
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Roman Martel

Generative Properties of LIF-based Boltzmann
Machines

Master thesis

HD-KIP-15-86

KIRCHHOFF-INSTITUT FÜR PHYSIK

Department of Physics and Astronomy
University of Heidelberg

Master Thesis

in Physics

submitted by

Roman Martel

born in Tokmok, Kyrgyzstan

September 2015

Generative Properties of LIF-based
Boltzmann Machines

This Master Thesis has been carried out by Roman Martel at the

Kirchhoff Institute for Physics

Ruprecht-Karls-Universität Heidelberg

under the supervision of

Prof. Dr. Karlheinz Meier

Generative Properties of LIF-based Boltzmann Machines

Boltzmann machines are artificial neural networks which are able to learn generative
models of real world data. Variations of Boltzmann machines are currently successfully
applied to many machine learning tasks. The generation of samples (sampling) from
a learned model in Boltzmann machines is computationally expensive but, in princi-
ple, massively parallel, which makes it appealing for an implementation on neuromor-
phic computing platforms. This has motivated the development of Boltzmann machines
based on the leaky integrate-and-fire (LIF) neuron model, which is often implemented
on neuromorphic devices. This thesis investigates the sampling properties of LIF-based
Boltzmann machines compared to the one of classical Boltzmann machines. We ob-
serve differences in sampling, especially with regard to the ability to mix between several
modes of the underlying model. Depending on the synapse model, connecting the neu-
rons, an improvement or a decline of the mixing ability compared to classical sampling
is found. Moreover, we present a mechanism based on short-term synaptic plasticity to
improve the mixing ability for LIF-based Boltzmann machines. Using this mechanism, a
better mixing ability compared to classical sampling for both applied synapse models is
achieved.

Generative Eigenschaften LIF basierter Boltzmann Maschinen

Boltzmann-Maschinen sind künstliche neuronale Netze, die in der Lage sind generative
Modelle realistischer Daten zu lernen. Variationen von Boltzmann-Maschinen werden
derzeit erfolgreich in vielen Problemstellungen des maschinellen Lernens angewendet.
Die Erzeugung von Stichproben eines gelernten Modells in Boltzmann-Maschinen ist
rechenintensiv aber im Prinzip massiv parallelisierbar, was sie attraktiv für eine Im-
plementierung auf neuromorphen Plattformen macht. Dies hat die Entwicklung von
Boltzmann-Maschinen motiviert, die auf dem leaky integrate-and-fire (LIF) Neuro-
nenmodell basieren, welches häufig auf neuromorphen Plattformen implementiert ist.
Diese Arbeit untersucht die Eigenschaften LIF-basierter Boltzmann-Maschinen bei der
Erzeugung von Stichproben im Vergleich zu klassischen Boltzmann Maschinen. Wir
beobachten dabei Differenzen insbesondere im Hinblick auf die Fähigkeit zwischen ver-
schiedenen Moden des zugrunde liegenden Modells zu wechseln. In Abhängigkeit vom
Synapsenmodell, welches die Neuronen verbindet, finden wir eine Verbesserung oder einen
Rückgang dieser Mixfähigkeit im Vergleich zur klassischen Erzeugung von Stichproben.
Darüber hinaus präsentieren wir einen Mechanismus zur Verbesserung der Mixfähigkeit
LIF-basierter Boltzmann-Maschinen, der auf synaptischer Kurzzeitplastizität basiert.
Mit diesem Mechanismus wird für beide angewendeten Synapsenmodelle eine bessere
Mixfähigkeit im Vergleich zur klassischen Erzeugung von Stichproben erreicht.

Contents

1. Introduction 1

2. Simulators and Emulators of Neural Networks 3
2.1. Interfacing with Simulators and Emulators - PyNN 3
2.2. Simulation Software . 4

2.2.1. NEST . 4
2.2.2. SBS . 5

2.3. Neuromorphic Hardware . 5
2.3.1. Spikey . 6
2.3.2. HICANN . 6

3. Theoretical Background 9
3.1. Kullback-Leibler Divergence . 9
3.2. Boltzmann Machine . 10

3.2.1. Restricted Boltzmann Machine . 11
3.3. Sampling . 13

3.3.1. Metropolis-Hastings Algorithm . 13
3.3.2. Gibbs Sampling . 14
3.3.3. Adaptive Simulated Tempering . 14

3.4. Neural Sampling . 17
3.5. Leaky Integrate-and-Fire (LIF) Neuron Model 19
3.6. Exponential- and Alpha-Shaped Synapse Model 20

3.6.1. Conductance- and Current-based Synapses 20
3.7. Tsodyks-Markram Model . 21
3.8. LIF Sampling . 24
3.9. Training Restricted Boltzmann Machines 27

3.9.1. Contrastive Divergence . 30
3.9.2. Persistent Contrastive Divergence 30

3.10. Data Visualization . 31
3.10.1. Star Plot . 31
3.10.2. Principal Component Analysis (PCA) 32
3.10.3. Stochastic Neighbor Embedding (SNE) 33
3.10.4. t-Distributed Stochastic Neighbor Embedding (t-SNE) 35

Symmetrization of the SNE Cost Function 35
Solving the Crowding Problem with Heavy-Tailed Distributions . . 36

III

4. Visualization of Mixing in Generated Data 39
4.1. Random Distributions . 39

4.1.1. Homogeneous Distributions . 40
4.1.2. Inhomogeneous Distributions . 45

4.2. Multimodal Distributions with Artificial Patterns 49
4.2.1. Pattern Creation . 49
4.2.2. Mixing for the Artificial Multimodal Pattern 49
4.2.3. Influence of System Size . 56
4.2.4. Influence of Pattern Strength . 58

4.3. MNIST Visualizations . 61
4.3.1. MNIST 3 Digits . 62
4.3.2. MNIST 10 Digits . 73

Reduced Image Size . 73
Normal Image Size . 78

4.4. Discussion . 81

5. Using Short-Term Plasticity to Improve Mixing 83
5.1. TSO Mixing Approach . 83
5.2. Multimodal Distributions with Artificial Patterns 85
5.3. MNIST 10 Digits . 92
5.4. Balancing Effects . 92

5.4.1. Imbalanced MNIST with 3 Digits 96
5.4.2. Imbalanced MNIST with 10 Digits 101

5.5. Discussion . 107

6. Discussion 109

7. Outlook 111

Appendix 114

A. Appendix 115
A.1. Acronyms . 115
A.2. Parameter . 116

A.2.1. Adaptive Simulated Tempering . 116
A.2.2. LIF Sampling . 116
A.2.3. Tsodyks-Markram Model . 118
A.2.4. Learning . 119
A.2.5. t-Distributed Stochastic Neighbor Embedding 120

A.3. Mixing Image Sequences . 121
A.4. Random Homogeneous Distributions - Result Tables 127

Bibliography 133

Acknowledgments 141

IV

1. Introduction

The mammalian neocortex offers an, as far as known, unmatched performance in the
analysis of noisy and ambiguous data (i.e. real world data), while having a power con-
sumption of only 10-20 watts (Javed et al., 2010). This inspired the development of ar-
tificial neural network models as a branch of machine learning. The Boltzmann machine
(Ackley et al., 1985) is an example of such a model, which is able to learn a generative
model of real world data. Variations of Boltzmann machines are applied to many tasks
including image classification (Schmah et al., 2008; Larochelle and Bengio, 2008), image
recognition and denoising (Tang et al., 2012), modeling motion patterns (Taylor et al.,
2006; Taylor and Hinton, 2009) and acoustic modeling (Mohamed and Hinton, 2010).
However, learning and stochastic inference via sampling for large Boltzmann machines is
computationally expensive on conventional computing architectures, but, in principle, it
can be made massively parallel (Ackley et al., 1985). It can therefore take full advantage
of computing architectures which are itself inspired by the massively parallel structure
of the neocortex. One example for this so-called neuromorphic hardware is the HICANN
(High Input Count Analog Neural Network), which is developed in the Electronic Visions
group at the Heidelberg University. It represents a physical implementation of a network
of spiking neuron models. However, several steps need to be taken to map the learning
and sampling processes of a classical Boltzmann machine to such networks. In Petro-
vici et al. (2013) an approach was presented to perform sampling in networks of spiking
neurons. The underlying neuron model of this approach is the leaky integrate-and-fire
(LIF) model (Lapicque, 1907). These networks are therefore called LIF-based Boltzmann
machines. Building up on this approach, it could further be demonstrated that learning
can also be performed in LIF-based Boltzmann machines (Leng , 2014; Weilbach, 2015).
This thesis aims to investigate the properties of the sampling process in LIF-based Boltz-
mann machines with a focus on mixing issues. These issues have already been reported
for classical Boltzmann machines (Hinton et al., 2004; Salakhutdinov , 2009) and prevent
the sampling process to reproduce the full model of a Boltzmann machine. For this pur-
pose, different approaches to visualize the sampling results for classical and LIF-based
Boltzmann machines will be tested and compared. This will be done for several examples,
including some which are deliberately designed to reveal mixing issues. Furthermore, an
approach to solve these mixing issues in LIF-based Boltzmann machines, using short-
term plasticity, will be applied. This approach will be compared with adaptive simulated
tempering (AST) (Salakhutdinov , 2010), which is a method that addresses the same issue
in classical Boltzmann machines.

1

1. Introduction

Outline

In this thesis we used software tools to simulate the networks of spiking neuron models.
Chapter 2 therefore introduces the software, which we have applied. However, as our
final goal is to use the neuromorphic hardware to emulate these networks, it will also
describe HICANN and its predecessor Spikey. Chapter 3 describes the theoretical models
and tools used in this work. This includes Boltzmann machines, sampling, neuron and
synapse models, the short-term plasticity model and visualization techniques. These
techniques are employed in Chapter 4 to visualize the behavior of sampling in LIF-based
and classical Boltzmann machines for several examples. In Chapter 5 we apply short-
term plasticity to mitigate the mixing problem and use the visualization techniques to
demonstrate the results. Finally Chapter 6 and Chapter 7 provide discussion and outlook
for the results of this work.

2

2. Simulators and Emulators of Neural
Networks

In this thesis we will investigate sampling in classical and LIF-based Boltzmann ma-
chines (BMs). For classical BMs (Section 3.2) we use standard sampling algorithms
(Section 3.3), which we have implemented on our own. Sampling in LIF-based BMs
(Section 3.8), however, is based on modeling networks of spiking neurons. The tradi-
tional approach to model such networks was using software frameworks to simulate them
on general-purpose computers or high performance computing clusters. An alternative
approach is to use hardware architectures which are itself inspired by the structure of
neural networks. Today there are several approaches to develop such hardware archi-
tectures, which led to the neuromorphic computing subfield of neuroscience. In order
to differentiate more easily between software and hardware implementations we use the
term simulation when referring to spiking neural network simulations in software and
emulation for hardware.
Currently there exists a large variety of software simulators and neuromorphic hardware
devices. Interfacing with these systems becomes a critical issue, as models developed on
one system typically do not run on others. Therefore, we start this chapter by presenting
the PyNN software framework, which aims to mitigate this issue and which is also widely
used throughout this thesis. Afterwards, we consider the software frameworks which do
the actual simulation. Here we will just mention the software in detail that is used within
this thesis. Finally, we briefly introduce neuromorphic hardware architectures. In this
thesis no emulations on hardware were performed, but, as it is our aim to eventually
run LIF-based BMs on hardware as well, an overview of the typical models and features
supported by the hardware systems is indispensable to understand certain design choices
of our approach.

2.1. Interfacing with Simulators and Emulators - PyNN

The diversity of software simulators gives modelers the option to choose simulators which
are adjusted to their specific needs. However, it decreases the reproducibility of experi-
ments (Davison et al., 2008). Often, large parts of code for a model have to be rewrit-
ten to switch the simulation environment. To address this problem PyNN (pronounced
‘pine’) has been developed (Davison et al., 2008). It is a modeling language for neural
networks which serves as a front-end for several simulators. It can, however, also serve
as a front-end for some hardware emulators. It uses the Python APIs, such as PyNEST
(Section 2.2.1), which many simulation and emulation platforms provide, to achieve this.
An overview of the supported simulation and emulation back-ends is shown in Fig. 2.1.

3

2. Simulators and Emulators of Neural Networks

The user can create a whole network model completely in PyNN and choose his de-
sired back-end afterwards. This also extremely simplifies the transition from standard
simulators to a hardware emulator, which is our final goal.

Figure 2.1.: Schematic of the simulator-agnostic modeling language PyNN. It can serve
as a front-end for software simulators like NEST (Diesmann and Gewaltig ,
2002), NEURON (Hines and Carnevale, 2003), PCSIM (Pecevski et al.,
2009), Brian (Goodman and Brette, 2008), NeuroML (Gleeson et al., 2010),
GENESIS (Bower and Beeman, 1998) and MOOSE (Ray and Bhalla, 2008).
Furthermore, it supports the usage of the neuromorphic hardware developed
within the FACETS and BrainScaleS projects (Brüderle et al., 2011). Taken
from Brüderle et al. (2011).

2.2. Simulation Software

A lot of simulation software exists in the field of computational neuroscience (Brette
et al., 2007). They make it possible to create network models on a high level using
populations of neurons and projections between them. Many of them can handle more
abstract neuron models such as the leaky integrate-and-fire model (Section 3.5) which
we will use throughout this work. The intended simulation hardware devices are general
purpose computers or supercomputers. We will explicitly just mention those frameworks
that are used within this work.

2.2.1. NEST

The focus of the NEural Simulation Tool (NEST) (Diesmann and Gewaltig , 2002) is
the simulation of large networks of point neurons with biologically realistic connectivity
patterns. It is designed to be run on supercomputers and is therefore optimized for high
performance computing. Hence it easily copes with simulations including 105 neurons
assuming a realistic connectivity (Morrison et al., 2005).
NEST features several user interfaces, one of which is PyNEST. It is an Python API that
translates high level instructions, like creating or connecting populations of neurons, into

4

2.3. Neuromorphic Hardware

the simulation language SLI. SLI is a stack-based language derived from PostScript (Inc.,
1999) and serves as the native interface to NEST.
With PyNEST it is possible to interface with NEST using the PyNN front-end.

2.2.2. SBS

SBS (spike-based sampling) is a Python package which implements stochastic leaky
integrate-and-fire (LIF) sampling (Section 3.8), which is used in LIF-based BMs. It
is described in Breitwieser (2015). SBS operates on top of PyNN and NEST and uses
the Python package numpy (Numpy , 2012) and matplotlib (Hunter , 2007) for plotting.
It takes care of the parameter translation between abstract and LIF regime (calibration)
for given neuron parameters as described in Section 3.8 and allows the evaluation of
Boltzmann distributions in LIF networks with constant weights and biases. SBS is used
throughout this work for all results concerning LIF sampling.

2.3. Neuromorphic Hardware

Neuromorphic hardware tries to realize the function of biological neural systems by em-
ulating their structure. The first successful examples were neuromorphic sensors such as
silicon retinas (Lichtsteiner et al., 2008) or cochleas (Liu and Delbruck , 2010). Mean-
while also several neuromorphic computing platforms have been developed like HICANN
(Schemmel et al., 2008), SpiNNaker (Furber et al., 2014), TrueNorth (Merolla et al.,
2014), Neurogrid (Benjamin et al., 2014), Miniatur (Neil and Liu, 2014), IFAT (Vo-
gelstein et al., 2007) and NeuroDyn (Yu and Cauwenberghs, 2009). A review of many
projects can be found in Cattell and Parker (2012). Many of these approaches are com-
pletely digital, which means that they numerically calculate the dynamics of the neuron
models. SpiNNaker, for example, consists of a network of general purpose ARM986
processors, which are also used for smartphones, digital cameras and several embedded
systems. The key innovation here is, according to Furber et al. (2014), the communica-
tion infrastructure which is optimized to carry very large numbers of very small packets
containing spike events.
The TrueNorth architecture, as another example, uses instead an ASIC (application-
specific integrated circuit) to implement digital processors which are specialized to nu-
merically integrate the differential equations of the neuron models.
In this thesis, however, we especially aim to use architectures of a particular branch of
neuromorphic hardware, which is often called physical modeling. It has its origins in
Mead and Mahowald (1988), Mead (1990) and Mead (1989). The idea in these architec-
tures is to implement physical representations of neuron models on hardware, such that
their dynamics can be observed instead of numerically calculated. Compared to software
simulations, this has the advantage that one looses the computational overhead neces-
sary for general-purpose CPUs, which makes the architectures more efficient in terms of
power consumption. Furthermore the architectures are inherently parallel which facili-
tates scaling of the emulated network sizes. This makes hardware emulations for large
systems faster than software simulations.

5

2. Simulators and Emulators of Neural Networks

In the following, we will describe two hardware devices of this physical modeling branch
in more detail which come into consideration to serve as a platform for LIF-based BMs.

2.3.1. Spikey

The Spikey chip was developed within the FACETS project (Fast Analog Computing
with Emergent Transient States) which is a consortium of 15 groups in 7 European coun-
tries (FACETS , 2010). A description for a modeler’s point of view can already be found
in Petrovici (2015). We will therefore give just a short summary here.
The Spikey chip uses analog very-large-scale integration (VLSI) circuits to physically
model neurons and synapses. As a consequence, quantities like the membrane poten-
tial evolve continuously in contrast to implementations on digital hardware. The im-
plemented neuron model on Spikey is a VLSI version of the leaky integrate-and-fire
(LIF) model (Section 3.5). It uses exponential-shaped conductance-based synapses (Sec-
tion 3.6). In total the chip contains 384 neurons and 128K synapses. In order to achieve
these numbers of neurons and synapses on the restricted chip size, electrical components,
like the capacity modeling the membrane capacity, with a small size are used. This
leads to shorter time constants for the neuron dynamics. As a consequence, the neuron
dynamics on Spikey run with a speedup factor of 104 compared to biological real-time.
The parameters of the implemented neurons and synapses can be varied, which enables
the emulation of different types of neurons and synapses. The synapse weights can be
set with a 4-bit resolution.
Short-term plasticity (STP) to modulate the strength of the synaptic activation is avail-
able on Spikey (Schemmel et al., 2007). It is similar to the model by Tsodyks and
Markram (Tsodyks and Markram, 1997). This model uses one more variable than the
one we will use in this thesis (Section 3.7), but by changing certain parameters it can
have the identical behavior. However, the Spikey STP implementation can only be ei-
ther facilitating or depressing and not both at the same time. In this work we will just
use depressing STP but a combination of both could be a promising extension of our
approach.
The propagation of spikes is a combination of analog on-chip communication and digital
off-chip communication. In off-chip communication the spikes are represented as time-
stamped events, which is described in more detail in Schemmel et al. (2006).
The Spikey system supports PyNN as an API.

2.3.2. HICANN

The HICANN (High Input Count Analog Neural Network) chip (Schemmel et al., 2008,
2010) was developed within the BrainscaleS project (BrainScaleS , 2012), which started
in 2011. It is the follow-on project to FACETS. Further versions of the HICANN chip
are currently still under development within the Human Brain Project (Markram, 2012).
Detailed descriptions for a modeler’s point of view can be found in Petrovici (2015);
Probst (2014); Breitwieser (2015).
To go from the Spikey chip to the HICANN architecture the concept of wafer-scale in-

6

2.3. Neuromorphic Hardware

tegration was used. The motivation behind this was that, for the same reasons as in
Spikey, the HICANN chip has fast neurons with a speed-up factor of approximately 104

compared to biological real-time. This makes a high bandwidth necessary to manage
the communication of generated pulse-events between several chips. As communication
between large distances is energetically expensive and slow, it is advantageous to reduce
the distance between the chips as much as possible. The approach in wafer-scale integra-
tion is therefore, instead of producing a wafer of chips and then cutting out each single
chip, as it was done for Spikey, one uses the whole wafer as one neuromorphic substrate.
The wafer contains 384 HICANN chips. The HICANN chips are grouped in so-called
reticles on the wafer. These are the regions which can be simultaneously exposed to
photolitography during the fabrication. In a post-processing step connections between
all HICANN chips are created on the wafer. This enables a high bandwidth for on-wafer
pulse-event communication (Schemmel et al., 2008). Horizontal and vertical channels
connect the HICANN chips between and within the reticles (see Fig. 2.2).
The neurons emulate the dynamics of the adaptive-exponential integrate-and-fire model
(AdEx) (Brette and Gerstner , 2005). It is possible, though, to effectively disconnect both
the circuit for the adaption mechanism and the exponential term from the membrane
capacitance, such that the LIF model, which is exclusively used in this thesis, can also
be emulated. As in Spikey, exponential-shaped conductance-based synapses are used.
A single HICANN chip contains 512 neurons and 224 · 512 synapses. Hence, there are
in total 196,608 neurons and approximately 44 million synapses on each wafer. As in
Spikey, each synapse has a 4-bit digital weight. However, two synapses of adjacent rows
can be combined which leads to a weight resolution of 8 bits.
The implemented short-term plasticity mechanism is motivated byMarkram et al. (1998).
We will consider this mechanism later in this thesis (Section 3.7). However, as described
in Billaudelle (2014), in contrast to the theoretical model, there is a linear recovery of the
maximal height of post-synaptic potentials (PSPs) after a spike burst. Like in Spikey, the
hardware implementation does not allow simultaneous depression and facilitation, which
is in contrast to the original plasticity mechanism. Furthermore, an STDP mechanism is
implemented in the synapses. Details to this can be found in Brüderle et al. (2011) and
Schemmel et al. (2007).
The scheme of the HICANN with its communication layers is illustrated in Fig. 2.2.
The terminals for the off-wafer communication are represented by custom digital ASICs.
They are called Digital Network Chips (DNCs) and are backed by a field programmable
gate array (FPGA) design that handles the packet routing (Hartmann et al., 2010). In
total 44 billion events per second can be communicated between the wafers. This makes
it in principle possible to connect many wafers to emulate large-scale neural networks on
hardware.
As in Spikey, one can use PyNN as an API to define models which shall run on HICANN.
This may in future allow a relative simple transition from the software simulations in
this thesis to HICANN. The translation of the PyNN models to the configuration of
the neuromorphic device is described in Brüderle et al. (2011) and Ehrlich et al. (2010).
There has already been an attempt to run a PyNN model of LIF-based BMs on the HI-
CANN chip (Leng , 2014). The conclusion was that due to some technical problems the

7

2. Simulators and Emulators of Neural Networks

implementation of BMs on the chip is currently not possible and should be postponed
until the next generation of HICANN chips is available.

Figure 2.2.: HICANN scheme with the communication layers. See text for details.

8

3. Theoretical Background

In this chapter we will introduce the theoretical methods and models which will be used
throughout this thesis.

3.1. Kullback-Leibler Divergence

The Kullback-Leibler divergence DKL is used within this thesis mainly as a difference
measure between two probability distributions. It is defined as

DKL(p||q) =
∑
z∈S

p(z) ln

[
p(z)

q(z)

]
, (3.1)

where S = {z1, z2, . . . } denotes the state space for the probability distributions p(z) and
q(z). In Bishop (2009) an interpretation of the DKL motivated by information theory is
given. It is easy to show that DKL(p||q) ≥ 0:

DKL(p||q) =
∑
z∈S

p(z) ln

(
p(z)

q(z)

)
(3.2)

=
∑

{z∈S|p(z)>0}

p(z) ln

(
p(z)

q(z)

)
(3.3)

= −
∑

{z∈S|p(z)>0}

p(z) ln

(
q(z)

p(z)

)
(3.4)

≥ −
∑

{z∈S|p(z)>0}

p(z)

(
q(z)

p(z)
− 1

)
(3.5)

=
∑

{z∈S|p(z)>0}

p(z)

︸ ︷︷ ︸
=1

−
∑

{z∈S|p(z)>0}

q(z)

︸ ︷︷ ︸
≤1

(3.6)

≥ 0 (3.7)

where in (3.5) we used that

ln(x) ≤ x− 1 (3.8)
⇔ − ln(x) ≥ − (x− 1) (3.9)

We note that this proof holds just in case that we compute the DKL for the whole state
space S. Later in this thesis we will use a “reduced DKL” where we sum just over a
subspace of the whole state space (Section 4.2.2). In this situation a DKL < 0 becomes
possible and has to be taken into account.

9

3. Theoretical Background

3.2. Boltzmann Machine

A Boltzmann Machine (BM) (Hinton, 2007; Ackley et al., 1985) is a physical implemen-
tation of a set of binary random variables (RVs) that follows a Boltzmann distribution.
The RVs are represented by binary units which are symmetrically connected in a network.
In the standard BM every unit is connected with every other one. This is illustrated in
Fig. 3.1. In this general form the Boltzmann distribution assigns each state z of the
vector over all K binary RVs Z = (Z1, . . . , ZK) a probability according to

p(z) =
1

Z
exp [−E(z)] . (3.10)

The constant Z is called the partition function and ensures that the probability distri-
bution is normalized to 1:

Z =
∑
z

exp [−E(z)] . (3.11)

The term E(z) is called the energy function. It determines the energy of a state

E(z) = −
∑
i,j

1

2
Wijzizj −

∑
i

bizi , (3.12)

with arbitrary real-valued connection weights Wij and biases bi. The weights are sym-
metric i.e. Wij = Wji. This leads to the factor of 1

2 because when we sum over all
combinations of i, j we count every weight connection twice. From (3.10) it follows, as
one would expect in a physical system, that the states with lowest energy have the highest
probability. BMs are used in machine learning to learn internal representations of data
which is shown to the machine. They are consequently generative models. However, as
there is no conceptional difference between data and labels, it is possible to use BMs as
a discriminative model as well. To achieve this one can learn a generative representation
of the data together with the labels. To do classification one then performs a pattern
completion task where the data is shown to the system and the label completed.
During the learning process the weights and biases of the BM are adjusted such that its
represented probability distribution fits the training data as well as possible. For fully
connected Boltzmann machines learning is too computationally demanding to be useful
for any practical application in machine learning (Hinton, 2007). However, it can be
simplified by imposing restrictions on the network topology. This leads us to restricted
Boltzmann machines (RBMs) described in the next section.

10

3.2. Boltzmann Machine

Figure 3.1.: Schematic of the network model of a fully connected Boltzmann machine
(left) and of a restricted Boltzmann machine (right). In an RBM, the units
form two groups, a so-called visible and a hidden layer. The connections are
restricted to be only between the layers but not within them.

