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Towards a Neuromorphic Implementation of Spike-Based Expectation
Maximization

In the spike-based expectation maximization (SEM) model, a population of stochastic neurons
learns to detect salient features in the spike patterns emitted by a forward projecting input
layer in an unsupervised manner. Such unsupervised learning models are particularly suit-
able for neuromorphic emulation, which is usually characterized by low power consumption
and high speed-up compared to simulation on conventional computing architectures. How-
ever, the original SEM model is rather abstract and therefore not amenable for a straightfor-
ward translation to existing neurmorphic devices. This thesis presents NSEM, a mechanistic
implementation of SEM that is compatible with state-of-the-art neuromorphic hardware. In
NSEM, we use LIF neurons with exponential synapses, which are a de-facto standard for neu-
romorphic devices, as well as double-exponential STDP. In particular, NSEM is targeted for
implementation on the NM-PM1 platform currently under development in the Human Brain
Project. Therefore, particular emphasis is put on modifying the synaptic plasticity rules to
be compatible to the characteristics of the NM-PM1. We provide a detailed discussion of
the network architecture and parametrization of NSEM and demonstrate the performance
of our implementation in a series of hardware-constrained software simulations. Further-
more, potential obstacles of a successful emulation on hardware are discussed and methods
for compensation presented.





Eine neuromorphe Implementierung von Spike-basierter Erwartungsmaximierung

Im sogenannten Modell von Spike-basierter Erwartungsmaximierung (SEM) lernt eine Popula-
tion stochastischer Neuronen unbeaufsichtigt typische Merkmale in Spikemustern einer auf
sie projizierenden Eingangsschicht zu erkennen. Modelle unüberwachten Lernens wie dieses
sind primäre Kandidaten für Emulation in neuromorpher Hardware, welche sich typischer-
weise durch eine niedrige Energieaufnahme sowie einen hohen Beschleunigungsfaktor im
Vergleich zur Simulation auf konventioneller Rechnerarchitektur auszeichnet. Jedoch ist das
ursprüngliche SEM-Modell eher abstrakt und daher nicht geeignet, direkt auf neuromorphe
Hardware portiert zu werden. Diese Arbeit stellt NSEM vor, eine mechanistische Implemen-
tierung von SEM, die kompatibel zu zeitgenössischen neuromorphen Systemen ist. NSEM
nutzt LIF-Neuronen mit exponentiellen Synapsen, welche einen de facto Standard für neuro-
morphe Systeme darstellen, sowie doppelt-exponentielles STDP. NSEM ist insbesondere für
die Implementierung auf der NM-PM1 Plattform gedacht, die im Rahmen des Human Brain
Project entwickelt wird. Daher wird besonderer Wert auf jene Modi�kationen gelegt, die not-
wendig sind, um die synaptischen Plastizitätsregeln an die Charakteristiken der NM-PM1 an-
zupassen. Netzwerkarchitektur und Parametrisierung werden im Detail erläutert, sowie die
Leistungsfähigkeit der Implementation in einer Serie Softwaresimulationen, welche Hardwa-
rebeschränkungen unterliegen, gezeigt. Des Weiteren werden mögliche Mechanismen, die
eine erfolgreiche Emulation in Hardware behindern könnten, sowie geeignete Kompensati-
onsmethoden, diskutiert.
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1 Introduction

A relatively recent development in theoretical neuroscience is to understand human reason-
ing in a Bayesian context [Knill and Pouget, 2004; Gri�ths and Tenenbaum, 2006; Gri�ths
et al., 2008; Oaksford and Chater, 2007; Doya et al., 2011]. Bayesian inference is quintessen-
tially probabilistic. Consider an observer who needs to �nd an explanation to a (possibly
noisy and ambiguous) piece of evidence, a task which the brain is practically constantly re-
quired to perform (e.g., deducing the nature of an object that is partially hidden from view).
A Bayesian observer takes into account both the nature of this evidence (essentially, a prob-
ability distribution) and his prior expectation (also a distribution) to produce a probabilistic
model of the underlying cause (again, a distribution over predictions). An increasing amount
of experimental evidence, from the behavioral [Körding and Wolpert, 2004] to the electro-
physiological [Berkes et al., 2011] level, appears to support this hypothesis.

However, it is still a mystery how the probabilistic computations required to perform such in-
ference tasks are implemented at the level of individual neurons and synapses. The sampling
hypothesis – one possible explanation – states that the brain is not analytically computing
probability distributions, but much rather operates on samples that are computed on-the-�y.
An intuitive example is provided by scenarios of perceptual ambiguity, such as the popular
duck-rabbit illusion shown in Figure 1.1. Our perception switches between the “duck” and
“rabbit” interpretations, in accordance with the bimodal distribution that would be predicted
by Bayesian reasoning, but the perceived animal is always a singular – we never experience
a “duck-rabbit superposition”. This suggests that, at some level, the brain activity encodes
samples from inferred probability distributions rather then explicitly representing the distri-
butions themselves.

Recently, the neural sampling theory developed in [Buesing et al., 2011] has linked activity of
spiking stochastic neuron models to samples drawn from probability distributions over binary
random variables (RVs). However, the original neural sampling model is rather abstract, with
built-in neuronal stochasticity, membrane potentials that are not a�ected by outgoing spikes,
rectangular post-synaptic potentials (PSPs) etc. All of these properties are neither found in
biology, nor are they featured in commonly used neural simulators. Even more importantly
for our purposes, they are largely incompatible with existing neuromorphic architectures.

[Petrovici et al., 2013] extend the theory to more biologically plausible and hardware-
compatible neural dynamics. In particular, the LIF sampling framework employs LIF neurons
with exponential synapses. The required stochasticity is provided by embedding in a noisy
environment, e.g., a larger spiking network. This framework has been successfully applied
to tasks such as strict Bayesian inference [Probst et al., 2015] or maximum likelihood (ML)
learning in the form of training deep Boltzmann machines (BMs) [Leng, 2014].
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1 Introduction

Building upon the neural sampling theory, [Nessler et al., 2013; Bill et al., 2015] show that
mutually inhibiting stochastic neurons are able to perform an online version of expectation
maximization (EM). By employing a certain form of synaptic plasticity, neurons are able to
identify hidden causes in their perceived input streams. In other words, neurons learn to en-
code the presence of particular spatial patterns in their receptive �elds and are subsequently
able to perform classi�cation tasks, such as discerning between handwritten digits. This
learning scheme – aptly named spike-based expectation maximization (SEM) – is completely
self-organized as well as unsupervised and can therefore serve as a stepping stone towards
understanding how the brain learns the Bayesian inference models that it appears to use.

Learning experiments are notoriously expensive in terms of raw simulation time when run on
conventional computing architectures. They are therefore prime candidates for implementa-
tion on inherently parallel and potentially accelerated computing substrates. Neuromorphic
hardware is usually designed with this exact purpose in mind. The Neuromorphic Physical
Model System 1 (NM-PM1) [Schemmel et al., 2010], under development in the Human Brain
Project (HBP) and based on previous architectures developed in the BrainScaleS (BSS) and Fast
Analog Computing with Emerging Transient States (FACETS) projects, aims for both inherent
parallelism and a very high speed-up factor by implementing physical models of neurons and
synaptic plasticity in analog hardware. Here, networks are no longer simulated by numerical
integration of large systems of di�erential equations (as is done on conventional computers),
but much rather emulated directly in analog circuitry. The achieved speed-up of 103 − 105

compared to realtime and 104 − 106 compared to regular large scale simulations conducted
on super-computers is particularly remarkable. Furthermore, its energy e�ciency compared
to traditional simulations [Müller, 2014] is an additional bonus.

However, while highly con�gurable, neuron models and especially synaptic plasticity mech-
anisms are �xed at a conceptual level on the NM-PM1 system: they obey an immutable set of
di�erential equations, with the only freedom lying in the choice of parameters. Therefore, in
this thesis, we build an extended model of SEM, which we denote as neuromorphic spike-based
expectation maximization (NSEM), which is speci�cally designed for compatibility with the
NM-PM1 system. It uses stochastic leaky integrate-and-�re (LIF) neurons with exponential
synapses while moderating neuronal activity via a spike-based implementation of homeosta-
sis. We provide an in-depth description of the SEM to NSEM translation and evaluate the
resulting network’s performance in extensive simulations. This investigation may also serve
as an exemplary study on the most important aspects of adjusting abstract theoretical models
for neuromorphic hardware. Furthermore, the developed software framework is presented,
along with a detailed discussion of potential future developments.

Thesis Outline

This manuscript is organized the following way: The theoretical concepts on which this thesis
is based are presented in Chapter 2. Here – in order to provide a general introduction to the
topic – we explain the general concepts of sampling and learning in spiking neural networks
and derive some of the core equations in greater detail.

2



Figure 1.1: The commonly known duck rab-
bit illusion serves as an illustration of the sam-
pling hypothesis: Human observers see either
duck or rabbit and not a superposition of both.
This suggests, that the brain is actively drawing
samples from the abstract distribution of possi-
ble explanations of the perceived visual stimu-
lus. Taken from: [McManus et al., 2010]

We then introduce the target neuromorphic hardware system in Chapter 3 and explain its key
characteristics. Furthermore, we detail the unique characteristics of the spike timing depen-
dent plasticity (STDP)-circuitry we have to take into consideration when aiming to emulate
theoretical learning models on a neuromorphic substrate.

All work in this thesis was performed using traditional computing devices. We therefore
take time to present the existing software upon which the new frameworks developed in this
thesis were based in Chapter 4.

The main topic of this thesis, the implementation of SEM in a LIF sampling environment while
ensuring fundamental compatibility for neuromorphic emulation, can be found in Chapter 5.
Here we give a step-by-step illustration on how to adjust the original synaptic update rule as
well as present a way of regulating the activity of stochastic neurons in a spike-based man-
ner. This is a crucial component of successful learning in spike-based networks. Following
this, we demonstrate the resulting network dynamics in a series of experiments. Also, we
show potential challenges for successful network operations and how to circumvent them if
possible.

Finally, in Chapter 6, we give a brief overview over what new software libraries and simulator
models were developed during this thesis. Where applicable, we evaluate the resulting speed-
up compared to previously available implementations.
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2 Theoretical Background

After a short introduction to probability theory that just serves to establish nomenclature,
this chapter introduces the theoretical concepts regarding sampling as well as learning that
are used throughout this thesis. The theoretical foundations of Neural Sampling, spike-based
expectation maximization (SEM) and leaky integrate-and-�re (LIF) sampling have been laid
down in [Buesing et al., 2011; Nessler et al., 2013; Petrovici et al., 2013]. Here, we take the
opportunity of presenting inference and learning in spiking neural networks as an integrated
concept, by providing both an intuitive approach, as well as a formal and detailed derivation
of its core equations, and by explaining connections to related formalisms from machine
learning.

2.1 Introduction to Probability Theory

The following short summary of essential concepts in probability theory is largely based
on [Bishop, 2006, chap. 1-2].

A random variable (RV) X describes the outcome of a stochastic process which is distributed
with a certain probability distribution p(x). In case the stochastic process can emit events x
from a set of �nitely many outcomes X = {x1, x2, . . .}, X is said to be discrete. For discrete
RVs, the probability mass function p : X → R associates each outcome x ∈ X with the
probability of it to occur. In order for p to be a proper probability distribution, two conditions
have to hold:

∀x ∈ X : p(X = x) ≥ 0 (2.1)∑
x∈X

p(X = x) = 1 (2.2)

If – on the other hand – X ⊆ R is uncountable, the RV X is said to be continuous. The
probability density function (PDF) f : X → R can then be used to determine the probability
of the outcome falling into a certain interval:

p(a ≤ X < b) =

∫ b

a

f(x) dx (2.3)

5



2 Theoretical Background

The following conditions have to hold for f :

∀x ∈ X : f(x) > 0 (2.4)
∀x ∈ R \ X : f(x) = 0 (2.5)∫

R
f(x) dx = 1 (2.6)

When dealing with several discrete RVsX, Y, Z we can de�ne the joint probability distribution
describing the probabilities of certain outcomes co-occuring:

∀x ∈ X , y ∈ Y , z ∈ Z : p(x, y, z) := p(X = x, Y = y, Z = z) ≥ 0 (2.7)∑
x,y,z

p(x, y, z) = 1 (2.8)

Please note that – while somewhat ambiguous – the shorthand p(x) := p(X = x) was
introduced to abbreviate the notation. The same goes for the notation

∑
x ≡

∑
x∈X .

The marginal probability distribution for a subset of RVs can be obtained by marginalizing
(summing out) over all other variables:

p(x) =
∑
y,z

p(x, y, z) (2.9)

By �xing the outcomes of some RVs and renormalizing we obtain the conditional probability
distribution, denoted by p(x|y, z) (the outcome of X conditioned on the outcome of Y and
Z).

p(x|y, z) =
p(x, y, z)∑
x′ p(x

′, y, z)
=
p(x, y, z)

p(y, z)
(2.10)

The joint, marginal and conditional probability distributions for sets of continuous (or mixed)
RVs can be written analogously.

Equation (2.10) is often called Bayes’ Theorem and written in the following way:

p(z|y) =
p(y|z)p(z)

p(y)
(2.11)

In this context p(z) is known as the prior-distribution, while p(y|z) and p(y) denote like-
lihood and evidence. Finally, p(z|y) is the posterior distribution which can – as shown in
Equation (2.11) – be obtained by combining prior knowledge and the likelihood. This process
is known as probabilistic inference.

6



2.2 Generative Models & Maximum Likelihood Learning

We can de�ne the expectation value of X given p for discrete and continuous RVs:

〈x〉p(x) := Ep(x) [x] =
∑
x

x p(x) (2.12)

〈x〉p(x) := Ep(x) [x] =

∫
X
x p(x) dx (2.13)

The variance is de�ned accordingly:

Varp(x) [x] =

〈(
x− 〈x〉p(x)

)2
〉
p(x)

(2.14)

=
〈
x2
〉
p(x)
− 〈x〉2p(x) (2.15)

2.2 Generative Models & Maximum Likelihood Learning

When trying to understand a stochastic process in the real world, it is often useful to model
the hypothetical data generation process of observable data points Y = {y1,y2, . . .} [Pearl,
1988]. The resulting probabilistic model – a probability distribution p(y|θ) – quanti�es how
likely it is to generate a data sample y given the current parameter vector θ. For this reason
these models are called generative: We could draw samples (see Section 2.4) from the prob-
ability distribution in order to generate “new” synthetic data – which �ts the observed data
depending on how well the generative model approximates reality [Bishop, 2006, chap. 8].

We assume that the data points observed were drawn from a probability distribution p∗(y)
which we do not know, but which we can approximate by the samples from our training data
Y . After choosing a suitable model – a task of scope beyond this thesis [Wit et al., 2012] –
we wish to approximate p∗(y) as closely as possible, that is to �nd the parameter vector θ̂
minimizing the Kullback-Leibler divergence (DKL) between p∗(y) and the likelihood p(y|θ).

θ̂ = arg min
θ

DKL(p∗(y)||p(y|θ)) (2.16)

In general, DKL is a kind of di�erence measure between two probability distributions. In order
to intuitively understand what the DKL encodes, suppose we have a random process that can
emit a set of eventsX = {x1, x2, . . .} and we want to communicate these events to a receiver.
We assume each x ∈ X is distributed with q(x) when in reality it occurs with probability
p(x). If we now construct an ideal coding scheme for X based on q(x), a message coding for
x will ideally have length1 ∝ ln 1

q(x)
= − ln q(x) – the more likely an event is, the shorter

its encoding can be kept and vice versa. Our messages will be longer on average because
of the following consideration: For each possible event x we can compare its probability in

1 Please note that a message length in bits is only obtained when using the binary logarithm (base 2), because
one bit is needed to encode an event occurring with a probability of 1

2 (whether it happened or not). But –
since all logarithms di�er only by a constant factor – the DKL can be used to quantify di�erences between
probability distributions no matter which logarithm base is used.

7



2 Theoretical Background

both distributions. If p(x) < q(x) the encoding should have been longer – we waste space
by having a short encoding for not so frequent events. If p(x) > q(x) then the event is more
frequent, hence we could have made the encoding shorter – again our message is longer than
it could have been.

The DKL quanti�es the expected overhead.

DKL(p||q) = 〈(− ln q(x))− (− ln p(x))〉p(x) (2.17)

=
∑
x∈X

p(x)︸︷︷︸
actual

probability to
occur

[− ln q(x)︸ ︷︷ ︸
assumed ideal

encoding
length

−(− ln p(x)︸ ︷︷ ︸
actual ideal
encoding

length

)] =
∑
x∈X

p(x) ln

(
p(x)

q(x)

)
(2.18)

This means that it is non-negative (DKL(p||q) ≥ 0) and 0 if and only if the two distributions
are identical. However, the DKL is not symmetric (DKL(p||q) 6= DKL(q||p)). For continuous
distributions the sums in Equation (2.17) are replaced by integrals.

Inserting the de�nition of the DKL into Equation (2.16) leads to:

θ̂ = arg min
θ

∑
y

p∗(y) ln

(
p∗(y)

p(y|θ)

)
(2.19)

= arg min
θ

∑
y

p∗(y) ln(p∗(y))︸ ︷︷ ︸
independent of θ

−p∗(y) ln(p(y|θ)) (2.20)

= arg max
θ

∑
y

p∗(y) ln p(y|θ) (2.21)

= arg max
θ

〈ln p(y|θ)〉p∗(y) (2.22)

≈ arg max
θ

∑
y∈Y

ln p(y|θ) (2.23)

In the last step we approximated the true probability distribution by its data samples. The
term ln p(y|θ) is known as log-likelihood, whereas the obtained parameter vector θ̂ is called
the maximum likelihood (ML) estimate.

If instead of the likelihood-function we wish to employ Bayes’ theorem (Equation (2.11)), that
is to �nd the set of parameters most probable given our prior-knowledge of parameters p(θ)

8



2.3 Boltzmann Machines

and the likelihood of such a parameter set generating our data p(y|θ):

θ∗MAP = arg max
θ

〈ln p(θ|y)〉p∗(y) (2.24)

≈ arg max
θ

∑
y∈Y

ln p(θ|y) (2.25)

= arg max
θ

[∑
y∈Y

ln (p(y|θ)p(θ))−
∑
y∈Y

ln p(y)︸ ︷︷ ︸
independent of θ

]
(2.26)

= arg max
θ

∑
y∈Y

ln (p(y|θ)p(θ)) (2.27)

θ∗MAP is called the maximum a-posteriori probability (MAP) estimate.

2.3 Boltzmann Machines

Boltzmann machines (BMs) [Ackley et al., 1985; Hinton, 2007] represent a certain form of
probabilistic model over binary RVs Z = (Z1, Z2, Z3, . . .). It is best to visualize them as a
network of interconnected units. Each unit (RV) Zi has an intrinsic tendency to be either “ac-
tive” (Zi = 1) or “inactive” (Zi = 0), represented by its bias bi. Pair-wise interactions between
RVs Zi, Zj are realized via symmetric weights Wij . The higher the weight the more likely
two units are to be active at the same time. If the weight Wij is di�erent from zero, the two
units are said to be “connected”, otherwise “unconnected”. The full probability distribution
for a state z can hence be given as

p(z) =
1

Z
exp

[∑
i,j

1

2
ziWij zj +

∑
k

bk zk

]
(2.28)

where Z is a normalization constant to ensure p(z) is a proper distribution. Z is often also
called partition function:

Z =
∑
z

exp

[∑
i,j

1

2
ziWij zj +

∑
k

bk zk

]
(2.29)

By associating each state with a corresponding energy, the probability distribution can be
reformulated as

E(z) = −
∑
i,j

1

2
ziWij zj −

∑
k

bk zk (2.30)

p(z) =
1

Z
e−E(z) (2.31)

Finding states with high probability is then analogous to minimizing the associated energy
function.

9



2 Theoretical Background

Restricted Boltzmann machines

A subclass of regular BMs are restricted Boltzmann machines (RBMs): Here, the units are par-
titioned into a set of layers L1, . . . ,LL each zk belongs to exactly one layer. The connectivity
is reduced in such a way that adjacent layers are fully connected with each other, while there
are no connections within each layer. The energy function then becomes:

E(z) = −
L−1∑
l=1

∑
{
i,j:

zi∈Ll
zj∈Ll+1

} ziWijzj −
∑
k

bk zk (2.32)

Note that the factor of 1
2

in the weight-term vanishes (compared to Equation (2.30)) because
we no longer sum over all pairs of units twice.

Usually, the �rst layer is called the visible layer and the corresponding RVs are denoted with
v whereas all other layers are called hidden with their RVs denoted by h. For the simplest
case, a two-layer RBM, the energy function can also be written as

E(v,h) = −
∑
ij

viWijhj −
∑
i

ai vi −
∑
j

bj hj (2.33)

where the newly introduced ai denote the biases of the visible units.

2.4 Sampling methods

Whenever one is dealing with probability models of practical interest, exact inference is in-
tractable. For example, a BM with N RVs has 2N states, all of which have to be summed over
in order to calculate the partition function. It is therefore necessary to consider approximate
inference methods such as sampling [Bishop, 2006, chap. 11]. Here a probability distribution
is approximated by drawing samples from it without ever explicitly calculating its partition
function.

2.4.1 Markov chain Monte Carlo sampling

In Markov chain Monte Carlo (MCMC) methods [Metropolis and Ulam, 1949], instead of start-
ing from scratch with every new sample drawn, we keep track of where we are in the proba-
bility space in step τ by noting the current sample z(τ). Each new sample z(τ+1) is drawn
from a transitional distribution pT (z(τ+1)|z(τ)) – also referred to as the transition opera-
tor T (z(τ+1), z(τ)). Each sample only depends just on the previous, not on the whole se-
quence of samples drawn beforehand. The probability space is therefore only searched lo-
cally instead of globally. This avoids calculating the partition function. Overall, the samples
{z(0), z(1), z(2), . . .} form a �rst-order Markov chain, which means the conditional distribu-
tion satis�es:

p(z(τ)|z(τ−1), . . . , z(1)) = p(z(τ)|z(τ−1)) (2.34)

10



2.4 Sampling methods

In other words: It does not matter where we already were in the probability space, it only
matters where we are “now”. This is also known as Markov property.

Metropolis-Hastings Algorithm

The way a new sample is actually produced di�ers from method to method. In some methods
samples are directly drawn from the transition distribution (see Section 2.4.2), in others they
are produced from a distribution q(z∗|z(τ)) easier to sample from and then accepted with an
acceptance probability:

A(z∗, z(τ)) = min

(
1,

q(z(τ)|z∗) p̃(z∗)
q(z∗|z(τ)) p̃(z(τ))

)
(2.35)

where p̃(z) = Z · p(z) is the unnormalized probability distribution to be sampled from. The
acceptance criterion in Equation (2.35) is known asMetropololis-Hastings algorithm [Hastings,
1970].

Invariance

Another important concept is invariance. We do not want to alter the probability distribution
p∗ from which we sample by our choice of sampling process. In other words, we want that
the following holds: ∑

z′

pT (z|z′) p∗(z′) !
= p∗(z) (2.36)

The overall probability of sampling a certain state z may not change from one sampling step
to another.

A su�cient, but not necessary condition to ensure invariance is detailed balance:

pT (z′|z) p∗(z)
!

= pT (z|z′) p∗(z′) (2.37)

Since then ∑
z′

pT (z|z′) p∗(z′) =
∑
z′

pT (z′|z) p∗(z) (2.38)

= p∗(z)
∑
z′

pT (z′|z) = p∗(z) (2.39)

For the Metropolis-Hastings algorithm, detailed balance is easily veri�able:

pT (z′|z) p∗(z) = A(z′, z) q(z′|z) p∗(z) (2.40)
= min (q(z′|z) p∗(z), q(z|z′) p∗(z′)) (2.41)

= min

(
q(z′|z) p∗(z)

q(z|z′) p∗(z′)
, 1

)
q(z|z′) p∗(z′) (2.42)

= A(z, z′) q(z|z′) p∗(z′) (2.43)
= pT (z|z′) p∗(z′) (2.44)

where we used that p∗(z′)
p∗(z)

= p̃∗(z′)
p̃∗(z)

.

11



2 Theoretical Background

Ergodicity

Apart from leaving the desired distribution p∗(z) invariant, the Markov chain also needs to
be ergodic, which means that

lim
τ→∞

p(z(τ)) = p∗(z) (2.45)

irrespective of the initial choice of state z(0).

Two necessary conditions for ergodicity are aperiodicity and irreducibility.

If there are transition probabilities such as

∃ñ, r̃ ∈ N : ∀n, r ∈ N lim
τ→∞

p(z(nτ+r))

{
6= 0 if n = ñ, r = r̃
0 otherwise (2.46)

the Markov chain is said to be periodic with period n.

Irreducibility means that it has to be possible to get from any state to any other state in a
�nite number of steps with non-vanishing probability as τ −→ ∞. This means that no part
of the state space can become inaccessible to us.

If the Markov chain is ergodic p∗(z) is said to be the equilibrium or stationary distribution.
It is straightforward to see that a Markov chain can have only one ergodic distribution. Also
here, detailed balance is a su�cient, but not necessary condition for ergodicity. A Markov
chain respecting detailed balance is said to be reversible. It is important to note that, among
others, the sampling dynamics of neural networks discussed later (see Section 2.4.3) are not
reversible while still sampling from correct stationary distributions.

2.4.2 Gibbs Sampling

Gibbs sampling [Geman and Geman, 1984] is a simple, but nevertheless widely applicable
MCMC algorithm. Here the state vector z = (z1, z2, . . . , zK)> is successively updated with
the conditional probability of one RV z

(τ+1)
k conditioned on all others:

pT (z(τ+1)|z(τ)) =
∏
k

p(z
(τ+1)
k |z(τ+1)

1 , . . . , z
(τ+1)
k−1 , z

(τ)
k+1, . . . , z

(τ)
K ) (2.47)

=:
∏
k

p(z
(τ+1)
k |̄z(τ+1)

k−1 , z̄
(τ)
k+1) (2.48)

As should already be obvious from Equation (2.47), a full sample is only obtained after all RVs
have been updated. Since the indexing of the RVs is essentially arbitrary, the order in which
they are updated does not matter but is �xed within a sampling step.
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2.4 Sampling methods

Figure 2.1: Interpretation of spiking dynamics as
samples. Each neuron (in this example three) en-
codes a binary RV. Each spike represents a state
switch of the corresponding RV from 0 to 1 for a time
period τon. At any time t a sample of the underlying
distribution can be drawn by checking which neu-
rons spiked in the interval (t− τon, t]. Illustration
taken from: [Buesing et al., 2011]

Detailed balance is easily veri�able:

pT (z|z′) p∗(z′) =
K∏
k=1

p∗(zk |̄zk−1, z̄
′
k+1) p∗(z′)

=

[
K∏
k=2

p∗(zk |̄zk−1, z̄
′
k+1)

]
p∗(z1|z′) p∗(z′)︸ ︷︷ ︸

p∗(z1,z′)

=

 K∏
k=k̃

p∗(zk |̄zk−1, z̄
′
k+1)

 p∗(
¯
zk̃−1, z

′)

= p∗(z, z′) (2.49)

=⇒ pT (z|z′) p∗(z′) 2.49
= p∗(z, z′) = p∗(z) p∗(z′) = p∗(z′) p∗(z) = p∗(z′, z) (2.50)
2.49
= pT (z′|z) p∗(z) (2.51)

Here we used that the joint distribution of two samples factorizes into the product of
marginals as well as

p∗(zk+1|̄zk, z̄′k+2) p∗(
¯
zk, z

′) = p∗(zk+1|̄zk, z̄′k+2) p∗(
¯
zk, z̄

′
k+2) p∗(

¯
z′k+1|̄zk, z̄′k+2) (2.52)

= p∗(
¯
zk+1, z̄

′
k+2) p∗(

¯
z′k+1|̄zk, z̄′k+2) (2.53)

= p∗(
¯
zk+1, z

′) . (2.54)

As can be seen from Equation (2.47), for each sample drawn, only M · K evaluations of
conditional probability distributions are needed (assuming each of the K RVs has M states)
– whereas evaluating the partition function would need up to MK .

2.4.3 Neural Sampling

The network dynamics of interconnected spiking neurons can be linked to MCMC sampling,
as shown in [Buesing et al., 2011]. Each neuron encodes for a binary RV Zk that is said to be
1 whenever the neuron is in a refractory period after emitting a spike and 0 otherwise (see
Figure 2.1).
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2 Theoretical Background

The su�cient condition for neurons to sample from the stationary probability distribution
p∗(z) is the neural computability condition (NCC):

uk(t) = ln
p∗(zk = 1|z\k(t))
p∗(zk = 0|z\k(t))

(2.55)

Each neuron needs to ful�ll the condition that its membrane potential encodes the log-odds
of the corresponding binary RV Zk being active or inactive – given the state of all other RVs
z\k – at any time step. Then the spiking activity of the network corresponds to samples from
the underlying probability distribution p∗(z).

Please note that the NCC implicitly forbids distributions with vanishing probabilities (that
is, states z̃ so that p(z̃) = 0). Reordering Equation (2.55) while using that p(zk = 0|z\k) =
1−p(zk = 1|z\k) shows that the overall probability for the neuron k to be active at any given
point in time is:

p(zk = 1|z\k) = σ(uk(z\k)) :=
1

1 + exp (−uk(z\k))
(2.56)

Hence each neuron has a logistic activation function.

In order to preserve the Markov property Equation (2.34), [Buesing et al., 2011] introduce a set
of internal variables ζ. Whenever a neuron �res, its corresponding ζk is set to the refractory
period2 τon ∈ N. Once ζk > 1, it decays linearly. Overall, the transition probability is de�ned
as follows:

pT (ζ, z|ζ ′, z′) = T (ζ, z|ζ ′, z′) =
∏
k

T k(ζk, zk|ζ ′k, z′\k) =
∏
k

p(zk|ζk) T k(ζk|ζ ′k, z′\k) (2.57)

p(zk|ζk) =

{
1 if (zk = 1 ∧ ζk ≥ 1) ∨ ( zk = 0 ∧ ζk = 0)
0 otherwise (2.58)

T k(ζk, zk|ζ ′k, z′\k) =


1 if ζk = ζ ′k − 1 ∧ ζ ′k ∈ [1, τon]

σ(uk(z\k)− ln τon) if ζk = τon ∧ ζ ′k ∈ {0, 1}
1− σ(uk(z\k)− ln τon) if ζk = 0 ∧ ζ ′k ∈ {0, 1}

0 otherwise
(2.59)

A schematic of the transition operator T k can be seen in Figure 2.2. The introduction of the
internal variables ζ is necessary because otherwise the state z(τ) would depend on the last τon
states {z(τ−1), . . . , z(τ−τon)} in order to know when the absolute refractory period was over.
This would lead to a Markov chain of order τon.

The term − ln τon in the transition probability is due to the discretization of the model: The
�ner the time steps, the larger τon gets (relatively) and the transition probability per time step
gets lower. We can show this by noting that the activation function Equation (2.56) denotes

2We are dealing with a discrete model, therefore the refractory time period is integer-valued. It can easily
be made biologically plausible by specifying what biological time interval one step in the discrete model
corresponds to.
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2.4 Sampling methods

Figure 2.2: Illustration of the theoretical neuron model with abso-
lute refractory mechanism. Shown is a schematic of the transition
operator T k for the state variable ζk. Whenever the neuron can
spike (ζk = {0, 1}) the probability to do so during one time step
is σ(uk − ln τon). Once spiked, ζk is set to τon and decays in de-
terministic fashion by one each time step. The state of the corre-
sponding binary RV is then Zk = 1 ⇔ ζk > 0. Illustration taken
from [Buesing et al., 2011].

the probability to �nd the neuron k in the active state at a random point in time. This is
di�erent from the spiking probability pspike of the neuron in each time step. We can motivate
this by deriving the activation from the transition probability: We simulate a stochastic neu-
ron with �xed uk for n time steps. In each time step, it has a probability to spike of pspike,
hence it �res an average of n · pspike, each time remaining in the active state for τon steps (TON
steps in total). Every time the neuron spikes, we increase the simulation time by τon steps.
Conversely, TOFF = n · (1 − pspike) steps the neuron does not spike. We hence have for the
activation function:

1

1 + e−uk
!

= p(zk = 1|z\k) =
TON

TON + TOFF
(2.60)

=
n · pspikeτon

n · (1− pspike) + n · pspikeτon
(2.61)

=
1

1
τon
· ( 1

pspike
− 1) + 1

(2.62)

=⇒ pspike(uk) =
1

1 + τon e−uk
= σ(uk − ln τon) (2.63)

The formal proof in [Buesing et al., 2011] then shows that p(ζ, z) is the unique invariant
distribution of operator T .

p(ζ, z) = p(ζ|z)p(z) = p(z)
∏
k

p(ζk|zk) (2.64)

p(ζk|zk) =


1
τon

if zk = 1 ∧ ζk > 0

1 if zk = 0 ∧ ζk = 0
0 otherwise

(2.65)

The Markov chain therefore samples from the joint probability distribution p(ζ, z) (Equa-
tion (2.64)), but since

∑
ζ p(ζ, z) = p∗(z) by construction, samples from p∗(z) are obtained

by omission of ζ(τ). The network can therefore carry out probabilistic inference over the un-
derlying distribution p∗(z). For example, the state of some z1, . . . , zl could be �xed to either 0
or 1 by forcing the membrane potential to either a very high or very low state. Then the dy-
namics of the remaining neurons correspond to samples from the probability distribution

p(zl+1, . . . , zK |z1, . . . , zl) (2.66)
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Furthermore, it is important to note that the sampling dynamics are not reversible as was the
case for MCMC chains demonstrating detailed balance (Section 2.4.1): While the transition
zk = 0 → zk = 1 is possible at any time and can be made arbitrarily likely by increasing
the membrane potential uk, once the spike has occurred, a neuron will stay in the refractory
period for τon. There is no way to induce the state switch zk = 1 → zk = 0 any sooner.
Nevertheless, the MCMC chain samples from the correct distribution.

In [Buesing et al., 2011], the theoretical framework is extended even further in order to include
continuous time and relative refractory periods, but these go beyond the needed scope3 of this
thesis and are not discussed further.

Neuron Dynamics

Until this point, we discussed neither the actual neuron dynamics that ful�ll the NCC nor how
the stationary probability distributions p∗(z) of such dynamics look like. A straightforward
example is to take the BM distribution (2.28) and insert it into Equation (2.55):

uk(z\k(t)) =
∑
j 6=k

Wjkzj(t) + bk (2.67)

where we made use of the fact that the weights are symmetric. We see that Equation (2.67)
corresponds to a basic neuron model, where Boltzmann weights Wij can identi�ed as the
strength of synaptic interaction and the bias bk as inherent excitability of a neuron. The
synaptic interactions are strictly rectangular (neuron j contributes a �xed amountWjk to the
membrane potential of neuron k the moment it is active; there is no rise or decay period)
and the model is inherently stochastic. The probability to spike is σ(uk(z\k) − ln τon) – see
Equation (2.59) – resulting in an instantaneous �ring rate rk(t):

rk(t) = lim
∆t→0

p(spike in [t, t+ ∆t])

∆t

=

{
1
τon

exp (uk(t)) if zk = 0

0 if zk = 1
(2.68)

BMs are a suitable model for many real-world problems, e.g., binocular rivalry [Alais and
Blake, 2005]. Nevertheless, they are limited to second-order interactions only – correspond-
ing to direct connections between point neurons exchanging spikes. By including more com-
plex interactions, either via (inter-) neurons, dendrites or other precomputing elements, the
class of representable joint distributions can be extended [Nessler et al., 2008]. This allows
for probabilistic inference in arbitrary Bayesian networks over binary RVs [Pecevski et al.,
2011].

3As will be discussed in Sections 2.4.4 and 3.1, the employed neuron model on the Neuromorphic Physical Model
System 1 (NM-PM1) features absolute refractory mechanisms only.
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2.4.4 Neural Sampling with stochastic LIF-Neurons

The theory of Neural Sampling can be extended into the domain of deterministic neuron
models, namely the leaky integrate-and-�re (LIF) neuron model [Petrovici et al., 2013]. When
a neuron is brought into a high-conductance state (HCS), the free membrane potential can
be described by an Ornstein-Uhlenbeck (OU) process, e�ectively adding stochasticity to the
otherwise deterministic neuron model. It can then be shown by rigorous theoretical treatment
that its activation function – the probability of �nding the neuron in a refractory state given
a certain mean membrane potential – follows a logistic function, �nally linking it to the NCC
(Equation (2.56)). We will go into more detail in the following.

