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Commissioning of a Neuromorphic Computing Platform

This thesis presents work performed on the BrainScaleS neuromorphic hardware sys-
tem enabling its transition from a lab setup to a usable computing platform. A stable
communication between the controlling host computer and the system was achieved
through the development of a verification test demonstrating uninterrupted transmis-
sions of at least 150 TiB of data. Several new software tools were implemented which
improved usability through encapsulation and failure cleanup, increased usage flexibility
of single-chip test setups, enabled remote firmware updating and automated the system
startup routine. An automated BrainScaleS wafer module test was developed which
permitted advancements in the assembly process. It allowed for the first investigation of
long-term stability of wafer connections. The monitoring infrastructure was enhanced
allowing for automated readout of many components which lead to identification of an
overheating issue. The implemented visualization tool assisted in resolving the issue by
the system hardware designers. An integrated function call and I/O profiling tool was
developed to analyze the performance of communication and software as high perfor-
mance is vital to utilize the hardware speedup. The improvements of the introduction
of a sliding-window transport protocol as well as effects of analog readout compression
were evaluated. The digital spike communication and system configuration was paral-
lelized, resulting in a major speedup for multi-reticle experiments. The results of the
implemented changes and performance analysis are discussed and further improvements
are suggested.

Inbetriebnahme einer Neuromorphen Computing Plattform

Dieses Werk befasst sich mit Arbeiten, die am neuromorphen BrainScales Hardware-
system durchgeführt wurden um den Wechsel von einem Laborsystem zu einer funkti-
onsfähigen Computing-Plattform zu ermöglichen. Eine stabile Kommunikation zwischen
Kontrollrechner und dem System wurde durch Entwicklung eines Verifikationstests er-
reicht, welcher die fehlerfreie Übertragung von mehr als 150 TiB demonstriert. Mehrere
Softwarewerkzeuge wurden implementiert und führten zu einer Verbesserung der Be-
nutzbarkeit, flexiblerer Nutzungsmöglichkeiten der Einzelchiptestsysteme, der Inbetrieb-
nahme der Firmware-Fernaktualisierung sowie einer automatisierten Systemstartroutine.
Ein automatisierter Test der BrainScaleS Wafermodule wurde entwickelt, der zu Verbes-
serungen des Montageprotokolls führte. Dieser ermöglichte die erstmalige Untersuchung
der Langzeitstabilität von Waferverbindungen. Die Erweiterung der Systemüberwachung
erlaubt das Auslesen zahlreicher Komponenten. Dadurch konnte ein Überhitzungspro-
blem identifiziert, und durch die Systemhardwareentwickler behoben werden. Es wurde
ein Profilingwerkzeug zur integrierten Leistungsanalyse von Kommunikation und Soft-
ware entwickelt. Die durch Einführung eines Sliding-Window-Transportprotokolls sowie
einer Analogdatenauslesekompression erziehlten Verbesserungen wurden untersucht. Die
digitale Spike-Pulsübertragung sowie Systemkonfiguration wurden parallelisiert, was zu
einer wesentlichen Beschleunigung von Multi-Retikel-Experimenten führte. Die Resulta-
te der durchgeführten Änderungen und deren Leistungsanalyse werden diskutiert und
weitere Verbesserungsvorschläge werden dargebracht.
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1. Introduction
Advancements in computation technology and rising interest in applicability for infor-
mation processing are major factors in the increased effort and progress in neuroscience
in the past few decades. Neuroscience aims to understand the brain which is exceedingly
well adapted in processing sparse and ambiguous data due to its inherent ability to learn,
remember and modify learnt knowledge. This capability emerges from the interaction
between neurons in vast dynamically changing networks. These abilities lend themselves
well to solve problems in fields like image analysis or robotics.
The desire to scientifically derive descriptions of brain functionality spawned various

neuron models and numerical network formulations. These are traditionally simulated
on clusters or even supercomputers. It was possible to run large scale spiking sin-
gle point neuronal network simulations using the common NEST simulator [Diesmann
and Gewaltig, 2002] on the super computers JUQUEEN in Jülich and K in Kobe with
0.57/1.73×109 neurons and 6.4/1.4×1012 synapses respectively [JSC , 2015; Riken, 2013].
For comparison, the human brain consists of about 1011 neurons and 1014 synapses.
These are remarkable numbers, but they also come at huge costs. The simulation

of 1 biological second takes 40 minutes in wall-clock time for the simulation run on K,
a slowdown factor of 2400. This is caused by expensive numerical calculations of the
differential equations describing the dynamical behaviour of the membrane potential of
the single point neurons. The K computer consumes 12.7 MW [Riken, 2016], resulting
in a power consumption of 21.8 mW for each synapse in biological time domain.
An alternative to software simulation was introduced by Mead and Mahowald [1988].

Instead of calculating the numerically expensive differential equations in simulations,
the neuronal behaviour is emulated by a physical representations of the model, usually
in silicon. Mead also established the term neuromorphic computing [Mead, 1990] which
today is associated with analog as well as digital and hybrid hardware that implements
neuronal networks. Hardware designers can choose, to a certain degree, the dimensions
of the components implementing the neurons and synapses, allowing systems to oper-
ate in real-time or at higher speedup factors compared to the biological time domain.
Furthermore, the speedup is independent from the size of the network.
The NM-PM1 system, developed by the Electronic Vision(s) group at the Heidelberg

University in cooperation with the Technische Universität Dresden within the Human
Brain Project, employs this physical modelling technique. It will consist of 20 neuromor-
phic BrainScaleS wafer modules that emulate the Adaptive Exponential Integrate-and-
Fire (AdEx) neuron model with a speedup factor of around 104 compared to biology.
The 3.9 × 106 neurons and 8.8 × 108 synapses of the entire system consume 24 kW power,
including the digital communication layer. The resulting power consumption of 3 nW
per synapse yields a reduced power consumption of over 6 orders of magnitude compared
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1. Introduction

to traditional computing (21.8 mW). The speedup offers an ideal setup for long-term
plasticity experiments as the evolution of a neuronal network over a timespan of one
year can be emulated in less than an hour, whereas in simulation this would take over
two millennia.
To leverage the advantages of physical modelling some challenges have to be faced. The

high speedup demands a sophisticated communication network as the system cannot be
throttled or paused like software simulators. An average firing rate of 1 Hz yields nearly
2 × 109 spike events per second on one wafer module. The analog nature of the system
introduces noise that leads to nondeterministic behaviour. Another constraint is the
rigid implementation of the neuron model. Although, some parameters can be varied in
a limited range, the fundamental differential equations cannot.
Nonetheless, neuromorphic hardware is promising as a fast alternative to software

simulation as it enables the exploration of time-scales which are several orders of magni-
tude larger than in existing network simulations. This unique property not only allows
for faster and interactive modeling but also renders possible long-term plasticity exper-
iments which involve sensor-motor loops that are typically found in robotics. Finally, it
could also reveal new computational paradigms.
The next big step is to evolve this system to an emulation framework for the neuro-

science community. The system has to run stably and robustly, react reliably to hard-
and software faults, provide a user-friendly interface and achieve all that with a limited
number of support personnel.
The main goal of this thesis was to drive forth the commissioning of the neuromorphic

computing platform by engaging the aforementioned challenges.

Thesis Outline
To give an overview of the neuromorphic computing platform, its hardware components
and software framework are introduced in chapter 2. Commissioning work towards
a stable and robust operation of the neuromorphic computing platform is illustrated
in chapter 3. This includes stability tests of communication modules, implementation
of automated wafer module connectivity tests and system monitoring among others.
Chapter 4 presents implemented changes to the communication and hardware abstrac-
tion software stack and an analysis of the resulting performance improvements. Finally,
chapter 5 discusses the results acquired in this thesis discussion and gives an outlook for
future goals.
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2. The Neuromorphic Computing Platform
This chapter serves as a short introduction of the hard- and software framework. The first
section gives an overview of the different hardware components while the second section
presents the software to utilize said hardware. A detailed description of the platform is
depicted in HBP SP9 partners [2014] which is the main source for this chapter.

2.1. NM-PM1
The Neuromorphic Physical Model version 1 (NM-PM1) represents the hardware side
of the neuromorphic computing platform. The following section will give a bottom-up
introduction to the hardware components relevant in the scope of this thesis.

2.1.1. HICANN Wafer
At the heart of the NM-PM1 lies the High-Input Count Analog Neuronal Network Chip
(HICANN) [Schemmel et al., 2008, 2010]. It is the successor of the Spikey chip [Schemmel
et al., 2006, 2007] developed in the FACETS (Fast Analog Computing with Emergent
Transient States) project [FACETS , 2010]. Development of the HICANN started 2008
within FACETS, continued in the BrainScaleS project [BrainScaleS , 2012] and is carried
on in the Human Brain Project [Markram, 2012].
One HICANN chip consists of 512 neuron circuits, 512×224 synapses and the required

control and communication circuits. Synapses can be variably assigned to logical neu-
rons. This allows for configuration between 512 small neurons with only 224 synapses
each and up to 14 × 103 synapses for 8 large neurons.
The neurons of the HICANN emulate the Adaptive Exponential Integrate-and-Fire

(AdEx) neuron model [Gerstner and Brette, 2009]. Neuron parameters like capacitances
and conductances are represented by electrical components on a micro-meter scale which
leads to a speedup factor of up to 104 compared to biological time domain. The var-
ious neuron and synapse parameters, e.g. membrane potential, leakage conductance or
synaptic weight, are configurable which allows to model different neuron behaviour. The
HICANN chip also provides plasticity mechanisms such as Short-term Plasticity (STP)
and Spike Timing Dependent Plasticity (STDP).
The HICANN was designed within the focus on wafer-scale integration. Micro-chips

are conventionally produced in manifold on a silicon wafer, then cut out, bonded and
packaged into a casing. In wafer-scale integration the chips on the wafer are not cut
but instead are directly connected. Only 8 HICANNs can simultaneously be fabricated
in one photolithography step. Such a group of HICANNs is called a reticle. The post-
processing step creates connections between neighboring reticles. One wafer contains 48
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2. The Neuromorphic Computing Platform

reticles which leads to a maximum number of over 196 thousand neurons and 44 million
synapses.
HICANNs on a wafer are interconnected by a system of horizontal and vertical bus

lanes, named Layer 1 (L1). Spike events between the continuous analog neurons and
synapses are transfered as discretized digital events. The routing is done by a network
of configurable crossbar switches. External communication to and from the HICANNs is
analogously named Layer 2 (L2). The handling of off-wafer communication is covered in
the follow-up subsection. The interface between L1 and L2 is the Digital Network Chip
(DNC) merger, which is located in the Merger Tree (MTREE). The MTREE allows for
a flexible allocation of the digitalized neuron output to the eight sending repeater which
represent the L1 output of a HICANN chip.

