli (a global input orientation) is defined by a tuning
curve (b).

3.1.2. Training

Prior to training, the initial weights and biases were set to 0. The employed learning
algorithm was CD and the parameters were updated as follows:

∆Wki = ηki(z̃kz̃i − z∗kz∗i )

∆bk = η(z̃k − z∗k) , (3.2)

where z̃ denotes posterior samples (network states under the influence of present input),
z∗ denotes approximate prior samples (network states in the absence of stimuli), η
denotes the learning rate and ηki equals η if νk and νi were connected, otherwise 0. The
learning rate was chosen to be constant at 10−4 during training.

The posterior sample was generated in the following way:

1. A global input orientation ϕ was uniformly drawn from [0, π).
2. Each neuron then fired independently with probability p(zk = 1) = Vk(ϕ).
3. The resulting network state was taken as a posterior sample.

The approximate prior sample was obtained by:

1. Randomly choosing ζk uniformly in {1,&, τ} if z̃k = 1 and ζk = 0 otherwise.
2. After evolving freely for τ steps from the posterior state, the network state was

taken as an approximate prior sample.
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3. Perceptual multistability as a probabilistic inference task

In the experiment, τ was chosen to be 20. The weights and biases were updated
immediately after obtaining the two samples. In total, we trained the network for 105

steps.

3.1.3. Results

As expected, after learning, the network connections showed high specificity: neurons
with similar preferred orientations were connected with excitatory weights (Wki = 0.117±
0.049), and dissimilar orientations with inhibitory weights (Wki = −0.076 ± 0.042) (see
Fig. 3.4a). The preferred orientations ϕ̄i and ϕ̄j were defined as similar if Vi(ϕ̄j) −
ν0 = Vj(ϕ̄i) − ν0 > 0.5C, otherwise dissimilar. The mean neuron biases converged to
−0.071± 0.044 (see Fig. 3.4b).

(a) (b)

Figure 3.4.: Evolution of mean weights and biases during 105 training steps with a con-
stant learning rate η = 10−4.
(a): Mean of weights of similar preferred orientation (SPO, blue), standard
deviation of weights of SPO (red), mean of weights of dissimilar preferred
orientation (DPO, green), standard deviation of weights of DPO (yellow).
After training, neurons with similar (dissimilar) preferred orientations are
connected with mean positive (negative) weights.
(b): Mean of biases (blue), standard deviation of biases (red). After training,
neuron mean bias converged to a negative value.

To understand the high-dimensional network states more intuitively, their distribution
was evaluated by a population vector plot and a plot of the marginal distribution of
neuron firing probabilities. The population vector is a 2-dimensional projection of the
high-dimensional network state

x = (x0, xπ/4) =

K∑
k=1

zk · (cos 2ϕ̄k, sin 2ϕ̄k) . (3.3)
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3.1. Modeling perceptual multistability with AMN-based BMs

According to the definition, the orientation of the population vector will correspond
to the dominant orientation of the percept, and its distance from the origin represents
the percept strength. A network state with a large strength of percept is defined as a
coherent state.

The marginal firing distribution was obtained by running a simulation for a long
time. For our task, the network was run for 5 ·105 sampling steps. We can see that when
the network evolved freely, the population vectors (see Fig. 3.5a) show an arbitrary
orientation, as expected. Moreover, they are concentrated around large radii, which
denotes network states with strong coherence. The marginal distribution plot (see Fig.
3.5b) of neuron firing probabilities is basically an even distribution with fluctuations of
about 10%, indicating that all neurons share more or less the same firing probability.

To model binocular rivalry, the network was modified by clamping 8 neurons to emulate
the grating stimuli in Fig. 3.2. Two neurons with ϕ̄k ≈ π/4 and two with ϕ̄k ≈ 3π/4
were clamped to z = 1. Additionally, two neurons with ϕ̄k ≈ 0 and two with ϕ̄k ≈ π/2
were clamped to z = 0. More specifically, neurons were clamped by setting their biases
to extreme values (eg. 50 for clamped to 1 and -50 for clamped to 0).

The result (see Fig. 3.5c) shows that the network spends most of the time in states that
correspond to one of the two input orientations which were facilitated via clamping. The
black line shows the trace of network state during a perceptual switch. The marginal
firing probability plot (see Fig. 3.5d) shows a symmetric distribution pattern, where
neurons with preferred orientation closer to one of the clamped orientations fire with
higher probability.
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3. Perceptual multistability as a probabilistic inference task

(a) (b)

(c) (d)

(e)

Figure 3.5.: Results after 105 training steps with a constant learning rate η = 10−4.
(a): Population vectors (PV) plot of 2·104 consecutive sampling steps (Nsteps

= 2 · 104). Training leads to strongly coherent states. (b): Marginal firing
distribution (MFD) of prior states. Neurons are arranged along the x-axis
according to the value of their preferred orientation: preferred orientation
goes up in positive direction of the axis. Nsteps = 5 · 105. (c): PV plot
of clamped states. Nsteps = 2 · 104. The black line shows the evolution of
the network state for 1000 Nsteps in the proximity of a perceptual switch.
(d): MFD of clamped states. Neurons are arranged in the same way as in
(b). Nsteps = 5 · 105. (e): A comparison between two MFDs shows that the
clamped input changes the firing activity of the network. Firing frequencies
of neurons with SPO as the neurons clamped to 1 are increased. Conversely,
firing frequencies of neurons with SPO as the neurons clamped to 0 are
decreased.
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3.1. Modeling perceptual multistability with AMN-based BMs

The training took about 1 hour (on IGNATZ1) with a constant learning rate during
training. We were able to reduce this training time by a factor of 100 by the learning
algorithm with an exponentially decreasing learning rate:

η(n) = (10−4 − 10−2 + 1)
n

1000 + 10−2 − 1 , n = 0, 1, 2...N

With this setup, η decreased from 10−2 to 10−4 in N = 103 time steps. The mean
weights and biases still converged to almost the same values (see Fig. 3.6), i.e., neurons
with similar (and also dissimilar) preferred orientations shared generally the same weight
strengths as when trained with constant learning rates.

(a) (b)

Figure 3.6.: Evolution of mean weights and biases during 103 training steps with expo-
nentially decreasing learning rates. After training, the mean weights and
biases converged to almost the same values as when training with a constant
learning rate (see Fig. 3.4).
(a): Mean of weights of similar preferred orientation (SPO, blue), standard
deviation of weights of SPO (red), mean of weights of dissimilar preferred
orientation (DPO, green), standard deviation of weights of DPO (yellow).
(b): Mean of biases (blue), standard deviation of biases (red).

After training, the marginal firing probability distribution of prior states (see Fig.
3.7a) exhibited more fluctuation than Fig. (3.5b). For bimodal states (see Fig. 3.7b), the
distribution was less symmetric compared to the result obtained with a constant learning
rate. The fluctuations can be explained by the more “crude” training algorithm. The
decrease in symmetry is likely due to the average times the network needs to propagate
from one mode to the others. Since such a propagation time is in the order of seconds, (1
sampling step2 is defined to be equal to 1 ms) (Buesing et al., 2011), longer simulation
might yield a more symmetric distribution pattern.

1IGNATZ: AMD Phenom(tm) II X4 965 Processor
2update the state of all units for one time
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3. Perceptual multistability as a probabilistic inference task

(a) (b)

Figure 3.7.: Marginal firing probability distributions after 103 training steps with learning
rates exponentially decreasing from 10−2 to 10−4.
(a): MFD of prior states. The distribution exhibits more fluctuation than
when training with a constant learning rate. Nsteps = 5 · 105. (b): MFD of
clamped states. The distribution exhibits more fluctuation and is also not as
symmetric as when training with a constant learning rate. Nsteps = 5 · 105.

The result can be improved by further training the model with a constant small
learning rate to fine tune the model parameters. Also, more elaborate learning rate
decreasing mechanisms might improve the uniformity of the network behavior.

We conclude that a decreasing learning rate can be an optimal choice when train-
ing large networks, although the result might be not as good as when training with a
constant small learning rate. After training, the network states qualitatively showed the
desired distributions in both the freely evolving and the clamped input cases. Next, we
transfer the trained model parameters to the LIF-based BM.

3.2. Modeling perceptual multistability with LIF-based BMs

For the LIF-based BMs, we chose the set of neuron parameters (conductance-based) from
table 3.1 (neuron parameters as defined in PyNN).
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Name (PyNN) Value Units Description
v_rest -50.0 mV Resting membrane potential urest

cm 0.2 nF Capacity of the membrane Cm

tau_m 1.0 ms Membrane time constant τm

tau_refrac 30.0 ms Duration of refractory period τref

tau_syn_E 30.0 ms Decay time of the excitatory synaptic conductance τ syn
exc

tau_syn_I 30.0 ms Decay time of the inhibitory synaptic conductance τ syn
inh

e_rev_E 0.0 mV Reversal potential for excitatory input Erev
exc

e_rev_I -100.0 mV Reversal potential for inhibitory input Erev
inh

v_thresh -50.0 mV Spike threshold ϑ
v_reset -50.001 mV Reset potential after a spike ureset

i_offset 0.0 nA Offset current Ioff

Table 3.1.: Neuron parameters for our software (NEURON) simulations.

The distance between reset potential and threshold is set to be small, which allows
the membrane potential to jump to the threshold quickly after the refractory period.
This enables a better correspondence between the firing statistics of the LIF samplers
and the AMNs.

For example, during a period of continuous spiking, the AMN can enter the next
refractory period immediately after the end of the last refractory period and the state
of the neuron can always be 1 (as shown in Fig. 3.8a). However, the same situation,
the membrane potential of the LIF neuron needs to first reach the threshold starting
from the reset potential at the end of the last refractory period (see Fig. 3.8b). For this
finite interval of time, the LIF neuron is in the wrong (z = 0) state. When the distance
between the reset potential and the threshold is small enough, the jumping will take
almost no time and the state of the LIF-neuron can almost always be 1, thereby yielding
a better approximation of the AMN z-dynamics.

High-frequency Poisson noise was injected into the populations to make the neu-
rons enter a high-conductance state. Each neuron had two independent Poisson sources,
one excitatory and the other inhibitory. The rate of the noise was set to 0.4 kHz and
the synaptic weights of the noise input were all set to 0.002 uS.
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3. Perceptual multistability as a probabilistic inference task

(a) AMN (b) LIF neuron

Figure 3.8.: Comparison of neuron states during continuous spiking.
(a): Traces of the membrane potential u, state z and auxiliary variable ζ of
an AMN. During continuous spiking, the AMN is able to jump to the next
refractory period immediately at the end the last refractory period while
maintaining its state at 1. (b): Traces of membrane potential u and the
state z of an LIF neuron with reset potential -53 mV and threshold -50
mV. During continuous spiking, the membrane potential needs to reach the
threshold at the end of the last refractory period, the neuron state during the
"jumping time" is 0. The time in the 0 state can be reduced if the distance
between the threshold and the reset potential is set to be small.

3.2.1. Direct parameter translation to LIF neurons

We first applied ideal neuron parameters to all neurons, which means there is no added
noise and all the neurons share identical parameters as in table 3.1. After the translation
(see Eq. 2.32, 2.33) of the trained AMN parameters (we chose the model parameters
trained for 105 times with a constant learning rate η = 10−4) to the LIF domain, we
first ran a free simulation of the network (with the NEURON simulator) to evaluate the
prior distribution. The result can be seen in Fig. (3.9a) and (3.9b).

To emulate the grating stimuli for the binocular rivalry experiment, two LIF neu-
rons representing ϕ̄k ≈ π/4 (ϕ̄k ≈ 0) and ϕ̄k ≈ 3π/4 (ϕ̄k ≈ π/2) were effectively
clamped by a large increase (decrease) of their v_rest values to enforce permanent
spiking (silence). The simulation result can be seen in Fig. (3.9c) and (3.9d).

