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A communication infrastructure for a neuromorphic system

This thesis presents the integration and testing of a generic ARQ protocol into two distinct
network architectures which are part of the BrainScaleS HMF. The achieved net bandwidths of
up to 117 MB/s for the host link and up to 83 MB/s for the FPGA-HICANN connection are a
signi�cant improvement over the existing implementation. Long-term evaluation proved the nec-
essary protocol stability to allow production usage in the HMF. Several discovered shortcomings
in the system are discussed and suggestions for their improvements are provided.

Eine Kommunikationsinfrastruktur für neuromorphe Systeme

Diese Arbeit stellt die Integration und Evaluation eines generischen ARQ Protokolls in zwei
verschiedene Netzwerkarchitekturen innerhalb des BrainScaleS HMF Systems vor. Die erre-
ichten Nettobandbreiten von bis zu 117 MB/s in der host-Anbindung und bis zu 83 MB/s in
der FPGA-HICANN Verbindung stellen eine signi�kante Verbesserung gegenüber der vorhande-
nen Lösung dar. Langzeittests bestätigen die Protokollstabilität und ermöglichen dadurch die
aktive Benutzung im HMF System. Mehrere gefundene Mangel werden diskutiert und Opti-
mierungsmöglichkeiten dafür vorgestellt.



�A delayed game is eventually good, but a rushed game is forever bad�

Shigeru Miyamoto
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1 Introduction

As a computational device, the mammalian brain vastly outperforms any arti�cial construct
that humankind was able to come up with until today - not necessarily in terms of raw FLOPS,
but rather in the ability to process multi-sensory, multi-modal information (i.e real world data)
in real time. Every new result leading towards a systematic understanding of these capabilities
will likely yield valuable applications for the modern information-driven society. Apart from the
impressive energy e�ciency compared to our engineered devices, other intriguing features are
the ability to learn, and the capability of compensating for faults or defects during runtime. In
mammals, the most salient anatomical structure responsible for the processing and integration
of information (colloquially summed up by the rather ambiguous concept of �intelligence�) is
the neocortex. Biological experiments indicate that the neocortex is a rather homogeneously
connected network of some tens of billions of neurons with each neuron having an average of
several thousand presynaptic partners.

The neocortex is not a product of systematic engineering: its structure and function are the
result of hundreds of millions of years of evolution. While random genetic modi�cations coupled
with natural selection e�ectively guarantee improvement over many generations, they are the
exact opposite of structured design. The fact that nature does not select for what programmers
would call �beautiful code� is essentially the obstacle we need to overcome before understanding
the complicated structure of the brain in general and the neocortex in particular. Continuous
advances in neurophysiological experimental techniques have provided us with a plethora of
valuable data over the last couple of decades. However, our current tools do not give us the
required resolution and precision to analyze the structure of a large brain volume to a degree
that would allow direct replication. Therefore, in addition to advancing the experimental side of
neuroscience, we also need tools that allow us the modeling of large neural networks in order to
verify hypotheses about how high-level brain functions emerge from low-level network dynamics.

Up until now, the preferred method to model neural networks has been simulation software
such as NEST (Diesmann and Gewaltig , 2002), executed by various types of von-Neumann ma-
chines. The main reasons are the convenient programming interfaces provided for most of these
�conventional� architectures and, even more importantly, their rapid and stable performance
increase over many decades, as epitomized by Moore's law. Furthermore, the software abstrac-
tion from the underlying substrate enables portability and repeatability: the same software can
be compiled for various architectures and will reproduce the exact same network behavior1,
regardless of the machine it runs on.

However, these advantages come at a certain cost. Virtualization requires computational
overhead, and the general-purpose structure of current CPUs sacri�ces power e�ciency and
execution speed for �exibility. Furthermore, the only reasonable way to parallelize software
simulations is to partition the network and run the parts on separate cores while exchanging
spiking information over a network. The execution speed of this I/O intensive system is quickly
limited � not by the speed of the individual cores but rather by the synchronous, �xed-bandwidth

1With the exception of varying implementations of random number generation.
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1 Introduction

network structure between them that is used in every High Performance Computing (HPC)
environment. In general, while simulating large networks on single core machines results in
prohibitively large execution times, simulations on HPC-clusters su�er from power e�ciency
and communication issues.

An alternative approach, �rst described in the 1980s by Mead (1989), is sometimes referred
to as physical modeling. It is part of what is called today the neuromorphic computing2 sub�eld
in neuroscience. The fundamental change in paradigm is to construct physical representations
of neuron models so that their dynamics can be observed instead of numerically calculated. At
the moment, the most suitable substrate for this emulation are microelectronic circuits built
using Complementary Metal�Oxide�Semiconductor (CMOS) technology. Embedded in a switch
matrix on a silicon microchip, they physically represent parts of neurons such as synapses and
membranes. The transition from simulation to emulation bears new challenges, but promises
bene�ts that could potentially allow to push beyond the limitations on experiment time and
network size imposed by software. Most importantly, assuming that a given network can be
mapped onto the neuromorphic hardware, the experiment runtimes are independent from the
network size because of the direct representation of each neuron in hardware.

1.1 The BrainScaleS Hybrid Multiscale Facility

The Electronic Visions group at the University of Heidelberg developed several generations of
neuromorphic hardware since 2001 (Schemmel et al., 2001). The current installation is called the
Hybrid Multiscale Facility (HMF) and was built during the BrainScaleS project (BrainScaleS ,
2012). A comprehensive overview of the HMF can be found in Brüderle et al. (2011), a brief sum-
mary is presented in the following. Brüderle et al. (2011) also serves as primary citation for the
information in this section. The HMF combines neuromorphic components with a cluster of con-
ventional von-Neumann machines that serve as command and control nodes. The neuromorphic
part consists of uncut wafers that contain 384 Application Speci�c Integrated Circuits (ASICs)
which are called the High Input Count Analog Neural Network (HICANN). All of the HICANNs
on a wafer can be interconnected via a dedicated asynchronous bus structure that is extended
beyond the reticle boundaries3 during a post processing step. A HICANN implements 512 analog
circuits called denmems that act as building blocks for realising point neurons with a variable
number of inputs. These analog neurons can be connected using a digital synapse array with an
8-bit weight resolution. Additional digital circuitry is used for con�guration and communication
to the outside world. The whole wafer is placed on a Printed Circuit Board (PCB) that provides
the contact pins for power, clock and communication signals. On the other side of the PCB,
there are 12 smaller boards with each an FPGA and the so-called Digital Network Chip (DNC)
on them. The DNC bundles the communication links of 8 HICANNs and routes them to the
FPGA which can be accessed over switched Gigabit Ethernet by the host.

2Meade et al. did not subdivide the neuromorphic computing �eld. However, recent developments such as
the Manchester SpiNNaker system (Furber et al., 2012), which follows a di�erent philosophy, motivated the
introduction of physical modeling as a distinct category

3A reticle is the largest unique area that can be lithographically produced with a given technology and is
replicated on the wafer. In the 180nm technology used by BrainScaleS, a single reticle contains 8 HICANNs
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1.1 The BrainScaleS Hybrid Multiscale Facility

Figure 1.1: Structure of the HMF with the individual subsystems. The PC cluster controls
HICANNs on a wafer indirectly by communicating with FPGAs over a switched
Ethernet network. The FPGA then routes con�guration and spike data to up to
4 DNC microchips which can access up to 8 HICANNs each. Figure taken from
Brüderle et al. (2011)

One major advantage of the neuromorphic part of the HMF is the very high acceleration
factor compared to biology of between 103 and 105. Since biological neuron activity is typically
in the 10 Hz range, this acceleration poses high demands on the I/O capabilities of the HMF.
Therefore, the communication infrastructure plays a key role in the performance and usability
of the system.

1.1.1 Communicating with a HICANN

Figure 1.1 shows that there is no direct line of digital communication between the host and a
HICANN. The FPGA, together with the DNC, serves as an intermediate stage to bu�er spike
and con�guration data. From a communication point of view, both the host Ethernet link as
well as the FPGA-DNC-HICANN connection are unreliable because they both require signals to
travel relatively long distances between chips and are thus susceptible to signal noise and other
disturbances. However, it is necessary to provide a reliable communication path between host and
HICANNs so that data is guaranteed to be eventually exchanged without loss in the correct order.
The challenge to provide a lossless communication link between clients over a lossy medium is very
common in all of computer science and many solutions have been developed. The most popular
idea is a protocol that bu�ers data exchanged between clients and maintains state using additional
meta data that tracks whether data has been successfully exchanged. If data loss is detected,
a resend from the bu�er is initiated. Perhaps the best known protocol suite that implements
this is TCP/IP (Forouzan, 2003), used virtually everywhere on the internet. The strong suit of
TCP/IP is that it is a proven and established technology with native support in every modern
operating system. However, hardware implementations of TCP/IP are prohibitively resource
intensive and were not used in the HICANN and FPGA chips. Instead, a generic and light-
weight custom ARQ-style protocol with sliding window was developed in-house to be used for
lossless communication in the HMF.

3



1 Introduction

1.1.2 The ARQ

The Automatic Repeat reQuest (ARQ) protocol was designed by Stefan Philipp in 2009 (Philipp,
2008a) and is a parametrizable go-back-N protocol with selective repeat. It de�nes a ring bu�er
segmented in N packets that can be of arbitrary size and format. The ARQ requires meta data
that is sent together with the payload and modi�es state between the two clients.