2.1.2. BrainsScaleS Wafer Module
To access and control the vast amounts of data generated by a HICANN wafer requires
a sophisticated readout and communication equipment. The unity of wafer, commu-
nication components, controlling devices and power supply constitutes a BrainScaleS
wafer module, named after the project in which it was developed [BrainScaleS , 2012].
This subsection gives an overview of some components of a BrainScaleS wafer module,
primarily focusing on communication and control devices.
Figure 2.1 illustrates the different communication channels between a wafer module

and the host machine on which the user operates.
The interface for digital communication between HICANN and host is an Field-

Programmable Gate Array (FPGA) which executes the required tasks. The FPGA
is incorporated into a Printed Circuit Board (PCB) appropriately named the FPGA
Communication PCB (FCP). It was designed by the collaborating team of the Technis-
che Universität Dresden (TUD) [Hartmann et al., 2010; Scholze et al., 2011]. The FCP
handles transmission of L2 packets to and from the wafer. There are two types of packets
transfered between FCP and HICANN, spike events and HICANN configuration data.
Spikes are sent without error-control whereas transmission of configuration packets is
controlled by the custom made HICANN ARQ protocol (HICANNARQ). An Automatic
Repeat Request (ARQ) protocol ensures transmission of a packet through resending if
the receiving side did not acknowledge reception.
To conduct experiments at the accelerated operation speed of the system requires

precise synchronisation of spike events and configuration commands. This is realized
through buffering of spike trains in two 512 MiB memory modules named Playback and
Trace for in- and out-going spikes respectively. This allows for spike release at clock
cycle precision.
Hybrid operation of the system, i.e., interaction of the neuromorphic hardware with

outside stimulus, requires unbuffered insertion of spikes and configuration commands.
The SpiNNaker real time interface and the asynchronous HICANN communication allow
for direct communication with the HICANNs.
Direct hardware access to FPGA and HICANN are provided by a Joint Test Action

Group (JTAG) side channel. This channel is used for hardware control, e.g., setting
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2.1. NM-PM1

of system counters or clock frequencies, and readout of hardware values for debugging
purpose.
The Analog Readout Module (AnaRM) enables readout of analog membrane voltages

of HICANNs. It consists of two interconnected circuit boards. One board, named flyspi
board, provides most of the functionalities. It contains a FPGA, an Analog-to-Digital
Converter (ADC), 512 MiB memory and a Universal Serial Bus version 2.0 (USB 2.0)
controller. The other board, named Analog Front End Board, provides a multiplexer
for 8 input signals in order to enable a fast consecutive readout of these signals. Every
reticle has two analog output signals, hence 12 AnaRM are required to access all analog
signals of one wafer module. In the NM-PM1, 4 wafer modules will share 12 AnaRMs.
Control and monitoring of most components of the BrainScaleS wafer module are done

by the Main System Control Unit (MaCU) which is implemented by a Raspberry PI.
It is connected to the wafer module via a ribbon cable. Communication with module
components is done via the Inter-Integrated Circuit Link (I2C) protocol.

Figure 2.1.: Overview of communication channel between BrainScaleS wafer module and
host machines. See text for explanation.

2.1.3. Cluster Architecture
The NM-PM1 will consist of 20 BrainScaleS wafer modules. A cluster of 20 compute
server nodes, further on named host machines, with 10 Gbit Ethernet cards supplies the
computational power and communication throughput for experiments. The 48 FCPs
of one wafer module are connected to a 1 Gbit switch with a 10 Gbit backplane. The
switches of wafer modules and the host machines are interconnected via 10 Gbit backbone
switches with a backplane of 40 Gbit. A detailed description of cluster architecture is
presented in Müller [2014]. Figure 2.2 shows an image of the NM-PM1.
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2. The Neuromorphic Computing Platform

Figure 2.2.: Image of the NM-PM1 system. Date: 2016-02-25 by B. Kindler

2.2. Software
A sophisticated software stack is required to operate the NM-PM1. Figure 2.3 gives an
overview of the different repositories that constitute the framework to operate the neu-
romorphic hardware. This highly modular structure makes the software more scalable
and maintainable. It can be split into three categories. Python for the Hybrid Multi-
scale Facility (PyHMF), Euter, Ester and Marocco cover the software that manages the
translation from neuron network models to the hardware structure. Hardware calibra-
tion and classification of defect HICANNs chips is handled by calibtic, redman and cake.
StHALbe and further low level communication repositories handle the direct access to
the hardware. The following subsection will give an brief overview of these three software
compartments. Resource management of the hardware is handle by Simple Linux Utility
for Resource Management (SLURM) [LLNL et al., 2014]. An interface for external usage
is provided by the HBP Neuromorphic Platfrom Interface (NMPI) Davison [2016].
A comprehensive list of repositories of all tools and tests developed in the course of

this thesis ist presented in appendix A.1

2.2.1. User Software Stack
A widespread tool used by neuronal network modelers is PyNN [Davison et al., 2008].
PyNN is a python package that defines and implements a unified Application Program-
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Figure 2.3.: Overview of the software framework for the NM-PM1. By E. Müller.

ming Interface (API) to different neuronal network simulators (NEURON [Hines and
Carnevale, 2003], NEST [Diesmann and Gewaltig, 2002], Brian [Brette and Goodman,
2008]) and some neuromophic hardware systems (BrainScaleS, SpiNNaker [Furber et al.,
2012]). The software stack of the neuromorphic computing platform is designed to be
operated with this interface, to allow modelers an easy usage of the hardware. PyHMF
is an adapter between the PyNN API and the underlying software layers written in
C++. Euter implements the biological description of the neuronal network, e.g. neuron
parameters, connections and spike sources. This abstract neuronal network needs to
be mapped onto the hardware system. This is implemented in Marocco. The software
provided in Ester acquires the abstract network from Euter passes it to Marocco for
translation. Marocco returns the translated network to Ester which then executes the
subsequent software stack.

2.2.2. Calibration Software Stack
As hardware manufacturing entails imperfections and defects, it is necessary to circum-
vent those imperfections and cope with defects. The hardware was designed to allow
calibration of various parameters. The task of the calibration is to create a lookup table
for different varying hardware parameters. This is done through direct or indirect mea-
surements of the system characteristics. In case of the neuron leakage potential, it is a
simple static measurement while for other parameters it is much more difficult. Further
information on calibration is found in Schmidt [2014]. cake represents the implementa-
tion of the calibration algorithms. An API for storage and access of gathered calibration
data is provided by calibtic. Defect HICANNs are handled by white- and blacklisting
implemented in redman.
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2.2.3. Hardware Abstraction And Communication Software Stack
The Hardware Abstraction Layer Backend (HALbe) serves as the main interface between
low level hardware formatting and user formatting. Its main feature is an abstract co-
ordinate system to give the user an intuitive structure for various hardware elements. It
also provides the implementation of backend functions, e.g. setting of synapse connec-
tions, write of spike trains into the Playback memory or readout of ADC data.
The Stateful Hardware Abstraction Layer (StHAL) utilizes the structures defined by

HALbe to implement container that hold the state information of the various hardware
components. It defines functionalities like the configuration sequence of HICANNs.
StHAL can be viewed as an enhancement of HALbe hence the notation stHALbe used in
fig. 2.3. Further information is provided in Jeltsch [2014].
The low level communication is again split up in modular repositories. Control and

data transmission of the AnaRM are handled in the repository vmodule whereas the
different communication channels to the FCP are implemented in HICANN-systems.
The transport protocol of the main communication channel between host machine and

the FCP is the Host ARQ protocol (HostARQ), not to be mistaken with the HICAN-
NARQ. It is a custom made Selective Repeat ARQ protocol. The sender continuously
transmits a number of frames defined by a window size and resends them after a time-
out. These frames are marked by ascending sequence numbers. The sender tracks the
sequence number N of the last successfully transmitted frame. The receiver tracks the
last sequence number i of received frames without discontinuance but still handles sub-
sequent frames in the window. It acknowledges the sequence number i to the sender
after an timeout. The sender then only retransmits the frame N + i after the resend
timeout. Upon reception of the resent frame, the receiver acknowledges a later frame in
the window in case of a single drop.
Sending and acknowledge timeout are dynamically changed in the software implemen-

tation on the host to accommodate to the network capacity. Payload transmission and
acknowledgment are combined in one packet if possible to reduce load and latency of
transmission. The identification of the payload type is handled by a packet type field
in the header of a HostARQ packet. The payload of a packet constitutes of up to 180
64 bit entries. HostARQ packets are encapsulated into UDP packets for transmission
over Ethernet. For more information see Müller [2014].
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3. Commissioning Of The Neuromorphic
Computing Platform

The goal of the Neuromorphic Computer Platform is to provide a framework for neuro-
science experiments to different high-level users, i.e., non-hardware-experts, from various
fields. The user should not worry about technical details like powering of components.
This is a huge transition from the lab setups developed in previous projects like FACETS
and the beginning of BrainScaleS [Schemmel et al., 2006, 2007, 2008, 2010; Brüderle
et al., 2011]. Such setups could only be handled by a few expert users. Another problem
comes with complexity and the sheer number of components in the NM-PM1. Many
components mean many possible error sources but the number of managing people is
limited. To ensure a smooth operation of the system the following requirements must
be met:

• Stable and robust operation

• User friendly software

• System control, i.e., automated powering of hardware components

• Automated testing of hard- and software

• Monitoring and archiving system operation parameters

This chapter presents the work that has been done towards these goals.

3.1. Stable And Robust Communication
For a highly interconnected network like the BrainScaleS system a stable and robust
communication is essential, whit stability meaning a long-term operation, i.e., several
days, and robustness implying handling of damaged or dropped packets. The implemen-
tation of stable communication was an extensive effort of many people over several years.
Protocol development started in 2008, when it was designed to serve the Multi-Spikey
backplane system [Philipp, 2008; Schilling, 2010; Müller , 2008]. Later modifications
targeted the Vertical Setups which provided access to the first HICANN test chips,
the HICANN wafer lab systems [Müller , 2014; Karasenko, 2011, 2014] and finally, the
BrainScaleS wafer modules.
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3. Commissioning Of The Neuromorphic Computing Platform

3.1.1. HostARQ Test Suite
At the beginning of this master’s thesis there were still problems with the main com-
munication link, called HostARQ, between the host computer and the FCP boards. To
track down the sources of these problems a test suite for the HostARQ was implemented.
To isolate receiving and sending problems three new packet types were introduced. A
FLUSH type which is dropped by the FCP after receiving, a LOOPBACK type which
gets looped back via shortcutting the HICANNARQ in- and output and a DUMMY
type generated by the FCP which holds ascending numbers. FLUSH packets have the
goal to test the case of only the host sending packets with data and the FCP only ac-
knowledging, DUMMY packets test the opposite case and LOOPBACK packets allow
testing of data corruption and dropping. The code implementation for the FPGA of the
FCP was done by V. Karasenko, the test on host side was implemented by the author.
The test program on the host machine can send FLUSH and LOOPBACK packets in

an arbitrary ratio and either activate or deactivate sending of DUMMY data from the
FCP. FLUSH packets hold a constant number as payload whereas LOOPBACK packets
are filled with ascending numbers. The ascending behavior is checked upon receiving
the looped back packets. This check also happens for received DUMMY packets.
Another feature of the test are varying packet frame size. It is possible to send packets

with a constant, random, ascending/descending and specifically selectable order of frame
sizes. The values for constant and the intervals for random and ascending/descending
can be chosen between 1 and the maximum frame size of 180.