3.2.1. Restricted Boltzmann Machine

The restricted Boltzmann machine (RBM) (Smolensky , 1986) is a special case of the
general BM. Its underlying graphical model is bipartite which is illustrated in Fig. 3.1.
The two parts are called visible and hidden layer. Connections in this network topology
are restricted to be between the layers and not within them. The probability distribution
for the states which are now partitioned into a visible v and a hidden part h can be
deduced from (3.10), (3.12)

p(v,h) =
1

Z
exp [−E(v,h)] , (3.13)

with the energy function

E(v,h) = −
∑

i∈ visible
ai vi −

∑
j ∈ hidden

bjhj −
∑
i,j

Wij vihj . (3.14)

In the last years, models which are based on RBMs have been shown to be very useful
for many kinds of applications in machine learning. Examples are image recognition and
denoising (Tang et al., 2012), learning generative models of images (Le Roux et al., 2011),
image classification (Schmah et al., 2008; Larochelle and Bengio, 2008), modeling motion
patterns (Taylor et al., 2006; Taylor and Hinton, 2009), acoustic modeling (Mohamed and
Hinton, 2010), movie recommendations (Salakhutdinov et al., 2007) or dimensionality
reduction (Hinton and Salakhutdinov , 2006). Several RBMs can be stacked together to
form so-called deep Boltzmann machines (Salakhutdinov and Hinton, 2009), which is a

11

3. Theoretical Background

widely used model as well and can also be implemented with spiking neurons (Leng ,
2014).
One important reason for the success of RBMs is that there exist effective training mech-
anisms which we will regard later (Section 3.9). The restricted structure also accelerates
the extraction of information from the model via sampling (see Section 3.3).
Another important feature of RBMs, and in general for every BM with hidden units, is
that the training data is usually just represented by a part of the model, namely the
visible layer. The hidden layer serves as a feature extractor. The model of the data
is then the Boltzmann distribution over all units in the machine marginalized over the
hidden units

p(v) =
1

Z

∑
h

exp [−E(v,h)] . (3.15)

Hence, although the state of the whole machine follows a Boltzmann distribution, the
distribution represented by the visible layer is, in principle, not restricted to any par-
ticular form. This makes it possible to learn good models for data sets which are not
necessarily Boltzmann distributed. These are the reasons why we will mainly consider
RBMs in this thesis.
The features for which the hidden units code for can often be visualized by looking at
their receptive fields. These are pictures obtained from the weight connections of the
hidden units to the visible layer. If, for example, the visible layer represents 12x12 pixel
images in a data set, we can arrange the weights of each hidden unit in the same order
to obtain 12x12 pixel images as well. These images represent the receptive fields of the
hidden units. An example for them can be seen in Fig. 4.21a.
The particular shape of the marginal distributions over the visible and hidden layer is
easy to calculate, as they just involve information from the other layer, due to the miss-
ing connections within the layers. We will make use of this later, when we visualize
the sampling performance of large RBMs (Chapter 4). Therefore, we will give here the
analytic derivation for the marginal distribution of the visible layer of an RBM with N
visible and M hidden units

12

3.3. Sampling

p(v) =
1

Z

∑
h

exp [−E(v,h)]

=
1

Z

∑
h

exp

 N∑
i=1

ai vi +

M∑
j=1

bjhj +
∑
i,j

Wij vihj


=

1

Z
exp

(
N∑
i=1

aivi

)∑
h

exp

 M∑
j=1

hj

(
bj +

N∑
i=1

Wij vi

)
=

1

Z
exp

(
N∑
i=1

aivi

)∑
h1

. . .
∑
hM

M∏
j=1

exp

[
hj

(
bj +

N∑
i=1

Wij vi

)]

=
1

Z
exp

(
N∑
i=1

aivi

)∑
h1

exp

[
h1

(
b1 +

N∑
i=1

Wi1vi

)]
· . . . ·

∑
hM

exp

[
hM

(
bM +

N∑
i=1

WiMvi

)]

=
1

Z
exp

(
N∑
i=1

aivi

)
M∏
j=1

 ∑
hj∈{0,1}

exp

[
hj

(
bj +

N∑
i=1

Wijvi

)]
=

1

Z
exp

(
N∑
i=1

aivi

)
M∏
j=1

[
1 + exp

(
bj +

N∑
i=1

Wijvi

)]
.

The computational complexity of evaluating the final expression grows linearly with the
number M of hidden units while the initial sum had an exponential dependency. This
drastic improvement was possible because we utilized the independence of the hidden
units from each other. This allows it to evaluate marginal visible or hidden distributions,
despite the fact that the other layer might be large.
One can similarly show the shape of the marginal hidden distribution to be

p(h) =
1

Z
exp

 M∑
j=1

bjhj

 N∏
i=1

1 + exp
(
ai +

M∑
j=1

Wijhj

) . (3.16)

3.3. Sampling

Exact inference becomes difficult for high-dimensional probability distributions, because
the possible state space grows exponentially. A Boltzmann machine with N units has
for example 2N possible states. Sampling is a method used to approximate inference
(Bishop, 2009). In this section we will introduce several sampling approaches, which we
have also used in this thesis.

3.3.1. Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (Hastings, 1970) is a Markov chain Monte Carlo
(MCMC) sampling method (Metropolis and Ulam, 1949). Here the sequence of samples

13

3. Theoretical Background

z(1), z(2), . . . , z(τ) forms a Markov chain. One usually uses first-order Markov chains in
which the probability of the state at a certain time step z(τ) only depends on the previous
state

p(z(τ)|z(1), . . . , z(τ−1)) = p(z(τ)|z(τ−1)) . (3.17)

The actual sampling process consists of two parts. First a new state z∗ is proposed
according to a proposal distribution q(z∗|z(τ)) from which it is easier to draw samples.
Then this state is accepted with an acceptance probability

A(z∗, z(τ)) = min

(
1,

q(z(τ)|z∗)p̃(z∗)
q(z∗|z(τ))p̃(z(τ))

)
, (3.18)

with p̃(z(τ)) = Z · p(z(τ)) denoting the unnormalized probability distribution, which is
used because the partition functions cancel each other. If the proposed sample z∗ is
accepted, we set z(τ+1) = z∗, otherwise it is discarded and z(τ+1) = z(τ).
The fact that we don’t need the expensive partition function anymore to generate samples
makes Metropolis-Hastings sampling practical.

3.3.2. Gibbs Sampling

Gibbs sampling (Geman and Geman, 1984) can be seen as a special case of Metropolis-
Hastings sampling. Here we sample every component z(τ)

k of the current state vector
z(τ) separately according to its conditional distribution. The proposal distribution from
Metropolis-Hastings then becomes

q(z∗|z(τ)) = p(z∗k|z
(τ)
\k) . (3.19)

Using this and p(z) = p(zk|z\k)p(z\k), the acceptance probability becomes

A(z∗, z(τ)) =
q(z(τ)|z∗) p(z∗)
q(z∗|z(τ)) p(z(τ))

(3.20)

=
p(z

(τ)
k |z

∗
\k) p(z

∗
k|z∗\k)p(z

∗
\k)

p(z∗k|z
(τ)
\k) p(z

(τ)
k |z

(τ)
\k)p(z

(τ)
\k)

(3.21)

= 1 , (3.22)

where in the last step we used that only zk is changed which means z∗\k = z
(τ)
\k . Thus

we always accept the proposed state. One complete Gibbs step is performed when all
components zk of the state z are updated. The order in which we update the components
is arbitrary. For simplicity, one usually chooses a fixed periodic order.

3.3.3. Adaptive Simulated Tempering

For an MCMC sampling method to be able to sample from a desired stationary distri-
bution p∗(z) the Markov chain needs to be ergodic. This means that independent of

14

3.3. Sampling

the initial state z(0) the sampler will visit all possible states with the correct (relative)
probability in the limit of infinite sampling steps:

lim
τ→∞

p(z(τ)) = p∗(z) . (3.23)

A necessary condition for ergodicity is irreducibility, which requires that as τ →∞ it is
possible to go from any state of the Markov chain to any other possible state in a finite
number of steps with non-vanishing probability. In other words, every part of the state
space should be accessible to the Markov chain.
Later in this thesis we will see cases in which this condition becomes critical (Section 4.2,
Section 4.3.2). In these cases the irreducibility condition is theoretically still fulfilled,
but in practice the probability to be in some areas of the state space is so low that
the time that is typically needed to reach them vastly exceeds our currently possible
simulation time. In these cases we speak of bad mixing, where mixing is loosely defined
as the ability of the Markov chain to travel quickly through the state space. Here one
can observe that some regions of the state space with a high probability mass become
isolated, because they are surrounded by regions with a nearly vanishing probability.
This is illustrated in Fig. 3.2a. It often happens that when using standard Gibbs
sampling the Markov chain stays in one local mode with a high probability but does
not find the other local modes. In the illustration this corresponds to being trapped in
one of the three “mountains”. This issue becomes especially important if one wants to
take samples from large systems, because here the state space grows exponentially with
the size of the system but typically the number of modes is still comparably small. An
example for this would be a system which is trained on a high-dimensional structured
data set like the MNIST data set of handwritten digits (LeCun and Cortes, 1998). We
will investigate such systems later in this thesis (Section 4.3).

Adaptive Simulated Tempering (AST) (Salakhutdinov , 2010) represents one way to ad-
dress this problem. Here, we will give just the intuition behind this method and refer for
a more detailed description to Leng (2014).
The main idea behind AST is to introduce a temperature Tk into the probability distri-
bution. Inspired by statistical mechanics we denote it in the Boltzmann distribution by
an inverse temperature βk = 1

Tk

p(z|k) =
1

Zk
exp [−βkE(z)] , (3.24)

where k stands for the temperature levels, which are chosen to fulfill
0 < βK < βK−1 < · · · < β1 = 1, with K being the total number of temperature levels.
If we consider k itself to be a random variable, we sample from a combined state space
of temperature and normal states. To do this one alternately takes first a new sample
for the state z with Gibbs sampling (Section 3.3.2) and secondly a new sample for the
temperature level k via Metropolis-Hastings (Section 3.3.1). The proposal distribution
for Metropolis-Hastings for a new temperature level k∗ given our current level k(τ) is

15

3. Theoretical Background

(a) Rough probability landscape (b) Flat probability landscape

Figure 3.2.: Illustration of different kinds of probability landscapes. The height and the
color both stand for the probability of the region. Where a high position
and red color means it is likely and a low position with blue color unlikely.
One can imagine these landscapes to be a two-dimensional map of the N-
dimensional distributions which we usually deal with. Figure 3.2a shows an
example where mixing is important. There are three dominant modes which
are surrounded by unlikely area. To switch between the modes becomes
therefore very unlikely. Figure 3.2b shows an example where mixing is not
critical.

chosen to be

q(k∗|k(τ)) =


1
2 , if k∗ = k(τ) + 1 ∨ k∗ = k(τ) − 1

1, if (k∗ = 2 ∧ k(τ) = 1) ∨ (k∗ = K − 1 ∧ k(τ) = K)

0, otherwise .

(3.25)

This approach alone is called simulated tempering (Marinari and Parisi , 1992). To make
sure that the sampler spends equal time at every temperature level, one couples this
approach with the Wang-Landau algorithm (Wang and Landau, 2001) to form AST. For
every temperature level k, the Wang-Landau algorithm introduces additional factors gk
in the acceptance probability of Metropolis-Hastings ((3.18)), which yields

A(k∗, k(τ)) = min

(
1,
q(k(τ)|k∗)p̃(z(τ+1)|k∗)gk(τ)
q(k∗|k(τ))p̃(z(τ+1)|k(τ))gk∗

)
. (3.26)

These factors are increased every time we sample from the corresponding temperature
level according to

g
(τ+1)
k = g

(τ)
k (1 + γ(τ)I(k(τ+1) ∈ {k})), k = 1, . . . ,K . (3.27)

where I is the indicator function and γ(τ) > 0 the weight adaption factor. It can be shown
that for γ(τ) → 0 as τ → ∞ the Markov chain spends the same amount of time in each
temperature level.

16

3.4. Neural Sampling

A typical example for the temperature evolution is shown in Fig. 3.3. When it goes
into the high temperature regime the inverse temperature β becomes low. According to
(3.24) this leads to a flattening of the distribution. Hence, when we start with a rough
distribution like Fig. 3.2a, we obtain in the high temperature regime a distribution like
Fig. 3.2b. Here mixing is simplified and the sampler can reach every state again. To
obtain valid samples from the target distribution p∗(z), we just count the samples taken
from temperature level 1. As a consequence, if one chooses K temperature levels, it takes
roughly K times longer to obtain the same number of samples as in Gibbs sampling. In
Fig. A.4 one can see an image series taken from an animation which further illustrates
this mechanism.

Figure 3.3.: Evolution of the temperature levels during AST. One alternately samples
a new state using Gibbs sampling and a new temperature level using the
Metropolis-Hastings algorithm. Only the Gibbs samples from temperature
level 1 are taken as valid samples. Image taken from Salakhutdinov (2010).

3.4. Neural Sampling

The previously discussed methods for MCMC sampling are inconsistent with the dynam-
ics of spiking neurons because they are reversible. This is incompatible with the refractory
period of the neurons (see Section 3.5). With Neural Sampling (Buesing et al., 2011)
a different approach based on non-reversible Markov chains was taken, which tries to
reflect inherent temporal processes of spiking neurons.
Each component zk of the state z is encoded by a neuron νk such that

zk(t) = 1 ⇔ νk has fired within the time interval (t− τ, t] ,

17

3. Theoretical Background

where τ represents the absolute refractory period of the neurons. One assumes that the
membrane potential uk(t) of neuron νk at time t equals the log-odds of the corresponding
state component zk to be active given the state of all other units z\k

uk(t) = log
p(zk = 1|z\k)
p(zk = 0|z\k)

. (3.28)

For this assumption it is necessary that each neuron in the network is able to compute the
right-hand side of (3.28). Therefore this equation is called neural computability condition
(NCC). If we consider a Boltzmann distribution (3.10) with energy (3.12), we obtain for
the NCC the membrane potential

uk(t) = bk +
K∑
i=1

Wikzi(t) . (3.29)

Resolving (3.28) for the probability of the neuron to be in the on-state yields

p(zk = 1|z\k) = σ(uk(z\k)) :=
1

1 + exp[−uk(z\k)]
, (3.30)

In other words, each neuron is required to have a logistic activation function. Due to
the refractory period, the states z alone cannot represent a first-order Markov chain any-
more. To obtain this property again so-called internal state variables ζk were introduced.
Figure 3.4 illustrates the scheme of the transition operator operating on them. If the
neuron νk spikes, its corresponding internal state is set to ζk = τ . Every following time
step we reduce ζk by 1 until it reaches the value 1. Here it spikes or it is further reduced
to 0. It then stays in the 0-state until it spikes again. The probability for neuron νk to
spike can be calculated to be σ(uk − log τ).
The state of the neuron zk is set to be 1 as long as ζk ≥ 1 otherwise the refractory period
is considered to be over and the neuron switches to 0. Hence ζk acts like a counter for the
last spike. It ensures that the information of the last state (z

(τ−1)
k , ζ

(τ−1)
k) is sufficient

to compute the current state. Thus, we have a first order Markov chain which simplifies
the proof for its convergence towards a desired stationary distribution.
For details about this proof we refer to Buesing et al. (2011). For τ = 1 this approach is
equivalent to Gibbs sampling (Section 3.3.2).

18

3.5. Leaky Integrate-and-Fire (LIF) Neuron Model

Figure 3.4.: Scheme of the transition operator for the internal state variables ζk. For
the values ζk ∈ {0, 1} the neuron νk is able to spike with the probability
σ(uk − log τ). If it spikes one sets ζk = τ . Afterwards it is decreased by 1
in every time step until it reaches the values 0 or 1. Here it is able to spike
again which closes the cycle. Image taken from Buesing et al. (2011).

3.5. Leaky Integrate-and-Fire (LIF) Neuron Model

The leaky integrate-and-fire (LIF) model (Lapicque, 1907) is one of the simplest neuron
models which still captures the most significant aspects of neural dynamics. It assumes
neurons to be pointlike and contains just a one-dimensional neuron state space spanned
by its membrane potential u, which obeys the ODE

Cm
du

dt
= gl(El − u) + Isyn + Iext , (3.31)

with the membrane capacitance Cm, leak potential El, and leak conductance gl. The in-
put current I can be divided into two parts, a synaptic current Isyn which comes from the
synaptic connections of the neuron to other neurons and an external current Iext which
allows further control over the model. Spikes are generally assumed to have nearly identi-
cal shape (Gerstner and Kistler , 2002; Dayan and Abbott , 2001). Under this assumption
they transmit no additional information and just the spike time becomes important.
Therefore to avoid the necessity to model the complex shape of the spike one applies
a threshold rule. Here a spike is emitted if the membrane potential u crosses a certain
threshold θ from below. The spikes, however, consist just of the time of their occurrence
and instead of performing an action potential the neuron’s membrane potential is set to
a reset potential ρ for the duration of the so-called refractory time τref.

19

3. Theoretical Background

The LIF model represents a trade-off between functionality and computational com-
plexity and is therefore used in many simulation and hardware projects. In spite of its
simplicity, it is able to perform complex computational tasks, as demonstrated in LIF
Sampling (Section 3.8).

3.6. Exponential- and Alpha-Shaped Synapse Model

In general synaptic interactions are modeled by interaction kernels which are linearly
summed up over different synapses and time

f syn(t) =
∑
syn k

∑
spk s

wkεk(t− ts) , (3.32)

where wk denotes the weight and εk the interaction kernel of the synapse k and “spk”
stands for spike. In an intuitive model one can describe the arrival and removal of
neurotransmitters at the post-synaptic site with two exponential functions with time
constants τrise and τfall

ε(t) = AΘ(t)
1

τrise − τfall

(
exp

(
− t

τrise

)
− exp

(
− t

τfall

))
, (3.33)

where A denotes a constant factor and Θ(t) the Heaviside step function.
By choosing τrise = τfall := τsyn one can simplify this model even more which leads with
l’Hôpital’s rule to

ε(t) = AΘ(t)
1

τ2
syn

t exp

(
− t

τsyn

)
. (3.34)

This function is called an alpha function and the model accordingly alpha-shaped synapse
model.
Another simplification which is very popular assumes that the diffusion of neurotrans-
mitters is much faster than their removal. Hence one neglects τrise in (3.33) and sets
τfall = τsyn which leads to

ε(t) = AΘ(t)
1

τsyn
exp

(
− t

τsyn

)
. (3.35)

This model is called exponential-shaped synapse model.

3.6.1. Conductance- and Current-based Synapses

We use two different mechanisms to realize synaptic interactions. Considering the LIF
model (3.31) we see that the influence due to synaptic connections is modeled by a current
Isyn. Motivated by this are current-based (CUBA) synapse models which represent the
synaptic transmission by a current injection into the membrane.
An arguably more biologically realistic approach is motivated by the observation that

20

3.7. Tsodyks-Markram Model

in biological synapses incoming spikes cause particular channels in the membrane to
open, thereby increasing the membrane conductance towards the corresponding reversal
potential. This leads to so-called conductance-based (COBA) synapse models.
For the COBA synapses we need to differentiate between excitatory gsyne and inhibitory
gsyni conductances which causes changes to different reversal potentials Erev

e and Erev
i ,

respectively. Consequently the synaptic current from (3.31) has the shape

Isyn = gsyne (Erev
e − u) + gsyni (Erev

i − u) , (3.36)

where gsyn replaces the general synaptic interaction f syn which we have introduced in
(3.32). The membrane potential ODE (3.31) then becomes

Cm
du

dt
= gl(El − u) + gsyne (Erev

e − u) + gsyni (Erev
i − u) + Iext . (3.37)

We can use the same interaction kernels as discussed before ((3.34), (3.35)) to obtain
COBA alpha or COBA exponential-shaped synapses.
We note that in (3.37) the summation of post-synaptic potentials (PSPs) is not linear.
They instead depend on the current membrane potential. Furthermore the coupling
between the membrane potential u and its time-derivative du

dt is not constant but depends
on the time-dependent gsyne and gsyni . This makes an analytic treatment of the temporal
evolution of the membrane potential much more difficult.

For the CUBA synapse models the general synaptic interaction f syn from (3.32) is repre-
sented by the synaptic current Isyn itself. The dynamic of the membrane potential stays
therefore the same as in (3.31), with the synaptic current

Isyn(t) =
∑
syn k

∑
spk s

wkΘ(t− ts)(t− ts) exp

(
− t− ts
τsyn

)
, (3.38)

in case of alpha-shaped synapses, and

Isyn(t) =
∑
syn k

∑
spk s

wkΘ(t− ts) exp

(
− t− ts
τsyn

)
(3.39)

in case of exponential-shaped synapses. One should note that in comparison to the
COBA models the synaptic current has no additional dependence on the membrane
potential u. Hence the property is preserved, that PSPs are summed up linearly and do
not interact with each other. The CUBA models are in summary much easier to handle
theoretically but less truthful in representing the behavior of biological synapses. A more
detailed description of the synapse models with more information about the biological
background can be found in Petrovici (2015).

3.7. Tsodyks-Markram Model

The Tsodyks-Markram synapse model (TSO) is a phenomenological model of short-term
synaptic plasticity. The model introduces limited synaptic resources which are consumed

21

3. Theoretical Background

when a spike occurs and need to be rebuild afterwards. They could for example represent
the total number of vesicles within a synapse. There are two versions of the TSO model.
The first was introduced in Tsodyks and Markram (1997) and uses three variables to
model the evolution of resources. Within this thesis we will only use the newer model
described in Fuhrmann et al. (2002) andMaass and Markram (2002). It is a simplification
of the first version and uses just two variables.
In this model, the dynamics of the fraction of synaptic resources R ∈ [0, 1] is given by

dR

dt
=

(1−R)

τrec
− USE Rδ(t− tsp) , (3.40)

where tsp denotes the time of the occurring pre-synaptic spike, USE ∈ [0, 1] stands for the
fraction of resources which are utilized for the spike and τrec is the time constant which
determines the recovery of the resources. The maximum amplitude of the post-synaptic
response (PSR) will be

PSR ∝W · USE ·R , (3.41)

where W stands for the synapse weight.
This mechanism models depressing synapses only. It can also be extended with a mech-
anism for facilitating synapses. Here one considers USE as a dynamic variable as well,
which evolves like

dUSE
dt

=
U0 − USE
τfacil

+ U0 (1− USE) δ(t− tsp) , (3.42)

where U0 is the resting state of USE and τfacil represents the relaxation time constant
of the facilitation. This dynamic will make USE increase at each pre-synaptic spike and
decay to its resting state in the absence of spikes.
TSO will play an important role later in this thesis. Initially we applied it to achieve
renewing post-synaptic potentials, which are necessary for LIF sampling (Section 3.8).
Figure 3.5 shows that this works well using just the synaptic depression with τrec for
both the alpha and exponential-shaped synapse model. In Chapter 5 we will apply even
higher recovery time constants to reduce the strength of synaptic connections when a
neuron produces many spikes in a short time.

22

3.7. Tsodyks-Markram Model

10 20 30 40 50
time [ms]

54.96

54.94

54.92

54.90

54.88

54.86

M
e
m

b
ra

n
e
 p

o
te

n
ti

a
l
[m

V
]

no TSO

τrec=10.0 ms

(a) Exponential-shaped synapse model

10 20 30 40
time [ms]

0.10

0.08

0.06

0.04

0.02

M
e
m

b
ra

n
e
 p

o
te

n
ti

a
l
[m

V
]

5.486e1

no TSO

τrec=4.35 ms

(b) Alpha-shaped synapse model

Figure 3.5.: Simulation of the membrane potential of a neuron which receives a spike
every refractory period with refractory time τref = 10 ms. Figure 3.5a shows
the result for the exponential-shaped synapse model and Fig. 3.5b for the
alpha-shaped one. For the blue curves no TSO was applied. One can see how
this yields to a build-up of the PSPs in the beginning. This is due to the fact
that the PSP amplitude does not decay to zero after the refractory period,
which is demonstrated in Fig. 3.7. The green curves show the simulation
with a recovery time τrec such that this build-up effect is exactly balanced,
which leads to a maintenance of the PSP heights. For the exponential-
shaped model τrec = 10 ms is necessary while for the alpha-shaped model
τrec = 4.35 ms is sufficient because the build-up in this model is weaker.

23

3. Theoretical Background

3.8. LIF Sampling

Building upon the neural sampling theory (Section 3.4), in Petrovici et al. (2013), an
approach was developed to perform sampling with spiking LIF neurons. The LIF model
(Section 3.5) is a deterministic neuron model. The sampling theory, though, depends on
the stochastic nature of their units. Hence, we need to add stochasticity to the system.
To realize this, we add connections to spiking Poisson sources to each neuron.1 Poisson
sources are additional units which spike randomly such that the number of spikes follows
a Poisson distribution:

p(n2, t2|n1, t1) =
(ν∆t)∆n

∆n!
e−ν∆t , (3.43)

where ν is the firing rate of the Poisson source and ∆n = n2 − n1 the number of spikes
it generates in the time interval ∆t = t2 − t1. One can reformulate the equation for the
membrane potential uk of a single LIF neuron (3.31) with COBA synapses (Section 3.6)
to the following form

τeff(t)
duk
dt

= ueffk (t)− uk (3.44)

ueffk (t) =
gLEL +

∑
i g

syn
i Erev

i + Iext

gtot(t)
(3.45)

τeff(t) =
Cm
gtot(t)

(3.46)

gtot(t) = gL +
∑
i

gsyni (t) . (3.47)

The sum over the index i is in this case a sum over the Poisson sources. If one chooses
sources with a high firing rate ν the neuron enters the so-called high conductance state
(HCS). It is characterized by a high gtot due to the large synaptic input from the Poisson
sources. This leads to a low τeff and therefore to a quickly reacting membrane such that
uk(t) ≈ ueffk (t). Hence the real membrane potential of the neuron follows the effective or
also called free membrane potential ueffk .
For CUBA synapses, the conductance is not changed due to the Poisson input. Here we
have gtot = gl and therefore τeff = τm := Cm

gl
. To obtain a similar behavior as in the HCS

here, we need to choose the parameters such that τm becomes very small. Apart from
that the behavior is similar.
In Petrovici et al. (2013) it has been shown that the free membrane potential follows an
Ornstein-Uhlenbeck (OU) process in the HCS. The OU process is a first-order Markov
process which can also be used to model the position of a particle in a harmonic potential
with diffusion. It contains a deterministic drift part, e.g. due to the harmonic potential,
and a stochastic diffusion part which can be caused e.g. by Brownian motion. Its

1 In practice, we balance the background noise by connecting each neuron to an excitatory and an
inhibitory Poisson source.

24

3.8. LIF Sampling

stochastic differential equation for the membrane potential is given by

du(t) = θ (µ− u(t))dt+ σ dW (t) . (3.48)

The first part describes the drift of the potential to its mean value µ and the second
part the diffusion with an increment dW (t) of the Wiener process. The constants for the
COBA case can be calculated to be

θ =
1

τsyn
(3.49)

µ =
Iext + glEl +

∑
i νiwiE

rev
i τsyn

〈gtot〉
(3.50)

σ2 =

∑
i νi

[
wi(E

rev
i − µ)

]2
τsyn

〈gtot〉2
. (3.51)

The advantage of showing that the free membrane potential approximately evolves ac-
cording to the OU process is that it is theoretically well understood. It is therefore easy
to find analytic expressions for the probability distribution of the membrane potential
and the mean first passage time 〈T (b, a)〉, which is the mean time a process reaches a
value “b” starting at “a”. This gives us the means to derive the activation function of the
neuron, which is the probability to find the neuron in the active state at a random time
point.
In the HCS the dynamic of the neuron can be divided into two modes which are illus-
trated in Fig. 3.6. One is the bursting mode, where the free membrane potential stays
above the threshold over a duration of more than one spike. Here due two the fast dy-
namics of the HCS the real membrane potential will nearly immediately follow it, which
makes the neuron spike approximately every refractory period.
The second mode is the freely evolving mode, where the free membrane potential stays
below the threshold and the real membrane potential follows it. Figure 3.6 B shows also
the behavior of the free membrane potential. Given these modes, one can express the
activation function as

p(zk = 1) =

∑
n Pn n τref∑

n Pn (n τref +
∑n−1

k=1 τ
b
k + Tn)

, (3.52)

where Pn denotes the probability that a spike burst of length n occurs, Tn the time
in which the neuron evolves freely after a burst of length n, τref the refractory period
and τ bk the average time the membrane needs to reach the threshold starting from the
reset potential after the kth refractory period within a burst. In the HCS τ bk is typically
very small and will therefore be neglected in the following. The supplementary material
of Petrovici et al. (2013) describes its influence in more detail. We can calculate the
Pn’s with the knowledge about the probability distribution as illustrated in Fig. 3.6 B.
Here, the red distributions represent the Gaussian distribution of the free membrane
potential in the OU process. At the end of each refractory period we can calculate the

25

3. Theoretical Background

probability to fire again by integrating over the part of the distribution which lies above
the firing threshold. The average duration of the freely evolving membrane potential Tn
can be calculated with the mean first passage time of the OU process. This enables us to
calculate an analytic expression for the activation function. A detailed derivation can be
found in Petrovici (2015) and in the supplementary material of Petrovici et al. (2013).

Figure 3.6.: A: Evolution of the real membrane potential of a neuron (blue line). The
spike times are marked with black lines. One can also see the refractory
periods after the spikes where the membrane potential is set to a fixed value.
B: An enlarged part of A. The blue line shows again the real membrane
potential and the red line the free one which evolves according to an OU
process. The gray regions denote the refractory periods. The red Gaussian
distributions represent the probability distribution of the free membrane po-
tential. The lighter part above the threshold indicates the probability to
spike again after the end of a refractory period.
C: The activation function of an LIF neuron over its mean membrane po-
tential. The red dots show the theoretical prediction based on (3.52). The
blue crosses show the results of a simulation and the green curve is a logistic
function which was fitted to the theoretical prediction. Image taken from
Petrovici et al. (2013).