A long simulation time is needed in order to obtain a stable marginal firing proba-
bility distribution of the network. Especially for the distribution of the bimodal states,
since the model switches between the two modes stochastically, a longer simulation time
is more likely to guarantee that the states of the model will show a more symmetric
distribution. In the simulation of the LIF network, 1 ms corresponds to 1 sampling step
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3.2. Modeling perceptual multistability with LIF-based BMs

in the AMN experiment. The refractory time constant is 30 ms for the LIF neuron, for
the AMN it is 20 sampling steps. Therefore, we chose a simulation time of 7.5 · 105 ms
to obtain the marginal firing probability distribution of the model, which corresponds to
the 5 · 105 sampling steps in the AMN experiment.

Originally we expected that after parameter translation, the LIF-based BM would
exhibit almost the same distribution as the AMN-based BM. However, Fig. (3.9b) shows
that the prior distribution is slightly different from the one obtained with AMN. The
difference between the bimodal distributions (see Fig. 3.9d) is more significant, the
relative peak height (maximum height minus minimum height) being approximately a
factor of 2 below the one from the AMN based implementation.

Slight differences between states distributions are reasonable since the LIF-based BM and
AMN-based BM are essentially two different models. However, previous work (Petrovici
et al., 2013) has shown that, in a small network (eg. 5 neurons), an LIF-based BM with
direct parameter translation from the AMN-based BM can actually represent the target
probability distribution with very high accuracy. From Fig. (3.9e) one observes that the
two distinctive modes are significantly less pronounced in the LIF marginal distribution,
with the clamping mechanism showing less impact on neighbouring neurons than the
AMN-based network (see Fig. 3.5e). One possible explanation for this mismatch will be
discussed in the following section.
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(a) (b)

(c) (d)

(e)

Figure 3.9.: Results for the LIF-based BM after direct parameter translation from trained
model parameters of the AMN-based BM.
(a): PV plot of prior states. The model exhibits coherent states. Simulation
time: 2 · 104 ms (Tsim = 2 · 104 ms). (b): MFD of prior states. The firing
probabilities distribution is below the corresponding AMN curve. Tsim =
7.5 ·105 ms. (c): PV plot of clamped states. Tsim = 2 ·104 ms, the black line
shows the evolution of the network state for 1000 ms around a perceptual
switch. (d): MFD of clamped states. The valleys and hills are not as steep
as the corresponding AMN curve. Tsim = 7.5 · 105 ms. (e): Comparison of
the MFDs before and after clamping. The effect of clamping is significantly
weaker than the in the AMN experiment (see Fig. 3.5e)
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3.2.2. Problems in weight translation

To compare LIF-based networks with AMN-based networks, the LIF neurons are initial-
ized according to the weight and bias translation rules in Eq. 2.32, 2.33. The weight
translation can also be written as:

Wkj = 1
α

wkj(Erev
kj −µ)

Cm−τsyngtot

[
τsyn(e−1 − 1)−τeff

(
e
− τsyn
τeff − 1

)]
, (3.4)

where gtot = Cm/τeff . Theoretically, gtot should be a sum of the leakage conductance
gl and all other synaptic conductances, including the conductance caused by excitatory
and inhibitory Poisson input noises ge and gi, but also the conductance coming from
inter-neuron synapses gn. ge and gi can be calculated before the simulation. However, it
is intractable to compute gn before translating the BM parameters and actually running
the simulation, since it would require the calculation of the joint distribution p(z) for
all possible combinations of states z. Adding to the complexity, gn is most likely not
constant, but might vary significantly as a function of time.

In practice, gtot is calculated by

gtot = ge + gi + gl (3.5)
gl = C/τm

ge =
∑

exc syn k

νkwkτ
syn
exc

gi =
∑

inh syn k

νkwkτ
syn
inh ,

where τm is the membrane time constant, νk and wk are the rate and weight of the
corresponding Poisson input noise, and τ syn

exc , τ syn
inh are the time constants of the excitatory

and inhibitory noise input synapses.

In neural networks where inter-neuron spikes do not occur as frequently as the in-
put noise (eg. network with few neurons, small weights and biases), the contribution of
gn compared to gtot is small. In our setup, the network consists of 217 neurons and the
number of afferent synapses from the network for each neuron ranges from 80 to 216.
On this scale, the influence of gn can no longer be ignored.

In order to calculate the average conductance interactions within the network for
each neuron, we assume that all neurons fire with approximately constant rates. Under
this assumption, we can calculate gn by starting a simulation S and recording the spiking
frequency for each neuron.

gn
j =

∑
syn i

νiwijτ
syn
j , (3.6)
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3. Perceptual multistability as a probabilistic inference task

where gn
j denotes the sum of inter-neuron synaptic conductance of neuron j, wij is the

strength of the synapse from neuron i to neuron j, νi is the spiking frequency of neuron
i, and τ syn

j is the synaptic time constant of neuron j. νi is calculated as the quotient of
the total number of spikes divided by the total simulation time. A weight-rescale factor
wrfSj for neuron j in simulation S can then be obtained:

wrfSj = 1 +
gn
j

gtot
j

. (3.7)

In the second step, we run a simulation S′ with the same simulation time as S and for
each neuron k, we multiply wrfSk to gtotk during the weight translation. The result after
applying this iterative weight-rescale method is in Fig. 3.10. We then take the model
state from simulation S

′ as the result. A comparison of results from three models is
shown in Fig. 3.11.

(a) (b)

Figure 3.10.: Results for the LIF-based BM with the weight rescaling method in the
parameter translation. (a): The prior marginal distribution is closer to the
one in the AMN-based network. Tsim = 7.5 · 105 ms. (b): MFD of the
clamped states. The relative peak height also improves, although it does
not quite reach the one measured in the AMN-based implementation. Tsim

= 7.5 · 105 ms.
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3.2. Modeling perceptual multistability with LIF-based BMs

(a) (b)

Figure 3.11.: Comparison of firing distributions: LIF-based BM with ideal neuron pa-
rameters with direct model parameter transfer (id), LIF-based BM with
ideal neuron parameters with weight-rescale method (id wr), and the theo-
retical benchmark from the AMN-based network (AMN). Qualitatively, the
weight-rescale procedure has slightly improved the LIF-based implementa-
tion.

The mean weight-rescale factor for a simulation time of 7.5 · 105 ms was calculated
to be about 1.09, which means gn/gtot ≈ 0.09. This yields a slightly better approxi-
mation of the neuron’s firing probabilities to the AMN-benchmark. The prior marginal
distribution is closer to the displayed AMN curve. The right mode of the bimodal
distribution is lifted up and more similar to the AMN curve, while the left mode remains
almost the same as before. This result could potentially be attributed to the average
times the network needs to propagate from one mode to the others. Since such a
propagation time is in the order of seconds (Buesing et al., 2011), even longer simulation
times than Tsim = 7.5·105 ms need to be used to ensure converged marginal probabilities.

The result might be further improved if the weight rescaling method can be iterated more
times, but it is also possible that it will not converge to the target distribution. Besides,
adding iterating times is time-consuming, since the network needs to be reinitialized
for every iteration. Another addition that might improve the result is to multiply the
weight rescale factor to the biases as well. However, we did not spend much effort in the
optimization of the weight rescaling, since its main purpose was to analyze the causes of
the deviation of the LIF result from the theoretical benchmark, and was never meant to
be an ultimate solution.

We conclude that the weight rescaling method does indeed improve the quality of
the sampled distribution (i.e., the uniformity of the prior and the marked bimodality
of the posterior). However, since it is probably not precise enough for more complex
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tasks, we propose to move away from the translation paradigm and train the LIF-based
networks directly.

3.2.3. LIF-based BMs with noised neuron parameters

In the neuromorphic hardware, fixed-pattern noise exists in neuronal circuitry. This
results in neuron-to-neuron variability of the neuron parameters. In order to test the
sampling performance of LIF units for such a setup, we added random noise to the
neuron parameters (see table. 3.1) for each neuron.

Neuron parameter (PyNN syntax) Noise value Units
tau_m 0.1 ms
e_rev_E, e_rev_I, v_rest 2.0 mV
v_reset, v_thresh 0.5 mV
tau_syn_E, tau_syn_I 2.0 ms
tau_refrac 1.0 ms

Table 3.2.: Noise values for neuron parameters

The parameter noise was assumed as additive and uniformly distributed (around 0,
with widths as given in table 3.2). The noise values were chosen according to personal
communication with Mihai A. Petrovici and Marc-Olivier Schwartz. tau_m was chosen
to be 2 ms and an error of 5% in the hardware was tolerated. The noise values of
e_rev_E, e_rev_I and v_rest can be found in (Schwartz , 2013). For v_reset and
v_thresh, repeated experiments on the hardware showed that it was possible to find
about a quarter of all neurons with such parameter deviations. The noise values of
tau_syn_E and tau_syn_I were estimated based on several early trials performed in
2013 by Petrovici and Schwartz. For tau_refrac, hardware experiments showed that
about 80 neurons had this deviation when τref was set to 30 ms.

To avoid that, after noising, the value of v_thresh becomes lower than v_reset,
we changed the target value of v_reset to -53.0 mV. We ran two simulations with one
applying the weight-rescale method and the other without, results can be seen in Fig.
3.12.
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(a) (b)

(c) (d)

Figure 3.12.: Results for the LIF-based BM with noised neuron parameters.
(a): MFDs of direct parameter translation to the LIF-based BM with noised
neuron parameters. Tsim = 7.5·105 ms. (b): MFDs of parameter translation
with weight-rescale method. Tsim = 7.5 · 105 ms. (c): Comparison of
MFDs. Both firing distributions for prior states are close to the AMN
curve. (d): Comparison of MFDs. The weight-rescale method increases
the height of the left peak of the firing distribution for clamped states,
exhibiting a qualitative improvement towards the AMN curve.

Figure (3.12c) shows that both firing probability distributions for the prior states
are very close to the AMN curve. Figure (3.12d) shows that the weight-rescale method
increases the peak-to-valley ratio by 25%.

The performance of the self-calibrating implementation is quite evident, as the sampling
performance is not affected by parameter variability (within the provided range). This
is an indicator of the high accuracy of the model parameter translation mechanism for
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3. Perceptual multistability as a probabilistic inference task

each individual neuron, and shows the potential of implementing the LIF-based BM
on neuromorphic hardware architectures, assuming they display reasonable parameter
variability and offer sufficient configurability of synaptic weights and leak potentials.3

3.2.4. Direct training of LIF-based BMs

Although the weight rescaling method improved the LIF sampling performance with
respect to the benchmark obtained via AMN-networks, training LIF-networks directly
could implicitly resolve the problems introduced by the inherent differences between the
AMN and LIF dynamics.

All the deviations are likely to be inherently amended when training the LIF-based
BM directly, because the updating of model parameters now depends exactly on the
model states itself. The CD algorithm guarantees that every time after updating the
model parameters, the BM will move closer towards the target distribution. It is ex-
pected that in a long run the network will be improved in the right direction. However,
small deviations still exist in the parameter translation between the LIF and the AMN
domain, which might make the learning in the LIF-based BM not as efficient as in the
AMN-based BM.

Before we start to train the LIF-based BM, additional setup needs to be consid-
ered and particular parameters need to be found. We will first discuss this setup and
the method to find these particular parameters, and then introduce a detailed LIF-based
CD learning algorithm based on these settings.

In the AMN network, the waiting time to get the prior state of the model was set
to ≥ τ in order to allow a decorrelation of the model states from its posterior states.
Similarly, a decorrelation time also needs to be found for network of LIF neurons.

To explore the decorrelation of the network of LIF neurons as a function of time,
we used the following method:

1. First, we ran multiple simulations of the same duration and recorded the states of
all the neurons at time points uniformly distributed along the simulation time.
2. Then, states at the same point in time were summed over all the simulations and a

firing probability distribution of all neurons was computed for each point in time.
3. Finally, the Euclidean distance (ED) between each firing distribution profile and a

chosen benchmark was calculated.

Theoretically, a network of LIF neurons will decorrelate from its initial state after
infinite simulation time, and the firing probability distribution after an infinitely large
time interval would be the best benchmark. In practice, we chose the distribution at

3 the latter is actually not even needed, as the effective leak potential can be tuned with the synaptic
weights of the noise stimulus.
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3.2. Modeling perceptual multistability with LIF-based BMs

1000 ms as the benchmark.