3.1.2. Stability And Long-Term Tests
Through excessive testing it was possible to determine the sources of bugs that corrupted
the transport protocol. There is one known bug in communication remaining at the
time of writing this thesis. The FCP stops transmitting its Internet Protocol version
4 (IPv4)-address to the host, i.e., it stops responding to Address Resolution Protocol
(ARP) requests, after a varying amount of transfered packets. This can be triggered
especially by sending only FLUSH packets so that the FCP only sends acknowledge
packets. This bug only occurs after at large amount of transfered packets. It is not
trivial to investigate as 1 simulated millisecond corresponds to about 1 minute in real
time. The collaborating group at the TUD which developed the FCP is working on this
issue.
Long-term stability of the HostARQ was investigated, despite the aforementioned

bug. 20 tests were simultaneously run on 20 FCPs on one wafer module. This amount
of FCPs was chosen to investigate the behaviour under full network bandwidth load.
Each test was set to transmit 1012 LOOPBACK packets. This was repeated 3 times.
LOOPBACK was chosen as it best emulates real experiment behavior. The number of
received LOOPBACK packets until the first commutation stall in a test was taken as a
lower bound for stability. This test resulted in stable communication for at least 5 × 1010

LOOPBACK packets or 373 GiB of data. Further testing was halted for the time being
as it was stable enough for all experiments conducted in the group and a fix of the ARP
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bug was anticipated.
The next step was to investigate stable communication with the HICANN. This was

done analog to the HostARQ stability tests. Analog tests were performed to investigate
the stability of HICANN communication. HICANN configuration readout commands
were sent instead of LOOPBACK packets. These commands trigger the sending of
configuration data from the HICANN to the host. Readout was done in sequence for
each of the 8 HICANNs on a reticle. Long-term testing yielded a stable communication
for at least 1 × 1010 configuration commands or 74 GiB of data. Tests were again halted
with the same reasoning as above.
These tests were repeated as a system was available with even higher cooling capabil-

ities than shown in section 3.5.2. Both test cases resulted in complete transmission of
1012 packets for each HICANN. This corresponds to over 150 TiB of transfered data in
1300 ± 10 minutes which yields a transfer rate of (1.91 ± 0.20) GiB/s. The high transfer
rate is possible as each side of a wafer module is connected to a separate 10 Gbit switch.
This observation suggests that the aforementioned ARP bug could be caused by tem-
perature issues or the instability with insufficient cooling is a separate issue and requires
further investigation.

3.2. User Friendly Software
This section presents changes done to the software stack to improve usability and user
friendliness.

3.2.1. Automated HostARQ Daemon Startup
A short overview of the implementation of the HostARQ is given to better understand the
changes done in this subsection. Figure 3.1 shows a diagram of the HostARQ daemon
implementation. It depicts the communication channel between host and FCP and
the interface between daemon and higher level software. The previous work flow was
a permanently running daemon on the host for each FCP. This was changed to an
automated startup and shutdown on experiment start and stop bringing the advantage
that the high level user does not need to care whether the right daemon is running on
the host machine that was allocated to him. Likewise does the managing personnel not
have to worry if all daemons are running on the machines. Additional robustness for the
user in chase of errors is achieved as each startup of the daemon triggers a reset of the
HostARQ module in the FCP.
The stable and robust implementation of automated startup and shutdown is chal-

lenging. Automated startup was implemented by forking, i.e., duplicating, the process
when communication is initialized. The child process starts the daemon and then waits
for exiting of the parent process. The parent process waits for the child process to finish
the initialization of the daemon and then continues with its previous task. Handling
of shutdown, especially in case of errors and interrupt signals, is challenging. Multiple
threads need to be exited, the shared memory file must be freed, dynamic objects must
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Figure 3.1.: Block diagram of HostARQ daemon implementation. Communication on
the side of the BrainScalesS system is handled by a HostARQ module in the
FPGA of the FCP. On the host side this is done by the HostARQ daemon.
Incoming packets are moved to a receiving buffer in the shared memory
file were they can be read out by higher level software via the HostARQ
interface. Outgoing packets are pushed into a sending buffer by higher level
software. The daemon then sends the packets to the FCP.

be deallocated and everything in the right sequence. This implementation was done in
cooperation with E. Müller. An issue of the implementation via fork() is that it re-
stricts memory allocation to be executed after communication initialization. A possible
solution is to start a detached instance of the daemon after forking via the execvp()
system call. Another remaining issue where the shared memory object is not cleaned up
in case of SIGKILL signal requires a proper cleanup by the resource management.

3.2.2. Arbitrary HICANN Slot Arrangement API
An integral part for characterizing and analyzing prototype chips of new hardware re-
visions are test setups. They allow the testing of single or multiple chips with the same
software that is used for the full wafer module. The setups have 4 slots where boards
with bonded HICANNs can be inserted. One board can hold either a single or two
HICANNs hence one system can have up to 8 HICANNs attached. This corresponds to
one reticle on a full wafer.
The APIs between the different layers of the software stack have several parameters

to support these test setups. The previous implementation of these APIs had one short-
coming, they only took the number of HICANNs and assumed that these were inserted
in succession. This made it necessary to insert boards with two HICANNs if one wanted
to use multiple slots and posed a problem with test chips of the new HICANNv4 revision
as there were difficulties bonding 2 HICANNs on one board.
The APIs of the several software layers were changed to overcome this deficit. The

software now holds the exact position of the HICANNs instead of just the amount of
HICANNs.
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3.3. System Control
The NM-PM1 has many components that need to be remotely controlled to allow a
automated operation and fast maintenance. This section presents improvements to the
firmware update routine and the implementation and subsequent extension of a control
software for the FCPs.

3.3.1. Remote FCP Firmware Flashing
The fully equipped NM-PM1 will comprise over 960 FCPs. Their firmware is frequently
adjusted due to design changes, new features and bug fixes. Therefore, a fast update
procedure of the firmware is desirable. Previously, only a slim firmware for rudimentary
testing was stored in the Erasable Programmable Read-Only Memory (EPROM) of the
FCP. It was necessary to write the firmware directly into the FPGA via a JTAG link
after each powerup of each FCP. As there are four JTAG connections on a wafer module,
one for each edge, manual replugging of the JTAG cable was required.
The collaborating group from the TUD implemented a boot loader design for the FCP.

It loads a firmware from the EPROM into the FPGA which makes it now possible to
flash new firmware versions into the EPROM via Ethernet removing the need for manual
replugging. Loading a new firmware file into the FCP requires the following steps. After
powering the FCP one needs to set the wafer ID to finalize the initialization of the boot
loader design. This enables the Ethernet connection of the FCP as the wafer ID defines
the third octet of the FCP’s IPv4-address. After the initialization is finished a timeout
of currently 25 s in which the boot loader waits to receive a new firmware. The flash
programming software needs to be started in this time window. The boot loader loads
the firmware into the FPGA when the timeout expires. It is possible to skip the timeout
by a Remote Procedure Call (RPC) command. Upgrading to the new boot loader design
still needs to be done via JTAG.
A tool to update the firmware of the FCP of a wafer module with or without prior

update of the boot design was implemented by the author. This enables automated
updating of all FCP firmwares without manual replugging. The tool allows to update
individual FCPs, entire edges or the complete wafer. Flashing of one firmware, 4.5 MiB,
takes about 135 s which is caused by the slow write access to the EPROM. The current
implementation of the flashing program from TUD is not yet parallelized. This leads to
flashing times of ≈90 minutes for each wafer module. However, parallelization should
be possible as the communication streams to the individual FCPs are independent and
easily distinguishable by FCP’s IP address. As the Transmission of the 48 firmware
images, 48 × 4.5 MiB, in 2 minutes is two orders of magnitude below wire-speed, even a
trivial implementation should be able to scale perfectly, i.e., the parallel version should
take as much time as a single execution of the serial flashing tool.

13



3. Commissioning Of The Neuromorphic Computing Platform

3.3.2. FCP Control Software
The central control unit of a BrainScaleS wafer module is a Raspberry Pi, called MaCU
(see section 2.1.2) which is able to communicate with most components on the wafer
module via I2C. A new daemon to communicate with the FCPs was implemented by
S. Hartmann. The author tested it and made additions to its functionality. The daemon
accepts commands from remote hosts via an RPC interface. These commands include
power up and down of FCPs, setting of wafer ID, powering of high speed links to HI-
CANNs and readout of temperature among others. A characterization of all FCP state
values is presented in HBP SP9 partners [2014, cap. I-6.3.2]. A control software for the
host machines was implemented that utilizes the RPC interface of the daemon. Based
on this software a tool to power FCPs and their corresponding reticles on and off was
implemented. All three software tools are written in Python. The power up is done in
the following sequence:

1. Power up FCP

2. Set wafer ID

3. Skip timeout of boot loader

4. Set wafer ID again

5. Power up corresponding reticle

6. Power up all HICANN high-speed links
The second setting of the wafer ID is required as the loading of the functional firmware
into the FPGA resets all states. In case of a shut down it is sufficient to just power
off the FCP and its corresponding reticle. As with the firmware updating tool, it is
possible to select individual FCPs, edges or the entire wafer. Reticles are controlled by
a different daemon implemented by M. Güttler. Issuing commands to this daemon is
done by connecting and executing a script on the MaCU via Secure Shell (SSH). The
long-term goal is to integrate all functionalities into one daemon.

3.4. Automated Wafer Testing
The most important part of commissioning is the actual assembly of the BrainScaleS
wafer modules themselves. After assembly, the correct functionality of the wafer module
needs to be verified. This section presents an automated test of digital connectivity to
the wafer as well as long term tests to investigate potential changes in the wafer modules.
Assembly is carried out by D. Husmann, M. Güttler and student assistants.

3.4.1. Digital Connectivity Test
A test script to verify digital connectivity to the reticles after complete assembly was
implemented. The following steps are done for each individual reticle in parallel on the
entire wafer:
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1. Power up FCP and corresponding reticle

2. Check for correct JTAG ID of HICANNs and FCP

3. High-Speed link initialization

4. 100 high-speed link test transmissions (verified via JTAG)

5. 109 HICANN configuration readouts via HostARQ and HICANNARQ over the
high-speed links

6. Power down FCP and reticle

If one step fails the test is repeated up to five times. If the errors still occurs the
reticle is marked as no-usable with the respective error status. Figure 3.2 shows the
visualization of an exemplary test run. Reticles marked in green have functional digital
connectivity. Test repetition is marked in color intensity, i.e., the more repetitions were
required the less vibrant is the color. This can be seen for reticles 1, 3, 4 and 5. Errors
are categorized into five fail states.