Field Description
SEQ Sequence number of the current packet.
ACK Sequence number of the last received packet.
seqv Flag that distinguishes whether packet carries

payload

Table 1.1: The ARQ meta data �elds and their meaning for the protocol. The size and format of
the �elds is con�gurable and not directly relevant since they are converted to integers
and treated as such by the ARQ

With the �elds described in Table 1.1 and the ring bu�er the ARQ implements a sliding
window strategy for maintaining throughput while ensuring link integrity. The ARQ sends and
resends a packet in its window until it receives a response packet with an ACK number equal or
higher. The ARQ will then assume that the packet has been successfully transmitted and moves
its window to accept new data in its place. The selective-repeat functionality refers to the ability
of the ARQ to move the window by more than one at a time. For example, if packet number 0
to 7 have been sent by the master but packet 5 was lost in the network, only this single packet
needs to be resent and the target will move its window to packet number 7 since this is now a
contiguous data block.

4



1.2 Outline

Figure 1.2: ARQ sliding window algorithm. The master accepts packets until the ring bu�er is
�lled and tries to send them to the target over the unreliable network. The target
always accepts a �xed amount of packets starting with the sequence number of the
last packet that has been read out to the application + 1. The master is updated
with rising ACK numbers about which packets have been received so that it can move
its window accordingly. Figure taken from Philipp (2008b)

As long as the provided bu�ers are large enough, the ARQ is capable of maintaining wire
speed even with packet losses. This can be expressed in the so-called Bandwidth-delay product
which is discussed in more detail in subsection 2.8.2. Furthermore, the generic implementation
makes the ARQ completely agnostic of the exact nature of the network which makes it an ideal
candidate to use in the HMF system which employs two very di�erent link architectures.

1.2 Outline

The main aspect of the thesis was to design and implement HDL code in the FPGA that allows
ARQ-secured communication to the host as well as to the HICANNs. Because of the di�erent
network structures, the ARQ is integrated into two completely di�erent modules which are
tested and evaluated separately. Chapter 2 contains the documentation about the host ARQ
implementation in the FPGA, chapter 3 documents the HICANN-ARQ-link side in the FPGA.
While the testing and evaluation of the two modules is described in their respective chapters,
chapter 4 provides discussion and outlook for them both. Finally, chapter 5 compares the two
modules with the legacy system and provides estimates over the overall achieved improvements.
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2 The host ARQ

This chapter describes the implementation of the ARQ protocol over a switched Ethernet link
between the FPGA and the host. Similar work has been done in Karasenko (2011). While
the two projects share no code except for the ARQ modules, they share many basic concepts
such as encapsulating the receiving and sending circuitry in submodules, using Finite State
Machines (FSMs) for parsing and building protocol headers and taking special consideration
into introducing as little delay as possible into the communication while also maximising the
throughput.

2.1 Packet structure

Ethernet is a packet-based communication technology, this means that a series of data words
with start and end signals are treated as belonging logically together. In the Open Systems
Interconnection (OSI)-model (ISO/IEC 7498-1:1994), the payload data is prepended with ad-
ditional header data that is processed and stripped while it travels through the layers which is
called framing.

Of course, the term �payload data� is relative, since any header data that belongs to a higher
OSI layer looks like payload to a deeper one. Keeping that in mind, we de�ne payload data as
any words that are in the packet after the ARQ header �elds. The ARQ is acting as Transport
Layer according to the OSI model connecting to UDP/IP as the deeper Network Layer. Figure
2.1 shows the structure of a host-ARQ packet. For an overview of the Ethernet/IP/UDP headers
see Braden (1989).

6



2.2 Module overview

0 32 64u

ACK

valid

SEQ

TYPE

Ethernet/IP/UDP
pseudoheader

Payload

LEN

16
bits

Figure 2.1: Structure and alignment of the data packets as seen by the host-ARQ.

The host-ARQ will only deal with the IP and PORT numbers from the UDP/IP header with
the other �elds being either ignored or processed by deeper layers. For the meaning of the
SEQ, ACK and valid �elds see subsection 1.1.2. Although the valid �eld actually represents
only a single bit it was more convenient to reserve 32 bits for it to preserve data alignment.
The TYPE/LEN �eld was introduced in Ehrlich et al. (2013) for carrying information about the
amount and type of the payload words in the packet and will be treated as part of the ARQ
header. Note that while the ARQ header words are aligned to 32 bits, it was convenient to
align the payload to 64 bits since this is the word size the Application Layer (AL) in the FPGA
operates on. Consequently, the LEN �eld counts in 64 bit words. Due to bu�er limitations in
the UDP module the maximum total packet size is a standard 1500 Bytes long Ethernet frame,
subtracting from that 14 Bytes of Ethernet header, 40 Bytes IP/UDP header and 16 Bytes ARQ
header yields the maximum supported payload size as 178 64-bit words.

2.2 Module overview

The top level module host_arq_top implements the desired Transport Layer functionality. Figure
2.2 shows a block schematic with the neighboring modules, an overview of the top level ports is
given in section 2.7 . The module serves as a bridge between the AL and the UDP-layer providing
full duplex data transfers which look as �fo-like as possible to the AL. It runs at a single clock
frequency of 125MHz synchronously to the UDP and AL modules. For the detailed interfaces and
timing diagrams see sections 2.4.4 and 2.5.4. Sending and receiving data is handled separately in
two submodules called rx_link and tx_link with minimal non-blocking communication between
them to ensure independent functionality and thus full-duplex capability.

7



2 The host ARQ
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RAM interface 1
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32
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Figure 2.2: Top level view of the host_arq_top module with the immediately connecting layers.
The OSI-layer data �ow is from left to right while the RAM interfaces provide access
to the ARQ frame bu�ers which are stored in DDR2 RAM. The port widths apply
to the data only, control signals to the UDP/AL/RAM modules are not shown

2.3 DDR2 DRAM as ARQ packet bu�er

As is discussed in subsection 1.1.2, the ARQ manages some memory which contains the data
that has yet to be sent to the host or the AL. The minimum size of these bu�ers is determined
by the bandwidth-delay product which is discussed in subsection 2.8.2. Larger bu�er sizes are
bene�cial for the performance because they relax the scheduling requirements of the software,
i.e how often it has to wake up to send or receive data without impacting the throughput.
While it is possible to use the BlockRAM resources of the FPGA (xil, 2009) to implement the
packet bu�ers as has been done for example in Karasenko (2011), it proved to be an overall
inferior solution. The obvious bene�t of this approach is the simplicity of the implementation
since at the Register Transfer Level (RTL) a BlockRAM looks like a dual ported array of
con�gurable width and depth that can be accessed within a single clock cycle. However, the
total BlockRAM memory on a typical FPGA is only a few megabytes in size, and concatenat-
ing large amounts of BlockRAM primitives to form a larger array poses high strain on the
Place And Route (PAR) step of the design synthesis. Measurements like shown in Figure 2.10
suggest desirable bu�er sizes in the low megabyte range which would be very expensive to
realize in BlockRAMs. Furthermore, because the sending and receiving side need their own win-
dow the total bu�er requirements are doubled. Since the entire FPGA design often makes uses
of BlockRAMs for di�erent purposes it is therefore impractical to use them for large ARQ bu�ers.
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2.4 rx_link

However, the FPGA board also features 256MB of on-board DDR2 RAM which is capable of
being used as packet bu�ers. On the FPGA, the access to the memory is facilitated by the Xilinx
Multi Port Memory Core (MPMC) (xil, 2011) which provides up to six independent read/write
ports with internal arbitration between them. To further simplify the interface, a small adapter
module was written which presents three FIFOs to host_arq_top as a single access point to the
RAM that are called read, write and command.

Writing data to memory consists of pushing some number of words into the write FIFO and
pushing a command into the command FIFO afterwards. To read from memory a corresponding
command has to be pushed into the command FIFO. Monitoring the read_�fo_empty �ag
gives notice when the data has arrived and can be read by popping the FIFO. The command
word speci�es whether the request is to read or write, how many words are requested and
what the start address of the �rst word is. The formatting of the command words is given in
subsection 2.7.2. The rx_link and tx_link modules will try to access the memory using bursts
of data as much as possible because this maximises the performance of the DRAM. Because of
this they need to know the largest amount of words that can be accessed with a single command,
this RAM_MAX_BURSTSIZE parameter can change depending on the actual con�guration of
the memory. See subsection 2.7.2 for more information.

2.4 rx_link

The rx_link submodule encapsulates the receiving side of the protocol. Figure 2.3 shows a block
schematic that sketches the �ow of the payload, control and protocol data. The main paradigm
followed in the design is to ensure quick protocol handling between reception of data and passing
it to the AL. The total delay introduced by the rx_link between the UDP and AL is completely
dominated by the access delays of the DRAM. This could only be made possible by storing the
TYPE/LEN �eld in a small but fast dedicated BlockRAM array which makes reading data to
the AL much faster than it would be if the TYPE/LEN �eld would also be stored in DRAM.
This pre fetching is further elaborated on in subsection 2.4.2. The timing diagrams for the UDP
and AL interfaces can be found in subsection 2.4.4.
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Figure 2.3: Block schematic of the rx_link submodule.