In the experiment, different random seeds for the Poisson input noise have been used for
different neurons, as well as for the same neuron in different simulations. The reasons
for these requirements are quite obvious: the former guarantees zero noise correlations,
while the latter ensures true randomness of different trials.

(a) sample time points: 10 ms and 20 ms (b) sample time points: 100 ms and 200 ms

(c) EDs as a function of time

Figure 3.13.: (a), (b): Comparison of firing probability distributions at different time
points with the benchmark (at 1000 ms). Early time points show a differ-
ent range of firing probabilities compared to the benchmark, while times
points at later times show the same range of firing probabilities with the
benchmark. (c): The log of EDs of different sample time points. The profile
converges to a certain value after about 200 ms.

We initialized the LIF-based BM with parameters translated from the AMN weights
and biases used in section 3.2.1, and the result after 5000 simulations can be seen in Fig.
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3.13. Figure (3.13c) shows that the log of EDs decrease and converge to a certain value
after about 200 ms.

Ideally, longer decorrelation times are better choices but are also time-consuming.
In practice, we chose 200 ms as the decorrelation time for our task.

An initialization of the LIF sampler network is needed every time we start a simulation,
which includes translating the theoretical BM parameters to LIF neuron parameters
and building up synaptic connections between neurons. Since the network parameters
are fixed during one simulation, we need to reinitialize the network every time after we
update the model parameters. Also, the seed for generating random Poisson noise is
changed for each neuron every time we start a new simulation during the learning process.

For the current code, one initialization of a LIF neuron network consisting of 217
neurons takes about 70 seconds (with PyNN & NEURON on IGNATZ). Hence, training
the network for 105 times with a constant learning rate as performed in the AMN
experiment would take almost 100 days. A solution to this would be initializing the
LIF-network with the already trained model parameters from an AMN-based BM and
train the LIF-network further for a short time with a constant small learning rate as a
fine tuning.

We took the trained AMN-based BM model parameters used in section 3.2.1 as the
initial parameters for the LIF-based BM and implemented a CD learning algorithm.
The detailed learning process is as follows:

1. Generate a posterior sample in the same way as in section 3.1.2.
2. Initialize the LIF-based BM with model parameters (weights and biases) from the

AMN domain.
3. Initialize the membrane potential of the LIF neurons according to their posterior

state.
4. Run the simulation for the chosen decorrelation time and record the prior estimate.
5. The state of a neuron was set to 1 for a time interval from t to t+ τref if the neuron

spikes at t, and the state after the decorrelation time was taken as the prior state of the
neuron.
6. Update model parameter according to Eq. 3.2.

In step 3, the membrane potential of a neuron is set to the threshold if its state is
1, otherwise is set to a value drawn from a Gaussian distribution N(u

′
, Σ2), where u′

is a sum of the neuron’s mean effective membrane potential µ (see Eq. 2.23), its bias
and the membrane potential caused by recurrent input, whereas Σ2 is the variance of
ueff (see Eq. 2.24). In practice, we draw 1000 values from the distribution and pick the
first one which is below the threshold. If all the drawn values are above the threshold
(rarely), we then set it to a value 0.001 mV below the threshold.
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The result after training a LIF-based BM with noised neuron parameters for 104

times with η = 10−4 is shown in figure 3.14.
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(a) (b)

(c) (d)

(e)

Figure 3.14.: Results after training the LIF-based BM for 104 times with a constant
learning rate η = 10−4.
(a): PV plot of prior states. The model exhibits coherent states. Tsim =
2 · 104 ms. (b): The marginal firing distribution of prior states exhibits
a functional change after a direct training. Tsim = 7.5 · 105 ms. (c): PV
plot of clamped states. Tsim = 2 · 104, the black line shows the evolution
of the network state for 1000 ms around a perceptual switch. (d): MFD of
clamped states. The two peaks are almost as high as the displayed AMN
curve. Tsim = 7.5·105 ms. (e): Comparison of two MFDs. The central valley
of the bimodal distribution is slightly higher compared to the edges due to
the relatively high fire probabilities of the central neurons as exhibited in
the prior states distribution.
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The comparison between the prior distribution of an untrained network and a trained
network can be seen in Fig. (3.15a). We can see in Fig. (3.15b) that the neurons near
the clamped orientations fire with higher probabilities compared to the LIF-based BM
with direct model parameter translation of noised neuron parameters. The distribution
has distinctive peaks, close to the ones of the benchmark distribution. This proves the
effectivity of applying a CD learning algorithm to the LIF-based BM.

(a) (b)

Figure 3.15.: Comparison of firing probability distributions: LIF-based BM with noised
neuron parameters with direct model parameter translation (noised), LIF-
based BM with noised neuron parameters with training (noised tr), and
the their benchmark obtained from the AMN implementation (AMN). (a):
MFDs of prior states. Due to the training, the parameters of the LIF-based
BM are altered and thereby causes a functional change to the MFD of the
prior states. (b): MFDs of clamped states. The training improves the
performance of the LIF network significantly.

Due to the initialization time mentioned before, the training of the network cost
almost 10 days. As training results would obviously benefit from longer training time,
future modifications of the LIF-based BM initializations are expected to greatly improve
the learning speed.

In conclusion, in this chapter we first modeled perceptual multistability with an AMN-
based BM, then we translated the trained model parameters to an LIF-based BM and
the result proved that an LIF-based BM is able to sample from a well-defined probability
distribution. Additionally, by adding noise to the neuron parameters we showed the
potential of the implementation of an LIF-based BM on a neuromorphic hardware device.

The difference of results between the two BMs (LIF-based and AMN-based) revealed the
imperfection of direct model parameters translation. A careful analysis of the dynamics
of a LIF sampler embedded in a larger network led to the design of a weight-rescale
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method in order to reduce the deviation of the LIF-network from its benchmark.

Finally, a training algorithm for the LIF-based BM was proposed and its feasibility
was demonstrated. The implementation of CD for the LIF-based BMs lays the founda-
tion for more complex learning algorithms, which will be discussed in the next chapter
for LIF-based restricted BMs.
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learning architectures

Depending on their size and structure, restricted Boltzmann machines (RBMs) are able
to learn highly complex patterns, such as visual representations of objects or speech
words. They are also the building block of the multi-layer learning networks called deep
Boltzmann machines, which we will introduce in the next chapter.

In the previous chapter, we implemented the contrastive divergence (CD) algorithm
on an LIF-based fully visible BM. Taking this one step further leads us to the question
whether training an LIF-based restricted Boltzmann machine (RBM) with hidden units
is possible. We will explore this question in this chapter.

First, we will introduce the basic concept of the RBM. Afterwards, a series of learning
problems and their solutions will be discussed, leading to an efficient learning algorithm,
namely coupled adaptive simulated tempering (CAST).

Then, an AMN-based CAST algorithm will be developed, and its performance as-
sessed by training an AMN-based RBM to learn MNIST handwritten digits. Based on
the previous study, an LIF-based CAST algorithm will be explored. Its performance
on an LIF-based RBM will be evaluated by training the model with the same task as
the AMN-based RBM. The training results demonstrate the capability of the LIF-based
RBM to perform unsupervised learning. The results also reveal an interesting phe-
nomenon concerning a unique feature of LIF sampling networks.

At the end of this chapter, we will have a brief discussion on deep Boltzmann ma-
chines, which are the main focus of our future research.

4.1. Restricted Boltzmann machines

A general BM can be partitioned into a set of visible and one of hidden units (see
Fig. 4.1a). A Boltzmann machine without hidden-to-hidden connections and without
visible-to-visible connections is called a restricted Boltzmann machine (RBM) (see
Fig. 4.1b) due to its restricted connections. Because of this connection restriction,
the hidden units can be viewed as a second layer above the visible layer, which gives
an RBM a concept of ’depth’, making it a precursor (or building block) of multilayer
deep architectures (section 4.6). The visible layer receives training data and the hidden
layer learns to model dependencies between the visible units. Hidden units in a way act
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(a) General BM (b) RBM

Figure 4.1.: Setting interaction terms L and J to zero obtains a RBM, (Image is taken
from Salakhutdinov and Hinton, 2009).

as feature detectors, and because of this, are able to capture complex features of a pattern.

The connectivity reduction also allows for more efficient learning algorithms than
the ones used for general BMs. The energy of an RBM is defined as

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

Wijvihj , (4.1)

and the probability of a visible state in an RBM is defined in the same way as Eq. 2.8,
which is

p(v) =
1

Z

∑
h

exp(−E(v,h)) . (4.2)

4.2. Learning algorithms for RBMs

A learning algorithm can be derived, according to section 2.2.1, by differentiating p(v)
over Wij , which yields

∂ log p(v)

∂Wij
= 〈 vihj 〉data − 〈 vihj 〉model . (4.3)

This leads to a gradient ascent learning rule (Hinton, 2010) similar to Eq. 2.12 and 2.13

∆Wij = η(〈 vihj 〉data − 〈 vihj 〉model) (4.4)
∆ai = η(〈 vi 〉data − 〈 vi 〉model) (4.5)
∆bj = η(〈hj 〉data − 〈hj 〉model) , (4.6)
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where η represents some previously defined learning rate. However, different from a fully
visible BM where 〈 zizj 〉data can be given by the training data (each binary unit is set to
1 with a probability derived from the pixel value of the training image), the binary state
of a hidden unit hj in 〈 vihj 〉data is obtained by

p(hj = 1|v) = σ(bj +
∑
i

viWij) (4.7)

given a training image for visible state v, where σ(x) is the logistic function
[1 + exp(−x)]−1. vihj can then be taken as a data sample. Because there are no di-
rect connections between visible units, an unbiased sample of the state of a visible unit
can be obtained in a similar way given a hidden vector

p(vi = 1|h) = σ(ai +
∑
j

hjWij) . (4.8)

An exact computation of 〈 vihj 〉model is not practical for the same reason as stated in
section 2.2.1. An alternative is using CD (Hinton, 2002) which draws an approximate
sample of 〈 vihj 〉model. One training step can be described as follows:

1. Setting the visible states according to the training data.
2. Then the hidden states are computed in parallel using Eq. 4.7, thereby obtaining

a sample of 〈 vihj 〉data
3. With the hidden states, a so-called ’reconstruction’ is produced by setting the state

of each visible unit using Eq. 4.8, and 〈 vihj 〉recon can be used to replace the second
term in the learning rule given by Eq. 4.4.

During GS, the firing probabilities pi = p(vi = 1) and pj = p(hj = 1) are com-
puted when updating the states of the units. They can be used directly in the parameter
updates, which provides a much better approximation of the 〈 vihj 〉model than the binary
states (more discussions can be found in (Hinton, 2010)). The change of the weights
and biases is then given by

∆Wij = η(〈 pipj 〉data − 〈 pipj 〉recon) (4.9)
∆ai = η(〈 pi 〉data − 〈 pi 〉recon) (4.10)
∆bj = η(〈 pj 〉data − 〈 pj 〉recon) . (4.11)

During training, the probabilities of visible units can be directly taken as the pixel values
of the training image.

Learning algorithms for RBMs have been discussed extensively in literature (Hin-
ton, 2002), (Tieleman, 2008), (Salakhutdinov , 2010), etc. The learning efficiency of an
RBM varies for different learning algorithms, and the difference in learning efficiency
becomes significant with increasing complexity of the training data. In the following, we
will introduce a series of learning algorithms which in the end will be combined to form
an efficient learning algorithm for the application to LIF-based RBMs.
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4.2.1. CD1

CD1 corresponds to running the model for one step of Gibbs sampling (GS) to obtain the
prior state. This is fast and a reasonable approximation to the log probability gradient
(see Eq. 4.3), but it will deviate significantly from the log probability gradient when the
mixing rate is low (Tieleman, 2008). The mixing rate, briefly speaking, represents the
rate at which the model can sample from different regions of the energy landscape.