JTagID Error The JTAG ID test returned either random IDs or all IDs are 0.

Partial JTagChain The JTAG ID test returned valid IDs for some devices and random
or 0 IDs for the rest.

HS Init Fail Either High-Speed link initialization or the subsequent 100 transmission
test via JTAG failed for one HICANN. Failure in readout of 109 HICANN config-
uration packets is also marked with this state for legacy reasons.

Ethernet Problems There is no connection possible to the FCP via Ethernet. This
mostly occurs due to not properly connected Ethernet cables.

Untested reticle Power up of FCP or reticle failed.

If either of the last two fail states occurs after assembly and the reasons are not external,
then the corresponding FCP is exchanged. The teal marking of "No HS Link on HW"
is always present for the two reticles in the center of the wafer. These reticles have no
high-speed connection by design.
One problem encountered through repeated testing is that the high-speed initializa-

tion appears to be unstable. For some HICANNs it fails, seemingly random, and with
no visible pattern. Due to this observation, the testing protocol was extended to include
several repetitions. The random failing high-speed initializations impede a clear defi-
nition of what constitutes a functional reticle. A straight forward solution is to repeat
the test several times and then declare a reticle no-usable if it fails more than a certain
percentage of test runs. It is planned to extend the test by loopback of digital spike
data to verify correct DNC merger behaviour. An approach to identify the cause of
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the unstable high speed initializations would be to log the initialization results for all
experiments run on the NM-PM1.
Preliminary wafer test statistics are presented concluding this subsection. In total,

ten BrainScaleS wafer modules were tested, not including two systems with old assembly
protocol. 398 of 460 possible reticles have functional digital communication, correspond-
ing to a success rate of 86.5%. There is one system with all reticles functional while the
two systems with the most errors have 34 functional reticles.

0/12 1/13 2/11

3/16 4/14 5/15 6/10 7/9

8/20 9/17 10/19 11/7 12/6 13/8 14/3

15/22 16/21 17/23 18/18 19/5 20/4 21/0 22/2 23/1

24/25 25/26 26/24 27/28 28/43 29/42 30/47 31/45 32/46

33/27 34/29 35/30 36/41 37/40 38/38 39/44

40/31 41/32 42/39 43/37 44/36

45/33 46/34 47/35

Powerboard 1Powerboard 2

Operative Reticle
HS Init Fail
Partial JTagChain
JTagID Error
Ethernet Problems
No HS Link on HW
Untested reticle

Figure 3.2.: Visualization of an exemplary wafer digital connectivity test. Numbers
in reticles represent the reticle number and their respective FCP number.
Powerboards 1 and 2 are shown for better orientation.

3.4.2. Investigation Of Long Term Change
It was not yet investigated if the elastomer connections between wafer and Wafer Mod-
ule Main PCB (MainPCB) undergo deformation or other changes over time. Automated
weekly tests were implemented to examine possible long-term changes in connectivity to
the wafer. The automation was done with Jenkins [Kawaguchi, 2016]. Figure 3.3 shows
wafer test results for two different BrainScaleS wafer modules at different points in time.
The module shown in (a) and (b) was one of the first assembled modules with an older
iteration of the assembly protocol. There were difficulties with even pressure distribution
on the wafer boards. This was improved in later assemblies by the system hardware de-
signers. (c) and (d) present test results of a later assembled a wafer module. Comparing
the test result of (a) and (b) two months later reveals a drastic change. Many reticles
that previously had correct connections show JTAG ID errors. Test results changing
from failing high-speed initialisation to partial JTAG ID errors is also a worsening as
JTAG communication is more stable and less complex than the high-speed links to the
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HICANNs. However, looking at the test results (c) and (d) no direct change can be
observed after 6 months of operation. The different high-speed initialization errors are
due to randomness, as stated before. The wafer module presented in (c) and (d) is,
unfortunately, the only system with improved assembly that could be tested over a long
period of time therefore long-term changes cannot be completely ruled out in general.

(a) (b)

(c) (d)

Figure 3.3.: Long-term change in wafer connectivity. (a-b) and (c-d) show test results
of wafer modules assembled with old and new protocol respectively. Test
dates: (a) 2015-09-02 (b) 2015-11-02 (c) 2015-08-14 (d) 2016-02-16

3.5. Monitoring
For a smooth and robust operation of the NM-PM1, it is important to have direct access
to all relevant system state values, i.e., voltages, currents, temperatures or number of
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active components. This section presents enhancements performed to the already exist-
ing monitoring infrastructure. Additionally, an overheating issue of the first BrainScaleS
wafer modules is described and its subsequent solution is presented.

3.5.1. Access And Archiving
Several components of the BrainScaleS wafer module allow for readout of state values.
Readout is done by the MaCU. Values are periodically read out by daemons via I2C
data bus and stored in files. This reduces the work-load of the MaCUs as they do not
have to trigger a readout for each external request. The author added the automated
readout of FCP information into the I2C daemon, as explained in section 3.3.2.
Another important point is archiving the measured system information. It is crucial

for analysis, e.g. power consumption or usage statistics, but also for determining causes
of errors. The system information on the MaCUs is periodically read out by a remote
host that stores this information in a central database. RRDtool was chosen as the
database type as it stores data in a way that it gets coarser the older it is. This has the
advantage that the database does not grow in time.
The automated readout and storage of data is done with the software Ganglia. It

also provides a graphical web interface for easy access of the archived data of which an
example graph can be seen in fig. 3.5.

3.5.2. Overheating Issues
When first wafer wide tests and experiments were conducted, a sudden shutdown of
specifically located FCP modules was noticed. One possible explanation for this is an
automatic shutdown due to overheating. This was the primary reason for implementing
automated readout of FCPs state values as described in the previous subsection. The
author additionally implemented a visualisation tool for FCP, wafer and MainPCB tem-
peratures. Figure 3.4a presents a time development of temperatures on a BrainScaleS
wafer module with the original cooling setup. It consists of two rack drawers which
each contain nine 120 mm fans, below and above the wafer module. The system draws
≈1.2 kW electrical power with all FCPs and reticles powered on. The wafer module was
in idle state during measurement, i.e., no further experiments were running. One can
see FCPs on the sides already shutting down after 8 minutes of uptime. After another
8 minutes more FCPs shut down but a bigger problem is the high silicone wafer tem-
perature of over 80 ◦C and after more time the wafer heats up to nearly 100 ◦C. The
desired working temperature of the wafer is at approximately 50 ◦C [Schemmel, 2016].
Especially the FCPs on the sides overheat due to insufficient air flow.
This cooling issue was tackled by D. Husmann and M. Güttler. A mount for a battery

of 10 high-pressure axial fans was designed. Figure 3.4b shows the temperature time
course of a BrainScaleS wafer module equipped with the new cooling system. One can
see the temperature of all FCPs not exceeding 60 ◦C even after 25 minutes and plateauing
at ≈65 ◦C with the cooling fans only running at half capacity during this measurement.
At higher speeds the wafer can be kept at ≈50 ◦C, as can bee seen in fig. 3.5. The fans
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were not ran at these speeds due to resonance problems which are resolved in a later
iteration of the cooling system design. The fans draw ≈200 W at maximum speed for
each wafer module, However they will probably not need to run at full capacity.

(a) Old insufficient cooling.

(b) New improved cooling.

Figure 3.4.: Temperature time development of BrainScaleS module for old and new cool-
ing. Wafer temperature in center, surrounding rectangles represent FCP
temperature and small squares represent main MainPCB temperature. Pur-
ple FCPs at 250 s are not yet powered up. Black marked FCPs shut down
due to overheating.
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Figure 3.5.: Time development of wafer temperature taken with Ganglia.
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With sufficiently stable and robust BrainScaleS wafer modules in place, improving the
connection speed to fully facilitate the high speedup of the system became the next
focus. In this chapter the improvements that came with implementation of the ARQ
protocol (section 4.2) as well as improvements that were done to ADC Data transmission
(section 4.3) and digital spike transmission (section 4.4) are presented.

4.1. Performance Profiling Tool
To analyze performance issues and verify improvements in the low-level software and
communication stack (see section 2.2.3) a dedicated profiling tool was developed. The
goal of this tool is to analyze which part of the software or hardware is active and thereby
find potential bottlenecks that limit the overall speed. Hence, it should have a clean and
direct visualization of when backend functions are running and, at the same time, record
corresponding I/O traffic. Though, this should not impede the execution speed of the
examined program but still yield precise data. It can analyze any test and tool in the
stHALbe software stack with only little modifications to the main program call.
The tool is split in two parts where the first part is a run-time logger that simultane-

ously tracks function calls, Ethernet and USB 2.0 traffic as the program executes. Traffic
is acquired by summation of payload sizes in the low level send and receive functions of
HICANN-system (Ethernet) and vmodule (USB 2.0) repositories. The second part is a
visualization of the acquired data. It is important to note that this is not intended to be
a full-fledged code profiler as there already exist many good options like the Linux perf
tools [Weaver , 2013]. Additional insights arise from the visualization of the interaction
between the BrainScaleS system and the software stack.
All following sections contain visualizations which are created using this tool. Fig-

ure 4.1 shows an profile run of a short calibration step which only serves to illustrate the
features of the visualization, hence the data is irrelevant. Panel (1) and (2) give a direct
comparison between Ethernet and USB 2.0 traffic and run-time of backend functions.
Their names, total run-times and portion of the entire program run-time are displayed
in panel (3). The total traffic and average transfer rate are shown in panel (4). Panel
(5) presents a histogram of accumulated function run-times. It is possible to compare
profiles in the same visualization, e.g. fig. 4.3. The profiles then also share the same
time-axis and run-times are directly comparable in the bar graph.
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4.2. Improvements Through HostARQ
As mentioned in section 3.1, the implementation of the HostARQ protocol in multiple
variants and target FPGA platforms was a major effort of many people in the course
of several years. This section presents different measurements that were conducted to
analyze performance improvements in the BrainScaleS wafer module due to the imple-
mentation of the HostARQ protocol.