Using stochastic LIF neurons for sampling has been successfully applied to further tasks, such
as Bayesian inference [Probst, 2014; Probst et al., 2015] as well as training deep BMs [Leng,
2014].

Deterministic Neuron Models

Other than the neuron dynamics discussed in Section 2.4.3, where neuron k had an inherent
probability to spike-based on its momentary membrane potential (Equation (2.68)), the adap-
tive exponential integrate-and-�re (AdEx) model [Brette and Gerstner, 2005] implemented on
the NM-PM1 (see Chapter 3) is completely deterministic. The dynamics of its membrane
potential uk are described by the following di�erential equations:

Cm
duk
dt

= −gL(uk − EL) + gL∆T exp

(
uk − VT

∆T

)
− w(t) + I(t) (2.69)

τw
dw

dt
= a(uk(t)− EL)− w (2.70)

where I is the input current, Cm is the membrane capacitance, EL is the leak reversal poten-
tial, gL the leakage conductance,w the adaption current, VT the threshold, ∆T the slope factor,
a the adaption coupling parameter and τw the adaption time constant. In theory, a spike is
said to occur when the membrane potential diverges towards in�nity. In practice, however, a
spike is detected when the membrane potential reaches a certain threshold ϑ := Vspike > VT .
The membrane potential is thus set to the reset value Vreset and kept there for the refractory
period τrefrac. Furthermore, the adaption current is augmented by an amount b: w → w+ b. If
a = 0, b = 0 (no adaption) and in the limit ∆T → 0 (no exponential sub-threshold dynamics),
the AdEx model reduces to the leaky integrate-and-�re (LIF) model.

The total input current I = I syn + Iext is comprised of two parts. On the one hand, there
is external stimulus Iext, e.g., a current injection, on the other we have synaptic input I syn

from other neurons. Depending on whether the synaptic interactions are modelled current
or conductance based, we have di�erent dynamics.

In case of a current-based approach, we have

I syn(t) =
∑
syn i

wik
∑
tsi

exp

(
−t− t

s
i

τsyn

)
Θ (t− tsi ) (2.71)
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where index i iterates over all a�erent synapses, {tsi} are the spike times arriving via synapse
i, wik is the weight of the synapse (connecting neuron i to k), τsyn its time constant and Θ(x)
is the Heaviside step function4.

Whereas for conductance-based synapses we have

I syn(t) =
∑
syn i

gsyn
i (t) (uk(t)− Erev

i ) (2.72)

gsyn
i (t) = wik

∑
tsi

exp

(
−t− t

s
i

τsyn

)
Θ (t− tsi ) (2.73)

where Erev
i is the reversal potential and gsyn

i the conductance of the i-th synapse. The main
di�erence between the two approaches – besides the latter being more biologically plausible
– is the total contribution of input current by a single spike is �xed in the current-based ap-
proach but highly variable in the conductance-based case, depending on the distance between
membrane potential and the reversal potentials. On the NM-PM1 (see Chapter 3) all synaptic
connections are conductance-based.

Noisy Environment

When a conductance based LIF neuron is subjected to a lot of synaptic input, it enters a so-
called high-conductance state (HCS) [Destexhe et al., 2003]. Its membrane potential dynamics
are then predominantly driven by the synaptic currents. This allows the reformulation of
Equation (2.69) – reduced to LIF – as

τe�(t)
duk
dt

= ue�
k (t)− uk (2.74)

τe�(t) =
Cm
gtot(t)

(2.75)

ue�
k (t) =

gLEL +
∑

syn i g
syn
i (t) Erev

i + Iext

gtot(t)
(2.76)

gtot(t) = gL +
∑
syn i

gsyn
i (t) (2.77)

where τe� is the e�ective time constant of the membrane dynamics (replacing τm = Cm
gL

),
ue�
k the e�ective leak reversal potential which the membrane potential follows with delay τe�

and gtot the total conductance.

In the context of sampling, the strong synaptic input is assumed to be di�use noise in the
form of random spikes from surrounding neurons, which recurrent networks are known to
produce [Brunel, 2000]. It is modelled via Poisson spike trains. The higher the �ring rate
of the noise (νsyn → ∞), the larger the average total conductance will become (〈gtot〉 → ∞)
causing the e�ective time constant to vanish (τe� → 0): The actual membrane potential
essentially follows the e�ective membrane potential instantaneously. We can thus rewrite

4The Heaviside function is de�ned as follows: Θ(x > 0) = 1, Θ(x < 0) = 0 and Θ(x = 0) = 1
2
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Equation (2.74) as

uk(t) ≈ ue�
k (t) =

gLEL +
∑

syn i 〈g
syn
i 〉 Erev

i +
∑

syn i ∆g
syn
i (t) Erev

i + Iext

〈gtot〉+
∑

syn i ∆g
syn
i (t)

(2.78)

〈gtot〉 = gLEL +
∑
syn i

〈gsyn
i 〉 (2.79)

∆gsyn
i (t) = 〈gsyn

i 〉 − g
syn
i (t) (2.80)

As shown in [Bytschok, 2011], for Poisson input we have

〈gsyn
i 〉 = wikνiτsyn (2.81)

Var[gsyn
i ] =

1

2
w2
ikνiτsyn (2.82)

and therefore the relative �uctuation of the synaptic conductances start to vanish for high
input rates: √

Var[gsyn
i ]

〈gsyn
i 〉

=
1√

2νiτsyn

νi→∞−→ 0 (2.83)

This justi�es a �rst order Taylor-expansion of Equation (2.78) in all ∆gsyn
i :

uk(t) ≈
gLEL +

∑
syn i g

syn
i (t) Erev

i + Iext

〈gtot〉
=:

1

〈gtot〉
J syn(t) +

gLEL + Iext

〈gtot〉
(2.84)

The membrane potential is hence a simple linear transformation of the synaptic noise J syn.
From Equation (2.73) is follows that the synaptic noise is described by this ordinary di�erential
equation (ODE):

dJ syn

dt
= −J

syn

τsyn
+
∑
syn i

∑
tsi

∆J syn
i δ(t− tsi ) (2.85)

where ∆J syn
i = wikE

rev
i and δ is the Dirac delta function5. [Petrovici et al., 2013] then link

Equation (2.85) to an Ornstein-Uhlenbeck (OU) process [Uhlenbeck and Ornstein, 1930]

dx(t) = θ · (µ− x(t)) dt+ Σ · dW (t) (2.86)

with θ,Σ > 0. An OU process consists of two parts: The immediate dynamics are described
by a Wiener process W (t), corresponding to a continuous random walk with variance Σ2.
Overall though, the dynamics tend to drift toward a long time mean µ, mitigated by the drift
constant θ.

5The Dirac delta function is de�ned as follows: δ(0) =∞, δ(x) = 0 otherwise, so that
∫∞
−∞ dxf(x)δ(x−x0) =

f(x0) for any function f .
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2 Theoretical Background

As for example shown by [Ricciardi, 1977], the probability density function f(x, t) of an OU
processes satis�es the following Fokker-Planck equation:

∂f(x, t)

∂t
= θ

∂

∂x
[(x− µ)f ] +

Σ2

2

∂2f

∂x2
(2.87)

For initial condition f(x, t = 0) = δ(x− x0), the unique solution is

f(x, t|x0) =

√
θ

πΣ2(1− e−2θt)
exp

(
− θ

Σ2

[
(x− x0e

−θt − µ)2

1− e−2θt

])
(2.88)

which decays over time to a stationary Gaussian distribution

fs(x) = lim
t→∞

f(x, t|x0) =

√
θ

πΣ2
exp

(
− θ

Σ2
(x− µ)2

)
. (2.89)

As proven in [Gerstner and Kistler, 2002; Petrovici et al., 2013], the following relation holds
for the synaptic noise J syn distribution

∂f(J syn, t)

∂t
=

1

τsyn

∂

∂J syn

[(
J syn −

∑
syn i

νi∆J
syn
i τsyn

)
f(J syn, t)

]

+

∑
syn i ∆J

syn
i

2

2

∂2f(J syn, t)

∂J syn2 (2.90)

Since Equation (2.90) has the same form as Equation (2.87), it follows that the synaptic noise
– and by linear transformation Equation (2.84) the membrane potential as well – can be de-
scribed by an OU process:

duk(t) = θ · (µ− uk(t)) + Σ · dW (t) (2.91)

θ =
1

τsyn
(2.92)

µ =
〈
ue�
k

〉
=
Iext + gLEL +

∑
syn i νiwikE

rev
i τsyn

〈gtot〉
(2.93)

Σ2 =

∑
syn i νi [wik(E

rev
i − µ)]2 τsyn

〈gtot〉
(2.94)

We can illustrate Equations (2.91) to (2.94) in the following way: The �rst part in Equa-
tion (2.91) corresponds to the membrane potential following its e�ective value with time
constant τe�, as we saw already in Equation (2.74). However, since we only consider noisy
Poisson input with �xed rates at the moment, the average e�ective potential is constant. We
arrive at Equation (2.93) by inserting Equation (2.81) into Equations (2.78) to (2.75) and uk
is constantly driven towards it because the neuron is in a HCS. The Wiener process in the
second part of Equation (2.91) is realized by spikes arriving at random times, corresponding
to steps in a random walk in either direction. The variance of such a process (Equation (2.94))
depends on the number of steps taken (the �ring rate) and the step length (synaptic weight
and the distance to the reversal potential) and is calculated using the result Equation (2.82).
It is important to note once again that we are only discussing stochastic di�use input here
and are hence only summing over such synapses.
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2.4 Sampling methods

Activation Function

After calculating the probability density function of the membrane potential f(uk, t|u0
k), – in

order to �nally link the stochastic LIF dynamics to Neural Sampling – we need to derive the
activation function.

In order to compute the overall probability to �nd a corresponding binary RV zk in the active
state p(zk = 1), we consider the situation where the e�ective membrane potential just crossed
the threshold ϑ and the neuron spikes. We therefore have a peaked membrane potential
distribution

f(ue�
k , t = tspike) = δ(ue�

k − ϑ) (2.95)

and zk = 1 in the active state. Even though the neuron is refractory (membrane potential is
kept �xed at Vreset), the e�ective membrane potential distribution continues to evolve freely
(see Equation (2.88) with parameters (2.92) to (2.94) and initial condition (2.95)). After the
refractory period, in the limit τe� → 0 the membrane potential instantly jumps back from
Vreset to the e�ective membrane potential – see Figure 2.3. As shown in [Petrovici et al., 2013],
after each refractory period, there are two cases to be distinguished: The e�ective membrane
potential can potentially be either above or below the threshold ϑ.

If the e�ective membrane is below the threshold ϑ, it evolves freely until it reaches the thresh-
old ϑ again – on average after the mean �rst passage time (FPT) – and is again described by
the initial condition Equation (2.95). If, on the other hand, it is above the threshold, another
spike is immediately elicited and the e�ective membrane potential distribution evolves for
another time period τon = τrefrac after which the two cases have to be distinguished again.

Therefore, given that the neuron spiked (Equation (2.95) holds), we generally observe an n-
spike-burst (with probability Pn) that lasts n · τon – in which the neuron is active – followed
by a time period Tn of subthreshold dynamics – in which the neuron is inactive. This leads
to:

p(zk = 1) =

∑∞
n=1 Pn · n · τon∑∞

n=1 Pn · (n · τon + Tn)
(2.96)

If the n spikes occur at times {t0 = tspike, t1 = t0 + τon, . . . , tn−1 = (n− 1) · τon} we get

P1 = p(u1 < ϑ|u0 = ϑ) =

∫ ϑ

−∞
du1p(u1|u0 = ϑ) (2.97)

T1 =

∫ ϑ

−∞
du1 〈T (θ, u)〉 p(u1|u0 = ϑ) (2.98)

whereui := ue�
k (ti), p(ui|ui−1) = f(ui, τon|ui−1) and 〈T (a, b)〉 =

〈
arg mint≥0 u(t) = a|u(0) = b

〉
is the average FPT (the time it takes the membrane potential to reach a for the �rst time
when initialized to b) for which no closed form expression is known [Thomas, 1975]:

〈T (a, b)〉 =
θ

Σ

√
π

2

∫ a

b

du exp

(
(u− µ)2

2Σ2

)[
1 + erf

(
u− µ√

2Σ

)]
(2.99)
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2 Theoretical Background

Figure 2.3: A: Membrane potential
uk(t) and spikes of a LIF neuron in
a noisy environment. B: uk(t) (blue)
andue�

k (t) (red) in a look almost iden-
tical in a HCS, unless the neuron is
refractory. After each consecutive
spike, the predictive distribution for
ue�
k (pink) widens. C: Theoretical

prediction (red) vs. a sigmoid logis-
tic function σ(ū) �tted to simulation
results (blue). Taken from: [Petrovici
et al., 2013]

All further values can be computed recursively because the e�ective membrane distribution
after the i-th spike is essential the initial distribution for evolution during the i+ 1-st refrac-
tory period. [Petrovici et al., 2013] derive the following:

Pn = (1−
n−1∑
i=1

Pi)

∫ ∞
ϑ

dun−1︸ ︷︷ ︸
above ϑ up until now

p(un−1|un−1 ≥ ϑ)

[ ∫ ϑ

−∞
dun︸ ︷︷ ︸

below ϑ when the burst ends

p(un|un−1)

]
(2.100)

Tn =

∫ ∞
ϑ

dun−1 p(un−1|un−1 ≥ ϑ)

[ ∫ ϑ

−∞
dun p(un|un < ϑ︸ ︷︷ ︸

renormalization

, un−1) 〈T (un, ϑ)〉
]

(2.101)

with

p(ui|ui ≥ ϑ) = p(ui|ui ≥ ϑ︸ ︷︷ ︸
renormalization

, ui−1 ≥ ϑ, . . . , u0 = ϑ) (2.102)

Furthermore, if a variable appears in both the free as well as conditional part of a probability
distribution, it indicates a renormalization of the PDF over the corresponding range.

For additional accuracy, [Petrovici et al., 2013] show that the derivation can be performed
for small but non-vanishing τe� as well. In this case Equations (2.74) and (2.85) represents a
system of �rst-oder ODEs that can be solved by standard techniques (variations of constants).
Post-synaptic potentials (PSPs), that previously were a linear transformation of the synaptic
conductances (Equation (2.84)), are now of di�erence-of-exponentials shape:

uPSP(t) = Θ(t− tspike)

[
wi(E

rev
i −

〈
ue�〉)τsyn

〈gtot〉

]e− t−tspike
τe� − e−

t−tspike
τsyn

τe� − τsyn

 (2.103)
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2.4 Sampling methods

Expansion in
√

τe�
τsyn

then leads to the corrected mean FPT for the membrane potential to reach
the threshold ϑ after being reset:

〈T (ϑ, Vreset)〉 = τsyn
√
π

∫ ϑe�−µ
Σ

Vreset−µ
Σ

dx exp (x2)[1 + erf(x)] (2.104)

with an e�ective threshold ϑe�

ϑe� = ϑ− ζ
(

1

2

)√
τe�

2τsyn
Σ (2.105)

where ζ denotes the Riemann zeta function.

Parameter translation

In order to translate between theoretical (Equations (2.56) and (2.67)) and biological domain
(Equation (2.69)), it is easiest to �nd the parameters for the following relation

p(zk = 1|z\k) = σ(uk)
!

= σ

(
ūk − ū0

k

α

)
(2.106)

where uk denotes the theoretical abstract membrane potential, ūk the average free biological
one, ū0

k is the relative o�set at which p(zk = 1|z\k) = 1
2

and α is the lateral dilation that
also needs to be accounted for in weight translations. ū0

k and α can either be calculated from
theory or �tted to simulation data.

Synaptic weights are translated by requiring that the area under the PSP during an active
state (with duration τon) be the same in the theoretical (rectangular shape) and biological
(di�erence-of-exponentials shape) domain.

Wik τon︸ ︷︷ ︸
rectangular PSP

!
=

1

α

∫ τon

0

dt uPSP(t) (2.107)

=
wik τe�

α 〈gtot〉
·
Erev
i −

〈
ue�
k

〉
1− τsyn

τe�

[
τsyn

(
e
− τon
τsyn − 1

)
− τe�

(
e
− τon
τe� − 1

)]
(2.108)

With τsyn = τon [Petrovici et al., 2013] obtain the following mapping between theoretical Wik

and biological weight wik:

Wik = wik ·

(
τe�

α 〈gtot〉
·
Erev
i −

〈
ue�
k

〉
1− τsyn

τe�

[(
e−1 − 1

)
− τe�

τsyn

(
e
− τsyn
τe� − 1

)])
(2.109)

=: wik ·
1

ftheo→bio
(2.110)
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2 Theoretical Background

Short Term Synaptic Plasticity

Another di�erence between the theoretical rectangular and the biological double exponential
PSP-shape is that the latter has an overshoot (uPSP(tspike +τon) > 0). If neuron k is burst-�ring
– corresponding to zk = 1 constantly – the PSPs of subsequent spikes will have a larger
in�uence than the �rst, distorting the sampling dynamics.

This can be mitigated by employing a short term plasticity (STP) model such as the Tsodyks-
Markram (TM) mechanism [Tsodyks and Markram, 1997; Markram et al., 1998; Tsodyks et al.,
1998]. Here, we take into account that neurotransmitters, upon transmitting a spike, are not
instantly replenished but instead recovered over time. It is modelled by the following set of
di�erential equations

du

dt
= − u

τfacil
+ USE(1− u)δ(t− tspike) (2.111)

dx

dt
=

z

τrec
− u x− δ(t− tspike) (2.112)

dy

dt
= − y

τsyn
+ u x− δ(t− tspike) (2.113)

dz

dt
=

y

τsyn
− z

τrec
(2.114)

where x, y, z ∈ [0, 1] denote the fraction of available, active and inactive synaptic vesicles
respectively, x− = x(tspike − ε) is the value of x just prior to spike transmittance and τrec is
the recovery while τfacil is the facilitation time constant. Whenever a spike is transmitted, only
a fraction u of the available resources is activated, decays with τsyn and is then recovered via
τrec. This implements short term depression (STD). Furthermore, short term facilitation (STF)
is implemented by the dynamics of u: Each consecutive spike in a short time period (∼ τfacil)
increases the fraction of available resources to be released. If τfacil = 0, u is simply kept
constant at USE.

Depending on whether the neuron model is current or conductance based, the synaptic cur-
rent or conductance is then modulated by y as only the active part of neurotransmitters can
help in signal transmission:

(current-based) Î syn(t) =
∑
syn i

wik
∑
tsi

yi(t
s
i ) exp

(
−t− t

s
i

τsyn

)
Θ (t− tsi ) (2.115)

(conductance-based) ĝsyn
i (t) = wik

∑
tsi

yi(t
s
i ) exp

(
−t− t

s
i

τsyn

)
Θ (t− tsi ) (2.116)

We avoid the overshoot of the exponential PSP by setting USE = 1, τfacil = 0 and τrec = τsyn.
The synapse becomes renewing: The inactive fraction (variable z) vanishes and the non-active
fraction is always available. This results in the PSP never exceeding the target maximum value
– even if the pre-synaptic neuron is constantly spiking.
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2.5 Learning

2.5 Learning

2.5.1 Contrastive Divergence

Contrastive divergence (CD) is a class of algorithms to train RBMs (Section 2.3) to represent
arbitrary probability distributions over the visible units [Hinton, 2002, 2010]. As always with
maximum likelihood (ML) learning (see Section 2.2), the objective function is to minimize the
DKL between the true distribution p∗(v) and the one represented by the model, p(v|W, a,b).
As we know from Equation (2.22) this corresponds to �nding:

W∗, a∗,b∗ = arg max
W,a,b

〈ln p(v|W, a,b)〉p∗(v) (2.117)

= arg max
W,a,b

〈
ln
∑
h

p(v,h|W, a,b)

〉
p∗(v)

(2.118)

The gradient can be computed as:

∂

∂Wij

〈ln p(v)〉p∗(v) =

〈
1

p(v)

∑
h

∂

∂Wij

1

Z
e−E(v,h)

〉
p∗(v)

(2.119)

=

〈
1

p(v)

∑
h

p(v,h)

[
vihj −

1

Z

∑
v′,h′

v′ih
′
je
−E(v′,h′)

]〉
p∗(v)

(2.120)

=

〈∑
h

p(h|v)vihj −
∑
h

p(h|v)
〈
v′ih
′
j

〉
p(v′,h′)

〉
p∗(v)

(2.121)

= 〈vihj〉p(h|v)p∗(v) − 〈vihj〉p(v,h) (2.122)
=: 〈vihj〉data − 〈vihj〉model (2.123)

where we omitted out the distributions’ (Equation (2.33)) explicit dependency on the param-
eters. The �rst term in Equation (2.123) corresponds to an average correlation term between
visible and hidden units where the state of visible layer is drawn from the true distribution
p∗(v) whereas the second term denotes the average correlation between the two nodes in the
current model distribution. Analogously, we �nd for the biases:

∂

∂ai
ln p(v) = 〈vi〉data − 〈vi〉model (2.124)

∂

∂bj
ln p(v) = 〈hj〉data − 〈hj〉model (2.125)

Parameter updates are hence performed in the direction of the gradients Equations (2.123)
to (2.125), modulated by an adaptive learning rate η:

∆Wij = η ·
(
〈vihj〉data − 〈vihj〉model

)
(2.126)

∆ai = η · (〈vi〉data − 〈vi〉model) (2.127)
∆bj = η ·

(
〈hj〉data − 〈hj〉model

)
(2.128)
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For a fully visible BM with interconnected visible units, but no hidden units, the following
learning rule can be derived in an analogue matter:

∆Wij = η ·
(
〈vivj〉data − 〈vivj〉model

)
(2.129)

As usual, the true distribution can only be approximated with training samples (often called
input images) and the updates are calculated by �xing v and then computing the expectation
values with the current model parameters. This is called stochastic steepest ascent.

Unfortunately, calculating the partition function Z in order to determine 〈·〉model scales ex-
ponentially with the number of units. It is therefore necessary to approximate the averages
〈·〉data 〈·〉model by drawing samples from the model distribution. This process is called con-
trastive divergence (CD) [Hinton, 2002]. CDn consists of the following:

• Initialize v(0) with the training sample.
• Draw a sample h(0) ∼ p(h|v(0)).
• Draw sample n times:

v(i+1) ∼ p(v|h(i)) (2.130)
h(i+1) ∼ p(h|v(i+1)) (2.131)

• Update weights and parameters according to:

∆Wij = η ·
(
v

(0)
i h

(0)
j − v

(n)
i h

(n)
j

)
(2.132)

∆ai = η ·
(
v

(0)
i − v

(n)
i

)
(2.133)

∆bj = η ·
(
h

(0)
j − h

(n)
j

)
(2.134)

Even with only one sampling step, CD1, while only crudely approximating the gradient and
optimizing a slightly di�erent objective function [Sutskever and Tieleman, 2010], works well
in practice.

Further enhancements such as persistent contrastive divergence (PCD) [Tieleman, 2008] im-
prove upon CD. Here the model term is essentially sampled from its own Markov chain,
independent of the current data sample. If the training images can be labeled somehow, there
is usually one such chain for every label. It learns signi�cantly better models than CD1 or
even CD10.

2.5.2 Expectation Maximization

Expectationmaximization (EM) is a general technique for �nding local maximimum likelihood
solutions for probabilistic models with latent variables [Bishop, 2006, chap. 9] in unsupervised
or semi-supervised fashion. That is, the model p(y, z|θ) includes two distinct kinds of RVs:
As usual, we have a set of observed variables y = (y1, y2, . . . , yN)> which our learning data
Y = {y1,y2, . . .} is comprised of. Then, there are the latent variables z = (z1, z2, . . . , zK)>.
These are not observed and do not appear in the training data and can only be inferred. They
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2.5 Learning

rather correspond to additional information the probabilistic model has about the problem at
hand and can help to reduce its dimensionality. Examples include the assignment data points
to cluster centers in k-means (see below) or the topics for a given document in probabilistic
topic models such as probabilistic latent semantic analysis (PLSA) [Hofmann, 1999] or latent
Dirichlet allocation (LDA) [Blei et al., 2003]. Sometimes they are also referred to as “hidden
causes” of the observable data. For instance, when modelling handwritten digits such as the
MNIST dataset [LeCun and Cortes, 1998], the latent variables z may encode which digit is
present in each image while the observed variablesy just correspond to the actual pixel values
the images are composed of.

As is usually the case with ML learning, the overall objective function to maximize is the ex-
pected log-likelihood 〈ln p(y|θ)〉p∗(y) where p∗(y) is the true distribution over the observed
data, approximated by input samples. However, if direct maximization is di�cult while max-
imizing the complete log-likelihood ln p(y, z|θ) is signi�cantly easier, the concept of EM is
applicable.

First we note that for any choice of non-vanishing distribution q(z|y) over the latent variables
conditioned on the observed ones, the following decomposition holds:

〈ln p(y|θ)〉p∗(y) =

〈∑
z

q(z|y) ln p(y|θ)

〉
p∗(y)

(2.135)

=

〈∑
z

q(z|y) ln

(
q(z|y)

q(z|y)
· p(y, z|θ)

p(z|θ,y)

)〉
p∗(y)

(2.136)

=

〈∑
z

q(z|y) ln

(
q(z|y)

p(z|θ,y)

)
+
∑
z

q(z|y) ln

(
p(y, z|θ)

q(z|y)

)〉
p∗(y)

(2.137)

= 〈DKL (q(z|y)||p(z|y,θ))〉p∗(y) + 〈L(q,θ)〉p∗(y) (2.138)

As can be seen from Equation (2.138) the log-likelihood decomposes into two factors: First
we have the DKL between our currently chosen distribution q and the a-posteriori distribution
of the model given our current choice of parameters. The second term in Equation (2.138) is
a functional L(q,θ) over the set of all possible distributions Q over our latent variables. For
now this set is unconstrained. Since the DKL is non-negative, it is straightforward to see that
L(q,θ) ≤ ln p(y|θ). Therefore L(q,θ) is a lower bound to the log-likelihood.

EM operates in two phases that are repeated until the algorithm convergences to a local ma-
ximum. Both are detailed below and illustrated in Figure 2.4. In each step, suppose that we
start with a current parameter vector θold.

Expectation-step

The �rst thing to note when looking at the decomposition Equation (2.138) is that the left
side does not depend on our choice of q(z|y). Also, the DKL measure is non-negative which
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2 Theoretical Background

Figure 2.4: Illustration of EM: In the M-step,
the parameters θ are maximized with regard
to the current lower bound L(q,θ) to the log-
likelihood ln p(y|θ). In the E-step, the distribu-
tion q(z|y) is adjusted by minimizing the DKL
between q(z|y) and the posterior distribution
p(z|y,θ), ideally setting it to zero. This gives
raise to a new lower bound. The two steps are
repeated until a local minimum is found. See
text for details. Illustration taken from [Bishop,
2006].

(q, θ)

θold θnew

ln p(y|θ)

means that by minimizing it we are maximizing the lower bound L(q,θ) while leaving the
log-likelihood itself untouched. The expectation step (E-step) hence consists of �nding:

q̂(z|y) = arg min
q∈Q

〈
DKL(q||p(z|y,θold))

〉
p∗(y)

(2.139)

Ideally – if the set of all possible distributions Q is unconstrained – this simpli�es to evalu-
ating the a-posteriori distribution q̂(z|y) = p(z|y,θold) as this reduces the DKL to zero.

Maximization-step

After �xing the distribution q̂ we can focus on increasing the lower bound.

θnew = arg max
θ

〈L(q̂,θ)〉p∗(y) (2.140)

= arg max
θ

〈∑
z

q̂(z|y) ln (p(y, z|θ))−
∑
z

q̂(z|y) ln (q̂(z|y))

〉
p∗(y)

(2.141)

= arg max
θ

〈∑
z

q̂(z|y) ln (p(y, z|θ))

〉
p∗(y)

(2.142)

= arg max
θ

〈ln (p(y, z|θ))〉p∗(y) q̂(z|y) (2.143)

We see that the maximization step (M-step) corresponds to maximizing the average complete
log-likelihood under our choice of distribution q̂(z|y) over the latent variables. As we postu-
lated above, maximizing the complete log-likelihood is signi�cantly easier than maximizing
the log-likelihood p(y|θ) directly.

The change in parameters θold → θnew obviously changes the a-posteriori distribution, re-
sulting in a now non-zero DKL-term in Equation (2.138). Hence another E-step becomes nec-
essary.

Since the E-step leaves the overall log-likelihood unchanged, and the lower bound is only ever
increased in the M-step, the EM algorithm is guaranteed to converge to a local maximum.
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Example: k-means

A very intuitive example for understanding EM is the k-means algorithm [Steinhaus, 1957;
MacQueen, 1967], illustrated in Figure 2.5. It aims to partition a set of observations Y =
{y1,y2, . . . ,yn} ⊆ Rd into k partitions S = {S1, . . . , Sk} such that the distance of all points
to their respective cluster center µi is minimal

arg min
S

k∑
i=1

∑
y∈Si

||y − µi||2 µi =
1

|Si|
∑
y∈Si

y (2.144)

The algorithm then operates as follows: In the E-step we simply assign each data point to
the closest cluster centers (which are initialized randomly). In the M-step we recompute the
positions of each clusters’ center from all data points currently assigned to it.

Even though k-means does not operate on probability distributions and instead uses hard
assignments, we can still draw parallels to the working principles of EM: The observed vari-
ables are the data points, the latent variables correspond to the cluster assignment of each
data point, whereas the positions of the cluster centers correspond to the free parameters
of the model we want to optimize. The updated assignments in the E-step correspond to a
re-evaluation of the a-posteriori distribution given the current cluster positions (the current
parameter vector). In the M-step the cluster center are updated as a direct result of our choice
of distribution over the assignments (i.e., the latent variables).
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Figure 2.5: Several training steps of the k-means algorithm to illustrate the principle of EM: In the
E-step we simply assign each data point to the closest cluster centers (which are initialized
randomly). In the M-step we recompute the positions of each clusters’ center from all data
points currently assigned to it. See text for details. Illustration taken from [Bishop, 2006]
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2.5.3 Spike-based Expectation Maximization

The concept of EM can be extended to the realm of Neural Sampling, aptly called spike-
based expectationmaximization (SEM). Here a group of stochastic neurons receives structured
spiking input. Using a combination of spike timing dependent plasticity (STDP) and intrinsic
excitability modi�cation, it can be shown that they perform a form of stochastic EM to �nd
the “hidden causes” in their input, e�ectively reducing its dimensionality [Nessler et al., 2008,
2009, 2013]. Broadly speaking, a stochastic online version of the EM algorithm is applied in
the following way: Spikes from the cause layer neurons correspond to a stochastic evaluation
of the E-step, as it samples from the current posterior of the underlying generative model
p(z|y,θ), where θ = {b′,V,W} is its parameter vector. The M-step is then realized via local
STDP update rules. Both steps will later be detailed further. Among other things, this network
motif can be used to learn Bayes-optimal decisions [Nessler et al., 2008], to optimally decode
population codes [Nessler et al., 2009, 2013; Habenschuss et al., 2013], be embedded in bigger
Bayesian inference tasks [Bill et al., 2015] or even extended to learn hidden Markov models
(HMMs) when reward-gated STDP learning is added to facilitate rejection sampling [Kappel
et al., 2014]. Furthermore, SEM-like update rules are suitable to be implemented on neurally
inspired hardware components such as Memristors [Bill and Legenstein, 2014].

The explicit generative model used as a starting point for the translation towards imple-
mentation on neuromorphic hardware (see Chapter 5) used for SEM is taken on [Bill et al.,
2015]. The general network architecture is outlined in Figure 2.6: The cause layer, a group of
stochastic neurons, receives structured input in form of Poisson spike trains from an input
layer. The cause layer itself forms a BM with very strong negative weights Vkl, e�ectively
turning it into a winner-take-all (WTA) circuit: Whenever one cause layer neuron �res the
others are strongly inhibited, ideally making it impossible for two cause layer neurons to be
active at the same time (Vkl → −∞). WTAs circuits are a common network structure when
modelling the neocortex [Lundqvist et al., 2006, 2010]. We then introduce the following gen-

y1

yN

inputs (e.g. Poisson spike trains)

z1

zk

zK

stochastic
neurons

yi

WTA-curcuit
via strong 

lateral inhibition

Vik

Wkl

Figure 2.6: Overview of the network architecture.
The cause layer – comprised of stochastic theoretical
neurons – receives input from an input layer that is
modelled via Poisson spike trains. The weights Wkl

between causelayer neurons are strongly inhibitory
to facilitate a WTA-like structure6. Only one cause
layer neuron should ideally respond to each pre-
sented input pattern. The weights Vkl between in-
put and cause layer evolve according to update rule
Equation (2.163).
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erative model:

p(y, z|θ) = p(y|z,θ) · p(z|θ) (2.145)

In accordance with the previous sections, y = (y1, . . . , yN)> denotes the N input variables
and z = (z1, . . . , zK)> are the K binary latent variables. Since the cause layer forms a BM
we have as prior

p(z|θ) =
1

Zprior
exp

[
1

2
z>Wz + b′

>
z

]
(2.146)

which is just a more compact way of writing Equation (2.28). Since we demand that at most
one cause layer neuron be active at any time, only one zk can explain the input pattern cur-
rently presented to the network. All input variables yi are hence independent given the state
of the latent variables.

p(y|z,θ) =
∏
i

p(yi|z,θ) (2.147)

Whenever the input neuron i �res, the variables yi is increased by one for a time period
τsyn, corresponding to non-renewing rectangular PSPs. yi(t) therefore denotes the number
of a�erent spikes in the time interval (t − τsyn, t]. This is also called eligibility trace in the
context of STDP learning. Since the input stream consists of Poisson spike trains, yi follows
a Poisson distribution:

p(yi|z,θ) = Pois (yi | λi0)1−
∑
k zk︸ ︷︷ ︸

default hypothesis

∏
k

Pois (yi | λik)zk (2.148)

Where we have the constraint 0 ≤
∑

k zk ≤ 1 as two latent variables cannot be active at the
same time. If zk is active, we have

yi ∼ Pois (yi | λik) :=
(λik)

yi

yi!
e−λik (2.149)

that is, the input neuron i �res with rate νik = λik/τsyn. The �ring statistics of each input
variable are “explained” by the active cause layer neuron alone. If, however, no cause layer
neuron is active, the input is said to be explained by a default hypothesis – also called null
cause – in which each neuron i spikes with rate νi0 = λi0/τsyn. This default hypothesis cannot
be learnt but is rather set by the experimenter prior to learning. It follows:

p(yi|z,θ) = Pois (yi | λi0)
∏
k

[
Pois (yi | λik)
Pois (yi | λi0)

]zk
(2.150)

=
(λi0)yi

yi!
e−λi0︸ ︷︷ ︸

=:h(yi)

∏
k

[(
λik
λi0

)yi
e−(λik−λi0)

]zk
(2.151)

= h(yi) exp
∑
k

[
yi ln

(
λik
λi0

)
︸ ︷︷ ︸

=:Vik

zk − (λik − λi0)︸ ︷︷ ︸
=:Aik

zk

]
(2.152)
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where h(yi) is a helper function gathering all terms that will play no role for inference. Please
note that the factors Aik = eVi0 · (eVik − 1) (where Vi0 = log λi0) were only introduced for
notational convenience and do not constitute independent parameters. Combining Equa-
tions (2.146), (2.147) and (2.152) we arrive at the full joint probability:

p(y, z|θ) = p(y, z|b′,V,W) =
h(y)

Zprior
exp

[
1

2
z>Wz + y>Vz + (b′ − 1>A)︸ ︷︷ ︸

=:b

>
z

]
(2.153)

=
h(y)

Zprior
exp

[
1

2
z>Wz + y>Vz + b> z

]
(2.154)

where h(y) :=
∏

i h(yi), Zprior is the normalizing constant of the prior and 1 = (1, . . . , 1)>.
Please note that b still depends on both b′ and V.

In order to show that our network can perform a stochastic online version of EM [Sato, 1999],
we need to investigate two things: First – for the E-step – we need to show that spikes from
the cause layer actually represent spikes from the model posterior distribution p(z|y,θ). Sec-
ondly, the to be derived STDP update rules have to raise the average complete log-likelihood
– corresponding to the M-step (compare Section 2.5.2, Equation (2.143)).