RBMs will learn better if more steps of GS are used before obtaining the sample
of 〈 vihj 〉recon, and CDn is used to denote learning using n steps of GS. If enough
running time is available, CDn for greater n is preferred over CD1.

4.2.2. Persistent contrastive divergence

Proposed by Tieleman (Tieleman, 2008), persistent contrastive divergence (PCD) is
better at approximating the log probability gradient than CD1 when the mixing rate is
low.

In CDn, within each learning step, we initialize the model state with a training sample
and let a Markov chain propagate for n steps by GS to obtain a prior sample as an
approximation of 〈 vihj 〉model. The more steps we run the more likely we will get an
accurate approximation.

When the learning rate is small, the model changes only slightly between parame-
ter updates. PCD takes advantage of this by initializing a training step at the state
in which the previous step ended. Even though the model has changed slightly due to
these parameter updates, this initialization can still be very close to the model distri-
bution. In this way one keeps a ’persistent’ Markov chain and is able to obtain better
approximations of 〈 vihj 〉model. A detailed diagram is shown below, with CD1 and CDn

in comparison.
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Figure 4.2.: Comparison between CD1, CDn and PCD. At learning step t, for CD1,
the Markov chain is initialized with vtdata which is drawn from the training
dataset. “−→” denotes a step of GS updating the states of all visible or
hidden units, and“=⇒” denotes calculating the firing probability without
updating the states of the units. The vtrecon of CDn is obtained after n steps
of GS start from htdata. For PCD, the Markov chain is initialized with the
vt−1

recon obtained from the previous learning step. The ptdata used in parameter
updating is calculated separately.

Technically speaking, compared to CD1, PCD only changes the way of obtaining vtrecon.
In the last update of the PCD, the conditional distribution is calculated without updating
the hidden states, since no random variable depends on the choice of the states of the
hidden units. The parameters are updated immediately after 〈 pipj 〉recon is obtained.
The update rule is the same as CD in Eq. 4.9 - 4.11.

∆Wij = η(〈 pipj 〉data − 〈 pipj 〉recon) (4.12)
∆ai = η(〈 pi 〉data − 〈 pi 〉recon) (4.13)
∆bj = η(〈 pj 〉data − 〈 pj 〉recon) . (4.14)

However, since htdata is no longer determined by the Markov chain, ptdata needs to be cal-
culated separately using Eq. 4.7 conditioned on the states of vtdata, as shown in figure 4.2.

One thing to notice is that the persistent chain is still only making an approxima-
tion of the model distribution, because the model does change slightly during parameter
updates. In the limit of infinitesimally small learning rates, the approximation will be
exact and in general PCD works best with small learning rates. However, small learning
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rates reduce the changes made to the energy landscape, so an insufficiently mixing
persistent chain will adjust only slowly over time. This will prolong the dwell times
in local minima of the energy landscape, ultimately leading to poor generative models
(Salakhutdinov , 2010).

4.2.3. Adaptive simulated tempering

Proposed by Salakhutdinov (Salakhutdinov , 2010), the mixing rate of the model can be
improved by performing adaptive simulated tempering (AST) instead of plain GS when
updating the model state. AST is a combination of the Wang-Landau (WL) algorithm
and simulated tempering (ST). We will first introduce the WL algorithm and ST sepa-
rately and then show how they are combined to form the AST.

Wang-Landau algorithm

Assume the probability distribution, given by p(x; θ) = 1
Z exp(−E(x; θ)), is defined over

the state space X. X can be partitioned into K disjoint sets {Xk}Kk=1. The goal is to
construct a Markov chain that will spend an equal amount of time in each partition and
where the state updating within each partition is carried out by GS (see Fig. 4.3).

Figure 4.3.: An example of the partition of state space. The goal of the WL algorithm
is to construct a Markov chain that will spend an equal amount of time in
each partition. (Image is taken from Wang and Landau, 2001).

The WL algorithm (Wang and Landau, 2001) achieves this by estimating a set of
factors that would properly adjust the probability in each partition. When the network
remains in one partition, the corresponding adjusting factor will increase and thereby
reduce the probability mass of the entire partition. This ensures that the chain spends
the same amount of time in each set Xk. The algorithm proceeds as follows:

1. Let gt be a vector of length K which contains the adjusting factors for each
partition space. At time t = 0, all elements of gt are initialized to 1.

2. Given a model state xt, sample a new state xt+1 using GS, with its invariant
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probability distribution:

p(x; θ,gt) ∝
K∑
k=1

p(x; θ)

gtk
I(x ∈ Xk). (4.15)

3. Update the adjusting factor:

gt+1
k = gtk

[
1 + γtI(xt+1 ∈ Xk)

]
. (4.16)

I is the indicator function (I(x) = 1 if x is true, otherwise 0), and γt > 0 is an adapting
factor as a function of time. As the chain stays in the set Xk, the adjusting factor gk
will increase, exponentially increasing the probability of moving out of Xk. As t → ∞
and γt → 0 for all k ∈ {1, 2, ...,K} there will be convergence in probability:

gtk∑
i g
t
i

→ p(x ∈ Xk). (4.17)

Above equation indicates that the sequence of adjusting factors will asymptotically
converge to the optimal value, such that the Markov chain will spend an equal amount
of time in each partition.

However, one problem of the WL algorithm is that, in practice, it is often difficult
to choose a good partition of the state space X at the beginning. This problem can
be solved when combining the WL algorithm with simulated tempering (ST), where
appropriate partitions are defined naturally.

Simulated tempering

Simulated tempering (ST) (Marinari and Parisi , 1992) is an MCMC algorithm that
samples from the joint distribution

p(x, k) ∝ ck exp [−βkE(x)] (4.18)

where ck are constants, and 0 < βK < βK−1 < ... < β1 = 1 are similar to the 1/kBT
’inverse temperatures’ as common in thermodynamics. Conditioned on k, the distribution
for x takes the form:

p(x|k) =
1

Zk
exp [−βkE(x)] . (4.19)

A sample from the target distribution p(x) can therefore be obtained by simulating a
Markov chain from the joint distribution p(x, k), and only accept the states if k = 1.
Sampling from the joint distribution p(x, k) is performed by iterating through two
transition operators alternately. First, according to p(x|k, the state x is updated by GS.
Then, conditioned on x, k is sampled using the Metropolis update rule with a proposal
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4. Learning MNIST digits with deep learning architectures

distribution: for 2 ≤ k ≤ K−1, q(k+1|k) = q(k−1|k) = 1
2 ; and q(2|1) = q(K−1|K) = 1.

In ST, the high-temperature distributions facilitate mixing between many local modes.
The idea is similar to increasing the temperature of a thermodynamic system, which
increases the transition rates between different modes. It is noted that the Markov chain
facilitates mixing when it spends an equal amount of time at each ’temperature’ value.
This can be achieved by setting ck to be proportional to 1/Zk, which is computationally
intractable. This problem is solved through a combination with the WL algorithm.

Adaptive simulated tempering

The WL algorithm solves the ck choosing problem in ST by partitioning the state space
of ST ∪K{k=1}k ×X into K sets {k} ∪X, each corresponding to a different temperature
value and assigned with an adaptive adjusting factor gk. When the transition into a
different partition (or temperature value) is rejected, the adaptive adjusting factor for
the current partition will increase, thus increasing the probability of leaving the current
partition in the next time step.

This way, one can formulate the so-called adaptive simulated tempering (AST) al-
gorithm by combining the WL and ST algorithms. The detailed algorithm works as
follows:

Algorithm: AST

Initialize: Given the adaptive adjusting factors {gk}Kk=1 and the initial
model state x1 at temperature 1, k = 1:

AST: for n = 1 : N (number of iterations) do
Given xn, sample a new state xn+1 from p(x|kn) by GS.
Given kn, sample kn+1 from proposal distribution
q(kn+1 ← kn). Accept with probability:

min

(
1,
p(xn+1, kn+1)q(kn ← kn+1)gkn

p(xn+1, kn)q(kn+1 ← kn)gkn+1

)
Update adaptive adjusting factors:

gn+1
i = gni (1 + γnI(kn+1 = i)), i = 1, ...,K.

end for
Collect data: Obtain samples from target distribution p(x) by keeping
k = 1.

The acceptance probability originates from the Metropolis update rule.
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As γn → 0, the ratio of adaptive adjusting factors will converge according to the
probability of the Markov chain being found in a certain partition (see Eq. 4.17). This
guarantees that the algorithm will roughly spend the same amount of time at each
temperature value, thereby improving mixing significantly.

4.2.4. Mixing comparison

To compare the performance between AST and the original sampling method (GS), we
trained an RBM with images of handwritten digits from the MNIST database (LeCun
and Cortes, 1998). As an elementary test, we chose 3 well-recognizable images (see Fig.
4.4) corresponding to digits 0, 3 and 4. The images were reduced from 28×28 pixels to
12×12 pixels in order to downscale the network to reduce the training time.

(a) image 0 (b) image 3 (c) image 4

Figure 4.4.: 12×12 pixels images of hand written digits 0, 3, 4, reduced from the 28×28
images from the MNIST database, with pixel values ranging from 0 to 1
(corresponding to the grayscale from white to black).

The number of visible units of the RBM is set to 144 which equals the pixel number of
a training image, the number of hidden units is set to 50. There are various viewpoints
on how to choose the optimal number of hidden units (Hinton, 2010). Our experiments
show that an RBM with only 3 hidden units can also learn a good representation of
the training data, although it requires more training steps to achieve the same learning
outcome as an RBM with 50 hidden units.

In order to reduce the computation times, we modified the parameter update rules
taken from Eq. 4.12 - 4.14. In every update step, we didn’t use the average of all the
training data, but, only a sample of the data instead. However, during training, we
iterated through all training samples (with a fixed sequence) multiple times. On average,
this method is expected to converge towards the same result as the original learning
rule. Since the good results obtained with this method validated our modification, we
applied the same approach to all the training tasks presented here.

The RBM was trained with PCD for 104 times. The learning rate was chosen as
exponentially decreasing for the first training steps, and then kept constant at a small
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value

for n = 0, 1, 2...2000, η(n) = (10−4 − 10−2 + 1)
n

2000 + 10−2 − 1 ,

for n = 2001, ...10000, η(n) = 3 · 10−5 .

After learning, we obtained image samples generated from the model when the network
evolved freely. The pixel values of the images are represented by the firing probabilities
of the visible units. We characterize a mode of the model by comparing the generated
images with the training images. The generated images are subtracted from all three
training images and the standard deviations (STD) of the pixel differences from the
training images are calculated. More specifically, the STD is calculated as

STD =

[∑N
i=1(P gi − P ti )2

N

]1/2

, (4.20)

where N is the number of total pixels forming an image, P gi and P ti denote the ith
pixel value of the generated image and training image respectively. The training image
yielding the minimal STD for a point in time is assumed to be represented by the
network activity. Thereby, the current network mode is identified.

We sample the prior states of the RBM using GS and AST as a comparison. The
calculated STDs during the AST process is shown in Fig. 4.5.
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Figure 4.5.: Evolution of three STDs. The mode of the network corresponding to the
image gives the smallest STD. The smallest STD values are clearly distinct
from the other two. This indicates a much closer resemblance of the train-
ing image to the image generated by the network compared with the other
training images. The evolution of the network modes (Fig. 4.6, bottom left)
is in accordance with the variation of the smallest STDs.

The evolution of the STDs shows a large separation between values attributed to im-
ages represented by the network (low STD), and images that do not match the network
dynamics at that time (high STD), indicating its feasibility as a reasonable characteri-
zation method. The results of the evolution of the modes and the consecutive samples
generated from the network are shown in Fig. 4.6. Both RBMs were randomly initialized.
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Figure 4.6.: Mixing comparison of GS and AST after learning the RBM with the PCD
algorithm.
Top left: Evolution of the RBM mode obtained by GS, Nsteps = 5 · 104.
It can be seen that GS mode transitions occur rarely, spending a long time
in one mode. Top right: Consecutive images generated by the RBM (by
column1) using GS. Nsteps: 20140 - 20189. The RBM keeps producing the
same class of images for a long time. Bottom left: Evolution of the RBM
mode obtained by AST, recorded for temperature k = 1. The tempera-
ture switches to k = 1 for 1400 times (obtaining 1400 images) in a total of
Nsteps = 5 · 104, allowing the RBM to move between different modes fre-
quently. Bottom right: Consecutive images generated by the RBM using
AST. Image number: 940 - 989. The RBM switches between modes more
frequently, covering a large energy landscape in the same time than RBM
without applied AST.