2.4.1 The rx FSM

The rx FSM �lters the incoming UDP packets, communicates with the ARQ target and writes
valid packets to memory. It also delivers received ACKs to the ARQ master module residing in
the tx_link submodule

Receiving UDP packets Incoming UDP frames are �ltered for a valid port/IP combination
that can be set at runtime. After passing this check the rx FSM will assume that the frame is a
valid ARQ frame and parse the next four 32 bit words according to their meaning in the protocol
as de�ned in Figure 2.1.

Parsing the ARQ header The ACK �eld is sent to the ARQ master residing in the tx_link
submodule by raising the master_rx_valid signal. The SEQ/valid pair is used to make a request
to the ARQ target whether to write the payload to memory. If the frame is to be dropped the
rx FSM goes into a sleep state and waits for the end of frame signal after which it resets into the
ready state. Otherwise, the ARQ target generates an address for the packet within the window
and raises the target_rx_write �ag to announce that the frame is to be written to memory.

The TYPE/LEN bu�er The TYPE/LEN �eld is written to a BlockRAM array using the
target_rx_bufpos address. This TYPE/LEN - bu�er is con�gured as a dual ported array which
holds WINDOWSIZE 32 bit words. Since a single dual port BlockRAM primitive is 36kbit in
size it can hold up to 1125 such words. If larger windows are needed, several BlockRAMs can be
concatenated to provide the necessary memory space. One reason for using a dedicated bu�er for
the TYPE/LEN �eld instead of writing it to the DDR2 RAM is to preserve memory alignment
since the payload is aligned to 64 bits. A much more important reason however is that the
TYPE/LEN - bu�er now allows to pre fetch data from memory. This is explained in more detail
in subsection 2.4.2.
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Writing the payload to memory Now that the payload is to be written to memory, each two
32 bit words are grouped into a single 64 bit word using temporary registers and pushed into the
write_data_�fo. After the number of pushed words has reached RAM_MAX_BURSTSIZE a
write command is issued for that amount of words with an address that is determined using the
base address given by the ARQ target and an o�set generated by the amount of words already
written to memory during the current packet that are not part of the current burst. When the
end-of-frame signal is raised the rx FSM issues one last write command for the remaining words
in the current burst if necessary, noti�es the ARQ target that the packet has been successfully
written to memory and goes back into the ready state.

This behaviour has some implications for the software. For one thing, no sanity check is
performed on whether the LEN �eld actually agrees with the number of payload words in the
packet, and only the amount speci�ed there will be read out from memory to the AL. This
means that one could get corrupted or old data at the AL if the LEN �eld is larger than the
payload in that frame. The host has also to make sure that the payload is correctly aligned to
64 bit since otherwise the last word will not be written to memory. The total payload size per
packet can also be no larger that the PAYLOAD_SIZE parameter, violating this constraint will
mean either over�ows into neighboring bu�er slots or wrap-arounds which corrupt the currently
receiving payload.

Handling abort conditions Assuming a correct packet formatting there is still the possibility
that the DRAM might stall during frame reception. The two conditions are:

1. write_�fo is full when a new word needs to be pushed.

2. command_�fo is full while trying to issue a command for the current burst.

If at least one of these conditions is met the reception of the frame is aborted and it has to
be resent by the host. The rx FSM then goes into a �ushing state to ensure that every word
that has already been pushed into the write_�fo has been accounted for with a corresponding
command. The occurrence of the stalls is dependent on the DRAM bandwidth which is estimated
in xil (2011) to be much higher than the UDP bandwidth which makes such events unlikely.
Nonetheless, it is important to ensure the proper handling of such states to ensure compatibility
with many di�erent setups.

2.4.2 The pre-fetch FSM

When there is valid data to be read to the AL, the ARQ target noti�es the pre-fetch FSM
and generates the corresponding base address. The pre-fetch FSM then �rst uses this address
to read the corresponding TYPE/LEN �eld from the TYPE/LEN - bu�er and saves the LEN
�eld in a working register while also pushing the current TYPE/LEN �eld into the decode_�fo.
After these preparations the main objective is to keep the read_data_�fo as full as possible.
The pre-fetch FSM knows the depth of the read_data_�fo and how many words are in it at
most1 since it monitors how much data it requested and how much data has been popped out
of the read_data_�fo by the AL. Whenever there is at least RAM_MAX_BURSTSIZE space
left in the read_data_�fo the pre-fetch FSM issues a read command for that many words. The
arbitration between read and write commands has been set to a �xed priority towards write
commands because it is more important to write the packet quickly to memory than to get the
data to the AL.
1The uncertainty stems from the fact that there might be some data that is being fetched from the DRAM but
is not pushed into the �fo yet
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2.4.3 The decoder FSM

The main purpose of this state machine is to translate the packet format shown in �gure 2.1
into the individual TYPE - PAYLOAD WORD pairs for the AL as shown in timing diagram 2.5.
This has the advantage of abstracting protocol details like packet sizes away from the AL which
simpli�es the interface. Since the decoder_�fo contains the ordered TYPE/LEN �elds of the data
stream the decoder FSM knows that the next LEN words that appear in the read_data_�fo have
the type TYPE and need to be announced as such to the AL.

2.4.4 Interfaces

UDP rx side The start and end of a packet is announced via separate �ags with data being
marked as valid by raising a valid �ag. Note that in the current implementation of the UDP
layer the frame will be read out as a 32 bit word every two clock cycles which yields an e�ective
bandwidth of 2Gbit/s.

clock

sof

DEST_PORT [15:0] DEST_PORT

SRC_IP [31:0] SRC_IP

SRC_PORT [15:0] SRC_PORT

valid

data [31:0] D0 D1 D2 D3 D4 D5

eof

Figure 2.4: Timing diagram depicting the rx interface of the UDP module. The shown transmis-
sion is consistent with an ARQ packet that carries a single 64 - bit payload word

Application Layer read interface The AL-read interface has been designed to look as �fo-like as
possible. The ARQ implements full �ow control which means that the AL can stall for arbitrary
periods of time between popping payload without loss of data. The decoder FSM as described
in 2.4.3 takes care of pairing the payload words with their corresponding type. Figure 2.5 shows
some examples for reading data to the AL. Signals with the su�x *_i denote input signals from
the rx_link's point of view, signals marked with *_o are output signals driven by rx_link.
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clock

valid_o

next_i

type_o [15:0] A B C

data_o [63:0] D0 D1 D2 D3

Figure 2.5: Timing diagram showing several examples of reading data to the AL from rx_-
link's point of view. First, a single word transaction with type A where the AL
responds after a delay. Second, a single word transaction with type B where the AL
acknowledges the data in the same clock period. Lastly, a two-word back-to-back
transfer with type C

2.5 tx_link

The tx_link submodule encapsulates the sending side of the ARQ protocol. It stores the data
passed to it by the AL, handles the framing and implements the transport layer functionality
to prevent data loss or corruption at the receiving host. A block diagram is shown in �gure
2.6, the timing diagrams for the AL and UDP interfaces can be found in subsection 2.5.4. A
certain symmetry to the rx_link is apparent, in fact the module behaves largely the same with
the direction of the data �ow now going from the AL to the UDP module.

U
D

P

A
Lheader

fifo
tx

frame
builder

ARQ
master

t/l
buffer

store

tx_link

read
data
fifo

RAMpinterfacep1 cmd
fifo

write
data
fifo

data control protocol

toprx_link toprx_link

Figure 2.6: Block diagram of the tx_link submodule
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2.5.1 The store FSM

When the AL attempts to send data to the host it interacts with the store FSM via the �fo-like
interface shown in Figure 2.7. The store FSM has three main objectives:

1. Interfacing the ARQ master module to determine whether there is space left in window for
pushing new data.

2. Managing the access to DRAM, i.e keeping track of the words pushed into the write_data_-
�fo and issuing write commands when necessary. A new ARQ frame has to be requested
when the current one holds PAYLOAD_SIZE words

3. Making sure that each ARQ frame contains only data that belongs to the same type to
adhere to the packet speci�cation described in section 2.1. If the type changes a new ARQ
frame has to be requested.

The AL �ush timeout From the AL's point of view, once it has pushed data into the tx_link
it can safely assume that this data will reach the host in �nite time during normal operation. To
maximise the available UDP packet sizes the tx_link will normally wait until either the number
of pushed words has reached the maximum frame size or a changing of the type before it closes
the current frame which is then sent away. This however means that at the end of an experiment
there might be data stuck in the ARQ that never gets sent because the corresponding bu�er
never gets closed. This behaviour is solved by introducing a con�gurable timeout that is internal
to the tx_link. The timer starts counting down whenever a new frame is opened and is reset
every time a new word has been written to it. Once the timer reaches zero the tx_link will
close the ARQ frame even if it has not reached the maximum frame size. It makes sense setting
the �ush timeout to a rather large value since otherwise some unnecessary fragmentation might
occur when there are some pauses between large bursts of data.

Generating the TYPE/LEN header When an ARQ frame is ready to be closed for whatever
reason the store FSM will write the active type and number of words for it in a BlockRAM based
t/l bu�er to be used as the TYPE/LEN �eld of the frame later. The reason to do so is the same
as for the t/l bu�er residing in the rx_link: It allows pre-fetching the data and also improves
alignment and thus access performance of the DRAM.

2.5.2 The frame builder FSM

When the ARQ master wants to send a frame it activates the frame builder FSM which will
push the corresponding SEQ number and TYPE/LEN �eld in the header �fo and then request
the payload data from DRAM. As in the pre-fetch stage of the rx_link the frame builder FSM
keeps track of the �ll status of the read_data_�fo and avoids requesting too much data that
would potentially not be able to �t in it. Read commands from the frame builder are prioritized
over write commands from the store FSM to ensure a steady data �ow to the UDP layer.