Expectation-Step

We employ the NCC, Equation (2.55), to �nd

uk
!

= ln
p(zk = 1|z\k,y,θ)

p(zk = 0|z\k,y,θ)
(2.155)

= ln

[
p(zk = 1, z\k,y|θ)/

∑
zk
p(zk, z\k,y|θ)

p(zk = 0, z\k,y|θ)/
∑
zk
p(zk, z\k,y|θ)

]
(2.156)

= ln

[
p(zk = 1, z\k,y|θ)

p(zk = 0, z\k,y|θ)

]
(2.157)

=
1

2

∑
j 6=k

(1 ·Wkjzj + zjWjk · 1) +
∑
i

yiVik · 1 + bk · 1 + ln (1)︸ ︷︷ ︸
all terms from Equation (2.154) without zk

appear in numerator and denominator

(2.158)

=
∑
j 6=k

zjWjk +
∑
i

yiVik + bk (2.159)

where we made use of the fact thatWkj = Wjk andWkk = 0. This corresponds to each cause
layer neuron k receiving input from the input layer via weights V, from the other cause
layer neurons via W, while being driven by an e�ective bias bk. We see that our generative
model Equation (2.154) does indeed satisfy the NCC. The spiking activity of the cause layer
therefore does represent samples from the posterior distribution (see Equation (2.139)), as
was required.
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Maximization-Step

The gradient of the average complete log-likelihood with the respect to our varying model
parameters is (remember that the prior-BM weights W and biases b′ are kept �xed)

∂

∂Vik
〈ln p(y, z|θ)〉p∗(y)q̂(z) =

〈
∂

∂Vik
ln p(y, z|θ)

〉
p∗(y)q̂(z)

(2.160)

=

〈
yizk − zk

∂

∂Vik
Aik

〉
p∗(y)q̂(z)

(2.161)

=
〈
zk
(
yi − eVik+Vi0

)〉
p∗(y)q̂(z)

(2.162)

By rescaling with eVik+Vi0 we arrive at the following learning rule:

dVik
dt

= η · zk(t) ·
(
yi(t) e

−(Vik+Vi0) − 1
)

(2.163)

Since the weight update points in the direction of the complete average log-likelihood gradi-
ent, the lower bound L(q̂,θ) is always increased (compare Equation (2.143)). It is important
to note that, in the current model de�nition, changing the weights Vik also changes the ef-
fective biases, since bk = (b′k −

∑
iAik). The sum over all inputs i is a non-local operation as

the cause layer neuron k needs to know the synaptic e�cacies of all a�erent input neurons.
This de�cit is remedied in Section 2.5.4.

The formalism presented can be applied to all likelihood distributions p(y|z,θ) which are
members of the natural exponential family

p(y|z,V) = h(y) exp
[
(Vz)>y − A(Vz)

]
(2.164)

with “arbitrary”7 h(y),Vz, A(Vz) = 1>A(Vz)1. Each probability distribution (e.g.,
Bernoulli, Gaussian or – as presented here – Poisson) leads to slightly di�erent update
rules [Bill et al., 2015].

2.5.4 Homeostasis

As already discussed in Section 2.5.3, in “regular” SEM, each cause layer neuron k needs to
keep track of all its a�erent synaptic weights Vik in order to adjust its e�ective bias bk =
b′k +

∑
iAik(Vik). Furthermore, all patterns need to be normalized, otherwise some patterns

have an intrinsic “advantage” over others to be evoked even though both appear at the same
frequency. This can only be somewhat accounted for by adjusting the regular bias b′.

A more plausible approach to account for time varying A is to apply homeostasis to the ac-
tivity of the cause layer neurons. Thas is, we impose a posterior constraint on the latent

7p(y|z,V) still has to be a proper probability distribution.
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variables [Habenschuss et al., 2012, 2013; Bill et al., 2015]: Each cause layer neuron is ac-
tively trying to maintain an externally set target activitymk. Theoretically, the setQ over all
possible distributions to chose from in the E-step (see Section 2.5.2) becomes constricted:

Qhom =
{
q : 〈zk〉p∗(y) q(z|y) = mk ∀k

}
(2.165)

where
∑

kmk =: pnet ≤ 1 represents the total probability of one cause layer neuron in the
network being active at any given time. This means that we expect the null cause to explain
the input 1− pnet of the time.

These constraints can be taken into account during the E-step via the use of Lagrange multi-
pliers. The Lagrange function Λ is then

Λ(q) = 〈DKL(q(z|y)||p(z|y,θ))〉p∗(y)︸ ︷︷ ︸
unconstrained objective function

−
∑
k

βk (〈zk〉q(z|y) p∗(y) −mk)︸ ︷︷ ︸
constraint on target activity

mk

−λ (〈1〉q(z|y) − 1)︸ ︷︷ ︸
q properly normalized

(2.166)
where βk, λ are the Lagrange multipliers. Setting the derivative with respect to q(z|y) to zero
for any choice of z and y yields the form of the optimal solution q̂(z):

∂

∂q(z|y)
Λ(q) =

〈
ln

(
q(z|y)

p(z|y,θ)

)
+ q(z|y)

p(z|y,θ)

q(z|y)

1

p(z|y,θ)︸ ︷︷ ︸
=1

−λ−
∑
k

zk βk

〉
p∗(y)

!
= 0

(2.167)
Here, we made use of 〈1〉q(z|y) = 〈1〉q(z|y) p∗(y), stating that p∗(y) is normalized. Since Equa-
tion (2.167) has to vanish for arbitrary choices of p∗(y), we can conclude that the term in
angle brackets over which we compute the average has to vanish.

0
!

= ln

(
q(z|y)

p(z|y,θ)

)
+ 1− λ−

∑
k

zk βk (2.168)

=⇒ q̂(z) = p(z|y,θ) exp

[
λ− 1 +

∑
k

βkzk

]
(2.169)

= exp [λ− 1]︸ ︷︷ ︸
normalization

exp

[
1

2
z>Wz + y>Vz + (b′ − 1>A− β)︸ ︷︷ ︸

=:bhom

>
z

]
(2.170)

= exp [λ− 1] exp

[
1

2
z>Wz + y>Vz + bhom> z

]
(2.171)

We see that we now sample from modi�ed version of the old posterior (which is normalized
due to the free factor eλ−1) where the biases are now driven by the factors βk (still to be
determined).

We �rst solve for λ:
1

!
=
∑
z

q̂(z) = eλ−1
∑
z

p(z|y,θ) exp
(
β>z

)
(2.172)

⇐⇒ λ = 1− ln
∑
z

p(z|y,θ) exp
(
β>z

)
(2.173)
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Inserting Equations (2.169) and (2.173) into Equation (2.166) yields the dual Ψ(β) where most
terms cancel out.

Ψ(β) =

〈
ln

(
p(z|y,θ)

p(z|y,θ)
e(λ−1+β>z)

)〉
p∗(y) q̂(z)

−
∑
k

βk

(
〈zk〉p∗(y) q̂(z) −mk

)
(2.174)

=
〈

(λ− 1) 〈1〉q̂(z)

〉
p∗(y)

+
〈
β>z

〉
p∗(y) q̂(z)

+ β>m−
〈
β>z

〉
p∗(y) q̂(z)

(2.175)

= β>m−

〈
ln
∑
z

p(z|y,θ) exp
(
β>z

)〉
p∗(y)

(2.176)

Here we used the fact that 〈1〉q̂(z) = 1 by choice of λ (see Equation (2.173)) twice: To cancel
out the last term of Equation (2.166) and to drop the averages over q(z) from Equation (2.175)
to Equation (2.176).

Analogous to [Habenschuss et al., 2012; Graca et al., 2007], by performing gradient ascent on
the dual Ψ(β), we get the gradient – and therefore the update rule – for the e�ective biases
(which are only a linear transformation of β):

∂

∂bhom
k

Ψ(β) =
∂

∂βk
Ψ(β) =

∂

∂βk

β>m−〈ln
∑
z

p(z|y,θ) exp
(
β>z

)〉
p∗(y)

 (2.177)

= mk −

〈∑
z zk p(z|y,θ) exp

(
β>z

)∑
z′ p(z

′|y,θ) exp (β>z′)

〉
p∗(y)

(2.178)

= mk − 〈zk〉p∗(y) q̂(z|y) (2.179)

=⇒ dbhom
k

dt
= ηb ·

(
mk − 〈zk〉p∗(y) q(z|y)

)
(2.180)

where ηb is the corresponding learning rate. Since we wanted to minimize the DKL in Equa-
tion (2.166), we have to maximize the dual and point our update rule in ascending gradient
direction. Intuitively, whenever the activity of neuron k is below the target mk the intrinsic
excitability bhom

k is increased. Conversely, if the average activity is too high, bhom
k is reduced.

The new bias-adjustments β “take care” of the non-localities A. Furthermore, the update
rules Equation (2.180) are completely local and therefore do not rely on any distributed in-
formation.
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Given the di�culties of observing neurons and synapses in vivo, computer simulations have
always been an important tool to investigate neural systems. These arti�cial neural networks
are an invaluable tool to investigate both low- and high-level network behavior and can serve
as the basis for new applications in many areas, such as robotics, ambient intelligence or
human machine interfaces.

Neural network consist of many units, each computing rather simple functions over their
input (i.e., other a�erent neurons). This is fundamentally di�erent from the von Neumann
architecture employed in the vast majority of information technology today. Here, compu-
tation is concentrated in comparatively few cores which can carry out more complex tasks.
Unfortunately, this technology is slowly running into physical limitations in terms of com-
putation speed and power consumption [Borkar and Chien, 2011], highlighting the need for
alternative technology when the famous yet fully empiric Moore’s Law [Moore, 1965] can no
longer be upheld.

One of these alternatives is neuromorphic computing [Mead, 1990; Douglas et al., 1995]. It
aims to build upon and mimic the working principles of biological neural networks: Instead
of solving a set of di�erential equations evolving in parallel via numerical methods, a phys-
ical model – electronic components behaving similarly to their biological counterparts – is
emulated rather than simulated [Schemmel et al., 2010]. very-large-scale integration (VLSI)
technology operates on much smaller time scales than typical neural structures in the brain
due to smaller capacities. Therefore, emulation in silicon has the bene�t that it is much
faster compared to biological real time. This allows for long term studies as well as vast
parameter sweeps to be conducted in acceptable time frames. Compared to traditional infor-
mation technology, these massively parallel circuits exhibit a much larger fault tolerance as
most components are non-essential and defects can simply be worked around, just like in the
brain. It is therefore feasible to do wafer-scale integration, that is, to not cut the silicon-wafer
into individual dies, but rather to inter-connect the chips in a post-processing step directly
on the wafer. Also, it is several orders of magnitude more energy e�cient than traditional
super-computer simulations [Müller, 2014].

The Neuromorphic Physical Model System 1 (NM-PM1), in development throughout the suc-
cessive projects Fast Analog Computing with Emerging Transient States (FACETS), BrainScaleS
(BSS) and Human Brain Project (HBP), follows these design goals [HBP SP9 partners, 2014;
Brüderle et al., 2011]. As can be seen in Figure 3.1, it is comprised of several wafer-modules,
each of which is separated into 48 reticles of which each consists of 8 high input count analog
neural network (HICANN) chips – the smallest conceptual building block of the system. Each
wafer can emulate up to 180 000 neurons and 40 000 000 synapses [Schemmel et al., 2010]. On
the wafer itself, spikes are routed via a network of asynchronous buses – the so called layer-1
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(L1) communication network. The system was designed with scalability in mind, allowing
for the inter-connection of several wafers via a synchronous packet-based communication
network called layer-2 (L2).

Figure 3.1: Short architectural overview of the
NM-PM1. Left: Each wafer consists of 48 reti-
cles, whereas each reticle consists of 8 HICANN
chips. Each HICANN has two symmetric
halves with neuron circuits and synapse ar-
rays. HICANNs are interconnected via hori-
zontal (blue) and vertical (red) asynchronous
buses than span the entire wafer (layer-1). An
exemplary spike path is shown in yellow: The
incoming spike packet is routed to the synapse
drivers. In case a neuron spikes the result-
ing spike packet is emitted back onto the rout-
ing network. Right: The o�-wafer communica-
tion is realized by a hierarchical packet-based
network (layer-2) via Digital Network Chips
(DNC) and Field Programmable Gate Arrays
(FPGA). Illustration taken from: [Petrovici et al.,
2014]

host PC

wafer

reticle

HICANN

DNC

FPGA

neuron
circuits

synapse arrays

This chapter is organized in the following way: First, the centerpiece of the current hardware
generation, the HICANN building block, is introduced. Then the current generation spike
timing dependent plasticity (STDP) update controller and the planned next-generation plas-
ticity processing unit (PPU) are introduced. The complete system speci�cation can be found
in [HBP SP9 partners, 2014].

3.1 HICANN Building Block

The smallest conceptual building block of the NM-PM1 is the high input count analog neural
network (HICANN) building block [Schemmel et al., 2008, 2010]. It was developed within the
BrainScaleS (BSS) project and has a symmetric structure: Top and bottom half are mirrored
versions of each other (see Figure 3.1 or Figure 3.2 left). The central part containing the ana-
log circuitry is aptly named analog network core (ANC). It consists of two parts: The 2× 256
neuron circuits – called dendrite membranes (DenMems) – and the much bigger synapse ar-
rays. Each implements the adaptive exponential integrate-and-�re (AdEx) neuron model with
conductance-based synapses (discussed in Section 2.4.4) with two synaptic input channels
and the possibility for constant external current injection. The DenMems are subdivided into
8 blocks of 64 circuits each. In each block, membrane potentials of several DenMems can
be short circuited to create larger neurons or simply combined to form multi-compartment
models [Millner, 2012].
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3.2 STDP Update Controller

The 224 × 256 synapse array represents the synaptic connections realized on the particular
chip. It is fed by 2 × 56 synapse drivers, each one supplying two synapse rows of the array.
Each DenMem receives input from one synaptic column, leading to 224 possible inputs per
DenMem and up to 224 × 64 = 14336 possible inputs per neuron (assuming a completely
connected DenMem block).

In case of a spike, a digital spike pulse packet is generated, consisting only of the 6-bit ad-
dress of the originating neuron. In the merger tree, this packet is then either time-stamped
and sent o�-wafer via the L2 network or injected onto one of the 64 horizontal buses. Here
it is routed throughout the wafer via sparse crossbar switches (Figure 3.2 left) towards the
target synapse driver. There, the digital spike event is translated back to an analog signal
(hence the term mixed-signal hardware). Based on the top two weights of the a�erent neu-
ron’s address, the signal is routed onto one of four strobe lines. Both the lower 4 address bits
and a reference signal of length τ STDF (modelling short term plasticity (STP), either depressing
or facilitating, see Section 2.4.4) are transmitted into the synapse array. Each synapse is stat-
ically connected to one of the four strobe lines. If the four bits match the address stored in a
synapse, a 4-bit digital-analog converter (DAC) generates the �nal current signal representing
the conductance with height proportional to the maximum conductance gmax multiplied by
the 4-bit weight wsyn for duration τ STDF so that the total charge transmitted corresponds to
the Tsodyks-Markram (TM)-modulated synaptic weight of the corresponding synaptic con-
nection. See Figure 3.2 right for an illustration.

The gmax of two adjacent synapse drivers can be con�gured to be a �xed multiple of each other,
thereby increasing the weight resolution to 8-bit while halving the number of synapses for
these synapse drivers.

Furthermore, besides the neuron circuits, there are 8 linear-feedback shift registers (LFSRs)
present on each HICANN. They serve as source of pseudo-randomness by injecting spikes
onto the L1 buses.

3.2 STDP Update Controller

Long term learning is incorporated into every synapse via spike timing dependent plasticity
(STDP) [Morrison et al., 2008]. Due to size constraints, there is always a trade-o� between
the number of realizable synapses and the complexity of each synapses circuitry [Schemmel
et al., 2006, 2010]. Having full-�edged STDP circuitry in every synapse is very costly in
terms of die area, therefore a compromise had to be reached: Each synapse only stores local
correlation information whereas the synaptic weights are updated periodically by a global
update controller1. The reasoning behind this is that weight dynamics typically evolve on
slower time scales than the immediate neural activity [Morrison et al., 2007; Kunkel et al.,
2011] and hence correlation measurements and weight updates can be separated.

1One update controller per half of the HICANN chip (224× 256 synapses total per controller).
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Figure 3.2: Left: Components and connectivity of the HICANN building block. Shown is the upper
part of the symmetric chip. The by far largest part is covered by the synapse array with
56× 2× 2 = 224 pre-synaptic inputs and 256 outputs, one for each DenMem neuron cir-
cuit, located at the center of the chip. Multiple DenMems can be combined to form larger,
multi-compartment neurons. Whenever a neuron circuit spikes, a digital asynchronous
event is emitted consisting only of the 6-bit neuron address. These pulses are then routed
via two statically con�gurable switches (crossbar rsp. synapse driver switch) in the asyn-
chronous L1 network to the target synapse drivers, operating two synapse rows each. The
switches themselves are sparse, meaning that not at every crossing exists a con�gurable
switch (the synapse driver switches only connect every 8-th row resulting in a sparseness
S = 8). It is important to note that the buses do not stop at the HICANN boundaries but
extend throughout the whole wafer. Illustration taken from: [Petrovici et al., 2014]. Right:
Conceptual overview of the synapse driver. Each synapse row driver listens for incoming
spike pulses and routes them onto one of four strobe lines based on top two bits of the
a�erent neuron’s address and emits a pulse packet with length τ STDF (the length is deter-
mined by a possibly active TM mechanism). Each synapse is connected to one of the four
strobe lines (indicated by A-D). If the lower four bits match, the synapses then reroute the
pulse into the corresponding column. The strength of the synaptic conductance is modu-
lated by the window length τ STDF, the maximum conductance gmax (set for the whole row)
and the actual 4-bit synaptic weight wsyn so that the total charge applied corresponds to
the TM-modulated synaptic weight (see Section 2.4.4).
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Figure 3.3:Overview of the working principles
of the STDP update controller. Red: For each
nearest-neighboring spike pair, a charge aSSP –
decaying exponentially with the pair’s absolute
time distance ∆t – is accumulated either in the
causal (pre-post pairing) or anti-causal (post-
pre pairing) capacitor (ac or aa respectively).
Green: Upon updating a synaptic weight, the
charge in both capacitors is compared against a
threshold ath from which it is decided in which
out of three possible LUTs a new digital weight
value is looked up based on the current one and
written back to the synapse. If the weight was
updated, both capacitors are reset. Illustration
taken from: [Pfeil et al., 2012]

The correlation measurement is performed in analog hardware and accumulated between
weight updates in each synapse. For this, there are two capacitors within each synapse. As
can be seen in Figure 3.3, for every post-synaptic (pre-synaptic) spike we measure the absolute
time distance to the latest pre spike (post spike) and apply a charge decaying exponentially
with said time distance to the causal (anti-causal) capacitance – see Figure 3.4.

The update controller then periodically reads out the capacitors synapse row by synapse row,
compares their charges in an adjustable fashion to controllable thresholds and – based on that
– may chose one (or none) of three look up tables (LUTs) that are programmed prior to each
experiment. In this LUT the new digital 4-bit weight is chosen based on the current one and
written back to the synapse. After each successful update, both capacitors are reset.

Despite these constraints, this STDP-scheme is able to successfully perform many learning
tasks [Pfeil et al., 2012].

Figure 3.4: STDP curves (grey) measured for
252 neurons (in a single synapse row) on the
Spikey chip – a predecessor to the HICANN
– along with their mean and standard devia-
tion (blue): Since the STDP window can only
be measured indirectly, we measure how many
spike pairs with a given time di�erence t it
takes to trigger a causal (t > 0) or anti-causal
(t < 0) weight update. The inverse 1/N then
corresponds to the STDP window shape. Plot
taken from [Pfeil et al., 2012]
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3 Neuromorphic Hardware

3.3 Plasticity Processing Unit

While the NM-PM1 being assembled and tested at the time of writing of this thesis, there are
nevertheless improved follow-up components planned and still under active development.
One such improvement is the HICANN-DLS [Hartel and Schemmel, 2014], a successor to the
current-generation HICANN chip. While the speci�cations have not been �nalized at the
time of writing, there are nevertheless some noteworthy concepts worth of discussion in the
context of learning.

The �rst point is that – due to further miniaturization – components shrink in size, allow-
ing the circuits to become more complex. Hence, the weight resolution of synapses can
be increased, presumably to 6-bit (corresponding to a fourfold increase in possible weight-
values).

The major improvement in terms of STDP is the inclusion of the so-called plasticity processing
unit (PPU) [Friedmann, 2013]. Instead of �xed LUTs in which the new weight is looked up in
a deterministic fashion, the PPU features a microprocessor capable of computing the updated
weights during the experiment. It implements a subset of the PowerISA 2.06 speci�cation for
32-bit architectures [PowerISA, 2010] and can be programmed using standard tools, namely
the C programming language and the GNU Compiler Collection. By including an external
reward signal, it allows for three-factor STDP learning. Here, the “regular” STDP signal is
modulated by an external reward signal that is either computed on the PPU itself or received
in a closed-loop manner from the outside [Friedmann et al., 2013].

The PPU also allows for stochastic weight updates. Instead of having the next weight be a de-
terministic function of the current weight and the state of the correlation capacitors, weights
can be updated in a non-deterministic, stochastic fashion. By choosing the update probabili-
ties accordingly, this can virtually increase the weight resolution, as many weight updates are
attempted, but only few succeed while ensuring that the long-term averages of the weights
are the same as if the weight resolution was much higher. This is not possible with �xed LUTs
as having the next weight be the current weight causes the weight to be stationary under the
same correlation conditions, i.e., whenever this LUT is chosen.

Furthermore, instead of comparing the charge in both capacitors to �xed thresholds,
HICANN-DLS will feature the direct readout of both charges via analog-to-digital converter
(ADC) – presumably with 8-bit resolution. This allows weight updates based on the con-
crete charge deposited in both capacitors instead of just whether a threshold was crossed. In
the same vein, the possible problem of reseting both capacitors independent of which charge
crossed what threshold is alleviated.
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Over the last 20 years, a variety of simulation environments have emerged in computational
neuroscience [Brette et al., 2007]. Each was born out of a di�erent set of needs – be it the mod-
elling of cellular dynamics in in-vivo or in-vitro experiments, generating the EEG impression
of vast networks of point neurons or the e�cient simulation of abstract theoretical models
– and hence each have their own individualities in scope, parameter naming conventions,
choice of algorithms and programming language.

In this chapter we will quickly introduce the existing simulation software upon which the
then developed frameworks (see Chapter 6) are based.

4.1 PyNN

PyNN
pyNN.pcsim

PyPCSIM

pyNN.brian

Brian

pyNN.hardware.facets

Python Control Layer

pyNN.nest

PyNEST

NEST

SLI

pyNN.neuron

nrnpy

NEURON

pyNN.neuroml

NeuroMLHOC

Simulator-Specific 
PyNN Module

Python Interpreter

Native Interpreter

Simulator Kernel

Mapping Process

PCSIM
NN

Chip

Configuration

Low-Level API & Communication

Figure 4.1: Schematic of the simulator-independent modelling language PyNN. See text for details.
Taken from: [Brüderle et al., 2011]

PyNN (pronounced ‘pine’) is a backend-agnostic modelling language for neural net-
works [Davison et al., 2008]. Written in Python [Rossum, 2000], PyNN aims to unify
descriptions of model networks over a large set of simulators. Up until its conception, code
written for one simulator – in the worst case – had to be rewritten from scratch in order to be
run on a di�erent back-end, severally hindering the reproducibility of simulation results.

PyNN de�nes a set of standard neuron models and synapse types which need to be supported
by each backend. Its application programming interface (API) abstraction is two-fold: On the
lower end, the user can specify and neurons and connect them directly in a very �exible
way, while the high-level API operates on the scale of populations that can be connected
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4 Simulation Software

via several di�erent synapse types in a series of connection schemes (all-to-all, one-to-one,
random, distance dependent etc.).

After the user has speci�ed his network model, depending on which backend was chosen,
PyNN then translates the common parameters and network description into the backend-
speci�c equivalent in an automatic fashion. In the ideal case, switching from one backend
to the next can be done by just changing one line of code1. The network simulation is then
performed in the backend’s native environment. Any possible results (e.g., recorded spike
trains/voltage traces) are loaded back into the Python environment after the simulation run
has completed.

As can be seen in Figure 4.1, PyNN currently supports the following simulation and em-
ulation backends: NEST [Diesmann and Gewaltig, 2002], NEURON [Hines and Carnevale,
2003], PCSIM [Pecevski et al., 2009], Brian [Brette and Goodman, 2008], NeuroML [Gleeson
et al., 2010] and the Neuromorphic Physical Model System 1 (NM-PM1)-backend as described
in Chapter 3. Especially in the latter case, having an abstract network description is invalu-
able since the average hardware user will not have the working knowledge to con�gure, for
example, crossbar switches or translate between parameters from the physical and biological
regime.

4.2 NEST

For this thesis, most2 simulations were carried out usingNEural Simulation Tool (NEST) [Dies-
mann and Gewaltig, 2002] as backend for PyNN. Written in C++, it focuses mainly on the
simulation of large networks of point neurons with biologically realistic connectivity pat-
terns. Since it is designed to be run on super-computers where performance is of critical
issue, supports parallelization in the forms of multi-threading and multi-processing (in the
form of message passing), allowing simulations to be distributed over multiple cores on a sin-
gle machine as well as multiple machines in a network. It is optimized for high performance
computing and can easily handle up to 105 neurons, making heavy use of the GNU Scien-
ti�c Library (GSL) [Galassi et al., 2009], especially for solving ordinary di�erential equations
(ODEs) and random number generation. Memory usage is minimized by storing synapse
information only on the node computing the post-synaptic neuron [Morrison et al., 2005].
Furthermore, more complex synapse types store their static common parameters only once
for all their instances to conserve even more memory so that each instance can read them
from the same memory location.

NEST features several user interfaces: First and oldest, there is SLI, a native interpreter us-
ing a high level scripting language. This stack-oriented programming language with post�x
notation might seem a bit outlandish compared to more modern scripting languages such as
Python; it is used to create and interconnect networks, read and set parameters, de�ne and

1import pyNN.<backend> as sim
2As discussed in Section 6.2, only the abstract theoretical models were simulated using a custom Boost.Python-

wrapped C++ solution. All other simulations were carried out using NEST.
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execute functions (e.g., probabilistic or distance dependent connectivity) and also features ex-
ception handling in case an error occurs during simulation. Furthermore there is PyNEST, a
Python API that has the same feature set as SLI since internally it translates user commands
are translated to SLI instructions. Finally, there the already mentioned NEST backend for
PyNN, implementing PyNN’s API on top of PyNEST (see Figure 4.1).

4.3 Contributions

During this thesis, some programming work has been done on PyNN. Several patches were
submitted for the pyNN.nest-backend to make it more compatible when handling native
NEST synapses: In order to conserve memory, NEST has the notion of common synapse pa-
rameters that are set for a whole synapse model. This way, on each computing node every
model instance can simply look up these common parameters at the same memory location.
Each synapse then only has to store local parameters (e.g., its weight or its local state in case
of synapse dynamics) resulting in fewer memory used in total.

For the standard models, common parameters were handled correctly. However, when using
native nest synapse types – which are only thinly wrapped – PyNN had no notion of local
and common synapse parameters. This lead to errors in the execution of simulations since
local and common parameters are set via di�erent functions in PyNEST (SetStatus versus
SetDefaults). For this thesis, a lot of custom synapse types were developed to study various
aspects of emulating spike-based expectation maximization (SEM)-learning on hardware (see
Chapter 3). It was therefore necessary to extend the PyNN.nest-backend to distinct between
both types of parameters.

Furthermore, several new models and synapse types in NEST were developed during this
thesis. They are detailed in Section 6.4.
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5 Waferscale Neuromorphic SEM:
Challenges & Solutions

Learning tasks such as spike-based expectation maximization (SEM) are typically conducted
over very long time periods and are thus resource intensive to carry out on regular simulation
equipment. The very high speed-up factor of 103 − 105 on neuromorphic hardware would
shorten the time span required for each network’s emulation from hours or even days for
larger networks to a mere few seconds. This provides many interesting opportunities for
conducting large scale real world learning tasks.

Unfortunately, we are not as �exible in regards to what network dynamics we can emulate,
as neuron dynamics and the spike timing dependent plasticity (STDP)-processing elements are
implemented as physical components in hardware and thus �xed. This makes a one-to-one
implementation of some learning tasks di�cult. Thus, one of the main goals of this thesis
was a feasibility study as to whether the theory of spike-based expectation maximization
(described in Section 2.5.3) could be implemented in neuromorphic hardware, namely the
the waferscale system Neuromorphic Physical Model System 1 (NM-PM1) (described in Chap-
ter 3).

5.1 Network Setup

The network setup is detailed in Figure 5.1. It closely resembles the setup in the original model
(see Figure 2.6): An input layer – whose structured �ring characteristics we want to learn – is
projecting onto the (hidden) cause (detection) layer. This cause layer forms a BM over binary
variables z with very strong inhibitory weights so that – in a WTA-like fashion – only one
neuron may be active at any time. Nevertheless, there are some key di�erences to the original
model: The cause layer neurons – which are intrinsically stochastic in the theoretical model
– are now deterministic LIF-neurons (see Section 2.4.4) that are brought into the stochastic
regime by both excitatory as well as inhibitory Poisson background stimulus.

The mutual inhibition of the cause layer neurons is realized via an inhibitory population
consisting – for computational simplicity – of a single LIF-neuron with parrot-like behavior:
Its parameters and the weight of all synapses projecting onto it were chosen in such a way that
each spike from the cause layer is enough to elicit a spike from the inhibitory inter-neuron
(after roughly 1.2 ms). The inhibitory population projects onto all cause layer neurons with
very strong inhibitory weights so that all cause layer neurons are prohibited from spiking
while the currently active one is in its refractory period. The choice to implement the WTA-
dynamics of the cause layer in such a way was made for two reasons: Firstly, we want to
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5 Waferscale Neuromorphic SEM: Challenges & Solutions

Figure 5.1: Overview of the network architecture. The cause layer – comprised of LIF neurons
brought into the stochastic regime by excitatory and inhibitory Poisson input – receives
input from an input layer that is modelled via Poisson spike trains. Its aim is to distinguish
hidden causes in the presented input stimuli. The cause layer neurons are connected via
an inhibitory population with parrot-like behavior: Each spike from a cause layer neuron
elicits a spike from the inhibitory population, preventing all other cause layer neurons
from �ring. The cause layer therefore forms a WTA-like structure (representing a BM
with very strong inhibitory weights). Therefore, it follows that only one cause layer neu-
ron can ideally respond to each presented input pattern. The weights Vik between input
and cause layer evolve according to update rules detailed in Section 5.3. The activity of
each cause neuron is kept at a predetermined value via dynamic synapses, implementing
a form of spike-based homeostasis described in Section 5.2.

uphold Dale’s Law [Eccles et al., 1954] when embedding the excitatory pyramidal cells the
cause layer represents into larger network structures and, secondly, implementing mutual
inhibition over a common inter-population takes much less routing resources in hardware
as we only need to connect each cause layer neuron to the inhibitory population and vice
versa (versus connecting every cause layer neuron with every other cause layer neuron).
Another bene�t is that inhibition becomes symmetric. If the active cause layer neuron is
directly inhibiting all others, a new problem arises: The inhibition needs to be strong enough
to prevent any other cause layer neuron from spiking. After the refractory period is over,
each neuron should have the same initial probability to spike again (before accounting for
the current input etc.). This becomes very hard to tune: If the weight is too low, several
cause layer neurons can be active at the same time. If it is too high, the currently active
cause layer neuron has a distinct advantage to spike again after its refractory period. This
is especially crucial in the initial training phase. Both problems are eliminated if all neurons
receive the same inhibitory signal. Finally, the delay between the cause layer neuron spike and
the inhibitory signal was chosen to correspond to the average �xed delay we experience in
hardware (on biological time scales), as emulations are executed in real time and the physical
signals travel at �nite velocity through the silicon substrate. Direct instantaneous inhibition
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5.2 Spike-based Homeostasis

is hence not possible. See Section 5.4.6 for further information how this a�ects network
dynamics.

Another di�erence is the way homeostasis is implemented: In the theoretical model the self-
regulatory mechanisms were directly integrated into the neuron models whereas on hard-
ware, we have to resort to external solutions. They are detailed in Section 5.2.

Finally, for a variety of reasons, the original update rule Equation (2.163) for the weights
Vik between input and cause layer is not directly transferable to the hardware domain and
therefore needs to be modi�ed. The adjustments are detailed in Section 5.3. During simula-
tion, the theoretical weight is translated from the Boltzmann-regime to biological synaptic
conductances using the weight translation factor ftheo→bio (see Equation (2.110)).

5.2 Spike-based Homeostasis

As outlined in Section 2.5.4, we need a way to regulate the e�ective bias bhom
k of each cause

layer neuron (representing binary variable zk) in order to maintain a set target activity mk.
The derived updated rule was Equation (2.180):

dbhom
k

dt
= ηb ·

(
mk − 〈zk〉p∗(y) q(z|y)

)
(5.1)

where pnet =
∑

kmk ≤ 1 is the network’s total probability to explain the observed input (as
opposed to the null cause), p∗(y) is the true input distribution, ηb the learning rate and q(z|y)
a distribution from the constrained set Qhom evaluated in the expectation step (E-step):

Qhom =
{
q : 〈zk〉p∗(y) q(z) = mk ∀k

}
(5.2)

In computer simulations Equation (5.1) can be implemented immediately – either as a dy-
namic intrinsic variable when simulating the abstract theoretical model (detailed in Sec-
tion 2.4.3) or indirectly as a dynamic current injection or shift of the resting membrane po-
tential when simulating with LIF neurons (see Section 2.4.4).

However, as detailed in Section 3.1, adjusting neuron parameters mid-simulation on the
NM-PM1 is not feasible. We therefore need another way to modulate the �ring activity of
each cause layer neuron externally. A straightforward spike-based solution is to connect each
neuron zk to an additional background source. The synaptic weight whom

k is then adjusted as
follows

∆whom =

{
+ cpre for every pre-synaptic spike
− cpost for every post-synaptic spike (5.3)

where cpre and cpost are two adjustable constants. At equilibrium we have:〈
whom
k

〉 !
= 0 (5.4)

=⇒ cpre · νpre = cpost · νpost (5.5)
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where νpre and νpost are the �ring rates of the pre- and post-synaptic neuron (i.e., additional
background source and cause layer neuron). By rearranging we obtain

νpost =
cpre

cpost · ν
pre =: chom · νpre (5.6)

We can thus adjust the post-synaptic �ring rate by choosing the ratio of absolute weight
updates accordingly.

In order to translate the update rule for a given target activitymk, we �rst note that a response
probability of pnet = 1 corresponds to the cause layer �ring whenever possible. Since the
weights W of the corresponding BM over the cause layer are in�nitely negative, no two
cause layer neurons can be active at the same time. Hence, the cause layer can emit a spike
after every refractory period τrefrac. The highest possible �ring rate is therefore νmax

net = 1/τrefrac.
The target �ring rate for cause layer neuron k �ring with a fraction mk of the networks total
activity is then

mk · νnet !
= ν

pre
k = chom

k · νpre (5.7)

=⇒ chom
k = mk ·

νnet

νpre (5.8)

The �nal spike-based homeostatic update rule is therefore

∆whom = ηb

{
+mk · ν

net

νpre for every spike from background source
−1 for every spike from cause layer neuron k (5.9)

Intuitively, whenever the k-th cause layer neuron is not active enough (or not active at all) the
weight is increased on average, whereas if it is �ring too often the weights are decreased.

In actual simulations, in order to satisfy Dale’s Law [Eccles et al., 1954], two separate home-
ostasis synapses (with two separate sources) are created pre cause layer neuron. One is re-
stricted to positive weights while the other one is restricted to negative ones only.

As background sources for spike-based homeostasis the �rst and most readily available model
was the default Poisson generator implementation. This has some draw backs, due to the
irregularity of the emitted spike train, the overall homeostatic in�uence varies and is not as
constant as a directly adjusted bias would be. By using high �ring rates, this e�ect can be
reduced. It can be remedied further by using regular spike trains from a more periodic source
model (described in Section 6.4.11) implemented later during this thesis. Both source models
are compared in Section 5.4.4. At lower rates, they are able to in�uence network dynamics
substantially.