It can be easily observed that the GS mixes insufficiently and spends a long time in one
mode, while AST is able to switch between different modes frequently leading to better

1the sequence of the images is by column, from left to right
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mixing. For AST, the number of ’inverse temperatures’ {βk} was set to 20, rangeing
uniformly from 1 to 0.1. The adapting factor γt was set to 10 at a constant. Figure 4.7
shows that the adaptive adjusting factors cause the model to activate all 20 temperature
values (and thereby cover their assigned partitions), forcing the RBMs to move away
from the local mode.

Figure 4.7.: Mixing is facilitated by the adaptive adjusting factors which cause the acti-
vation of all 20 temperature values. This implies transitions of the Markov
chain to all 20 partitions of the state space, thus covering the large parts of
the whole energy landscape.

4.2.5. Coupled adaptive simulated tempering

Apart from being used for sampling from the learned distribution, AST can also be
applied on the learning process itself, especially when the model is trained to learn more
complex patterns where effects of better mixing are more significant. When learning, the
model parameters can be updated based on the states of the model when it reaches the
lowest temperature (for index k = 1). However, performing AST between consecutive
parameter updates would be computationally expensive, since it always takes some time
for the model to travel (back) to the partition of the lowest temperature (k = 1).

In practice, we use coupled adaptive simulated tempering (CAST) (Salakhutdinov ,
2010). There are two Markov chains in CAST. One chain, referred to as the ’slow’ chain,
updates the model parameters using PCD after every Gibbs update. The other chain,
called the ’fast’ chain, uses AST to facilitate mixing. When the fast chain reaches the
state for which k = 1, the state is swapped with the current state of the slow chain (see
Fig. 4.8).
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Figure 4.8.: Coupled adaptive simulated tempering (CAST). The state is swapped be-
tween the ’fast’ (AST) and ’slow’ (PCD) chain when the ’fast’ chain reaches
the state with the temperature index k = 1. Image taken from (Salakhutdi-
nov , 2010)

The motivation behind CAST is the following: while the ’slow’ chain is performing
PCD, the model might easily get trapped in a local energy minimum when the learning
rate is decreased to small values (for fine-tuning the model). With the aid of the ’fast’
(AST) chain, the model is able to leave a local minimum more easily. This way, CAST
updates the model parameters more frequently than AST and mixes better than pure
PCD. Computationally, CAST is only twice as expensive as PCD.

In practice, it was suggested to swap states between the fast and slow chains after
a fixed number of steps (we chose 50). More specifically, the slow chain state is swapped
after Gibbs-updating the model parameters via PCD for 50 times with the most recent
state of the AST chain for which k = 1 (after 50 Gibbs updates). This mechanism avoids
the problem of continuous swapping between adjacent states as the fast chain moves
around the smallest temperature value (k = 1).

In a brief summary, we first introduced the CD algorithm applied to RBMs. Com-
pared to CD, PCD approximates the log probability gradient (see Eq. 4.3) more closely.
However, both algorithms are based on plain GS which mixes slowly when the learning
rate is small. AST facilitates mixing by defining a temperature which is adaptively
changed as well. Finally, the combination of AST and PCD leads to CAST, which
updates the model parameters efficiently while maintaining a good mixing. CAST is an
efficient learning algorithm, especially for learning more complex patterns. In the next
section we will show training results obtained from an RBM using CAST as its learning
algorithm.

4.3. Training result

Before using the CAST algorithm for training the AMN-based RBM, we first trained an
RBM based on binary units to test the performance of CAST in learning more complex
data.
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100 images of handwritten digits corresponding to 0 to 9 (10 for each class), which
were taken from the MNIST database. To reduce the computation time, all images were
reduced to 12× 12 pixels as before (see Fig. 4.9).

Figure 4.9.: Training data: 100 handwritten digits taken from the MNIST database and
contracted to 12× 12 pixels.

We set the visible units number of the RBM to 144 in accordance to the pixel number
of the image, the hidden units number was set to 100. We trained the network for 2 · 105

parameter updates, with exponentially decreasing learning rates:

for n = 0− 1.5 · 105, η(n) = (10−4 − 10−2 + 1)
n

1.5·105 + 10−2 − 1 ,

for n = 1.5 · 105 − 2 · 105, η(n) = (3 · 10−5 − 10−4 + 1)
n−1.5·105

5·104 + 10−4 − 1 .

(4.21)

After learning, the performance of the RBM was assessed by comparing the generated
images (using AST) with the training images. We ran the (randomly initialized) network
for a total 8 · 104 sampling steps and obtained 2000 images. The mode of the RBM was
characterized in the same way as in section 4.2.4, with each mode corresponding to a
training image, which makes the total mode number to be 100. The distributions of the
generated images and the mean STDs in each mode are shown in figure 4.10, together
with a series consecutive image samples generated by the RBM.
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Figure 4.10.: Statistics of generated images from a simulation for 8 · 104 Sstps, after
training the RBM to learn 100 images using the CAST algorithm.
Top: Distributions of generated images and the mean STDs in each mode.
Images generated from the network cover all modes. The lower the mean
STD, the higher the similarity between the generated image and the training
sample. Bottom: A series of consecutive image samples generated from
the RBM (by column). The network switches frequently between different
modes (corresponding to images).

The result shows that the RBM with the CAST algorithm was able to learn all the
training data and generate well recognizable image samples. More elaborate learning
rate policy can be studied to improve the training result.

One thing to notice is that, due to the time limitations, the model assessment method
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we used is not an elaborate evaluation of the model. Our goal is to test the capability
of CAST to learn more complex training data and to explore the feasibility of its ap-
plication to LIF-based RBMs. For a more strict evaluation of the model, prospective
methods such as estimating the lower bound of the log probability of the training data
(Salakhutdinov and Hinton, 2009) can be considered.

4.4. Learning MNIST handwritten digits with AMN-based
RBMs

Similarly to the working protocol in the previous chapter, prior to the study of LIF-based
RBMs, we will first build AMN-based RBMs as a theoretical reference.

4.4.1. AMN-based CAST

In the last section we showed the efficiency of the CAST algorithm in learning complex
training data. To increase the efficiency of AMN-based learning of RBMs, our first step
is to develop an AMN-based CAST algorithm. Since (Buesing et al., 2011) have already
proven that neural sampling with AMNs can be interpreted as MCMC sampling. The
implementation of the CAST algorithm (which is originally based on GS) with AMNs is
therefore assumed to be feasible.

The AMN-based CAST algorithm was essentially a combination of an AMN-based
PCD and an AMN-based AST.

AMN-based PCD

For the AMN-based PCD, the probabilities p(vi = 1) and p(hj = 1) were not used to
calculate the model parameter updates. Instead, we used the binary states of the AMNs.
The reason for this can be found in the firing probability of an AMN. According to Eq.
2.16, it was defined as

p(zk(t) = 1|ζk(t) ∈ {0, 1}, uk(t)) = σ(uk − log τ) (4.22)

=
1

1 + τe−uk
.

The AMN will only fire according to this probability when ζ = 0 or 1. During the
refractory period, the state of the AMN is independent of the firing probability. This is
different from a BM based on binary units, where the firing probability determines the
state of the unit at every discrete time point.

The use of binary states in parameter updating leads to a modification of the PCD
chain, as shown in table 4.1:
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ht

Traditional PCD: ↗ ↘
vt−1

recon vtrecon =⇒ p(h)trecon

ht htrecon

AMN− based PCD: ���
@@R

���

vt−1
recon vtrecon

Table 4.1.: Comparison of the AMN-based PCD and the PCD applied to BMs based on
binary units, at training step t.
In PCD applied on binary units, "→" denotes a step of GS updating the
states of all visible or hidden units, and "=⇒" denotes calculating the firing
probability without updating the states of the units. For AMN-based PCD,
"-" denotes updating the states of all visible or hidden units over τ time
steps, which is the minimum time that allows all units with zk = 1 to switch
to zk = 0.

For the AMN-based PCD, the binary states of the hidden units htrecon are sampled
out in the last step, since they are used for updating the model parameters. The model
parameters updating rules corresponds to:

∆Wij = η(〈 vihj 〉data − 〈 vihj 〉recon) (4.23)
∆ai = η(〈 vi 〉data − 〈 vi 〉recon) (4.24)
∆bj = η(〈hj 〉data − 〈hj 〉recon) . (4.25)

In practice, the pixel value of the training images are interpreted as firing probabilities of
the visible units. By sampling from these probability distributions, binary vdata vectors
can be obtained. hdata is obtained by clamping (setting the bias to an extreme value) the
visible units states on vdata and running the network for a minimum ’decorrelation time’.
To obtain a state for the parameter update, the network first needs to run for at least
τ sampling steps in order to decorrelate z(t

′
) from z(t) (units with ζ(t) = τ , z(t) = 1

require at least τ time steps before they can switch to ζ(t
′
) = 0, z(t′) = 0). In GS, τ = 1,

which means that the updating speed of the AMN-based RBM is approximately τ times
slower compared to the RBM based on binary units.

AMN-based AST

In AST applied to RBMs based on binary units, the inverse temperature βk was updated
once the state of the model was renewed. For the AMN-based AST, due to the same
decorrelation considerations as above, one needs to wait for at least τ steps to sample
a new inverse temperature from the proposal distribution. More specifically, we set the
time for updating the inverse temperature to be t = kτ , where k represents an integer.
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4.4.2. Training result

In order to reduce computation time, we trained the model with 15 images of MNIST
handwritten digits from three classes, namely 0, 3 and 4, as shown in Fig. 4.11.

Figure 4.11.: Training images: 15 images of handwritten digits from classes 0, 3 and 4
taken from the MNIST database, reduced to 12× 12 pixels.

The number of visible and hidden units were set to 144 and 100 respectively. The
refractory time was chosen as τ = 10. The model was trained for 3 · 104 parameter
updates. The learning rate was chosen as an exponentially decreasing function of time
with two different decay rates

for n = 0− 2.2 · 104, η(n) = (10−4 − 10−2 + 1)
n

2.2·104 + 10−2 − 1 ,

for n = 2.2 · 104 − 3 · 104, η(n) = (3 · 10−5 − 10−4 + 1)
n−2.2·104

8·103 + 10−4 − 1 .

After learning, we ran the (randomly initialized) network for 2·104 sampling steps, during
which the network generated more than 800 images. The distribution of the generated
images and the mean STDs are shown in figure 4.12, together with the evolution of the
network modes and a series consecutively generated image samples.

57



4. Learning MNIST digits with deep learning architectures

Figure 4.12.: Statistics of generated images from a simulation of 2 · 104 time steps, after
training the AMN-based RBM with 15 images using the CAST algorithm.
Top left: Distribution of the generated images and the mean STDs in each
mode. Images generated from the network cover all modes. Top right:
Evolution of network modes. The network is able to mix among all 15
modes. Bottom: A series of consecutive image samples generated from
the network (by column). The network switches between different image
classes frequently.

Note that the pixel values of a generated image are no longer taken as the firing
probabilities of visible units (AMNs). Instead, we obtained a list of binary states of the
AMNs at the end of a simulation. Then, an RBM based on binary units was initialized
with the AMN model parameters and the prior to that acquired binary states of the
hidden units (AMNs). The firing probabilities computed from the states of the RBMs
based on binary units are then taken as the pixel values.
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The results show that the AMN-based RBM with the AMN-based CAST algorithm
is able to learn the training data and generate image samples covering all 15 modes. The
network switches frequently between different modes. The mean STDs can be found in
an interval 0.03 - 0.09, which indicates a high resemblance between the generated images
and the presented training data.