4.2.1. HICANNARQ Communication Throughput
One important goal of implementing the HostARQ protocol was communication with
HICANNs at wire-speed.
The transfer rate of the HICANNARQ (see section 2.1.2) was estimated in Karasenko

[2014] where throughput of ≈40 MiB/s is expected for one HICANN with linear scaling
for additional HICANNs.
Figure 4.2 shows transfer rate measurements for readout of HICANN configuration

information. In fig. 4.2a 2 × 107 HICANN configuration packets were read out from 1
HICANN and in fig. 4.2b 2 × 108 packets from 8 HICANNs on the same reticle. These
throughput measurements were performed using the man tool at 0.1 s resolution. Ta-
ble 4.1 presents the averaged transfer rates and standard error of the mean of the mea-
sured plateaus. For 8 HICANNs a throughput of (115.5 ± 0.1) MiB/s was measured
which is near the theoretical wire-speed of 119.2 MiB/s, whereas the measurement for 1
HICANN yields a transfer rate of (37.01 ± 0.09) MiB/s.
As this only describes the on-wire transfer rate including protocol header and

HostARQ resends, the effective payload traffic was determined. The transfer time for
the aforementioned experiment setup was measured and repeated ten times for both
cases. This yields for 8 HICANNs a throughput of (104.39 ± 0.06) MiB/s but for 1
HICANN it yields (22.71 ± 0.03) MiB/s, nearly half of the transfer rate on-wire. In-
vestigating the transfered packets via the packet analyzer tool Wireshark reveals many
resends on host side and mostly packets with only one configuration packet from FCP to
host. This explains the large difference between effective and on-wire transfer rate. The
estimated and measured transfer rates for single HICANN communication over HICAN-
NARQ differ significantly which requires further investigation. One explanation could
be not optimized timings in the HICANNARQ. As 6 HICANNs already saturate the
throughput of the HostARQ this does not affect full reticle operation.

send [MiB/s] receive [MiB/s] Total [MiB/s]

1 HICANN 37.01 ± 0.09 39.63 ± 0.03 76.64 ± 0.08
8 HICANNs 115.50 ± 0.10 108.57 ± 0.03 224.07 ± 0.11

Table 4.1.: Measured transfer rates of HICANN configuration readout test in fig. 4.2.
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Figure 4.2.: Transfer rate measurement of a simple HICANN configuration readout test.
Solid lines show transfer rate for send (green), receive (red) and total (blue).
Dotted horizontal lines show average values of plateaus. Dotted magenta line
in b) represents maximal theoretical one way bandwidth of 119.2 MiB/s.

4.2.2. Calibration Speedup
It is of interest to investigate performance improvements not only for single low-level
units but also for higher-level functionality that uses existing layers of the software
stack. For this purpose, the calibration tool was chosen because it uses HostARQ for
HICANN configuration and performs many analog readout operations with the AnaRM
via USB 2.0. An introduction to the calibration software is given in section 2.2.2
Figure 4.3 shows a performance comparison of a calibration run with the old trans-

port protocol (top) and HostARQ (bottom). The calibration run with HostARQ was
conducted on a new BrainScaleS system whereas the old implementation was run on an
FACETS setup. Each peak in USB 2.0 traffic over the AnaRM corresponds to the readout
of one parameter for all 512 neurons. Functions record, trace and status correspond
to analog readout, all other functions use HostARQ for communication. Comparing both
profiles, the run-time dropped from ≈4000 s to 1500 s which corresponds to a speedup
factor of 2.7. The total data volume of both runs remains the same as the payload traffic
did not change.
Looking at the comparison of function run-times one can see a speedup for many

functions of approximately one order of magnitude. All of these functions communicate
via FCP. The only function with a relatively low speedup factor of ≈1.5 is the config_-
floating_gates function, but it still has a huge absolute time reduction. Looking at
the portions of total run-time, config_floating_gates is now the main bottleneck
claiming over 50% of total run-time. Most of this time is caused by busy waiting for
the floating gate controller on the HICANN chip. This is a known limitation of the
current HICANN revision and cannot be circumvented without either optimizing low-
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level controller operation or a chip redesign. The former is currently under investigation
by P. Müller. The speedup of ≈2 for record, trace and status is unexpected because
these functions do not use the HostARQ. An explanation for this could be that the
calibration runs were conducted on different setups (i.e. host machines and neuromorphic
setups). This was unavoidable as of how the old and new wafer modules are set up. This
probably also explains the difference in remaining runtime. Considering the low average
Ethernet transfer rates, the huge speedup cannot result from the higher throughput of
the HostARQ, but is due to the reduced round trip times.

4.3. ADC Time-series Data Compression
As described in section 2.1.2, readout of analog values during calibration (see sec-
tion 4.2.2) is done via ADC boards which use USB 2.0 for communication. Due to
the improvements in recently produced HICANNv4 chips it is now required to calibrate
time constants which is done by measuring the Postsynaptic potential (PSP). Parame-
ters like membrane potential can be acquired by a short averaging over the parameter as
the neuron is in a steady state. The PSP is dynamic which makes it necessary to trace
and average over ≈100 PSPs. One trace requires 576 × 103 sample points. This is done
for all 512 neurons and repeated 16 times. With each sample having the size of 16 bit,
on-wire, one gets 8.79 GiB of readout data.
The maximum throughput of analog readout was determined by taking 108 samples

(≈190 MiB) of an inactive HICANN, i.e., noise data, resulting in an average maximum
transfer rate of (43.8 ± 0.2) MiB/s. The specified maximum bandwidth of USB 2.0 is
53 MiB/s [USB2, cap. 4.7.2]. As the measurement only accounts for payload and neglects
additional protocol overhead the actual on-wire transfer rate was estimated. Transfer
is done in high-speed bulk mode with a header of 55 B with 512 B payload where 12 B
are used for our custom header. One needs to multiply the payload transfer rate with
a factor (500 + 55 + 12)/500 = 1.134. This yields a total transfer rate on-wire of
(49.7 ± 0.3) MiB/s which is near the specified maximum bandwidth of 53 MiB/s.
Taking the measured effective transfer rate of (43.8 ± 0.2) MiB/s and the required trace

data of 15.23 GiB leads to readout times of 205 s for calibration of one time constant.
Considering that one calibration run calibrates several parameters of one HICANN and
a wafer module has 384 HICANNs, makes an improvement in data transfer desirable.

4.3.1. Compression Scheme
To circumvent the bandwidth limitations of USB 2.0 a compression scheme was imple-
mented. A delta compression scheme was chosen as the sampled voltage traces are time
correlated. An uncompressed ADC sample has 12 bit data but is stored and transfered
in 16 bit due to alignment. The compression packet utilizes the unused 4 bit as header
information and stores differences in the 12 bit as payload. The possible compression
cases are illustrated in fig. 4.4. The FPGA on the AnaRM calculates the difference
for each incoming sample and its precursor and forms packets with the highest possible
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4.3. ADC Time-series Data Compression

compression. This process is pipelined in the FPGA and only introduces a delay of 5
clock cycles (50 ns) but does not decrease throughput.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Header Payload
x0 12 bits
x1 8 bits 4 bits
x2 4 bits 4 bits 4 bits
x3 4 bits 8 bits
x4 6 bits 6 bits

Figure 4.4.: Illustration of all possible compression combinations

For decompression, the values are bit-shifted corresponding to the compression com-
bination given in the header and then added to their respective previous value. FPGA
code was implemented by V. Karasenko, decompression on host side was developed by
E. Müller, testing and performance analysis was conducted by the author.
Compression rate and possible slow down due to decompression was investigated.

First, a pure software test of decompression was conducted. It yields for random val-
ues a max throughput of (103.1 ± 0.8) MiB/s and for a constant value (418 ± 8) MiB/s.
This shows that software decompression should not impede transmission speeds as de-
compression throughput is significantly higher than the theoretical USB 2.0 throughput
of 53 MiB/s. Compression of the FPGA was tested with a modified firmware that takes
a fixed value as input instead of real data from the ADC. This allows for reproducible
comparison between compression and no compression. Comparison with a fixed value is
fair as the FPGA speed is independent of compression and the decompression scheme in
software is fast enough.
Figure 4.5 shows transfer rate measurements for readout of 108 samples with and

without compression. The raw transfer rate without (43.5 ± 0.3) MiB/s and with com-
pression (43.8 ± 0.3) MiB/s agree with each other and with the aforementioned noise
measurement of (43.8 ± 0.2) MiB/s. This shows that compression and decompression
does not lead to a slowdown. Comparing the total data volume of both cases (189 MiB
and 62 MiB) yields a compression factor of 3. The speedup of transmission runtime is
also ≈3 as both cases have agreeing transfer rates. This is of course the best possible
compression factor as there is no difference between values. In comparison, compression
of noise yields only a factor of 1.1 as one expects from pure random data. Compression
cannot be smaller than a factor of 1 as the header only consumes previously unused bits.

4.3.2. Performance Comparison
Figure 4.6 shows a performance log (see section 4.1) of a time constant calibration step
with 16 repeated PSP readouts over all 512 neurons. Uncompressed case is displayed at
the top and compression case at the bottom.
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Figure 4.5.: Transfer rate measurement of readout of 108 ADC samples with compres-
sion (blue) and without (red). Readout was done with modified FPGA
code that only sends a constant value. Transfer rates: No compression:
(43.5 ± 0.3) MiB/s, with compression: (43.8 ± 0.3) MiB/s. Total traffic:
No compression: 189 MiB, with compression: 62 MiB.

The first two spikes in activity are due to experiment initialization. After that the
readout of the PSPs is visible where one can see a drop in activity between the 16
repetitions. Compared to previously shown calibration runs (see fig. 4.3) the massive
increase in USB 2.0 data transfer can be seen. Taking the total USB 2.0 traffic of
9011 MiB without compression and 3281 MiB with compression yields a compression
factor of ≈2.75. Comparing the total execution time of compression with 2941 s an no
compression with 3075 s without compression. This yields a speedup factor of ≈1.05.
Looking at the comparison of run-times on the right one can see this difference is mostly
due to a shorter run-time of the trace function.
Given a compression factor of ≈2.75 one would expect a higher speedup factor than

≈1.05, assuming that the transfer rate is the bottleneck. Looking at the transfer rates
one can see that both cases do not nearly reach the maximum bandwidth of 43.5 MiB/s
as determined in previous measurements. The speedup of the trace function ≈1.06
similar to the total speedup which is expected as its the only backend function with a
noticeable change. Taking the portions of total runtime of backend functions 87.1% for no
compression and 86.3% with compression shows that the calibration is mostly impeded
by memory readout of the AnaRM. But it also shows that the current implementation
of the calibration software is not mainly bound by the maximum transfer rate but rater
through transmission latency, i.e., the round trip time. To further reduce the total
calibration run-time, larger ADC readouts must be implemented. One possibility is to
pipeline the recording of several traces and readout larger blocks of data.