Potential Emulation on Hardware

Equation (5.9) is not the only way to implement spike-based homeostasis. For technical rea-
sons in NEural Simulation Tool (NEST), it was the most straightforward one, showing the
feasibility of controlling the cause layer’s e�ective biases externally. When emulating on
NM-PM1, spike-based homeostasis will have to be implemented slightly di�erently.
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5.2 Spike-based Homeostasis

The �rst option is to use the plasticity processing unit (PPU) (see Section 3.3): Since the back-
ground source is �ring at a high and �xed rate, the charge in both capacitors – causal as well
as anti-causal – can serve as an estimate of the cause layer neurons �ring rate upon which the
synaptic weight is adjusted. By using stochastic updates, we can virtually increase the 4–6 bit
weight resolution. This means that while the actual weight value is constantly changing (due
to stochastic updates), its time average will correspond to the target value which lies in be-
tween the realizable weights (see Section 5.3.4 below). It remains to see of the limited number
of possible weight-values has any detrimental e�ect on the performance of homeostasis.

A second and in the author’s opinion more promising option is to perform the network em-
ulation in a closed-loop setup. This means that the cause layer spikes are sent directly to the
controlling host computer while the network emulation is still taking place. The host com-
puter is keeping track of the average �ring rates, implementing a slightly modi�ed version
of Equation (5.9) (linear weight increase instead of after each background source signal). It
then sends spikes to the cause layer via the layer-2 (L2) communication network. Due to the
massive speed-up of the NM-PM1, any calculations performed on the host computer have to
keep up with the network dynamics evolving in the emulated network. Luckily, calculating
the ideal connection strength is not very demanding so that the controlling host computer
will be able run alongside the emulated network. Since we only have a limited weight resolu-
tion to work with, the needed homeostatic e�ect will be achieved by both modifying both rate
and weight of the regular homeostatic spike train. This can be done by sending homeostatic
input over several synaptic input channels, each set to di�erent synaptic weight. Changing
the weight then corresponds to switching to a di�erent input channel. By adjusting the rate
and weight the overall homeostatic in�uence can be adjusted smoothly, which is very impor-
tant. Another potential problem whenever one is dealing with closed-loop setups is the delay
it takes for the networks’ spikes to reach the controlling host computer and vice versa. For
homeostasis, this is a non-issue as the time scale on which it evolves is much slower than the
immediate network dynamics. This means that even if there is delay, over time closed loop
homeostasis will drive cause layer activities to the desired values.

Translating Homeostasis Weight to e�ective Bias

We want to translate between the biological weight whom calculated in each homeostatic
synapse and the e�ective bias the corresponding cause layer neuron receives. At equilib-
rium, the e�ective conductance w̃hom after each spike from the source is the same:

w̃hom !
= w̃home

− TISI
τsyn + whom (5.10)

⇐⇒ w̃hom =
whom

1− e−
TISI
τsyn

(5.11)

Here TISI = 1/νhom is the average inter-spike interval (ISI) between two spikes from the back-
ground source �ring with a rate of νhom. The average conductance exacted onto the post-
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synaptic neuron is then:

〈
w̃hom〉 =

1

TISI

∫ TISI

0

dt w̃hom e
− t
τsyn (5.12)

=
w̃hom

TISI
τsyn

[
1− e−

TISI
τsyn

]
(5.13)

= whom νhomτsyn (5.14)

Dividing by ftheo→bio (derived in Section 2.4.4), we obtain the �nal translation rule:

bhom =
νhomτsyn

ftheo→bio
whom (5.15)

5.3 Adjusting the synaptic Update Rule

Due to several factors, directly applying the original theoretical update rule Equation (2.163)
for the synaptic weight Vik between the input yi and cause layer neuron k (representing
binary random variable (RV) zk) is infeasible. Instead, some adjustments have to be made
which will be detailed in this section. Please note that while the discussion in this section
focusses on weights in the theoretical domain, in actual simulations all weights are translated
to their biological counterpart via a conversion factor (Sections 2.4.4 and 6.1.1).

We begin our discussion by reformulating the original update rule Equation (2.163):

dVik
dt

= η · zk(t) ·
(
yi(t)e

−(Vik+Vi0) − 1
)

(5.16)

= η · zk(t) ·
(
yi(t)

λi0
e−Vik − 1

)
(5.17)

= η · zk(t) ·
(

yi(t)

νi0 · τsyn
e−Vik − 1

)
(5.18)

Here η denotes the learning rate, yi(t) is the input spike count in the short time interval
[t−τsyn, t] (corresponding to the eligibility trace of a rectangular STDP-curve), Vi0 = log λi0 =
log(νi0·τsyn) the default hypothesis – also called null cause – and λi0 the corresponding default
hypothesis rate. νi0 is the �ring rate with which the generative model assumes the input is
spiking when no cause layer neuron is active, i.e., no hidden latent variable zk is explaining
the input.

The �rst thing to notice is that the synaptic weight only gets updated whenever the post-
synaptic neuron is active (corresponding to the binary variable zk = 1). Otherwise the
synapse is static. If the cause layer neuron is active, the weight is updated by the computing
the ratio of how many spikes we did observe in the previous interval (yi(t)) to how many
spikes we would have expected to see on average if the input was generated by the default
cause (λi0). This ratio is then weighted by the negative exponential of the current weight
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and adjusted with a constant o�set. We can get an intuition for the weight dynamics by
computing the equilibrium distribution:〈

dVik
dt

〉
p∗(y)

=

〈
dVik
dt

〉
p(zk=1|y) p∗(y)

!
= 0 (5.19)

=⇒
〈
yi(t)

λi0
e−Vik

〉
p(zk=1|y) p∗(y)

= 1 (5.20)

V̂ik := 〈Vik〉p∗(y) = 〈Vik〉p(zk=1|y) p∗(y) = log
〈yi〉p(zk=1|y) p∗(y)

λi0
:= log

〈yi〉k
λi0

(5.21)

Here we twice made use of the fact that the weight can only change when zk = 1. By noting
that

νi(t) =
yi(t)

τsyn
(5.22)

is the input �ring rate we �nd:

V̂ik = log
〈νi〉p(zk=1|y) p∗(y)

νi0
:= log

〈νi〉k
νi0

(5.23)

Hence, we observe that the equilibrium weight V̂ik encodes the log-odds of the input’s �ring
rate in the active pattern versus the null cause. If the input is �ring more than the default
case, the weight will become positive whereas it will become negative if the input is �ring
less frequent in the active pattern. We can compute the learnt input �ring rate ν̂ik via:

ν̂ik := 〈νi〉k = νi0 e
V̂ik (5.24)

Here, νi0 is an externally set parameter; the network cannot infer the default hypothesis on
its own. Also, νi0 does not in�uence what input rate is learnt in the active pattern. It does
however in�uence the absolute magnitude of the theoretical weights.

Since in hardware synapses can either be strictly positive or strictly negative, the null cause
rate was most often chosen to be either the highest or the lowest possible �ring rate of the
input, respectively.

We will now discuss the challenges and needed adjustments when implementing SEM on
neuromorphic hardware. Each of the next sections was implemented as its own synapse type
and extensively tested in simulations.

5.3.1 Pair-based Updates

The �rst challenge arises when comparing the STDP curves of both the theoretical model
and hardware (see Figure 5.2). The �rst di�erence is that in the ideal update rule yi(t) is a
strict box-�ltered signal of the input spike train. However, [Nessler et al., 2013] showed that
a biologically more realistic exponentially decaying eligibility trace yi(t) is su�cient as well.
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Figure 5.2: Comparison of STDP curves in theory (left) and hardware (right).
Left: Ideal STDP curve according to the theory. In red we have the ideal box-kernel re-
sulting from the theoretical derivation. Potentiation of the synaptic weight wki (corre-
sponding in notation to Vik in this thesis) only occurs if the time di�erence between pre-
and post-synaptic spike occurs within a narrow time window of length σ (corresponding
to τsyn in this thesis). In dashed-blue is a more complex version with a biologically more
plausible alpha-kernel that the authors also veri�ed to be working. Taken from: [Nessler
et al., 2013].
Right: STDP (grey) curves measured for 252 neurons (in a single synapse row) on the
Spikey chip – a predecessor to the HICANN – along with their mean and standard devi-
ation (blue): Since the STDP window can only be measured indirectly, we measure how
many spike pairs with a given time di�erence t it takes to trigger a causal (t > 0) or anti-
causal (t < 0) weight update. The inverse 1/N then corresponds to the height of the STDP
window at that time di�erence. Plot taken from [Pfeil et al., 2012].
Comparing the shape of both curves we notice some qualitative di�erences: The ideal
STDP curve is constantly depressing except for a very short causal time window, whereas
on hardware the STDP is strictly positive in the causal and strictly negative in the anti-
causal part. Furthermore, on hardware the absolute magnitude of the STDP curve is al-
ways dependent on the time di�erence whereas in the ideal box-case we observe almost
none (just a binary decision whether or not we are in the causal time window). This makes
a direct translation of the update rule di�cult.
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The bigger problem is the constant shift to negative updates whenever we leave the causal
time window of length τsyn. This is a result from updating on every post-synaptic spike: If
there are not input spikes, we have a constant linear decay (compare Equation (5.17)).

On hardware, however, we cannot access single pre- or post-synaptic spikes. The only in-
formation accessible to the STDP update controller are the causal and anti-causal capacitors
that only get charged when there are spike pairs. For the causal capacitor, this corresponds to
recording (yizk)(t), i.e., the state of the eligibility trace yi(t) at the time a post-synaptic spike
is emitted. We therefore need to reformulate the original update rule Equation (5.17).

dVik
dt

= η · zk(t) ·
(
yi(t)

1

λi0
e−Vik − 1

)
(5.25)

= η ·
(

(yizk)(t)︸ ︷︷ ︸
measured in causal capacitance on

hardware

1

λi0
e−Vik − zk(t)

)
(5.26)

Now we capture the �rst term. For the second term we take a look at the average update〈
dVik
dt

〉
p∗(y)

= η ·
(
〈yizk〉p∗(y)

1

λi0
e−Vik − 〈zk〉p∗(y)

)
(5.27)

Since we employ homeostasis (see Section 5.2), the average activity of every cause layer neu-
ron is kept �xed:

〈zk〉p∗(y) = mk (5.28)

We can incorporate this into the update rule:

dVik
dt

= η ·
(

(yizk)(t)
1

λi0
e−Vik −mk

)
(5.29)

Our update rule now operates on causal spike pairs only. We replaced the negative o�set that
was present for every post-synaptic spike in the original update rule with a constant linear
decay that is independent of the post-synaptic neuron’s spiking activity (since we assume it
is �xed).

In �gure Figure 5.3 the adjusted synapse dynamics are simulated in a �xed environment,
showing that the correct pre-synaptic rates are indeed correctly inferred.

5.3.2 Nearest-Neighbor Spike Pairing

The next di�erence between the theoretical update rule and the hardware STDP update con-
troller (see Section 3.2) is the spike pairing scheme. Ideally, we would like to have an all-to-all
spike matching scheme so that the eligibility trace of the pre-synaptic activity is increased by
one for every pre-synaptic spike and decays exponentially. For every post-synaptic spike the
current value of the eligibility trace is read and recorded. This poses some problems: Since in
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Figure 5.3: We show exemplary weight traces for the adjusted learning rule Equation (5.29). We con-
nect four Poisson generators with rates of 10 Hz, 40 Hz, 70 Hz and 100 Hz (shown in
dashed grey) to a selective parrot neuron, that is itself receiving regular spike input at
νpre = 30 Hz, corresponding to almost the highest rate we would expect from a cause
layer neuron with τrefrac = 30 ms. Conversely, the average post synaptic activity is
〈zk〉 = νpre/νmax

net = 30 Hz/(1/30 ms) = 0.9. Accordingly, τsyn was set to 30 ms, while the
learning rate η was set to 1 · 10−4. The post-synaptic selective parrot neuron is set up to
not re-emit spikes received via the investigated synapse so that the STDP-dynamics are
completely independent from the pre- and post-synaptic activity (see Section 6.4.12 for
details). The default hypothesis rate νi0 is set to 10 Hz. The theoretical weight Vik time
course is recorded and translated back to the inferred input rate νik according to Equa-
tion (5.24). We see that all synapses infer the correct rate. Please note that the value range
for Vik was not constricted in any way – especially not to be strictly positive.
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Figure 5.4: Schematic to illustrate the di�erence between all-to-all and nearest-neighbor spike pair-
ing. We have a set of of pre- (�rst row) and post-synaptic spikes (second row). Depending
on the pairing scheme, pre-synaptic spikes generate di�erent eligibility traces: In the all-
to-all scheme (third row) every spike increases the exponentially decaying eligibility trace
by one, whereas in the nearest-neighbor pairing scheme (fourth row) every pre-synaptic
spike sets the exponentially decaying eligibility back trace to one, e�ectively erasing the
spike history. Furthermore, whenever a post-synaptic spike occurs we read out the pre-
synaptic eligibility trace. It therefore gets set to zero (since in hardware the charge is
applied to the accumulating capacitor) and subsequent post-synaptic spikes will add no
further charge to the capacitor. Overall, the di�erence between both accumulated (yizk)-
traces can be signi�cant (bottom row) and need to be accounted for.

hardware, the eligibility trace is modelled as actual charge, it cannot become arbitrarily large
(in case of high pre-synaptic activity). Furthermore, upon a post-synaptic spike, this charge
is directly applied to the accumulating capacitor. In order to preserve the current eligibility
trace the charge would have to be read out and duplicated, requiring additional components
in each synapse that would take up more size on the actual chip die. Therefore, the nearest-
neighbor spike pairing scheme is a fair compromise. Here, each pre-synaptic spike simply
sets the eligibility trace back to one (its maximum value), while a post-synaptic spike sets
it to zero since the charge is applied to the accumulating capacitor. Both pairing schemes
are compared in Figure 5.4. We see that the nearest-neighbor pairing scheme leads to lower
eligibility traces.

We can predict what adjusted rates the synapses will learn in case of nearest-neighbor spike
pairing. We �rst remark that in the equilibrium case (the network has already �nished learn-
ing) ideally only one cause layer neuron is active for the entire duration we present a pattern.
Said neuron will �re whenever possible with a �ring rate close to νmax

net , the ISI will therefore
be close to τrefrac. yi(t) – now restricted to the interval [0, 1] – is only dependent on when the
last pre-synaptic spike occurred. We can compute the probability of the last pre spike having
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occurred at a time distance ∆t by noting that the cumulative distribution of a spike occurring
in the interval [t−∆t, t] at a given �ring rate ν is:

p(spike in [t−∆t, t]|ν) = 1− Pois (0 | ν∆t) (5.30)
= 1− e−ν∆t (5.31)

The probability density of a spike occurring at an exact time di�erence ∆t is thus:

ppre(∆t|ν) := p(spike at (t−∆t)|ν) =
dp(spike in [t−∆t, t]|ν)

d∆t
(5.32)

= ν e−ν∆t (5.33)

The average input eligibility trace that we observe is thus

〈yi〉nn
k := 〈yi〉nn

p(zk=1|y) p∗(y) =

∫ TISI

0

d∆t e
− ∆t
τsyn ppre(∆t|νik) (5.34)

=

∫ TISI

0

d∆t νik e
−
(

1
τsyn +νik

)
∆t (5.35)

=:

∫ TISI

0

d∆t νik e
−ν̃ik∆t (5.36)

=

[
−νik
ν̃ik

e−ν̃ik∆t

]TISI

0

(5.37)

=
νik
ν̃ik

[
1− e−ν̃ikTISI

]
(5.38)

=
1

1 + 1
τsynνik

[
1− e−

(
1+ 1

τsynνik

)
νikTISI

]
(5.39)

where TISI ≈ τrefrac is the average ISI of the active cause layer neuron and νik is the input’s
actual spiking frequency. The equilibrium weight is still described by Equation (5.23), but its
absolute value decreases due to

〈yi〉nn
k

〈yi〉k
=

1

τsynνik

1

1 + 1
τsynνik

[
1− e−

(
1+ 1

τsynνik

)
νikTISI

]
(5.40)

=
1

1 + τsynνik︸ ︷︷ ︸
<1

[
1− e−

(
1+ 1

τsynνik

)
νikTISI

]
︸ ︷︷ ︸

<1

< 1 (5.41)

As a direct consequence, the inferred rates – when computed via Equation (5.24) by taking
into account Equation (5.22) – also become smaller, but in a predictable way:

ν̂nn
ik = νi0 e

V̂ik =
1

τsyn
〈y〉nn (5.42)

Unfortunately, inferring the true input rate when all other quantities are known can only
be done approximately as there is no analytical solution. If, however, (νikTISI) � 1, we can
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approximate

ν̂ik =
1

τsyn
〈yi〉nn

k ≈
1

τsyn

1

1 + 1
τsynνik

(5.43)

=⇒ νik ≈
1

1
ν̂ik
− τsyn

(5.44)

Being able to predict the average eligibility has another very practical advantage. The
synapses on NM-PM1 are strictly excitatory or inhibitory. This means that if 〈yi〉k > λi0 >
〈yi〉nn

k an excitatory synapse will be stuck at weight zero. By employing Equation (5.39) we
can adjust the null cause accordingly to the eligibility trace an input neuron �ring with null
cause rate would generate. Analogously to Equation (5.39) we have:

λnn
i0 =

1

1 + 1
τsynνi0

[
1− e−

(
1+ 1

τsynνi0

)
νi0TISI

]
(5.45)

Please note that TISI remains the same because we are still looking at the cause of one cause
layer neuron being active during the whole duration of a pattern. The adjusted update rule
for nearest-neighbor spike pairing is thus:

dVik
dt

= η ·
(

(yizk)(t)
1

λnn
i0

e−Vik −mk

)
(5.46)

Exemplary weight traces are shown in Figure 5.5. As expected, the inferred rates are lower,
but nevertheless validate our prediction Equation (5.42).

5.3.3 Accumulated Weight Updates

In NM-PM1, every synapse only stores local causal and anti-causal correlation information
(see Section 3.2) – from which for SEM we only need the causal part. The STDP update
controller (or the PPU, see Section 3.3) then updates each synapse row in turn with a certain
update frequency. This means that we do not have access to the correlation information of
single spike pairs (yizk), but rather accumulated information

∑
l(yizk)l from an unknown

number of spike pairs.

The actual weight update computed for a single spike pair ∆Vik is

∆Vik = η ·
(

(yizk)
1

λnn
i0

e−Vik − TISI mk

)
, (5.47)

where we integrated the constant part over the course of one ISI. In the limit that a single
weight update does not change the actual weight much (Vik + ∆Vik ≈ Vik), we can keep Vik
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Figure 5.5: We show exemplary weight traces for the adjusted learning rule Equation (5.46) with
nearest-neighbor spike pairing. The setup is the same as shown in Figure 5.3. As we
can see, while the synapses now infer lower rates, they still match with our prediction
according to Equation (5.42) (dashed in grey). While the set of possible weight values was
still not restricted, it is important to note that due to our adjustment to the null cause (see
Equation (5.45)) all but the blue weight trace remained strictly positive. The blue trace –
due to resembling the null cause activity – oscillated around a weight value of zero and
therefore sometimes became slightly negative.
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constant for a small amount of updates and then update in bulk at regular and pre-determined
update times tupdate

dVik
dt

=
∑
tupdate

δ(t− tupdate)
∑
l

∆Vik,l (5.48)

Since we know the frequency with which updates are performed, we can integrate the update
period τupdate directly into the update rule

dVik
dt

= η ·
∑
tupdate

δ(t− tupdate)

(∑
l

(yizk)l︸ ︷︷ ︸
read from causal

capacitor in each update
as a whole

1

λnn
i0

e−Vik − τupdate mk

)
. (5.49)

Exemplary weight traces are shown in Figure 5.6. The longer the update periods and the
higher the input rate, the bigger the error when computing the new weight becomes com-
pared to non-accumulated weight updates. Nevertheless, even for rather long update periods
the correct input rates are inferred. This robustness for long update periods is important
because due to the accelerated time scale of network emulations of 1 · 103–1 · 105 synapses
can only be updated every few seconds biological time, depending on the complexity1 of the
computed weight updates.

It is important to note that update rule Equation (5.49) can only be performed on the PPU
as the actual value of the accumulated causal capacitor needs to be read out. The current
generation STDP update controller is only able to compare the stored charge to adjustable
thresholds that are �xed for the entire emulation run.

5.3.4 Limited Weight Resolution

A last aspect that has to be discussed when implementing SEM on neuromorphic hardware is
the limited weight resolution. As discussed in Sections 3.2 and 3.3, the weight in each synapse
is a digital 4–6 bit number that gets multiplied with an adjustable weight-factor ∆Vhw to form
the actual synaptic weight. For the synapses, this means that the actual synaptic weight can
be set to 16–64 equidistant values [Vik]j .

[Vik]j = j ·∆Vhw (5.50)

This is a problem, since the weights usually change slowly over long periods of time, as we
saw in Figures 5.3, 5.5 and 5.6. Changing the weight deterministically corresponds to in-
creasing the learning rate. This leads to very unreliable learning and rather random network

1Since the PPU is essentially a regular CPU at heart, the time it needs per weight update depends on the
number of operations it has to perform.
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τupdate=0.5s

τupdate=1.0s

τupdate=2.0s

τupdate=10.0s

Figure 5.6: We show exemplary weight traces for accumulating weight updates according to Equa-
tion (5.49). The setup is the same as shown in Figure 5.3. Additionally, each synaptic
connection is simulated several times with di�erent update periods between 0.1–10 s bi-
ological time. We observe that even for long update periods, the synapses learn to infer
the correct rates. The longer the update period and the farther we are away from the �nal
weight, the larger our single weight updates can become, as more spike pairs are weighted
with a lower weight-factor e−Vik as they would have been in case of immediate weight
dynamics. Overall, accumulated correlation information does not a�ect synapse dynamics
in a signi�cant way.
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dynamics. Since the PPU supports stochastic weight updates, by which we can virtually in-
crease the available weight resolution. This means that while the actual weight value is con-
stantly changing (due to stochastic updates), its time average will correspond to the target
value which lies in between the realizable weights.

At every weight update the PPU performs, we compute the would-be update as is

Ṽik = Vik + η ·

(∑
l

(yizk)l
1

λnn
i0

e−Vik − τupdate mk

)
, (5.51)

where Vik is the current synaptic weight. We then �nd the next lower
⌊
Ṽik

⌋
and next higher⌈

Ṽik

⌉
possible discrete weight so that

⌊
Ṽik

⌋
≤ Ṽik ≤

⌈
Ṽik

⌉
. The new weight V̂ik is then

assigned in the following way:

p
(
V̂ik =

⌈
Ṽik

⌉ ∣∣∣Ṽik) =
Ṽik −

⌊
Ṽik

⌋
∆Vhw

(5.52)

p
(
V̂ik =

⌊
Ṽik

⌋ ∣∣∣Ṽik) =

⌈
Ṽik

⌉
− Ṽik

∆Vhw
(5.53)

Updating the weights in this way ensures that the long term averages of the weight trace
will correspond to the original weight value we would have computed with arbitrary preci-
sion. Since weight updates are generally rather small, Equation (5.53) corresponds to a lot
of updates not changing the weight value with only a select few succeeding. The average
time after which the update succeeds is directly proportional to the proposed weight update
value.

Exemplary weight traces with both 6-bit as well as 4-bit weight resolution can be seen in
Figures 5.7 and 5.8. We see that even with limited weight resolutions we are able to infer the
correct rates.

When performing stochastic weight updates with accumulated correlation information (see
Section 5.3.3), we have the additional bene�t that longer update periods correspond to more
rapid weight change transitions. This serves as a form of “kick-start” for the learning. Long
update periods are hence even less of a problem.

When computing with limited weight resolution, the actual weight values become important.
By employing prediction developed in Section 5.3.2 we can predict in what range the actual
weight values will lie and set the weight-factor ∆Vhw accordingly. We therefore compute
both the null cause’s average eligibility trace Equation (5.45) as well as the one generated by
the maximum possible input rate Equation (5.39). The ratio between the two is the maximum
(for excitatory synapses) or minimum (for inhibitory synapses) weight our synapses need to
be able to achieve.

Lastly, when only dealing with 16–64 possible weight values, we can speed up weight calcula-
tion signi�cantly by pre-computing and storing all “expensive” factors from Equation (5.51),
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Figure 5.7: We show exemplary weight traces in the case of 6-bit weight resolution and stochastic
weight updates according to Equation (5.53). The setup is the same as shown in Figure 5.6
but for each input rate we only show the case τupdate = 2 s. The theoretical weight range
was set so that the maximum weight corresponds to the log-odds of the average eligibility
trace generated by an input rate of 100 Hz and the null cause rate of 10 Hz. Please note
that while the actual weights are equidistant, the inferred rates are not due to the expo-
nential translation Equation (5.42). While we do see more weight �uctuation than in the
previous cases (Figures 5.3, 5.5 and 5.6), we nevertheless observe clear oscillations around
the correct input rates.
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Figure 5.8: We show exemplary weight traces in the case of 4-bit weight resolution and stochastic
weight updates according to Equation (5.53). The setup is the same as shown in Figure 5.6
but for each input rate we only show the case τupdate = 2 s. The theoretical weight range
was set so that the maximum weight corresponds to the log-odds of the average eligibility
trace generated by an input rate of 100 Hz and the null cause rate of 10 Hz. Please note that
while the actual weights are equidistant, the inferred rates are not due to the exponential
translation Equation (5.42). As in Figure 5.7, we observe clear oscillations around the
correct input rates, even in the case of only 16 distinct weight values.
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most importantly the exponential factors 1
λi0
e−Vik but also the decay term. The processor

then simply has to look up the corresponding factors in a look up table (LUT), rather than
computing them anew every time. This simpli�es the proposed weight calculations to the
correlation information readout, one LUT-lookup (two if synapses di�er in their target activ-
ity and the decay part has to be stored in its own LUT), two multiplications and one addition.
The weight update computation time would then be dominated by the stochastic update im-
plementation.

We denote the resulting network model as neuromorphic spike-based expectation maximiza-
tion (NSEM), implementing all adjustments for neuromorphic hardware as well as spike-based
homeostasis.

5.4 Simulation Results

5.4.1 Plot Structure

In this subsection, all plots of network dynamics (such as Figure 5.9) follow the same structure,
described in the text below.

The top half of the plot depicts the “receptive �elds”, a colorplot of the inferred rates each
cause layer neuron “believes” the input layer is �ring with whenever it is active. They are
computed from the learnt weights Ṽik after training via Equation (5.24).

The bottom half is split into three parts: On the left we have the spike response from the
network in an additional “test” run. After training, the average over the 5 last snapshots of all
weights in the network (input layer→ cause layer, homeostasis→ cause layer) is computed.
We then initialize a new network in which all weights are kept static and present the same
input as during training. For each presented input pattern we note which cause layer neuron
spiked how often resulting in the depicted spike response. In order to further quantify how
well a network has learnt a given input distribution, we compute either the approximate test
accuracy – if the number of cause layer neurons is equal or greater than the number of distinct
input labels – or the mutual information between active cause layer neuron and presented
input pattern label – if the number of di�erent input labels is greater than the number of
cause layer neurons – and print it above the spike response count where applicable. Both are
described in detail below.

In the middle part of the bottom half we �nd a histogram over the computed non-zero �nal
weights in theoretical units (top) as well as the running average of each cause layer neurons
�ring rate (bottom).

Finally, the right part of the bottom row is comprised of each cause layer neuron’s e�ective
bias bhom

k (top) as well as the average input weight seen by each cause layer neuron (bottom).
Since we have a strictly excitatory as well as a strictly inhibitory synapse realizing home-
ostasis for each cause layer neuron, the e�ective bias is computed separately for each via
Equation (5.15) and summed up.
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All displayed time-courses are sampled at 25 s intervals. Since SEM-learning is inherently
unsupervised, it is not pre-determined which cause layer neuron will specialize to code for
which input pattern. For readability we therefore reorder the indexing of the cause layer
neurons based on their activity during training.

Approximate Test Accuracy

The approximate test accuracy is useful when we have as many (or less) hidden causes (la-
bels) in our input patterns as cause layer neurons in the network. Since SEM is inherently
unsupervised, we need to identify which label each cause layer neuron codes for. Therefore,
from the training step we perform a hard assignment for each cause layer neuron to the input
label during which it spiked the most. During testing we then note which cause layer neuron
is most active during the presentation of each pattern. We decide that a pattern was correctly
classi�ed if its label coincides with the one the most active cause layer neuron was assigned
to. The ratio between correctly classi�ed and total patterns presented is then de�ned as the
accuracy. It is denoted as “approximate” because we only limited amount of patterns. Also,
when learning the MNIST database (introduced below), we only use input images from the
training dataset and not the separate testing dataset.

Mutual Information

When the number of di�erent pattern labels vastly outnumbers the number of cause layer
neurons in the network, each cause layer neuron starts to code for more than one label.
Assigning it to only one input pattern as in the accuracy calculation would not capture this
fact and result in a seemingly poor network performance. We need a way to quantify how
well the limited set of cause layer neurons is classifying the input space. Mutual information
between two RVs is a measure of their mutual dependence on each other. In this case, the two
RVs are which label l we present as well as what cause layer neuron k was active (p(k) :=
p(zk = 1, z\k = 0)). It is de�ned as the Kullback-Leibler divergence (DKL) (see Section 2.2)
between their joint probability distribution and the product of marginals:

DKL(p(l, k)||p(l) p(k)) =
∑
l,k

p(l, k) ln
p(l, k)

p(l) p(k)
(5.54)

=
∑
l,k

p(l)p(k|l) ln
p(k|l)
p(k)

(5.55)

= 〈DKL(p(k|l)||p(k))〉p(l) (5.56)

Both p(k) as well as p(k|l) are estimated from the spike responses in the testing run. p(l)
is �xed by the way we choose to present our patterns during testing (e.g., uniformly, non-
uniformly).

If a neuron k′ shows no activity for a particular pattern l′, we have p(k′|l′) = 0. In this case
we de�ne 0 · ln 0 := limx→0 x lnx = 0.

As one expects, if presenting a pattern does not alter the activity of the cause layer neurons
in any way we have p(k) = p(k|l) and the mutual information is zero.
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5.4.2 Regular Network Dynamics

In this section we explore the change in network dynamics as we adjust the STDP learning
rule step-by-step to the constraints faced when trying to emulate SEM on the NM-PM1 as
outlined in Section 5.3.

The general network setup is described in Section 5.1. In this particular implementation,
our cause layer is formed by 6 stochastic cause layer LIF-neurons. The input layer consists
of 17× 17 individual Poisson sources. The input itself is a 3× 17 pixels strip that is rotated
between 0° and 180°. We de�ne 180 input labels, one for each degree of rotation (0–179°). The
base image – a rotation of 0° – corresponds to a horizontal stripe of width 3 at half height.
Pixels on the stripe are set to 1.0 while all others remain at 0.0. All rotations are computed
from this image, using the ndimage.rotate-function from the SciPy-library [Jones et al.,
2001]. The resulting interpolated pixel values are translated into Poisson �ring rates between
10 Hz (pixel value 0.0) and 70 Hz (pixel value 1.0). To make sure each input label has the same
absolute strength, we re-normalize all pixel values again so that the sum of all pixel values
is the same as in the base image (rotation of 0°). Therefore, we have one pattern per input
label.

The dynamics of the network operate at di�erent time scales. On the fastest scale is the pre-
sented input. Every 0.5 s we present a randomly chosen new pattern for 0.5 s and there is no
pause2. Each unit in the input layer then generates a Poisson spike train of the corresponding
input rate.

On the next, slower time scale is the homeostasis takes place. It is implemented using update
rule Equation (5.9) with a periodic background source (see Section 6.4.11) �ring at 2000 Hz
with a learning rate of ηb = 1.0 · 10−3. Each cause layer neuron is set to �re with the same
activity.

The actual learning takes place on the slowest time scale. The weights Vik between the input
and cause layer are set to be strictly excitatory and evolve according to a variety of update
rules (discussed in Section 5.3). The learning rate is kept constant at η = 1.0 · 10−4 during
the whole learning process.

The neuron parameters for the cause layer were chosen in a generic fashion as we are
have to calibrate our neurons anyway in order to translate between the realm of theoreti-
cal Boltzmann-weights and biological synaptic conductances (see Sections 2.4.4 and 6.1.1).
The reversal potentials were chosen symmetrically – at −100 mV and 0 mV respectively –
around the spike threshold, coinciding with the resting potential at Vspike = EL = −50 mV.
The membrane capacitance Cm = 0.2 nF and time constant τm = 1.0 ms to facilitate fast
membrane dynamics at comparatively low background input rates. The Poisson background
input to make the cause layer stochastic is set to �re 2000 Hz with a weight of 0.001 µS. The
corresponding weight translation factor yielded from calibration is ftheo→bio = 1.134 µS for
τsyn = 30 ms (ftheo→bio = 0.456 µS for simulations later on with τsyn = 10 ms respectively).

2Various simulations (not shown) demonstrated no real improvement or decline in learning quality for pauses
between patterns. They appear to only prolong the e�ective learning time as the total time a pattern is
presented to the cause layer is reduced.
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In order to minimize the time it takes after a refractory period for the membrane potential
to converge to the free membrane potential, we set the reset potential close to the threshold
(Vreset−Vspike = −0.001 mV). Therefore, if the free membrane potential is above the spiking-
threshold and the neuron can �re again almost immediately. We choose τsyn = τrefrac = 30 ms
in accordance with the exemplary weight traces shown in Section 5.3. The choice of τsyn in�u-
ences both speed and robustness of learning. The larger τsyn, the longer we integrate informa-
tion from the input layer and can be more con�dent in our weight updates, but the more sim-
ulation time it takes per weight update as the cause layer can only spike with νmax

net = 1/τsyn.

All simulations are run using the same random seed in order to rule out �uctuations in the
input as source for di�erences in network dynamics. All biases and weights are set to zero at
the beginning of learning. Each network is simulated for 10 000 s.
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Figure 5.9: SEM learning with stochastic LIF-neurons and original update rule (Equation (2.163)), per-
forming weight updates with rectangular eligibility traces. The activity of cause layer
neurons is moderated via spike-based homeostasis (see Equation (5.9)).
The full parameters can be found in Appendix A.1.2 while the plot structure is explained
in Section 5.4.1. Please see the text for details.

Ideal Updates with rectangular Eligibility Traces

The �rst implementation is done using the ideal theoretical update rule Equation (2.163) with
rectangular eligibility traces. Here, the input variable yi always corresponds to the number of
pre-synaptic spikes in a time window of length τsyn. Please note that the cause layer neurons
still operate with exponentially decaying synaptic conductances.

The network dynamics are shown in Figure 5.9. We see that each cause layer neuron codes
for a di�erent set of neighboring orientations. The input space is equally distributed among
the cause layer neurons. Despite the constant learning rate, learning stabilizes at the expected
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5 Waferscale Neuromorphic SEM: Challenges & Solutions

equilibrium points. The receptive �elds correspond to the input rate of each input unit aver-
aged over all patterns the cause layer neuron codes for. Input neurons closer to the middle,
i.e., active for all relevant orientations, have the correctly inferred rate of 70 Hz. Input units
lying further outside are on average not as active whenever the cause layer neuron is, thus
their inferred rate is lower.

Furthermore, we see that the spike-based homeostasis manages to keep the activity of all
cause layer neurons at the their target value of νmax

net /6 = 1/(30 ms · 6) ≈ 5.5 Hz. In the beginning
(few 100 s), the homoestatic in�uence gets slightly excitatory in order to encourage the cause
layer to spike as the initial biases are set to zero. As the weights Vik evolve the e�ective biases
become strictly negative in order to counteract the increasing input strength.