However, the occurrence rates of the generated images in each mode are not evenly
distributed. To improve this outcome, we increased the simulation steps to 2 · 105,
leading to a more uniform distribution. But still distinct occurrence peaks can be
seen in the resulting distribution. Even after training the RBM further for a longer
period with a significantly smaller learning rate η = 3 · 10−5, the distribution landscape
changed without a clear tendency towards uniformity. It proved to be difficult to reach
a distribution which does not exhibit preferences towards certain images. One reason
for this is the number of modes, which in our case is 15. For the previous simulation
with 3 modes, an approximately uniform distribution is easier to achieve. The increase
of network modes will obviously raise the difficulty of reaching a uniform distribution.

4.5. Learning MNIST handwritten digits with LIF-based
RBMs

For the LIF-based RBMs, we chose the set of neuron parameters (conductance-based)
from table 4.2.

Name Value Units Description
v_rest -50.0 mV Resting membrane potential urest

cm 0.2 nF Capacity of the membrane Cm

tau_m 0.1 ms Membrane time constant τm

tau_refrac 10.0 ms Duration of refractory period τref

tau_syn_E 10.0 ms Decay time of the excitatory synaptic conductance τsyn

tau_syn_I 10.0 ms Decay time of the inhibitory synaptic conductance τsyn

e_rev_E 0.0 mV Reversal potential for excitatory input Erev
exc

e_rev_I -100.0 mV Reversal potential for inhibitory input Erev
inh

v_thresh -50.0 mV Spike threshold ϑ
v_reset -50.01 mV Reset potential after a spike ureset

i_offset 0.0 nA Offset current Ioff

Table 4.2.: Neuron parameters for software (NEURON) simulation.

Compared to the neuron parameters used in the LIF-based BM in the previous chapter,
we decreased the membrane time constant τm by a factor of 10, thus increasing the leak
conductance gl. This reduces the ratio of the conductance of inter-neuron synapses gn to
the total conductance gtot, thus decreasing the deviation during weight translation (see
Eq. 3.4). We also reduced the duration of the refractory period and the synaptic time
constant to 10 ms in order to save simulation time.
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4.5.1. Learning algorithm

We implemented a CAST algorithm consisting of an LIF-based PCD and the AMN-based
AST. Currently, the LIF-based AST is not implemented yet and requires a separate in-
vestigation. As concluded in the previous chapter, the critical issue is that the algorithm
used for updating the parameters must be adapted to work for the LIF neural network.
The application of the AMN-based AST to facilitate mixing is reasonable since the
AMN-based network serves as the benchmark for the LIF-based network. The obtained
results proved the feasibility of this approach.

Likewise, for the LIF-based PCD, the states of the hidden units are determined by
probabilities conditioned on states of the visible units, as described in Eq. 4.7. For the
PCD learning procedure, the visible unit states needed to be constant during the mixing
period prior to the sampling of the hidden unit states. The states of these units were
clamped by setting the mean membrane potentials to extreme values. The states of the
hidden units were then read out after running the simulation for a decorrelation time
of 100 ms (for the evaluation of an appropriate decorrelation time value, see section 3.2.4).

Originally, in PCD as described in section 4.2.2, in the ’reconstruction’ step, the
visible states vrecon should be obtained after running a simulation with clamped hidden
states. However, in practice, we only initialized the membrane potential (the same
method as section 3.2.4) according to the states of visible and hidden units and obtained
good results with this method as well.

The states between the two chains were also interchanged after every 50 parameter
updates in PCD, as described in section 4.2.5.

4.5.2. Learning 3 images of handwritten digits

For the LIF-based PCD, the network needs to be initialized three times for every
step of parameter updates. These includes vdata → hdata for parameter updating
(described by Eq. 4.23 - 4.25), vrecon → h for the ’persistent’ sampling chain, and
(vrecon, h) → (vrecon, hrecon) for the ’reconstruction’ step. This slows down the
training of the LIF-based RBM by almost a factor of three compared to the training of
the LIF-based fully visible BM, where the network only needs to be initialized once for
every parameter update.

To save computation time for the first trials, we initially trained the LIF-based RBM
with 3 well recognizable images, as in section 4.2.4.

60



4.5. Learning MNIST handwritten digits with LIF-based RBMs

(a) image 0 (b) image 3 (c) image 4

Figure 4.13.: 12×12 pixel images of handwritten digits 0, 3, 4, reduced from the 28×28
pixel images from the MNIST database, with pixel values ranging from 0
to 1 (corresponding to the grayscale from white to black).

The visible and hidden unit number of the LIF-based RBM was set to 144 and 50 re-
spectively,and the decorrelation time of the model was evaluated and chosen to be 100 ms.

For the current LIF sampling code, the initialization of a network consisting of 194
neurons takes about 50 seconds (on IGNATZ). One full parameter update therefore re-
quired 150 seconds. This made a direct training of the model ’from scratch’ (which would
need more than 104 parameter updates, thereby costing more than 17 days) not practical.

In practice, we initialized the model with already pretrained AMN-based RBM pa-
rameters. The LIF-based RBM was trained further for 3 · 103 parameter updates (cost
about 6 days on DOPAMINE2) with a constant learning rate η = 10−4. After training,
we ran a simulation to evaluate the model. For comparison, the simulation result of the
direct parameter translation without training is shown in figure 4.14. The result after
training is shown in figure 4.15.

2DOPAMINE: Intel(R) Core(TM) i7 CPU 920 2.67GHz
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Figure 4.14.: Statistics of generated images from a simulation with Tsim = 2 ·103 ms after
direct parameter translation.
Top left: Distribution of generated images and the mean STDs in each
mode. The network is almost permanently stuck in mode ’4’. Top right:
Evolution of network modes. The network stays in one mode for a long time
and rarely switches to other modes. Bottom: A series of consecutive image
samples (Tsim: 1600 - 1700 ms) generated by the network (by column). The
network mainly produces image 4.
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Figure 4.15.: Statistics of generated images from a simulation with Tsim = 2·103 ms, after
training the LIF-based RBM to learn 3 images using the CAST algorithm.
Top left: Distribution of generated images and mean STDs for each mode.
Images generated by the network cover all modes. Top right: Evolution
of network modes. The network is able to switch between different modes
frequently. Bottom: A series of consecutive image samples (Tsim: 1000
- 1100 ms) generated by the network (by column). The network switches
between different image classes frequently.

The pixel values of a generated image were obtained by a similar method as in the
AMN simulation. We first ran a simulation and obtained a list of binary states of the
LIF neurons. Then, an RBM based on binary units was initialized with LIF model
parameters (translated Boltzmann weights and biases using Eq. 2.32, 2.33) and the
binary states of the hidden units (neurons). The value of a pixel point was taken as
the firing probability of the corresponding visible unit of the RBM based on binary units.
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The results showed that without training, the network barely mixed during simula-
tion and basically stayed in one mode. After training using the CAST algorithm, the
network was able to switch between different modes frequently.

Something worth noticing was that, after training, all results were obtained by simply
running the network without any algorithms to facilitate mixing. This relates to the
more interesting case when we train the model to learn 15 images in the next section.

Estimation of the training quality

To estimate the quality of the training of the network, we used a method called con-
servative sampling-based likelihood (CSL) estimator (Bengio and Yao, 2013). The CSL
estimator uses a Markov chain which is defined for the model to collect samples from the
generative model. For RBMs, the Markov chain alternatively samples from hidden units
and visible units such that the conditional distribution P (v|h) is well defined. The CSL
estimate can be calculated by

CSL =

∑N
j

{
log
[∑M

i P (vj |hi)
M

]}
N

, (4.26)

where vj is taken from a set containing N test samples and hi is one of the M hidden
states sampled from the model.

In practice, we generated 100 test samples for each training image and 1000 sam-
ples for the hidden state. A comparison of CSL estimators during the training of three
networks is shown in Fig. 4.16.
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Figure 4.16.: Evolution of CSLs of the traditional GS-based RBM, the AMN-based RBM
and the LIF-based RBM. Both the GS-based and AMN-based RBM were
trained for 3 · 104 times with the same exponentially decreasing learning
rates as described in Eq. 4.27. The LIF-based RBM was trained with a
constant learning rate η = 10−4 for 3·103 times, with initializing parameters
translated from the trained model parameters of the AMN-based RBM.

The learning rates of the GS-based and AMN-based RBM are as follows:

for n = 0− 2.2 · 104, η(n) = (10−4 − 10−2 + 1)
n

2.2·104 + 10−2 − 1 ,

for n = 2.2 · 104 − 3 · 104, η(n) = (3 · 10−5 − 10−4 + 1)
n−2.2·104

8·103 + 10−4 − 1 . (4.27)

For both networks we collected the model parameters at 100 time points during the
training. Due to time limitations, we only recorded model parameters at 3 time points
for the LIF-based RBM.

The results show that for the GS-based and AMN-based RBM, the CSL rises quickly at
the beginning of the training and gradually converges to a certain value with decreasing
fluctuations (due to the decrease of learning rates). This accumulation point indicates
the convergence of the parameters to certain target model parameters. These target
model parameters are assumed to be a a global minimum for the RBM, yielding optimal
results to generate the training images. This convergence point can be used evaluate the
quality of our learning approach.

One particular characteristic of the results in Fig. 4.16 is the high variance of data
points from the AMN-based and GS-based RBM. One reason for this variance could be
that we modified the parameter update rules taken from Eq. 4.4 - 4.6 (see also section
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4.2.4). In order to decrease computational resources, we do not compute the averages of
the training data as described in Eq. 4.4 - 4.6. Instead, for each parameter update, we
use only one training sample. This causes a more erratic evolution of the network model
parameters, since the parameter updates based only one state are more susceptible to
changes towards local minima. Still, in the long term evolution the parameters should
converge towards the optimal values.

Other reasons for the high variance might be the insufficient number of samples of
the test data and hidden states in the calculation of the CSL.

The parameters of the LIF-based RBM have been translated from the AMN do-
main to the LIF domain (see Eq. 2.32 - 2.33 in chapter 2) and trained for another 3000
steps, as previously described. The three resulting CSL data points in Fig. 4.16 show
a good correspondence to the accumulation point resulting from the AMN-based RBM.
Nevertheless, a significantly larger sample size is necessary to fully assess the quality of
our LIF network training method.

In future work, we plan to evaluate various modified versions of the presented training
mechanisms to optimize the convergence speed.

In the following, we assign different inference tasks to our trained LIF-based RBMs
to assess their performance.

Fixed pattern completion

In general, a generative model is used (as its name already says) to generate data samples
from the data it previously learned. If the model allows (partial) input, it can perform
pattern completion, i.e., sample from the conditional (posterior) distribution given some
(incomplete) observation.

In our particular case of binary BMs trained with grayscale images, partial obser-
vations are represented by clamping neurons in the visible layer to states determined by
the observed pixel values.

For an LIF-based RBM which was trained to learn 3 images, we clamped eight feature
points of image ’0’ to z = 1 and clamped two feature points of image ’3’ and ’4’ to z = 0
to avoid ambiguous recognition. The clamping was performed by setting the biases of
the corresponding visible units to extreme values (we chose 50 and -50 for clamping to 1
and 0 respectively in the AMN domain). The result of a simulation with these settings
for 103 ms is shown in Fig. 4.17.
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Figure 4.17.: Pattern completion in the LIF-based RBM.
Top left: Eight feature points of image 0 are clamped to 1 (black) and
two feature points of image 3 and 4 are clamped to 0 (red). Top right:
Evolution of network modes, Tsim = 103 ms. The network stays in mode
0 almost all the time during simulation (it only switches once, for 1 ms, to
mode 4). Bottom left: Distribution of generated images and the mean
STDs in each mode. Bottom right: A series of consecutive image samples
(Tsim: 625 - 725 ms) generated by the network (by column). The network
continuously generates the ’correct’ image (consistent with the observed
pixels).

The results show that, clamping on a few feature points, the LIF-based RBM is able
to produce a series of complete corresponding images. This demonstrates the ability of
the LIF-based RBM to perform pattern completion.