The shape of the activation function is displayed in Fig. 3.6 C. In the HCS, the activation
function has a symmetric sigmoidal shape, as it is required from the neural sampling
theory (3.30). To obtain the necessary logistic activation function we still need to shift
and rescale the sigmoid such that the activation function becomes

p(zk = 1) = σ

(
ūk − ū0

k

α

)
, (3.53)

where the parameters ū0
k and α can be obtained by fitting (3.53) to the simulated acti-

vation function. We need to consider this as well to convert the neuron bias between the

26

3.9. Training Restricted Boltzmann Machines

LIF and abstract regime

bk = (ūbk − ū0
k)/α . (3.54)

To translate the LIF weight wkj of the neuron k to some other neuron j to the corre-
sponding weight in the abstract regime Wkj , we need to take also the synapse model into
account. In the abstract regime (3.29) the post-synaptic potential (PSP) of a spike is just
a rectangular box. In the LIF regime it has a different shape which is determined by the
synapse model. The shapes of the PSPs for the alpha and exponential-shaped synapse
are shown in Fig. 3.7. One can see the clear difference which will lead to a systematic
error in the behavior for LIF synapses compared to the abstract regime. To limit this
error, one chooses the weight translation such that the value of the PSP is at least on
average equal to the box value. Hence, the integral of the PSP shape until the refractory
period should be equal to the area of the box. The horizontal line in Fig. 3.7 marking
the box-shaped PSP is chosen to fulfill this. With this condition, one obtains for the
weight translation between the regimes in case of exponential-shaped synapses

Wkj =
1

αCm

wkj

(
Erev
kj − µ

)
1− τsyn

τeff

[
τsyn

(
e−1 − 1

)
− τeff

(
e
− τsyn
τeff − 1

)]
. (3.55)

See Petrovici et al. (2013) for a detailed calculation.
With the correct activation function and the rules for the weight translation between the
LIF and abstract regime it is possible to perform the same sampling tasks as with neural
sampling. This makes especially sampling in Boltzmann machines (Section 3.2) with
networks of LIF neurons possible. We therefore refer to these networks as LIF-based
Boltzmann machines. LIF sampling was already used before for tasks like Bayesian
inference (Probst , 2014; Probst et al., 2015), classification (Leng , 2014; Roth, 2014) and
pattern completion (Roth, 2014).

3.9. Training Restricted Boltzmann Machines

We introduced the Boltzmann machine (BM) and in particular the restricted Boltzmann
machine (RBM) in Section 3.2. The aim of training/learning a BM is to make it represent
a good model of the distribution underlying the training data. The general idea is
therefore to maximize the probability of the BM to reproduce the training data. This
is the same for BMs and RBMs. In this thesis only training of RBMs will be used.
Therefore we will describe the training approach in the following mainly for RBMs. A
more detailed introduction with practical examples to this can be found in Fischer and
Igel (2014).
For RBMs only the visible layer represents the input data. This means that during
training we show the RBM the training data by clamping the values of the visible layer
to the training data. The visible layer therefore needs to have the same state space as the
input data. By changing the parameters of the RBM we aim to maximize the marginal

27

3. Theoretical Background

10 15 20 25 30 35
time [ms]

50.0

49.9

49.8

49.7

49.6

49.5

M
e
m

b
ra

n
e
 p

o
te

n
ti

a
l
[m

V
]

alpha synapse model τsyn=2.6 ms

exponential synapse model τsyn=10.0 ms

Figure 3.7.: Simulated shape of the post-synaptic potential for an alpha and exponential-
shaped synapse. The vertical black line denotes the end of the refractory
period of the neurons and the horizontal line shows the corresponding PSP
for the abstract regime. The height of the line is chosen such that the integral
under the box is equal to the integral of the synaptic PSPs. The area over
the box for the alpha-shaped model is approximately 1.57 times larger than
the corresponding area for the exponential-shaped model.

distribution of the visible layer

p(v) =
1

Z

∑
h

e−E(v,h) . (3.56)

Since the logarithm is monotonic, max(p) =̂ max(log p), it is sufficient to maximize the
log-likelihood

ln p(v) = ln

(∑
h

e−E(v,h)

)
− ln

∑
v,h

e−E(v,h)

 . (3.57)

Taking the derivative of the log-likelihood with respect to the weights of the RBM yields

∂ ln p(v)

∂Wij
=

∑
h e−E(v,h)

(
−∂E(v,h)

∂Wij

)
∑

h e−E(v,h)
−

∑
v,h e−E(v,h)

(
−∂E(v,h)

∂Wij

)
∑

v,h e−E(v,h)
(3.58)

=
∑
h

p(h|v)vihj −
∑
v,h

p(v,h)vihj , (3.59)

28

3.9. Training Restricted Boltzmann Machines

where in the second term in the last step we identified the joint distribution of the RBM
and in the first term we used

p(h|v) =
p(v,h)

p(v)
=

1
Z e−E(v,h)

1
Z

∑
h e−E(v,h)

=
e−E(v,h)∑
h e−E(v,h)

. (3.60)

One often regards the mean of the derivative over a training set S = {v′1, . . . ,v′K} where
each v′i denotes a input data point to which the visible layer is clamped to. This leads
to

1

K

∑
v′

∂ ln p(v′)

∂wij
=

1

K

∑
v′

∑
h

p(h|v′)v′ihj −
∑
v,h

p(v,h)vihj

 (3.61)

= 〈v′ihj〉p(h|v′)q(v′) − 〈vihj〉p(v,h) , (3.62)

where q denotes the training data distribution. We note that, as we sum over all possible
states in the second term, it is independent from the input data. This leads us to the
well-known maximum likelihood learning rule〈

∂ ln p(v)

∂wij

〉
= 〈vihj〉data − 〈vihj〉model . (3.63)

For an efficient calculation of the derivative of the log-likelihood, we can simplify (3.59)
by making use of the restricted topology of the RBM. As there are no connections within
the hidden layer, the marginal hidden distribution factorizes. The first term in (3.59)
therefore becomes ∑

h

p(h|v)vihj =
∑

hj∈{0,1}

∑
h\j

p(hj |v)p(h\j |v)vihj (3.64)

=
∑

hj∈{0,1}

p(hj |v)vihj
∑
h\j

p(h\j |v)

︸ ︷︷ ︸
=1

(3.65)

= p(hj = 1|v)vi . (3.66)

With (3.66) one obtains for the derivative of the log-likelihood (3.59)

∂ ln p(v)

∂Wij
=
∑
h

p(h|v)vihj −
∑
v,h

p(v,h)vihj (3.67)

=
∑
h

p(h|v)vihj −
∑
v

p(v)
∑
h

p(h|v)vihj (3.68)

= p(hj = 1|v)vi −
∑
v

p(v)p(hj = 1|v)vi . (3.69)

We use this derivative to apply a gradient ascent rule to optimize the weights for the
log-likelihood

W
(t+1)
ij = W

(t)
ij + η

∂ ln p(v)

∂W
(t)
ij

, (3.70)

29

3. Theoretical Background

where η ∈ R>0 is called learning rate.
To train the biases we use the same procedure. A similar calculation yields for the
derivative of the log-likelihood with respect to the bias of the visible units

∂ ln p(v)

∂ai
= vi −

∑
v

p(v)vi (3.71)

and for the bias of the hidden units

∂ ln p(v)

∂bj
= p(hj = 1|v)−

∑
v

p(v)p(hj = 1|v) . (3.72)

3.9.1. Contrastive Divergence

Despite the simplifications due to the RBM topology the computation of the learning
rules (3.69), (3.71) and (3.72) is in most cases computationally intractable because we
have to sum over all possible visible states. For example in the MNIST data set (LeCun
and Cortes, 1998) there are 2784 possible visible states. Hence we need to approximate
this term.
One simple approach for this is called contrastive divergence (CD) (Hinton, 2002). CD
uses Gibbs sampling (Section 3.3.2) to get a rough approximation of the model term
in the learning rules. For k-step CD or short CD-k we exchange in the second term in
(3.69) the expectation with respect to p(v) with the kth Gibbs sample of v. Hence the
derivative of the log-likelihood ∂ ln p(v)

∂Wij
is replaced with the expression

CDk(v
(0),Wij) = p(hj = 1|v(0))v

(0)
i − p(hj = 1|v(k))v

(k)
i , (3.73)

where v(0) is the original visible layer clamped to the input data and v(k) the visible
layer after k Gibbs sampling steps. The log-likelihoods with respect to the biases (3.71),
(3.72) are correspondingly replaced with

CDk(v
(0), ai) = v

(0)
i − v

(k)
i (3.74)

for the visible units and

CDk(v
(0), bj) = p(hj = 1|v(0))− p(hj = 1|v(k)) (3.75)

for the hidden units.
Despite this rough approximation, training works often well even when setting k = 1.

3.9.2. Persistent Contrastive Divergence

Persistent contrastive divergence (PCD) (Tieleman, 2008) is an approach to enhance
normal CD. To approximate the second term in (3.69) PCD uses a persistent chain. This
means that in contrast to CD-k we do not reinitialize the Markov chain of the Gibbs
sampler every time we consider a new data point v(0). Instead we just let the Markov

30

3.10. Data Visualization

chain run k further steps for every data point. The Markov chain is only initialized with
the first training data point. This replaces, except for the beginning of the training, the
sample v(k) in (3.73) with a sample that is independent of v(0).
The idea behind this is that if the learning rate is sufficiently small, which leads to just
small changes of the model for each parameter update, one can assume that the Markov
chain stays close to the stationary distribution. Hence, it produces a better approxima-
tion of the current model distribution.
This is the point where mixing (Section 3.3.3) becomes important during training, be-
cause for small learning rates it is possible that the Markov chain gets stuck in a subspace
of the distribution and therefore produces just bad estimates of the stationary distribu-
tion. Indeed, in Welling et al. (2003); Tieleman and Hinton (2009); Salakhutdinov (2009)
it has been shown that bad mixing leads to unstable learning dynamics and poor param-
eter estimates.
To train the MNIST examples in (Chapter 4, Chapter 5) we always used PCD.

3.10. Data Visualization

In Section 4.3 we need to evaluate the high-dimensional sampling results generated from
Boltzmann machines trained on the MNIST data set. One approach to achieve this is to
visualize the high-dimensional data samples by assigning each sample a location in a two
or three-dimensional map. The main problem thereby is to reduce the dimensionality
but at the same time preserve the significant structure of the high-dimensional data. In
the following, we will present the visualization techniques which will be used within this
thesis.

3.10.1. Star Plot

To visualize results for simulations with RBMs trained on just 3 MNIST digits, we use
so-called star plots as described in Petrovici et al. (2013).
We consider a set of N samples Z = {z1, z2, . . . , zN} of the visible layer of an RBM. The
vectors for the three training digits are denoted by B0,B3,B4. As in the experiments
later (Section 4.3.1), we assume that we train on the digits 0, 3, 4.
In a first step, we project each sample zi ∈ Z linearly on three dimensions using the
training digit vectors as a basis

z034
i =

 B0 · zi
B3 · zi
B4 · zi

 . (3.76)

Afterwards, we project this three-dimensional vector into two dimensions by assigning
each of the three digits an angle (φ0, φ3, φ4) = (0, 2π

3 ,
4π
3) on the unit circle

zproji =

(
sin(φ0) sin(φ3) sin(φ4)
cos(φ0) cos(φ3) cos(φ4)

)
z034
i . (3.77)

31

3. Theoretical Background

This method is simple and yields good results for the case of an RBM trained on 3 digits
as can bee seen in Section 4.3.1. For larger training sets, it becomes unfeasible. If, for
example, we train an RBM on 3 digits with 5 images per digit, we have to use the mean
of the 5 images to determine the basis vector for the digit. This leads to a larger variation
of the projected states around the direction representing the classes and therefore often
to overlaps between the classes. As this happens already for such small examples, we
conclude that more sophisticated approaches are necessary to visualize samples from
larger systems. Such approaches will be discussed in the following sections.

3.10.2. Principal Component Analysis (PCA)

Principal Component Analysis PCA (Hotelling , 1933), is widely used for applications
such as data visualization, dimensionality reduction, feature extraction and lossy data
compression. It is described in many textbooks such as Bishop and Nasrabadi (2006);
Jolliffe (2002). Hence we will give just a brief description here, which focuses on the
intuition behind this method.
PCA finds a linear projection from a high-dimensional data space onto a lower-
dimensional subspace which captures as much variance as possible. One assumes that the
high-dimensional data is approximately distributed according to a multivariate Gaussian.
Hence the data points will roughly lie within an N-dimensional ellipsoid. The eigenvec-
tors of the covariance matrix of the data set are in this case oriented along the main axes
of the ellipsoid and the square roots of the corresponding eigenvalues are proportional to
the variances in these directions.
An example for this in two dimensions is shown in Fig. 3.8. To reduce the data to K <
N dimensions, we sort the eigenvectors corresponding to the size of their eigenvalues and
take the K first eigenvectors (principal components). These define the directions in the
N-dimensional space with the largest variance.
Finally we apply a linear mapping of the data onto these eigenvectors. This yields the
map of our data set in K-dimensions with the largest possible variance. In case of Fig. 3.8,
this means that if we intend to reduce the dimension of the data to one, we apply a scalar
product between the data points and eigenvector of the major axis (red arrow). Hence
one can imagine PCA as fitting an N-dimensional ellipsoid to the data and subsequently
omitting the axes with the lowest variance.

We will use PCA as a reference method to the more complicated t-SNE approach (Sec-
tion 3.10.4), because it is a standard method and very easy to implement and to handle,
as it involves no parameter tuning. If we obtained satisfying results with PCA, there
would be no need to apply a much more complicated method like t-SNE.

32

3.10. Data Visualization

Figure 3.8.: Data distributed according to a multivariate Gaussian distribution. The ar-
rows show the directions of the eigenvectors of the covariance matrix. The
length of the arrows are proportional to the square root of the corresponding
eigenvalues.
The x-coordinates of the data points were drawn from a Gaussian distri-
bution. The y-coordinates consist of a fraction of the x-coordinates plus
random Gaussian noise.

3.10.3. Stochastic Neighbor Embedding (SNE)

Stochastic neighbor embedding (SNE) was introduced in Hinton and Roweis (2002). As
in PCA, it tries to find a low-dimensional map for a high-dimensional data set. The new
notion of this method is embedding data points within a set based on probable neighbors.
We denote the high-dimensional data set as X = {x1,x2, . . . ,xn} and the two (or three)
dimensional map as Y = {y1,y2, . . . ,yn}. The high-dimensional set X is fixed to the
input data, which are in our case samples from a Boltzmann distribution. The low-
dimensional coordinates are free to move.
In SNE, one begins with converting the Euclidean distances between high-dimensional
data points into conditional probabilities that represent their similarities. We assume the
similarity of data point xj to data point xi to be represented by a Gaussian conditional
probability

pj|i =
exp(−‖xi − xj‖2/2σ2

i)∑
k 6=i exp(−‖xi − xk‖2/2σ2

i)
, (3.78)

where σi is the variance of the Gaussian that is centered on data point xi. pj|i can also
be read as the probability that the data point xi would pick xj as its neighbor.
In the low-dimensional map, we model the similarity of point yj and yi as well as a

33

3. Theoretical Background

Gaussian but this time with a fixed variance set to 1
2

qj|i =
exp(−‖yi − yj‖2)∑
k 6=i exp(−‖yi − yk‖2)

. (3.79)

If yi and yj correctly model the similarity between xi and xj , the conditional probabilities
pj|i and qj|i will be equal.
Thus, the aim of SNE is to find a low-dimensional data representation that minimizes
the mismatch between all possible combinations of pj|i and qj|i. We apply the Kullback-
Leibler divergence (DKL)(Section 3.1) as a measure for this mismatch and define the cost
function C as

C =
∑
i

DKL(Pi||Qi) =
∑
i

∑
j

pj|i log
pj|i

qj|i
, (3.80)

where Pi represents the conditional probability distribution over the possible pj|i’s given
one xi and Qi represents the corresponding distribution for the qj|i’s.
The unsymmetric nature of the DKL leads to a different weighting of possible errors.
Using widely separated map points (small qj|i) for close data points (large pj|i) leads to
a large cost. In contrast to this, using close map points (large qj|i) to represent largely
separated data points (small pj|i), leads to a relatively small cost, which is caused by
wasting some of the probability mass of q. Therefore, for widely separated data points
(small pj|i) it is relatively unimportant to choose small qj|i as well. Minimizing the cost
function consequently focuses on a good representation of the local data structure.

For modeling the high-dimensional data point similarities (3.78) it is important to select
reasonable σi’s for the Gaussians. In dense regions one should choose a small σi because
as there are many data points close together we want the probability that a data point
would choose another as its neighbor to decay rapidly with their difference. In sparse
regions, on the contrary, one should choose a large σi. To achieve these conditions, it is
desirable to fix something like the effective number of neighbors for each data point. To
find such a quantity, one can consults information theory. Each variance σi determines
the distribution Pi over the single pj|i’s for a data point xi.
The Shannon entropy of Pi is defined as

H(Pi) = −
∑
j

pj|i log2 pj|i . (3.81)

Based on it, we can define the so-called perplexity

Perp(Pi) = 2H(Pi) . (3.82)

The perplexity of a probability distribution is a measure for how well it predicts a sample.
For example the perplexity of an unbiased die with k possible outcomes is k according
to (3.82). Hence, if a data point has k data points with the same distance (k neighbors),
we would have the same situation. Thus the perplexity would be k. Therefore one can
interpret the perplexity as a smooth measure of the effective number of neighbors.

34

3.10. Data Visualization

Typical values for the perplexity are chosen to be 5 - 50. As the perplexity is like the
entropy monotonically increasing with σi, it is possible to find the σi’s for a chosen
perplexity via binary search. The perplexities thereby are interpreted as the target
search values and the variances as their corresponding keys.

It can be shown that the gradient of (3.80) with respect to the coordinates of a map
point i is

∂C

∂yi
= 2

∑
j

(pj|i − qj|i + pi|j − qi|j) (yi − yj) . (3.83)

Physically this can be interpreted as the resultant force of a set of springs connecting yi
to all other map points yj . The stiffness of the springs is determined by the mismatch
between the pairwise similarities of data and map points.
There are many possibilities to minimize the cost function. In Van der Maaten and
Hinton (2008) the minimization is performed by gradient descent.
The gradient descent is initialized by sampling map points randomly from an isotropic
Gaussian with small variance that is centered around the origin. To avoid poor local
minima a momentum to the gradient update rule is added

Y(t) = Y(t−1) + η
∂C

∂Y(t−1)
+ α(t)

(
Y(t−1) − Y(t−2)

)
, (3.84)

where Y denotes the solution for the full set of map points at iteration t, α(t) the
momentum and η the learning rate .
In Van der Maaten and Hinton (2008) it was observed that this gradient is difficult to
optimize which made it necessary to additionally add Gaussian noise to the map points
after each iteration in the early stages of the optimization. The variance of the noise is
gradually reduced, which makes it corresponding to a simulated annealing that helps to
escape from poor local minima.

3.10.4. t-Distributed Stochastic Neighbor Embedding (t-SNE)

In Van der Maaten and Hinton (2008) a new technique called t-Distributed Stochastic
Neighbor Embedding (t-SNE) was presented, which is a variation of SNE. t-SNE addresses
two problems of SNE. The cost function, which is difficult to optimize and the so-called
crowding problem. To achieve this it uses a symmetrized version of the SNE cost function
with simpler gradients and a t-Student distribution to model the similarities between map
points. Both will be explained in the following.

Symmetrization of the SNE Cost Function

We exchange the conditional similarities between the high-dimensional data points (3.78)
and between the map points (3.79) with symmetric pairwise similarities. For the high-
dimensional data points we use

pij =
pj|i + pi|j

2n
, (3.85)

35

3. Theoretical Background

where n is the number of data points.
And for the map points

qij =
exp(−‖yi − yj‖2)∑
k 6=l exp(−‖yk − yl‖2)

. (3.86)

Note that the sum in the denominator goes over both k and l.
The resulting cost function is similar to (3.80)

C = DKL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

. (3.87)

It can be shown that its gradient has the following shape which is also similar to the one
of asymmetric SNE

∂C

∂yi
= 4

∑
j

(pij − qij)(yi − yj) . (3.88)

The main advantage of this gradient is that it is simpler and faster to compute. Accord-
ing to Van der Maaten and Hinton (2008) this method produces maps that are as good
or sometimes a little better than for the normal asymmetric SNE.

As a side remark, in (3.85) one may wonder why no Gaussian is chosen to model the
symmetric similarities between high-dimensional data points similarly to

pij =
exp(−‖xi − xj‖2/2σ2)∑
k 6=l exp(−‖xk − xl‖2/2σ2)

. (3.89)

To motivate this, we consider a high-dimensional data point xk which is an outlier. This
means that it has a high distance to all other points. As a consequence of (3.89), all
probabilities pkj of the point to its neighbors become very small. Hence, this point
has nearly no influence on the cost function (3.87). As a result, the position of the
corresponding map point yk will be barely determined leading to a bad mapping for this
kind of points.
This can be avoided by choosing (3.85). Because due to the definition of pi|j (3.78) we
have

∑
j pij =

∑
j
pj|i+pi|j

2n > 1
2n for all data points xi. Hence all points will have a

significant representation in the cost function.

Solving the Crowding Problem with Heavy-Tailed Distributions

A correct model of high-dimensional distances in low-dimensional space is hindered by
several problems. One is that in D dimensions it is possible to have D + 1 mutually
equidistant data points. Hence, it will become impossible to map a high-dimensional
data set with several hundred equidistant points correctly to e.g. two dimensions.
Furthermore the volume of a sphere around a data point i scales with rD. Thus, in high-
dimensional space one has far more space to model large distances to this point than in
low-dimensional space. Therefore, if we try to represent both, low and large distances,

36

3.10. Data Visualization

faithfully and use a reasonable separation for the low distance points, the large distance
points need to be placed very far away in the map.
Many algorithms for dimensionality reduction including SNE cannot handle this and
suffer therefore from the so-called crowding problem where distant data points are not
separated very well and the whole map tends to be crowded in the origin.
The approach to solve this issue in t-SNE is to still use Gaussians for high-dimensional
probabilities but the Student’s t-distribution for the low-dimensional ones. The t-
distribution for a value x ∈ R has the following shape

p(x) =
Γ(ν+1

2)
√
νπ Γ(ν2)

(
1 +

x2

ν

)− ν+1
2

, (3.90)

where Γ(x) is the Gamma function and ν > 0 is called the degrees of freedom of the
t-distribution. For ν →∞ the t-distribution becomes the Gaussian distribution and for
ν = 1 one obtains the Cauchy distribution (Lorentz distribution). Hence, compared to
the Gaussian distribution the t-distribution with small ν has much heavier tails while
the center of the distribution is similar. Thus, for two data points with a large distance
between each other (small pij) we have to choose a much higher distance to obtain a
similar value for qij in the t-distribution. However, for two close data points (large pij)
there will be no big difference in the distance for qij .
As a consequence, we exaggerate just larger distances in the map as it is necessary to
mitigate the crowding problem.
As for larger ν the t-distribution becomes more like a Gaussian, one can use ν to tune
the exaggeration of large distances in the map.
In our case we use a t-distribution with one degree of freedom (Cauchy distribution)

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

. (3.91)

Applying the same cost function as in (3.87) leads to the gradient

∂C

∂yi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1 . (3.92)

The additional (1+‖yi−yj‖2)−1-term reduces the “force” between map points with large
distances, which makes them less prone to be crowded.
According to Van der Maaten and Hinton (2008) this gradient leads to a simpler opti-
mization. As a consequence, in t-SNE one can abandon the thermal annealing which is
usually used in SNE.
As an enhancement for t-SNE on the MNIST data set a method called early exaggeration
is applied. Here one multiplies all pij ’s by a factor f > 1 in the beginning. This forces
the map points two form tight clusters to achieve large values for the corresponding qij ’s
as well. There is consequently more space between the clusters in the beginning which
alleviates their movement. This makes it more likely to find a good arrangement for
them. For the simulations in this thesis we have applied early exaggeration of f = 4 for
the first 100 steps.

37

4. Visualization of Mixing in Generated
Data

In this chapter we will investigate the behavior of sampling algorithms in Boltzmann
machines (BMs) and restricted Boltzmann machines (RBMs) (Section 3.2). We are
especially interested in the ability of the sampling algorithms to move around the state
space. This mixing property is discussed in Section 3.3.3 and has, in some circumstances,
a strong influence on the ability of the sampling algorithms to reproduce their stationary
distributions. Finding out how strong this influence is and under which circumstances it
becomes important is the aim of this chapter. To be able to judge this we will try out
different methods to visualize mixing for the sampling algorithms.
The algorithm in which we are especially interested in is LIF sampling (Section 3.8)
because it can, in principle, be mapped on neuromorphic hardware devices as discussed
in Section 2.3. We will therefore consider the sampling results for LIF sampling with
exponential and alpha-shaped current-based (CUBA) and conductance-based (COBA)
synapses (Section 3.6). We use the SBS python module (Section 2.2.2) to perform LIF
sampling. The SBS version and parameters used for the neuron and synapse models are
listed in Appendix A.2.2. The Tsodyks-Markram synapse model (TSO) (Section 3.7)
is applied to maintain the height of the post-synaptic potentials as shown in Fig. 3.5.
The used TSO parameters are listed in Table A.3. As a reference, we will regard Gibbs
sampling (Section 3.3.2) which is the standard algorithm to generate samples in classical
Boltzmann machines. To see whether mixing is important in the considered systems
we will furthermore consider the adaptive simulated tempering (AST) sampling method
(Section 3.3.3) which is especially designed to enhance mixing. The used AST parameters
are listed in Table A.1.

4.1. Random Distributions

We start in this section with considering the behavior of the different sampling algorithms
in BMs and RBMs where the weights and biases have been randomly chosen from the
Gaussian distribution. To allow a deeper analysis we choose small systems which are
still computationally tractable. The approach will be to calculate the theoretical Boltz-
mann distribution (3.10) according to the chosen weights and biases. Afterwards, we are
sampling from the distribution with the above mentioned sampling algorithms. From
the samples we calculate the sample distribution by determining the time (number of
steps) spent in each state divided by the overall time (total number of steps). Finally, we
evaluate the difference between the theoretical and sample distribution measured by the
Kullback-Leibler divergence DKL (Section 3.1) for different time points during sampling

39

4. Visualization of Mixing in Generated Data

to obtain a DKL time evolution. We always evaluate the divergence from the sample to
the theoretical distribution DKL(psim||ptheo) to avoid having the sample distribution in
the denominator in (3.1), because the probability of most of the states will be zero in the
beginning. The theoretical Boltzmann distribution, in contrast, will never reach zero for
finite weights and biases. In this section we will always run LIF sampling for 106 ms and
compare it to 105 Gibbs and valid AST steps. However, it is not a cleared issue how to
compare the sampling steps (time) for the different methods.
As mentioned in Section 3.3.3, we just count samples from the ground temperature level
in AST. Hence, between two consequent valid AST samples there could be several sam-
ples from higher temperatures. The Wang-Landau algorithm in AST guarantees that
each temperature level in AST occurs similarly frequent. Thus, as we have used ten
temperatures levels (see Table A.1), we will in average count just every 10th step. A
direct comparison of each Gibbs step with an AST step seems therefore unfair. On the
other hand, comparing every 10th Gibbs steps with an AST step is also unfair because
the dropped steps in AST are from a different distribution containing less information
as it is flatter. We decided to compare within this thesis each Gibbs step with an AST
step. As a consequence, the computational effort and therefore runtime for each AST
step is roughly 10 times larger.
For comparing the LIF sampling time with Gibbs steps, we have a similar problem. How
many seconds of simulation time should one choose to correspond to one Gibbs step? In
this thesis we compare the refractory period of the LIF neurons (τref = 10 ms) with one
Gibbs step. This is due to the fact that the refractory period introduces an additional
temporal correlation into the state evolution of the system which is of the order of the
refractory time. However, it is questionable whether this is a fair comparison because
the global state of the system changes just once in a Gibbs step but during 10ms LIF
simulation time it can change much more often.