We do see, however, that during early learning (∼1250 s) the rates slightly exceed their target
activities. We are still early in the learning and so the receptive �elds are not as pronounced
yet and highly overlapping. Furthermore, as the weights increase rapidly in this phase of
learning due to the exponential dependence on the current weight in the weight update, the
homeostatic adjustment is lagging slightly behind. This means that for any given input pat-
tern several cause layer neurons get stimulated su�ciently to spike (i.e., the synaptic input
from the input layer is stronger than the inhibition via homeostasis). If several of them spike
within the delay-time window (∼1.3 ms), the inhibitory signal from the inhibitory population
will arrive too late. Therefore more than one cause layer neurons can learn from the same
input. However, as the e�ective bias “catches up” to the synaptic input in strength, the cause
layer is moderated more e�ectively, lowering the chance of two neurons being su�ciently
stimulated to spike within the delay-time window. Overall, this is a result of the �xed home-
ostasis learning rate ηb. The quicker we can adjust the homeostatic weights in case of rapid
weight changes, the larger the variance of the e�ective bias when the learning has �nished
and vice versa. During learning, the are small di�erences in activity occurring between cause
layer neurons during learning. If the homeostasis learning rate becomes too high, these dif-
ferences are balanced out immediately, thereby driving every unit in the cause layer to learn
an averaged superposition of all input patterns.

During testing we see that each cause layer neuron responds to a particular set of neighboring
orientations only. When transitioning from one receptive �eld to the next, we see that the
spike responses shift accordingly: For example, when the orientation lies half-way between
the preferred orientations of two neurons, both are active roughly for the same amount of
time. Overall, we see that the network performs a form of dimensionality reduction by en-
coding the state of 289 neurons in the activity of 6.

Ideal Updates with exponential Eligibility Traces

Next we exchange the rectangular eligibility traces for exponential ones, so that every spike
increases the corresponding input variable yi by one. yi decays with time constant τsyn. See
the third row in Figure 5.4 for an illustration. The resulting network dynamics are shown in
Figure 5.10.
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Figure 5.10: SEM learning with stochastic LIF-neurons and original update rule (Equation (2.163)),
performing weight updates with exponential eligibility traces (see third row in Fig-
ure 5.4). The activity of cause layer neurons is moderated via spike-based homeostasis
(see Equation (5.9)).
The full parameters can be found in Appendix A.1.2 while the plot structure is explained
in Section 5.4.1. Please see the text for details.

As the eligibility traces now correspond even closer to the exponential-shaped post-synaptic
conductances, we see no real change in network dynamics, validating [Nessler et al., 2013].

Pair-based Correlation Measurements

We then introduce pair-based correlation measurements (as in Equation (5.29)). Now the
synapse is linearly decaying at a �xed rate, corresponding to the target activity of the cor-
responding cause layer neuron. The eligibility trace stays exponential (as for all following
experiments). The network dynamics are shown in Figure 5.11.

On �rst inspection we see hardly any di�erence to the previous two models. The receptive
�elds are the same, the correct input rates are inferred, the spike response in the subsequent
test-run shows that each cause layer neuron is again accounting for the same amount of input
patterns, and the distribution of weights also shows no signi�cant di�erences.

Where we do see a qualitative di�erence though is the running-mean of the spike activity 〈νk〉
and the average input weight to each neuron 〈Vik〉k. Due to the fact that the synaptic weight
only decays linearly based on the average target activity of the post-synaptic neuron, short
bursts in activity can increase the weight far more than in the ideal case since the negative
update part in the synaptic update is not accounted for in every update. As we see in the
average weight plot, this leads to a slight overshoot in learning: While in the ideal case the
weights are always increasing on average, we �nd that in the nearest-neighbor case they
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Figure 5.11: SEM learning with stochastic LIF-neurons and a strictly spike pair-based update rule
(see Equation (5.29)). The activity of cause layer neurons is moderated via spike-based
homeostasis (see Equation (5.9)).
The full parameters can be found in Appendix A.1.2 while the plot structure is explained
in Section 5.4.1. Please see the text for details.

reach their maximum after the initial learning phase and then slowly decrease until reaching
the equilibrium point. This is due to the fact that the cause layer activity is higher than the
target during early learning which is not accounted for in the weight updates. Only when
the homeostasis “catches up” we see the approximation towards the equilibrium points.

Nearest-Neighbor Spike Pairing

Next we account for nearest-neighbor spike pairing in the update rule (see Equation (5.46)).
For this reason, we adjust the null cause rate νi0 to the average eligibility trace it would
generate under a nearest-neighbor spike pairing scheme (see Equation (5.45)). The network
dynamics are shown in Figure 5.12.

Here we see some major changes in the network compared to the implementations described
above. While qualitatively, the receptive �elds seemingly remain unchanged, the correspond-
ing absolute weights are smaller, as evidenced by the weight histogram. This is acceptable,
as we had to adjust the null cause for nearest-neighbor spike pairing. If we did not make
the adjustment, all synapses with an a�erent rate of 20 Hz or below would stay at zero (or
become negative, which we do not permit as it is impossible in hardware). While we do argue
in Section 5.4.3 that this �ltering of low input background can be bene�cial when learning
strongly overlapping patterns such as MNIST, here we want to maintain as much of the orig-
inal network dynamics as possible. Ergo, we want all input patterns that �re more strongly
than the null cause rate to result in a non-zero input weight. Furthermore, not adjusting the
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Figure 5.12: SEM learning with stochastic LIF-neurons and nearest-neighbor spike pairing update
rule (see Equation (5.46) as well as the fourth row in Figure 5.4). The activity of cause
layer neurons is moderated via spike-based homeostasis (see Equation (5.9)).
The full parameters can be found in Appendix A.1.2 while the plot structure is explained
in Section 5.4.1. Please see the text for details.

null cause would lead to overall even smaller absolute weights as the weights encode the
log-odds between actually observed input rate and null cause rate.

Since average weight for each input neuron is roughly 20 % lower than for the full eligibility
trace, this is also re�ected in the e�ective biases. Conversely, the inferred rates are signi�-
cantly lower but correspond to what we expect the network to infer (see Equation (5.42) and
Figure 5.5).

Nevertheless, from a functional point of view the network dynamics remain the same, as
shown by the spike response count as well as the mutual information (bottom left corner in
Figure 5.12). Both change only minimally. The weight overshoot that we �rst experienced
when introducing the pair-based update rule also occurs here, but is less pronounced due to
the overall lower weights.

Accumulated Weight Updates

Now we introduce accumulated weight updates (see Equation (5.49)). The exemplary weight
trace (see Figure 5.6) as well as parameter sweeps Figure 5.16 do not indicate a strong de-
pendency on the update period. τupdate was therefore chosen to be 2 s. This is still more than
twice of what we actually estimate the update period in actual emulations to be for this kind
of weight update3. The network dynamics are shown in Figure 5.13. As the PPU updates
synaptic weights in a row-wise fashion, we cannot assume all weights to be updated at the

3Personal correspondence with Simon Friedmann, designer of the PPU.
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Figure 5.13: SEM learning with stochastic LIF-neurons and accumulating update rule (see Equa-
tion (5.49)). The activity of cause layer neurons is moderated via spike-based homeostasis
(see Equation (5.9)).
The full parameters can be found in Appendix A.1.2 while the plot structure is explained
in Section 5.4.1. Please see the text for details.

same time. To see whether this a�ects network dynamics, we choose to update the weights
in the worst (i.e., most asymmetric) way possible: During the 2 s update period, we in turn
update all weights to each cause layer neuron in a round-robin fashion. The updates occur
at equidistant points in time so that the time distance between any two cause layer neurons’
weight updates is 0.333 s at the least and 1.666 s at the most. This is potentially harmful to
the network dynamics as already updated neurons might have an “advantage” due to overall
slightly higher input weights.

We observe that accumulated weight updates do not alter the network dynamics in any signif-
icant way when directly compared to the previous simulation implementing nearest-neighbor
spike pairing. The possible disturbance of weight updates for each neuron occurring at di�er-
ent times is mitigated su�ciently by homeostasis. This is in accordance with a larger sweep
of simulations found in Figure 5.16.

Limited Weight Resolution

The �nal constraint we have to adjust our update rule to when transferring the original model
to neuromorphic hardware is the limited weight resolution. It is achieved by using the PPU’s
ability to perform stochastic weight updates (see Equation (5.52)). Since we only have a lim-
ited number of weights, we need to set their range accordingly. Here it is essential to use
Equation (5.45) as well as Equation (5.39) in order to compute the ideal Boltzmann weight for
the highest input rate we expect to see. Since we want to verify that the synapses actually
infer the correct rate (and not just assume the highest possible weight), we set the actual
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Figure 5.14: NSEM learning with stochastic LIF-neurons and stochastic weight updates (see Equa-
tion (5.52)) with 6-bit weight resolution. The activity of cause layer neurons is moderated
via spike-based homeostasis (see Equation (5.9)).
The full parameters can be found in Appendix A.1.2 while the plot structure is explained
in Section 5.4.1. Please see the text for details.
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Figure 5.15: NSEM learning with stochastic LIF-neurons and stochastic weight updates (see Equa-
tion (5.52)) with 4-bit weight resolution. The activity of cause layer neurons is moderated
via spike-based homeostasis (see Equation (5.9)).
The full parameters can be found in Appendix A.1.2 while the plot structure is explained
in Section 5.4.1. Please see the text for details.
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maximum weight to be 20 % larger. The resulting network dynamics can be seen in both
Figure 5.14 for 6-bit weight resolution as well as in Figure 5.15 for 4-bit weight resolution.

We observe that the receptive �elds are now coarser due to the fact that the ideal weights the
synapses would naturally assume lie in between the weight values they are able to assume.
Hence the weight value will only coincide with the ideal one when averaged over time. Any
snapshot of the weights, such as the one shown in Figures 5.14 and 5.15, will di�er due to
random �uctuations. Nevertheless, we can still recognize the receptive �elds.

Furthermore, we see that the weight histograms resemble the non-discretized cases in shape
for larger weights (for the 6-bit case more so than the 4-bit case). The peak at small weights
is missing as only few of the weights close to zero are actually able to jump to the realtively
large possible values. The full weight range range is being utilized with only relatively few
weights at maximum, indicating that our predicted target weights are indeed correct. Due
to utilization of stochastic weight updates, we �nd that 64 distinct weight values is indeed
enough to represent the receptive �elds. For 16 distinct weight values we observe the biggest
drop in mutual information compared to all performed adjustments. Nevertheless the net-
work remains functionally intact.

Conclusion

From the plots Figures 5.9 to 5.15 we can safely conclude that NSEM, an implementation of
NSEM on neuromorphic platforms, is feasible. Spike-based homeostasis is able to keep each
cause layer neuron at its target activity. All adjustments we had to make to the update rules
do not disturb network dynamics in any signi�cant way. The only fundamental change from
a functional point of view remains the reduced rates that are inferred during learning, as we
can only access the last pre-synaptic spike in each synapse.
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Figure 5.16: Mutual information for varying update periods for accumulation. The network setup
corresponds to Figure 5.14, that is the network is learning orientations with fully adjusted
update rules at 6-bit weight resolution. We vary the number of cause layer neurons
as well as the accumulation time window τupdate. As discussed above, weight updates
for each cause layer neuron occur one at a time after equidistant steps. The weight
updates thus occur asymmetric which could disturb the network’s performance. For each
network setup we compute the mutual information. Please note that, as the number of
neurons in the cause layer increases, so does the mutual information as the network can
di�erentiate between a greater number of orientations. We �nd that irrespective of the
update period, the mutual information remains constant, apart from some acceptable
�uctuations. We can therefore conclude that – as long as we can measure and store the
causal spike correlations well enough over long periods of time – we are not dependent
on frequent weight updates.

5.4.3 Null cause as Contrast-Enhancer in receptive Fields

Learning MNIST

In this section, we shift our attention primarily towards learning MNIST [LeCun and Cortes,
1998], a commonly used database of handwritten digits. For each digit it contains 6000 repre-
sentations. Each representation is 28× 28 pixels in size. We clip the images to 26× 26 pixels
in order to conserve time.

We begin with the reduced MNIST dataset that only consists of digits 0, 3 and 4. Our input
therefore consists of three patterns (the three digits) where for every presentation we ran-
domly draw one of the 6000 representations and convert its pixel values to �ring rates of
the input layer in the range 10–40 Hz. Testing is performed the same way as described in
Section 5.4.2. We present 300 out of the 6000 representations available during training for
every digit.
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Figure 5.17: Attempt at NSEM learning of the reduced MNIST at a weight resolution of 4-bit. All
simulation parameters are the same as in Figure 5.15 except for the input layer. The
full parameters can be found in Appendix A.1.3 while the plot structure is explained in
Section 5.4.1. Although we can clearly recognize the �rst neuron coding for the strongest
pattern in terms of total �ring rate (digit 0), the other two can only be vaguely recognized.
This is indicated further by the spike responses. Here the third neuron codes both for 0
and 4 as its receptive �eld is a superposition of the two.

Using the same parameters as before (Section 5.4.2) and implementing all hardware adjust-
ments, we �nd that NSEM is unable to su�ciently distinguish between the three digits, as
shown in Figure 5.17. The reason for this is the greater variation in label representation. Every
example image for each digit is slightly di�erent in shape and orientation. Since white pixels
in each image still �re with 10 Hz, their eligibility traces may still induce weight changes in
a “spontaneous” way. In the original model, these weight changes are be symmetrically dis-
tributed around zero. Weights decay below zero in case a particular input unit is, by chance,
silent when the corresponding post-synaptic neuron is active. But, in our case, the lowest
possible weight value is zero. Therefore, all spontaneously induced weight changes are posi-
tive. Especially in the beginning of learning these spontaneous weights are of the same order
in magnitude as “correctly” learning synapses (i.e., synapses that will have a high weight
once the network has successfully �nished learning). Whenever a sample image for a digit is
presented, black pixels will �re with 40 Hz. If the representations vary per label, a particular
input pattern might be oriented in such a way that it is unable to activate the “correct” cause
layer neuron (i.e., the one randomly chosen neuron that would code for this particular label
after successful learning). But, due to spontaneous weights, other cause layer neurons might
be activated and adjust their weights towards the – from their point of view – “wrong” input
label. In the long run, this “wrongful co-activation” causes all neurons to become randomly
activated for all input labels. Since all neurons learn to code for all labels, their receptive
�elds become a superposition of average rates in all input patterns. Hence, network does
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Figure 5.18: NSEM learning of the reduced MNIST set at a weight resolution of 4-bit and adjusted
null cause rate. All simulation parameters are the same as in Figure 5.18, except for the
null cause rate. While the input still �res with a rate of 10 Hz at the lowest, the weight
update rule now assumes it is 15 Hz. All weight ranges are adjusted accordingly. The
full parameters can be found in Appendix A.1.3 and the plot structure is explained in
Section 5.4.1. The net e�ect compared to the setup shown in Figure 5.17 is immediately
visible: We are able to learn the reduced MNIST set with only 4-bit weight resolution.
We can clearly make out the average shape of each digit in the receptive �elds. The
spike responses also clearly indicate a preferred digit for which each cause layer neuron
codes. Still, there is some overlap in the responses left as the spike counts for the other
patterns are far from zero. Both the e�ective bias and the average input weight di�er for
each cause layer neuron, indicating that the spike-based homeostasis is indeed able to
adjust for non-normalized input patterns. As one neuron learns to code for the strongest
pattern, it tends to �re for other patterns as well. But in doing so, its homeostatic in�u-
ence is increased until only the strongest pattern is able to elicit a spike. This way, the
other two neurons can learn the remaining patterns in a similar manner. Also, we see
the e�ect of the increased null cause rate in the shape of the weight histogram. Overall,
the weights of input units �ring with a rate less than the null cause rate are suppressed
and kept at zero. Furthermore, the weights of units �ring above the null cause rate are
reduced as well since the weights represent the log-odds of observed eligibility trace and
null cause eligibility trace (now assumed higher).

79



5 Waferscale Neuromorphic SEM: Challenges & Solutions

not learn. This e�ect is ampli�ed by spike transmission delays discussed in Section 5.4.6,
as longer delays correspond to a higher probability for several cause layer neurons spiking
simultaneously.

Simply scaling the weights by adjusting the weight conversion factor ftheo→bio (see Equa-
tion (2.110)) with a scalar factor 0 < s < 1 does not remedy the situation as the “spontaneous”
non-zero weights are still present and continue to disturb learning. Since homeostasis is in
place, the problem is only shifted in quantity, not quality.

If, however, we adjust the null cause rate νi0, we see a vast improvement in network dynamics.
The null cause – also called default hypothesis – encodes with what rate the input �res when
no cause layer neuron is active (see Sections 2.5.3 and 5.3). For practical purposes, when
forcing all a�erent synapses from the input layer to be strictly positive it corresponds to the
lowest possible input rate the synapses can infer (as then ln(νik/νi0) = ln 1 = 0). As we
can see in Figure 5.18, an increase from 10 Hz to 15 Hz is su�cient. We are able to learn
the reduced MNIST dataset (three digits with 6000 representations each) with only three
cause layer neurons and 4-bit weights. The precise value of 15 Hz is not that strict and was
determined using parameter sweeps (see, e.g., Figure 5.29)

Increasing the null cause rate rate has two e�ects: Firstly, all actual weights Vik in the net-
work are reduced since they encode the log-odds between actual input rate and null cause
rate. Secondly, and this is the more important fact, it suppresses the spontaneously emerging
weights due to background noise. Comparing Figure 5.17 to Figure 5.18, we notice that while
the average weights are lower by a factor of < 4, the e�ective biases have actually shrunk
by a factor of > 4. This seems to support our assumption for the network’s inability to learn
in Figure 5.17. Increasing the null cause rate – to a reasonable degree – seems to enhance
the network’s performance to di�erentiate between input patterns by e�ectively enhancing
the contrast of the receptive �elds, thereby limiting the in�uence of spontaneous non-zero
weights of inactive units.

Please note that this does change the generative model. A weight of zero now corresponds
to the cause layer neurons “believing” its input �res with a higher rate. If the weights were
free to evolve unconstrained they would actually be negative to indicate a �ring rate lower
than the null cause.

For the full MNIST dataset, we �rst try to learn with only one exemplary image per digit. As
seen in Figure 5.19 we �nd that we are able to distinguish 9 out of the 10 input images since
we are unable separate the two neurons coding for the strongest pattern (digit 0) due to the
non-instantaneous inhibitory signal (for more information see Section 5.4.6).

If we try to learn the full MNIST dataset with all 6000 representations per digit, we �nd that
the network is unable to di�erentiate between all labels to a satisfactory degree. As we can
see in Figure 5.20, only some digits can be coded for. The network even interprets di�erent
orientations of the same digit as two distinct labels. This indicates that a mere 10 cause layer
neurons might be too little to fully capture the complexity of the full MNIST dataset.
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Figure 5.19: Learning of all digits in the MNIST database with NSEM and 6-bit weight resolution. For
each digit, we always present the same image. The cause layer consists of 10 neurons.
The full list of parameters can be found in Appendix A.1.3. Especially, we adjusted the
null cause rate from 10 Hz to 15 Hz as before. The plot structure is explained in Sec-
tion 5.4.1. We see that during early training, cause layer activity is dominated by the
�rst two cause layer neurons that code for the strongest pattern (digit 0). Due to its
constant learning rate, the homeostasis is only able to moderate the situation after the
learnt weights have saturated. During this phase, the corresponding cause layer neurons
learn a superposition of all patterns (as they are active for all presented input patterns).
After their activity is adjusted, the strongest pattern is the only one able to still elicit
a spike. Therefore the neurons focus on it, leaving room for the rest of the neurons to
learn as well. However, due to the �nite delays in the network, one of the �rst two neu-
rons cannot be discouraged from “unlearning” the 0 digit as they both spike within the
delay time-window. Therefore, there is one pattern for which the other neurons do not
code, namely the digit 1. It is absorbed by the neuron coding for 4 due to the similarities
between the two input patterns. We also observe that the receptive �elds are higher in
contrast than the corresponding MNIST input images (not shown). This can be attributed
to the adjusted null cause rate that is e�ectively eliminating weights for input units with
too low active rates. Overall we see that the neurons are able to distinguish between 9
of the 10 vastly overlapping input patterns.
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Figure 5.20: Attempt at learning the full MNIST dataset (6000 input images per digit) with NSEM at
6-bit weight resolution. The cause layer consists of 10 neurons. Apart from the increased
cause layer neuron number, all other parameters correspond to Figure 5.19. In particular,
we adjusted the null cause rate from 10 Hz to 15 Hz as before. The plot structure is
explained in Section 5.4.1. We observe that while some neurons are able to specialize
on one digit (e.g., 1, 3 or 8), the others tend to learn superpositions of digits or even
rather di�erent orientations for the same digits (the second and third code for di�erent
orientations of 1). The homeostasis is able to moderate the excitabilities to some extent,
however, the classi�cation performance of the network is rudimentary at best. 10 cause
layer neurons seem to be too little to fully capture all possible orientations of all possible
digits.

Common Box Input Scheme

To try and quantify the e�ect of modulating the null cause rate we switch to the common box
input scheme. It was devised to simulate largely overlapping input labels with high variances
in their representations, similar to full MNIST. In this input scheme, we can think of the units
in the input layer to arranged in a set boxes. We have one larger common box of 100 units
as well as – for every label – one smaller label speci�c box of 30 units. Since we have 9
patterns total, we have 370 units in our input layer. For every pattern we present, we select
a set number of units to be “active”. These �re with a high rate of 40 Hz. All other units are
said to be “inactive” and �re with 10 Hz. The active units are chosen in the following way:
First, we draw 27 out of 30 units from the “active” label box (i.e., the box corresponding to
the label being presented). Then we draw a �xed number of units from each other label box.
These boxes are denoted as “inactive’. Finally, we draw active units from the common box
until we have reached our grand total of 127. In Figure 5.21, we present an example of the
input scheme and the resulting network dynamics.

This emulates MNIST learning in the following way: The large overlap between several pat-
terns is realized by the common box from which each label draws the majority if its active
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units. The distinctive characteristic of each label is implemented by the active box in which
– relatively speaking – most units are active. The units from inactive boxes represent the
variations in representations for single labels. They are distributed in a sparse (or “di�use”)
manner but nevertheless �re with a high rate. Therefore, if the weights of the correspond-
ing synapses are “spontaneously” non-zero, they can disrupt learning in the same way as for
MNIST (discussed above).

We then then vary the number of units drawn from the inactive boxes and try to compensate
for this e�ect by varying the null cause rate. As can be seen in Figure 5.22, adjusting null
cause rate within limits enables the network to correctly classify the input labels in case of
more di�use input.

0
500
1000
1500
2000
2500
3000
3500
4000

sp
ik

e 
re

sp
on

se
 c

ou
nt

 [
1]

input label l

ca
us

e 
la

ye
r 

ne
ur

on
 k

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

approx. test accuracy: 1.000

time [s]
140
120
100
80
60
40
20

0

b
h
om

k
 [

1]

0 4000 8000 12000
time [s]

0
1
2
3
4
5

〈ν
k
〉 [

H
z]

0.0 0.4 0.8

Vik ( 0) [1]

100

101

102

oc
cu

re
nc

e

7.5

9.0

10.5

12.0

13.5

15.0

16.5

18.0

in
fe

rr
ed

 in
pu

t 
ra

te
 ν
ik

 [
H

z]

input yi

ca
us

e 
la

ye
r 

ne
ur

on
 k

0 50 100 150 200 250 300 350
0
1
2
3
4
5
6
7
8

0 4000 8000 12000
time [s]

0.0
0.1
0.2
0.3
0.4
0.5

〈V
ik
〉 k

 [
1]

Figure 5.21: Exemplary network dynamics of common box input scheme. The input is comprised of
370 input units, forming a one-dimensional string. The string is separated into a common
area – or box – of 100 units and 9 label speci�c boxes of 30 units. For each pattern, we
randomly select 127 units and denote them as “active”. All other units are “inactive”.
Likewise we denote the label speci�c box of the current pattern as “active” and all other
label speci�c boxes as “inactive”. Active units �re with 40 Hz while inactive units �re
with 10 Hz. Which 127 units are active is determined in the following way: First, we
choose the active box and select 27 out of its 30 units. Then we in turn select all other
inactive boxes and choose 2 units each. We then select the remaining 84 units from the
100 units in the common box. In this example the null cause rate is adjusted to 14 Hz.
The full parameter set can be found in Appendix A.1.3 and the plot structure is explained
in Section 5.4.1. We observe a bimodal weight distribution. The small weights are a result
of the active units in inactive boxes while the large weights correspond to the common
box as well as the active box. Just like in Figure 5.19, we �nd that the early learning
phase is comprised of a steep increase in weights that all neurons participate in. Only
after the increase in synaptic input weight slows down, spike-based homeostasis is able
to moderate the network activity. Nevertheless, the network is able to classify all of the
nine input labels correctly.
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Figure 5.22: Null cause as input rate �lter. The network setup corresponds to Figure 5.21. We vary
the number of samples drawn from each inactive box to increase the strength of non-
speci�c background noise and try to compensate for it by adjusting the null cause rate νi0.
A higher null cause rate has the e�ect of suppressing weights from input neurons �ring
with lower rate, thereby increasing the contrast in the forming receptive �elds. This can
be seen in the plot as the classi�cation accuracy increases for higher numbers of units in
inactive boxes when we increase the null cause rate, but only up to a certain point. At �rst
we see a decrease in performance for low numbers of units in inactive boxes. This is due
to the fact that the learnable rate range is now rather compressed. Keep in mind that the
total number of active units per pattern remains constant, only their distribution changes.
For 0 units in inactive boxes, all 100 common units are always active whereas the units
in the active boxes are only active in 27 out of 30 pattern presentations on average.
As more units are drawn from inactive boxes, the average common box unit becomes
less active on average, allowing the cause layer neurons to learn their active boxes. As
we increase the null cause rate further, the network ceases to distinguish between the
labels. In this case, even when the common box is no longer posing a problem, the active
boxes are no longer able to attain enough weights to reliably activate the corresponding
cause layer neuron. Conclusively, we �nd that adjusting the null cause rate can help
to increase classi�cation performance by suppressing the in�uence of both low rates as
well as di�use background input.
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5.4.4 Homeostasis Source Type

In this section we brie�y compare the two immediate choices for spike-based homeostasis:
Poisson and periodic. We �nd that at high rates (≥ 1000 Hz), there is no signi�cant di�erence
in network performance. At lower rates, however, periodic generators clearly outperform
Poisson background sources. This can be seen in Figure 5.23.

The reason for this is simple: Due to the almost perfectly δ-distributed ISIs, a periodic back-
ground generator is able to generate a less variable post-synaptic conductance. As we are
trying to emulate a constant current to shift the mean membrane potential, it is modeled
more closely by the signal of a periodic generator. If each cause layer neuron is receiving its
own Poisson spike train, the di�erence in membrane potentials is ampli�ed even more. In
some cases, this can disturb learning. The di�erentiation of the receptive �elds to code for
di�erent patterns starts out slowly in the beginning of learning. If the variance in e�ective
bias for each neuron obscures this di�erentiation, no learning takes place and the neurons
start to code for a general superposition of all input patterns. We observe the same e�ect
if the learning rate for homeostasis is chosen too high. Since at higher rates, the weight of
a single spike has a lower absolute value (see Equation (5.15)) and spikes occur in greater
succession, the di�erence is diminished.

In the context of implementing NSEM. If homeostasis is implemented in a closed loop setup,
every unnecessary computation on the host computer should be avoided, since it needs to
operate in biological real time at the corresponding speed-up factor. This includes pseudo-
random operations to generate Poisson spikes, especially if we have to adjust their rate on
the �y since the most likely implementation of homeostasis consists of injecting spike trains
of variable rate via several synaptic input channels. Each synaptic input channel is set to
a di�erent synaptic weight (see Section 5.2). Also, if bandwidth is a concern regarding the
amount of spikes we can send to the system during simulation, we can preserve network
dynamics at lower homeostatic background rates when using periodic generators.
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Figure 5.23: Comparison between di�erent models as source for homeostasis: Poisson background
sources (top) and periodic background source (bottom). Both background sources �re
with 500 Hz while the network is learning the reduced MNIST dataset �ring with a rate
of 10–40 Hz. The network implements NSEM at a weight resolution of 6-bit. The full
parameters can be found in Appendix A.1.4 and the plot structure is explained in Sec-
tion 5.4.1. From the receptive �elds, the spike response counts and the approximate test
accuracy we see that the network with periodic homeostasis background is able to dis-
tinct the three patterns while the Poisson-supplied network is not. Please see the text
for details.
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5.4.5 Larger Networks

In this section, we brie�y explore the possibilities of NSEM in larger networks regarding the
number of cause layer neurons. As these simulations are very time consuming to perform
and analyse in any systematic fashion, we leave a thorough investigation to be conducted
as further work. In particular, these are the cases where we could bene�t the most from the
enormous speed-up of neuromorphic hardware.
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Figure 5.24: Large network simulation for 90 cause layer neurons learning the orientation of a 2
pixel wide strip in a 12 × 12 image. In order to increase the speed of learning we set
τsyn = τrefrac = 10 ms. Furthermore, we present orientations in the range 45–135° twice
as often as the others on average. The simulation is performed with NSEM weight up-
dates, as in Section 5.3 at a weight resolution of 6-bit. The full parameters can be found
in Appendix A.1.5 and the plot structure is explained in Section 5.4.1. We see that also
in this rather large setup each cause layer neuron is able to code for a certain range of
orientations which is now much smaller than in Section 5.4.2. The inferred input rates
are higher which is a result of the shorter synaptic and refractory time constants (at
τsyn = 10 ms, the estimated inferred rate for 70 Hz is∼43 Hz). Furthermore, we see that
homeostasis forces more neurons to code for the patterns presented more frequently.
Please note that we present all patterns for the same amount of time during the sub-
sequent test run, which lowers the spike response for the more frequently presented
patterns (during training). This is due to the fact that the spike-based homeostasis en-
sures that each neurons activity is the same. Thus, more cause neurons tend to code for
labels that are presented more frequently. We also see a larger spread in average rates,
input weights and e�ective biases, indicating that during training some cause layer neu-
rons become too active for short periods of time until the homeostasis is able to moderate
their activity.

In Figure 5.24, we revisit the input scheme from Section 5.4.2. We increase the cause layer
to 90 units and present half of all input labels twice as often as the rest. Nevertheless, the
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cause layer neurons manage code for separate sections of the input space that are much more
narrow than in Section 5.4.2. However, they tend to overlap far more. This is due to the time
delay it takes for the inhibitory signal to arrive after the cause layer has emitted a spike. As we
can see in Figure 5.25, we have a rather large peak at very low ISIs. This coincides perfectly
with the inhibition delay of∼1.4 ms. When comparing the raster plots of the network before
and after learning in Figure 5.26, we �nd that several cause layer neurons activate for each
presented input pattern. As the inhibitory signal arrives too late, they cannot be trained to
segregate the input space even more.

Figure 5.25: ISI distribution for the cause layer
spike train during training. The network is the
same as in Figure 5.24. Spikes within the delay-
time window can not be prevented as evidenced
by the concentration of ISIs in the range 0–
1.4 ms. Beyond that, we see that the inhibition
is su�cient to inhibit network activity once the
inhibitory signal arrives as we observe no ISIs
in the range 1.4–11.4 ms. The observed ISIs
are larger than the ideal case as the homeosta-
sis is more inhibiting due to coinciding spikes.
Therefore it takes slightly longer for the cause
layer to spike again on average.
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Finally, we present the current state regarding full MNIST learning with a network consisting
of 100 cause layer neurons. The network dynamics are shown in Figure 5.27. From a func-
tional point of view, the network is as good as in Figure 5.20. While the receptive �elds of
many cause layer neurons bear a clear resemblance to several digits, the classi�cation perfor-
mance of the network can not be regarded as satisfactory. Figure 5.27 serves as an example
for the current state of actively ongoing investigations regarding the ability of the network to
learn the full MNIST dataset. Among the investigated parameters are the learning rates and
their ratio, synaptic/refractory time constants, overall network activity pnet and pauses be-
tween pattern presentation to give the network a change to re-establish itself after learning.
So far, no satisfactory classi�cation performance has been achieved. Further work is needed
in this area.
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Figure 5.26: Raster plots of cause layer activity before and after training. The network is the same as in
Figure 5.24. At the top of both plots we see a color-coded representation of which pattern
is currently being presented to the network (dark blue corresponding to an orientation
of 0°). Top: Spike trains during early learning phase (time range 10–20 s). We see that
all cause layer neurons �re with no clear preference for all presented input patterns. We
see that the inhibition is strong enough to discourage spiking activity after each cause
layer neuron spike, as already shown in Figure 5.25. Bottom: Spike trains after learning
has stabilized (time range 14 940–14 950 s). Each neuron responds to their preferred
orientation only. Unfortunately, the stimulus is often su�cient for several neurons to
spike within the time-delay window, rendering a further separation of the input space
via mutual inhibition ine�ective. In accordance with the spike responses from Figure 5.24
we see that more cause layer neurons respond to the more frequent orientations 45–135°.
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Figure 5.27: Attempt at learning the full MNIST dataset with a network containing 100 cause layer
neurons. The input layer is �ring with rates of 10–100 Hz. The full parameters are
found in Appendix A.1.5 and the plot structure is explained in Section 5.4.1. Same as in
Figures 5.19 and 5.20, we observe that during early training the network activity is lead
by the cause layer neurons later coding for the strongest pattern (digit 0). While their
receptive �eld do seem to account for several slightly di�erent realizations of digit 0, their
overall proportion among the cause layer neurons is far too high with 21/100 compared
to 10 that we would expect. Overall, the classi�cation performance of larger networks
in regards to full MNIST remains non-satisfactory.

5.4.6 Non-negligible delays

As delays and their e�ects were already discussed here and there in the previous sections, we
want to recapitulate and illustrate their e�ects as they turn out to be the hardest challenge
when implementing SEM on neuromorphic hardware.

The main objective of SEM-like learning is to �nd hidden causes in the presented input pat-
tern. Whenever a cause layer neuron spikes, its weights get shifted so that it is more likely to
get activated by the same input stimulus next time around. Conversely, other cause layer neu-
rons should be discouraged from coding for the same input because it is already accounted
for. For this we need mutual inhibition. The greater the time delay for the inhibitory sig-
nal to arrive at the cause layer, the greater the chance of another neuron being activated as
well. Co-activated neurons then start to focus on the same input patterns which diminishes
classi�cation performance.

As signals are travelling asynchronously on the neuromorphic substrate during emulation,
they take an inherent and non-negligible time to arrive. Due to the high speed-up factor,
even though signals are as fast as on any other commercially available device, delays will
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correspond to biological time frames in the order of ∼1 ms. All simulations in this thesis
were carried out with an e�ective time delay of ∼1.4 ms to account for this.

For a low number of neurons (see, e.g., Section 5.4.2 or Section 5.4.3), we �nd that this delay
is less of a problem as each cause layer neuron is able to account for a disjoint set of input
labels. The probability for the cause layer to emit a spike at any point in time (given no
inhibitory signal) is directly proportional to the number of stochastic neurons it is comprised
of. Therefore, we are presented with a di�erent picture for larger cause layers: We can see
in Figure 5.26 that after training, each input pattern activates several cause layer neurons.
We can rule out a too weak inhibitory signal as source for the overlap in responses after
looking at the ISI distribution the spike train generated by the complete cause layer (found
in Figure 5.25): We observe a sharp peak in the distribution for times up to the time delay
of the inhibitory signal (1.4 ms). This indicates that once the inhibitory signal arrives, it is
indeed able to inhibit all activity. The overlap in pattern responses is therefore caused by the
non-negligible delays.

In Figure 5.28, we investigate of higher delays while trying to counter-act their e�ects by scal-
ing the weight conversion factor ftheo→bio (see Equation (2.110)) to moderate the overall input
strength each neuron receives. As we already discussed in Section 5.4.3, weight scaling is not
e�ective. Furthermore, we see a clear correlation between the time delay and the number of
neurons that start to code for the strongest pattern (digit 0). This supports our hypothesis
that delays of the inhibitory signal are the greatest challenge for network dynamics NSEM.

While adjusting the null case rate did improve the classi�cation performance for learning the
reduced MNIST dataset (see Section 5.4.3), we �nd in Figure 5.29 that it is unable to prevent
the detrimental e�ect of too high delays.

