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LIF neuron model

In classical RBMs, statistics are typically gathered by Gibbs sampling:
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In the HCS, the LIF activation function 
becomes symmetric, allowing networks to 
sample from Boltzmann distributions [2]

Probabilistic inference with LIF neurons 
in the high-conductance state

Deep spiking neural networks 
for image classification
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and during inter-burst intervals, which can 
be treated as a first-passage-time problem

synaptic memory!

The free membrane potential can 
be treated as an 
Ornstein-Uhlenbeck process

Other theories [4, 5] do not hold in this regime, 
but it is possible to find a recursive expression 
for the membrane potential during bursts 

The resulting theoretical prediction accurately 
matches simulation data [2]

Short-term plasticity [9] allows the 
activity-dependent modulation of 
synaptic interaction.

Receptive fields of hidden units

Receptive fields of label units

An increasing number of experiments suggest that the brain  performs stochastic  inference 
when dealing with incomplete and noisy sensory information. This, in  turn,  has  led  to  the 
development  of  various  theoretical  models  that  attempt  to  explain  how  this  could  be 
achieved with  spiking  neural  networks.  Our theory  interprets spiking activity as sampling 
from distributions over binary random  variables [1] and  is compatible  with  the  ensemble 
dynamics of noise-driven LIF  neurons in the high-conductance state (HCS) [2, 3].

Based on our LIF sampling framework, we can construct large-scale spiking  neural 
networks (approx. 2000 neurons) that sample from restricted Boltzmann 
distributions.

Supervised training  (coupled adaptive simulated tempering,  [6])  on   handwritten  
digits leads to  the  formation  of receptive  fields (both in the hidden layer and  the 
label  layer)   that  capture  essential  features  of  the   ten  different   digits.  After   
training,  the  activity  of  the  deepest  layer,  which contains one neuron per  digit   
class, can be directly used to classify input data.

The achieved performance (classification on the test set of the MNIST [7]  dataset, 
10,000 handwritten digits,  28    28 grayscale pixels)  of  deep LIF networks is only 
slightly  lower  than  the one of  classical RBMs [8]  trained with the same learning 
method. The  result can be further improved  with  larger  network size and longer 
fine  tuning during the training period.

This algorithm has a distinct disadvantage when  dealing with 
high-dimensional multimodal distributions, where it often gets 
trapped  in local minima due to  deep  troughs  in  the  energy 
landscape that appear during training. It is for thi  reason that 
conventional RBMs that may perform  very well as 
discriminative  models  are,  at  the    same  time,  rather poor 
generative  models of  the learned  data.  While methods exist 
that alleviate  this problem [6],  they  usually come at a highly  
increased computational cost.

With  an  appropriate  choice  of  parameters,  the  expectation value  of  synaptic weights  can  be 
maintained, ensuring  that  the  energy landscape remains, on  average,  unchanged,  while  at the 
same  time  modulating  the  strength  of  the    active  local  attractor  of  the  network. The  initial 
potentiation deepens the local  energy well, allowing  the visible  layer of the network to produce a 
clearer    image.  The  subsequent  depression   increases  the  energy  of   the   network,   thereby   
catapulting it out of the local minimum.

Short-term plasticity enables LIF networks to travel efficiently through the  energy  landscape  and 
thereby  attain  a  generative  performance  that  significantly  surpasses  the  one  achievable  by 
Conventional  Gibbs sampling. This distinct  feature of  biological neural networks  allows  them  to 
Simultaneously  become  good generative  and  discriminative models of learned data. Our finding 
points towards an  important advantage of spike-based computation  and communication, which is  
Relevant   in   any  scenario   where  spiking  neural  networks  need  to  be  able  to  escape   local 
attractors.


	Slide 1