4.1.1. Homogeneous Distributions

In the following we assume that we have fully connected BMs where the weights and
biases are Gaussian distributed around µ = 0 with a small variance of σ = 0.3 , which
will lead to quite homogeneous distributions. For these distributions we expect that
every sampling algorithm will work well. Hence, these systems are suited to investigate
the general properties of the considered sampling algorithms.
To test the algorithms we have applied the above mentioned approach. From this we
obtain the DKL time evolutions shown in Fig. 4.1 for fully connected BMs with 5, 10, 15
and 20 units. The DKL values at the end of the simulation are collected in Table A.10
and can be used as reference results for the different sampling algorithms in this standard
case. In Table A.11 we collected analogous results with varying seeds for the sampling
algorithms.
In Fig. 4.1a one can see that all methods seem to work fine in the beginning as the
difference between the theoretical and sample distribution measured by theDKL becomes
smaller over time (sampling steps). In theory we would expect a straight line in the double
logarithmic plot. For Gibbs and AST this is true but for LIF sampling we see a saturation

40

4.1. Random Distributions

Figure 4.1.: DKL time evolution for BMs

102 103 104 105 106

simulation time [ms]

10-4 10-4

10-3 10-3

10-2 10-2

10-1 10-1

100 100

101 101

D
K
L
(p
si
m
||
p
th
eo
)

AST

GS

cond alpha τrec= 4.35

cond exp τrec= 10.0

curr alpha τrec= 4.35

curr exp τrec= 10.0

(a) 5 units

102 103 104 105 106

simulation time [ms]

10-3 10-3

10-2 10-2

10-1 10-1

100 100

101 101

D
K
L
(p
si
m
||
p
th
eo
)

AST

GS

cond alpha τrec= 4.35

cond exp τrec= 10.0

curr alpha τrec= 4.35

curr exp τrec= 10.0

(b) 10 units

41

4. Visualization of Mixing in Generated Data

102 103 104 105 106

simulation time [ms]

10-2 10-2

10-1 10-1

100 100

101 101

D
K
L
(p
si
m
||
p
th
eo
)

AST

GS

cond alpha τrec= 4.35

cond exp τrec= 10.0

curr alpha τrec= 4.35

curr exp τrec= 10.0

(c) 15 units

102 103 104 105 106

simulation time [ms]

10-1 10-1

100 100

101 101

102 102

D
K
L
(p
si
m
||
p
th
eo
)

AST

GS

cond alpha τrec= 4.35

cond exp τrec= 10.0

curr alpha τrec= 4.35

curr exp τrec= 10.0

(d) 20 units

Figure 4.1.: Time evolution of the DKL between the theoretical and sample joint distri-
bution for fully connected BMs with 5, 10, 15 and 20 units. The weights
and biases have been drawn from a Gaussian with µ = 0 and σ = 0.3. The
sample distribution are created from Gibbs (GS) sampling, AST and LIF
sampling with both CUBA (curr), COBA (cond) and exponential (exp) and
alpha-shaped synapses. τrec is the recovery time constant used for TSO. It is
chosen such that the post-synaptic potential (PSP) height is maintained (see
Fig. 3.5). The displayed DKL values denote the mean over ten tries where
we have drawn new weights and biases for each try. The colored area shows
the standard deviation.

42

4.1. Random Distributions

at the end. This is due to the systematic error caused by the different PSP shape in LIF
sampling compared to the rectangular PSP which is required in theory, as illustrated in
Fig. 3.7. Considering the different LIF sampler one can see that they perform similarly.
Just in the end they tend to settle on different saturation levels. However, regarding the
standard deviation this effect is not significant.
When the size of the BM is increased, we can see that the DKL values become worse.
This is because the number of possible states whose probabilities need to be matched rises
exponentially but the time in which the states can be populated during sampling stays
the same. Hence, we get a much rougher approximation of the sampling probabilities
for each single state. This effect is especially serious in the beginning which makes the
shape deviate from the expected straight line. The errors become also smaller because
for such homogeneous distributions nearly every chosen state will be a new state in the
beginning and the state probabilities are similar. As a consequence, they all lead to a
similar improvement in the DKL calculation, which leads to a similar behavior of the
sampling algorithms for different tries.
Another effect visible for larger BMs is that LIF sampling performs better than the
abstract samplers. Even for the 5 unit BM in Fig. 4.1a this can be observed in the
beginning. This is due to our choice of comparing one Gibbs step with 10ms of LIF
sampling time. The consequences can be seen when looking at the joint distribution
especially for larger systems. In Fig. 4.2 a cutout of the joint distribution for the 20
unit BM is shown. We see that Gibbs exhibits just a rather discretized approximation
of the theoretical distribution. This is because we have in total 220 ≈ 106 possible
states which occur with similar probabilities in homogeneous distributions. Hence the
typical probability values vary around the value of 10−6. However, we obtained this plot
after 105 sampling steps. Thus, when we sample during the whole run just once from
a certain state its probability would be already 10−5. The minimal resolution of the
joint probability with Gibbs sampling is consequently one order higher as the typical
theoretical values.
On the other hand, in Fig. 4.2b we can see that LIF sampling is more precise as we have
a spike time resolution and therefore a possibly new state every 0.1ms. With the total
simulation time of 106 ms this leads to a resolution of 10−7. Hence, the LIF resolution
becomes visible when we zoom further into the distribution as demonstrated in Fig. 4.2c.
This shows that, comparing one Gibbs step with 10ms, LIF sampling can approximate
high-dimensional distributions faster than the abstract sampling algorithms.
Our aim later will be to train large RBMs. However, due to the exponentially increasing
state space, it is impossible to calculate the theoretical joint distribution and therefore
the DKL for the full system. To still get an impression how well the sampled distribution
approximates the theoretical one, one can exploit the bipartite structure of RBMs. We
will therefore consider next RBMs where the visible layer is large and the hidden layer
small. With the simplified calculation of the hidden distribution in (3.16) we can at least
observe the behavior for the hidden layer which represents the features of the visible
layer.
In the following we will therefore consider similar results as before but now with RBMs
with 100 visible units and 5, 10 , 15 and 20 hidden units. We evaluate the DKL values

43

4. Visualization of Mixing in Generated Data

462500 465000 467500 470000 472500 475000
state index

0.0

0.5

1.0
jo

in
t

p
ro

b
a
b
ili

ty

1e 4

Theory

Gibbs sampling

(a) Gibbs sampling

462500 465000 467500 470000 472500 475000
state index

0.0

0.5

1.0

jo
in

t
p
ro

b
a
b
ili

ty

1e 4

Theory

curr exp τrec=10 ms

(b) LIF sampling

473200 473600 474000 474400 474800
state index

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

jo
in

t
p
ro

b
a
b
ili

ty
1e 6

Theory

curr exp τrec=10 ms

(c) LIF sampling zoom

Figure 4.2.: Cutout of the joint theoretical and sample distribution for a BM with 20 units
for one of the runs in Fig. 4.1d. On the x-axis the state index is plotted. Its
number converted to a binary string of length 20 describes which units are
active. The height of the dots over the indices shows the probability of the
state belonging to the index.
Figure 4.2a shows the comparison between the sample joint distribution from
Gibbs sampling and the theoretical one. In Fig. 4.2b the corresponding
result for LIF sampling with CUBA exponential-shaped synapses is shown.
Figure 4.2c is a zoomed in part of Fig. 4.2b.

between the theoretical hidden distribution calculated with (3.16) and the corresponding
sampled hidden distribution. The finalDKL values are collected in Table A.12. To see the
influence of the simulation seed the same results are collected in Table A.13 with varying
seeds for the sampler. Figure 4.3 shows the result of the DKL time evolution for the 5
hidden units example. We omit the plots with more hidden units because they exhibit
exactly the same tendency as in the BM case before. In Fig. 4.3 there is, as for normal
BMs, a straight line for Gibbs, AST and LIF sampling in the beginning until it saturates.
However, compared to the BM result Fig. 4.1a, the saturation happens on higher DKL

levels. This is probably due to the larger size of the system. As each hidden neuron is
connected to 100 visible ones it can receive much more spikes per time step than in the
small 5 unit BM. This leads to a summation of the different PSP shapes, which causes
a more significant deviation, despite the small weights. The differences between the
LIF sampling algorithms are again not significant compared to their standard deviation.

44

4.1. Random Distributions

102 103 104 105 106

simulation time [ms]

10-4 10-4

10-3 10-3

10-2 10-2

10-1 10-1

100 100

101 101

D
K
L
(p
si
m
||
p
th
eo
)

AST

GS

cond alpha τrec= 4.35

cond exp τrec= 10.0

curr alpha τrec= 4.35

curr exp τrec= 10.0

Figure 4.3.: Time evolution of the DKL value between the theoretical and sampled joint
hidden distribution for an RBM with 100 visible and 5 hidden units. The
cases with 10, 15 and 20 hidden units show a similar behavior as in Fig. 4.1
and are therefore omitted. The weights and biases have been drawn from a
Gaussian with µ = 0 and σ = 0.3. The sampled distributions are created
from Gibbs (GS), AST and LIF sampling with both CUBA, COBA and
exponential, alpha-shaped synapses. τrec is the recovery time constant used
for TSO. It is chosen such that the PSP height is maintained (see Fig. 3.5)
The displayed DKL values denote the mean over ten tries where we have
drawn new weights and biases for each try. The colored area shows the
standard deviation.

Furthermore, we can see that there is no significant difference between Gibbs and AST.
Hence it seems that even for the larger RBMs the mixing issue plays no role.
We conclude from this that increasing the size of the system alone makes mixing not
important yet. We probably need to consider more inhomogeneous distributions via
choosing weights and biases with a larger variance, which will be considered in the next
chapter. Moreover, we see that due to the discretization effect it makes no sense to
compare joint or hidden distributions for more than 10 units.

4.1.2. Inhomogeneous Distributions

The aim in this section will be to find out what happens if we choose the weights and
biases with large variances leading to inhomogeneous distributions, where some states
appear with a high probability while most of the others have a nearly vanishing one. In
these systems one could expect that mixing plays a more important role. To create such
systems we will in the following again consider RBMs with 100 visible and 5 hidden units.

45

4. Visualization of Mixing in Generated Data

This time, however, we draw the weights and biases from a Gaussian with mean µ = 0
and a higher standard deviation of σ = 1.5. Otherwise the procedure will be exactly the
same as in the previous section. For the DKL time evolution of the hidden distribution
we obtain Fig. 4.4

102 103 104 105 106

simulation time [ms]

10-6 10-6

10-5 10-5

10-4 10-4

10-3 10-3

10-2 10-2

10-1 10-1

100 100

101 101

102 102

D
K
L
(p
si
m
||
p
th
eo
)

AST

GS

cond alpha τrec= 4.35

cond exp τrec= 10.0

curr alpha τrec= 4.35

curr exp τrec= 10.0

Figure 4.4.: Time evolution of the DKL(psim||ptheo) between the sample distributions psim
for the different sampling algorithms and the theoretical distribution ptheo.
Depicted is the mean of the DKL values over ten tries where for each one a
new set of weights and biases have been chosen. The colored area illustrates
the standard deviation. The weights and biases have been chosen from a
Gaussian with µ = 0 and σ = 1.5.

We can see that compared to the corresponding simulation for homogeneous distributions
in Fig. 4.3 all sampler exhibit larger standard deviations. Furthermore we see that Gibbs
sampling and AST perform similarly good as in the homogeneous case. LIF sampling,
however, has a much worse performance. To explain these results we take a look at some
examples of the joint hidden distributions at the end of the simulation time.
Figure 4.5 shows three examples for Gibbs sampling. We see that the chosen weights
and biases indeed lead to very inhomogeneous distributions, but the Gibbs sampler still
manages to reproduce them very well. Beside that, we see that many different distri-
butions are possible. Some where just one state appears with a probability of nearly
one and others in which we have several modes. This explains the larger variations in
the DKL values. However, this is also a systematic problem of this approach to create
systems where mixing is important. For example in Fig. 4.5b mixing would be even a
disadvantage because the whole probability mass is concentrated in just one state. On
the other hand in Fig. 4.5c a better mixing would probably be an advantage. One can
even see that this is the only system where Gibbs exhibits a small deviation from the
theoretical distribution. For an ideal system where mixing is important we would expect

46

4.1. Random Distributions

0
0

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

1
1

0
0

1
0

0
0

0
1

0
1

0
0

1
1

0
0

0
1

1
1

0
1

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
0

1
1

0
1

1
0

0
0

1
1

0
1

0
1

1
1

0
0

1
1

1
1

1
0

0
0

0
1

0
0

0
1

1
0

0
1

0
1

0
0

1
1

1
0

1
0

0
1

0
1

0
1

1
0

1
1

0
1

0
1

1
1

1
1

0
0

0
1

1
0

0
1

1
1

0
1

0
1

1
0

1
1

1
1

1
0

0
1

1
1

0
1

1
1

1
1

0
1

1
1

1
1

hidden state

0.0

0.2

0.4

0.6

0.8

1.0

jo
in

t
p
ro

b
a
b
ili

ty

Theory

GS

(a) Gibbs sampling example 1

0
0

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

1
1

0
0

1
0

0
0

0
1

0
1

0
0

1
1

0
0

0
1

1
1

0
1

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
0

1
1

0
1

1
0

0
0

1
1

0
1

0
1

1
1

0
0

1
1

1
1

1
0

0
0

0
1

0
0

0
1

1
0

0
1

0
1

0
0

1
1

1
0

1
0

0
1

0
1

0
1

1
0

1
1

0
1

0
1

1
1

1
1

0
0

0
1

1
0

0
1

1
1

0
1

0
1

1
0

1
1

1
1

1
0

0
1

1
1

0
1

1
1

1
1

0
1

1
1

1
1

hidden state

0.0

0.2

0.4

0.6

0.8

1.0

jo
in

t
p
ro

b
a
b
ili

ty

Theory

GS

(b) Gibbs sampling example 2

0
0

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

1
1

0
0

1
0

0
0

0
1

0
1

0
0

1
1

0
0

0
1

1
1

0
1

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
0

1
1

0
1

1
0

0
0

1
1

0
1

0
1

1
1

0
0

1
1

1
1

1
0

0
0

0
1

0
0

0
1

1
0

0
1

0
1

0
0

1
1

1
0

1
0

0
1

0
1

0
1

1
0

1
1

0
1

0
1

1
1

1
1

0
0

0
1

1
0

0
1

1
1

0
1

0
1

1
0

1
1

1
1

1
0

0
1

1
1

0
1

1
1

1
1

0
1

1
1

1
1

hidden state

0.0

0.1

0.2

0.3

0.4

0.5

0.6

jo
in

t
p
ro

b
a
b
ili

ty

Theory

GS

(c) Gibbs sampling example 3

Figure 4.5.: Three examples of the joint hidden distribution each comparing the theoret-
ical distribution with the one obtained from Gibbs sampling. The examples
are taken from the 10 runs in the DKL time evolution in Fig. 4.4. On the
x-axis all possible state combinations for the hidden layer are shown. The
y-axis shows the probabilities for them to appear. 47

4. Visualization of Mixing in Generated Data

0
0

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

1
1

0
0

1
0

0
0

0
1

0
1

0
0

1
1

0
0

0
1

1
1

0
1

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
0

1
1

0
1

1
0

0
0

1
1

0
1

0
1

1
1

0
0

1
1

1
1

1
0

0
0

0
1

0
0

0
1

1
0

0
1

0
1

0
0

1
1

1
0

1
0

0
1

0
1

0
1

1
0

1
1

0
1

0
1

1
1

1
1

0
0

0
1

1
0

0
1

1
1

0
1

0
1

1
0

1
1

1
1

1
0

0
1

1
1

0
1

1
1

1
1

0
1

1
1

1
1

hidden state

0.0

0.2

0.4

0.6

0.8

1.0

jo
in

t
p
ro

b
a
b
ili

ty

Theory
curr exp τrec= 10.0

Figure 4.6.: Example of the joint hidden distribution comparing the theoretical distribu-
tion with one obtained from LIF sampling with CUBA exponential-shaped
synapses. The example is taken from the first of the 10 tries in the DKL

time evolution in Fig. 4.4.

a distribution with several dominant modes lying roughly at the same level, but with
this approach it depends on chance whether we obtain such a system.
To understand why LIF sampling leads to such bad results we further consider in Fig. 4.6
an example of the hidden distribution for LIF sampling as well. One can see that the dis-
tribution here is quite similar to the corresponding one for Gibbs sampling in Fig. 4.5a.
The LIF sample distribution, however, shows some tiny additional peaks in the state
space for similar states as the dominant one (each vary just in the state of one unit).
These additional states appear for all LIF sampler. They could be caused by deviations
of the LIF activation function (see Section 3.8), the different PSP shape compared to
abstract sampling or the delay time of 0.1ms with which the information that a neuron
spiked reaches the others. Although these states appear with a small probability, they
have regarding (3.1) a strong influence on the DKL value because the corresponding the-
oretical probability for these states is nearly zero. This leads to the bad performance of
the LIF sampler in the DKL time evolution in Fig. 4.4.
Altogether, we learn from the results in this section that drawing weights and biases from
a completely random distribution with large variances leads not to the desired results.
The resulting distributions are unpredictable and mixing seems to play in most cases no
important role. We can only hope to find by chance a distribution where mixing is im-
portant, which makes a systematic treatment difficult. This result led us to the approach
in the next section, where instead of drawing weights and biases randomly we set them
manually to form certain patterns which we have devised in advance.

48

4.2. Multimodal Distributions with Artificial Patterns

4.2. Multimodal Distributions with Artificial Patterns

Our approach in this section is to manually imprint certain patterns in Boltzmann ma-
chines by choosing the weights and biases accordingly. We use solely RBMs for this
because here one can easily interpret the weights by looking at the receptive fields of the
hidden units (see Section 3.2.1). In this section we first describe the way how we create
the patterns. Afterwards, we look at an example of the sampling performance for the
created patterns. Finally, we investigate how this performance behaves when we vary
the system size and the strength of the imprinted patterns.

4.2.1. Pattern Creation

To create multimodal artificial patterns we use an RBM with four hidden units and
imprint four bar patterns into the weight connections between visible and hidden units as
illustrated in Fig. 4.7. The values of the weight connectionsWexc andWinh determine the
strength of the imprinted pattern. Their influence will be investigated in Section 4.2.4.
Further parameters are the size of the visible layer and the biases of the units. The
influence of the system size will be investigated in Section 4.2.3. For the biases we choose
for simplicity the same value of B = −1 for all units.

4.2.2. Mixing for the Artificial Multimodal Pattern

In this section we consider the mixing behavior of an example of a pattern created with
the approach in Section 4.2.1. We choose symmetric weight connections of Wexc = 1.2
and Winh = −1.2. The size of the visible layer is 10x10. Due to the symmetry of the
weights, the same bias for all units and the fact that the bars fill up exactly the half of
the visible layer, we will obtain a symmetric distribution where the modes for the four
bars appear with exactly the same probability.
As in Section 4.1 we sample from such a distribution and consider the DKL(psim||ptheo)
time evolution, which yields to Fig. 4.8. We can see that just the AST sampler approaches
the theoretical distribution with the expected straight line. Gibbs sampling shows no
significant convergence and the LIF sampler saturate early on a high level. One can
see that LIF sampling with alpha-shaped synapses seems to have a slight advantage
compared to LIF sampling with exponential-shaped synapses while switching between
CUBA and COBA has no significant influence. The fact that AST performs so much
better than the other sampling algorithms indicates that in this system mixing is indeed
an important issue. To explain the DKL results we take a look at some examples for
hidden distributions for the abstract sampler (Fig. 4.9) and LIF sampling (Fig. 4.10).
We can see in Fig. 4.9a that Gibbs sampling stays only in one mode. This explains why
its DKL value in Fig. 4.8 did not change over time. The slight convergence in the end in
Fig. 4.8 indicates that in a few of the ten runs Gibbs sampling managed to reach other
modes.
In contrast to this we see in Fig. 4.9b that AST is able to mix between the four modes
and therefore reproduces the theoretical distribution very well. This leads to its small

49

4. Visualization of Mixing in Generated Data

Visible Layer Hidden Layer

Figure 4.7.: Scheme of the creation of artificial bar patterns. We use 4 hidden units and
imprint manually bar patterns into the weight connections for each of them.
The four imprinted bars are shown in the visible layer of the scheme. They
correspond to the receptive fields of the hidden units. Each bar fills half
of the visible layer. The dark boxes stand for a positive weight connection
between visible and hidden units. They have all the same value ofWexc. The
light gray boxes stand for a negative connection Winh.

50

4.2. Multimodal Distributions with Artificial Patterns

102 103 104 105 106

simulation time [ms]

10-4 10-4

10-3 10-3

10-2 10-2

10-1 10-1

100 100

101 101

D
K
L
(p
si
m
||
p
th
eo
)

AST

GS

cond alpha τrec= 4.35

cond exp τrec= 10.0

curr alpha τrec= 4.35

curr exp τrec= 10.0

Figure 4.8.: Time evolution of the meanDKL values for the 4 bar pattern withWexc = 1.2
andWinh = −1.2. The size of the visible layer is 10x10 and the bias isB = −1
for every unit. We calculate the mean over 10 tries in which we vary the seed
for the random number generator in the sampling algorithms. The colored
area represents the standard deviation.

DKL value.
Figure 4.10 reveals that LIF sampling mixes in case of exponential-shaped synapses a
little and in case of alpha-shaped synapses much better than Gibbs sampling. The
reason for the still quite bad DKL values can be seen in the hidden distribution plots
in Fig. 4.10. Both LIF sampler go into some states where the theoretical probability is
nearly vanishing. This is similar to the results for the inhomogeneous distributions in
Section 4.1.2. Considering the DKL formula (3.1) these additional states have a huge
contribution to the sum, which leads to the bad performance in the DKL time evolution
for the LIF sampler.
To obtain a better measure for this case which respects just the mixing behavior in the
dominant modes we consider a reduced DKL measure.
For this measure we sum in (3.1) just over the contributions of the four dominant modes.
This has the advantage that the small additional states in LIF sampling, which are
unavoidable, do not effect the DKL values. However, in Section 3.1 we have seen that
not summing over all possible states of the distributions makes it possible to have negative
DKL values. As a consequence, we need to carefully treat the results for the reduced
DKL because a reduced DKL of zero does not necessarily mean a perfect match of
the distributions anymore. Deviations in different directions can cancel each other and
therefore also lead to a reduced DKL of zero. As negative and positive reduced DKL

values both represent deviations we take the absolute value of the sum in (3.1) to make it
still possible to show the results in a double logarithmic plot. The results in Fig. 4.11 show

51

4. Visualization of Mixing in Generated Data

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.0

0.2

0.4

0.6

0.8

1.0

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory

GS

(a) Gibbs sampling

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.00

0.05

0.10

0.15

0.20

0.25

0.30

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory

AST

(b) AST

Figure 4.9.: Examples for hidden distributions in the 4 bar example for the abstract
sampling algorithms Gibbs and AST. These show the final result of one run
in Fig. 4.8. On the x-axis all 24 possible combinations of the hidden layer
are listed. The y-axis shows the probabilities for them to appear.

52

4.2. Multimodal Distributions with Artificial Patterns

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.0

0.1

0.2

0.3

0.4

0.5

0.6

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory
curr exp τrec= 10.0

(a) LIF sampling with exponential-shaped synapses

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.00

0.05

0.10

0.15

0.20

0.25

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory

curr alpha τrec= 4.35

(b) LIF sampling with alpha-shaped synapses

Figure 4.10.: Examples for hidden distributions in the 4 bar example for the LIF sampling
methods with CUBA exponential- and alpha-shaped synapses. They corre-
spond to the plots for the abstract samplers in Fig. 4.9. The corresponding
COBA methods perform similarly and are therefore omitted.

53

4. Visualization of Mixing in Generated Data

that the performance for alpha-shaped LIF sampling is indeed much better than for Gibbs
sampling. Exponential-shaped LIF exhibits just a marginally improved performance.
This is in accordance to the examples for the hidden distributions shown in Fig. 4.10.
Hence, in this case, the reduced DKL seems to produce reasonable results.

102 103 104 105 106

simulation time [ms]

10-5 10-5

10-4 10-4

10-3 10-3

10-2 10-2

10-1 10-1

100 100

101 101

re
d
u
ce

d
 D

K
L
(p
si
m
||
p
th
eo
)

AST

GS

cond alpha τrec= 4.35

cond exp τrec= 10.0

curr alpha τrec= 4.35

curr exp τrec= 10.0

Figure 4.11.: Time evolution of the reduced DKL values for the 4 bar example corre-
sponding to Fig. 4.8.

Until now we had just observed the behavior of the hidden units. However, it is not
guaranteed that the visible units behave as we would expect it. To make sure that this
is the case we consider, in the following, examples of the produced samples of the visible
layer in 10x10 format. The hidden distributions in Fig. 4.9 and Fig. 4.10 reveal that
the dominant modes belong to states where two hidden neurons are active. Keeping the
imprinted bar patterns (Fig. 4.7) in mind, we conclude that these states correspond to
two superimposed bars in each of the four edges.
We therefore expect sampled images where one edge is dark, because it is activated by
two bar patterns. The two neighboring edges should exhibit an intermediate activation
because they are activated by just one bar respectively. The remaining edge should be
mainly deactivated.
Examples for the sampled images are shown in Fig. 4.12. We indeed see the expected
pattern but with some noise added which is usual for sampling. Hence the visible states
follow the behavior of the hidden states. This becomes also obvious considering the results
for the different sampler. For Gibbs sampling (Fig. 4.12a) we see that, as indicated by the
joint hidden distribution in Fig. 4.9a, the lower left edge is active for the whole duration
because it is not able to mix. For AST, however, we see in Fig. 4.12b that the sampler
produces samples from all edges and has no problems with mixing. The same is true for
LIF sampling (Fig. 4.12c).
This example shows that for a particular choice of weights and biases in the bar pattern

54

4.2. Multimodal Distributions with Artificial Patterns

(a) Samples produced by Gibbs sampling

(b) Samples produced by AST

(c) Samples produced by LIF sampling with alpha-shaped
synapses

Figure 4.12.: Samples of the visible layer produced by Gibbs sampling, AST and LIF
sampling with CUBA alpha-shaped synapses. The visible units are arranged
in 10x10 images as the imprinted bar patterns. The black and white dots
denote units which are activated and deactivated respectively. For each
sampler 100 samples taken equally distributed over the sampling time are
shown. Hence there are 104 ms between two LIF samples and 103 steps
between two Gibbs/AST samples. The samples should be read from left to
right and up to down. They are taken from the same run as the hidden
distribution plots in Fig. 4.9 and Fig. 4.10.

55

4. Visualization of Mixing in Generated Data

scheme, we indeed found a system where mixing is a critical issue. Here we saw that Gibbs
was not able to reproduce the theoretical distribution while AST fixed this problem. LIF
sampling yielded an intermediate performance. To make sure that this was not just a
lucky choice of parameters, we will in the following sections investigate when mixing
starts to become important by varying the system size and the strength of the imprinted
patterns.

4.2.3. Influence of System Size

In this section we investigate how the sampling behavior for the bar pattern scheme
described in Section 4.2.1 changes with the size of the visible layer. For the imprinted
patterns we use the same weights and biases as in Section 4.2.2. We now determine the
mean final DKL values for an increasing number of visible units. The result is shown in
Fig. 4.13.

50 100 150 200 250 300
Nvisible

10-3 10-3

10-2 10-2

10-1 10-1

100 100

m
e
a
n
 f

in
a
l
D

K
L

AST

GS

cond alpha 4.35

cond exp 10.0

curr alpha 4.35

curr exp 10.0

Figure 4.13.: Mean final DKL values after 106 ms simulation time for LIF sampling and
105 steps for Gibbs sampling and AST. The x-axis shows the size of the
visible layer. As the visible layer is interpreted as a two-dimensional image
we vary the size from 62 to 182. The mean is calculated over ten trials with
varying seeds for the random number generator for the sampling algorithms.
The weights and biases are the same as in Section 4.2.1.