The probability of two cause layer neurons activating simultaneously is proportional to the
product of general network activity as well as the given time window they have to spike. If we
cannot shorten the spike transmission delay (i.e., the time window), we might be able to limit
its detrimental e�ects by lowering the overall network activity. Since weight updates in NSEM
are only performed if the post-synaptic neurons �re, this results in e�ectively longer training
durations. The issue of spike transmission delays and possible compensation methods is
currently still under active investigation.
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Figure 5.28: Number of patterns coding primarily for the strongest pattern in terms of total input
�ring rate (digit 0) for di�erent inhibition delays and weight scaling factors (i.e., we
arbitrarily scale the weight conversion factor ftheo→bio, Equation (2.110)). A network
consisting of 10 cause layer neurons is presented with the full MNIST label range (digits
0 to 9), but for each digit we always present the same pre-chosen example. Each net-
work implements NSEM at a weight resolution of 6-bit. The full parameters for a single
simulation can be found in Appendix A.1.6. For each network we evaluate for which
input label (i.e., which digit) each cause layer neuron had the highest activity in the test
run. We then count how many of the ten cause layer neurons code for the zero digit,
corresponding to the strongest label (i.e., on average, images containing a zero show the
most black pixels). The longer the delay time-window of the inhibitory signal, the higher
the probability of more than one cause layer neuron spiking and learning from the same
input. Therefore, as the delay increases, cause layer neurons are able to learn more inde-
pendently and hence naturally tend to learn the pattern with the highest synaptic input.
We �nd that scaling the weight conversion factor ftheo→bio in order to overall moderate
the strength of synaptic input in the network has limited to no e�ect. This is in accor-
dance to Section 5.4.2. Here we observed that when the absolute weights in the network
are decreased, spike-based homeostasis adjusts the e�ective biases accordingly, thereby
preserving network dynamics irrespectively of the absolute synaptic input strength.
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Figure 5.29: Learning the reduced MNIST dataset with varying delay time windows for the inhibitory
signal and null cause rates. A network of 3 cause layer neurons is presented with the
reduced MNIST set. The network implements NSEM at a weight resolution of 6-bit. The
full parameters can be found in Appendix A.1.6. For each network we compute the ap-
proximate test accuracy. We observe that for low delays, adjusting the null cause rate
is a su�cient way to learn the reduced MNIST dataset, but as the delay increases, the
classi�cation performance of the network su�ers. Adjusting the null cause rate is hence
no adequate method to deal with larger – but unrealistic – delays. Furthermore, we see
that adjusting the null cause rate too high becomes detrimental to the network perfor-
mance. In these cases, the weight range becomes so compressed that regular learning
dynamics cannot commence. Too many input weights are driven to be zero, rendering
the resulting synaptic input to weak to su�ciently activate any cause layer neurons.
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6 A new So�ware Framework for Spike-based
Inference

Proper research in computational sciences can only be conducted with proper software sup-
port. In order to speed-up the simulations for both this thesis and other publications, a set of
new software libraries was developed. They operate on-top of PyNN and NEural Simulation
Tool (NEST), make use of numpy [Numpy, 2012] and matplotlib [Hunter, 2007] for plotting.
They serve as an abstraction layer for performing spike-based inference.

The �rst one, spike-based sampling (sbs), implements stochastic leaky integrate-and-�re (LIF)
sampling. It takes care of calibrating LIF neurons for given neuron/input parameters and
allows the evaluation of arbitrary Boltzmann-distributions in static networks. It is detailed
in Section 6.1. For dynamic weight evolution there are two further libraries: spike-based
expectation maximization framework (SEMf) and spike-based learning (sbl). SEMf implements
spike-based expectation maximization (SEM)-based feed-forward learning in networks of LIF
neurons and was used extensively to study the feasibility of SEM-learning on neuromorphic
hardware (see Chapter 5). It is described in Section 6.2. The last library, sbl – at the time of
writing still under active development – is aimed at the e�cient implementation of contrastive
divergence (CD)-based algorithms (see Section 2.5.1) in networks of stochastic LIF neurons
and can be found in Section 6.3. Both SEMf and sbl make use of custom synapse and neuron
models that currently have only been implemented for the NEST simulator. They are detailed
in Section 6.4.

6.1 New Library: Spike-based Sampling

spike-based sampling (sbs) is based in spirit on an earlier set of scripts that were developed
during the development of Neural Sampling theory (see Section 2.4.4). Since the old set of
scripts was written – as is usually the case when prototyping – in organic fashion, it inter-
twined Boltzmann weight conversion, PyNN commands and plotting. sbs clearly separates
the abstract concept of stochastic LIF neurons and Boltzmann machine (BM) from network
communication code. Its two main conceptual buildings blocks are LIFsampler as well as
BoltzmannMachine.

The LIFsampler is described by a neuron model, its corresponding parameters and a back-
ground source con�guration (typically one excitatory and one inhibitory Poisson source with
set rate and synaptic weight). Given this con�guration, it is able to automatically calibrate it-
self to �nd the weight conversion factors f ext/inh

theo→bio as well as the membrane potential at which
the activation function is exactly 0.5 (see Section 2.4.4 and Section 6.1.1). For re-usability, a
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complete LIFsampler’s con�guration is saved as JavaScript Object Notation (JSON)-�le to
allow for easy inspection. After calibrating once, the LIFsampler can be created from �le.

The BoltzmannMachine on the other hand implements – as the name suggests – a BM of inter-
connected heterogeneously con�gured LIFsamplers. The user can specify either theoretical
or biological weight/bias con�guration. The BoltzmannMachine takes care of automatically
translating between the two, taking into account each LIFsamplers possibly unique calibra-
tion data. The network can then be run to gather spike samples from the corresponding
biological network, from which a sample-based approximation of the underlying probability
distributions is automatically computed. Renewing synapses with custom Tsodyks-Markram
(TM) parameters are also possible (see Section 2.4.4). For smaller networks, theoretical distri-
butions can be computed as well as the Kullback-Leibler divergence (DKL) computed between
the two. Demanding computations regarding probability distributions or state computations
from spike trains are implemented using Cython [Behnel et al., 2011], a library that converts
type-annotated Python to C that is then pre-compiled and loaded as shared library during
execution.

An important feature of sbs is that no PyNN-speci�c code is run until the user explicitly
requests it, e.g., via each objects create()-routine. This is necessary due to PyNN’s in-
herent “statefulness”. Even though a call to sim.end()/sim.setup(...) is supposed to
wipe the currently used simulator’s network state (according to the application programming
interface (API)-speci�cation) it is not always the case. This way, tasks such as computing
theoretical probability distributions or performing weight conversions of already calibrated
LIFsamplers can be accomplished without involving PyNN at all. Furthermore, as detailed
in Section 6.1.2, tasks that involve PyNN – e.g., calibration or the gathering of spikes given a
BM-con�guration – can be o�oaded into subprocesses in a fully transparent manner, allow-
ing for more than one of such tasks to be performed in a single run.

6.1.1 Calibration

Calibrating a stochastic LIF neuron involves computing the average activity of the neuron
given a certain leak reversal potential EL and �tting a logistic function to the result (see
Section 2.4.4). The user can either specify the value range in which the calibration should
be performed or simply let sbs �nd the relevant part itself. For additional speed, all di�erent
settings of EL are computed in one network run.

6.1.2 Seamless computation in subprocesses

sbs features a function decorator @RunInSubprocess that can be used to o�oad the execu-
tion of arbitrary functions into a subprocess that is terminated after the function has �nished
executing. The primary use cases are small PyNN simulation such as calibrations and exe-
cution of BMs. Especially parameter sweeps for di�erent BMs, when executed in the same
script, become inherently slower due to memory leaks. By o�oading each simulation into its
own subprocess, we avoid these possible memory leaks altogether. The process is completely
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transparent to the user. The function can be called regularly and returns whatever it would
have returned if run in the same process. For example, this enables evaluation of several
BM con�gurations via the same script in rapid succession without the user having to worry
about reusing objects from the previous iteration for the next (in case the network size or
LIFsampler con�guration changes).

Furthermore, the class decorator @RunClassInSubprocess can be used to o�oad the entire
life cycle of the decorated class into another subprocess. All calls to methods and attributes
are forwarded to the object and the result returned in the parent process. The subprocess can
also be terminated and re-created, properly wiping the state of the object contained within.

For both decorators, the only limitation is that the decorated function/class must be de�ned
when the module it resides in gets imported. Furthermore, it should not depend on the global
state of the module as we do not fork the parent process, but rather execute the module from
the start.

6.1.3 On-demand computing via descriptors

Another feature introduced by sbs is the ability to compute attributes of a class on demand.
Each attribute computes the values of other attributes it depends on automatically. This is
accomplished by decorating each attribute by @DependsOn(...) where the arguments are the
names of the corresponding dependencies. The whole class object then needs to be decorated
with @HasDependencies. Values are stored and reused once computed and only discarded
when one of the dependencies is changed.

For example, accessing the sampled Boltzmann probability distribution of the Boltzmann-
object for the �rst time after automatically computes the distribution from the recorded spike
data. Each subsequent access does not lead to a new computation, the probability distribu-
tion is stored. If, however, new spike data is gathered, the old distribution is discarded and
recomputed once needed. The same relationship exists between the theoretical distribution
and the weights set for the network.

The attribute is a simple function accepting up to one argument. Akin to the properties
concept of Python itself, it has to implement both get and set operations. If the optional
argument is None (get operation), the function has to compute its current value from its
dependencies and return it. If the optional argument is de�ned (set operation), the function
has the ability to transform the value before returning what should be stored.

6.1.4 Speed-up

Especially during CD-like training (see Section 2.5.1), when many di�erent networks need to
be initialized and evaluated, fast initialization of networks is key. The previous implementa-
tion of LIF sampling – for historical reasons – used a single PyNN Population per stochastic
neuron and correspondingly one Projection per synapse between any two Populations. sbs
streamlines the network creation process by using only a single Population and Projection
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for all neurons and synapse type (excitatory/inhibitory). Furthermore, if there are backend-
speci�c optimizations (e.g., using only a single Poisson source object for all samplers in NEST)
they are automatically applied.

To get an indication of the achieved speed-up, we perform an exemplary network initializa-
tion for 194 stochastic neurons. For the old implementation this step took between 50–70 s,
depending on the level of optimization. With sbs, the same initialization takes 4.8 s. The
result is a speed-up factor of 10–15.

6.2 New Library: Spike-based Expectation Maximization
framework

The spike-based expectation maximization framework (SEMf) is used for all simulations in
Chapter 5. It operates on the principle that a simulation of a certain network con�guration
should be fully speci�ed by a set parameters (i.e., a data -structure) and not a script-�le that
also describes how the simulation should be conducted. In a script �le, con�guration can
theoretically be anywhere, potentially making it very hard to comprehend after some times
has passed.

Therefore in SEMf, each simulation is fully speci�ed by a single parameter �le. This parameter
�le can be acted upon through certain controllers. Each controller performs a speci�c
task, such as network simulation, computation of analytical properties or plotting.

The network dynamics are speci�ed by abstract interacting interchangeable parts. In the case
of SEM, for instance, the network is comprised of an input layer, a cause layer, a homeostasis
implementation acting upon the cause layer and a connection object facilitating the dynamic
synapses between input and cause layer. Each abstract object type e�ectively de�nes an inter-
face that subclasses can implement. Which subclass is chosen with what parameters is then
de�ned in the parameter �le. This allows very easy testing of several network con�gurations
because each abstract concept can very easily be replaced. For example, each of the di�erent
updated rules described in Section 5.3 is implemented as its own connection-subclass. Which
connections are chosen during simulation is then completely independent from, say, what
homeostatic method was chosen. Each such object type in SEMf – including controllers –
has a set of default parameters that can only be changed when creating the object and de�ne
its complete behaviour.

Apart from simulations in NEST, conducted in Chapter 5, the original theoretical model (de-
tailed in Section 2.5.3) was implemented as boost.python-wrapped C++ module. It can be
swapped in for the PyNN-based simulations run in NEST. This allows for better comparabil-
ity between abstract theoretical model and NEST-aided simulations, because the simulation
data is then worked on by the same set of analysis and plotting tools, irrespective of origin.
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6.2.1 Data Management

Simulation data is stored in Hierachical Data Format (HDF) �le containers. Since simulations
typically take the longest to perform, their results are stored in a separate container that is
locked in order to prevent data corruption by any analysis conducted later.

The simulation parameters are stored in YAML Ain’t Markup Language (YAML)-�les. For
ease-of-use, SEMf provides a command line interface (CLI) that, through the use of Python
Meta programming, is able to automatically display the default parameters of each available
implementation of every abstract concept class. It does so in YAML format so that the user
can directly copy and paste the default parameters into a new �le and have a valid network
speci�cation.

The default YAML syntax is extended by a custom tag !ee (short for: execute expression) that
allows the evaluation of strings in Python. In each calculation, the python commands may
access two custom objects. First, np to access numpy speci�c functions and then the cache
object cc. The cache object cc is useful for performing minor calculations prior to simulation
in the parameter �le. Each parameter �le may have a custom top-level entry called cache,
that is a list of dictionaries. The values in each dictionary should be strings to be evaluated
in Python. For each key-value pair evaluated, the result of the evaluation of the value string
is stored as cc.<key> and is therefore available for subsequent calculations. The dictionaries
are evaluated in order of the list. Therefore, evaluations making use certain attributes of the
cc cache object need to appear in dictionaries further back in the list.

This way the parameter �le can be a bit more expressive as to how parameters are calculated.
If only the �nal result was stored in the parameter �le, the parameters would be harder to
retrace at a later time. Also, changing part of the computation midway would also not be
possible. Finally, parameters such as τsyn that appear several times in the parameter �le can be
de�ned once and then simply cross-referenced, thereby minimizing the chance for mistakes
when parameters are tweaked.

For examples as to how the cache object is used, please see the attached parameter �les in
Appendix A.1.

6.2.2 Input Generation

SEM makes heavy use of time varying input. Calculating and assigning the rate changes to
each input unit is a tedious and time consuming task. SEMf therefore implements input gen-
eration in the following form: Each Pattern is de�ned as a set of parameter changes (for
Poisson input we only have the rate) for each input unit at prede�ned times. This allows for
patterns that change over time, but it was not used in Chapter 5. Furthermore, for each pre-
sentation, a pattern may execute a di�erent set of parameter changes (e.g., di�erent example
images for the same digit in MNIST). Patterns can be created in bulk using a set of Creators
(one for MNIST, one for oriented strips, one for the common box scheme etc).
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After the patterns have been created, they can be combined with a variety of schemes (uni-
formly, non-uniformly, sequentially etc.). Each Combiner simply states at which time what
Pattern is presented to the network. These patterns can explicitly be overlapping. Also, the
input trace can be augmented using Injections that are one time parameter changes intro-
duced at user-speci�ed times. An example would be the constant 10 Hz background noise
in SEM. If patterns – or parameter changes – overlap, the user can chose between di�erent
merging strategies (summing the rates up, using the maximum etc.).

Typically, the user just speci�es what kind of patterns he wants to have combined in what
way. SEMf then takes care of computing the resulting set of rate changes that are given tot
he input implementation.

6.2.3 Sweeping Module

To aid in running parameter sweeps, SEMf provides several features to create all parameter
sets needed to sweep over several parameters at once. The user simply speci�es the source
parameter �le and what parameter ranges he wants to sweep over thereby naming each pa-
rameter �le according to the values of the selected parameters. Filters can be speci�ed to
exclude certain parameter combinations from the sweep. Each change in parameters is then
logged in the generated parameter �les so that they are better to comprehend even when
looked at after some time has passed.

Parameters can be speci�ed by a full path, such as network_params/connection_params/eta
or cache/0/num_z. Here, on each level, a string indicates a key in a dictionary, whereas a
number selects the corresponding element in a list.

6.3 New Library: Spike-based Learning

spike-based learning (sbl) is based on the same principles as SEMf and is still under active
development. It aims to implement e�cient CD-like learning algorithms (see Section 2.5.1)
to be used for long term training for large scale BMs.

It takes care of setting up cd_connection-synapses to be used in a subtype of
sbs.BoltzmannMachine that focusses on drawing single samples from a BM while slowly
adjusting its weights. Unfortunately, NEST was not designed for short simulation runs and
constant external updates of network parameters (such as weights). The new cd_connection
(discussed in Section 6.4.10) alleviates this problem.

The real time needed for a single training step in CD-based algorithms with many stochastic
LIF neurons is thereby greatly reduced. Exemplary simulations with a 794 × 1300 restricted
Boltzmann machine (RBM) showed a reduction per training step from roughly 3 min to about
4 s, corresponding to a speed-up factor of∼ 45. Therefore, long term investigation of training
large scale BMs in NEST are e�cient enough to be conducted in a systematic manner.
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6.4 Newly developed NEST-models

Over the course of this thesis, most simulations were performed using NEST (see Section 4.2).
Most of the concepts investigated in this thesis lie somewhat outside the main aim of NEST.
NEST investigates the interactions of large groups of neurons on super-computers where
most synapses are static or have a basic form of spike timing dependent plasticity (STDP).
Poisson background stimuli to the networks are static and dwarfed in number of actual neu-
rons in the network.

Within this thesis, comparatively fewer biological neurons are simulated, but the input the
network receives is much more complicated. Also, the STDP mechanisms are a bit more
involved. This takes NEST somewhat out of its primary realm of application. Hence, new
models needed to be implemented in order to perform the needed simulations in a timely
fashion, thereby broadening NEST’s applicability to learning tasks.

6.4.1 Challenges with time-varying Poisson noise

When performing a learning task, input to the network is usually rather structured and vary-
ing over time. Most importantly, it is vastly more complicated than di�use background input
in “regular” cortical networks (see, e.g., [Petrovici et al., 2014; Breitwieser, 2011]): Each unit in
the input layer yi (see Figure 5.1) changes the rate νi with which its underlying Poisson pro-
cess is generating events several time per biological (simulated) second. This poses a problem
for e�cient simulation, as the poisson_generator model in NEST, implementing [Ahrens
and Dieter, 1972], can only be set to one setting for rate, start- and stop-time.

There are two immediate workarounds we can think of: The �rst workaround is to pause the
simulation whenever a Poisson rate changes, jump back into the controlling Python environ-
ment, look up and write the new rates to the Poisson generators and continue the simulation.
This causes a lot of computational overhead and is, in general, not very feasible and should be
avoided. The second workaround is to pre-generate all needed rate changes and then create
one poisson_generator for every uniquely occurring combination of start-time, stop-time
and rate. This is again unfeasible as the number of needed noise-units increases rapidly: For
1000 s of MNIST images, already more than 160 000 units are needed. Still, simulations are
typically run for several thousand seconds biological time. Unfortunately, NEST checks all
poisson_generators for activity in every simulation step, not taking advantage of the fact
that, once deactivated, a generator will not reactivate again.

Yet, there is another potential performance bottle neck. The default poisson_generator
model operates the following way: In every time step, it emits a pseudo-event that is sent to
all units it is connected to. For each target i, a Poisson sample is drawn

ni ∼ Pois (n | λ = ν · dt) (6.1)

where dt is the simulation time step and ν is the average �ring rate. If n ≥ 1 the spike-event
is propagated to the target with the corresponding multiplicity n, but if n = 0 the event is
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discarded. This procedure is performed independently for every target, ensuring that every
target receives a unique spike train1. In case of short simulation time steps or low Poisson
rates, n will be 0 most of the time, resulting in discarded pseudo-events unnecessarily caus-
ing overhead by cluttering the message distribution system. To address both short-comings
several new NEST models were developed during this thesis.

6.4.2 Poisson generator with varying rates

The �rst new model, poisson_generator_var_rate, has two settings: rates and times.
Both are arrays, whereas the length of times is one greater than the length of times. The
entries in times have to be ascending. The i-th entry in rates then speci�es with which
rate the source emits Poisson spikes in the interval de�ned by the i-th and (i + 1)-th entry
in times. During simulation, the model acts like the default poisson_generator implemen-
tation – meaning that each connected neuron will receive its own unique spike train – but
automatically adjusts its �ring rate when the appropriate intervals are reached. A rate of 0 Hz
causes the generator to not emit any spikes in the corresponding interval. While this elim-
inates the need for one generator per unique combination of start-time, stop-time and rate,
it does not yet take care of the possible speed-up by eliminating the overhead of discarded
pseudo-events.

6.4.3 Multi-Poisson generator with varying rates for sparse input

The next model, poisson_generator_var_rate_multi, combines several sources into one.
In addition to the rates and times arrays it is supplied a third, indices, of same length as
rates. The entries in times have to be non-descending. All targets start inactive, νi = 0 Hz.
The j-th entries in each of the three arrays encodes a rate change. The target with index
i = indices[j] is set to rate νi = rates[j] at simulation time times[j]. The rate remains
set until another rate change occurs for this target or the last entry of times is reached,
indicating when the total activity should cease altogether (all rates are set to 0 Hz).

For simplicity reasons, the user has to specify the num_output-setting to inform the generator
about how many targets it will be connected to. This way, bu�ers and internal arrays can be
initialized with the proper size accordingly, rather than resizing everything whenever a new
target is added.

Upon simulation, in order to avoid emitting too many pseudo-events, in each time step we
�rst draw the total number of spikes ntot from a Poisson distribution:

ntot ∼ Pois
(
n

∣∣∣∣∣ λ = dt ·
∑
i

νi

)
(6.2)

1If the user wishes to supply identical spike trains to some neurons, he has to connect the poisson_generator
to an intermediate parrot_neuron – a simple model that re-emits all received spikes immediately – which
is then connected to the target neurons.
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Subsequently, the total number of spikes is distributed among the individual targets according
to a multinomial distribution, where each target is weighted according to its current rate νi:

(n1, . . . , ni, . . . , nn) ∼ Multinomial
(
n1, . . . ,nn

∣∣∣∣∣ ntot, pi =
νi∑
j νj

)
(6.3)

For implementation details, please see below. Only targets receiving spikes in the current
time step (ni > 0) are then noti�ed. This bypasses the communication infrastructure in
NEST altogether, but is necessary because NEST has no inherent concept of directed mes-
sages. Again, this makes sense in its primary realm of application – large scale simulations
on super-computers – but is a minor hindrance in our case. Plus, we only draw from a Poisson
distribution once instead of N times.

6.4.4 GSL-based random Device for multinomial Distributions

In order to sample from multinomial distributions as required by the new Pois-
son models, a new random device was added to the random sub-library of NEST,
GSL_MultinomialRandomDev. Its implementation is based onGNU Scienti�c Library (GSL).

We want to sample from the following distribution

(n1, . . . , ni, . . . , nn) ∼ Multinomial
(
n1, . . . ,nn

∣∣∣∣∣ ntot, pi =
νi∑
j νj

)
(6.4)

The user speci�es the total number of targets N as well as initial weight for each, νi. These
weights do not need to be normalized. First each target i is associated with a renormalized
binomial probability p̃i:

p̃i =
νi∑N

j=1 νj −
∑i−1

j=1 pj
(6.5)

p̃i denotes the probability of target i receiving an event, given that there are only N − i + 1
other targets left (all targets with an index lower than i being dismissed).

The number of events ni each target receives is hence implemented as

ni ∼ Binomial
(
n

∣∣∣∣∣ ñi := ntot −
i−1∑
j=0

nj, pi

)
=

(
ñi
n

)
pni (1− pi)ñi−n (6.6)

Since we can stop the distribution process as soon as all events are allotted, the weights are
inversely sorted prior to drawing. This way, the targets most likely to receive many events
are handled �rst, thereby maximizing the chance of stopping early because all events have
already been distributed, while not changing the sampling statistics in any way.
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6.4.5 Lookahead for sparse Input

If saving memory is not of the utmost importance, one can increase the performance of the
Poisson generator even more: Instead of only computing how many spikes occur in the cur-
rent time step only, we can perform a lookahead, meaning that we pre-compute and store all
spikes occurring in a longer time interval TL (∼ 1 s biological time).

These new models, poisson_generator_var_rate_multi_lookahead and poisson_-
generator_var_rate_lookahead, are based on models presented so far, but additionally
takes a setting steps_lookahead, specifying for how many steps the lookahead should be
performed.

The approach remains mostly unchained. The only di�erence to the generators without
lookahead is that we draw the total number of events as follows

ntotL ∼ Pois
(
n

∣∣∣∣∣ λ = TL ·
∑
i

νi

)
(6.7)

Additionally, after distributing the spike events among the targets, the actual spike times
have to be drawn for each target. Since all Poisson spike times are independent, we can
simply draw them from a uniform distribution over the current lookahead interval.

Finally, the resulting spike times are sorted and inserted into a queue. Whenever the current
simulation time step matches the spike time of the next spike, it is taken from the queue
and sent to the corresponding target. If the simulation time advances beyond the current
lookahead interval, the pre-computation is repeated. Any rate changes during the lookahead
interval are automatically taken into account.

6.4.6 Support for Multithreading and Multiprocessing

The �nal model, poisson_generator_var_rate_multi_lookahead_mt, adds support for
multi-threading. The only setting di�ering from the previously described models is that in-
stead of just specifying the number of targets the source is connected to, the user needs to
supply all_gids, the list of global IDs (GIDs) of all targets the generator is connected to
globally. NEST uses GIDs to uniquely identify each node in the network.

Since the multinomial Poisson sources generate speci�c spikes for each of their targets, they
need the ability to send directed spike events. This is achieved by storing a pointer to each
target unit and directly calling the event-handling method in case of a spike event, bypassing
the connection manager. In a multi threading/processing environment the situation is a bit
more complicated. Each virtual process (NEST’s generalized name for threads and processes)
operates on a set of nodes. Devices like Poisson generators – nodes that do not partake in
regular network dynamic but rather inject into or record from the network – are instantiated
on every virtual process. By using all_gids, each instance of the Poisson source model on
every virtual process is able to �nd out which targets it is connected to locally. This allows
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for a translation between the global indices array and the local target indices. Each instance
is only pre-computing spikes for its local targets while ignoring all other rate changes.

For the user, this is completely transparent. The model can be treated the same, independent
of the fact that the simulation is performed single or multi threaded or even multi processed.

6.4.7 Benchmark: Poisson Generators

In order to measure the speed-up of the newly deveoloped multinomial Poisson generators,
a series of synthetic tests was set up. In each test, we set up a series of Poisson sources
�ring onto a population of parrot_neurons – a simple model that re-emits all received spikes
immediately. Each parrot_neuron receives its own independent Poisson spike train. This is
done to keep the in�uence of possible neural dynamics in the targets at a minimum. During
network execution we only measure the time it takes for the simulation to be conducted,
not how long it takes to set up. We do include – for obvious reasons – the lookahead-pre-
computation of spikes in the corresponding source model. Each benchmark (i.e., each �gure)
was conducted in whole on one simulating node of the Human Brain Project (HBP) high
performance cluster. In order to avoid possible di�erences due to slightly di�erent execution
speeds of the nodes, we always compute the relative speed-up for all simulations conducted
on that node. For more stable results, each network setup is performed several times (∼100
times in most cases) and only the smallest execution time taken into account. The speed-up
factor is then simply the ratio of execution times for default and new implementation.

Firstly, we look at the best-case in terms of the default Poisson model: All targets receive Pois-
son spikes with the same rate ν so we only have to instantiate poisson_generator once.

In Figure 6.1, we compare execution times for di�erent �ring rates. A �xed number of targets
ntargets = 500 is supplied with Poisson noise of varying rates between 1–1000 Hz. As we can
see from the plot, both the model without and with lookahead perform better than the default
implementation for low rates. This is due to the fact that – as outlined above – we manage
to avoid sending unnecessary pseudo-events. Still, without lookahead the main source of
speed-up is when no target receives spikes and hence we have to perform neither multinomial
distribution nor delivery of spike-events. On average the ratio of time steps with no spike
is:

p(ntot = 0) = [Pois (0 | λ = ν · dt)]ntargets = e−ntargets·ν·dt (6.8)

Hence, when the rate increases events have to be distributed more often which at some point
becomes computationally even more expensive than the default implementation. When per-
forming lookahead, we can maintain a high speed-up factor for higher rates since we sample
less from both Poisson and multinomial distributions. Furthermore, since there are always
relatively many events per lookahead interval, the computational costs of the multinomial
distribution are independent of the total number of events past a certain threshold. If the
rate is increased even further, though, more and more spike times have to be drawn from
uniform distributions as well as sorted, diminishing the total speed-up achievable as there
are relatively less pseudo-events that can be avoided.
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Figure 6.1: Speed-up of the newly implemented multinomial Poisson sources both without (dots) and
with (crosses) lookahead of 10 000 steps. A single generator of each model is set to vary-
ing �ring rates and connected to 500 targets. Each target receives a unique Poisson spike
train. Each network setup is simulated 100 times for 40 biological seconds (time step
0.1 ms) and the minimal execution time is is noted. The speed-up is then measured as
the ratio of execution times of the default Poisson generator implementation (dashed line)
and each of the two multinomial models.
As we can see from the plot, the lower the �ring rate of the generated Poisson spike
trains, the more e�cient the multinomial Poisson spike generation is. The implementa-
tion without lookahead (dots) decreases in performance for much lower rates whereas the
implementation with lookahead (crosses) is able to maintain an almost constant speed-up
for larger rates.
This is due to the fact that the implementation without lookahead draws its main speed-up
from not distributing any spikes in case all targets do not receive spikes in a time step. If
spikes need to be send, the multinomial distribution has to iterate over almost all targets
to distribute only a few spikes. The implementation with lookahead (crosses) avoids this
by only drawing only once from the total Poisson distribution and once from the multi-
nomial per lookahead interval. After the number of spikes per target in the lookahead
interval has been determined, the spike times are uniformly drawn and sorted. As the
rate increased, this last part becomes more and more computationally expensive, as more
spike times need to be drawn and sorted, resulting in a diminished speed-up. See the text
for details.
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Figure 6.2: Speed-up of the newly implemented multinomial Poisson sources both without (dots) and
with (crosses) lookahead of 10 000 steps. A single generator of each model is set to 10 Hz
�ring rate and connected to varying numbers of targets. Each target receives a unique
Poisson spike train. Each network setup is simulated 100 times for 300 biological sec-
onds (time step 0.1 ms) and the minimal execution time is is noted. The speed-up is then
measured as the ratio of execution times of the default Poisson generator implementation
(dashed line) and each of the two multinomial models.
As we can see from the plot, the implementation without lookahead (dots) approximates
the default implementation (dashed line) whereas the implementation with lookahead
(crosses) maintains a constant speed-up factor irrespective of the number of targets.
This is due to the fact that without lookahead we need to draw from the multinomial dis-
tribution in every time step where at least one target receives a spike, causing additional
overhead. With lookahead, on the other hand, we only draw once from both total Poisson
as well as multinomial distribution per lookahead interval and temporarily store the input
spikes in memory, thereby maintaining a constant speed-up factor. See the text for details.

In Figure 6.2, we repeat the previous experiment, only this time for di�erent numbers of
targets while keeping the �ring rate �xed (ν = 10 Hz). We see a slightly di�erent picture:
While without lookahead the speed-up decreases as the number of targets increases (again
mainly due to Equation (6.8)), it manages to outperform the default implementation, albeit
only slightly. With lookahead, however, the speed-up remains constant, independent of the
number of targets. This is due to the fact that the ratio of avoidable pseudo-events remains
unchanged when adding new targets with the same rate.

In Figure 6.3, we investigate the lookahead interval. Here we �x the number of targets
(ntargets = 500) and the �ring rate (ν = 10 Hz) and vary the number of steps we perform
lookahead for at once. We see that the speed-up factor is diminished for small lookup inter-
vals since we approach the case without lookup. It plateaus as soon as the average number of
events per target get reasonably large (> 0.1). Beyond that point generating and reordering
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Figure 6.3: Speed-up of the newly implemented multinomial Poisson sources with lookahead of vary-
ing step numbers. A single generator of both the default Poisson generator model as well
as the sparse multinomial one is set to a �ring rate of 10 Hz and connected to 500 tar-
gets. Each target receives a unique Poisson spike train. Each network setup is simulated
100 times for 300 biological seconds (time step 0.1 ms) and the minimal execution time is
noted. The speed-up is then measured as the ratio of execution times of the default Pois-
son generator implementation (dashed line) and the multinomial model with lookahead.
As we can see from the plot, the speed-up increases as the number of lookahead increases.
This is due to the fact that the larger the lookup interval the fewer times we have to draw
from both total Poisson as well as the multinomial distribution. If we increase the looka-
head interval even further, the speed-up reaches a plateau: The longer the lookahead
interval, the more spikes will fall into it given a constant Poisson rate. The sorting and
storing of these spikes then counteracts the bene�ts of drawing fewer samples from Pois-
son and multinomial distributions. See the text for more details.

the spike-times is as computationally expensive as the savings obtained by performing less
Poisson and multinomial lookups. This shows that the memory overhead per supplied target
is not too much if the lookahead interval size is chosen accordingly.

Secondly, in Figure 6.4 we look at the worst-case in terms of the default Poisson model: We
have a set of n targets, each receiving a di�erent rate from 1 Hz for the �rst and n Hz for
the last. Since each instance of the default generator can only spike with a single rate, we
need n instances to supply all targets, whereas we still only need one instance for the newly
developed models. This has a dramatic e�ect on the achieved speed-ups, since now – in the
default model’s case – more nodes need to be queried for updates which causes additional
overhead. Since the average rate in the network still increases linearly with the number of
neurons2, the overall speed-up decreases since the sparseness is reduced (see above).

2 In this benchmark, the average rate for n neurons with rates from 1 Hz to n Hz is 〈ν〉 = 1
2 (n+ 1) Hz.
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Figure 6.4: Speed-up of the newly implemented multinomial Poisson sources both without (dots) and
with (crosses) lookahead of 10 000 steps when simulating several sources with di�erent
rates. We simulate n Poisson sources with rates ranging from 1 Hz till n Hz. Since the
default model can only �re with one rate, we need to create n generators, whereas the
multinomial Poisson sources emulate all n sources in one instance. Each network setup is
simulated 100 times for 40 biological seconds (time step 0.1 ms) and the minimal execution
time is noted. The speed-up is then measured as the ratio of execution times of the default
Poisson generator implementation (dashed line) and each of the two multinomial models.
We see a much greater speed-up than for one �xed rate due to the fact that we now need
more than one instance of the default model. Yet again, as the rates increase, the speed-up
decreases because the input becomes less sparse and therefore there are less pseudo-events
that could be avoided. We see that by pre-computing spikes in a lookahead window, we
achieve much greater speed-ups. See the text for more details.

Third, in Figure 6.5, we investigate the speed-up when the rates are not �xed but change over
time. We therefore take a set of rate courses generated from the input generation module of
SEMf (as described in Section 6.2.2) realize both with the default generator model where we
create one instance for each tuple of start-time, stop-time and rate and the newly implemented
source models. The input itself consists of images from the MNIST database [LeCun and
Cortes, 1998]. Each of the 28 × 28 = 784 pixels is represented by an input source encoding
its intensity between 0 and 255 as a �ring rate between 10–100 Hz. Every 0.5 s, a new image
is presented for 0.4 s after which there is a pause for 0.1 s in which the input sources all �re
with 10 Hz. The duration for which the rate courses are generated is varied. We see that the
longer the duration for which we pre-generate input the greater the speed-up. This is due to
the fact that the number of default generator instances increases with the amount of tuples of
start-time, stop-time and rate. Unfortunately, the scheduler in NEST does not make use of the
fact that disabled devices will not reactivate again during the same simulation run and thus
can be eliminated from scheduling. Sorting all devices by start and stop time and storing them
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Figure 6.5: Speed-up of the newly implemented multinomial Poisson sources both without (dots) and
with (crosses) lookahead of 10 000 steps when generating MNIST images. Each of the 784
targets encodes the pixel intensity between 0 and 255 as a rate between 10 and 100 Hz.
Every 0.5 s a new image is encoded in the �ring rates for 0.4 s, after which all targets
�re with 10 Hz background rate only for 0.1 s. The rate changes for all targets are pre-
computed – as explained in Section 6.2.2 – for varying biological durations. Each network
setup is simulated 100 times (time step 0.1 ms) and the minimal execution time is noted.
The speed-up is then measured as the ratio of execution times of the default Poisson gen-
erator implementation (dashed line) and each of the two multinomial models. Since the
default Poisson generators can only store a single start, stop and rate value, each unique
combination of those three values has to be realized by a single Poisson generator. This
causes unnecessarily many generators to be created, slowing down execution times con-
siderably. The sparse multinomial Poisson sources store all rate changes by the individual
targets and change their rates on the �y during the simulation without any callbacks to
the Python interpreter controlling the simulation. This results in a much greater speed-up
than previously and makes network simulations with sophisticated input characteristics
feasible.
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in a queue could improve the performance as only the next activating device would need to
be checked per time step. In actual simulations (see Chapter 5), input is pre-generated and
sent to the sources every 500 s of biological time.

source model # generators execution time speed-up
multinomial model with lookahead 1 3 min 14 s –
one default model per source 784 23 min 55 s ∼ 7.4
pre-generated input with default model 160 147 13 h 28 min 4 s ∼ 250

Table 6.1: Exemplary comparison of actual execution time of full SEM-like simulations – discussed
in Chapter 5. A small network with three samplers (to minimize the in�uence of other
parts in the network) is receiving MNIST input for 1000 s biological time. In the �rst case
we have the one instance of the multinomial Poisson source model emulating all 784 units
in the input layer. In the second case we have one NEST default Poisson generator per
unit in the input layer, but stop the simulation every 0.5 s of biological times and change
their rates accordingly. In the last – and worst – case we pre-generate the complete input
for the full duration and create one default Poisson generator for each unique set of start-
time, stop-time and rate. Each simulation was only run a single time and is therefore only
a rough indication of speed. From the execution time it is clear that the last option is
completely unfeasible, while stopping the simulation and resetting the rates every 0.5 s
leaves much room for improvement. Please also note that usually simulations are run for
several thousand seconds biological time. See the text for details.