Ambiguous pattern recognition (pattern rivalry)

If the generative model is given ambiguous input, it will try to complete both correspond-
ing patterns simultaneously. Since, however, the two patterns are mutually exclusive (by
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the definition of ’ambiguity’), the temporal evolution of the model will exhibit so-called
pattern rivalry, i.e., it will alternate between generating either of the two competing
patterns. For our case, ambiguous input can be represented by clamping on some feature
points shared by multiple images from the training set.

In practice, we clamped six feature points shared by images 0 and 4 to 1, and clamped
1 feature point of image 3 to 0 in order to exclude it from the output. The result of a
simulation for 103 ms is shown in Fig. 4.18.
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Figure 4.18.: Ambiguous pattern recognition (pattern rivalry).
Top left: Six feature points shared by image 0 and 4 are clamped to 1
(black) and 1 feature point of image 3 is clamped to 0 (red). Top right:
Evolution of network modes, Tsim = 103 ms. The network switches between
mode 0 and 4 frequently during simulation. Bottom left: Distribution of
generated images and the mean STDs in each mode. The network stays
mainly in mode 0 and 4 during simulation.Bottom right: A series of
consecutive image samples (Tsim: 450 - 550 ms) generated by the network
(by column). The network produces image 0 and 4 due to the shared
clamping.

The results show that, with an ambiguous clamping setup, the output of the network
switches between images sharing the clamped-to-1 feature points (images 0 and 4), and
never goes to the image corresponding to the feature points being clamped to 0 (image
3). This demonstrates the ability of the LIF-based RBM to perform stochastic inference,
i.e., given a certain condition (ambiguous input), it will sample from the correct posterior
(i.e., alternate between the corresponding modes).
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The above two experiments were intended as a preliminary test and a proof of principle.
With larger network sizes, our model can be applied to recognition tasks of more complex
patterns.

4.5.3. Learning 15 images of handwritten digits

To test the performance of the LIF-based RBM in learning more complex data, we further
trained the model to learn 15 images of MNIST handwritten digits. The images were
the same as in section 4.4.2, as shown below:

Figure 4.19.: Training images: 15 images of handwritten digits from classes ’0’, ’3’ and
’4’ taken from the MNIST database, reduced to 12× 12 pixels.

We set the visible and hidden unit number of the LIF-based RBM to 144 and 100,
respectively, which was the same as in the AMN simulation. The mixing time of the
network was evaluated and chosen to be 100 ms. To save computation time, the network
was initialized with the trained AMN model parameters in section 4.4.2. We further
trained the network for 4.5 · 103 parameter updates (cost 10 days on DOPAMINE) with
a constant small learning rate η = 3·10−5. After training, we ran a simulation to evaluate
the network. For comparison, the simulation result of the direct parameter translation
without training is shown in figure 4.20. The result after training is shown in Fig. 4.21.

70



4.5. Learning MNIST handwritten digits with LIF-based RBMs

Figure 4.20.: Statistics of generated images from a simulation with Tsim = 2 · 103 ms,
after direct parameter translation without training.
Top left: Distribution of generated images and the mean STDs in each
mode. Images generated by the network are only located in 4 modes (out
of 15). Top right: Evolution of network modes. The network switches
mainly between three modes (only rarely going to a fourth). Bottom: A
series of consecutive image samples (Tsim: 1600 - 1700 ms) generated by
the network (by column).
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Figure 4.21.: Statistics of generated images from a simulation with Tsim = 2·103 ms, after
training the LIF-based RBM to learn 15 images using the CAST algorithm.
Top left: Distribution of generated images and the mean STDs in each
mode. Images generated by the network cover all modes. The mean STDs
are not quite as good as the ones obtained from the AMN simulation (see
Fig. 4.12), but should improve significantly with more training steps. Top
right: Evolution of network modes. The network is able to switch between
all modes with high frequency. Bottom: A series of consecutive image
samples (Tsim: 450 - 550 ms) generated by the network (by column).

The results show that without training, the network only stayed in 4 modes during
simulation. After training using the CAST algorithm, the network is able to produce
images covering all 15 modes. The distribution of generated images is not perfectly flat,
this is likely due to insufficient training, since we only trained for 4.5 · 103 times with
small learning rates. The mean STDs range from 0.15 - 0.25, which are still not as good
as the ones obtained from the AMN experiment (see Fig. 4.12), but this should also be
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improved with more training. Another possibility to improve the results would be using
the current-based LIF neuron model, since difficulties related to changing the recurrent
conductances during training (see section 3.2.2) can be avoided. Most importantly
however, computing and using average values 〈 zizj 〉data in the training algorithm is
likely to yield significant improvements for both the convergence speed and the ultimate
quality of the training.

A comparison of CSL estimates during the training of three networks is shown in
Fig. 4.22.

Figure 4.22.: Evolution of CSLs of the traditional GS-based RBM, the AMN-based RBM
and the LIF-based RBM. Both the GS-based and AMN-based RBM were
trained for 3 · 104 times with the same exponentially decreasing learning
rates as Eq. 4.27. The LIF-based RBM was trained with constant learning
rates η = 3 · 10−5 for 4.5 · 103 times, with initializing parameters translated
from the trained model parameters of the AMN-based RBM.

The learning rates used in the training of the GS-based and AMN-based RBM are the
same as Eq. 4.27. For both networks we collected the model parameters at 100 time
points during the training. Due to time limitations, we only recorded model parameters
at 5 time points for the LIF-based RBM.

Due the same reason mentioned in section 4.5.2 (using individual data points instead
of averages during training), fluctuations exist in the evolution of CSLs. Compared to
the training of 3 images, the model converges more slowly, as seen in the comparatively
shallow CSL temporal profile. This is not unexpected, as this task is significantly more
demanding. One can also see that in general the GS-based RBM performs better than
the AMN-based RBM. Due to the final training steps, the LIF-based RBM shows a
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significant improvement in the CSL. With more data points and longer training times,
this tendency should become even more evident.

Identically to the previous section, all images were obtained by simply running the
network, without any algorithms to facilitate mixing. It was interesting that the net-
work still mixed so well between all the modes. For the AMN-based RBM, however,
a simulation with plain neural sampling without the aid of the AST algorithm led to
bad mixing. The simulation result of the AMN-based RBM (initialized with the same
network parameters as in section 4.4.2) with plain neural sampling is shown in figure
4.23.
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Figure 4.23.: Statistics of generated images from the AMN-based RBM for a simulation
with Nsteps = 2 · 104, using plain neural sampling .
Top left: Distribution of generated images and the mean STDs in each
mode. Images generated by the network are only located in 4 modes. Top
right: Evolution of network modes. The network is not able to mix among
all the modes, which is in contrast with Fig. 4.12 (use the AST algorithm)
Bottom: A series of consecutive image samples (Tsim: 1200 - 1300 ms)
generated by the network (by column).

The comparison shows the mixing advantage of the LIF network compared to the
AMN-based network. While being extremely useful, this ’feature’ of the LIF-based RBM
is, at the moment, not well understood. A further investigation needs to be carried out,
in particular for simulations in larger networks with more network modes.
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4.6. Deep Boltzmann machines

In the previous sections, we showed the capability of RBMs to learn complex training
patterns. Adding additional layers of hidden units to RBMs, one obtains so-called deep
Boltzmann machines (DBMs). Previous works, such as (Bengio and LeCun, 2007) prove
that adding layers of hidden units can theoretically improve the efficiency of representing
complex distributions. Additionally, several authors, e.g., (Salakhutdinov and Hinton,
2009) (Srivastava and Salakhutdinov , 2012) have shown that DBMs can significantly
outperform many other models on learning difficult datasets including MNIST hand-
written digit, NORB (LeCun et al.), and various classification tasks.

In this section, we will briefly discuss the concept of DBMs and their correspond-
ing learning algorithms, without going into detailed mathematical principles. Currently,
we only trained a traditional DBM and will present these results in the following.

Conventionally, people refer to BMs with multiple hidden layers as deep Boltzmann
machines (DBMs). A DBM can also be viewed as a (vertical) stack of several RBMs.
Fig. 4.24 shows a three-layer3 DBM.

Figure 4.24.: A three-layer DBM. It can be viewed as three RBMs stacked together (Im-
age is taken from Salakhutdinov and Hinton, 2009).

For a two-layer DBM, the energy of the state {v,h1,h2} is defined as:

E(v,h1,h2) = −
∑
i

aivi −
∑
j

bjh
1
j −

∑
k

ckh
2
k −

∑
i,j

W 1
ijvih

1
j −

∑
j,k

W 2
jkh

1
jh

2
k , (4.28)

where W1, W2 are symmetric, zero-diagonal matrices that contain the visible-to-hidden
and hidden-to-hidden weights. ai, bj and ck are biases of the corresponding units.

3In (Salakhutdinov and Hinton, 2009), the layer number of a DBM is referred to as the number of its
hidden layer, we will follow this convention here.
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The probability of a visible state v in the DBM is defined as:

p(v) =
1

Z

∑
h1,h2

exp
[
−E(v,h1,h2)

]
. (4.29)

The conditional distributions over the visible and the hidden units are given by logistic
functions:

p(vi = 1|h1) = σ(ai +
∑
j

W 1
ijh

1
j ) , (4.30)

p(h1
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k) , (4.31)

p(h2
k = 1|h1) = σ(ck +

∑
j

W 2
jkh

1
j ) . (4.32)

4.6.1. Learning algorithm

Salakhutdinov and Hinton (2009) introduced an efficient layer-by-layer pretraining algo-
rithm for the DBM, including a series of specific techniques. Additionally, a mechanism
of discriminative fine-tuning was proposed, which can further improve the model after
the training.

Currently, we only implemented the concept of layer-by-layer pretraining, with some
modifications from the original method. As this will constitute the main focus of future
research, we only describe it intuitively here, without going into detailed mathematical
principles.

In the layer-by-layer pretraining, the RBM in the first layer is trained like a single
RBM, and then serves as a feature detector for the RBM in the second layer. More
specifically, after training, the first-layer RBM then performs a non-linear transformation
on the input data and produces, as an output, certain states of its hidden units. These
are used as input for the second-layer RBM. The second-layer RBM is trained using the
hidden state of the first-layer RBM as its visible state. For the training of the RBM
in each layer, we applied the CAST algorithm instead of the CD or PCD used in the
original work (Salakhutdinov and Hinton, 2009).

4.6.2. Result

We trained the model with 100 MNIST handwritten digits, similarly to section 4.3, as
shown below:
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Figure 4.25.: Training data: 100 images of handwritten digits taken from the MNIST
database and reduced to 12× 12 pixels.

The unit number of the visible layer, hidden-layer-1 and hidden-layer-2 were set to 144,
90 and 180, respectively. For the choice of the number of hidden units in each layer, we
used a similar setup as Salakhutdinov and Hinton (2009), with a larger number of hidden
units in layer h1 compared to layer h2. However, a decreasing number of hidden units
per layer can also be an option, as in (Hinton and Salakhutdinov , 2006). The model was
trained for 2 ·105 parameter updates, with 105 for each RBM. Both RBMs used the same
learning rates:

for n = 0− 7 · 104, η(n) = (10−4 − 10−2 + 1)
n

7·104 + 10−2 − 1 ,

for n = 7 · 104 − 105, η(n) = (3 · 10−5 − 10−4 + 1)
n−7·104

3·104 + 10−4 − 1 .

After training, the result of a simulation for Nsteps = 8 · 104 can be seen in Fig. 4.26.
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Figure 4.26.: Statistics of generated images from a simulation of Nsteps = 8 · 104.
Top: Distribution of generated images and the mean STDs in each mode.
Images generated by the network cover all modes. Bottom: A series of
consecutive image samples generated by the network (by column). The
network switches between different image classes frequently.

For the generation of images, we first ran a simulation on the second-layer RBM
using AST and obtained a series of states {h1}. These states were then used for the
initialization of the first-layer RBM. Based on each state h1, the firing probabilities of
the visible units were calculated and taken as the pixel values of the generated image.