2.5.3 The tx FSM

This state machine interfaces the UDP modules for sending out payload and ACK-only frames
to the host. The timing diagram for sending a frame to the UDP is shown in Figure 2.8. Sending
payload frames is triggered when there is data in the header_�fo, ack-only frames can be triggered
by the ARQ target residing in the rx_link. The ARQ target is noti�ed every time a frame is
sent out so that it can reset its ACK Timeout.
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2.5.4 Interfaces

The AL write interface Writing data to the tx_link is very similar to the read interface as
discussed earlier. A data word is presented to the tx_link by the AL together with its type
by raising the al_write_valid �ag. The tx_link will acknowledge the reception of that word
by raising the al_write_next �ag which completes the handshake. This handshake is necessary
because it depends on many factors whether a data word can be stored in memory at a particular
time as is described in subsection 2.5.1. Figure 2.7 shows some example writes.

clock

al_write_valid

al_write_type [15:0] A B C

al_write_data [63:0] D0 D1 D2 D3

al_write_next

Figure 2.7: Timing diagram showing several examples of writing data to the tx_link. Depending
on the situation data can be written within a single clock, back to back or after a
certain delay.

The UDP tx interface Transmitting a frame through the UDP requires two handshakes where
the UDP acknowledges both with the ready �ag. The �rst handshake represents the request
to send a frame which is indicated through raising the sof �ag. After the UDP responded by
raising the ready �ag the frame data can now be pushed into the UDP with the push �ag. To
end a frame the tx_link raises the sof �ag after the last data word has been pushed. Note that
the current implementation of the UDP module bu�ers the frame entirely before it is sent to
the Ethernet MAC, thus there are no timing requirements on the length of the pause between
two pushes of data. This is useful because while the ARQ header data is quickly available to
be pushed into the UDP there is a signi�cant delay before the payload data is returned from
memory. However, the tx FSM can be modi�ed to adhere to more strict timings which would
require a maximum delay between two pushes if necessary. An example timing diagram is shown
in Figure 2.8.

clock

sof_o

DEST_PORT_o [15:0] DEST_PORT

DEST_IP_o [31:0] SRC_IP

SRC_PORT_o [15:0] SRC_PORT

ready_i

push_o

data_o [31:0] D0 D1 D2 D3 D4 D5

eof_o

Figure 2.8: Timing diagram demonstrating the interface between the tx_link and the UDP mod-
ule.
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2.6 The resetter module

Also part of the host_arq_top module is a small state machine that listens for a certain UDP
port and a magic payload word. If it �nds such a word the resetter will use the rest of the frame
to set the protocol timings and also the host IP for the ARQ. This enables the con�guration
of the ARQ at runtime to a certain degree. The resetter can also optionally reset the ARQ as
the name implies, however resetting the ARQ is not required to change the protocol timings.
Figure 2.9 shows the payload structure for a resetter packet. The host IP is extracted from the
UPD/IP header which implies that each ARQ host is responsible for resetting its own FPGA
counterpart during operation.

magic word

resend timeout

ACK timeout

AL flush timeout

032

time

endianness

Figure 2.9: Payload structure for a resetter packet. The values are used to set their respective
registers as described in section 2.7
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2.7 Design parameters and port descriptions

The tables in this section describe the parameters and signals of the host_arq_top module.
The signals have been all typed to be either std_logic or std_logic_vector except the design
parameters to make integration with verilog modules easier although some of them are internally
cast to ranged integer types.

2.7.1 Design Parameters

Table 2.1: The design parameters of the host_arq_top module

Name Default Value Allowed Values Description
DEBUG false true, false Enables the synthesis of

debug registers. It is
recommended to only use
this option when explicitly
needed to keep the FPGA
resource utilization down.

USE_OLD_-
UDP_INTER-
FACE

true true, false Switches between the
slightly di�erent inter-
faces of the UDP modules
found in the Virtex5 and
Kintex7 designs

RESETTER_-
PORT

�AFFE� 16 bit value The resetter module de-
scribed in section 2.6 lis-
tens for UDP packets that
match this value.

ADDR_WIDTH 25 INT Used to determine the
width of ram_com-
mand_�fo_data

SIZE_WIDTH 6 INT Used to determine the
width of ram_com-
mand_�fo_data

RAM_MAX_-
BURSTSIZE

32 INT Largest number of 64 bit
words that �t in a sin-
gle read/write burst of the
DRAM.

TX_FIFO_-
DEPTH

512 INT This value is used by the
frame builder FSM in the
tx_link to gauge the �ll
status of the tx_read_�fo
If di�erent �fos are used
this value has to be ad-
justed to avoid possible
data loss.
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Table 2.1 � Continued from previous page

Name Default Value Allowed Values Description
RX_FIFO_-
DEPTH

512 INT This value is used by the
pre-fetcher FSM in the
rx_link to gauge the �ll
status of the rx_read_-
�fo If di�erent �fos are
used this value has to be
adjusted to avoid possible
data loss.

FPGA_ARQ_-
PORT

�04D2� 16 bit value The rx_link will only ac-
cept data from this port

AL_FLUSH_-
TIMEOUT_MAX

216 INT Determines the width of
the register that holds the
AL �ush timeout value
that is set by the resetter.
Note that since the value
received by the resetter is
32 bits wide over�ows are
possible.

MASTER_TIME-
OUT_CYCLES_-
MAX

216 INT Determines the width
of the resend timeout
counter in the ARQ
master.

TARGET_TIME-
OUT_CYCLES_-
MAX

216 INT Determines the width of
the ACK timeout counter
in the ARQ target.

PAYLOAD_SIZE 176 INT Maximum amount of 64
bit words that �t in a sin-
gle ARQ frame

WINDOW_SIZE 512 2n ARQ window size
SEQ_SIZE 216 INT ARQ sequence size.

Should be at least double
of the WINDOW_SIZE
parameter

2.7.2 DRAM I/O signals

This interface is present twice in the host_arq_top module, each one for the rx- and tx side. The
signals have a corresponding pre�x in the name to signify where they belong to in the module
declaration.
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Table 2.2: DRAM I/O signals

Signal Name Direction Width Description
Command FIFO Signals

command_�fo_data Output 32 Highest bit is read-not-write,
followed by size and address.
The width of the sub�elds is
speci�ed by SIZE_WIDTH
and ADDR_WIDTH respec-
tively.

command_�fo_full Input 1 Fifo will not accept data when
high

command_�fo_push Output 1 Active high
Write FIFO Signals

write_�fo_data Output 64
write_�fo_full Input 1 Fifo will not accept data when

high
write_�fo_push Output 1 Active high

Read FIFO Signals
read_�fo_data Input 64 Data is valid in the same clock

cycle as read_�fo_empty going
low.

read_�fo_empty Input 1 read_�fo_empty is valid when
low

write_�fo_pop Output 1 Active high

2.7.3 UDP interface I/O signals

Table 2.3: Description of ports that interface the UDP module

Signal Name Direction Width Description
rx interface signals

rx_udp_source_port Input 16 UDP source port, valid during
the whole frame

rx_udp_source_ip Input 32 UDP source IP, valid during the
whole frame

rx_udp_sof Input 1 start-of-frame signal, high for
one clock cycle

rx_udp_eof Input 1 end-of-frame signal, high for one
clock cycle

rx_udp_din Input 32 UDP payload data, valid when
rx_udp_din_valid is high

rx_udp_din_valid Input 1 Active high
tx interface signals
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Table 2.3 � Continued from previous page

Signal Name Direction Width Description
tx_udp_source_port Output 16 UDP source port for outgoing

packet, should be kept stable
during frame

tx_udp_dest_port Output 16 UDP destination port for outgo-
ing packet, should be kept stable
during frame

tx_udp_dest_IP Output 32 UDP destination IP for outgo-
ing packet, should be kept stable
during frame

tx_udp_sof Output 1 start-of-frame signal, requests a
new transmission to the UDP.
Has to be kept high until sof_-
ack or rdy is raised

tx_udp_sof_ack Input 1 Only used when USE_OLD_-
UDP_INTERFACE is set,
indicates that frame is ready for
receiving payload

tx_udp_eof Output 1 end-of-frame signal, high for one
clock cycle, closes the frame

tx_udp_rdy Input 1 UDP accepts new payload word
when high. Is not used
when USE_OLD_UDP_IN-
TERFACE is set, internal logic
has to emulate that signal for the
tx_link

tx_udp_din_valid Output 1 Pushes new payload word in
UDP when high

tx_udp_din Output 32 UDP payload data
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2.7.4 AL interface I/O signals

Table 2.4: Description of ports that interface the AL

Signal Name Direction Width Description
read interface signals

al_read_data Output 64 Application Layer payload word
al_read_type Output 16 Type is always valid together

with the payload word
al_read_valid Output 1 Data and type is valid in the

same clock cycle that this signal
is high

al_read_next Input 1 Acknowledges the reception of
active word and type when high

write interface signals
al_write_data Input 64 Application Layer payload word,

must be kept valid as long as al_-
write_valid is high

al_write_type Input 16 Type must be always valid to-
gether with the payload word

al_write_valid Input 1 Active high
al_write_next Output 1 Completes the handshake, data

word has been committed to
ARQ.

2.7.5 Debug ports

These ports only carry data when the DEBUG parameter is set. All of them are 64 bit wide
counters that count certain events which were deemed valuable for debugging the design.