We see that as expected for the case with 100 visible units we get the same final result as
in Section 4.2.2. Increasing the RBM further leads to a similar outcome. AST is still able
to reproduce the distribution. Gibbs and now also LIF sampling with exponential-shaped
synapses do not mix at all. LIF sampling with alpha-shaped synapses leads to a slightly
better performance. In Section 4.2.2 we have already seen the reason for the relative high
DKL values for alpha-shaped LIF sampling. It is due to additional states which appear

56

4.2. Multimodal Distributions with Artificial Patterns

for the LIF sampler but should be in theory nearly zero. To avoid the strong influence of
these states we again consider the reduced DKL (Fig. 4.14). The lower DKL values for
LIF alpha-shaped sampling confirm that it is still able to mix between the four bars. Its
ability to mix starts to break down only for very large systems. The fact that it becomes
better in the middle with increasing number of visible units is an artifact of the reduced
DKL, where negative and positive deviations cancel each other.

50 100 150 200 250 300
Nvisible

10-3 10-3

10-2 10-2

10-1 10-1

100 100

re
d
u
ce

d
 m

e
a
n
 f

in
a
l
D

K
L

AST

GS

cond alpha 4.35

cond exp 10.0

curr alpha 4.35

curr exp 10.0

Figure 4.14.: Mean final reduced DKL values corresponding to Fig. 4.13.

For small systems sizes one can see in Fig. 4.14 that Gibbs and LIF exponential-shaped
performs better than alpha-shaped. This is because alpha-shaped LIF tends to have
larger additional states then exponential-shaped. This makes it perform worse for smaller
systems as can be seen in Fig. 4.15. These results demonstrate that the example which
we discussed in Section 4.2.2 can be generalized to different system sizes. When the
system has more than 64 visible units mixing becomes an important issue, which can be
seen by the fact that Gibbs and exponential-shaped LIF sampling begin to stop mixing
in this case. Alpha-shaped LIF sampling, however, is still able to mix, but only on the
cost of producing additional states.

57

4. Visualization of Mixing in Generated Data

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.00

0.05

0.10

0.15

0.20

0.25

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory

curr alpha τrec= 4.35

(a) LIF sampling with exponential-shapes synapses

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.00

0.05

0.10

0.15

0.20

0.25

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory
curr exp τrec= 10.0

(b) LIF sampling with alpha-shaped synapses

Figure 4.15.: Examples for the hidden distributions in the 4 bar example with 62 vis-
ible units. Depicted are the results for the LIF sampling methods with
CUBA exponential- and alpha-shaped synapses. The corresponding COBA
methods perform similarly and are therefore omitted.

4.2.4. Influence of Pattern Strength

In this section we investigate how the sampling behavior for the bar pattern scheme
described in Section 4.2.1 changes with the strength of the imprinted patterns. We

58

4.2. Multimodal Distributions with Artificial Patterns

choose the same system size of 4 hidden units and 100 visible units as in Section 4.2.2.
The mean final DKL values are this time determined for an increasing value of Wexc. To
keep the patterns symmetric we use Winh = −Wexc. The biases remain unchanged. The
result is presented in Fig. 4.16.

1.0 1.5 2.0 2.5 3.0 3.5
W_exc

10-4 10-4

10-3 10-3

10-2 10-2

10-1 10-1

100 100

m
e
a
n
 f

in
a
l
D

K
L

AST

GS

cond alpha 4.35

cond exp 10.0

curr alpha 4.35

curr exp 10.0

Figure 4.16.: Mean final DKL values after 106 ms simulation time for LIF sampling and
105 steps for Gibbs sampling and AST. On the x-axis the positive weights
of the patternsWexc is increased. For the negative weights we choseWinh =
−Wexc. The mean is calculated over ten trials with varying seeds for the
random number generator for the sampling algorithms.

One can see that, as expected, for small weights all sampler seem to perform the best.
The LIF sampler are worse than the abstract sampler which is due to the systematic
error which we have seen in Section 4.1.1 for the random distributions before. The
difference between CUBA and COBA is again insignificant for all weights but LIF with
alpha-shaped synapse seems to perform worse in the beginning. The reason for this is
the same as in Fig. 4.14. With increasing Wexc the performance for all samplers except
of AST becomes worse. LIF sampling with alpha-shaped synapses becomes better than
exponential-shaped for intermediate weights but settles on a high value for large weights.
However, considering the hidden distributions for LIF sampling for the largest case of
Wexc = 3.6 in Fig. 4.17 reveals that it is still mixing while LIF sampling with exponential-
shaped synapses stays just in one mode. Therefore, we will consider again the reduced
DKL in Fig. 4.18. It shows us that, in terms of mixing between the four bars, alpha-
shaped LIF sampling indeed produces intermediate results even for high weights. The
hidden distributions show in all tries similar results as in Fig. 4.17b. We see especially
that the sampled probabilities for the four dominant modes are always smaller than their
theoretical counterparts because a significant part of the sampled probability mass is lost
in the additional states. As a consequence, we can be sure that this time the reduced

59

4. Visualization of Mixing in Generated Data

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.00

0.05

0.10

0.15

0.20

0.25

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory

curr alpha τrec= 4.35

(a) LIF sampling with exponential-shaped synapses

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.0

0.2

0.4

0.6

0.8

1.0

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory
curr exp τrec= 10.0

(b) LIF sampling with alpha-shaped synapses

Figure 4.17.: Examples for the hidden distributions in the 4 bar example with Wexc =
3.6 = −Winh. Depicted are the results for LIF sampling with CUBA expo-
nential and alpha-shaped synapses. The corresponding COBA results are
similar and are therefore omitted.

60

4.3. MNIST Visualizations

DKL is a trustworthy measure because all contributions to it go in the same direction and
are thus added up. In contrast to alpha-shaped LIF sampling, we see that exponential-
shaped LIF sampling just marginally improves mixing compared to Gibbs. AST manages
again to reproduce the theoretical distribution over the whole range of weights.
These results demonstrate that the example we discussed in Section 4.2.2 was no special
case. If the patterns reach a certain strength then we obtain systems where mixing is
important. And in this situation we saw the same behavior as for large system sizes in
Section 4.2.3 Gibbs and exponential-shaped LIF sampling stop mixing and usually stay
in just one mode. Alpha-shaped LIF sampling is still able to mix between the modes on
the cost of producing additional states while AST reproduces the distribution in every
case very well.

1.0 1.5 2.0 2.5 3.0 3.5
W_exc

10-3 10-3

10-2 10-2

10-1 10-1

100 100

re
d
u
ce

d
 m

e
a
n
 f

in
a
l
D

K
L

AST

GS

cond alpha 4.35

cond exp 10.0

curr alpha 4.35

curr exp 10.0

Figure 4.18.: Mean final reduced DKL values corresponding to Fig. 4.16.

4.3. MNIST Visualizations

In this section we apply the same sampling algorithms as before to generate samples in
RBMs which we have trained on pictures of the MNIST data set of handwritten digits
(LeCun and Cortes, 1998). We will start with a small system where we trained an RBM
on just three digits. This has the advantage that we can apply the same methods as
in the previous sections to investigate the behavior of the system. Additionally, we will
apply the visualization techniques presented in Section 3.10 to check whether they are
in accordance to the previously used methods.
Afterwards, we consider RBMs trained on all ten digits. Here, due to the larger size of
the systems, we can only apply the visualization techniques from Section 3.10.

61

4. Visualization of Mixing in Generated Data

4.3.1. MNIST 3 Digits

In this section we consider an RBM trained on three MNIST digits. One “0”, one “3” and
one “4”. To accelerate the calculation we reduced the dimension of the three digits from
282 which is the standard for MNIST to 122. Hence we use an RBM with 122 visible
units and 10 hidden units. The number of hidden units is chosen such that we obtain a
large enough system to sufficiently learn the digits, but which is at the same time small
enough to allow an evaluation of the theoretical hidden distribution. For the following
results we trained the RBM with PCD (see Section 3.9.2). The used learning parameter
are listed in Table A.4. We made an effort to stop the learning at a point where the
3 digits are imprinted onto the network equally strong, which could be controlled by
observing the hidden distribution.
As in the previous sections, we compare 106 ms of LIF sampling with 105 Gibbs/AST
sampling steps. In Fig. 4.19 we see the results for the hidden distributions for Gibbs and
AST. In Fig. 4.21b one can look up which digits are represented by the most probable
hidden states. Using this, we can see that the three dominant states in the theoretical
distribution indeed represent the three different digits. Both Gibbs sampling and AST
seem to reproduce the theoretical distribution and are therefore able to mix between the
three modes. In Fig. 4.20 the corresponding hidden distributions for LIF sampling are
shown. As there is no significant difference in the results of the CUBA and COBA models
we will just regard the results for exponential and alpha-shaped CUBA LIF sampling.
They show that exponential-shaped LIF sampling has difficulties to mix between the
modes, even more than Gibbs sampling. Alpha-shaped LIF sampling, however, is able
to reproduce the three dominant modes but with larger deviations compared to AST.
These results demonstrate how well the sampler can represent the hidden layer. It is
very likely, but not guaranteed, that the visible layer will follow this behavior. We will
therefore use the visualization techniques from Section 3.10 to investigate this further.

62

4.3. MNIST Visualizations

0
1

1
1

1
1

1
1

0
1

1
1

0
1

0
1

1
1

1
1

1
1

1
0

1
1

1
1

1
0

1
0

1
0

1
1

1
1

1
0

0
0

1
1

1
1

1
1

0
1

1
0

0
1

0
1

1
1

1
1

1
1

0
0

0
1

1
1

1
0

0
1

0
1

0
1

1
1

0
1

1
1

0
0

1
1

1
1

1
0

1
0

0
0

0
1

1
1

1
0

0
1

0
1

1
1

1
1

0
1

0
1

1
0

1
1

1
1

0
0

0
0

0
1

0
1

1
1

0
1

0
0

1
0

1
0

0
0

0
0

1
0

0
0

1
1

1
1

1
0

0
0

1
0

1
1

1
1

0
0

0
0

0
1

0
0

0
0

0
1

state index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
jo

in
t

h
id

d
e
n
 p

ro
b
a
b
ili

ty
Theory

GS

(a) Gibbs sampling
0

1
1

1
1

1
1

1
0

1

1
1

0
1

0
1

1
1

1
1

1
1

1
0

1
1

1
1

1
0

1
0

1
0

1
1

1
1

1
0

0
0

1
1

1
1

1
1

0
1

1
0

0
1

0
1

1
1

1
1

1
1

0
0

0
1

1
1

1
0

0
1

0
1

0
1

1
1

0
1

1
1

0
0

1
1

1
1

1
0

1
0

0
0

0
1

1
1

1
0

0
1

0
1

1
1

1
1

0
1

0
1

1
0

1
1

1
1

0
0

0
0

0
1

0
1

1
1

0
1

0
0

1
0

1
0

0
0

0
0

1
0

0
0

1
1

1
1

1
0

0
0

1
0

1
1

1
1

0
0

0
0

0
1

0
0

0
0

0
1

state index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory

AST

(b) AST

Figure 4.19.: Theoretical hidden distribution compared to the sample distribution for
Gibbs sampling and AST. The possible states of the 10 hidden units are
represented by the x-axis, while the y-axis shows the probability of the
states. The binary strings which label the states show which of the 10
hidden units are activated (1) or deactivated (0). As it is impossible to
label all 210 states, we just label the states explicitly which have one of
the 100 largest probabilities and which do not overlap with other labels.
The RBM has been trained on three MNIST digits. The three highest dots
represent the states of the three digits as can be seen in Fig. 4.21.

63

4. Visualization of Mixing in Generated Data

0
1

1
1

1
1

1
1

0
1

1
1

0
1

0
1

1
1

1
1

1
1

1
0

1
1

1
1

1
0

1
0

1
0

1
1

1
1

1
0

0
0

1
1

1
1

1
1

0
1

1
0

0
1

0
1

1
1

1
1

1
1

0
0

0
1

1
1

1
0

0
1

0
1

0
1

1
1

0
1

1
1

0
0

1
1

1
1

1
0

1
0

0
0

0
1

1
1

1
0

0
1

0
1

1
1

1
1

0
1

0
1

1
0

1
1

1
1

0
0

0
0

0
1

0
1

1
1

0
1

0
0

1
0

1
0

0
0

0
0

1
0

0
0

1
1

1
1

1
0

0
0

1
0

1
1

1
1

0
0

0
0

0
1

0
0

0
0

0
1

state index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory

curr_exp_10.0

(a) Exponential-shaped LIF sampling

0
1

1
1

1
1

1
1

0
1

1
1

0
1

0
1

1
1

1
1

1
1

1
0

1
1

1
1

1
0

1
0

1
0

1
1

1
1

1
0

0
0

1
1

1
1

1
1

0
1

1
0

0
1

0
1

1
1

1
1

1
1

0
0

0
1

1
1

1
0

0
1

0
1

0
1

1
1

0
1

1
1

0
0

1
1

1
1

1
0

1
0

0
0

0
1

1
1

1
0

0
1

0
1

1
1

1
1

0
1

0
1

1
0

1
1

1
1

0
0

0
0

0
1

0
1

1
1

0
1

0
0

1
0

1
0

0
0

0
0

1
0

0
0

1
1

1
1

1
0

0
0

1
0

1
1

1
1

0
0

0
0

0
1

0
0

0
0

0
1

state index

0.0

0.1

0.2

0.3

0.4

0.5

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory

curr_alpha_4.35

(b) Alpha-shaped LIF sampling

Figure 4.20.: Theoretical hidden distribution compared to the sampled distribution for
CUBA alpha and exponential-shaped LIF sampling. The setting is the
same as in Fig. 4.19. The corresponding results for COBA LIF sampling
are similar and therefore omitted.

64

4.3. MNIST Visualizations

(a) Receptive fields of the hidden units (b) Receptive fields of the 100 most probable
hidden states

Figure 4.21.: In Fig. 4.21a the receptive fields (Section 3.2.1) of the hidden units after
training on the three MNIST digits are shown. They show that the hidden
units indeed represent certain features in the input data set, as most of
them look like a mixture between the three digits.
In Fig. 4.21b we determined the “receptive fields” of the 100 hidden states
with the largest probabilities (shown e.g. in Fig. 4.19). To determine them,
for each state the mean receptive fields of the active hidden units were
calculated.

We will first look at the results for the star plots (Section 3.10.1). We see that they
confirm our assumptions from the hidden distributions. For the abstract samplers in
Fig. 4.22 we see that both are able to produce samples which are centered around the
directions representing the three digits. Furthermore, as the sample clusters for the 3
digits have the same size, the sampler seem to mix well between the modes. Also the
probability of the sampled states is relatively high in most cases. Exponential-shaped
LIF sampling (Fig. 4.23a) exhibits much more samples from the “3” mode than from
the others. This shows that it has problems to traverse between the modes. Alpha-
shaped LIF sampling (Fig. 4.23b), however, seems to be able to mix into all modes but
it produces slightly more samples from the “3” mode as well. It also samples from more
intermediate states with lower probability than the other sampling algorithms.
In Fig. 4.24 and Fig. 4.25 we see the corresponding results for PCA (Section 3.10.2). One
can see that PCA seems to be sufficient for this example to produce good visualization
results. It is able too separate the samples very well for all samplers. The results for the
sampling algorithms itself correspond to our prior results, but the connections between
consecutive samples reveals a new insight into the mixing behavior of the algorithms. It
shows that there are much less connections between the clusters for Gibbs sampling than
for AST. This demonstrates that, although Gibbs sampling reproduces the theoretical
distribution, it is harder for it to mix between the modes. Considering the corresponding
results for LIF sampling reveals that exponential-shaped LIF sampling has indeed large

65

4. Visualization of Mixing in Generated Data

difficulties to mix between the three modes. Alpha-shaped LIF sampling mixes similarly
to AST, however, one can see that it generates more “3”s than other digits, as exhibited by
the hidden distribution in Fig. 4.20b. Furthermore, one can see the intermediate states
which were also visible in the star plot (Fig. 4.23b). Here we see that these samples
look like mixtures between the digits of the neighboring clusters. This explains their
low probability in the star plot, because the receptive fields of the likely hidden states
(Fig. 4.21b) show that just clearly visible states appear with a high probability in the
hidden distribution.
The same results with the t-SNE method (Section 3.10.4) in Fig. 4.26 and Fig. 4.27
show a small improvement of the visualization compared to PCA. The three clusters
are less compact than in PCA but still separated very well. This makes it possible
to see additional structures within the generated samples of one cluster. Furthermore,
it makes the connections between the clusters better visible, because the lines are less
focused on just small areas. In summary, the visualization results for the star plots,
PCA and t-SNE work well for this example. Their results are consistent with each other
as well as with the results from the hidden distributions. This also confirms that the
behavior of the visible layer follows the hidden layer as we have also seen for the bar
example before (Section 4.2.2). The results tell us that in this example mixing is just
a small issue. Gibbs sampling mixed slower than AST, but it could still reproduce the
theoretical distribution. LIF sampling with exponential-shaped synapses showed a worse
mixing performance than Gibbs sampling. It was the only sampling algorithm which
hardly mixed in this example and therefore produced an imbalanced sample distribution.
LIF sampling with alpha-shaped synapses had, as we have seen before, no problems
with mixing. However, it tended to yield slightly imbalanced distributions as well and
exhibited some intermediate samples.

66

4.3. MNIST Visualizations

4 3 2 1 0 1 2 3 4
2

1

0

1

2

3

10-29
10-27
10-25
10-23
10-21
10-19
10-17
10-15
10-13
10-11
10-9

P
ro

b
a
b
ility

(a) Gibbs sampling

4 3 2 1 0 1 2 3 4
2

1

0

1

2

3

10-32
10-30
10-28
10-26
10-24
10-22
10-20
10-18
10-16
10-14
10-12
10-10

P
ro

b
a
b
ility

(b) AST

Figure 4.22.: Star plots for Gibbs sampling and AST. We use the method described in
Section 3.10.1 to compute the two-dimensional positions from the visible
part of the samples. The three pictures of a “0”, “3” and a “4” denote the
axes which represent them. To obtain a clear plot we just showed every
200th sample, resulting in 500 samples in total. The colors correspond to
the probabilities of the samples to occur. The typically low probability
values for the single samples are due to the large number of possible states
(2154).

67

4. Visualization of Mixing in Generated Data

4 3 2 1 0 1 2 3 4
2

1

0

1

2

3

10-30
10-28
10-26
10-24
10-22
10-20
10-18
10-16
10-14
10-12
10-10

P
ro

b
a
b
ility

(a) Exponential-shaped LIF sampling

6 4 2 0 2 4 6
3

2

1

0

1

2

3

4

10-35
10-33
10-31
10-29
10-27
10-25
10-23
10-21
10-19
10-17
10-1510-13
10-11

P
ro

b
a
b
ility

(b) Alpha-shaped LIF sampling

Figure 4.23.: Star plots for CUBA exponential and alpha-shaped LIF sampling. For a
detailed description see the corresponding plot for the abstract sampler
(Fig. 4.22). Here we show a sample every 2000ms to obtain 500 samples in
total.

68

4.3. MNIST Visualizations

(a) Gibbs sampling

(b) AST

Figure 4.24.: Result of PCA for Gibbs sampling and AST. We omitted the coordinate
axes because they don’t add any useful information. We used images of the
visible samples instead of a normal scatter plot because otherwise it would
be not clear which cluster belongs to which digit. This is additionally useful
to examine the quality of the generated samples and the correctness of the
separation. The samples are the same as for the star plots. The blue lines
connect consecutive samples. They give a qualitative impression of how
well the sampler mixes between the clusters. 69

4. Visualization of Mixing in Generated Data

(a) Exponential-shaped LIF sampling

(b) Alpha-shaped LIF sampling

Figure 4.25.: PCA results for CUBA exponential and alpha-shaped LIF sampling. See
Fig. 4.24 for a detailed description.

70

4.3. MNIST Visualizations

(a) Gibbs sampling

(b) AST

Figure 4.26.: Result of the t-SNE visualization for Gibbs sampling and AST. The plotting
method is identical to Fig. 4.24. The used t-SNE parameters are listed in
Table A.9.

71

4. Visualization of Mixing in Generated Data

(a) Exponential-shaped LIF sampling

(b) Alpha-shaped LIF sampling

Figure 4.27.: Result of the t-SNE visualization for CUBA exponential and alpha-shaped
LIF sampling. The plotting method is identical to Fig. 4.24. The used
t-SNE parameters are listed in Table A.9.

72

4.3. MNIST Visualizations

4.3.2. MNIST 10 Digits

In this section we consider the sampling algorithms for all ten digits of the MNIST data
set. However, to keep the system size and therefore the learning and sampling time small,
we reduce the data set to just 10 images per digit, leading in total to 100 training images.
To sufficiently learn this data set we use RBMs with 100 hidden units. As a consequence,
it is not possible anymore to evaluate the hidden distribution. Furthermore, the star plots
are not suited to be used for more than 3 digits, as mentioned in Section 3.10.1. In this
section we are therefore restricted to use only PCA and t-SNE for data visualization.

Reduced Image Size

To facilitate learning and sampling we use in this part MNIST images which have been
reduced to 12x12 pixels, like in the 3 digit example before. Hence, we consider an RBM
with 144 visible and 100 hidden units. The parameters we used to train the RBM on this
data set are listed in Table A.5. The parameters for sampling are the same as in the 3
digit example. The only difference is that this time we sample for just 5 · 105 ms (5 · 104

steps). As before, we will show 500 samples in each plot which are equally distributed
over the sampling duration. The results for PCA are shown in Fig. 4.28 for Gibbs and
AST and Fig. 4.29 for LIF sampling.
They show that all sampling algorithms generate well recognizable samples, which demon-
strates that learning and the state generation works well for this system. The PCA results
are, however, difficult to read. Usually just one or two digit classes are separated very
well, while the rest is still crowded together.
In Fig. 4.30 and Fig. 4.31 we will therefore consider the corresponding results for t-SNE,
which is designed to solve this problem. One can see that these plots are indeed much
easier to interpret. The sampled states are better grouped into digit classes in all four
cases. In some few cases only samples from similar digit classes or unclear samples are
mixed together. The better grouping makes it also easier to qualitatively judge the con-
nections between the digits. From this we can see that the sampling algorithms show
the same behavior as in the 3 digit example before. Gibbs sampling (Fig. 4.30a) can mix
between the modes, but it has sparser connections between the different classes when
compared to AST. AST (Fig. 4.30b) has no mixing issues and reproduces the data set
very well. In case of exponential-shaped LIF sampling (Fig. 4.31a) we again see that it
is the only method with strong mixing issues. It could not reproduce every digit class
and it has just sparse connections as well. Instead, it stayed in the zero mode most of
the time. Alpha-shaped LIF sampling (Fig. 4.31b) had no mixing issues, but, as before,
it led to less balanced digit clusters and generated more intermediate samples.
The comparison between PCA and t-SNE shows that the extra effort to tune and apply
t-SNE is justified for this 10 digit example, because its results are easier to interpret. We
learn from the results that mixing seems to be no big issue except for exponential-shaped
LIF sampling, even in this large system. The reason is that the digits typically largely
overlap with each other, which simplifies the transition between the modes.

73

4. Visualization of Mixing in Generated Data

(a) Gibbs sampling

(b) AST

Figure 4.28.: PCA results for for Gibbs sampling and AST. See Fig. 4.24 for a detailed
description of the plotting details.

74

4.3. MNIST Visualizations

(a) Exponential-shaped LIF sampling

(b) Alpha-shaped LIF sampling

Figure 4.29.: PCA results for CUBA exponential and alpha-shaped LIF sampling. The
corresponding COBA results are similar and therefore omitted. See
Fig. 4.24 for a detailed description of the plotting details.

75

4. Visualization of Mixing in Generated Data

(a) Gibbs sampling

(b) AST

Figure 4.30.: t-SNE results for for Gibbs sampling and AST. See Fig. 4.24 for a detailed
description of the plotting details. The used t-SNE parameters are listed
in Table A.9.

76

4.3. MNIST Visualizations

(a) Exponential-shaped LIF sampling

(b) Alpha-shaped LIF sampling

Figure 4.31.: t-SNE results for CUBA exponential and alpha-shaped LIF sampling.
The corresponding COBA results are similar and therefore omitted. See
Fig. 4.24 for a detailed description of the plotting details. The used t-SNE
parameters are listed in Table A.9.

77

4. Visualization of Mixing in Generated Data

Normal Image Size

In this section, we consider the same MNIST data set as in the previous section but this
time with standard size, namely 28x28 pixels. We therefore consider an RBM with 784
visible and 100 hidden units. The parameters used for training the RBM on the data
set are listed in Table A.6. For sampling we use the same parameters as in the previous
section. The PCA results lead in this system like in the previous section to results which
are difficult to interpret. We will therefore omit them and consider in Fig. 4.32 and
Fig. 4.33 directly the t-SNE results for abstract and LIF sampling respectively. They
demonstrate that in this regime mixing seems to be a big issue. The Gibbs sampler in
Fig. 4.32a barely mixes. It stays merely in the “1” mode. AST in Fig. 4.32b is able to mix
but this happens much slower than in the 12x12 pixels case in Fig. 4.30b, which can be
seen in the sparser connections between the clusters and the more unbalanced clusters.
For LIF sampling, we again see the usual behavior. Exponential-shaped LIF sampling
in Fig. 4.33a does hardly mix while alpha-shaped LIF sampling in Fig. 4.33a has much
less problems.
Comparing AST and alpha-shaped LIF reveals that the LIF sampler mixes much more
often between clusters, but it does not reach every digit class. Ones and sevens are for
example missing. Furthermore, as before, alpha-shaped LIF produces more intermediate
digits than AST. t-SNE is therefore not able to clearly separate the digits into several
distinct clusters. Summed up, this confirms the impressions from the 10 digit example
with 12x12 pixels and the 3 digit example. However, here mixing is a much bigger issue.
This can be explained with the larger size of the visible layer. In the 28x28 case much
more visible units have to change their state to switch a mode than in the 12x12 case,
which makes such a transition more unlikely.

78

4.3. MNIST Visualizations

(a) Gibbs sampling

(b) AST

Figure 4.32.: t-SNE results for for Gibbs sampling and AST. See Fig. 4.26 for a detailed
description of the plotting details.

79

4. Visualization of Mixing in Generated Data

(a) Exponential-shaped LIF sampling

(b) Alpha-shaped LIF sampling

Figure 4.33.: t-SNE results for CUBA exponential and alpha-shaped LIF sampling.
The corresponding COBA results are similar and therefore omitted. See
Fig. 4.26 for a detailed description of the plotting details.

80

4.4. Discussion

4.4. Discussion

In this chapter we learned that in simple examples, like the homogeneous distributions
in Section 4.1.1, all samplers are able to reproduce the theoretical distribution quite well.
However, we saw a saturation for LIF sampling when the sampled distribution comes
close to the theoretical one, due to the different shape of the post-synaptic potentials
(see Fig. 3.7). When considering distributions manually tuned to be difficult in terms of
mixing, like in the bar example, we saw that LIF sampling with alpha-shaped synapses
exhibits a better mixing property than Gibbs sampling. However, LIF with exponential-
shaped synapses performs similarly to Gibbs sampling. For the larger MNIST systems,
we saw that LIF sampling with exponential-shaped synapses mixed even worse than
Gibbs sampling while alpha-shaped LIF still shows better mixing. The reason for this
behavior lies in the different PSP shape as well. The discrepancy between the two LIF
samplers demonstrates that the exact shape of the PSP appears to be critical. At first
glance the deviations of the two LIF sampling methods look similar, but, considering the
results, one demonstrates worse mixing while the other one’s ability to mix improves.
An explanation why the deviations lead to an improved mixing could be a combination
of the large overshoot and the low potential level at the end of the refractory time in
Fig. 3.7. This leads to a large variation of the potential during the refractory period
compared to the rectangular shape of the abstract sampler, which can activate neurons
in situations where they should in theory not be activated or can prevent them from
being activated. This drives the system to explore a larger state space. This effect is
present for both synapse models, but it is stronger for alpha-shaped synapses because
their variation is larger.
The remaining potential level (tail) after the refractory period is, on the other hand,
an effect which should reduce the ability to mix. During spike bursts it has no effect
because the TSO mechanism compensates it. However, when just single spikes occur or
a spike burst is interrupted, the tail acts like a memory of the previous state biasing the
neuron to not change its behavior after the refractory period. This effect is smaller for
the alpha-shaped model.
Hence, we have a trade-off between two effects. The variation increasing the mixing
ability and the tail reducing it. While for the exponential-shaped model the tail seems
to outweigh the variation such that it mixes worse than the abstract rectangular shape,
it is the opposite for the alpha-shaped model.
This can also explain the appearance of the additional states in the bar example (e.g. in
Fig. 4.10b). They appear due to the variation, which also explains why the additional
states were more frequent for the alpha-shaped model than for the exponential-shaped
one. The intermediate states which appeared for alpha-shaped LIF sampling in the
MNIST examples are due to the reason that this mixing mechanism just gradually
moves the sampler from one mode to another.