For the learning of 100 images, the result looks nice even without further imple-
mentation of other techniques. For larger and more complex training data, the use of
additional mechanisms such as discriminative fine-tuning (Salakhutdinov and Hinton,
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2009) is expected to allow significant improvements. We have already commenced
investigations of DBMs based on AMNs and LIF neurons and will continue pursuing
this line of research in the future.

4.7. Summary

In this chapter we explored the implementation of RBMs with AMNs and LIF neurons.
A series of corresponding learning algorithms were developed and the training results
proved their feasibility. The capability of the LIF-based RBMs to learn unlabeled
data was demonstrated. Additionally, we showed the potential of the LIF-based BM
to perform pattern recognition tasks. This work paves the way for the exploration of
LIF-based deep Boltzmann machines, where the LIF-based RBMs serve as building
blocks.

The LIF-based RBMs show great potential in learning and generating datasets with
high variability. For learning 15 images, the total neuron number required is less than
twice the pixel number of the image, and we expect to be able to decrease it even further
without significant impairments in performance. Future improvements of the code used
for instantiating and updating the LIF-based BMs (some of them already implemented
but not yet tested) will allow us to expand the size of the LIF-based RBM and apply
it to learn the full MNIST dataset, other visual datasets (e.g., NORB), or even speech
recognition tasks, where RBMs also showed high performance (Jaitly and Hinton, 2011).

Finally, a successful implementation of the LIF-based RBM on the neuromorphic
hardware will greatly profit from its fast simulation speed, especially when the learning
can be performed on-line (a neuromorphic implementation of an STDP-based EM4

learning rule, inspired by Nessler et al. (2009), is currently being investigated by Oliver
Breitwieser).

4expectation maximization
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This chapter will give a short introduction to the neuromorphic hardware developed
within our group. We focus, in particular on the wafer-scale device and its constituent
HICANN chips. Following the hardware description, we present our progress on the
hardware implementation of LIF-based BMs and describe several important problems
found during the process.

5.1. Introduction of the neuromorphic hardware

Compared to the traditional numerical approach to the modeling of biological neural
networks, so-called neuromorphic hardware directly implements neuron and synapse
models with circuits on a silicon substrate using VLSI1 technology. This approach offers
several advantages over traditional simulations on von Neumann architectures: it is in-
herently (massively) parallel and, in general, requires less power (or energy per synaptic
event). Additionally, in the particular case of the BrainScalesS physical model device,
the network components’ dynamics inherently evolve at a speedup of 104 compared to
their biological archetypes.

Currently, within the BrainScaleS2 project (and its predecessor FACETS3), a wafer-scale
system (see Fig. 5.1) was designed and built. Each wafer contains 352 HICANN4 chips
with high connection density between individual modules (Schemmel et al., 2010).

1Very Large Scale Integration
2Brain-inspired multiscale computation in neuromorphic hybrid systems
3Fast Analog Computing with Emergent Transient States
4High Input Count Analog Neural Network
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Figure 5.1.: Design drawing of the wafer-scale neuromorphic device. A: Structures re-
sponsible for power supply and communication with other devices. B: Wafer
with HICANN chips.

The HICANN chip, as shown in Fig. 5.2, consists of two blocks with 256 AdEx5

neurons and 65536 synapses each. The AdEx neuron model can be reduced to the LIF
neuron model (as required by our theory) by deactivating certain parameters.

Figure 5.2.: Photograph of the HICANN (Image is taken from Schemmel et al., 2010).

Depending on the setup of certain parameters, the temporal evolution of the neural
components is expected to be 103 to 105 times faster compared with biological real-time.

5Adaptive Exponential Integrate and Fire Model (Brette and Gerstner , 2005)

82



5.2. Implementation of LIF-based BMs in the neuromorphic hardware

5.2. Implementation of LIF-based BMs in the neuromorphic
hardware

Our6 first goal was to implement a 3-neuron BM with random weights and biases on the
HICANN chip. As a first test, we created a single excitatory Poisson noise source and
injected its output into one neuron to check its spiking patterns. We observed regular
membrane potential responds, a segment of which is shown in Fig. 5.3. The observed
time course of the membrane potential (Fig. 5.3) was somewhat as expected, although
the lack of calibration hindered a precise tuning of the neuron and synaptic parameters.

Figure 5.3.: Membrane potential profile under an excitatory Poisson noise source.

Following the setup used in the previous chapters (excitatory & inhibitory Poisson
noise for each neuron), we then attempted to add another (inhibitory) Poisson noise
source to the neuron. However, we found that the neuron was only able to receive noise
sources with address 0 (HICANN.DriverDecoder(0)). This bug made the setup with two
Poisson noise sources for each neuron impossible at that time. More recently, Dimitri
Probst found a workaround for this bug with a more complicated setup.

Since the bug seemed to not occur for regular spike trains (generated by the same
sources as the Poisson noise), we replaced the noise stimulus with regular stimulus in
order to at least investigate the effects of simultaneous excitation and inhibition. Each
neuron was injected with regular excitatory and inhibitory spike trains with a constant
frequency of 400 Hz. However, some unexpected behavior occurred here as well. We
found that, for certain neurons, a long-term noise injection would cause something like a
bistable state (see Fig. 5.4. ). The neuron would witch between a non-spiking mode with
oscillatory membrane potential (as expected due to the regular nature of the stimulus)

6This work was performed in close collaboration with Dimitri Probst
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and a fast-spiking mode - as if, for a short period of time, the threshold would be set to
a lower value. The asymmetry between excitatory and inhibitory was a consequence of
the lack of calibration for the synaptic input.

Figure 5.4.: Top: A complete record of the membrane potential. Middle: Oscillatory
membrane potential in the non-spiking mode. Bottom: Membrane potential
in the fast-spiking mode.

In some runs, we found that the bistable behavior can be eliminated for certain
parameter settings. In any case, more trials and a more thorough investigation are
needed for a full understanding of this phenomenon.

In conclusion, during the two weeks of preliminary exploration of the implementa-
tion of a simple LIF-based BM on HICANN, we found a series of bugs and problems.
Due to the time limitations, only a few of them were investigated and discussed to a
very limited degree. Some problems can be temporarily avoided by special setups or by
picking a particular range of certain parameters. However, for a concrete implementation
of a 3-neuron BM, more work is needed for a full investigation of all the problems.

One challenge will be the separate investigation and remedy of certain bugs which
occur simultaneously on the hardware. We found it particularly difficult to judge
whether a ’new’ problem was caused by previously observed bugs or new ones.

Consequently, we consider a thorough investigation of the hardware neuron and synapse
dynamics - and, in particular, of the way they are influenced by parameter settings -
indispensable and of highest priority before the implementation of BMs can be further
pursued.
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6.1. Summary

Throughout this thesis, we explored functional applications of LIF networks to standard
machine learning tasks. Learning algorithms were developed for LIF-based multilayer
Boltzmann machines and their efficiency was proved for several training tasks.

In chapter 2, we have discussed various implementations of Boltzmann machines,
including some basic considerations about learning in these networks. Starting from the
original Boltzmann machine design based on abstract binary units, we discussed how this
concept can be gradually refined towards a more biological implementation. Following
the neural sampling theory by Buesing et al., we have shown how abstract model neurons
(AMNs) can replace the binary variables from the original design. Then, based on the
LIF sampling theory by Petrovici et al., we have shown how networks of LIF neurons
can achieve the correct dynamics to sample from Boltzmann distributions, thereby
establishing an equivalence between classical Boltzmann machines and LIF networks.
Starting from basic maximum-likelihood optimization, we have also discussed how the
so-called contrastive divergence algorithm by Hinton et al. can efficiently approximate
maximum likelihood learning. Based on the theory developed in chapter 2, we were able
to use networks of LIF neurons to implement increasingly complex Boltzmann machines.

In chapter 3, we constructed Boltzmann machines consisting of several hundred units,
thereby evaluating the performance of large networks of LIF samplers. In particular, we
used these networks to model the well-known phenomenon of perceptual multistability.
Starting from a trained network of theoretically optimal AMNs, we have shown how
the resulting network parameters can either be translated directly to an LIF network or
how the latter can be trained independently for the task at hand. For training the LIF
network, we adapted the contrastive divergence algorithm accordingly. In both cases, we
were able to demonstrate a good performance of the LIF network, in particular for the
case where it was trained independently. We have provided a detailed discussion of these
results, emphasising the effects of synaptic conductances on the translation process. Ad-
ditionally, in order to verify the applicability to analog neuromorphic circuitry, we have
repeated the experiment with noised neuron parameters. Using the “self-calibrating”
framework designed by Mihai Petrovici, we have demonstrated no loss in performance
due most fixed-pattern noise effects, thereby encouraging a future implementation on
the neuromorphic hardware.

In chapter 4, we extended our scope by discussing deep learning architectures and
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their implementations with LIF networks. Due to the more complex, multilayered
structure, as well as the significant differences in training (training data is usually only
available for the so-called “visible” layer of a deep architecture), more complex and effi-
cient learning algorithms were necessary. A series of learning algorithms were compared
and combined to form the so-called CAST algorithm, which was shown to perform well
in learning patterns with high variability. We then modified this algorithm to make it
applicable to networks of both AMN and LIF neurons. Based on this modified algorithm,
we were able to demonstrate the ability of these networks to learn generative models of
complex input patterns. As training data, we have used samples of varying size from the
MNIST handwritten digit database, which by now has become a standard in machine
learning. Furthermore – and somewhat serendipitously – we found the LIF networks to
inherently exhibit better mixing properties than their more abstract counterparts.

By combining several of the previously discussed restricted Boltzmann machines, one
obtains so-called deep Boltzmann machines, which have shown state-of-art performance
in various machine learning tasks. In the last section of chapter 4, we briefly described
our current progress on these architectures, together with a preliminary training result
of a traditional three-layer deep Boltzmann machine.

Finally, first steps towards the hardware implementation of LIF-based Boltzmann
machines were presented in chapter 5. At the current stage of development, we en-
countered a series of bugs related to the on-chip Poisson sources, which are essential for
implementing the stochasticity of individual LIF sampling units. Before attempting any
further steps, these problems need to be better understood and fixed appropriately.

6.2. Outlook

The immediate next step will be the implementation of deep Boltzmann machines with
LIF neurons. Also, with improvements in the software implementation, the training
should become faster and better. Additionally, in future work, the current algorithms
and evaluation methods will be improved by including mechanisms such as discriminative
fine-tuning and annealed importance sampling (AIS) (Salakhutdinov and Hinton, 2009).

An interesting theoretical problem will be the translation of the learning algorithms
to biological dynamics. Nessler et al. (2009) have shown, for example, how STDP can be
used to model on-line expectation maximization learning. Additionally, the changes in
temperature required by the simulated tempering algorithm should find an equivalent in
the noise level of the network, which can be modulated, for example, by inhomogeneous
Poisson sources1.

The developed learning framework for LIF-based Boltzmann machines show a vast
application prospect, considering the excellent performance of classical, multilayer

1Personal communication with Mihai Petrovici
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Boltzmann machines demonstrated in recent literature (Salakhutdinov and Hinton,
2009), (Srivastava and Salakhutdinov , 2012). We plan to extend the size of our current
LIF-based Boltzmann machines (both the number of layers and the number of units per
layer) and apply them to more complex learning tasks, including, for example, the full
MNIST or NORB datasets or non-visual learning tasks such as speech recognition. The
discovered mixing properties of the LIF network might be highly relevant for these tasks
and therefore need to be studied in detail.

Additionally, the developed LIF-based learning framework can be further refined and in-
tegrated with other stochastic models, such as the LIF-based Bayesian networks studied
by Dimitri Probst.

Last but not the least, we are looking forward to a successful implementation of
LIF-based Boltzmann machines on the accelerted BrainScaleS neuromorphic hardware.
The huge (104) acceleration factor of the hardware, combined with robust on-line learn-
ing methods, will likely allow “neuromorphic Boltzmann machines” to rival state-of the
art software implementations.
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