Lastly, we do an exemplary comparison by executing the same simulation network with three
di�erent source implementations. The three source implementations are:

• the new multinomial source model with lookahead
• one default Poisson generator per input neuron the rate of which is changed from the

controlling Python process whenever a new pattern is presented
• one default Poisson generator is instantiated for every tuple of start-time, stop-time

and rate from the pre-generated rate courses (160 147 in total)

We use a small network consisting of three sampling neurons, receiving MNIST input that
has been clipped to 26 × 26 image size. For simplicity, there is no pause between di�erent
images, so that input rates are constant for 0.5 s biological time. The network is run for 1000 s
biological time in total. Please note that regular simulations are run for a multitude of that.
The full parameters can be found in Appendix A.1.1. We once again see that implementing
varying input rates as a plethora of default Poisson generators is highly infeasible. Also,
manually3 updating all rates from the controlling Python process is slower than the newly
developed models. Furthermore, from a developer’s standpoint, they are easier to deal with
because they can be set once and then simply supply their targets with Poisson noise with
no need for stopping the simulation speci�cally because of them.

3This involves stopping the NEST run, switching back to the controlling Python context, adjusting the rates
via Python-calls and restarting the NEST run.
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6.4.8 Spike-based homeostasis synapses

For spike-based homeostasis, two new synapses have been developed:
stdp_homeostasis_linear and stdp_homeostasis_linear_modulating. Both implement
the update rule discussed in Section 5.2. The latter additionally implements a time varying
learning rate that oscillates in log-space (not shown in Chapter 5).

6.4.9 SEM-like synapses

For SEM, each of the adjustments discussed in Section 5.3 was implemented in its own synapse
model. Each model computes the weight change in the theoretical regime for easier read out
and analysis. The actual biological weight is then set by multiplication with the set conversion
factor ftheo→bio (see Equation (2.110)).

6.4.10 CD-based synapses

When implementing any kind of CD-based algorithm (see Section 2.5.1), one generally has
to draw a set of samples from the BM/RBM and then update the synaptic weights according
to update rules such as Equation (2.132). When going to large-scale BMs we encounter a
performance bottle-neck: The Cython-based interface for NEST was not designed for such
rapid parameter updates. Hence, for RBMs on the order of 784× 1300 (for learning MNIST)
we have 1 019 200× 2 synapses in the network. Writing a new weight into all of those takes
a relatively long time (close to 15–20 s on the currently used machines). Since this operation
has to be performed at least once for every training epoch, and we have tens of thousands of
training epochs, this severally hinders our ability to investigate CD-learning at this network
size.

The cd_connection-synapse was implemented to alleviate this problem. It is based on the
simple fact that the sample-based CD-like weight update Equation (2.132) is split into four
factors and the learning rate:

∆W = η · (dpre dpost −mpre mpost) (6.9)

where dpre, dpost denote the data-term samples of the pre- and post-synaptic neuron andmpre,
mpost the model-term samples correspondingly. Symmetry in the products ensures that both
synapses between the same neurons perform the same weight update and their BM-weight
therefore stays symmetric.

The samples can be computed in the parent Python process that is controlling the simulation.
All update factors are then written from Python to a memory-mapped bu�er from which they
will be read by all synapses during simulation. This e�ectively sets the time needed to write
the weights to the network to zero so that only the simulation time per step (a few seconds)
remains.

Simulations that took weeks before can now be conducted in under a day.
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6.4.11 Periodic Generator

In principle, if we want to generate regular spike trains we have two options in NEST: We
can pre-generate a regular spike train and load it into a spike_generator instance. Espe-
cially for long simulations, this is very memory consuming. Alternatively, we can con�gure
a biological realistic neuron model to spike regularly (e.g., by injecting current or setting
the reversal potential above the �ring threshold), but this is not straightforward (we have
to translate our desired inter-spike interval (ISI) into corresponding neuron parameters, i.e.,
current strength) and we needlessly compute membrane dynamics we are not interested in,
wasting computational capacities.

The periodic_generator is therefore a very simple model to generate regular spike trains.
Apart from the start and stop times that are common for all NEST devices, the user speci�es
both the isi as well as offset. The generator then emits spikes at the following time steps:

tspike = offset + isi · i i = 0, 1, 2, . . . (6.10)

All emitted spikes have a �xed ISI, while specifying the o�set allows the user to shift the
whole spike train by an arbitrary amount.

6.4.12 Selective Parrot Neuron

The selective_parrot_neuron behaves almost exactly like the regular parrot_neuron al-
ready present in NEST with one important exception: It only re-emits spike-events with a
weight di�erent from zero. This allows for the investigation of synapse dynamics in �xed en-
vironments. Most synapse models developed in this thesis (see Section 6.4.9 and Section 5.3)
evolve a theoretical weight value that, upon spike transmission, is multiplied with the con-
version factor (see Section 2.4.4 and Section 6.1.1) to obtain its biological equivalent. This has
two distinct advantages: Firstly, the theoretical weight value is often more intuitive for the
experimenter to interpret. Secondly, by setting the conversion factor to zero, the resulting
biological weight will be zero as well, irrespectively of how the theoretical weight evolves.
This means a selective parrot neuron as post-synaptic neuron does not re-emit the transmit-
ted spike-event while a regular parrot neuron does. As in the latter case the post-synaptic
neuron �res synchronously with the pre-synaptic neuron, no STDP dynamics can be inves-
tigated.

By then connecting two selective parrot neurons via the synapse model to be investigated,
we can impose any �ring dynamics onto the two nodes by stimulating them with non-zero
weighted spike-events. The synapse then evolves according to the spike history of the two
nodes, but none of the transmitted spikes elicit additional post-synaptic spikes which would
disturb the STDP mechanics as these spikes would appear in the spike history of the post-
synaptic parrot neuron.
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6 A new Software Framework for Spike-based Inference

6.4.13 Last Spike Detector

The last_spike_detector is a simpler variant of the existing spike_detector. For each
neuron connected to it, the time of its latest spike is recorded. This is useful whenever we
are not interested in the network’s complete spike history (which would be recorded by the
default spike_detector) but rather in the state the network was encoding at the particular
time the simulation was halted.

When read out, the last_spike_detector returns both a times as well as an indices array.
The i-th entry in both arrays denote both latest spike time and global id (uniquely identifying
a node in NEST) of the i-th a�erent neuron. By comparing the time distance between latest
spike times and current simulation time to the length of an active state τon we can immediately
compute the binary state encoded by the network. This is especially useful in CD-like learning
(see Sections 2.5.1, 6.1 and 6.3) as here we perform many small simulation steps after which
we are only interested in the current binary state of the simulation and not the entire spike
history.

6.5 Source Code

All source code can be found in several Git repositories at:

https://gitviz.kip.uni-heidelberg.de

sbs

The source code to sbs can be found in the code/v2/sbs subdirectory of the
model-nmsampling repository. It can be installed via the provided setup.py script.

SEMf

The source code to SEMf can be found in the src/combined subdirectory of the model-sem
repository. It can be installed via the provided waf install script.

sbl

The source code to sbl be found in the code/v2/sbl subdirectory of the model-nmsampling
repository. It can be installed via the provided setup.py script.
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Discussion

In this thesis, we demonstrate the fundamental feasibility of NSEM, a neuromorphic imple-
mentation of spike-based expectation maximization (SEM) with stochastic leaky integrate-and-
�re (LIF) neurons on state-of-the-art neuromorphic hardware. In particular, we use LIF neu-
rons with exponential synapses, which are a de-facto standard for neuromorphic devices, as
well as double-exponential spike timing dependent plasticity (STDP). Furthermore, we study
the e�ects of a �nite weight resolution and of the speci�c implementation of STDP in the
Neuromorphic Physical Model System 1 (NM-PM1) system.

We use a so-called cause layer of mutually inhibiting neurons to detect “hidden” causes (i.e.,
salient features) in the spike patterns emitted by a forward projecting input layer. Following
[Nessler et al., 2013], we show that by using a speci�c spike timing dependent plasticity (STDP)
rule for the dynamic synapses between input and cause layer, the network dynamics can be
understood as a form of online expectationmaximization (EM), a general class of unsupervised
maximum likelihood (ML) learning algorithms (Section 2.5.3). After training, each cause layer
neuron is self-tuned to respond to a speci�c input label. The receptive �elds then encode the
activity pattern of the input layer most likely to be responsible for each cause layer neuron’s
activation.

Building upon [Petrovici et al., 2013], we implement NSEM with a cause layer comprised
of stochastic LIF neurons. As it is di�cult for synapses on the NM-PM1 to switch reversal
potentials during ongoing emulation and are therefore set to be excitatory only, the cause
layer neurons’ individual excitabilities have to be moderated during training. Since adjusting
neuron parameters at runtime is unfeasible, we implement a spike-based version of home-
ostasis [Habenschuss et al., 2012] (described in Sections 2.5.4 and 5.2). We show that even with
a simple update rule – suitable for closed-loop implementation – we are able to maintain the
activity of each cause layer neuron at a pre-de�ned target value.

The dynamic homeostasis-implementing synapses are driven by background generators. In
Section 5.4.4, we demonstrate that, at comparatively lower �ring rates, a regular background
spike train is preferable to Poisson noise as it is able to better approximate a constant bias
current.

Due to technical constraints regarding the implementation of STDP in the Neuromorphic
Physical Model System 1 (NM-PM1), the original weight update rule is not amenable to a
straightforward implementation. We therefore addressed each constraint in order and modi-
�ed the original weight update rule as needed.

The original update rule performs a weight update for every post-synaptic spike, whereas on
the NM-PM1 we are only able to operate on spike pairs. This especially means that we cannot
perform weight updates if the pre-synaptic neuron is silent. However, since homeostasis �xes
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the average activity of each cause layer neuron, we are able to incorporate this information
into an adjusted update rule for causal spike pairs only (see Section 5.3.1).

Furthermore, for each post-synaptic spike we e�ectively only “see” the eligibility trace of
latest pre-synaptic spike as opposed to all pre-synaptic spikes. This in�uenced the under-
lying generative model that was formulated for full eligibility traces. As we observe less
pre-synaptic activity, the resulting weight updates as well as the learnt weights turn out to
be smaller. Conversely, the receptive �eld of each cause layer neuron then corresponds to
seemingly lower activity of the input layer. As shown in Section 5.3.2, these in�uences are
predictable and can thus be compensated for to a limited degree, thereby almost restoring the
weight distribution in the network.

On the NM-PM1, STDP-based weight updates only happen periodically and are then based
on accumulated eligibility traces. We show in Section 5.3.3 that as long as the causal spike
pair correlation information can be stored su�ciently (i.e., it is not altered, either by decaying
or reaching a maximum value), the update rule is not sensitive to the duration of the update
period.

Finally, we showed in Section 5.3.4 how the limited weight resolution of 4–6 bit in neuromor-
phic systems can be circumvented by employing stochastic weight updates.

The learning ability of the �nal NSEM model is demonstrated in Section 5.4.2. Here, we illus-
trate the cause layer neurons’ ability to learn classes of a simple input pattern – a randomly
oriented bar. Moving to more complicated learning problems, in Section 5.4.3 we show that
the network is able to learn and distinguish between all digits in a modi�ed subset of the
MNIST dataset, even at 4-bit weight resolution. In order to achieve this goal, we have to
adjust the minimally inferable rate of the underlying generative model, corresponding to
an increase in contrast in the learnt receptive �elds. When used as a discriminative model,
the post-learning classi�cation performance on the reduced MNIST dataset approached 94 %
with only three cause layer neurons and 4-bit weight resolution.

In Section 5.4.5, we brie�y explore the possibilities of NSEM in larger networks. Here we
observe that each cause layer neuron codes for a smaller part of the input space (i.e., fewer
orientations in the randomly oriented bar example). Furthermore, we present �rst steps to
learn the full MNIST dataset as in larger networks we are able to account for more variations
in the presented input images. Due to the relatively long simulation times needed for these
types of networks, emulation in neuromorphic hardware would be primarily useful here.

A major concern for the successful implementation of NSEM in a neuromorphic environment
are spike transmission delays. The only time critical spike signals in the entire network are the
ones to and from the inhibitory population facilitating the winner-take-all (WTA)-structure
of the cause layer. The inhibitory signal is needed to discourage several cause neurons from
spiking and thereby learning from the same input. The longer it takes to arrive, the more
likely it is that several cause layer neurons spike and thus learn overlapping regions of the
input space. In Section 5.4.6, we show that long spike transmission delays in the order of
several milliseconds diminish the classi�cation performance of the network.
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The entire NSEM framework was implemented as a set of interacting NEural Simulation Tool
(NEST) modules. Therefore, NSEM is available to be combined with other models or inte-
grated into larger network motifs. Furthermore, the software packages developed during this
thesis (described in Chapter 6) were designed with extensibility in mind, so that the next
steps, outlined below, can be carried out with minimal e�ort.
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With the fundamental feasibility of a neuromorphic implementation of SEM – denoted as
NSEM – demonstrated in this thesis, we have taken the �rst steps towards wafer-scale unsu-
pervised learning.

In the immediate future we need to verify the applicability of spike-based homeostasis im-
plemented in a real closed loop setup. This study can be conducted independently of other
concepts such as LIF sampling or learning. The setup is simple: The activity of a set of intrin-
sically �ring neurons (either by current injection or background stimulation) is moderated
via externally injected spike trains. The needed rate and weight of such spike trains is com-
puted on a host computer running in parallel. These experiments may serve as relatively
low-demand benchmarks for the ability of the NM-PM1 to operate in a closed-loop environ-
ment as it evaluates key aspects such as available bandwidth for spike readout/injection as
well as the permissible model complexity for real-time execution on the host computer.

In parallel, the concept of spike-based homeostasis may be studied further. As was demon-
strated in this thesis, a constant homeostatic learning rate for the homeostasis has to balance
between two extremes: If it is too small, cause layer neurons with a temporarily high activity
cannot be su�ciently moderated as their synaptic input from the input layer increases faster
than the homeostatic inhibition. Due to the nature of the update rule, weights can not grow
arbitrarily large. Therefore homeostasis is able to overtake the synaptic input in strength and
moderate the activity of the “runaway” neurons. However, a lot of learning time is wasted
and sometimes the network state remains unrecoverable. If the homeostatic learning rate is
too high, however, even slight di�erences in the activity of cause layer neurons – occurring
on smaller time scales when the receptive �elds start to di�erentiate – are immediately bal-
anced out. The neurons are unable to learn distinct input patterns and instead are driven to
code for a superposition of all input patterns. A new approach would be to dynamically ad-
just the homeostatic learning rate during training in the same spirit as the variance tracking
approach in [Nessler et al., 2008]. By taking into account how much we needed to adjust the
e�ective biases in recent history, we in- or decrease the homeostatic learning rate during sim-
ulation. This would suppress “runaway” behavior of cause layer neurons while still allowing
for di�erences in activity on smaller time scales that are needed for successful NSEM.

As discussed in Section 2.5.3, the formalism of SEM was recently shown to be compatible
to all distributions in the natural exponential family [Bill et al., 2015]. As we demonstrated,
the underlying generative model used in this thesis – modelling the input as samples from
Poisson distributions – is disturbed primarily by the nearest-neighbor spike pair correlation
information. NSEM should therefore include modelling the input as Bernoulli processes. In
this adjusted generative model, the theoretically optimal weight update takes into account
the latest pre-synaptic spike only, resulting in a more faithful representation in hardware.
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The renewing synapses required by this model can be realized via the short term plasticity
(STP) mechanisms available in hardware (discussed in Section 2.4.4) as done in [Petrovici
et al., 2013, 2014].

Further studies on the e�ect of parameter mismatch are also needed. We need to investigate
accuracy of the correlation capacitors in the synapse, the decay of the correlation information
charge due to leakage currents, �xed pattern noise in synaptic weights and neuron parameters
or a non-uniform delay structure in the network. These aspects are likely to have an impact
on the classi�cation performance and thus should be investigated in future work.

Finally, we can also expand SEM to larger networks, such as presented in [Bill et al., 2015],
where cause layer neurons compete to be local experts regarding hidden causes in small
patches of the complete input layer. Sparse excitatory interconnections then allow similarly
tuned neurons to integrate information beyond the receptive �eld of a single unit.

Another such possibility would be – similar to deep learning in restricted Boltzmann machines
(RBMs) [Hinton, 2010] or convolutional neural networks (CNNs) [Lecun et al., 1998] – to stack
multiple layers with several WTA-like structures on top of each other. While the neurons in
the lowest-level learn local salient features in the input, higher-level neurons integrate this
information to detect higher-order features which has the potential to signi�cantly improve
the classi�cation capabilities of NSEM. The spike-based expectation maximization framework
(SEMf) (discussed in Section 6.2) already has limited support for multilayer architectures built
in, although it was not presented in this thesis.

Since spike transmission delays were identi�ed as one of the major concerns for successful
NSEM learning, strategies for compensation have to be developed. One possible approach is
to reduce target activities of the cause layer neurons via spike-based homeostasis. This way,
it is less likely for several cause layer neurons to spike simultaneously, potentially making
the network more resistant to transmission delays. As learning only occurs when neurons
in the cause layer spike, reducing their activity corresponds to a reduction in learning speed.
The proposed method would therefore have the downside of prolonging simulations times
which is less of a concern on neuromorphic hardware.

Evidently, the ultimate goal is to implement NSEM on neuromorphic hardware, in particular
on the NM-PM1. Firstly, its speed-up factor due to physical emulation of neural dynamics
in analog circuitry will shorten the time needed for training considerably. Secondly, its in-
herent parallelism make it ideal for larger integrated network structures. Network sizes are
in the order of thousands of units for state-of-the-art software implementations for learning
handwritten digits [Lecun et al., 1998; Deng and Yu, 2011; Cireşan et al., 2012]. These can be
implemented on single wafer with no increase in simulation time.

When going to potentially even larger problems, the aforementioned multi-layer architecture
could be spread among sets of several interconnected wafer modules. Since delays are only
relevant within each small WTA-circuit, we have to ensure that each local learning unit is
located on the same wafer. Furthermore, since each cause layer sparsely encodes its observed
input, we do not need a lot of communication bandwidth between the wafer modules. This
allows for unsupervised learning in an online fashion at very large scales, rivaling state-of-
the-art software implementations.
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Finally, the training and operation of autonomously acting agents, such as self-driving cars
or �ying drones, has become more relevant in recent years [Kim et al., 2013]. These mobile
agents are limited in how much energy they are able to store. Since neuromorphic hardware
is more energy e�cient than conventional computing architectures, it is a prime candidate
to serve as computational substrate for these agents. Of course, a substrate by itself is not
enough. Models such as NSEM, employing the core ideas discussed in this thesis (stochastic
sampling, Bayesian inference and unsupervised learning), would thus bolster and pro�t from
the development of neuromorphic computing.
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Acronyms and Technical Terms

ADC . . . . . . analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 42)
AdEx . . . . . adaptive exponential integrate-and-�re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 17, 38)
ANC . . . . . . analog network core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 38)
API . . . . . . . application programming interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 43, 45, 96)
BM . . . . . . . Boltzmann machine . . . (pp. 1, 9, 10, 16, 17, 26, 31, 32, 34, 47, 48, 50, 95–97, 100, 112)
BSS . . . . . . . BrainScaleS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 2, 37, 38)
CD . . . . . . . . contrastive divergence . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 25, 26, 95, 97, 100, 112, 114)
CLI . . . . . . . command line interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 99)
CNN . . . . . . convolutional neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 120)
DAC . . . . . . digital-analog converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 39)
DenMem . dendrite membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 38–40)
DKL . . . . . . . Kullback-Leibler divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 7, 8, 25, 27, 28, 67, 96)
E-step . . . . expectation step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 28–31, 33, 35, 49)
EEG . . . . . . electroencephalography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 43)
EM . . . . . . . expectation maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 2, 26–31, 33, 115)
FACETS . . . Fast Analog Computing with Emerging Transient States . . . . . . . . . . . . . . . (pp. 2, 37)
FPT . . . . . . . �rst passage time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 21, 23)
GID . . . . . . . global ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 104)
GSL . . . . . . . GNU Scienti�c Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 44, 103)
HBP . . . . . . Human Brain Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 2, 37, 105)
HCS . . . . . . high-conductance state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 17, 18, 20, 22)
HDF . . . . . . Hierachical Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 99)
HICANN . . high input count analog neural network . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 37–42, 54)
HMM . . . . . hidden Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 31)
ISI . . . . . . . . inter-spike interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 51, 57–59, 85, 88, 91, 113)
JSON . . . . . . JavaScript Object Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 96)
L1 . . . . . . . . layer-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 37, 39, 40)
L2 . . . . . . . . layer-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 38, 39, 51)
LDA . . . . . . latent Dirichlet allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 27)
LFSR . . . . . . linear-feedback shift register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 39)
LIF . . . . . . . leaky integrate-and-�re . . (pp. 2, 3, 5, 17, 18, 21, 22, 47–49, 68, 69, 71–75, 95–97, 100,

115, 119)
LUT . . . . . . look up table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 41, 42, 66)
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M-step . . . . maximization step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 28–31, 33)
MAP . . . . . . maximum a-posteriori probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 9)
MCMC . . . .Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 10, 12, 13, 16)
ML . . . . . . . .maximum likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 1, 8, 25, 27, 115)
NCC . . . . . . neural computability condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 14, 16, 17, 33)
NEST . . . . . NEural Simulation Tool . . . . . . . . . (pp. 44, 45, 50, 95, 98, 100–104, 109, 111–114, 117)
NM-PM1 . . Neuromorphic Physical Model System 1 . . (pp. 2, 16–18, 37, 38, 42, 44, 47, 49–51, 59,

68, 115, 116, 119, 120)
NSEM . . . . . neuromorphic spike-based expectation maximization (pp. 2, 66, 75, 76, 78, 79, 81, 82,

85–87, 91–93, 115–117, 119–121)
ODE . . . . . . ordinary di�erential equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 19, 22, 44)
OU . . . . . . . .Ornstein-Uhlenbeck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 17, 19, 20)
PCD . . . . . . persistent contrastive divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 26)
PDF . . . . . . . probability density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 5, 22)
PLSA . . . . . probabilistic latent semantic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 27)
PPU . . . . . . plasticity processing unit . . . . . . . . . . . . . . . . . . . . . . . . (pp. 38, 42, 51, 59, 61, 63, 73, 74)
PSP . . . . . . . post-synaptic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 1, 22–24, 32)
RBM . . . . . . restricted Boltzmann machine . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 10, 25, 100, 112, 120)
RV . . . . . . . . random variable . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 1, 5–7, 9, 10, 12–16, 21, 26, 52, 67)
sbl . . . . . . . . spike-based learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 95, 100, 114)
sbs . . . . . . . . spike-based sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 95–98, 114)
SEM . . . . . . spike-based expectation maximization . . (pp. 2, 3, 5, 31, 34, 45, 47, 53, 59, 61, 67–69,

71–74, 90, 95, 98–100, 111, 112, 115, 119, 120)
SEMf . . . . . spike-based expectation maximization framework . . . (pp. 95, 98–100, 109, 114, 120,

133)
STD . . . . . . . short term depression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 24)
STDP . . . . . spike timing dependent plasticity . (pp. 3, 31–33, 38, 39, 41, 42, 47, 52–56, 59, 61, 68,

101, 113, 115, 116)
STF . . . . . . . short term facilitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 24)
STP . . . . . . . short term plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 24, 39, 120)
TM . . . . . . . Tsodyks-Markram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 24, 39, 40, 96)
VLSI . . . . . . very-large-scale integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p. 37)
WTA . . . . . winner-take-all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 31, 47, 48, 116, 120)
YAML . . . . . YAML Ain’t Markup Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pp. 99, 133)
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A Parameters

A.1 Simulations with SEMf

This chapter lists all YAML Ain’t Markup Language (YAML) parameter �les used for full net-
work simulations with SEMf which can be found at https://gitviz.kip.uni-heidelberg.de
in the model-sem git repository. The waf installation scripts are located in the src/combined
subfolder.

All parameters are speci�ed either unit-less, in theoretical units or – in case of neuron pa-
rameters – in PyNN default units. Due to the relatively long time scales on which simulations
are performed, the default unit for time was chosen to be seconds instead of milliseconds.

A.1.1 Background Source Comparison

See Section 6.4.7.

1 cache:
2 - tau_syn: 10.0e-3
3 acf: 1.
4 rate_low : 10.
5 rate_high: 90.
6 nn_only: false
7 activity_ratio: 1.
8 pattern_length: 0.5
9 pattern_pause: 0.0

10 pattern_step: 0.1
11 weight_bits: 6
12 max_weight_factor: 1.2
13 update_period: 2.0
14 num_z: 3
15 dt: 0.1e-3
16 labels_to_create: [0,3,4]
17 rate_nc: 28.
18 - rate_total: cc.rate_high + cc.rate_low
19 - rfactor: 1+1./( cc.tau_syn*cc.rate_total)
20 - rfactor_nc: 1+1./( cc.tau_syn*cc.rate_nc)
21 - lambda_target_ideal_nn: (1.-np.exp(-cc.rfactor*cc.

rate_total*cc.tau_syn))/cc.rfactor
22 - lambda_target_ideal: cc.lambda_target_ideal_nn if cc.

nn_only else cc.rate_total * cc.tau_syn
23 - lambda_nc_nn: (1.-np.exp(-cc.rfactor_nc*cc.rate_nc*cc.

tau_syn))/cc.rfactor_nc
24 - lambda_nc: cc.lambda_nc_nn if cc.nn_only else cc.

rate_nc * cc.tau_syn
25 - ideal_max_weight: np.log(cc.lambda_target_ideal/cc.

lambda_nc)
26 - pattern_total: cc.pattern_length + cc.pattern_pause
27 - prob_spike_net: cc.pattern_length / cc.pattern_total *

cc.activity_ratio
28
29 combiner_params:
30 steps_per_pattern: !ee int(np.around(cc.pattern_total

/cc.pattern_step))
31 combiner_types: uniform_unique
32 creator_params:
33 inputparams:
34 rate: !ee cc.rate_high
35 inputtype: AdditivePoisson
36 length: !ee cc.pattern_length

37 num_repr_per_label: 0
38 labels_to_create: !ee cc.labels_to_create
39 clip_edge_pixel: 2
40 creator_types: mnist
41 injector_types: background
42 injector_params:
43 inputtype: AdditivePoisson
44 inputparams:
45 rate: !ee cc.rate_low
46 duration: 5000.0
47 input_time_step: 500.0
48 process_all_input_prior: false
49 manager_params:
50 step: !ee cc.pattern_step
51 network_type: SimTrain
52 network_params:
53 dt: !ee cc.dt
54 sim_step: 25.
55 num_z: !ee cc.num_z
56 record_input: false
57 source_type: SimulationLookaheadMultiPoissonVarRateSource
58 statefactory_params:
59 initializer_params:
60 W:
61 value: 0.
62 b:
63 value: 0.
64 causelayer_type: BoltzMann_WTA_Inhibition
65 causelayer_params:
66 saturating_synapses: false
67 database: ~/data/sbs/calibration/default -02-10ms
68 record_voltages: false
69 delays: 0.1e-3
70 inh_weight: 100.
71 inh_neuron_params:
72 cm: 0.2
73 e_rev_E: 0.0
74 e_rev_I: -100.0
75 i_offset: 0.0
76 tau_m: 1.0
77 tau_refrac: 5.0
78 tau_syn_E: 5.0
79 tau_syn_I: 5.0

133

https://gitviz.kip.uni-heidelberg.de


80 v_reset: -50.0
81 v_rest: -50.0
82 v_thresh: -40.0
83 neuron_params_ids: 0
84 connection_type:

coincidence_limited_weight_resolution_aggregating
85 connection_params:
86 set_y_accum_factor: false
87 nullcause: !ee np.log(cc.lambda_nc)
88 eta: 1.0e-4
89 tau_syn: !ee cc.tau_syn
90 tau_onset: 0.0e-3
91 receptor_type: excitatory
92 prob_spike_net: !ee cc.prob_spike_net
93 update_period: !ee cc.update_period
94 prob_weight_update: true
95 num_weights: !ee 2**cc.weight_bits
96 max_weight_theo: !ee cc.ideal_max_weight * cc.

max_weight_factor

97 nearest_neighbors_only: !ee cc.nn_only
98 adjust_conversion_factor: !ee cc.acf
99 discretize_weights: true

100 homeostasis_type: linear
101 homeostasis_params:
102 prob_spike_net: !ee cc.prob_spike_net
103 source_model: periodic_generator
104 source_model_kwargs:
105 offset: 1.
106 create_exc: true
107 eta: 1.0e-3
108 rate: 1000.0
109 take_snapshots: true
110 record_spikes: true
111 steps_per_snapshot: 1
112 steps_per_report: 4
113 numpy_seed: 42

A.1.2 Regular Network Dynamics

Ideal Update

1 cache:
2 - tau_syn: 30.0e-3
3 rate_low : 10.0
4 rate_high: 60.0
5 nn_only: false
6 activity_ratio: 1.
7 pattern_length: 0.5
8 pattern_pause: 0.0
9 pattern_step: 0.1

10 num_z: 6
11 dt: 0.1e-3
12 rate_nc: 10.
13 - rate_total: cc.rate_high + cc.rate_low
14 - lambda_nc: cc.rate_nc * cc.tau_syn
15 - pattern_total: cc.pattern_length + cc.pattern_pause
16 - prob_spike_net: cc.pattern_length / cc.pattern_total *

cc.activity_ratio
17
18 combiner_params:
19 steps_per_pattern: !ee int(np.around(cc.pattern_total

/cc.pattern_step))
20 combiner_types: uniform_unique
21 creator_types: orientedstripv2
22 creator_params:
23 inputparams:
24 rate: !ee cc.rate_high
25 inputtype: AdditivePoisson
26 length: !ee cc.pattern_length
27 width_image: 17
28 width_strip: 3
29 injector_types: background
30 injector_params:
31 inputtype: AdditivePoisson
32 inputparams:
33 rate: !ee cc.rate_low
34 duration: 10000
35 input_time_step: 500.0
36 process_all_input_prior: false
37 manager_params:
38 step: !ee cc.pattern_step
39 network_type: SimTrain
40 network_params:
41 dt: !ee cc.dt
42 sim_step: 25.
43 num_z: !ee cc.num_z
44 record_input: false
45 source_type: SimulationLookaheadMultiPoissonVarRateSource
46 statefactory_params:
47 initializer_params:
48 W:
49 value: 0.
50 b:
51 value: 0.
52 causelayer_type: BoltzMann_WTA_Inhibition

53 causelayer_params:
54 saturating_synapses: false
55 database: ~/data/sbs/calibration/default -02-30ms
56 record_voltages: false
57 delays: 0.1e-3
58 inh_weight: 100.
59 inh_neuron_params:
60 cm: 0.2
61 e_rev_E: 0.0
62 e_rev_I: -100.0
63 i_offset: 0.0
64 tau_m: 1.0
65 tau_refrac: 5.0
66 tau_syn_E: 5.0
67 tau_syn_I: 5.0
68 v_reset: -50.0
69 v_rest: -50.0
70 v_thresh: -40.0
71 neuron_params:
72 cm : .2
73 tau_m : 1.
74 e_rev_E : 0.
75 e_rev_I : -100.
76 v_thresh : -50.
77 tau_syn_E : 10.
78 v_rest : -50.
79 tau_syn_I : 10.
80 v_reset : -50.001
81 tau_refrac : 10.
82 i_offset : 0.
83 neuron_params_ids: 0
84 connection_type: ideal
85 connection_params:
86 nullcause: !ee np.log(cc.lambda_nc)
87 eta: 1.0e-4
88 tau_syn: !ee cc.tau_syn
89 receptor_type: excitatory
90 homeostasis_type: linear
91 homeostasis_params:
92 prob_spike_net: !ee cc.prob_spike_net
93 source_model: periodic_generator
94 source_model_kwargs:
95 offset: 1.
96 create_exc: true
97 create_inh: true
98 eta: 1.0e-3
99 rate: 2000.0

100 rng_seed: 424242
101 take_snapshots: true
102 record_spikes: true
103 steps_per_snapshot: 1
104 steps_per_report: 4
105 numpy_seed: 42
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Exponential Eligibility Traces

In order to conserve space, we only show the di�erences to the previous dataset.
1 84c84
2 < connection_type: ideal
3 ---
4 > connection_type: exp

Pair-based Correlation Measurements

In order to conserve space, we only show the di�erences to the previous dataset.
1 84c84
2 < connection_type: exp
3 ---
4 > connection_type: coincidence
5 89a90 ,92
6 > tau_onset: 0.
7 > prob_spike_net: !ee cc.prob_spike_net
8 > nearest_neighbors_only: !ee cc.nn_only

Nearest-Neighbor Spike Pairing

In order to conserve space, we only show the di�erences to the previous dataset.
1 5c5
2 < nn_only: false
3 ---
4 > nn_only: true
5 14c14 ,17
6 < - lambda_nc: cc.rate_nc * cc.tau_syn
7 ---
8 > - rfactor_nc: 1+1./( cc.tau_syn*cc.rate_nc)
9 > - lambda_nc_nn: (1.-np.exp(-cc.rfactor_nc*cc.rate_nc*cc.tau_syn))/cc.rfactor_nc

10 > - lambda_nc_all: cc.rate_nc * cc.tau_syn
11 > - lambda_nc: cc.lambda_nc_nn if cc.nn_only else cc.lambda_nc_all

Accumulated Weight Updates

In order to conserve space, we only show the di�erences to the previous dataset.
1 11a12
2 > update_period: 2.0
3 87c88
4 < connection_type: coincidence
5 ---
6 > connection_type: coincidenceaggregating
7 95a97 ,99
8 > set_y_accum_factor: false
9 > update_period: !ee cc.update_period

10 > update_offset_per_sampler: !ee cc.update_period / cc.num_z

Limited Weight Resolution

In order to conserve space, we only show the di�erences to the previous dataset.

6-bit weight resolution:
1 12a13 ,14
2 > weight_bits: 6
3 > max_weight_factor: 1.2
4 14a17
5 > - rfactor: 1+1./( cc.tau_syn*cc.rate_total)
6 15a19 ,21
7 > - lambda_target_ideal_nn: (1.-np.exp(-cc.rfactor*cc.rate_total*cc.tau_syn))/cc.rfactor
8 > - lambda_target_all: cc.lambda_target_ideal_nn if cc.nn_only else cc.rate_total * cc.tau_syn
9 > - lambda_target: cc.lambda_target_ideal_nn if cc.nn_only else cc.lambda_target_all

10 18a25
11 > - ideal_max_weight: np.log(cc.lambda_target/cc.lambda_nc)
12 20a28
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13 > - max_weight_theo: cc.ideal_max_weight * cc.max_weight_factor
14 88c96
15 < connection_type: coincidenceaggregating
16 ---
17 > connection_type: coincidence_limited_weight_resolution_aggregating
18 99a108 ,111
19 > num_weights: !ee 2**cc.weight_bits
20 > max_weight_theo: !ee cc.max_weight_theo
21 > discretize_weights: true
22 > prob_weight_update: true

4-bit weight resolution:
1 13c13
2 < weight_bits: 6
3 ---
4 > weight_bits: 4

A.1.3 Null cause as input rate filter

Parameters used for simulations presented in Section 5.4.3.

Reduced MNIST, 4-bit, default Null Cause Rate

Parameters used for Figure 5.17

1 # Lower inhibitory weight
2 # Higher sigma
3 # Fixed error in real nc calculations
4 cache:
5 - tau_syn: 30.0e-3
6 rate_low : 10.0
7 rate_high: 30.0
8 nn_only: true
9 activity_ratio: 1.