4.4. Parallel Digital Spike Communication
The BrainScaleS system can operate in two different experiment modes. These are the
real-time and the batch mode as defined by Müller [2014]. The real-time mode utilizes
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4. Performance Improvements

the SpiNNaker real time interface to directly transmit spike and configuration data
between host machine and HICANN without prior buffering in the FCP. In the batch
mode the FCP serves as a buffer which allows for precise timing of spike events and
configuration. This section presents improvements to the implementation of the batch
mode. This includes parallelization of the previously pure serial communication in multi
FCP operation to speedup the experiment setup time. Further changes are done to
former data structures and functions to reduce memory usage and additional speedup
besides parallelization. The general sequence of a batch experiment is as follows:

1. Configure FCP and the HICANN chip (i.e., synapses, neurons, the on-wafer net-
work and digital support infrastructure)

2. Send spike train to Playback memory

3. Start Playback and Trace memory of FCP (this denotes the experiment start)

4. Wait for experiment on the wafer to finish

5. Stop FCP Trace memory

6. Read out spikes from Trace memory

Playback and Trace are buffer memories for incoming and outgoing spike trains in the
FCP (see section 2.1.2). The separate stop command to the Trace memory is necessary
as there is no built-in mechanism yet that denotes the experiment end. A possible
implementation would be a experiment stop event at the end of the input spike train
triggering the trace-stop state. Previously each item was performed sequentially for each
FCP. However, items 1, 2 and 6 can be done independently for each FCP. Our goal is to
parallelize the experiment run and reach wire-speed for write and readout of Playback
and Trace memory. Wire-speed means 10 Gbit/s, because as described in section 2.1.3
each of the 48 FCP boards on a wafer module has a 1 Gbit/s MAC, those 48 links
are connected to aggregation switch which aggregates to a single 10 Gbit/s link to the
conventional network backbone switch (see section 2.1.3).

4.4.1. Parallelization
The OpenMP API is used for the implementation of parallel execution. It comprises
compiler directives and a run-time library. Parallelization was mostly implemented via
the #pragma omp parallel for directive. Some sections of the low level communication
code required locking mechanisms to prevent multiple allocation of system resources like
sockets. One issue that needed to be tackled was memory consumption. Each FCP has
512 MiB for Playback as well as Trace memory, this means each wafer module can hold up
to 48 GiB of spike data. The host machines communicating with the wafer modules have
32 GiB memory each. Spikes were previously stored in std::vectors of spike objects
that consist of 16 bit address information and a 64 bit time stamp. The structure of how
spikes are stored was changed. The 64 bit time stamp was kept but the 16 bit allocated
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4.4. Parallel Digital Spike Communication

for address information are now a Union of 64 bit bit fields. The C++ implementation is
shown in listing A.1 Either the spike neuron address or a HICANN configuration packet
is stored. This was done under the expectation of the not yet implemented feature
of mixing HICANN configuration packets and spike events in the Playback and Trace
memory. Bit fields were chosen for formatting of the address contrary to a raw 64 bit
data entry. This was done as bit fields have the benefit of making the code more readable
compared to manual bit shift operations on a raw data entry. The structure of the spike
address follows the same format as pulse packets sent to the Playback memory in the
FCP [HBP SP9 partners, 2014, cap. I-10.2.2]. This optimizes the transmission of spike
events as there is no additional shifting needed.
The sending scheme was reworked to reduce memory consumption. When a spike

train in the prior implementation was transmitted it was first completely converted
into Playback memory format and held as a temporary object doubling the memory
consumption in the worst case. Only after the entire spike train was transmitted the
temporary object was freed from memory. This was reworked so that HostARQ frames
are sent as soon as they are ready. Two buffers with size of a HostARQ packet are filled
in alternating order. After both buffers are filled for the first time, every time a buffer is
filled the other buffer is forwarded to the HostARQ. This sequence is required as pulse
events are formed into pulse groups which consist of a single or multiple 64 bit entries
that can contain up to 2 pulse events. The information of group size is held in the first
entry and is updated for each additionally included spike. As pulse groups can bridge
over two HostARQ packets it is necessary to manipulate the previous buffer as long as
spike events are inserted into the current buffer. The scheme for receiving spikes was
slightly changed. It was transfered from HICANN-system to HALbe to reduce unnecessary
value copying. The waiting mechanic between inquiries, if new packet were received, was
changed from a constant to an exponentially growing wait.
The spike sorting scheme was changed to reduce redundant sorting. Spikes are added

individually for each gigabit link of each HICANN but are held for an entire FCP, i.e. 8
HICANNs with 8 gigabit links each. The sorting of the entire spike train of a FCP was
previously built into the function which adds spike trains of the individual gigabit links.
This leads to unnecessary sorting. The built in sorting was removed and a separate
sorting function was implemented. This function is now only called once before sending
of the spike trains. In the best case one now saves 63 unnecessary sorting calls. Another
advantage is that this allows parallel sorting for multiple FCPs.

4.4.2. Spike Loopback Experiment
Spike loopback experiments were conducted to investigate the performance of digital
spike communication. Spike trains with an initial delay and constant interval between
spike times, called Inter Spike Interval (ISI), are looped back. For this it is necessary
to configure the DNC merger of the HICANN. A diagram of the configuration is shown
in fig. 4.7. The even gigabit links are set to loop back the incoming spikes to their
neighboring odd links. These experiments were concluded for a variable number of
HICANNs, FCPs, ISIs and spikes.
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4. Performance Improvements

Figure 4.7.: Diagram of loopback configuration of DNC merger. Each channel can be
configured to receive external input from its gigabit link and/or from the
merger tree. This is forwarded to the synapse and the gigabit link out-
put. As the gigabit link can only be configured for one sending direction
it is necessary to connect the output of two channels to achieve loopback
functionality. The path of a spike event signal is highlighted in red.

Figure 4.9 shows a comparison of performance profiles (see section 4.1) of spike loop-
back experiments. The old serial implementation can be seen at the top and the parallel
implementation at the bottom. The parallel implementation uses the described paral-
lelization scheme and the new data structure for spikes. Both implementations use the
new sorting scheme. 10 × 106 Spikes were sent to 8 FCPs with 8 HICANNs each, result-
ing in 640 × 106 looped back spikes. This amount of spikes uses most of the memory of
the host machine without risking memory overflow in peak usage. The initial delay was
set to 2 × 10−6 s and ISI to 1 × 10−6 s in the hardware time domain. With a hardware
speedup factor of 104 this yields an ISI of 10 ms in biological time.
Table 4.3 presents the run-time of each function, the total run-time and their corre-

sponding speedup factors for five repeated experiments. Comparing the total run-times
yields an overall speedup of the experiment of 3.7 ± 0.1. This also includes the waiting
time for the experiment run on the wafer, so the effective speedup is even higher (≈4).
Because the host machines have 4 cores with 2 hyper-threading cores each, in the best
case one can expect a speedup factor of up to 8. The function sendSpikes, which is
responsible for adding spikes to the spike train, is slower by a factor of 0.28 ± 0.02. This
is due to the new structure in which spikes and HICANN configuration commands are
stored. The access of single entries in the bit fields is time consuming due to bit shifting.
The configuration of the FCPs and HICANNs done by function configure has a speedup
of 7.3 ± 0.3. This is expected as most of the time is spend in busy waits which should
allow for good parallelization. The relatively small speedup of 1.7 ± 0.1 in the case of
sort_spikes is unexpected. It may be caused by an unfavorable memory alignment.
The analysis for the transfer rates was done to better investigate the speedup of sending
and receiving. Figure 4.8 presents the traffic analysis of the parallel case of fig. 4.9.
Mean and standard deviation were determined in the marked areas. Area boundaries
were determined manually. Transfer rate analysis in the serial case was done with a
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Figure 4.8.: Traffic analysis of sending and receiving of parallel case in spike loopback
experiment fig. 4.9. Solid lines show mean and dotted lines show their re-
spective standard deviation. Mean and standard deviation were determined
in the marked scopes. Sending traffic rate (red): (523 ± 90) MiB/s. Receiv-
ing traffic rate (green): (290 ± 140) MiB/s.

single FCP but with 107 spikes to get a better estimate. Both cases were repeated five
times. The resulting transfer rates and corresponding speedup factors are displayed in
table 4.2. Considering the speedup factor for the transfer rate of 4.5 ± 0.2 during sending
makes the speedup factor of 7.9 ± 0.8 for the function send_spikes remarkable. One
reason for this additional speedup is that the neuron addresses of spikes are now stored
in bit fields. In the old implementation every time a neuron address of a spike was read
out it needed to be bit-shifted. The high jitter in transfer rate, especially in receiving is
not due to network limitations but due to insufficiently fast reception of packets in the
higher level software.

Serial [MiB/s] Parallel [MiB/s] Speedup Factor

Sending 105.4 ± 0.6 519 ± 10 4.5 ± 0.2
Receiving 77 ± 6 308 ± 6 4.1 ± 0.4

Table 4.2.: Measured transfer rates of spike loopback experiment for serial and parallel
implementation.

The loopback test was repeated to further investigate the performance of the new
parallel implementation. Ideally the experiment would be conducted with 46 FCPs and
their corresponding reticles. Because of 10 defect reticles on the only available system
with sufficient cooling, it was only possible to conduct the experiment with the remaining
36 reticles. The values for initial delay and ISI are the same. The number of spikes was
chosen to be near the maximum memory capacity of the host machine.

1
2 × 32 GiB

16 B × 48FCPs × 8HICANNs ≈ 3 × 106

The factor 1/2 is required because sent and received spike trains are held in memory.
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4.4. Parallel Digital Spike Communication

Function Serial [s] Parallel [s] Speedup Factor

sendSpikes 6.8 ± 0.3 24.5 ± 0.5 0.28 ± 0.02
sort_spikes 38.4 ± 0.5 22.9 ± 0.4 1.7 ± 0.1
configure 143.3 ± 0.8 19.5 ± 0.8 7.3 ± 0.3
send_spikes 40.3 ± 0.4 5.0 ± 0.5 8.0 ± 0.8
receive_spikes 45.9 ± 0.5 8.7 ± 0.5 5.3 ± 0.3
total runtime 298.0 ± 0.7 101.0 ± 0.9 2.9 ± 0.1

Table 4.3.: Runtime of serial and parallel spike loopback experiment and corresponding
speedup factors. Averaged over ten measurements. For exemplary single run
see fig. 4.9.

The sending spike train is not freed after sending as one might want to repeat an ex-
periment. Figure A.1 shows the performance profile of such an experiment. The traffic
rate was again determined as in fig. 4.8. It yields transfer rates of (474 ± 15) MiB/s and
(312 ± 11) MiB/s for sending and receiving respectively. These numbers are still below
the aspired goal of wire-speed performance which was shown for HostARQ in Müller
[2014] but are nonetheless a major improvement compared to the previous implementa-
tion.