During this chapter we furthermore showed that, as one might intuitively guess, mixing
becomes just important for large systems with strongly imprinted patterns, which be-
came especially obvious for the bar pattern (Section 4.2.2). Also, in the MNIST example,

81

4. Visualization of Mixing in Generated Data

we saw that just after the transition to 28x28 pixels it is easy to find systems where
mixing becomes important. The examples with random distributions showed, on the
other hand, that large systems alone, even with large weights, are not sufficient to make
mixing important, as they lack patterns. The reason for this is that, in order to make
mixing crucial, we need a probability landscape similar to Fig. 3.2a. This means we
need several regions in the state space which have a high probability and are separated
from each other by regions of low probability. Both appear in systems with strongly
imprinted patterns. With increasing system size the state space grows exponentially.
This makes the distances between high-probability regions larger. As a consequence,
traversing these distances becomes more unlikely, as many units have to change their
value, to reach another mode with high probability.

For the visualization techniques we saw that the hidden distributions, the star plots,
PCA and t-SNE delivered consistent results which give a good impression of mixing.
The hidden distributions are, however, limited to systems where the hidden layer is
small enough. The star plot is limited to the 3 digit example and PCA delivers also
only good results if the system is simple. t-SNE is the only technique which delivered
good results for large and complicated systems like MNIST with 10 digits. It is difficult
to adjust, though, as it requires a lot of fine tuning of parameters. Yet, we could take
advantage of the experience of the authors of Van der Maaten and Hinton (2008) because
they described their parameter choices for the MNIST data set. However, applying this
method to other examples like the bar patterns would require a new fine tuning.
The DKL evaluation has the advantage that it is the only technique tested in this thesis
which delivers quantitative results. It can therefore also measure the mean behavior for
several runs of the sampling algorithms. Yet, it is difficult to handle for inhomogeneous
distributions because it is very sensitive to the appearance of additional sampled states,
whose theoretical values are nearly zero, as seen in the bar example in Section 4.2.2.
Considering a reduced DKL like in Section 4.2.2 has, on the other hand, the disadvantage
that it is not bound to be positive anymore, which makes it difficult to be interpreted.
Furthermore, DKL evaluations only work for small systems or RBMs with a small hidden
or visible layer.

82

5. Using Short-Term Plasticity to
Improve Mixing

In Chapter 4 we saw that LIF sampling with exponential-shaped synapses had issues to
reproduce its theoretical distribution in systems where mixing is important. In these sit-
uations it performed even worse than standard Gibbs sampling. However, currently only
exponential-shaped synapses are realized on the Spikey or HICANN chip (Section 2.3).
As an implementation on these systems is our final goal and the reason why we considered
LIF sampling in the first place, it would be highly desirable to find a mechanism which
could fix this mixing issue. Serendipitously, we discovered that the short-term plasticity
mechanism, discussed in Section 3.7, namely the Tsodyks-Markram model (TSO), can
be applied to achieve this. It has furthermore the advantage that it is in a similar form
already implemented on HICANN and Spikey.
This chapter begins with a description of our approach to use TSO to enable mixing.
Afterwards it is applied for LIF sampling with exponential and alpha-shaped synapses
on the cases from the previous chapter where mixing was an important issue. This is the
bar example (Section 5.2) and the MNIST example with 10 digits and standard image
size (Section 5.3). Finally, in Section 5.4 an interesting side effect is considered where
the TSO mixing approach seems to equalize imbalanced distributions.

5.1. TSO Mixing Approach

We introduced TSO originally to establish spike bursts with maintained post-synaptic
potential PSP heights, as demonstrated in Fig. 3.5. To achieve this, we only used the
mechanism of depressing synapses which introduces the recovery time τrec to slow down
the rebuild of synaptic resources. Increasing τrec beyond the value necessary to maintain
the PSP heights leads to a successive decrease of the PSPs for both exponential-shaped
and alpha-shaped synapses (Fig. 5.1). This yields to a reduction of the synaptic weight
between the pre-synaptic and post-synaptic neuron. As a consequence, when sampling
from a Boltzmann distribution, which is determined by its weights and biases, the un-
derlying distribution will be changed. However, the height of the first PSP is always
unchanged. Hence, the distribution will just be changed if neurons keep staying in the
on-state. In this case the corresponding weights will gradually be reduced which decreases
the probability to stay in the same state. Thus, the system is forced to mix when it gets
stuck in one state, but, apart from that, it will not be changed. It is important to note
that with this mechanism the sampler is not sampling from a Boltzmann distribution
anymore, because the weights become asymmetric, as the TSO mechanism affects just
the connection from the pre to the post-synaptic neuron. The Boltzmann distribution,

83

5. Using Short-Term Plasticity to Improve Mixing

however, is defined with symmetric weights.

10 20 30 40
time [ms]

54.96

54.94

54.92

54.90

54.88

54.86
M

e
m

b
ra

n
e
 p

o
te

n
ti

a
l
[m

V
]

no TSO

τrec=10.0 ms

τrec=14.0 ms

τrec=16.0 ms

τrec=18.0 ms

(a) Exponential-shaped synapse model

10 20 30 40 50
time [ms]

54.98

54.96

54.94

54.92

54.90

M
e
m

b
ra

n
e
 p

o
te

n
ti

a
l
[m

V
]

no TSO

τrec=4.35 ms

τrec=6.0 ms

τrec=7.0 ms

τrec=8.0 ms

(b) Alpha-shaped synapse model

Figure 5.1.: Simulation of the membrane potential of a neuron which receives a spike
every refractory period with refractory time τref = 10 ms. Figure 5.1a shows
the result for the exponential-shaped synapse model and Fig. 5.1b for the
alpha-shaped one. The recovery time constant τrec of the TSO mechanism is
increased, starting from the one which is necessary to establish maintaining
PSP heights.

84

5.2. Multimodal Distributions with Artificial Patterns

To give an intuitive impression of this mixing principle, we created an image sequence
based on the 3 digit MNIST example from Section 4.3.1. It shows the result of LIF
sampling with exponential-shaped synapses and TSO with τrec = 18 ms to depress the
synaptic connections. We extended the star plot visualization to obtain a rough approx-
imation of the temporal evolution of the probability landscape during sampling. The
resulting image sequence is shown in Fig. A.3. It shows how every time LIF sampling
stays in one mode for a while the probability in the area around this mode is reduced,
while the remaining probability landscape is unchanged. This makes it more likely that
the sampler leaves the mode. After the sampler switched the mode, one can see how the
probability of the previous mode regains its initial value, while the probability of the new
mode is reduced.
To compare this with adaptive simulated tempering (AST) (Section 3.3.3) we created a
similar image sequence in Fig. A.4 demonstrating the AST mixing principle. We can see
how the temperature changes during AST sampling globally change the probability land-
scape, making it more homogeneous. This is in contrast to the only local changes in case
of TSO. While AST is in a high temperature state, the sampler can reach nearly every
state. When the temperature is reduced again the current sampling mode can be com-
pletely different, which allows mixing. Taking just samples from the ground temperature
level ensures that one still reproduces the correct distribution. In case of TSO, however,
we are counting every sample as a valid sample. Yet, this has less severe consequences
than it would have for AST, because the changes are just locally and more moderate,
but it will still change the sampled probability distribution significantly.

5.2. Multimodal Distributions with Artificial Patterns

As a first example to test the above described approach we consider the 4 bar example
from Section 4.2.2. Hence, we use an RBM with 144 visible units and 4 hidden units. To
make mixing even harder we use this time stronger weights of Wexc = −Winh = 2.0. As
in Section 4.2.2, we consider the Kullback-Leibler divergence DKL(psim||ptheo) between
the sampled hidden and the theoretical hidden distribution again. The result for LIF
sampling with exponential-shaped synapses and increasing τrec is shown in Fig. 5.2.

85

5. Using Short-Term Plasticity to Improve Mixing

102 103 104 105 106

simulation time [ms]

10-1 10-1

100 100

101 101

D
K
L
(p
si
m
||
p
th
eo
) cond exp τrec= 10.0

cond exp τrec= 14.0

cond exp τrec= 16.0

cond exp τrec= 18.0

curr exp τrec= 10.0

curr exp τrec= 14.0

curr exp τrec= 16.0

curr exp τrec= 18.0

Figure 5.2.: Time evolution of the mean DKL between the sampled hidden and the
theoretical hidden distribution for LIF sampling with exponential-shaped
synapses. The setup is the bar pattern as in Section 4.2.2 with Wexc = 2.0
andWinh = −2.0. The size of the visible layer is 10x10, and the bias B = −1
for every unit. We calculate the mean over 10 tries, in which we vary the seed
for the random number generator for LIF sampling. The colored area repre-
sents the standard deviation. “cond/curr” stand for COBA/CUBA synapses.

We see that with increasing τrec the sampling performance is indeed improved, as the
DKL between theoretical and sample distribution becomes smaller. Again, as throughout
the last chapter, we don’t observe a significant difference in the final performance between
current-based (CUBA) and conductance-based (COBA) LIF sampling.
To see the reason for the better performance with increasing τrec, we consider in Fig. 5.3
examples of the hidden distribution for different τrec values. They show that, as expected,
with higher recovery time the sampler is really able to mix between the four modes. This
explains why the DKL improves with higher recovery time. We can furthermore see that,
as in the corresponding results in Section 4.2.2, the LIF sampler seems to produce a few
additional states in all examples, which have a strong impact on the DKL values. They
explain why the final DKL values are, despite the improvements, still on a relatively
high level. The corresponding behavior of the generated samples is shown in Fig. 5.4.
They confirm the impression from the hidden distributions. In case of τrec = 10 ms, LIF
sampling generates nearly only samples of the lower left corner, which corresponds to the
[0101] hidden state. For τrec = 14 ms LIF sampling still just rarely switches the sampled
state but for τrec = 18 ms it is able to mix frequently. However, we can also see that by
increasing τrec the sampled patterns become slightly weaker. This is no surprise when
we keep in mind that TSO with a high τrec effectively reduces the weight connections of
the active hidden neurons to the visible layer, which weakens the patterns.

86

5.2. Multimodal Distributions with Artificial Patterns

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.0

0.2

0.4

0.6

0.8

1.0

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory
curr exp τrec= 10.0

(a) Exponential-shaped LIF sampling τrec = 10ms

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory
curr exp τrec= 14.0

(b) Exponential-shaped LIF sampling τrec = 14ms

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory
curr exp τrec= 18.0

(c) Exponential-shaped LIF sampling τrec = 18ms

Figure 5.3.: Examples for hidden distributions in the 4 bar example for LIF sampling with
CUBA exponential-shaped synapses and increasing recovery time of the TSO
mechanism. The final sample distributions of one run in Fig. 5.2 are shown.
On the x-axis all 24 possible combinations of the hidden layer are listed. The
y-axis shows the probabilities for them to appear. The corresponding COBA
results exhibit no significant differences and are therefore omitted.

87

5. Using Short-Term Plasticity to Improve Mixing

(a) Exponential-shaped LIF sampling with τrec = 10ms

(b) Exponential-shaped LIF sampling with τrec = 14ms

(c) Exponential-shaped LIF sampling with τrec = 18ms

Figure 5.4.: Samples of the visible layer for exponential-shaped LIF sampling with in-
creasing recovery time corresponding to the hidden distributions in Fig. 5.3.
The visible units are arranged in 10x10 images as the imprinted bar patterns.
The black and white dots denote units which are activated and deactivated
respectively. For each sampler 100 samples, taken equally distributed over
the sampling time, are shown. The samples should be read from left to right
and up to down.

88

5.2. Multimodal Distributions with Artificial Patterns

In the following, we will consider the corresponding results for LIF sampling with alpha-
shaped synapses. The DKL evolution is shown in Fig. 5.5.

102 103 104 105 106

simulation time [ms]

10-1 10-1

100 100

101 101

D
K
L
(p
si
m
||
p
th
eo
) cond alpha τrec= 4.35

cond alpha τrec= 6.0

cond alpha τrec= 7.0

cond alpha τrec= 8.0

curr alpha τrec= 4.35

curr alpha τrec= 6.0

curr alpha τrec= 7.0

curr alpha τrec= 8.0

Figure 5.5.: Time evolution of the mean DKL values for LIF sampling with alpha-shaped
synapses corresponding to the result for exponential-shaped synapses in
Fig. 5.2.

We see that, independent of sampling method and recovery time, the DKL value settles
on nearly the same high value. We observed these high DKL values in Section 4.2.2
as well. The reason were additional states appearing in the hidden distributions, which
strongly affect the DKL values. We therefore examine again examples of the hidden
distributions in Fig. 5.6. They show that the sampler is able to mix very well between
the four patterns, for all recovery times. The bad DKL results seem to be indeed due
to additional states, which appear similarly often for all recovery times. This confirms
the findings from Section 4.2.2 that LIF sampling with alpha-shaped synapses is mixing
very well. The results further indicate that the additional reduction of PSP heights
with TSO does lead to nearly no improvement of the mixing ability. Examples for the
generated samples in Fig. 5.7 show, however, that it has a similar influence on the sample
quality as in the case of exponential-shaped synapses. The patterns become weaker with
increasing τrec. We can therefore conclude that using TSO with a high recovery time
for LIF sampling with alpha-shaped synapses does not have the advantage of improving
mixing, but the disadvantage of reducing the generated sample quality.

89

5. Using Short-Term Plasticity to Improve Mixing

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.00

0.05

0.10

0.15

0.20

0.25

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory

curr alpha τrec= 4.35

(a) Alpha-shaped LIF sampling τrec = 4.35ms

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.00

0.05

0.10

0.15

0.20

0.25

0.30

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory

curr alpha τrec= 6.0

(b) Alpha-shaped LIF sampling τrec = 6ms

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

1
0

0
0

1
0

0
1

1
0

1
0

1
0

1
1

1
1

0
0

1
1

0
1

1
1

1
0

1
1

1
1

hidden state

0.00

0.05

0.10

0.15

0.20

0.25

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory

curr alpha τrec= 8.0

(c) Alpha-shaped LIF sampling τrec = 8ms

Figure 5.6.: Examples for hidden distributions in the 4 bar example for LIF sampling
with CUBA alpha-shaped synapses in analogy to Fig. 5.3.

90

5.2. Multimodal Distributions with Artificial Patterns

(a) Alpha-shaped LIF sampling with τrec = 4.35ms

(b) Alpha-shaped LIF sampling with τrec = 6ms

(c) Alpha-shaped LIF sampling with τrec = 8ms

Figure 5.7.: Samples of the visible layer for alpha-shaped LIF sampling with increasing
recovery time corresponding to the hidden distributions in Fig. 5.6. The
samples should be read from left to right and up to down.

91

5. Using Short-Term Plasticity to Improve Mixing

5.3. MNIST 10 Digits

In this section we consider the MNIST example with 10 digits with 28x28 pixels from
Section 4.3.2. We use exactly the same trained weights and biases as in Section 4.3.2.
We observed, for this example, that just the t-SNE technique (Section 3.10.4) delivers
clearly arranged visualizations of the digits. We will therefore, in the following, examine
the mixing behavior for increasing values of the recovery time based on the t-SNE method.
Figure 5.8 shows the t-SNE results for LIF sampling with exponential-shaped synapses.
As we have seen in Section 4.3.2 before, LIF sampling with maintained PSP heights
(τrec = 10 ms) does not mix and generates only samples from one state. The difference
to Fig. 4.33a is caused by varying the seed for the random number generator of the
Poisson sources. With a higher recovery time of τrec = 12 ms mixing is already possible
but still difficult, as indicated by the sparse connections between the digit clusters. For
τrec = 14 ms we can see in Fig. 5.8c already a good mixing ability which is comparable
to the LIF sampling result with alpha-shaped synapses in Fig. 4.33b. However, we see a
slight decrease in the image quality, similar to Fig. 5.4c for the bar pattern. Increasing
the recovery time even further to τrec = 16 ms leads to Fig. 5.8d. It shows a good mixing
ability as well, but the quality is even worse. This makes it hard to recognize many digits,
which leads also to a worse separation in the t-SNE plot. A comparison of a close view of
the generated samples between TSO with τrec = 12 ms and with τrec = 16 ms in Fig. 5.9
demonstrates the decrease of the image quality. It shows that this is an important issue
because it makes it difficult to judge which digit the generated samples represent.
From the bar pattern example in the previous section and the fact that LIF sampling
with alpha-shaped synapses already mixed well, it seems very likely that using TSO with
high τrec will in this case not improve the mixing behavior as well, but only decrease
the quality of the generated samples. Our results indeed confirm this but, as this is not
astonishing, we omit them.

5.4. Balancing Effects

We found by chance an example for a system trained on MNIST where AST and Gibbs
sampling generated samples from only one mode, while LIF sampling with exponential-
shaped synapses and a high TSO recovery time was still able to mix. These results are
astonishing as AST is designed to mix well and in the last chapter we never observed
that it fails to do so. One possible explanation is that the underlying distribution in this
example was imbalanced, meaning that the probability for one digit to appear was much
larger than the probability for all other digits. This would explain why AST didn’t mix,
because it correctly followed the theoretical distribution and generated samples of the
dominant mode. This would, however, mean that LIF sampling with a high recovery
time does equalize imbalanced distribution. This observation led to the experiments
considered in this section. To reproduce this behavior, we will deliberately train RBMs
such that they represent imbalanced distributions. Afterwards, we use LIF sampling
with increasing recovery time to generate samples from these distributions. The results

92

5.4. Balancing Effects

Figure 5.8.: t-SNE visualization for CUBA exponential-shaped LIF sampling

(a) Exponential-shaped LIF sampling with τrec = 10ms

(b) Exponential-shaped LIF sampling with τrec = 12ms

93

5. Using Short-Term Plasticity to Improve Mixing

(c) Exponential-shaped LIF sampling with τrec = 14ms

(d) Exponential-shaped LIF sampling with τrec = 16ms

Figure 5.8.: Result of the t-SNE visualization for CUBA exponential-shaped LIF sam-
pling. We omitted the coordinate axes because they don’t add any useful
information. We used 28x28 pixel images of the visible layer to mark the
mapped samples. The blue lines connect consecutive samples. The used
t-SNE parameters are listed in Table A.9. We omitted the COBA results
because we didn’t observe a significant difference.

94

5.4. Balancing Effects

(a) Exponential-shaped LIF sampling with τrec = 12ms

(b) Exponential-shaped LIF sampling with τrec = 16ms

Figure 5.9.: Samples of the visible layer for CUBA exponential-shaped LIF sampling with
recovery times τrec = 12 ms and τrec = 16 ms. The visible units are arranged
in 28x28 pixel images as the images in the MNIST data set. The samples
should be read from left to right and up to down.

95

5. Using Short-Term Plasticity to Improve Mixing

will be compared to the corresponding results for AST to find out whether a balancing
of the distributions has happened.

5.4.1. Imbalanced MNIST with 3 Digits

In this section we consider an RBM trained on the same 3 digit data set as in Sec-
tion 4.3.1. As before we use 144 visible and 10 hidden units. The reason why we are
considering this example again is because it is small enough to compute the theoretical
hidden distribution. This makes it possible to observe whether a trained RBM represents
an imbalanced distribution. Choosing many training steps with a relatively large learn-
ing rate with PCD makes it furthermore very likely to obtain imbalanced distributions.
The learning parameters for the following example are listed in Table A.7. They yield
an imbalanced distribution, as can be seen in Fig. 5.11a for AST. As in Section 4.3.1, we
can judge from the receptive fields of the hidden states (Fig. 5.12) the digit class of the
most likely states. This shows that “0” is the dominant digit in this distribution. The
other two digits have a significantly lower probability to appear. AST seems to represent
this distribution very well. A look at the star plot for AST in Fig. 5.10 confirms that
also the samples follow this behavior and mainly represent the “0”.

4 3 2 1 0 1 2 3 4
2

1

0

1

2

3

10-28
10-26
10-24
10-22
10-20
10-18
10-16
10-14
10-12
10-10
10-8

P
ro

b
a
b
ility

Figure 5.10.: Star plot for AST. The three pictures of a “0”, “3” and a “4” denote the
axes which represent them. To obtain a clear plot we just showed every
100th sample leading in total to 500 samples. The colors correspond to the
probabilities of the samples to occur.

96

5.4. Balancing Effects

0
1

1
1

1
1

0
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
1

1
1

0
1

1
0

1
1

0
0

0
0

1
0

1
1

0
0

1
1

1
1

0
1

0
1

0
1

0
1

0
1

1
1

1
0

0
1

1
0

1
0

0
1

0
0

1
1

0
0

0
0

0
0

1
1

1
0

0
1

0
1

1
1

0
0

1
1

1
0

1
0

1
0

0
1

1
0

1
1

1
1

0
0

1
1

0
0

0
1

0
1

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
1

0
1

1
0

0
1

0
0

0
0

0
0

0
1

1
0

0
1

0
1

0
1

0
0

0
1

0
0

0
0

1
1

1
1

1
1

0
1

0
1

1
1

0
0

0
1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
0

1
0

1
0

state index

0.0

0.2

0.4

0.6

0.8

1.0
jo

in
t

h
id

d
e
n
 p

ro
b
a
b
ili

ty
Theory

AST

(a) AST

0
1

1
1

1
1

0
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
1

1
1

0
1

1
0

1
1

0
0

0
0

1
0

1
1

0
0

1
1

1
1

0
1

0
1

0
1

0
1

0
1

1
1

1
0

0
1

1
0

1
0

0
1

0
0

1
1

0
0

0
0

0
0

1
1

1
0

0
1

0
1

1
1

0
0

1
1

1
0

1
0

1
0

0
1

1
0

1
1

1
1

0
0

1
1

0
0

0
1

0
1

1
0

0
1

0
0

1
1

1
1

0
0

0
1

0
0

0
1

0
1

0
1

1
0

0
1

0
0

0
0

0
0

0
1

1
0

0
1

0
1

0
1

0
0

0
1

0
0

0
0

1
1

1
1

1
1

0
1

0
1

1
1

0
0

0
1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
0

1
0

1
0

state index

0.0

0.2

0.4

0.6

0.8

1.0

jo
in

t
h
id

d
e
n
 p

ro
b
a
b
ili

ty

Theory

curr_exp_18.0

(b) Exponential-shaped LIF sampling with τrec = 18ms

Figure 5.11.: Hidden distributions for the 3 digit example for AST and CUBA
exponential-shaped LIF sampling with τrec = 18ms. Displayed is the theo-
retical and the sample distribution after 5 · 105 ms (5 · 104 sampling steps).
On the x-axis just the non-overlapping hidden states which have one of the
100 largest theoretical probability values are listed. The y-axis represents
the probabilities of the hidden states.

97

5. Using Short-Term Plasticity to Improve Mixing

Figure 5.12.: Receptive fields of the 100 hidden states with the largest probabilities in
Fig. 5.11. To determine them, we calculated the mean receptive field of all
active hidden units.

The corresponding star plot for LIF sampling with exponential-shaped synapses
(Fig. 5.13) exhibits indeed a balancing of the distribution for increasing recovery time.
However, we can also see that many intermediate states appear, which connect the dif-
ferent clusters. This is due to the mixing behavior of TSO, illustrated in the image series
in Fig. A.3, which gradually moves between modes by passing intermediate samples. It
seems that especially for these imbalanced distributions LIF sampling needs to take more
intermediate samples to mix between the modes. The hidden distribution (Fig. 5.11b) for
LIF sampling with τrec = 18 ms shows that the hidden layer follows the behavior of the
samples leading to a balanced hidden distribution as well. The sampled states (Fig. 5.14)
demonstrate, as in Section 5.3, the reduction of the image quality for increased recovery
time. One can also see many samples which look like mixtures between two of the digits.
They correspond to the intermediate states observed in the star plot.
The balancing effect can be observed similarly for LIF sampling with alpha-shaped
synapses, which is demonstrated in the star plots in Fig. 5.15. However, we observe
here the same reduction of the image quality as in the exponential-shaped case. Fig-
ure 5.15 furthermore shows that the balancing effect does not occur for maintained PSP
heights (τrec = 4.35 ms). This shows that the better mixing property of the alpha-shaped
model, which we have observed in the last chapter, is decoupled from the balancing effect.
The results rather indicate that the balancing effect is solely due to the TSO mechanism
with high recovery times.

98

5.4. Balancing Effects

2
1
0
1
2
3

LIF_10 LIF_14

4 2 0 2 4

2
1
0
1
2
3

LIF_16

4 2 0 2 4

LIF_18

10-51

10-47

10-43

10-39

10-35

10-31

10-27

10-23

10-19

10-15

10-11

10-7
P
ro

b
a
b
ility

Figure 5.13.: Star plots for CUBA LIF sampling with exponential-shaped synapses and
increasing recovery time from τrec = 10 ms to τrec = 18 ms. We omitted
the results for COBA LIF sampling because we didn’t observe a significant
difference.

99

5. Using Short-Term Plasticity to Improve Mixing

(a) Exponential-shaped LIF sampling with τrec = 10ms

(b) Exponential-shaped LIF sampling with τrec = 18ms

Figure 5.14.: Samples of the visible layer for exponential-shaped LIF sampling for differ-
ent recovery times. The visible units are arranged in 12x12 pixel images
as the learned MNIST digits. For each sampler 100 samples taken equally
distributed over the sampling time are shown. The samples should be read
from left to right and up to down.

100

5.4. Balancing Effects

2
1
0
1
2
3

LIF_4.35 LIF_6

4 2 0 2 4

2
1
0
1
2
3

LIF_7

4 2 0 2 4

LIF_8

10-37

10-34

10-31

10-28

10-25

10-22

10-19

10-16

10-13

10-10

P
ro

b
a
b
ility

Figure 5.15.: Star plots for CUBA LIF sampling with alpha-shaped synapses and increas-
ing recovery time from τrec = 4.35 ms to τrec = 8 ms. We omitted the results
for COBA LIF sampling because we didn’t observe a significant difference.

5.4.2. Imbalanced MNIST with 10 Digits

In this section we want to investigate the balancing effect for larger RBMs trained on
all 10 MNIST digits. To obtain an imbalanced trained distribution we will already start
with an imbalanced training data set (Fig. 5.16). In Section 4.3.2 we have seen that
mixing is an important issue in 10 digit MNIST examples with 28x28 pixels but just
a small one for 12x12 pixels. As we want to only investigate the balancing effect we
use 12x12 pixel images in the training data set to avoid a large influence of the mixing
issue. Hence, we use an RBM with 144 visible units. For the hidden layer we choose
100 units to have a large enough model for the training data set. The used learning
parameters for the following example are listed in Table A.8. As in Section 5.3 we will
use t-SNE to interpret the sampling results. Figure 5.17 shows the t-SNE result for
AST. It demonstrates that AST represents the learned distribution very well. It mainly
generates samples of the different kinds of “2”s and just rarely of other digit classes.
Figure 5.18 exhibits the corresponding results for LIF sampling with exponential-shaped
synapses and increasing recovery time. The visualization for τrec = 10 ms shows that
LIF sampling with maintained PSP heights does nearly solely generate samples from the
dominant “2” mode. The sparse connections between the clusters exhibit, as we have
seen before (Section 4.3.2), that the sampler has also mixing issues. This is probably the
reason why the samples from the other modes are missing.

101

5. Using Short-Term Plasticity to Improve Mixing

Figure 5.16.: Imbalanced training data set. It contains 80 examples of a “2” and 2 ex-
amples for all other digits respectively. The images are reduced two 12x12
pixels.