Name Description
rx_cnt Counts the total amount of received ARQ

frames since reset.
rx_abort_cnt Counts the amount of times a receiving frame

had to be aborted due to memory stalls since
reset.

rx_drop_count Counts the amount of times a frame was
dropped by the ARQ since reset.

Table 2.5: Debug registers in host_arq_top

2.8 Testing and evaluation

Apart from veri�cation in simulation, extensive testing has been done in hardware between the
FPGA and the host. The used software ARQ implementation in the host was a slightly modi�ed
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version of the work done in Schilling (2010). The FPGA design was a stripped down version
of the BrainScaleS design that contained only the modules necessary for testing. In particular,
the used BrainScaleS modules were the Ethernet UDP/IP core and the DDR2 on-board memory
interface that the host_arq module connects to. The measurements and plots in this section
were done in collaboration with Eric Müller who provided assistance with the software side of
the experiments.

2.8.1 The test_al module

To replace the BrainScaleS AL a small test_al module was written that served as termination
point for the ARQ connection in the FPGA. The test_al has several features:

• Data with a certain type is looped back by feeding it into an internal loopback FIFO that
connects to the write interface of the host ARQ.

• The test_al is able to generate dummy data with either sequentially rising or pseudo
random content. This data has a di�erent type than looped back data.

• Additionally, stats can be generated and periodically sent under a special type back to the
host. The stats contain the debug registers listed in Table 2.5 and also internal registers
that count the amount of transmitted words to and from the host ARQ.

• The test_al recognizes received words with a reserved type as a con�guration packet that
enables and con�gures the dummy data as well as stats transmissions.

• Incoming words that are neither of the loopback nor of the con�guration type are popped
from the host ARQ but not processed further.

2.8.2 Measuring the uni-directional throughput

The inherent parameters of the ARQ protocol that describe its behaviour are the timings and the
bu�er size. To gauge the in�uence of these parameters on the protocol performance it is best to
�rst measure the half duplex throughput, i.e there is only payload transmission on one side of the
link while the back channel carries only the ACKs. Since Ethernet is a very reliable protocol it
can be assumed that the performance impact due to packet loss should be minimal under normal
circumstances. This has been experimentally veri�ed and thus the resend timer has been set to
some large value such as to not a�ect normal operation but still make the recovery of lost data
possible. The main measurements for the half duplex performance were done with the direction
host → FPGA for the sake of convenience.

Bu�er size and ACK timing In data communications, the bandwidth-delay product is com-
monly used to relate the two network properties with each other. The notion is that if at a
certain link speed a certain delay is to be expected, there has to be a total bu�er capacity of at
least

bits-in-�ight ≥ bandwidth · delay (2.1)

Since the ARQ is a packet based protocol the total bits-in-�ight capacity can be expressed as

bits-in-�ight = PAYLOAD_SIZE ·WINDOW_SIZE (2.2)
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Note that the de�nition of the bits-in-�ight parameter depends on the de�nition of what
constitutes a single packet. Here, the bits-in-�ight mean the total amount of payload words for
the AL that the ARQ needs to have in its bu�er. This ignores the protocol overhead that is part
of a single frame but is for the moment irrelevant for this discussion.

Protocol delay The delay is the protocol round-trip-time, i.e the time it takes for the host to
receive an ACK for a packet it sent earlier. This parameter has two main contributions:

• The ACK timeout set in the hardware determines how long the ARQ target will wait
after the reception of a packet before it initiates an ACK-only response. In a full-duplex
con�guration most of the ACKs will be carried piggyback by payload, thus the ACK timeout
should be carefully tuned to not waste bandwidth.

• The host implements the ARQ in software which will be inherently slower than real time.
Thus, part of the e�ective delay is the time it takes for the software to wake up and notice
that a new ACK has arrived.

Sweeping the WINDOW_SIZE Figure 2.10 shows a selection of sweeps over a range of di�erent
windows and ACK timeouts. Note that it takes a total bu�er size of at least 16 · 176 · 8 =
22.528 Bytes for the protocol to reliably achieve the maximum performance but only at a rather
small ACK-timeout range. It also makes sense that whenever the ACK-timeout gets larger than
the maximum value dictated by the bandwidth-delay product the throughput quickly breaks
down because the network capacity is now smaller than the rate at which the host sees new
ACKs. It might however be surprising that the throughput also goes down at very small ACK-
delays. This is explained by the fact that the host-CPU is interrupt starved in that range because
every new ACK packet causes a context switch which introduces an additional delay and takes
time away from actual protocol processing. This is a special property of software-based ARQ and
has to be kept in mind during operation. From everything discussed above it seems reasonable to
always set the ACK-delay as large as possible without going over the bandwidth-delay threshold.
Also, a WINDOW_SIZE of 512 seems to produce satisfactory performance with the best ACK
delays ranging in the milliseconds without consuming too many FPGA resources.2

2The current FPGA ARQ implementation requires a WINDOW_SIZE-bit large array that is very expensive to
synthesize. For large windows this array dominates the total resource consumption for the whole host ARQ
module
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Figure 2.10: Measuring the half duplex throughput from host to FPGA with varying
WINDOW_SIZEs and ACK-timeouts at constant PAYLOAD_SIZE = 176*8 Bytes.

The vertical line marks the delay
bits-in-�ight

1Gbit

PAYLOAD_SIZE vs. WINDOW_SIZE The bandwidth-delay product only takes into account
the total bu�er size to gauge the protocol performance with no regard of how fragmentation into
packets and window slots might a�ect it. Figure 2.11 shows the performance of the ARQ at
a constant bu�er size but varying PAYLOAD_SIZE/WINDOW_SIZE combinations. For each
data point several runs with di�erent ACK timings have been done choosing the ones with the
best performance to factor this in�uence out of the measurement.
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Figure 2.11: Host-to-FPGA half-duplex ARQ throughput for di�erent {PAYLOAD_SIZE,
WINDOW_SIZE} pairs with the product kept constant. Also shown are the mea-
sured packet rates as well as the software interrupts by the NIC

There are two main observations to be made from Figure 2.11:

1. The packet rate massively impacts the throughput. This is obviously because at very
low PAYLOAD_SIZEs the protocol overhead3 is no longer negligible and massively drives
down the performance.

2. The host CPU will reach an interrupt threshold for very high packet rates which also
negatively impacts the throughput because the software is unable to send packets at wire

3such as Ethernet Inter-Frame-Gaps, Headers and CRC
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speed anymore.4

2.8.3 Protocol symmetry and full-duplex performance

It is reasonable to expect that it should be possible to achieve the same maximum throughput
between the host and the FPGA when using symmetric timings and bu�er sizes. However,
measurements such as shown in Figure 2.12 show that the throughput from the FPGA to the host
is limited to about 80 MB/s. Investigations revealed an ine�cient processing of the outgoing ARQ
packets in the UDP module which makes it impossible to send packets back to back to the host
thus wasting bandwidth. Barring this phenomenon the ARQ achieves symmetric performance
and also full-duplex capability since the total throughput is the sum of the throughputs over the
individual links5. Figure 2.13 shows how the host ARQ connection is able to sustain the highest
possible throughput on each side in full duplex mode over many windows.

Figure 2.12: Half-duplex ARQ throughput from FPGA to host as a function of software ACK
delays. The horizontal line drawn at ≈ 78 MiB/s is the limit at which the UDP core
in the FPGA is capable of transmitting

4An interesting side note is that apparently the maximum interrupt rate of the tested system is about 150 kHz
5Obviously, to achieve optimal performance in full-duplex mode the rate of ACK-only packets has to be kept to
a minimum, which is another reason why the ACK-timeout should be rather high
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Figure 2.13: Full duplex ARQ throughput between host and FPGA.

2.8.4 Payload integrity and reliability

The host ARQ has undergone extensive stress testing looping back several Terabytes of random
payload and comparing it with the original data. The tests showed neither corruption nor
unexplained protocol breakdowns which suggests that the system is ready for integration in the
BrainScaleS FPGA project and production usage.
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3 The HICANN ARQ

This chapter describes how a HICANN connects to the FPGA and introduces the HICANN ARQ
module that serves as an end point for HICANN con�guration data in the FPGA.

3.1 The HICANN - FPGA connection

3.1.1 The HICANN high-speed link

The HICANN has two main layers of I/O to the outside world. The Layer-1 link connects
neighboring HICANNs on a wafer and carries only spike event data. The high-speed link uses
a di�erential 1-bit-plus-clock signal running at 1 Ghz to connect the HICANN to the so-called
DNC which is an ASIC built at the Dresden University of Technology. A fast serial link instead
of a slower parallel link was chosen because it reduces the pin count and also because it reduces
the link complexity since a parallel link needs to make sure that the individual bits align properly
which is di�cult to achieve over large distances. Directly connecting a HICANN to the FPGA
was not possible in the original design because at the time the FPGAs were not able to drive
an I/O pin at Gigahertz speeds which made the development of the DNC necessary. The DNC
connects to the FPGA via a 16 bits wide parallel link serving as a hub for up to 8 HICANNs.1.