10 pattern_length: 0.5
11 pattern_pause: 0.0
12 pattern_step: 0.1
13 labels_to_create: [0, 3, 4]
14 num_z: 3
15 dt: 0.1e-3
16 update_period: 2.0
17 weight_bits: 4
18 max_weight_factor: 1.2
19 rate_nc: 10.
20 - rate_total: cc.rate_high + cc.rate_low
21 - rfactor: 1+1./( cc.tau_syn*cc.rate_total)
22 - rfactor_nc: 1+1./( cc.tau_syn*cc.rate_nc)
23 - lambda_target_ideal_nn: (1.-np.exp(-cc.rfactor*cc.

rate_total*cc.tau_syn))/cc.rfactor
24 - lambda_target_all: cc.lambda_target_ideal_nn if cc.

nn_only else cc.rate_total * cc.tau_syn
25 - lambda_target: cc.lambda_target_ideal_nn if cc.nn_only

else cc.lambda_target_all
26 - lambda_nc_nn: (1.-np.exp(-cc.rfactor_nc*cc.rate_nc*cc.

tau_syn))/cc.rfactor_nc
27 - lambda_nc_all: cc.rate_nc * cc.tau_syn
28 - lambda_nc: cc.lambda_nc_nn if cc.nn_only else cc.

lambda_nc_all
29 - ideal_max_weight: np.log(cc.lambda_target/cc.lambda_nc)
30 - pattern_total: cc.pattern_length + cc.pattern_pause
31 - prob_spike_net: cc.pattern_length / cc.pattern_total *

cc.activity_ratio
32 - max_weight_theo: cc.ideal_max_weight * cc.

max_weight_factor
33
34 combiner_params:
35 steps_per_pattern: !ee int(np.around(cc.pattern_total

/cc.pattern_step))
36 combiner_types: uniform_unique
37 creator_params:
38 inputparams:
39 rate: !ee cc.rate_high
40 inputtype: AdditivePoisson
41 labels_to_create: !ee cc.labels_to_create
42 length: !ee cc.pattern_length
43 num_repr_per_label: 0 # corresponds to all samples

44 creator_types: mnist
45 injector_types: background
46 injector_params:
47 inputtype: AdditivePoisson
48 inputparams:
49 rate: !ee cc.rate_low
50 duration: 10000
51 input_time_step: 500.0
52 process_all_input_prior: false
53 manager_params:
54 step: !ee cc.pattern_step
55 network_type: SimTrain
56 network_params:
57 dt: !ee cc.dt
58 sim_step: 25.
59 num_z: !ee cc.num_z
60 record_input: false
61 source_type: SimulationLookaheadMultiPoissonVarRateSource
62 statefactory_params:
63 initializer_params:
64 W:
65 value: 0.
66 b:
67 value: 0.
68 causelayer_type: BoltzMann_WTA_Inhibition
69 causelayer_params:
70 saturating_synapses: false
71 database: ~/data/sbs/calibration/default -02-30ms
72 record_voltages: false
73 delays: 0.1e-3
74 inh_weight: 100.
75 inh_neuron_params:
76 cm: 0.2
77 e_rev_E: 0.0
78 e_rev_I: -100.0
79 i_offset: 0.0
80 tau_m: 1.0
81 tau_refrac: 5.0
82 tau_syn_E: 5.0
83 tau_syn_I: 5.0
84 v_reset: -50.0
85 v_rest: -50.0
86 v_thresh: -40.0
87 neuron_params:
88 cm : .2
89 tau_m : 1.
90 e_rev_E : 0.
91 e_rev_I : -100.
92 v_thresh : -50.
93 tau_syn_E : 10.
94 v_rest : -50.
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95 tau_syn_I : 10.
96 v_reset : -50.001
97 tau_refrac : 10.
98 i_offset : 0.
99 neuron_params_ids: 0

100 connection_type:
coincidence_limited_weight_resolution_aggregating

101 connection_params:
102 nullcause: !ee np.log(cc.lambda_nc)
103 eta: 1.0e-4
104 tau_syn: !ee cc.tau_syn
105 receptor_type: excitatory
106 tau_onset: 0.
107 prob_spike_net: !ee cc.prob_spike_net
108 nearest_neighbors_only: !ee cc.nn_only
109 set_y_accum_factor: false
110 update_period: !ee cc.update_period
111 num_weights: !ee 2**cc.weight_bits
112 max_weight_theo: !ee cc.max_weight_theo

113 discretize_weights: true
114 prob_weight_update: true
115 homeostasis_type: linear
116 homeostasis_params:
117 prob_spike_net: !ee cc.prob_spike_net
118 source_model: periodic_generator
119 source_model_kwargs:
120 offset: 1.
121 create_exc: true
122 create_inh: true
123 eta: 1.0e-3
124 rate: 2000.0
125 rng_seed: 424242
126 take_snapshots: true
127 record_spikes: true
128 steps_per_snapshot: 1
129 steps_per_report: 4
130 numpy_seed: 42

Reduced MNIST, 4-bit, adjusted Null Cause Rate

Parameters used for Figure 5.18 In order to conserve space, we only show the di�erences to
the previous dataset.

1 19c19
2 < rate_nc: 10.
3 ---
4 > rate_nc: 15.

Reduced MNIST, 4-bit, adjusted Null Cause Rate

Parameters used for Figure 5.20 In order to conserve space, we only show the di�erences to
the previous dataset.

1 13,14c13 ,14
2 < labels_to_create: [0, 3, 4]
3 < num_z: 3
4 ---
5 > labels_to_create: range (10)
6 > num_z: 10
7 17c17
8 < weight_bits: 4
9 ---

10 > weight_bits: 6
11 50c50
12 < duration: 10000
13 ---
14 > duration: 20000

Full MNIST with one representation, 6-bit, adjusted Null Cause Rate

Parameters used for Figure 5.19.

1 cache:
2 - tau_syn: 30.0e-3
3 rate_low : 10.0
4 rate_high: 30.0
5 nn_only: true
6 activity_ratio: 1.
7 pattern_length: 0.5
8 pattern_pause: 0.0
9 pattern_step: 0.1

10 labels_to_create: range (10)
11 num_z: 10
12 dt: 0.1e-3
13 update_period: 2.0
14 weight_bits: 6
15 max_weight_factor: 1.2
16 rate_nc: 15.
17 - rate_total: cc.rate_high + cc.rate_low
18 - rfactor: 1+1./( cc.tau_syn*cc.rate_total)
19 - rfactor_nc: 1+1./( cc.tau_syn*cc.rate_nc)

20 - lambda_target_ideal_nn: (1.-np.exp(-cc.rfactor*cc.
rate_total*cc.tau_syn))/cc.rfactor

21 - lambda_target_all: cc.lambda_target_ideal_nn if cc.
nn_only else cc.rate_total * cc.tau_syn

22 - lambda_target: cc.lambda_target_ideal_nn if cc.nn_only
else cc.lambda_target_all

23 - lambda_nc_nn: (1.-np.exp(-cc.rfactor_nc*cc.rate_nc*cc.
tau_syn))/cc.rfactor_nc

24 - lambda_nc_all: cc.rate_nc * cc.tau_syn
25 - lambda_nc: cc.lambda_nc_nn if cc.nn_only else cc.

lambda_nc_all
26 - ideal_max_weight: np.log(cc.lambda_target/cc.lambda_nc)
27 - pattern_total: cc.pattern_length + cc.pattern_pause
28 - prob_spike_net: cc.pattern_length / cc.pattern_total *

cc.activity_ratio
29 - max_weight_theo: cc.ideal_max_weight * cc.

max_weight_factor
30
31 combiner_params:
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32 steps_per_pattern: !ee int(np.around(cc.pattern_total
/cc.pattern_step))

33 combiner_types: uniform_unique
34 creator_params:
35 inputparams:
36 rate: !ee cc.rate_high
37 inputtype: AdditivePoisson
38 labels_to_create: !ee cc.labels_to_create
39 length: !ee cc.pattern_length
40 num_repr_per_label: 1
41 creator_types: mnist
42 injector_types: background
43 injector_params:
44 inputtype: AdditivePoisson
45 inputparams:
46 rate: !ee cc.rate_low
47 duration: 15000
48 input_time_step: 500.0
49 process_all_input_prior: false
50 manager_params:
51 step: !ee cc.pattern_step
52 network_type: SimTrain
53 network_params:
54 dt: !ee cc.dt
55 sim_step: 25.
56 num_z: !ee cc.num_z
57 record_input: false
58 source_type: SimulationLookaheadMultiPoissonVarRateSource
59 statefactory_params:
60 initializer_params:
61 W:
62 value: 0.
63 b:
64 value: 0.
65 causelayer_type: BoltzMann_WTA_Inhibition
66 causelayer_params:
67 saturating_synapses: false
68 database: ~/data/sbs/calibration/default -02-30ms
69 record_voltages: false
70 delays: 0.1e-3
71 inh_weight: 100.
72 inh_neuron_params:
73 cm: 0.2

74 e_rev_E: 0.0
75 e_rev_I: -100.0
76 i_offset: 0.0
77 tau_m: 1.0
78 tau_refrac: 5.0
79 tau_syn_E: 5.0
80 tau_syn_I: 5.0
81 v_reset: -50.0
82 v_rest: -50.0
83 v_thresh: -40.0
84 neuron_params_ids: 0
85 connection_type:

coincidence_limited_weight_resolution_aggregating
86 connection_params:
87 nullcause: !ee np.log(cc.lambda_nc)
88 eta: 1.0e-4
89 tau_syn: !ee cc.tau_syn
90 receptor_type: excitatory
91 tau_onset: 0.
92 prob_spike_net: !ee cc.prob_spike_net
93 nearest_neighbors_only: !ee cc.nn_only
94 set_y_accum_factor: false
95 update_period: !ee cc.update_period
96 num_weights: !ee 2**cc.weight_bits
97 max_weight_theo: !ee cc.max_weight_theo
98 discretize_weights: true
99 prob_weight_update: true

100 homeostasis_type: linear
101 homeostasis_params:
102 prob_spike_net: !ee cc.prob_spike_net
103 source_model: periodic_generator
104 source_model_kwargs:
105 offset: 1.
106 create_exc: true
107 create_inh: true
108 eta: 1.0e-3
109 rate: 1000.0
110 rng_seed: 424242
111 take_snapshots: true
112 record_spikes: true
113 steps_per_snapshot: 1
114 steps_per_report: 4
115 numpy_seed: 42

Common Box Input Sweep

Parameters used for Figure 5.21 as well as in the sweep depicted in Figure 5.22.

1 cache:
2 - acf: 1.0
3 activity_ratio: 1.0
4 dt: 0.0001
5 max_weight_factor: 1.2
6 nn_only: true
7 num_z: 9
8 pattern_length: 0.5
9 pattern_pause: 0.0

10 pattern_step: 0.1
11 rate_high: 30.0
12 rate_low: 10.0
13 rate_nc: 14.0
14 tau_syn: 0.03
15 update_period: 2.0
16 weight_bits: 6
17 - rate_total: cc.rate_high + cc.rate_low
18 - rfactor: 1+1./( cc.tau_syn*cc.rate_total)
19 - rfactor_nc: 1+1./( cc.tau_syn*cc.rate_nc)
20 - lambda_target_ideal_nn: (1.-np.exp(-cc.rfactor*cc.

rate_total*cc.tau_syn))/cc.rfactor
21 - lambda_target_ideal: cc.lambda_target_ideal_nn if cc.

nn_only else cc.rate_total
22 * cc.tau_syn
23 - lambda_nc_nn: (1.-np.exp(-cc.rfactor_nc*cc.rate_nc*cc.

tau_syn))/cc.rfactor_nc
24 - lambda_nc: cc.lambda_nc_nn if cc.nn_only else cc.rate_nc

* cc.tau_syn
25 - ideal_max_weight: np.log(cc.lambda_target_ideal/cc.

lambda_nc)
26 - pattern_total: cc.pattern_length + cc.pattern_pause
27 - prob_spike_net: cc.pattern_length / cc.pattern_total * cc

.activity_ratio
28 combiner_params:
29 steps_per_pattern: !ee int(np.around(cc.pattern_total/cc.

pattern_step))
30 combiner_types: uniform_unique
31 creator_params:

32 box_sizes:
33 common: 100
34 pattern: 30
35 inputparams:
36 rate: !ee cc.rate_high
37 inputtype: AdditivePoisson
38 length: !ee cc.pattern_length
39 num_patterns: !ee cc.num_z
40 num_samples:
41 active: 27
42 common: 84
43 inactive: 2
44 creator_types: commonboxsamples
45 duration: 15000.0
46 injector_params:
47 inputparams:
48 rate: !ee cc.rate_low
49 inputtype: AdditivePoisson
50 injector_types: background
51 input_time_step: 500.0
52 manager_params:
53 step: !ee cc.pattern_step
54 network_params:
55 causelayer_params:
56 database: ~/data/sbs/calibration/default -02-30ms
57 delays: 0.0001
58 inh_neuron_params:
59 cm: 0.2
60 e_rev_E: 0.0
61 e_rev_I: -100.0
62 i_offset: 0.0
63 tau_m: 1.0
64 tau_refrac: 5.0
65 tau_syn_E: 5.0
66 tau_syn_I: 5.0
67 v_reset: -50.0
68 v_rest: -50.0
69 v_thresh: -40.0
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70 inh_weight: 100.0
71 neuron_params:
72 cm: 0.2
73 e_rev_E: 0.0
74 e_rev_I: -100.0
75 i_offset: 0.0
76 tau_m: 1.0
77 tau_refrac: 30.0
78 tau_syn_E: 30.0
79 tau_syn_I: 30.0
80 v_reset: -50.001
81 v_rest: -50.0
82 v_thresh: -50.0
83 record_voltages: false
84 saturating_synapses: false
85 causelayer_type: BoltzMann_WTA_Inhibition
86 connection_params:
87 adjust_conversion_factor: !ee cc.acf
88 eta: 0.0001
89 max_weight_theo: !ee cc.ideal_max_weight * cc.

max_weight_factor
90 nearest_neighbors_only: !ee cc.nn_only
91 nullcause: !ee np.log(cc.lambda_nc)
92 num_weights: !ee 2**cc.weight_bits
93 prob_spike_net: !ee cc.prob_spike_net
94 prob_weight_update: true
95 receptor_type: excitatory
96 set_y_accum_factor: false
97 tau_onset: 0.0
98 tau_syn: !ee cc.tau_syn

99 update_period: 2.0
100 connection_type:

coincidence_limited_weight_resolution_aggregating
101 dt: !ee cc.dt
102 homeostasis_params:
103 create_exc: true
104 create_inh: true
105 eta: 0.001
106 prob_spike_net: !ee cc.prob_spike_net
107 rate: 1000.0
108 source_model: periodic_generator
109 source_model_kwargs:
110 offset: 1.0
111 homeostasis_type: linear
112 num_z: !ee cc.num_z
113 record_input: false
114 record_spikes: true
115 sim_step: 25.0
116 source_type: SimulationLookaheadMultiPoissonVarRateSource
117 statefactory_params:
118 initializer_params:
119 b:
120 value: 0.0
121 steps_per_report: 4
122 steps_per_snapshot: 1
123 take_snapshots: true
124 network_type: SimTrain
125 numpy_seed: 42
126 process_all_input_prior: false

A.1.4 Homeostasis background source

Parameters used for simulations in Section 5.4.4.

Reduced MNIST Dataset with Poisson Homeostasis Background Source

1 cache:
2 - acf: 1.0
3 activity_ratio: 1.0
4 dt: 0.0001
5 labels_to_create:
6 - 0
7 - 3
8 - 4
9 max_weight_factor: 1.2

10 nn_only: true
11 num_z: 3
12 pattern_length: 0.5
13 pattern_pause: 0.0
14 pattern_step: 0.1
15 rate_high: 30.0
16 rate_low: 10.0
17 rate_nc: 15.0
18 tau_syn: 0.03
19 update_period: 2.0
20 weight_bits: 6
21 - rate_total: cc.rate_high + cc.rate_low
22 - rfactor: 1+1./( cc.tau_syn*cc.rate_total)
23 - rfactor_nc: 1+1./( cc.tau_syn*cc.rate_nc)
24 - lambda_target_ideal_nn: (1.-np.exp(-cc.rfactor*cc.

rate_total*cc.tau_syn))/cc.rfactor
25 - lambda_target_ideal: cc.lambda_target_ideal_nn if cc.

nn_only else cc.rate_total
26 * cc.tau_syn
27 - lambda_nc_nn: (1.-np.exp(-cc.rfactor_nc*cc.rate_nc*cc.

tau_syn))/cc.rfactor_nc
28 - lambda_nc: cc.lambda_nc_nn if cc.nn_only else cc.rate_nc

* cc.tau_syn
29 - ideal_max_weight: np.log(cc.lambda_target_ideal/cc.

lambda_nc)
30 - pattern_total: cc.pattern_length + cc.pattern_pause
31 - prob_spike_net: cc.pattern_length / cc.pattern_total * cc

.activity_ratio
32 combiner_params:
33 steps_per_pattern: !ee int(np.around(cc.pattern_total/cc.

pattern_step))
34 combiner_types: uniform_unique
35 creator_params:
36 inputparams:
37 rate: !ee cc.rate_high

38 inputtype: AdditivePoisson
39 labels_to_create: !ee cc.labels_to_create
40 length: !ee cc.pattern_length
41 num_repr_per_label: 0
42 creator_types: mnist
43 duration: 15000.0
44 injector_params:
45 inputparams:
46 rate: !ee cc.rate_low
47 inputtype: AdditivePoisson
48 injector_types: background
49 input_time_step: 500.0
50 manager_params:
51 step: !ee cc.pattern_step
52 network_params:
53 causelayer_params:
54 database: ~/data/sbs/calibration/default -02-30ms
55 delays: 0.0001
56 inh_neuron_params:
57 cm: 0.2
58 e_rev_E: 0.0
59 e_rev_I: -100.0
60 i_offset: 0.0
61 tau_m: 1.0
62 tau_refrac: 5.0
63 tau_syn_E: 5.0
64 tau_syn_I: 5.0
65 v_reset: -50.0
66 v_rest: -50.0
67 v_thresh: -40.0
68 inh_weight: 100.0
69 neuron_params:
70 cm: 0.2
71 e_rev_E: 0.0
72 e_rev_I: -100.0
73 i_offset: 0.0
74 tau_m: 1.0
75 tau_refrac: 30.0
76 tau_syn_E: 30.0
77 tau_syn_I: 30.0
78 v_reset: -50.001
79 v_rest: -50.0
80 v_thresh: -50.0
81 record_voltages: false
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82 saturating_synapses: false
83 causelayer_type: BoltzMann_WTA_Inhibition
84 connection_params:
85 adjust_conversion_factor: !ee cc.acf
86 eta: 0.0001
87 max_weight_theo: !ee cc.ideal_max_weight * cc.

max_weight_factor
88 nearest_neighbors_only: !ee cc.nn_only
89 nullcause: !ee np.log(cc.lambda_nc)
90 num_weights: !ee 2**cc.weight_bits
91 prob_spike_net: !ee cc.prob_spike_net
92 prob_weight_update: true
93 receptor_type: excitatory
94 set_y_accum_factor: false
95 tau_onset: 0.0
96 tau_syn: !ee cc.tau_syn
97 update_period: 2.0
98 connection_type:

coincidence_limited_weight_resolution_aggregating
99 dt: !ee cc.dt

100 homeostasis_params:
101 create_exc: true

102 eta: 0.01
103 prob_spike_net: !ee cc.prob_spike_net
104 rate: 500.0
105 source_model: lookahead_poisson_generator
106 source_model_kwargs:
107 steps_lookahead: 10000
108 homeostasis_type: linear
109 num_z: !ee cc.num_z
110 record_input: false
111 record_spikes: true
112 sim_step: 25.0
113 source_type: SimulationLookaheadMultiPoissonVarRateSource
114 statefactory_params:
115 initializer_params:
116 b:
117 value: 0.0
118 steps_per_report: 4
119 steps_per_snapshot: 1
120 take_snapshots: true
121 network_type: SimTrain
122 numpy_seed: 42
123 process_all_input_prior: false

Periodic Homeostasis Background Source

In order to conserve space we only print the di�erences to the Poisson background source
case.

1 105 c105
2 < source_model: lookahead_poisson_generator
3 ---
4 > source_model: periodic_generator
5 107 c107
6 < steps_lookahead: 10000
7 ---
8 > offset: 1.0

A.1.5 Large networks

Oriented Strip

Parameters used for simulations in Figure 5.24. To conserve space we only show the di�er-
ences to the 6-bit limited weight resolution case in Appendix A.1.2.

1 0a1 ,3
2 > # Lower inhibitory weight
3 > # Higher sigma
4 > # Fixed error in real nc calculations
5 2c5
6 < - tau_syn: 30.0e-3
7 ---
8 > - tau_syn: 10.0e-3
9 10c13

10 < num_z: 6
11 ---
12 > num_z: 90
13 32c35 ,36
14 < combiner_types: uniform_unique
15 ---
16 > pattern_weights: !ee np.r_[np.ones (60), np.ones (60) * 2, np.ones (60)]
17 > combiner_types: nonuniform
18 39,40c43 ,44
19 < width_image: 17
20 < width_strip: 3
21 ---
22 > width_image: 12
23 > width_strip: 2
24 46c50
25 < duration: 10000
26 ---
27 > duration: 15000.0
28 67c71
29 < database: ~/data/sbs/calibration/default -02-30ms
30 ---
31 > database: ~/data/sbs/calibration/default -02-10ms
32 102 c106
33 < tau_onset: 0.
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34 ---
35 > tau_onset: 1.0e-03
36 107 d110
37 < update_offset_per_sampler: !ee cc.update_period / cc.num_z
38 121 c124
39 < rate: 2000.0
40 ---
41 > rate: 1000.0

MNIST

Parameters used in Figure 5.27.

1 cache:
2 - acf: 1.0
3 activity_ratio: 1.0
4 dt: 0.0001
5 labels_to_create:
6 - 0
7 - 1
8 - 2
9 - 3

10 - 4
11 - 5
12 - 6
13 - 7
14 - 8
15 - 9
16 max_weight_factor: 1.2
17 nn_only: true
18 num_z: 100
19 pattern_length: 0.5
20 pattern_pause: 0.1
21 pattern_step: 0.1
22 rate_high: 90.0
23 rate_low: 10.0
24 rate_nc: 10.0
25 tau_syn: 0.01
26 update_period: 2.0
27 weight_bits: 6
28 - rate_total: cc.rate_high + cc.rate_low
29 - rfactor: 1+1./( cc.tau_syn*cc.rate_total)
30 - rfactor_nc: 1+1./( cc.tau_syn*cc.rate_nc)
31 - lambda_target_ideal_nn: (1.-np.exp(-cc.rfactor*cc.

rate_total*cc.tau_syn))/cc.rfactor
32 - lambda_target_ideal: cc.lambda_target_ideal_nn if cc.

nn_only else cc.rate_total
33 * cc.tau_syn
34 - lambda_nc_nn: (1.-np.exp(-cc.rfactor_nc*cc.rate_nc*cc.

tau_syn))/cc.rfactor_nc
35 - lambda_nc: cc.lambda_nc_nn if cc.nn_only else cc.rate_nc

* cc.tau_syn
36 - ideal_max_weight: np.log(cc.lambda_target_ideal/cc.

lambda_nc)
37 - pattern_total: cc.pattern_length + cc.pattern_pause
38 - prob_spike_net: cc.pattern_length / cc.pattern_total * cc

.activity_ratio
39 combiner_params:
40 steps_per_pattern: !ee int(np.around(cc.pattern_total/cc.

pattern_step))
41 combiner_types: uniform_unique
42 creator_params:
43 clip_edge_pixel: 2
44 inputparams:
45 rate: !ee cc.rate_high
46 inputtype: AdditivePoisson
47 labels_to_create: !ee cc.labels_to_create
48 length: !ee cc.pattern_length
49 num_repr_per_label: 0
50 creator_types: mnist
51 duration: 15000.0
52 injector_params:
53 inputparams:
54 rate: !ee cc.rate_low
55 inputtype: AdditivePoisson
56 injector_types: background
57 input_time_step: 500.0
58 manager_params:

59 step: !ee cc.pattern_step
60 network_params:
61 causelayer_params:
62 database: ~/data/sbs/calibration/default -02-10ms
63 delays: 0.0001
64 inh_neuron_params:
65 cm: 0.2
66 e_rev_E: 0.0
67 e_rev_I: -100.0
68 i_offset: 0.0
69 tau_m: 1.0
70 tau_refrac: 5.0
71 tau_syn_E: 5.0
72 tau_syn_I: 5.0
73 v_reset: -50.0
74 v_rest: -50.0
75 v_thresh: -40.0
76 inh_weight: 100.0
77 neuron_params_ids: 0
78 record_voltages: false
79 saturating_synapses: false
80 causelayer_type: BoltzMann_WTA_Inhibition
81 connection_params:
82 adjust_conversion_factor: !ee cc.acf
83 eta: 0.0001
84 max_weight_theo: !ee cc.ideal_max_weight * cc.

max_weight_factor
85 nearest_neighbors_only: !ee cc.nn_only
86 nullcause: !ee np.log(cc.lambda_nc)
87 num_weights: !ee 2**cc.weight_bits
88 prob_spike_net: !ee cc.prob_spike_net
89 prob_weight_update: true
90 receptor_type: excitatory
91 set_y_accum_factor: false
92 tau_onset: 0.0
93 tau_syn: !ee cc.tau_syn
94 update_period: 2.0
95 connection_type:

coincidence_limited_weight_resolution_aggregating
96 dt: !ee cc.dt
97 homeostasis_params:
98 create_exc: true
99 eta: 0.01

100 prob_spike_net: !ee cc.prob_spike_net
101 rate: 1000.0
102 source_model: periodic_generator
103 source_model_kwargs:
104 offset: 1.0
105 homeostasis_type: linear
106 num_z: !ee cc.num_z
107 record_input: false
108 record_spikes: true
109 sim_step: 25.0
110 source_type: SimulationLookaheadMultiPoissonVarRateSource
111 statefactory_params:
112 initializer_params:
113 b:
114 value: 0.0
115 steps_per_report: 4
116 steps_per_snapshot: 1
117 take_snapshots: true
118 network_type: SimTrain
119 numpy_seed: 42
120 process_all_input_prior: false
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A.1.6 Non-negligible delays

Weight Scaling Sweep

An example parameter set for the sweep shown in Figure 5.28. All other parameter set dif-
fer only by the inverse arbitrary weight conversion factor (acfi) and the delay between
inhibitory population and cause layer. Please note that a spike from the cause layer takes
∼ 1.2 ms to elicit a spike in the inhibitory population.

1 cache:
2 - acfi: 1.5384615384615383
3 activity_ratio: 1.0
4 dt: 0.0001
5 eta_b: 0.01
6 labels_to_create:
7 - 0
8 - 1
9 - 2

10 - 3
11 - 4
12 - 5
13 - 6
14 - 7
15 - 8
16 - 9
17 max_weight_factor: 1.2
18 num_z: 10
19 pattern_length: 0.5
20 pattern_pause: 0.0
21 pattern_step: 0.1
22 period_per_sampler: 0.5
23 rate_high: 90.0
24 rate_low: 10.0
25 tau_syn: 0.03
26 update_period: 1.5
27 weight_bits: 6
28 - rate_nc: cc.rate_low
29 - rate_total: cc.rate_high + cc.rate_low
30 - rfactor: 1+1./( cc.tau_syn*cc.rate_total)
31 - rfactor_nc: 1+1./( cc.tau_syn*cc.rate_nc)
32 - lambda_target_ideal: (1.-np.exp(-cc.rfactor*cc.rate_total

*cc.tau_syn))/cc.rfactor
33 - lambda_nc: (1.-np.exp(-cc.rfactor_nc*cc.rate_nc*cc.

tau_syn))/cc.rfactor_nc
34 - ideal_max_weight: np.log(cc.lambda_target_ideal/cc.

lambda_nc)
35 - pattern_total: cc.pattern_length + cc.pattern_pause
36 - prob_spike_net: cc.pattern_length / cc.pattern_total * cc

.activity_ratio
37 combiner_params:
38 steps_per_pattern: !ee int(np.around(cc.pattern_total/cc.

pattern_step))
39 combiner_types: uniform_unique
40 creator_params:
41 inputparams:
42 rate: !ee cc.rate_high
43 inputtype: AdditivePoisson
44 labels_to_create: !ee cc.labels_to_create
45 length: !ee cc.pattern_length
46 num_repr_per_label: 1
47 creator_types: mnist
48 duration: 5000.0
49 injector_params:
50 inputparams:
51 rate: !ee cc.rate_low
52 inputtype: AdditivePoisson
53 injector_types: background
54 input_time_step: 500.0
55 manager_params:
56 step: !ee cc.pattern_step
57 network_params:
58 causelayer_params:
59 database: ~/data/sbs/calibration/default -02-30ms
60 delays: 0.0001
61 inh_neuron_params:
62 cm: 0.2

63 e_rev_E: 0.0
64 e_rev_I: -100.0
65 i_offset: 0.0
66 tau_m: 1.0
67 tau_refrac: 5.0
68 tau_syn_E: 5.0
69 tau_syn_I: 5.0
70 v_reset: -50.0
71 v_rest: -50.0
72 v_thresh: -40.0
73 inh_weight: 100.0
74 neuron_params:
75 cm: 0.2
76 e_rev_E: 0.0
77 e_rev_I: -100.0
78 i_offset: 0.0
79 tau_m: 1.0
80 tau_refrac: 30.0
81 tau_syn_E: 30.0
82 tau_syn_I: 30.0
83 v_reset: -50.001
84 v_rest: -50.0
85 v_thresh: -50.0
86 record_voltages: false
87 saturating_synapses: false
88 causelayer_type: BoltzMann_WTA_Inhibition
89 connection_params:
90 adjust_conversion_factor_inv: !ee cc.acfi
91 eta: 0.001
92 latest_pre_spike_only: false
93 max_weight_theo: !ee cc.ideal_max_weight * cc.

max_weight_factor
94 nearest_neighbors_only: true
95 nullcause: !ee np.log(cc.lambda_nc)
96 num_weights: !ee 2**cc.weight_bits
97 prob_spike_net: !ee cc.prob_spike_net
98 prob_weight_update: true
99 receptor_type: excitatory

100 set_y_accum_factor: false
101 tau_onset: 0.0
102 tau_syn: !ee cc.tau_syn
103 update_period: 2.0
104 connection_type:

coincidence_limited_weight_resolution_aggregating
105 dt: !ee cc.dt
106 homeostasis_params:
107 create_exc: true
108 eta: !ee cc.eta_b / cc.acfi
109 prob_spike_net: !ee cc.prob_spike_net
110 rate: 3000.0
111 homeostasis_type: linear
112 num_z: !ee cc.num_z
113 record_input: false
114 record_spikes: true
115 sim_step: 25.0
116 source_type: SimulationLookaheadMultiPoissonVarRateSource
117 statefactory_params:
118 initializer_params:
119 b:
120 value: 0.0
121 steps_per_report: 4
122 steps_per_snapshot: 1
123 take_snapshots: true
124 network_type: SimTrain
125 numpy_seed: 42
126 process_all_input_prior: false
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Null Case Rate Sweep

An example parameter set for the sweep shown in Figure 5.29. All other parameter set di�er
only by the set null cause rate in each synapse and the delay between inhibitory population
and cause layer. Please note that a spike from the cause layer takes ∼ 1.2 ms to elicit a spike
in the inhibitory population.

1 cache:
2 - acf: 1.0
3 activity_ratio: 1.0
4 dt: 0.0001
5 labels_to_create:
6 - 0
7 - 1
8 - 2
9 max_weight_factor: 1.2

10 nn_only: true
11 num_z: 3
12 pattern_length: 0.5
13 pattern_pause: 0.0
14 pattern_step: 0.1
15 rate_high: 30.0
16 rate_low: 10.0
17 rate_nc: 25.714285714285715
18 tau_syn: 0.03
19 update_period: 2.0
20 weight_bits: 6
21 - rate_total: cc.rate_high + cc.rate_low
22 - rfactor: 1+1./( cc.tau_syn*cc.rate_total)
23 - rfactor_nc: 1+1./( cc.tau_syn*cc.rate_nc)
24 - lambda_target_ideal_nn: (1.-np.exp(-cc.rfactor*cc.

rate_total*cc.tau_syn))/cc.rfactor
25 - lambda_target_ideal: cc.lambda_target_ideal_nn if cc.

nn_only else cc.rate_total
26 * cc.tau_syn
27 - lambda_nc_nn: (1.-np.exp(-cc.rfactor_nc*cc.rate_nc*cc.

tau_syn))/cc.rfactor_nc
28 - lambda_nc: cc.lambda_nc_nn if cc.nn_only else cc.rate_nc

* cc.tau_syn
29 - ideal_max_weight: np.log(cc.lambda_target_ideal/cc.

lambda_nc)
30 - pattern_total: cc.pattern_length + cc.pattern_pause
31 - prob_spike_net: cc.pattern_length / cc.pattern_total * cc

.activity_ratio
32 combiner_params:
33 steps_per_pattern: !ee int(np.around(cc.pattern_total/cc.

pattern_step))
34 combiner_types: uniform_unique
35 creator_params:
36 clip_edge_pixel: 2
37 inputparams:
38 rate: !ee cc.rate_high
39 inputtype: AdditivePoisson
40 labels_to_create: !ee cc.labels_to_create
41 length: !ee cc.pattern_length
42 num_repr_per_label: 0
43 creator_types: mnist
44 duration: 15000.0
45 injector_params:
46 inputparams:
47 rate: !ee cc.rate_low
48 inputtype: AdditivePoisson
49 injector_types: background
50 input_time_step: 500.0
51 manager_params:
52 step: !ee cc.pattern_step
53 network_params:
54 causelayer_params:
55 database: ~/data/sbs/calibration/default -02-30ms
56 delays: 0.001
57 inh_neuron_params:
58 cm: 0.2
59 e_rev_E: 0.0
60 e_rev_I: -100.0

61 i_offset: 0.0
62 tau_m: 1.0
63 tau_refrac: 5.0
64 tau_syn_E: 5.0
65 tau_syn_I: 5.0
66 v_reset: -50.0
67 v_rest: -50.0
68 v_thresh: -40.0
69 inh_weight: 100.0
70 neuron_params:
71 cm: 0.2
72 e_rev_E: 0.0
73 e_rev_I: -100.0
74 i_offset: 0.0
75 tau_m: 1.0
76 tau_refrac: 30.0
77 tau_syn_E: 30.0
78 tau_syn_I: 30.0
79 v_reset: -50.001
80 v_rest: -50.0
81 v_thresh: -50.0
82 record_voltages: false
83 saturating_synapses: false
84 causelayer_type: BoltzMann_WTA_Inhibition
85 connection_params:
86 adjust_conversion_factor: !ee cc.acf
87 eta: 0.0001
88 max_weight_theo: !ee cc.ideal_max_weight * cc.

max_weight_factor
89 nearest_neighbors_only: !ee cc.nn_only
90 nullcause: !ee np.log(cc.lambda_nc)
91 num_weights: !ee 2**cc.weight_bits
92 prob_spike_net: !ee cc.prob_spike_net
93 prob_weight_update: true
94 receptor_type: excitatory
95 set_y_accum_factor: false
96 tau_onset: 0.0
97 tau_syn: !ee cc.tau_syn
98 update_period: 2.0
99 connection_type:

coincidence_limited_weight_resolution_aggregating
100 dt: !ee cc.dt
101 homeostasis_params:
102 create_exc: true
103 eta: 0.001
104 prob_spike_net: !ee cc.prob_spike_net
105 rate: 1000.0
106 source_model: periodic_generator
107 source_model_kwargs:
108 offset: 1.0
109 homeostasis_type: linear
110 num_z: !ee cc.num_z
111 record_input: false
112 record_spikes: true
113 sim_step: 25.0
114 source_type: SimulationLookaheadMultiPoissonVarRateSource
115 statefactory_params:
116 initializer_params:
117 b:
118 value: 0.0
119 steps_per_report: 4
120 steps_per_snapshot: 1
121 take_snapshots: true
122 network_type: SimTrain
123 numpy_seed: 42
124 process_all_input_prior: false
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