Figure 5.17.: Result of the t-SNE visualization for AST. We used images of the visible
layer to mark the mapped samples. The blue lines connect consecutive
samples. The used t-SNE parameters are listed in Table A.9.

An increased recovery time of τrec = 13 ms already exhibits a balancing effect (Fig. 5.18b).
This can be seen on the much larger fraction of samples from the minor modes compared
to the AST result in Fig. 5.17. However, the “2” mode is still dominant. For τrec = 15 ms

102

5.4. Balancing Effects

we see a stronger balancing (Fig. 5.18c), where approximately only a half of the samples
still represent the dominant mode. In between there are many samples from minor modes
but also many unclear samples. We observed this as well for the 3 digit example in the
previous section. These unclear samples are probably intermediate samples along the
paths the sampler has to take to mix between the modes. A comparison of the generated
samples between LIF sampling with τrec = 10 ms and LIF sampling with τrec = 15 ms
(Fig. 5.19) demonstrates the reduction of the sample quality. A comparison to the 3 digit
example in the previous section (Fig. 5.14) shows that the image quality is much worse,
although we used a smaller recovery time of τrec = 15 ms.
The t-SNE results for alpha-shaped LIF sampling are shown in Fig. 5.20. For maintained
PSP shapes (τrec = 4.35 ms) we see, as in Section 4.3.2, that the alpha-shaped model
has no mixing issues. It therefore correctly reproduces the training data set with many
dominant “2” samples and only few samples of other modes. For increasing recovery
time it behaves similar to the exponential-shaped model. It increasingly balances the
distribution which can be seen on the larger fraction of samples of minor modes. However,
it exhibits the same quality reduction of the generated samples. This is in accordance
with our previous results for the 3 digit example (Fig. 5.15).

Figure 5.18.: t-SNE visualization for exponential-shaped LIF sampling

(a) Exponential-shaped LIF sampling with τrec = 10ms

103

5. Using Short-Term Plasticity to Improve Mixing

(b) Exponential-shaped LIF sampling with τrec = 13ms

(c) Exponential-shaped LIF sampling with τrec = 15ms

Figure 5.18.: Result of the t-SNE visualization for CUBA exponential-shaped LIF sam-
pling. The used t-SNE parameters are listed in Table A.9. The correspond-
ing COBA results are similar and therefore omitted.

104

5.4. Balancing Effects

(a) Exponential-shaped LIF sampling with τrec = 10ms

(b) Exponential-shaped LIF sampling with τrec = 15ms

Figure 5.19.: Samples of the visible layer for exponential-shaped LIF sampling with dif-
ferent recovery times. The visible units are arranged in 12x12 pixel images
as the learned MNIST digits. For each sampler 100 samples taken equally
distributed over the sampling time are shown. The samples should be read
from left to right and up to down.

105

5. Using Short-Term Plasticity to Improve Mixing

Figure 5.20.: t-SNE visualization for CUBA alpha-shaped LIF sampling

(a) Alpha-shaped LIF sampling with τrec = 4.35ms

(b) Alpha-shaped LIF sampling with τrec = 5.0ms

106

5.5. Discussion

(c) Alpha-shaped LIF sampling with τrec = 6.0ms

Figure 5.20.: Result of the t-SNE visualization for CUBA alpha-shaped LIF sampling.
The used t-SNE parameters are listed in Table A.9. The corresponding
COBA results are similar and therefore omitted.

5.5. Discussion

We observed in this section that increasing the recovery time of the TSO mechanism
beyond the value necessary to maintain the PSP heights leads to two different effects in
LIF sampling: an improved mixing and a balancing effect.

The mixing effect was examined for the bar pattern (Section 5.2) and the balanced
10 digit MNIST example (Section 5.3). In both examples we saw that LIF sampling
with exponential-shaped synapses exhibits an improved mixing when increasing the
recovery time. On the other hand, LIF sampling with alpha-shaped synapses showed no
improvement beyond its already good mixing performance for maintained PSP heights.
However, for both sampling procedures we observed a reduction of the quality of gen-
erated samples. This reduction is more severe for the MNIST example, than for the
bars, as for larger recovery times it became hard to recognize many of the generated
digits. The reason of the improved mixing was already explained in Section 5.1. It is
due to the reduction of the synaptic weights of neurons, which are constantly firing,
for higher recovery times. This leads to a reduction of the probability in regions of the
state space where the sampler gets stuck, which is illustrated in the image sequence
in Fig. A.3. This mixing mechanism explains also the observed reduced image quality.

107

5. Using Short-Term Plasticity to Improve Mixing

When the weight connections between the hidden and visible neurons, representing a
pattern, become slowly reduced, it becomes more likely that certain neurons, belonging
to that pattern, turn off. This starts a chain reaction, because in the next sampling step
these deactivated neurons will stop activate other neurons of that pattern and also stop
deactivating neurons which do not belong to the pattern. As a consequence, more and
more neurons belonging to the pattern will be deactivated and other neurons activated.
This leads to the noisy and weak patterns for high recovery times. As the patterns in
the MNIST data set are weaker than the bar patterns, this explains the more severe
consequences for MNIST.
Nevertheless, the examples showed that, when choosing the recovery time carefully, the
TSO mechanism can help to overcome the missing mixing ability for LIF sampling with
exponential-shaped synapses. It could therefore be used to improve mixing in large
systems on future implementations of LIF-based BMs on HICANN, which does currently
only realize exponential-shaped synapses. For LIF sampling with alpha-shaped synapses,
however, the TSO mechanism should only be used to maintain the PSP heights. Higher
recovery times lead in this model to a worse quality of generated samples and do not
significantly improve mixing.

The balancing effect was demonstrated for two examples of imbalanced distributions
trained on the MNIST data set. One small system with 3 MNIST digits (Section 5.4.1)
and a larger system with 10 MNIST digits (Section 5.4.2). LIF sampling with both
alpha and exponential-shaped synapses showed a balancing of the distributions for both
examples. However, as for mixing, this comes together with a reduction of the image
quality, which was worse in the 10 digit example than in the 3 digit one.
The mechanism for the balancing effect is the same as for mixing. The difference is
that in the balancing examples we started with strongly imbalanced distributions. For
these distributions LIF sampling will spend most of the time in the dominant mode. As
a consequence, due to the TSO mechanism, this mode will be mainly affected by the
reduction. However, as the other modes are rather weak, it will take a longer time for
the sampler to find them, which leads to the noisy and unclear intermediate samples,
observed in both examples. This effect should become worse for larger state spaces,
which explains the worse image quality for the 10 digit example.
The balancing effect could be useful for handling imbalanced data sets, which is an
important issue in machine learning and data mining (He et al., 2009; Chawla, 2010;
Kubat et al., 1997). It could for example be used to reproduce data, which has been
learned on only few examples in large imbalanced data sets. This could lead to a better
performance in pattern completion tasks for exotic examples. Furthermore, as there is
no conceptual difference between data and labels (Section 3.2), the improved pattern
completion would also lead to a better classification. However, these conclusions still
need to be investigated.

108

6. Discussion

The aim of this thesis is to investigate the properties of sampling in Boltzmann machines
(BMs) based on the leaky integrate-and-fire (LIF) neuron model with a focus on mixing
issues.
In Chapter 4 we therefore considered current-based (CUBA) and conductance-based
(COBA) LIF sampling with exponential and alpha-shaped synapses. We applied the
Tsodyks-Markram (TSO) short-term synaptic plasticity model only to maintain the
height of post-synaptic potentials (PSPs) as demanded by the theory. We compared
LIF sampling to Gibbs sampling, which is the standard approach in classical BMs.
Furthermore, we considered adaptive simulated tempering (AST), which is especially
designed to mitigate the mixing issue.
For examples where mixing is not important, like the homogeneous distributions in
Section 4.1.1, we observed a close approximation of the theoretical distribution for all
samplers. However, LIF sampling showed a saturation where it ceases to approximate
the theoretical distribution any further. For the remaining examples, we observed that
LIF sampling with exponential-shaped synapses shows the worst ability to mix. The
Gibbs sampler performs slightly better but for critical examples, like the bar patterns
(Section 4.2.2) or the MNIST example with large image size (Section 4.3.2), it lost its
ability to mix as well. Only LIF sampling with alpha-shaped synapses and AST were
able to mix in all investigated examples. The image quality for both was similar in most
cases, however, for alpha-shaped synapses we observed more intermediate samples which
look like mixtures between two digits.
Our explanation for both effects, saturation and different mixing behavior, was the
different PSP shape in LIF sampling. Figure 3.7 shows that it exhibits a large variation
of potential values during a refractory period compared to the rectangular shape of
the abstract sampler. This could facilitate mixing, as it activates neurons in situations
where they should, in theory, not be activated or prevents them from being activated.
The PSP shape furthermore shows a remaining potential level (tail) after the refractory
period. This effect should, in principle, reduce the ability to mix, because the tail acts
like a memory of the previous state, biasing the neuron to not change its behavior after
the refractory period of the pre-synaptic neuron ends. While for the exponential-shaped
model the tail seems to outweigh the variation such that it mixes worse than the abstract
rectangular shape, it is the opposite for the alpha-shaped model. Both effects, however,
also lead to the saturation in the homogeneous case, because the LIF sampler does not
exactly follow the theoretically ideal behavior.
Concerning a possible hardware implementation of LIF sampling on HICANN this result
is unfortunate because only exponential-shaped synapses are realized. To improve the
mixing behavior also on the currently available hardware, we considered in Chapter 5

109

6. Discussion

a possible approach based on the same TSO model as before. This time, however, we
increased the recovery time beyond the value necessary to maintain the PSP heights.
The idea behind this approach is to reduce the synaptic influence of neurons which
are constantly firing. This leads to a reduction of probability in regions of the state
space where the sampler gets stuck, which we have illustrated in the image sequence in
Fig. A.3.
We tested this approach on the two examples of Chapter 4 where mixing is critical,
namely the bar pattern and the MNIST example with large images size. We saw that this
approach works well for LIF sampling with exponential-shaped synapses. It shows an
improved mixing when increasing the recovery time of the TSO model. For LIF sampling
with alpha-shaped synapses, however, there was no improvement over its already good
mixing performance. However, for both synapse models we observed a reduction of the
quality of generated samples. We can explain this by the effectively reduced synaptic
weights as well, which leads to a weakening of the imprinted patterns. Yet, with a
careful choice for the recovery time this approach can be useful to improve mixing for
exponential-shaped synapses. As the TSO model is already implemented on HICANN,
this is an appealing approach for possible hardware implementations of LIF-based BMs.
While using the TSO model with higher recovery times, we furthermore observed a
balancing effect in RBMs representing imbalanced distributions. This effect appears
because in these cases LIF sampling spends most of the time in dominant modes. As a
consequence, these modes will be mainly affected by the reduction of synaptic weights.
Using this effect, it was possible with LIF sampling to reproduce a significant amount of
samples from digit classes which were clearly underrepresented in the training data set.
This balancing effect could therefore be useful for handling imbalanced data sets, which
is an important issue in machine learning (He et al., 2009; Chawla, 2010; Kubat et al.,
1997). However, for this effect we observed the same reduction of the generated sample
quality, limiting its application to moderate choices of recovery times.
For all simulations conducted in this thesis, we didn’t observe a significant difference
between CUBA and COBA LIF sampling. This is due to our choice of the LIF sampling
parameters (Appendix A.2.2). To reduce the nonlinearity in the summation of PSPs
for the COBA model (Section 3.6.1), we have chosen a large distance between reversal
and resting potentials of the membrane. These values are motivated by Naud et al.
(2008) and in the range of achievable values of the HICANN system (Petrovici , 2015).
This demonstrates that the deviations of the COBA model to the theoretically ideal
behavior is negligible in the considered examples for a reasonable choice of parameters.
This is especially important since the implemented synapse model on HICANN is COBA.

Altogether, we conclude that with LIF sampling, either with alpha-shaped synapses or
with exponential-shaped synapses and a high recovery time for TSO, a better mixing
behavior than with classical Gibbs sampling is achievable. However, using alpha-shaped
synapses is advised in terms of neural sampling performance, as they show improved mix-
ing without extra effort and no disadvantages as, for example, a reduced image quality.
These results therefore indicate that an implementation of alpha-shaped synapses on a
future version of HICANN should be considered.

110

7. Outlook

Using TSO with high recovery times, as proposed in this thesis, is a promising approach
to improve mixing in LIF sampling on the next version of the HICANN chip, which im-
plements exponential-shaped synapses. Beside that, future implementations of HICANN
which may include the alpha-shaped synapse model as well would directly benefit from
the improved mixing demonstrated in this thesis for this synapse model.

One approach to mitigate the quality reduction for generated samples, which accom-
panies the TSO approach, could be using a combination of facilitation and depression
for the TSO model. This leads, like in Fig. 7.1, to a short buildup of the PSPs and
afterwards a faster decay. The buildup could strengthen patterns for a short time and
the decay induce faster transitions to other modes, such that less intermediate samples
are generated. Testing this mechanism is currently in progress. However, as on the next
version of HICANN no combination of facilitation and depression is possible, this would
be applicable on future versions of the chip only, which may include this possibility.

10 20 30 40 50 60 70
time [ms]

0.05

0.04

0.03

0.02

0.01

M
e
m

b
ra

n
e
 p

o
te

n
ti

a
l
[m

V
]

5.493e1

depression and facilitation

depression

maintained PSP

Figure 7.1.: Simulation of the membrane potential of a neuron which receives a spike
every refractory period with refractory time τref = 10 ms for exponential-
shaped synapses. For the red curve we used TSO only to maintain the PSP
height (τrec = 10 ms). For the green curve we applied τrec = 14 ms to reduce
the PSPs. For the blue curve we also used the facilitation mechanism of TSO
(Section 3.7) with USE = 0.4, τfacil = 50.0 ms and τrec = 50.0 ms.

111

7. Outlook

The large difference of the mixing behavior between alpha and exponential-shaped
synapses demonstrates that the PSP shape has a huge influence on mixing. It could
therefore be of interest to test the mixing ability for other PSP shapes by varying the
synaptic time constants or by applying, for example, a difference of exponentials as
synapse model. With these experiments we could also test our proposed explanation for
the different mixing behavior of alpha and exponential-shaped synapses. According to
our explanation, PSP shapes with a large variation of potential values should exhibit a
good mixing, while PSP shapes with larger potential tales after the refractory period
should perform worse.

In this thesis, only the influence of mixing on sampling was considered. It has already
been shown that better mixing is important for training classical RBMs (Welling et al.,
2003; Tieleman and Hinton, 2009; Salakhutdinov , 2009). With the STDP-based con-
trastive divergence approach, demonstrated in Weilbach (2015), the improved mixing
with TSO could therefore be used to improve training in LIF-based RBMs.

Another possible approach to improve mixing could be to mimic the behavior of AST in
LIF sampling. Equivalent to the temperature increase in classical sampling, one would
be increasing the rates of the background Poisson sources in LIF sampling. A crude
approximation of AST, which might already improve mixing, could be to periodically
modulate the background Poisson rates with a fixed pattern (e.g. linear rise, short
halt at the highest rate and linear decay). Doing this periodically has the advantage of
knowing the time ranges with higher rates in advance. These should then be excluded
from the evaluation afterwards. With this, only samples from the normal temperature
(background rate) can be counted, avoiding intermediate samples.
Furthermore, for classical BMs there is also an approach to use AST for learning called
coupled adaptive simulated tempering (CAST) (Salakhutdinov , 2010). Similarly to the
TSO mechanism, we can combine the LIF approximation of AST with STDP-based
contrastive divergence to obtain an LIF-based version of the CAST algorithm.

For the balancing effect accompanying TSO with high recovery times we concluded that
it could be used to reproduce sparsely represented data in LIF-based RBMs trained on
imbalanced data sets. The ability to complete patterns and classify input based on this
data could benefit from that. However, these effects still need to be investigated. A
possible experiment could be, similar to Section 5.4.2, an RBM trained on ten MNIST
digits, with one digit, for example “1”, being dominant in the training data. Now we
can clamp the neurons of the visible layer such that generated samples will always show
a circle in the lower part of the image. Performing pattern completion could lead to
samples of a mixture between the circle and the upper part of the “1” in an RBM without
balancing. This is due to the probabilities of the other modes still being too low for the
sampler to reach them. In an RBM with balancing, however, sampling would more often
lead to the expected samples of a “6” or an “8”.

Our final goal is to implement LIF-based BMs on neuromorphic hardware, starting with

112

the HICANN chip. Until then there are, however, still several issues to be addressed.
For LIF sampling we assumed that every neuron receives input from at least two Poisson
sources. Networks which are capable of, for example, learning MNIST require therefore
a large number of uncorrelated noise sources. Such a large amount of noise sources is
currently not implemented on HICANN. One approach to solve this could be the use
of other neural networks running on the same device as noise sources for the sampling
network. These so-called sea-of-noise networks are a topic of active investigation (Jordan
et al., 2014).
Another issue is the so-called fixed-pattern noise, which is a parameter variability from
neuron to neuron as well as from synapse to synapse on the hardware. It is caused by
the manufacturing process of the neuromorphic hardware device and cannot be avoided.
To account for it in our current software simulations, one can add, as in Probst et al.
(2015), Gaussian noise to the neuron and synapse parameter during the initialization of
the network. However, the noise affecting the neuron parameters that are not changed
when setting weights and biases can be completely absorbed into the translation rules
from Section 3.8.
Furthermore, the influence of the 4-bit weight resolution of the HICANN chip on LIF-
based BMs still has to be investigated.
In return, the advantages of a well working implementation of algorithms like LIF-based
BMs on neuromorphic hardware are tremendous. The inherent parallelism would allow
scaling the network size to thousands of neurons without increasing the emulation time.
This allows efficient training and sampling for the full MNIST or even larger real world
data sets and finally also for real time data, obtained, for example, with silicon retinas
(Lichtsteiner et al., 2008) or cochleas (Liu and Delbruck , 2010). Combined with a low
power consumption per synaptic interaction these algorithms could operate on mobile
devices in areas where analysis and fast predictions based on real time data is essential.
Examples would be self-driving cars, speech recognition, quality assurance in industrial
production facilities or sensors in data-intensive scientific research or for the analysis of
clinical data to predict diseases.

113

A. Appendix

A.1. Acronyms

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

AST Adaptive Simulated Tempering

AdEx Adaptive-Exponential Integrate-and-Fire

BM Boltzmann Machine

CD Contrastive Divergence

COBA COnductance-BAsed

CUBA CUrrent-BAsed

DNC Digital Network Chip

FACETS Fast Analog Computing with Emergent Transient States

FPGA Field Programmable Gate Array

HCS High Conductance State

HICANN High Input Count Analog Neural Network

KL Kullback-Leibler

LIF Leaky Integrate-and-Fire

MCMC Markov Chain Monte Carlo

ODE Ordinary Differential Equation

OU Ornstein-Uhlenbeck

PCA Principal Component Analysis

PCD Persistent Contrastive Divergence

PSP Post-Synaptic Potential

115

A. Appendix

PSR Post-Synaptic Response

RBM Restricted Boltzmann Machine

SNE Stochastic Neighbor Embedding

STP Short-Term Plasticity

t-SNE t-Distributed Stochastic Neighbor Embedding

TSO TSOdyks-Markram (synaptic plasticity model)

VLSI Very-Large-Scale Integration

A.2. Parameter

A.2.1. Adaptive Simulated Tempering

For AST we used throughout this thesis:

K 10 number of temperature levels
βK 0.1 minimal inverse temperature
γ(0) 90.0 initial weight adaption factor

Table A.1.: Adaptive Simulated Tempering Parameter.

The K inverse temperature levels are linearly distributed within the range [1.0, βK]. The
weight adaption factors decay during sampling according to

γ(τ) =
γ(0)

100 + τ
, (A.1)

where τ denotes the current sampling step.

A.2.2. LIF Sampling

We used sbs 1.3.0 (Section 2.2.2), together with Pynn 0.8 (Section 2.1) and Nest 2.4.2
(Section 2.2.1) for LIF sampling throughout this thesis. We have chosen the same pa-
rameter for COBA and CUBA LIF sampling. The only difference is that the excitatory
and inhibitory reversal potentials can be neglected for CUBA LIF sampling. For the
simulations we use a time step of dt = 0.1 ms and a synaptic delay of τdelay = 0.1 ms.
For the exponential-shaped LIF neuron and synapse model, we have chosen the following
parameters:

116

A.2. Parameter

Cm 0.2 nF membrane capacitance
τm 0.1ms membrane time constant
Erev
exc 0mV excitatory reversal potential

Erev
inh -100mV inhibitory reversal potential
ϑ -50mV threshold voltage
urest -50mV resting potential
ρ -50.01mV reset potential
τ synexc 10ms excitatory synaptic time constant
τ syninh 10ms inhibitory synaptic time constant
τref 10ms refractory time constant
Ioffset 0 nA offset current

Table A.2.: Neuron and synapse parameters used for exponential-shaped LIF sampling.

For the alpha-shaped LIF sampling we use the same parameters except that we have
chosen for the synaptic time constants τ synexc = τ syninh = 2.6 ms. A sweep over the synaptic
time constant for which we have evaluated the performance of alpha-shaped LIF sampling
to reproduce a homogeneous random distribution led to this value (see Fig. A.1). For
the parameter translation between abstract and LIF regime (calibration) we use one
excitatory and one inhibitory Poisson source for each neuron with an input rate of ν =
400 Hz and a weight connection of wpoisson = 0.002µS.

117

A. Appendix

2 3 4 5 6 7 8 9 10
synaptic time constant

0.0

0.1

0.2

0.3

0.4

0.5

D
K
L
(p
si
m
||
p
th
eo
)

Figure A.1.: Sampling performance measured with the Kullback-Leibler divergence over
the synaptic time constant. We considered the theoretical distribution of a
fully-connected Boltzmann machine with 5 units. The weights and biases
have been drawn from a Gaussian distribution with mean µ = 0 and stan-
dard deviation σ = 2.0. The sample distribution is obtained through LIF
sampling with CUBA alpha-shaped synapses for 106 ms for each data point.
Except of the varied synaptic time constant the parameters were identical
to Table A.2. Displayed is the mean of the Kullback-Leibler divergence
between the theoretical and sample distribution over 5 runs where the sam-
pling seed has been varied. The colored area shows the standard deviation.
The minimum is located at τsyn = 2.6 ms.

A.2.3. Tsodyks-Markram Model

For LIF sampling in Chapter 4 we chose for the Tsodyks-Markram model the parameters
listed in Table A.3. These parameters were chosen to maintain the PSP heights for
the corresponding synapse models as demonstrated in Fig. 3.5. For LIF sampling in
Chapter 5 we varied the recovery time constant but kept the other parameters fixed.

U0 1.0 utilization of synaptic efficacy
τ exprec 10ms recovery time constant for exponential-shaped synapses
τalpharec 4.35ms recovery time constant for alpha-shaped synapses
τfacil 0ms relaxation time constant of the facilitation

Table A.3.: Tsodyks-Markram model parameter.

118

A.2. Parameter

A.2.4. Learning

To train the 3 digit example in Section 4.3.1 we used:

learning algorithm PCD
number of visible units 144
number of hidden units 10

batch size 3
training steps 99830

learning rate η(t) 10
10000+t

seed number 26

Table A.4.: Learning parameter.

In the 10 digit example with 12x12 pixels in Section 4.3.2 we applied:

learning algorithm PCD
number of visible units 144
number of hidden units 100

batch size 1
training steps 3000000

learning rate η(t) 100
1000+0.5t

seed number 105

Table A.5.: Learning parameter.

For the 10 digit example with 28x28 pixels in Section 4.3.2 and Section 5.3 we used:

learning algorithm PCD
number of visible units 784
number of hidden units 100

batch size 10
training steps 100000

learning rate η(t) 10
1000+t

seed number 115

Table A.6.: Learning parameter.

The imbalanced 3 digit example with 12x12 pixels in Section 5.4.1 was obtained with the
following learning parameter:

119

A. Appendix

learning algorithm PCD
number of visible units 144
number of hidden units 10

batch size 3
training steps 400000

learning rate η(t) 10
3000+t

seed number 48

Table A.7.: Learning parameter.

To train the imbalanced 10 digit example with 12x12 pixels in Section 5.4.2 we used the
following parameter:

learning algorithm PCD
number of visible units 144
number of hidden units 100

batch size 10
training steps 500000

learning rate η(t) 100
1000+t

seed number 98

Table A.8.: Learning parameter.

A.2.5. t-Distributed Stochastic Neighbor Embedding

For the t-SNE visualizations we used throughout this thesis:

perplexity 20
number of dimensions for PCA pre-processing Dpre 50

initial momentum 0.5
final momentum 0.8
learning rate η 500

maximal number of iterations 1000
early exaggeration 4

Table A.9.: t-SNE parameter. The initial momentum is applied for the first 20 steps,
afterwards the final momentum. Early exaggeration is used during the first
100 steps. To diminish the computational cost we apply in a pre-processing
step normal PCA to reduce the dimension of the input data to Dpre. The
reduced data is then used as input for the actual t-SNE algorithm.

120

A.3. Mixing Image Sequences

A.3. Mixing Image Sequences

Figure A.2.: TSO mixing

121

A. Appendix

Figure A.2.: TSO mixing

122

A.3. Mixing Image Sequences

Figure A.2.: TSO mixing

Figure A.3.: Image sequence illustrating the mixing principle of LIF sampling with TSO
with a recovery time of τrec = 18 ms for exponential-shaped LIF sampling.
We used an RBM trained on the 3 digit example like in Section 4.3.1. The
basis of this visualization is the star plot (Section 3.10.1) like e.g. Fig. 4.23a.
The shown probability landscape is an approximation of the real one, which
would be impossible to calculate for 10154 possible states. For the approxi-
mation we devided the two-dimensional space into hexagons. From a long
AST sampling run, where we stored every sample (even the high temperature
ones), we obtained samples distributed over the whole area. Afterwards, we
assigned to each hexagon one of these samples which is closest to its center.
The probability of this sample is used to approximate the probability of
the whole hexagon. The image sequence shows an LIF sampling run, where
only the current sample is shown as a black dot. The probabilities of the
hexagons change for each step because the weights change due to the TSO
mechanism. However, as we still use the Boltzmann distribution (3.13) to
calculate the probabilities, we make an error because it assumes symmetric
weights. Still using (3.13) corresponds to taking the mean of the asymmet-
ric weights for the calculation. This emphasizes that the image sequence is
just a rough approximation to the evolution of the probability landscape for
illustration purposes.

123

A. Appendix

Figure A.4.: AST mixing

124

A.3. Mixing Image Sequences

Figure A.4.: AST mixing

125

A. Appendix

Figure A.4.: Image sequence showing the mixing principle of AST. The same method
as in Fig. A.3 was used to create the plot. The only difference is that
here the probability distribution is changed due to sampling from different
inverse temperature levels according to (3.24). Therefore the current inverse
temperature is displayed in each plot.

126

A.4. Random Homogeneous Distributions - Result Tables

A.4. Random Homogeneous Distributions - Result Tables

127

A. Appendix

B
M
,5

units
B
M
,10

units
B
M
,15

units
B
M
,20

units
sam

pler
D
K
L
m
ean

D
K
L
error

D
K
L
m
ean

D
K
L
error

D
K
L
m
ean

D
K
L
error

D
K
L
m
ean

D
K
L
error

G
S

1.83E
-04

3.85E
-05

5.10E
-03

2.76E
-04

1.75E
-01

5.64E
-03

1.70E
+
00

1.27E
-01

A
ST

1.59E
-04

4.59E
-05

5.14E
-03

2.58E
-04

1.74E
-01

4.65E
-03

1.70E
+
00

1.26E
-01

curr_
exp

1.11E
-03

7.12E
-04

4.19E
-03

9.33E
-04

3.79E
-02

2.35E
-03

4.34E
-01

4.32E
-02

curr_
alpha

6.90E
-04

4.59E
-04

6.40E
-03

2.36E
-03

3.31E
-02

9.34E
-04

4.24E
-01

3.84E
-02

cond_
exp

2.61E
-03

1.24E
-03

7.68E
-03

2.67E
-03

4.31E
-02

1.71E
-03

4.92E
-01

4.30E
-02

cond_
alpha

1.29E
-03

4.57E
-04

4.43E
-03

5.86E
-04

3.49E
-02

1.24E
-03

4.64E
-01

3.45E
-02

T
able

A
.10.:F

inal
results

of
the

D
K
L
evolutions

for
norm

al
B
M
s
from

F
ig.