The high-speed link carries both spike events and HICANN con�guration data with a static
prioritisation towards spike data. This is done because the spike data has to preserve the inter-
spike-intervals as much as possible since they are an important property of neuromorphic com-
putation2. While all high-speed link data carries CRC bits to detect corruption, the spike data
does not use the ARQ for reliability because the bu�ering as well as resending will skew the
timings between spikes. The downside is of course that the spike trains will experience irrecov-
erable data loss which poses high demands on the high-speed link stability. On the other hand,
HICANN con�guration data has to be secured against data loss via the ARQ because an incom-
plete HICANN con�guration will put the chip in an unde�ned state making reliable experiments
impossible. Furthermore, since the sender will aggressively drop con�guration data in favor of
spike data, the probability of losing con�guration data is independent of the actual link stability
which makes the necessity of some recovery mechanism even more evident.

3.1.2 HICANN con�guration data

The HICANN has a variety of values that can be programmed during runtime. While these values
are stored in di�erent ways on the chip3, they can all be accessed using a uni�ed programming
model. Con�guration values on the HICANN can be accessed with a {read/write, address, value}
command that is encapsulated in a 64 bit word together with the ARQ header. See Table 3.1

1Note that the DNC handles each HICANN link independently and that it is not possible for two HICANNs to
communicate directly over the DNC.

2The sender will even go as far as drop con�guration data in favor of spikes if necessary
3E.g in a �oating-gate transistor, entries in a SRAM or �ip-�ops
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3.1 The HICANN - FPGA connection

for the con�guration packet structure, further information about con�guring a HICANN can be
found in Schemmel et al. (2010)

name bit no. size description
Tag 63:62 2 tag-id
Seq Valid 61 1 valid
Seq 60:55 6 SEQ
Ack 54:49 6 ACK
Read/Write 48:47 2 �10� when write, �01� when read
Address 46:32 15 address
Data 31:0 32 value

Table 3.1: con�guration interface for the HICANN

3.1.3 ARQ tag id

As mentioned before, the HICANN stores con�guration parameters in di�erent kinds of memory
which have di�erent access latencies. The most important di�erence is that the access time for a
synapse weight is a single clock cycle while setting an analog neuron parameter that is stored in
�oating gate memory can take hundreds of cycles. Since these two types of accesses make up the
most of the HICANN con�guration it was decided to handle them using two separate ARQ links
that share the same network. The bene�t is that writing the slow �oating gate parameters does
not interfere with setting the synapse weights because they have their own bu�er. The tag-id
�eld in the command word is used to determine which ARQ stream it belongs to. Figure 3.1
shows a block schematic of the data paths in the HICANN.

Network

ARQ 0 ARQ 1

Synapse
Memory

Floating
Gates

+
other

Figure 3.1: Block schematic showing how di�erent types of con�guration data are handled us-
ing two ARQ links that share the high speed HICANN network link. Note that
while ARQ 1 only services the synapse memory, ARQ 0 also handles the rest of the
con�gurable parameters in the chip.
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3 The HICANN ARQ

3.2 The DNC_ARQ module

3.2.1 Overview

The FPGA connects via a single DNC to up to 8 HICANNs. Thus it makes sense to bundle
all the ARQ links that communicate via a single DNC link in a module called the dnc_arq. It
resides between the Application Layer and the DNC interface. Figure 3.2 shows the top level
view and the word formats on both sides. The dnc_arq is capable of receiving and transmitting
one con�guration word per clock cycle in both directions, the additional header information at
the DNC interface is added and processed internally which explains the di�erence in the interface
widths.

tagid payload
52 49 48 0

bits

id configNpacket
66 63 0bits

dnc_arq

ApplicationNLayer

DNCNinterface

Figure 3.2: Top level view of the dnc_arq module acting as a bu�er between the AL and DNC
interfaces in the FPGA. Also shown are the word formats on either side. Table 3.1
describes the exact formatting of a con�g packet at the DNC interface, its lower 49
bits are the payload at the AL side. The id �eld identi�es which of the up to 8
HICANNs connecting to a single DNC the word belongs to.
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3.2 The DNC_ARQ module

3.2.2 ARQ con�guration

While the host ARQ connection is very con�gurable in terms of bu�er- and sequence sizes, this
is not possible for the HICANN ARQ links because the FPGA modules need to be symmetric to
the implementation in the HICANN. Thus, a single ARQ link has the following �xed parameters:

Name Value
SEQ_SIZE 64
WINDOW_SIZE 16

The bu�er requirements are also �xed and can be calculated to be

bu�er size = WINDOW_SIZE · 49 bit = 784 bit (3.1)

per link and direction.

3.2.3 Payload bu�er

The dnc_arq module uses a single dual-port BlockRAM primitive per direction to store the win-
dows of all 16 links that it manages. There are several reasons why this choice of implementation
makes sense:

• All 16 windows �t comfortably in a single BlockRAM primitive.

• Low access latencies are important because each ARQ packet is only a single word in size
which makes bursting impossible.

• Each cycle at most two ARQ clients will need access to memory which is satis�ed by the
two independent ports of the BlockRAM

Figure 3.3 shows how the 16 ARQ windows are aligned in the BlockRAM.

word address

49
 b

it

x16

0

id = 0, tag = 0

49
 b

it

x16

16

id = 1, tag = 0

...

49
 b

it

x16

240

id = 7, tag = 1

49
 b

it

x16

112

id = 7, tag = 0

49
 b

it

x16

128

id = 0, tag = 1

...

Figure 3.3: Arrangement of the 16 ARQ windows that belong to a single DNC interface in the
BlockRAM bu�er. Word address 0 marks the start of the window from HICANN #0
with tag 0, followed by HICANN #1, tag 0. The tag 1 windows are aligned in the
same way starting at word address 128, i.e after HICANN #7, tag 0

3.2.4 Arbitration

There are two cases where arbitration in the dnc_arq module is necessary:
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3 The HICANN ARQ

• Several ARQ master clients might want access to the DNC interface for transmission at
the same time.

• Several ARQ target clients might have data for the AL to read at the same time.

There are many di�erent arbiter implementations with varying degree of complexity. The
rrarbiter module presented by Benjamin Krill in Krill implements a light-weight round-robin
arbiter with a con�gurable number of inputs. This module was used and slightly modi�ed to
be used within the BrainScaleS system, for the original implementation see Krill . The rrarbiter
used in the dnc_arq module implements the following features:

Fair arbitration The arbiter implements the round-robin scheme, this means that every client
has an equal opportunity for accessing the bus.

Fast arbitration The module does not waste cycles traversing clients which do not request
access, the arbitration decision always takes a single cycle.

Optional delay In some situations it is advantageous to have a delay that makes sure each
client only gets access at most every N cycles4 without losing the equal prioritization of the
individual clients. The usage of this delay is explained in more detail in subsection 3.2.5

Figure 3.4 shows the arbitration structure in the dnc_arq module. Note that instead of allow-
ing each of the 16 individual clients make a request to the arbiter, the arbitration is implemented
HICANN-wise instead. This saves some resources in the arbiter itself, the more important reason
however is that this arbitration makes more sense in the direction to the DNC because clients
that belong to the same HICANN will share the same physical connection. See subsection 3.2.5
for details. After the arbiter chooses the winning HICANN a priority toggle decides which tag
ID gets bus access which makes sure that both tags get equal access opportunity.

4where N is a con�gurable parameter
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... ≥1

tag 0 tag 1

HICANN # 7

arbitration

≥1

tag 0 tag 1

HICANN # 0

winning 
HICANN

tag
priority
toggle

delay

Bus access

Figure 3.4: Arbiter structure in the dnc_arq module. Arbitration is done HICANN-wise, the
priority for tag 0 and tag 1 is toggled to make sure that the tags get equal access
opportunity. When activated, the delay stage implements individual counters for
each HICANN which prevent requests from reaching the arbiter unless enough time
has passed.

3.2.5 Sending data to the HICANNs

Although the dnc_arq module is not divided into rx and tx submodules there is still dedicated
and independent circuitry in it that allows simultaneous sending and receiving data from and to
a HICANN. Figure 3.5 shows the involved signal paths for the sending of con�guration data to
the HICANN.
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id4+4tag payload

delayed
arbiter

ARQ
master

x16

write

tx
Packet4Buffer

read

payloadheader

18 49

4 49

DNC4interface

Application4Layer

Figure 3.5: Block schematic showing the involved circuitry in the dnc_arq module for transmit-
ting con�guration words from the FPGA to a HICANN over the DNC interface.

When writing into the dnc_arq module from the AL a simple multiplexer selects the correct
ARQ client based on the tag and HICANN-ID information of the con�guration word and writes
it in the bu�er if possible. However, several ARQ clients might want to transmit data at the
same time over the DNC interface which requires some arbitration scheme. The arbitration
submodule is discussed in more detail in subsection 3.2.4, the module shown in Figure 3.5 has
the delay feature enabled additionally to the pure arbitration stage.

Since there is no �ow control between the FPGA and the DNC in the current system and
the connection from the FPGA to the DNC has a much higher bandwidth than a single DNC -
HICANN link, it is possible to over�ow the DNC with con�guration data to a single HICANN
by allowing the corresponding ARQ clients to send their packets too frequently. The delay stage
in the arbiter prevents this by making sure that ARQ clients which belong to the same HICANN
have to wait at least some con�gurable number of clock cycles before they get to send data again.
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3.2 The DNC_ARQ module

3.2.6 Receiving data from HICANN

Figure 3.6 shows a schematic of the data �ow towards the AL from the DNC interface.

idN+Ntag payload

scheduler

ARQ
target

x16
read

rxN
PacketNBuffer

write

49

4

49

DNCNinterface

ApplicationNLayer

arbiter

4

Figure 3.6: Block schematic showing the signal paths between circuitry involved with receiving
con�guration data from a HICANN over the DNC interface.

