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Abstract

An increasing number of experiments suggest that the brain performs stochastic inference
when dealing with incomplete and noisy sensory information. This, in turn, has led to
the development of various theoretical models that attempt to explain how this could be
achieved with spiking neural networks. One candidate theory interprets spiking activity as
sampling from distributions over binary random variables (Buesing et al., 2011) and has
been shown to be compatible with the ensemble dynamics of noise-driven LIF neurons in
the high-conductance state (Petrovici et al., 2013, 2015; Probst et al., 2015). Based on this
theory, we constructed hierarchical LIF networks that sample from restricted Boltzmann
distributions and compared their performance with conventional restricted Boltzmann
machines (RBMs) on a commonly used dataset (MNIST). An important result is that
LIF networks can achieve similar classification rates (95.1 % with 1994 neurons) as their
machine-learning counterparts of equal size (95.2 %). In classical RBMs however, statistics
are typically gathered by Gibbs sampling. This algorithm has a distinct disadvantage when
dealing with high-dimensional multimodal distributions, where it often gets trapped in a
local minimum due to deep troughs in the energy landscape that appear during training.
It is for this reason that conventional RBMs that may perform very well as discriminative
models are, at the same time, rather poor generative models of the learned data. While
various methods exist that alleviate this problem (such as AST, see Salakhutdinov, 2010)
they usually come at a highly increased computational cost. In the second part of our study,
we show how short-term plasticity enables LIF networks to travel efficiently through the
energy landscape and thereby attain a generative performance that far surpasses the one
achievable by conventional Gibbs sampling. This distinct advantage of biological neural
networks allows them to simultaneously become good generative and discriminative models
of learned data.
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Figure 1: (A) Activation function of the LIF neuron: Activation function of an LIF neuron
in the high-conductance state (HCS, green crosses) and theoretical prediction from (Petrovici
et al., 2013, 2015; Probst et al., 2015) (red line) compared to a typical LIF response function
(black line). In the HCS, the firing rate of an LIF neuron can be well approximated by a logistic
function, thereby endowing the network with Glauber dynamics that can be mapped to Gibbs
sampling from a Boltzmann distribution. (B) Hierarchical LIF network structure (note
the equivalence to an RBM): A network consisting of 784 visible, 1200 hidden and 10 label
units was trained on the full MNIST dataset with the so-called coupled adaptive simulated
tempering learning algorithm (Salakhutdinov, 2010). (C) Selected spike trains from the
LIF network: Note the increasing sparseness of the activity in consecutive layers. The network
produces different images when the activity in the label layer switches on from one neuron to
another. (D) Short-term plasticity as modeled by the Tsodyks-Markram (TSO)
mechanism and its effect on the local energy landscape: Renewing synapses (red line)
would keep the average interaction between pairs of neurons constant, while plastic synapses
with appropriate TSO (Fuhrmann et al., 2002) parameters first strengthen, then weaken the
effective interaction. This causes a local change in the energy landscape, first deepening the
energy trough and sharpening the produced image, followed by a local flattening of the energy
landscape which pushes the network state into a different mode. (E) Comparison between
a sequence of images generated by the conventional RBM with Gibbs sampling
(GS) and one generated by the LIF network with short-term synaptic plasticity:
Due to large variance in the energy landscape, Gibbs sampling becomes trapped in a local
mode, therefore constantly generating the (approximately) same image. The LIF network is
significantly better at mixing, producing a varied sequence of images.
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