4.1.
W
e
are

com
paring

the
results

for
B
M
s
w
ith

5,
10,

15
and

20
units.

T
he

w
eights

and
biases

have
been

draw
n
from

a
G
aussian

distribution
w
ith

µ
=

0
and

standard
deviation

σ
=

0.3.
T
he

m
ean

and
standard

deviation
ofthe

D
K
L
values

over
ten

runs
are

show
n
w
here

in
each

run
w
e
draw

new
w
eights

from
the

G
aussian

distribution.
“curr/cond”

stand
for

C
U
B
A
/C

O
B
A
,“exp”

for
exponential-shaped

and
“alpha”

for
alpha-shaped

synapses.

128

A.4. Random Homogeneous Distributions - Result Tables

B
M
,5

un
it
s

B
M
,1

0
un

it
s

B
M
,1

5
un

it
s

B
M
,2

0
un

it
s

sa
m
pl
er

D
K
L
m
ea
n

D
K
L
er
ro
r

D
K
L
m
ea
n

D
K
L
er
ro
r

D
K
L
m
ea
n

D
K
L
er
ro
r

D
K
L
m
ea
n

D
K
L
er
ro
r

G
S

1.
88

E
-0
4

4.
12

E
-0
5

5.
17

E
-0
3

2.
93

E
-0
4

1.
79

E
-0
1

1.
09

E
-0
3

1.
78

E
+
00

2.
94

E
-0
3

A
ST

1.
49

E
-0
4

4.
63

E
-0
5

5.
21

E
-0
3

3.
04

E
-0
4

1.
79

E
-0
1

1.
24

E
-0
3

1.
78

E
+
00

3.
39

E
-0
3

cu
rr
_
ex
p

4.
58

E
-0
4

6.
78

E
-0
5

4.
24

E
-0
3

6.
31

E
-0
5

3.
64

E
-0
2

4.
96

E
-0
4

4.
41

E
-0
1

8.
82

E
-0
4

cu
rr
_
al
ph

a
4.
49

E
-0
4

4.
07

E
-0
5

3.
52

E
-0
3

1.
17

E
-0
4

3.
20

E
-0
2

3.
42

E
-0
4

4.
29

E
-0
1

8.
09

E
-0
4

co
nd

_
ex
p

1.
18

E
-0
3

1.
53

E
-0
4

6.
53

E
-0
3

2.
64

E
-0
4

4.
43

E
-0
2

3.
77

E
-0
4

5.
06

E
-0
1

1.
54

E
-0
3

co
nd

_
al
ph

a
1.
00

E
-0
3

1.
07

E
-0
4

4.
00

E
-0
3

2.
23

E
-0
4

3.
50

E
-0
2

2.
69

E
-0
4

4.
76

E
-0
1

1.
20

E
-0
3

T
ab

le
A
.1
1.
:F

in
al

re
su
lt
s
of

th
e
D
K
L
ev
ol
ut
io
ns

fo
r
no

rm
al

B
M
s,
co
rr
es
po

nd
in
g
to

th
e
re
su
lt
s
of

T
ab

le
A
.1
0.

T
he

di
ffe

re
nc

e
is

th
at

he
re

w
e
ha

ve
dr
aw

n
th
e
w
ei
gh

ts
an

d
bi
as
es

of
th
e
B
M
s
ju
st

on
ce
.
T
he

m
ea
n
an

d
st
an

da
rd

de
vi
at
io
n
(e
rr
or
)

fo
r
th
e
D
K
L
va
lu
es

is
ca
lc
ul
at
ed

fo
r
10

ru
ns

w
it
h
di
ffe

re
nt

se
ed

s
fo
r
th
e
ra
nd

om
nu

m
be

r
ge
ne

ra
to
rs
.

129

A. Appendix

R
B
M
,5

hidden
R
B
M
,10

hidden
R
B
M
,15

hidden
R
B
M
,20

hidden
sam

pler
D
K
L
m
ean

D
K
L
error

D
K
L
m
ean

D
K
L
error

D
K
L
m
ean

D
K
L
error

D
K
L
m
ean

D
K
L
error

G
S

1.78E
-04

3.96E
-05

4.87E
-03

7.17E
-04

8.86E
-02

2.09E
-02

4.18E
-01

1.42E
-01

A
ST

1.77E
-04

4.53E
-05

4.87E
-03

6.06E
-04

8.84E
-02

2.01E
-02

4.19E
-01

1.42E
-01

curr_
exp

3.99E
-02

1.37E
-02

8.03E
-02

2.62E
-02

1.45E
-01

2.92E
-02

2.34E
-01

4.75E
-02

curr_
alpha

3.04E
-02

1.19E
-02

7.10E
-02

1.13E
-02

1.33E
-01

1.58E
-02

2.62E
-01

4.56E
-02

cond_
exp

3.26E
-02

1.00E
-02

6.50E
-02

2.02E
-02

1.26E
-01

2.28E
-02

2.25E
-01

4.89E
-02

cond_
alpha

1.39E
-02

8.79E
-03

3.57E
-02

4.89E
-03

7.79E
-02

1.15E
-02

2.14E
-01

5.13E
-02

T
able

A
.12.:F

inalresults
of

the
D
K
L
evolutions

for
the

R
B
M
s
in

Section
4.1.1.

D
isplayed

are
the

results
for

R
B
M
s
w
ith

100
visible

units
and

5,
10,

15
and

20
hidden

units.
T
he

D
K
L ’s

are
betw

een
the

hidden
distribution

obtained
from

theory
and

sam
pling.

T
he

w
eights

and
biases

have
been

draw
n
from

a
G
aussian

distribution
w
ith

µ
=

0
and

standard
deviation

σ
=

0.3.
T
he

m
ean

and
standard

deviation
ofthe

D
K
L
values

over
ten

runs
are

show
n,w

here
in

each
run

w
e
draw

new
w
eights

from
the

G
aussian

distribution.
“curr/cond”

stand
for

C
U
B
A
/C

O
B
A
,“exp”

for
exponential-shaped

and
“alpha”

for
alpha-shaped

synapses.

130

A.4. Random Homogeneous Distributions - Result Tables

R
B
M
,5

hi
dd

en
R
B
M
,1

0
hi
dd

en
R
B
M
,1

5
hi
dd

en
R
B
M
,2

0
hi
dd

en
sa
m
pl
er

D
K
L
m
ea
n

D
K
L
er
ro
r

D
K
L
m
ea
n

D
K
L
er
ro
r

D
K
L
m
ea
n

D
K
L
er
ro
r

D
K
L
m
ea
n

D
K
L
er
ro
r

G
S

1.
87

E
-0
4

4.
18

E
-0
5

5.
31

E
-0
3

1.
40

E
-0
4

5.
71

E
-0
2

6.
15

E
-0
4

3.
62

E
-0
1

1.
28

E
-0
3

A
ST

1.
76

E
-0
4

2.
31

E
-0
5

5.
07

E
-0
3

2.
66

E
-0
4

5.
75

E
-0
2

7.
49

E
-0
4

3.
62

E
-0
1

1.
62

E
-0
3

cu
rr
_
ex
p

5.
95

E
-0
2

1.
24

E
-0
3

1.
11

E
-0
1

1.
32

E
-0
3

1.
39

E
-0
1

7.
72

E
-0
4

2.
43

E
-0
1

1.
38

E
-0
3

cu
rr
_
al
ph

a
2.
82

E
-0
2

8.
49

E
-0
4

8.
60

E
-0
2

1.
36

E
-0
3

1.
17

E
-0
1

7.
45

E
-0
4

2.
79

E
-0
1

2.
51

E
-0
3

co
nd

_
ex
p

4.
57

E
-0
2

1.
08

E
-0
3

9.
03

E
-0
2

1.
12

E
-0
3

1.
20

E
-0
1

1.
87

E
-0
3

2.
29

E
-0
1

1.
60

E
-0
3

co
nd

_
al
ph

a
8.
55

E
-0
3

4.
89

E
-0
4

3.
89

E
-0
2

7.
07

E
-0
4

6.
04

E
-0
2

1.
37

E
-0
3

2.
09

E
-0
1

1.
51

E
-0
3

T
ab

le
A
.1
3.
:F

in
al

re
su
lt
s
of

th
e
D
K
L
ev
ol
ut
io
ns

fo
r
R
B
M
s.

T
he

y
co
rr
es
po

nd
to

th
e
re
su
lt
s
of

T
ab

le
A
.1
2.

T
he

di
ffe

re
nc

e
is

th
at

he
re

w
e
ha

ve
dr
aw

n
th
e
w
ei
gh

ts
an

d
bi
as
es

of
th
e
R
B
M
s
ju
st

on
ce
.
T
he

m
ea
n
an

d
st
an

da
rd

de
vi
at
io
n
(e
rr
or
)

fo
r
th
e
D
K
L
va
lu
es

is
ca
lc
ul
at
ed

fo
r
10

ru
ns

w
it
h
di
ffe

re
nt

se
ed

s
fo
r
th
e
ra
nd

om
nu

m
be

r
ge
ne

ra
to
r.

131

Bibliography

Ackley, D. H., G. E. Hinton, and T. J. Sejnowski, A learning algorithm for Boltzmann
machines, Cognitive Science, 9, 147–169, 1985.

Benjamin, B. V., et al., Neurogrid: A mixed-analog-digital multichip system for large-
scale neural simulations, Proceedings of the IEEE, 102 (5), 699–716, 2014.

Billaudelle, S., Characterisation and calibration of short term plasticity on a neuromor-
phic hardware chip, Bachelor thesis, Ruprecht-Karls-Universität Heidelberg, hD-KIP
14-93, 2014.

Bishop, C. M., Pattern recognition and machine learning, vol. 1, springer New York,
2009.

Bishop, C. M., and N. M. Nasrabadi, Pattern recognition and machine learning, vol. 1,
springer New York, 2006.

Bower, J. M., and D. Beeman, The Book of GENESIS: Exploring Realistic Neural Models
with the GEneral NEural SImulation System (Second edition), Springer-Verlag, New
York, 1998.

BrainScaleS, Research, http://brainscales.kip.uni-heidelberg.de/public/index.
html, 2012.

Breitwieser, O., Towards a neuromorphic implementation of spike-based expectation
maximization, Master thesis, Ruprecht-Karls-Universität Heidelberg, 2015.

Brette, R., and W. Gerstner, Adaptive exponential integrate-and-fire model as an ef-
fective description of neuronal activity, J. Neurophysiol., 94, 3637 – 3642, doi:NA,
2005.

Brette, R., et al., Simulation of networks of spiking neurons: A review of tools and
strategies, Journal of Computational Neuroscience, 23 (3), 349–398, 2007.

Brüderle, D., et al., A comprehensive workflow for general-purpose neural modeling with
highly configurable neuromorphic hardware systems, Biological Cybernetics, 104, 263–
296, 2011.

Buesing, L., J. Bill, B. Nessler, and W. Maass, Neural dynamics as sampling: A model for
stochastic computation in recurrent networks of spiking neurons, PLoS Computational
Biology, 7 (11), e1002,211, 2011.

133

http://brainscales.kip.uni-heidelberg.de/public/index.html
http://brainscales.kip.uni-heidelberg.de/public/index.html

Bibliography

Cattell, R., and A. Parker, Challenges for brain emulation: why is building a brain so
difficult, Natural intelligence, 1 (3), 2012.

Chawla, N. V., Data mining for imbalanced datasets: An overview, in Data Mining and
Knowledge Discovery Handbook, pp. 875–886, Springer, 2010.

Davison, A. P., D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Per-
rinet, and P. Yger, PyNN: a common interface for neuronal network simulators, Front.
Neuroinform., 2 (11), 2008.

Dayan, P., and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems, The MIT press, Cambride, Massachusetts, 2001.

Diesmann, M., and M.-O. Gewaltig, NEST: An environment for neural systems simu-
lations, in Forschung und wisschenschaftliches Rechnen, Beiträge zum Heinz-Billing-
Preis 2001, GWDG-Bericht, vol. 58, edited by T. Plesser and V. Macho, pp. 43–70,
Ges. für Wiss. Datenverarbeitung, Göttingen, 2002.

Ehrlich, M., K. Wendt, L. Zühl, R. Schüffny, D. Brüderle, E. Müller, and B. Voggin-
ger, A software framework for mapping neural networks to a wafer-scale neuromorphic
hardware system, in Proceedings of the Artificial Neural Networks and Intelligent In-
formation Processing Conference (ANNIIP) 2010, pp. 43–52, 2010.

FACETS, Research, http://http://facets.kip.uni-heidelberg.de/, 2010.

Fischer, A., and C. Igel, Training restricted boltzmann machines: an introduction, Pat-
tern Recognition, 47 (1), 25–39, 2014.

Fuhrmann, G., I. Segev, H. Markram, and M. Tsodyks, Coding of temporal information
by activity-dependent synapses, Journal of neurophysiology, 87 (1), 140–148, 2002.

Furber, S. B., F. Galluppi, S. Temple, L. Plana, et al., The spinnaker project, Proceedings
of the IEEE, 102 (5), 652–665, 2014.

Geman, S., and D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images, Pattern Analysis and Machine Intelligence, IEEE Transactions
on, (6), 721–741, 1984.

Gerstner, W., and W. Kistler, Spiking Neuron Models: Single Neurons, Populations,
Plasticity, Cambridge University Press, 2002.

Gleeson, P., et al., Neuroml: a language for describing data driven models of neurons
and networks with a high degree of biological detail, 2010.

Goodman, D., and R. Brette, Brian: a simulator for spiking neural networks in Python,
Front. Neuroinform., 2 (5), 2008.

134

http://http://facets.kip.uni-heidelberg.de/

Bibliography

Hartmann, S., S. Schiefer, S. Scholze, J. Partzsch, C. Mayr, S. Henker, and R. Schuffny,
Highly integrated packet-based aer communication infrastructure with 3gevent/s
throughput, in Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE Inter-
national Conference on, pp. 950–953, doi:10.1109/ICECS.2010.5724670, 2010.

Hastings, W. K., Monte carlo sampling methods using markov chains and their applica-
tions, Biometrika, 57 (1), 97–109, 1970.

He, H., E. Garcia, et al., Learning from imbalanced data, Knowledge and Data Engineer-
ing, IEEE Transactions on, 21 (9), 1263–1284, 2009.

Hines, M., and N. Carnevale, The NEURON simulation environment., pp. 769–773, M.A.
Arbib, 2003.

Hinton, G., M. Welling, and A. Mnih, Wormholes improve contrastive divergence, Ad-
vances in Neural Information Processing Systems, 16, 417–424, 2004.

Hinton, G. E., Training products of experts by minimizing contrastive divergence, Neural
computation, 14 (8), 1771–1800, 2002.

Hinton, G. E., Boltzmann machine, 2 (5), 1668, revision 91075, 2007.

Hinton, G. E., and S. T. Roweis, Stochastic neighbor embedding, in Advances in neural
information processing systems, pp. 833–840, 2002.

Hinton, G. E., and R. R. Salakhutdinov, Reducing the dimensionality of data with neural
networks, Science, 313 (5786), 504–507, 2006.

Hotelling, H., Analysis of a complex of statistical variables into principal components.,
Journal of educational psychology, 24 (6), 417, 1933.

Hunter, J. D., Matplotlib: A 2D graphics environment, IEEE Computing in Science and
Engineering, 9 (3), 90–95, 2007.

Inc., A. S., Postscript language reference manual, 1999.

Javed, F., et al., Brain and high metabolic rate organ mass: contributions to resting
energy expenditure beyond fat-free mass, The American journal of clinical nutrition,
91 (4), 907–912, 2010.

Jolliffe, I., Principal component analysis, Wiley Online Library, 2002.

Jordan, J., et al., Neural networks as sources of uncorrelated noise for functional neural
systems, Tech. rep., Computational and Systems Neuroscience, 2014.

Kubat, M., S. Matwin, et al., Addressing the curse of imbalanced training sets: one-sided
selection, in ICML, vol. 97, pp. 179–186, Nashville, USA, 1997.

Lapicque, L., Recherches quantitatives sur l’excitation electrique des nerfs traitee comme
une polarization, Journal de Physiologie et Pathologie General, 9, 620–635, 1907.

135

Bibliography

Larochelle, H., and Y. Bengio, Classification using discriminative restricted boltzmann
machines, in Proceedings of the 25th international conference on Machine learning, pp.
536–543, ACM, 2008.

Le Roux, N., N. Heess, J. Shotton, and J. Winn, Learning a generative model of images
by factoring appearance and shape, Neural Computation, 23 (3), 593–650, 2011.

LeCun, Y., and C. Cortes, The mnist database of handwritten digits, 1998.

Leng, L., Deep learning architectures for neuromorphic hardware, Master thesis,
Ruprecht-Karls-Universität Heidelberg, hD-KIP 14-26, 2014.

Lichtsteiner, P., C. Posch, and T. Delbruck, A 128× 128 120 db 15 µs latency asyn-
chronous temporal contrast vision sensor, Solid-State Circuits, IEEE Journal of, 43 (2),
566–576, 2008.

Liu, S.-C., and T. Delbruck, Neuromorphic sensory systems, Current opinion in neuro-
biology, 20 (3), 288–295, 2010.

Maass, W., and H. Markram, Synapses as dynamic memory buffers, Neural Networks,
15 (2), 155–161, 2002.

Marinari, E., and G. Parisi, Simulated tempering: a new monte carlo scheme, EPL
(Europhysics Letters), 19 (6), 451, 1992.

Markram, H., The human brain project, Scientific American, 306 (6), 50–55, 2012.

Markram, H., A. Gupta, A. Uziel, Y. Wang, and M. Tsodyks, Information processing with
frequency-dependent synaptic connections., Neurobiol Learn Mem, 70 (1-2), 101–112,
1998.

Mead, C. A., Analog VLSI and Neural Systems, Addison Wesley, Reading, MA, 1989.

Mead, C. A., Neuromorphic electronic systems, Proceedings of the IEEE, 78, 1629–1636,
1990.

Mead, C. A., and M. A. Mahowald, A silicon model of early visual processing, Neural
Networks, 1 (1), 91–97, 1988.

Merolla, P. A., et al., A million spiking-neuron integrated circuit with a scalable com-
munication network and interface, Science, 345 (6197), 668–673, 2014.

Metropolis, N., and S. Ulam, The monte carlo method, Journal of the American statistical
association, 44 (247), 335–341, 1949.

Mohamed, A.-r., and G. Hinton, Phone recognition using restricted boltzmann machines,
in Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Con-
ference on, pp. 4354–4357, IEEE, 2010.

136

Bibliography

Morrison, A., C. Mehring, T. Geisel, A. Aertsen, and M. Diesmann, Advancing the
boundaries of high-connectivity network simulation with distributed computing, Neural
computation, 17 (8), 1776–1801, 2005.

Naud, R., N. Marcille, C. Clopath, and W. Gerstner, Firing patterns in the adaptive
exponential integrate-and-fire model, Biological cybernetics, 99 (4-5), 335–347, 2008.

Neil, D., and S.-C. Liu, Minitaur, an event-driven fpga-based spiking network accelerator,
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 22 (12), 2621–
2628, 2014.

Numpy, Website, http://numpy.scipy.org, 2012.

Pecevski, D. A., T. Natschläger, and K. N. Schuch, Pcsim: A parallel simulation envi-
ronment for neural circuits fully integrated with Python, Front. Neuroinform., 3 (11),
2009.

Petrovici, M. A., Function vs. substrate: Theory and models for neuromorphic hardware,
Ph.D. thesis, 2015.

Petrovici, M. A., J. Bill, I. Bytschok, J. Schemmel, and K. Meier, Stochastic inference
with deterministic spiking neurons, arXiv preprint arXiv:1311.3211, 2013.

Probst, D., A neural implementation of probabilistic inference in binary probability
spaces, Master thesis, Ruprecht-Karls-Universität Heidelberg, 2014.

Probst, D., M. A. Petrovici, I. Bytschok, J. Bill, D. Pecevski, J. Schemmel, and K. Meier,
Probabilistic inference in discrete spaces can be implemented into networks of lif neu-
rons, Frontiers in computational neuroscience, 9, 2015.

Ray, S., and U. S. Bhalla, PyMOOSE: interoperable scripting in Python for MOOSE,
Front. Neuroinform., 2 (6), 2008.

Roth, M., Predictive stochastic inference - from abstract models to neuromorphic imple-
mentation, Bachelor thesis, Ruprecht-Karls-Universität Heidelberg, 2014.

Salakhutdinov, R., Learning deep boltzmann machines using adaptive mcmc, in Pro-
ceedings of the 27th International Conference on Machine Learning (ICML-10), pp.
943–950, 2010.

Salakhutdinov, R., and G. E. Hinton, Deep boltzmann machines, in International Con-
ference on Artificial Intelligence and Statistics, pp. 448–455, 2009.

Salakhutdinov, R., A. Mnih, and G. Hinton, Restricted boltzmann machines for col-
laborative filtering, in Proceedings of the 24th international conference on Machine
learning, pp. 791–798, ACM, 2007.

Salakhutdinov, R. R., Learning in markov random fields using tempered transitions, in
Advances in neural information processing systems, pp. 1598–1606, 2009.

137

http://numpy.scipy.org

Bibliography

Schemmel, J., A. Grübl, K. Meier, and E. Muller, Implementing synaptic plasticity in
a VLSI spiking neural network model, in Proceedings of the 2006 International Joint
Conference on Neural Networks (IJCNN), IEEE Press, 2006.

Schemmel, J., D. Brüderle, K. Meier, and B. Ostendorf, Modeling synaptic plasticity
within networks of highly accelerated I&F neurons, in Proceedings of the 2007 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS), pp. 3367–3370, IEEE Press,
2007.

Schemmel, J., J. Fieres, and K. Meier, Wafer-scale integration of analog neural net-
works, in Proceedings of the 2008 International Joint Conference on Neural Networks
(IJCNN), 2008.

Schemmel, J., D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner, A wafer-scale
neuromorphic hardware system for large-scale neural modeling, in Proceedings of the
2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1947–1950,
2010.

Schmah, T., G. E. Hinton, S. L. Small, S. Strother, and R. S. Zemel, Generative versus
discriminative training of rbms for classification of fmri images, in Advances in neural
information processing systems, pp. 1409–1416, 2008.

Smolensky, P., Information processing in dynamical systems: Foundations of harmony
theory, 1986.

Tang, Y., R. Salakhutdinov, and G. Hinton, Robust boltzmann machines for recogni-
tion and denoising, in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pp. 2264–2271, IEEE, 2012.

Taylor, G. W., and G. E. Hinton, Factored conditional restricted boltzmann machines
for modeling motion style, in Proceedings of the 26th annual international conference
on machine learning, pp. 1025–1032, ACM, 2009.

Taylor, G. W., G. E. Hinton, and S. T. Roweis, Modeling human motion using binary
latent variables, in Advances in neural information processing systems, pp. 1345–1352,
2006.

Tieleman, T., Training restricted boltzmann machines using approximations to the likeli-
hood gradient, in Proceedings of the 25th international conference on Machine learning,
pp. 1064–1071, ACM, 2008.

Tieleman, T., and G. Hinton, Using fast weights to improve persistent contrastive diver-
gence, in Proceedings of the 26th Annual International Conference on Machine Learn-
ing, pp. 1033–1040, ACM, 2009.

Tsodyks, M., and H. Markram, The neural code between neocortical pyramidal neurons
depends on neurotransmitter release probability, Proceedings of the national academy
of science USA, 94, 719–723, 1997.

138

Van der Maaten, L., and G. Hinton, Visualizing data using t-sne, Journal of Machine
Learning Research, 9 (2579-2605), 85, 2008.

Vogelstein, R. J., U. Mallik, E. Culurciello, and R. E.-C. Gert Cauwenberghs, A multichip
neuromorphic system for spike-based visual information processing, Neural Computa-
tion, 19, 2281–2300, 2007.

Wang, F., and D. P. Landau, Efficient, multiple-range random walk algorithm to calculate
the density of states, Physical Review Letters, 86 (10), 2050, 2001.

Weilbach, C., An online learning algorithm for lif-based boltzmann machines, Bachelor
thesis, Ruprecht-Karls-Universität Heidelberg, 2015.

Welling, M., A. Mnih, and G. E. Hinton, Wormholes improve contrastive divergence, in
Advances in Neural Information Processing Systems, p. None, 2003.

Yu, T., and G. Cauwenberghs, Analog vlsi neuromorphic network with programmable
membrane channel kinetics, in Circuits and Systems, 2009. ISCAS 2009. IEEE Inter-
national Symposium on, pp. 349–352, IEEE, 2009.

139

Acknowledgments (Danksagungen)

Ich danke:

Prof. Dr. Karlheinz Meier und Dr. Johannes Schemmel für die Aufnahme in der
Electronic Vision(s) Gruppe und die Möglichkeit diese Arbeit zu schreiben.

Mihai für die intensive Betreuung und viele lehrreiche Gespräche.

Christian, Ilja, Oliver, Vitali und Luziwei für die einzigartige Atmosphäre im Büro.

Allen Modelern für viele interessante Diskussionen.

Der gesamten Vision(s) Gruppe für das Beantworten vieler Fragen, den Diskussionen
beim Mittagessen und der besonderen Gruppenatmosphäre.

Oliver, Vitali, Mihai, Luziwei und beiden Christians für das Korrekturlesen dieser Arbeit.

Meiner Familie für die Unterstützung all die Jahre, die mir das Studium erst ermöglicht
hat.

141

Statement of Originality (Erklärung):

I certify that this thesis, and the research to which it refers, are the product of my own
work. Any ideas or quotations from the work of other people, published or otherwise, are
fully acknowledged in accordance with the standard referencing practices of the discipline.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die ange-
gebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, November 25, 2015
.......................................

(signature)

	Introduction
	Simulators and Emulators of Neural Networks
	Interfacing with Simulators and Emulators - PyNN
	Simulation Software
	NEST
	SBS

	Neuromorphic Hardware
	Spikey
	HICANN

	Theoretical Background
	Kullback-Leibler Divergence
	Boltzmann Machine
	Restricted Boltzmann Machine

	Sampling
	Metropolis-Hastings Algorithm
	Gibbs Sampling
	Adaptive Simulated Tempering

	Neural Sampling
	Leaky Integrate-and-Fire (LIF) Neuron Model
	Exponential- and Alpha-Shaped Synapse Model
	Conductance- and Current-based Synapses

	Tsodyks-Markram Model
	LIF Sampling
	Training Restricted Boltzmann Machines
	Contrastive Divergence
	Persistent Contrastive Divergence

	Data Visualization
	Star Plot
	Principal Component Analysis (PCA)
	Stochastic Neighbor Embedding (SNE)
	t-Distributed Stochastic Neighbor Embedding (t-SNE)
	Symmetrization of the SNE Cost Function
	Solving the Crowding Problem with Heavy-Tailed Distributions

	Visualization of Mixing in Generated Data
	Random Distributions
	Homogeneous Distributions
	Inhomogeneous Distributions

	Multimodal Distributions with Artificial Patterns
	Pattern Creation
	Mixing for the Artificial Multimodal Pattern
	Influence of System Size
	Influence of Pattern Strength

	MNIST Visualizations
	MNIST 3 Digits
	MNIST 10 Digits
	Reduced Image Size
	Normal Image Size

	Discussion

	Using Short-Term Plasticity to Improve Mixing
	TSO Mixing Approach
	Multimodal Distributions with Artificial Patterns
	MNIST 10 Digits
	Balancing Effects
	Imbalanced MNIST with 3 Digits
	Imbalanced MNIST with 10 Digits

	Discussion

	Discussion
	Outlook
	Appendix
	Appendix
	Acronyms
	Parameter
	Adaptive Simulated Tempering
	LIF Sampling
	Tsodyks-Markram Model
	Learning
	t-Distributed Stochastic Neighbor Embedding

	Mixing Image Sequences
	Random Homogeneous Distributions - Result Tables

	Bibliography
	Acknowledgments