The scheduler The ARQ target module has a one clock cycle delay when receiving a packet
which means that a packet reception takes two cycles per link. However, this e�ectively halves
the bandwidth of the DNC interface if con�guration packets can only be processed every two
cycles. The implemented solution was to write a scheduler that has two temporary registers and
is capable of processing two ARQ requests simultaneously as long as they target di�erent clients.
Since the bandwidth to a single HICANN is 1 Gbit/s, it takes at least eight 125 MHz clock
cycles5 for the DNC to receive a new 64 bit con�guration packet from a HICANN and direct
it to the FPGA which means that this is also the shortest interval between two con�guration

5Actually at least 10 clock cycles because there is additional CRC information that is stripped in the DNC
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packets that can target the same ARQ link.

Writing data to the AL is done by using an arbiter that decides which ARQ client gets to
transmit data from the packet bu�er to the AL. Since there is �ow control implemented between
the dnc_arq and the AL there is no need for delaying the arbitration requests to arti�cially limit
the upstream bandwidth.

3.3 The DNC bug

3.3.1 Overview

When transmitting data to a HICANN, the DNC needs to do two things among others: Multi-
plexing between pulses and con�guration data and perform a clock domain crossing between the
125 MHz FPGA - DNC interface and the 1 Ghz DNC - HICANN link. The designing team at
University of Technology Dresden reported that this functionality is faulty and might produce
corrupted con�guration data.

In particular, it seems that the synchronisation stage is not working properly as the multiplexer
is sometimes not holding the right output for long enough and instead of selecting a con�guration
packet the pulse event input is chosen because this is the default input. Since a pulse event is
only 49 bits long the missing bits are padded with zeroes from the top. This corruption is not
caught by the CRC because it happens in the DNC before the CRC is calculated and applied.
There seems to be no reliable way to predict how likely this phenomenon is to occur because it
highly depends on the phase relation between the two clocks whose dynamics is a priori unknown
during operation. Thus it is to be assumed that sometimes the HICANN will receive corrupted
ARQ packets which carry random payload.

config

pulse

125DMHz 1DGHz

toDHICANNfromDFPGA
64

49

DNC

Figure 3.7: When transmitting data to a HICANN, the DNC multiplexes between con�guration
and pulse data and performs clock domain crossing among other things. This partic-
ular functionality was reported to be faulty to some degree and constitutes the DNC
bug as it is possible that the DNC selects a pulse event and wrongly transmits it as
a con�guration packet.

3.3.2 Impact on the protocol

Taking the description above at face value one might assume that this behaviour breaks the
protocol because the ARQ is not designed to recognize corrupted packets since it assumes that
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3.3 The DNC bug

every packet that passes the CRC carries uncorrupted information. Fortunately, the corruption
of the ARQ protocol �elds is static because they are in the high bit positions of the packet that
get overwritten to zero when the DNC bug happens. Figure 3.8 shows how a con�guration packet
looks after it was a�ected by the DNC bug.

SEQtag ACKvalid payload

0x00 0x00 corrupted payload

after DNC bug

normal packet

Figure 3.8: When the DNC bug occurs it will replace the payload of the packet with the last
content of the pulse event register but always overwrite the ARQ protocol �elds to
zero. This can potentially break the protocol.

Fortunately, no corrupted payload is ever written to the ARQ bu�ers because the valid �eld
of the broken packet is zero. However, the packet can be interpreted by the HICANN ARQ
target as the acknowledgement for the reception of a packet with sequence number 0 sent by
the HICANN. This is irrelevant when the HICANN never did send such a packet, but will lead
to a desync of the ARQ windows if the HICANN ARQ master sends a packet with sequence
number 0 that is never delivered to the FPGA ARQ target because of CRC errors or because the
HICANN dropped this packet in favor of an outgoing spike event. If the HICANN ARQ master
receives a packet a�ected by the DNC bug before it has the chance to resend the dropped packet
it will wrongly assume that the packet has been delivered because it has seen an ACK for 0.
This leads to link loss and no more data from the HICANN to the FPGA can be transmitted.
Figure 3.9 shows a protocol diagram that describes the necessary conditions that would lead to
such protocol break down. Note that the channel from the FPGA to the HICANN is una�ected
by this behaviour.
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Figure 3.9: The conditions shown in this protocol diagram can desynchronize the ARQ windows
between the HICANN and the FPGA. The HICANN sends a packet with the sequence
number 0 that is lost in the link before it reaches the FPGA. The FPGA sends some
other packet that is randomly a�ected by the DNC bug and turned into an ACK for
0 which falsely indicates that the FPGA ARQ has received the previous packet from
the HICANN. The HICANN ARQ will then move its window since it now assumes
that SEQ 0 has been successfully received and starts sending more data. However,
the FPGA ARQ will never move its window again because it will wait for packet with
sequence number 0 and only accept packets with sequence numbers up to 15. Thus,
no more data from the HICANN to the FPGA can be received.

3.3.3 The Workaround

Surprisingly, it is possible to prevent this link loss using only additional logic in the FPGA and
without modifying the ARQ protocol itself. The main reason is that the HICANN will never
send data on its own, but only when polled by read commands. Since each read command that is
sent by the FPGA returns exactly one word from the HICANN it is possible to track the window
state of the HICANN ARQ and make sure that the collision described in subsection 3.3.2 never
happens.

The basic idea is that by counting the amount of read commands pushed into the ARQ by
the AL and keeping track of how many words have been written to the AL by the ARQ it is
possible to know beforehand when the HICANN will be sending the crucial packet with SEQ 0.
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Dummy read packets are injected into the ARQ at the right time to make sure that the payload
of the SEQ 0 packet sent by the HICANN is not actually needed. Before the dummy read
packet is sent the workaround makes sure that every packet sent until then has been correctly
acknowledged by the HICANN ARQ. Only then will the FPGA send the dummy read packet
that triggers the SEQ 0 response by the HICANN while simultaneously injecting a dummy
response into the ARQ target in the FPGA which makes it shift its window. This way, even if
the SEQ 0 packet from the HICANN is lost the FPGA ARQ target will still believe that it was
correctly received due to the dummy response injection. If the SEQ 0 packet is not dropped
in the network it will be dropped by the ARQ because it has already moved its window. The
dummy response injection is then popped out of the ARQ at the upper layer but is not pushed
into the AL because the AL does not know anything about the workaround.

This workaround needs to be replicated eight times to service all HICANNs. It can be enabled
at compile time which makes sure that the heavy logic overhead in the FPGA does not need to
be synthesized when the DNC bug is �xed in a future revision of the system. Its best feature is
possibly that the workaround is completely transparent to the rest of the system with all of the
additional functionality encapsulated in the dnc_arq module. The only perceived change for the
AL would be a slightly lower average throughput when the workaround is enabled.

3.4 Design Parameters and port description

The only visible generic parameter of the dnc_arq module is the DNC_BUG boolean that
enables the synthesis of the DNC bug workaround described in section 3.3. The dnc_arq inter-
faces are designed to be as FIFO-like as possible. While there is full �ow control at the AL side,
the DNC interface side always needs to be ready to transmit or receive data risking packet loss
otherwise.

3.4.1 AL interface signals

Tables 3.2 and 3.3 list the ports for the AL interface.

Name Width Direction Description
ul_�fo_empty 1 Input Indicates that there is data to be

pushed into the dnc_arq when
low

ul_write_data [52:50] 3 Input HICANN ID of the current word
ul_write_data [49] 1 Input tag ID of the current word
ul_write_data [48:0] 49 Input Payload
ul_�fo_pop 1 Output pops current word from the AL

Table 3.2: AL write interface from the dnc_arq's point of view
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Name Width Direction Description
ul_read 1 Output Indicates that there is read data

available when high
ul_read_data [52:50] 3 Output HICANN ID of the current word
ul_read_data [49] 1 Output tag ID of the current word
ul_read_data [48:0] 49 Output Payload
ul_read_next 1 Input pops current word from the

dnc_arq

Table 3.3: AL read interface from the dnc_arq's point of view

3.4.2 DNC interface signals

Tables 3.4 and 3.5 list the ports for the DNC interface.

Name Width Direction Description
tx_hicann_con�g_wr_en 1 Output Pushes con�guration word to the

DNC
tx_hicann_�fo_full 1 Input Is statically set to 1 in the cur-

rent system, can provide �ow
control in the future

tx_hicann_con�g_data_in [66:64] 3 Output HICANN ID of the current con-
�guration packet

tx_hicann_con�g_data_in [63:0] 64 Output Con�guration packet, see subsec-
tion 3.1.2 for more information

Table 3.4: DNC interface for writing con�guration data to a HICANN

Name Width Direction Description
rx_con�g_valid 1 Input DNC interface has data when

high
rx_con�g_packet [66:64] 3 Input HICANN ID of current incoming

packet
rx_con�g_packet [63:0] 64 Input Incoming con�guration packet,

see subsection 3.1.2 for more in-
formation

Table 3.5: DNC interface for receiving con�guration data to a HICANN

3.4.3 Status ports

Table 3.6 lists the available status ports for the dnc_arq module as well as their meaning.
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Name Width Description
ul_packet_cnt_w [31] 1 AL �fo empty �ag, high when the

AL doesn't have data to send to
the dnc_arq

ul_packet_cnt_w [30:0] 31 Counts the total amount of
words pushed into the dnc_arq
by the AL since reset

ul_packet_cnt_r [31] 1 dnc_arq has data for the AL
that has not been popped yet
when high

ul_packet_cnt_r [30:0] 31 Counts the total amount of
words popped from the dnc_arq
to the AL since reset

network_debug_reg[63:32] 32 Counts the total amount of con-
�guration words sent by the
dnc_arq to the DNC interface
since reset

network_debug_reg[31:0] 32 Counts the total amount of con-
�guration words received by the
dnc_arq from the DNC interface
since reset

Table 3.6: Available status ports for the dnc_arq module

3.5 Evaluation and testing

It is always di�cult to gauge the stand-alone performance of a single part of a system as large
as the HMF, especially when it is as deeply nested in the system as the dnc_arq module. The
dnc_arq module is no exception and the best solution is to come up with a test mode that tries
to demonstrate the best possible performance of the module regardless of how realistic that usage
might be for the experiment. That way a benchmark can be set and the experimental set up can
be optimized to try and reach that benchmark if the current performance is deemed too low.