4.4.3. Spike Time Analysis
To ensure proper functionality of the digital spike transmission a time stamp analysis
of the returned spikes was done. To verify the correct behavior of the spike release
functionality of the FCP, the absolute differences of sent and received spike times was
investigated. The same experiment setup as in section 4.4.2 was used with experiment
parameters: Initial delay 2 × 10−6 s, ISI 1 × 10−6 s and number of spikes 1 × 106.
Figure 4.10 shows the result of such an experiment. A histogram of spike time dif-

ferences is shown in (a), (b) displays the same histogram with logarithmic scale and (c)
presents the spike time difference against the spike time.
The division for the different gigabit link configurations is expected and can be ex-

plained as follows. It takes ≈70 DNC clock cycles (250 MHz) for spikes to do a loopback
[Issue #1820]. This includes the time from release of a spike in the FCP to the point
of leaving the DNC merger. The back transmission is not included as the spike time
stamp is changed the last time on leaving the merger. The time from release to entering
the merger is ≈50 clock cycles and the time spent in the merger are ≈20 clock cycles.
The delay of 50 DNC clock cycles is circumvented by releasing the spike events earlier in
the FCP. This explains the offset of ≈20 clock cycles for the returned spike times on all
gigabit links. The additional offset of ≈14 between the different gigabit links is due to
the maximum transmission rate between FCP and DNC of 18 MEvents/s [Thanasoulis
et al., 2014]. This corresponds to a minimum transfer time between two packets of 56 ns
or ≈14 DNC clock cycles.
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4. Performance Improvements

An unexpected behaviour is the jitter of spike times seen in fig. 4.10c. There seem
to be two types of jitter. On the one hand there is a frequent (≈ 20%) jitter of -
2 or -3 clock cycles seen in fig. 4.10a. The symmetrical behavior for link 0, 4 and 6
is striking. The pattern of the jitter is identical for these 3 links. It is also peculiar
that link 2 has almost no jitter. On the other hand there is a less frequent, irregular
jitter visible in the logarithmic histogram (fig. 4.10b). Repeating the experiment results
in different links having nearly no jitter and in some cases all links have similar jitter
patterns (see fig. A.2). Repeating the experiment on other HICANNs results in the same
structure for the patterned jitter and varying amount of irregular jitter (see fig. A.3).
The time differences of -2 and -3 DNC clock cycles for the patterned jitter could be
caused by crossover of the different clock domains of the HICANN (100 MHz) and the
DNC (250 MHz). A cause for the regularity of the pattern could be aliasing effects. The
exact cause of the regularity of the pattern and why random links do not show this
behaviour requires further investigation.
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(b) Same data as (a) in logarithmic scale.
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(c) Time development of spike time differences for the first 300 spikes on each link.

Figure 4.10.: Spike time analysis of digital spike loopback experiment. Spike trains are
separated for each gigabit link loopback configuration. Experiment param-
eters: Initial delay 2 × 10−6 s, ISI 1 × 10−6 s and number of spikes 4 × 105.
HICANN 76 on wafer E_08.
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5. Discussion & Outlook
The first part of this thesis presented in chapter 3 engaged stability, usability, automated
testing and monitoring to ensure a robust operation of the NM-PM1 systems.
Stability issues of communication between host machines and FCP were tackled.

The sources of fatal bugs in communication were located through implementation of
a HostARQ test suite enabling the FPGA code-designers to fix these bugs. Stable com-
munication between host machine and multiple HICANNs was achieved, allowing unin-
terrupted transmission of at least 150 TiB of data. Remaining connection interruption
issues, possibly caused by temperature problems, require further investigation.
The HostARQ connection handling was encapsulated which improved experiment work

flow and robustness in error cases. Further memory optimizations and robust cleanup
in abnormal program termination cases is required.
The extension of APIs between different software layers enabled testing of HICANN

prototype chips in arbitrary slot arrangement on test setups. Usability can be further
improved, for example, by allowing independent initialization of HICANNs on a reticle.
The previous scheme for FCP firmware control was not feasible due to required manual

interaction after each power cycle. The implementation of the automated remote flashing
tool allows to update the firmware of the NM-PM1 system in ≈108 min which will be
further reduced to ≈2 min by a change which is currently under code review.
The implemented control daemon and remote control tool enable easy powering of

FCPs and reticles. Switching from a Python-based implementation to a C++ imple-
mentation would be desirable to reduce the computational overhead on the executing
Raspberry Pi.
A test of digital connectivity for all reticles on a wafer module was developed result-

ing in a first estimate of 86.5% for the portion of usable reticles. These tests provide
further insight for digital and system hardware designers, it will help in advancing the
assembly protocol leading to even a higher success rate. The unstable initialization of
HICANN high speed connection requires further attention. A further extension of the
test including digital chip functionality verification is under development.
Automated weekly testing of one wafer module over a period of 6 months revealed

no changes in digital connectivity over time with the current assembly protocol. This
indicates a stable physical connection between the silicon wafer and the MainPCB but
requires a larger sample size to allow conclusive results.
The monitoring infrastructure for the NM-PM1 system was enhanced to enable

monitoring of the FCPs. The implemented temperature visualization tool revealed a
overheating issue of FCPs and wafer. The insight through visualization assisted the
system hardware designers to develop an improved cooling system allowing to operate
the system with the desired temperature. It is worthwhile to improve the time resolution
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of monitoring to support detailed energy consumption analysis for experiments. This
is necessary to enable a fair comparison between different simulation backends and
platforms like CPUs, GPUs or neuromorphic hardware systems, as it was performed,
e.g., in Diamond et al. [2015].

The second part of the thesis addressed performance improvements to the commu-
nication between host machines and the BrainScaleS wafer modules as is presented in
chapter 4.
A performance profiling tool was developed to visualize function run-times and their

corresponding I/O traffic to analyze performance improvements.
The improvements by replacing the old transport protocol with the HostARQ were

investigated. The data throughput between HICANNs and host machine was de-
termined resulting in (104.39 ± 0.06) MiB/s for parallel communication with 8 HI-
CANNs which agrees with the estimated throughput in Müller [2014]. Throughput
of (22.71 ± 0.03) MiB/s for a single HICANN differs significantly with the estimation in
Karasenko [2014] which needs further investigation. The calibration tool was used to
analyze improvements in higher-level software achieving a total speedup of 2.7 mostly
due to reduced round trip time.
Large runtimes of neuron model time constant calibration routines were addressed by

implementing a compression scheme for the readout of analog data. This implementation
achieves a compression factor of up to 3 without measurable slowdown, yet only yields
a speedup of around 5% for calibration. This is most probably caused by small readout
chunk sizes and could be drastically improved by larger readout chunks which than will
additionally benefit from compression.
The parallelization of the previously serial digital spike communication and the re-

sulting memory issues were engaged to facilitate the full capacity of the NM-PM1 sys-
tem. Digital spike loopback experiments were conducted to analyze improvements of
the implementation. The entire experiment run gained total speedup of 3.7, however
the sending of spike data alone reached a speedup of 8. An average throughput of
(519 ± 10) MiB/s during sending and (308 ± 10) MiB/s during receiving was achieved.
The initial goal of reaching wire-speed was not yet accomplished but nonetheless are
speedups of 4.5 ± 0.2 and 4.1 ± 0.4 a major improvement compared to the previous
implementation. An additional change to the spike sorting scheme achieved further re-
duction in run time. Further improvements could be achieved, for example, by utilizing
zero-copy access, i.e. by directly working on data allocated by lower-level communication
layers.
A time stamp analysis of the looped back spikes was conducted to ensure correct

implementation of aforementioned changes. It showed that the implementation works
correctly but additionally revealed previously unmeasured jitter of spike times with
a regular pattern identical for different HICANNs on different wafer, possibly caused
by clock domain crossings. The small differences caused by the timing jitter should
have little effect on real-world experiments but nevertheless require further investigation.
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The investigations, enhancements and optimizations throughout this thesis were vital
steps towards a robust operation of the neuromorphic computation platform. The next
two big steps for the system are the upgrade of the silicon wafers to the new HICANNv4.1
revision and the opening of the neuromorphic computing platform to the neuroscience
community. Early open access is very important as the feedback from modelers is in-
valuable for improving and enhancing not only the current system but also affects design
decisions of future hardware revisions.
There is still plenty room for improvements to facilitate the full capacity of the hard-

ware and ensure a smooth operation of the system. Enabling fully synchronized inter-
reticle and inter-wafer experiments, reaching wire-speed communication in the full 20-
module system and the decrease of experiment setup time, i.e. the configuration of pa-
rameters and preparation of input data, should be the main priorities in the near future.
Concerning administration and maintenance of the system, a fully automated system
control reacting to monitoring feedback would be optimal. Furthermore, the execution
and data management for the calibration of 7680 HICANNs needs do be automated and
parallelized.
Closed-loop experiments involve neuronal networks concurrently interacting with a

real or simulated environment. For plasticity research in computational neuroscience,
such setups could provide deeper insight into mechanisms of learning. However, plasticity
happens on a large range of time scales. Large time-scale experiments are of particular
interest as the conventional simulation approach limits the absolute simulation time.
Large-scale accelerated neuromorphic hardware systems, such as the NM-PM1, would be
the obvious solution for this time-scales problem. However, this will only be possible with
the interactive real-time operation of the system requiring major improvements to enable
robust, long-lasting experiments. In the same regard, a highly modified version of the
HICANN, named HICANN-DLS, is under development which will increase the plasticity
capabilities of the system. In particular, it will include a plasticity processor [Friedmann,
2013] that allows a flexible implementation of various plasticity models. Utilizing the
capacities of this chip will require substantial extensions to the current software stack in
order to allow more flexible pre-defined plasticity algorithms and eventually user-defined
programs. Especially the integration of this freely programmable CPU into the mapping
software layer is a major task.
Another huge advancement will be the embedding of the wafer directly into the Main-

PCB. This will make the systems substantially smaller and reduce power consumption
allowing for higher packing density and eventually more modules. It will also reduce
connectivity issues as the error-prone wafer mounting process is skipped [Güttler , 2016].
In summary, fast large-scale neuromorphic hardware is the only foreseeable promising

solution to conduct long-lasting plasticity experiments, i.e. several years of biological
time. It will be essential for the investigation of long-term effects of learning and memory,
the key features of brain.
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A. Appendix

A.1. Repository Listing
This section will give a comprehensive list all code locations and repository states. All
repositories can be found at https://brainscales-r.kip.uni-heidelberg.de/. Ap-
pendix A.1 shows the git hash IDs of HEAD state of all used repositories. All tests and
tools work with these versions if not stated otherwise.

Repository SHA 1 ID

bitter da89a7ece461ad6e97a6d7f9e9c0a5b9fccafbff
boost_mongo b8565e8df102600c919a2a68d3d0d113ac8e6533
cake c6248bc3b2f09c9e768cc2b165836475a4d7d1e7
calibtic 5efa90ead80f57507b2036cff49d9c0b56a41e6c
euter 4260673d2328b7043ecb1bfa9ce1aa0610f3609b
halbe 2ff4a1209ac4ad1d3d52b20cba14ac4ef6bb5790
hicann-system 6b4df5b5d6a9c0a60a02f990074e41d8d6e61fc2
hmf-fgpa bcd9fdb3b47b18400eb4845d00923d5f804d9b71
lib-boost-patches b018e7970367f11207358594e670bc1a57114a61
lib-rcf de6fa72d55c186bd89aefd0e1c6b90e4c99323a0
logger 826c5ed66f68f17200fadd3863dafd8318cea71d
pygccxml 8ae9e19ae00c4152fa5a381eb9e663561c07345f
pyplusplus 9b513ec97614d03764f0a0ac5c7b7bd67c27a996
pythonic f2f162e34d7b024e0de79c55133fef00e82fffe0
pyublas 9f707f60320e20e5a7714d920ba0530d092e1310
pywrap 9d93135270075c745e541d4ea0b7a1977e216665
rant 4a8acd076fb9531ce61a990ef0f414935886d85d
redman 42d28037a0bcdf1e70c7bbb6734411de63174b3f
sctrltp daa50a17a768f1e433f548f81dd4ad529eeabedf
sthal b6a4f583b318ff639dce5e782ea073f9d3fa52fb
vmodule 210885997f0124975cb17cb6710d5fffec585513
ztl 068c18233337711e40027aa51dc667f7ed6cdcd8

Table A.1.: Git hashes of HEAD state for all used repositories. All tests and tools work
with these versions if not stated otherwise.
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A. Appendix

A.1.1. Implemented Tools And Changes
This subsection lists all implemented changes and tools with their respective repository
locations. If changes have yet to be reviewed, their Gerrit change ID is given. Visual-
ization tools are located in the repositorie of this thesis https://brainscales-r.kip.
uni-heidelberg.de/projects/masterthesis-mauch

• HostARQ encapsulation: hicann-system, sctrltp

• Arbitrary HICANN positioning: sthal, halbe, hicann-system

• Control Daemon / Remote Control / System Startup / Remote Flash / Temper-
ature Visualization: hmf-fpga

• Performance Profiling: sthal, vmodule, hicann-system

• Performance Visualization:
sthal: change ID: I2478601c5fd93318318f6c214a0df4f03b47327a

• ADC Compression:
sthal: change ID: I484b55ccbc62fe4ecbf3373c0dfc9ae01b05fc1c,
halbe: change ID: I602afacfc01b5d5a271320781e7d9e3fcaceb1f2,
vmodule: change ID: Iea981370a0210119b23bb023f001f4b0a79289bc

• Parallel Digital Spike Communication:
sthal: change ID: Ia45df493616f6e3d17103aeefa747450c10a9679,
halbe: change ID: I29c2fda8afa2b5d57e6bc4738d5f4d9384ceabc2,
hicann-system: change ID: Ie9d0aa06d7b1b268bc0dfb1fe2d985e705004841

A.1.2. Used And Implemented Tests
This subsection lists all used or implemented tests with their respective repository loca-
tions. If tests have yet to be reviewed, their Gerrit change ID is given.

• HostARQ Loopback Test: hicann-system

• HICANN Configuration Readout Test: hicann-system

• Wafer Test:
hmf-fpga: change ID Ie9d0aa06d7b1b268bc0dfb1fe2d985e705004841

• HostARQ Calibration Speedup: see appendix A.1.2

• ADC Compression Throughput: halbe

• ADC Compression Calibration: cake

• Parallel Digital Spike Loopback Test:
sthal: change ID: Ia45df493616f6e3d17103aeefa747450c10a9679,
halbe: change ID: I29c2fda8afa2b5d57e6bc4738d5f4d9384ceabc2,
hicann-system: change ID: Ie9d0aa06d7b1b268bc0dfb1fe2d985e705004841
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A.1. Repository Listing

Repository SHA 1 ID

bitter da89a7ece461ad6e97a6d7f9e9c0a5b9fccafbff
boost_mongo b8565e8df102600c919a2a68d3d0d113ac8e6533
cake a0f99429f6fdde5a4b662bc71800ee42417f4be9
calibtic 3fd8c342722fc762a9c6e9ba0a207816c304f86f
cd-denmem-teststand dca94a45c3c3bad338753cb5a6cf172ba82cf9bf
chip-teststand 827039a516e718ce4806b46c9a84ddfe8618eed0
euter 9a68d336e3b355feeafa1b0a23fd782f093f09d4
halbe 96183a9017f67764811f51d379f074a006a2e411
hicann-system old ca751d7f1f2aca6af20ea264e11cbe04c7c8b829
hicann-system new 38e55aff26c6c4eb51538691687450eaf25c5253
lib-boost-patches 0a64f3c7dbd2b7a11e4190016ce3192367e54a63
lib-rcf b541a38fa1abae3ca22ad4fc66eb0024bddcea4d
logger 826c5ed66f68f17200fadd3863dafd8318cea71d
pygccxml 8ae9e19ae00c4152fa5a381eb9e663561c07345f
pyplusplus 9b513ec97614d03764f0a0ac5c7b7bd67c27a996
pythonic f2f162e34d7b024e0de79c55133fef00e82fffe0
pywrap 844777680e463e8a7b8ed14226c763ba653e35bb
pyublas b541a38fa1abae3ca22ad4fc66eb0024bddcea4d
rant 4a8acd076fb9531ce61a990ef0f414935886d85d
redman 4c0c86022454273ad571d7b378cc068e3712ccca
sctrltp daa50a17a768f1e433f548f81dd4ad529eeabedf
sthal 5a9fa0da44e6d0d1174e7bc01f4c9cc6162aeb68
vmodule 7b4aba10125d1818c6669ac1aa3cdd7923d1ef24
ztl 068c18233337711e40027aa51dc667f7ed6cdcd8

Table A.2.: Git hashes of HEAD state for calibration speedup analysis without (old) and
with (new) HostARQ.
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A.2. Code Excerpts

1 struct PbTraceEntry {
2 public :
3
4 union Payload {
5 struct {
6 uint64_t : 63 ;
7 uint64_t type : 1 ;
8 } g ene r i c ;
9

10 struct pulse_data_t{
11 uint64_t l 1add r e s s : 6 ;
12 uint64_t g b i t l i n k : 3 ;
13 uint64_t hicannaddress : 3 ;
14 uint64_t dnc : 2 ;
15 uint64_t : 49 ;
16 uint64_t type : 1 ;
17 }
18 } pulse_data ;
19
20 struct config_data_t {
21 uint64_t hicannaddress : 3 ;
22 uint64_t dnc : 2 ;
23 uint64_t con f i gda ta : 49 ;
24 uint64_t : 9 ;
25 uint64_t type : 1 ;
26 }
27 } conf ig_data ;
28 uint64_t raw ;
29 } ;
30
31 .
32 .
33 .
34
35 private :
36 uint64_t eventt ime ; // in DNC c l o c k c y c l e s
37 Payload payload ; // ho l d s in format ion o f Event . e . g . address , c o n f i g . . .
38 }

Listing A.1: New data structure for Playback and Trace events. Member functions are
omitted.

A.3. Supplementary Figures
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(b) Same data as (a) in logarithmic scale.
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(c) Time development of spike time differences for the first 300 spikes on each link.

Figure A.2.: Repeated spike time analysis of digital spike loopback experiment as in
fig. 4.10. Spike trains are separated for each gigabit link loopback con-
figuration. Experiment parameters: Offset 2 × 10−6 s, ISI 1 × 10−6 s and
number of spikes 4 × 105. HICANN 76 on Wafer E_08.
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(c) Time development of spike time differences for the first 300 spikes on each link.

Figure A.3.: Spike time analysis of digital spike loopback experiment analog to fig. 4.10
on different HICANN. Spike trains are separated for each gigabit link
loopback configuration. Experiment parameters: Offset 2 × 10−6 s, ISI
1 × 10−6 s and number of spikes 4 × 105. HICANN 25 on wafer E_08 HI-
CANN.

49



A. Appendix

0
500

1000
1500

2000
Spike Tim

e [us]

0 20 40 60 80

Difference Spike Time [HICANN clock cycles]

GbitLink 0->
1

GbitLink 2->
3

GbitLink 4->
5

GbitLink 6->
7

Figure
A
.4.:T

im
e
difference

ofreceived
and

expected
spike

tim
e
stam

p
ofdigitalspike

loopback
experim

ent.
Largersegm

ent
of

fig.4.10.
Spike

trains
are

separated
for

each
gigabit

link
loopback

configuration.
Experim

ent
param

eters:
O
ffset

2
×

10
−

6s,ISI
1

×
10

−
6s

and
num

ber
ofspikes

4
×

10 5.
H
IC

A
N
N

76
on

w
afer

E_
08.

50



List of Acronyms

ADC Analog-to-Digital Converter. 5, 8, 21, 25, 27–29

AdEx Adaptive Exponential Integrate-and-Fire. 1, 3 3.

AnaRM Analog Readout Module. 5, 8, 22, 24, 25, 28

API Application Programming Interface. 6, 7, 12, 39

ARP Address Resolution Protocol. 10, 11

ARQ Automatic Repeat Request. 4, 8

CPU Central Processing Unit. 41

DNC Digital Network Chip. 4, 15, 31, 32, 35, 36

EPROM Erasable Programmable Read-Only Memory. 13

FCP FPGA Communication PCB. 4, 5, 8, 10–16, 18, 19, 22–24, 30–35, 39, 47

FPGA Field-Programmable Gate Array. 4, 5, 10, 12–14, 23, 25, 27, 28, 39

HALbe Hardware Abstraction Layer Backend. 8, 31

HICANN High-Input Count Analog Neuronal Network Chip. 3–9, 11, 12, 14, 15, 17,
23–25, 30–32, 34, 36, 39–41, 47, 49

HICANNARQ HICANN ARQ protocol. 4, 8, 23

HostARQ Host ARQ protocol. 8, 10–12, 15, 23–26, 31, 39, 40

I2C Inter-Integrated Circuit Link. 5, 14, 18

IPv4 Internet Protocol version 4. 10, 13

ISI Inter Spike Interval. 31–35, 37, 47–50

JTAG Joint Test Action Group. 4, 13, 15, 16

L1 Layer 1. 4
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Glossary

L2 Layer 2. 4

MaCU Main System Control Unit. 5, 14, 18

MainPCB Wafer Module Main PCB. 16, 18, 19, 39, 41

MTREE Merger Tree. 4

NM-PM1 Neuromorphic Physical Model version 1. 1, 3, 5–7, 9, 13, 16, 17, 39–41

NMPI HBP Neuromorphic Platfrom Interface. 6

PCB Printed Circuit Board. 4

PSP Postsynaptic potential. 25, 27–29

PyHMF Python for the Hybrid Multiscale Facility. 6, 7

RPC Remote Procedure Call. 13, 14

SLURM Simple Linux Utility for Resource Management. 6

SSH Secure Shell. 14

STDP Spike Timing Dependent Plasticity. 3

StHAL Stateful Hardware Abstraction Layer. 8

STP Short-term Plasticity. 3

TUD Technische Universität Dresden. 4, 10, 13

USB 2.0 Universal Serial Bus version 2.0. 5, 21, 22, 24, 25, 27, 28
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