The test mode The dnc_arq is evaluated based on the time it takes to push a certain number
of read commands into it from the AL side and the time it takes until the same amount of
response words can be read out from the dnc_arq by the AL. The particular read commands
were chosen to be fast register accesses in the HICANN to try and minimize their in�uence on the
raw ARQ performance. Among other things, this performance is dependent on the set of timings
both in the FPGA and HICANN ARQ clients as well as the total amount of used HICANNs
and tags. Note that it is not possible to vary the bu�er sizes and explore their in�uence on
the throughput like it was done during the evaluation of the host_arq module since the bu�er
size in the HICANN is �xed. The plots and measurements done in this section were done in
collaboration with Eric Müller who provided assistance at the software side of the experiments.

3.5.1 The perftest module

The test mode used in the performance evaluation of the dnc_arq was implemented in the so
called perftest module that replaced the normal BrainScaleS Application Layer during testing.
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This made the measurements more precise because the perftest module can time the amount of
sent and received packets directly and is not a�ected by the host connection. A single experiment
is comprised of the following steps:

1. Program the resend and ack timings in both the FPGA and HICANN ARQ modules, as
well as the arbiter delay of the dnc_arq module.

2. Specify in the perftest module via con�guration registers that are accessible by the host
the total amount of words and which tags and HICANNs are to be used.

3. Start the experiment via a programmable �ag in the perftest module.

The perftest module will then begin to try and push con�guration packets into the dnc_arq
that would trigger the fastest possible response by the HICANN for that particular tag. A timer
is also started that counts the amount of clock cycles since the beginning of the experiment.
This will continue until the speci�ed amount of words is reached at which point the current
timer value is stored in the test_time_push output register. The perftest will also pop any data
that is presented to it by the dnc_arq module. When the amount of popped words has reached
the pre-set number the perftest module will stop the timer, raise the test_done �ag and output
the timer value in another output register called test_time_pop.

The ratio
num_packets

test_time_push gives the downwards throughput of the dnc_arq module in terms

of bits per second. Conversely, it might be interesting to think of the throughput as the inverse
of that number, i.e how many cycles it takes at average until a new word can be pushed into the
dnc_arq.

3.5.2 Sweeping the ARQ timings

Using the perftest module about 300 thousand experiment runs were carried out sweeping the
ARQ timings in both the HICANN and FPGA as well as the arbiter delay. During a single run
some thousand packets were sent to tag 0 of a single HICANN.
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Figure 3.10: Projection of the data set on the arbiter delay setting. Vertically aligned points share
the same arbiter delay value but may di�er in other settings. Color encoding is from
red (high throughput) to blue (low throughput), the size of the points is inversely
proportional to the variance of the measurement of that particular con�guration.
The performance reaches a very prominent optimum at 11 to 13 clock cycles with
every other setting yielding worse results regardless of the other timings. Higher
values perform worse because this is equivalent to an arti�cial throttling of the link
since the arbiter delay dictates the lowest period in which two packets to the same
HICANN can be sent. Lower values than the optimum perform worse because they
result in a higher bandwidth than the HICANN serial link can handle which forces
the DNC to drop packets
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Figure 3.11: Projection of the data set on the FPGA RX timeout axis. Vertically aligned points
share the same FPGA RX timeout value but may di�er in other settings. Color
encoding is from red (high throughput) to blue (low throughput). Evidently, the
FPGA rx timeout doesn't seem to in�uence the throughput very much in this con-
�guration because for every value the same maximal performance can be reached.
This is due to the fact that there is no need for ACK only packets because data is
continuously being sent to the HICANN carrying the ACKs piggyback and updating
the HICANN ARQ in time. Note that there is a performance drop when the time-
out is set to be ≈7 clock cycles. This can be explained by a race condition between
payload and ACK only packets where the latter get sent unnecessarily which wastes
bandwidth.
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Figure 3.12: Projection of the data set on the FPGA resend timeout axis. Vertically aligned
points share the same FPGA TX timeout value but may di�er in other settings.
Color encoding is from red (high throughput) to blue (low throughput). The resend
timeout value is also rather unimportant for this experiment which indicates that
the connection is very stable and packets are dropped very rarely due to CRC errors.
The only drop in performance is again when the resend value is set to be at about
7 clock cycles which has the same explanation as in the RX timeout case: Data is
unnecessarily resent before the ACK from the HICANN can reach the FPGA which
wastes bandwidth
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Figure 3.13: Projection of the data set on the HICANN RX timeout axis. Vertically aligned
points share the same HICANN RX timeout value but may di�er in other settings.
Color encoding is from red (high throughput) to blue (low throughput). Low values
negatively impact the performance because the HICANN needs a few cycles to return
the requested payload for sending back. If an ACK only packet is sent during this
time the HICANN needs to wait until the link is free again to send the actual data.
Higher RX timeout values do not impact the performance because there is always
tra�c back to the FPGA that carries the ACKs piggyback in this setup
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Figure 3.14: Projection of the data set on the HICANN resend timeout axis. Vertically aligned
points share the same HICANN RX timeout value but may di�er in other settings.
Color encoding is from red (high throughput) to blue (low throughput). As with
the FPGA resend timings, this setting seems to be irrelevant because of the stability
of the serial link. The drop in performance between 7 and 8 cycles is again due to
unnecessary resends, lower values are irrelevant because the HICANN is not able to
resend data that quickly, higher values don't change the performance because ACKs
from the FPGA arrive quickly enough so that the resend is not carried out

3.5.3 Using multiple tags and HICANNs

The previous measurements indicated that the best case throughput for sending con�guration
data to a single HICANN at tag 0 is one word every 14 clock cycles on average. Although the
con�guration data is only 49 bits wide at the AL it is aligned to 64 bits in memory and also
during transmission from the host, thus it is fair to calculate the e�ective AL bandwidth as

T =
64 bit

14 · 8 ns
= 0.571

Gbit

s
(3.2)

This number is some 43 per cent smaller than the raw network bandwidth of 1 Gbit. Taking
the protocol overhead as well as the CRC �eld into account the total throughput becomes
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T =
80 bit

14 · 8 ns
= 0.714

Gbit

s
(3.3)

The only explanation for the missing bandwidth is that the ARQ window is not large enough
to bu�er the latency between FPGA and HICANN to reach full performance. One contribution
to that latency is the speed of the upper layer in the HICANN that is on top of the ARQ. In
fact, using tag 1 înstead of tag 0 the best case throughput improves to a packet every twelve
clock cycles as can be seen in Figure 3.15. This is because tag 1 pipelines the interface to the
ARQ which allows it to free the window quicker at the receiving side.

Figure 3.15: Performance of the dnc_arq at the AL side when using di�erent tags and multiple
HICANNs

Theoretically, using both tags at the same time should yield a higher total throughput be-
cause the e�ective window for the link is now doubled. However, the two ARQ clients in the
HICANN unfortunately interfere with each other when sending data to the FPGA which results
in packet loss and gravely impacts the performance. Thus, it is advised to not use both tags to
communicate with a HICANN at the same time.

Figure 3.15 also demonstrates that using multiple HICANNs linearly improves the throughput
at the AL as is to be expected which indicates that the arbitration in the dnc_arq module
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works very e�ciently without noticeable overhead. In fact, con�guring two or three HICANNs
in parallel already saturates the 1 Gbit/s Ethernet host connection when using host ARQ with
current generation hardware.

3.5.4 Introducing network noise

During the con�guration phase of a HICANN, where the biggest usage of the ARQ links is to
be expected, there are no pulse events in the network. However, it might be useful to read out
con�guration data from the HICANN during an experiment where pulse events are also present.
The existing test setup can be extended to introduce network noise using Background Event
Generators (BEGs) in the FPGA that send Poisson-distributed spike events with a con�gurable
rate to the HICANN. Figure 3.16 shows the AL throughput for a single HICANN tag 0 for
various spike event rates.

Figure 3.16: Change in throughput at the AL for tag 0 con�guration data to a single HICANN
when additional pulse events are present in the network. The x-axis shows the spike
event rate in the network which is equivalent to a drop rate for ARQ packets because
spike events are always prioritized

Evidently, even small noise rates cause a very sharp decrease in the ARQ throughput. This
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is again because of the very small ARQ windows that can not bu�er enough data to cope with
packet loss. Additionally, because of the static prioritisation of pulse events packets it is possible
to completely starve the ARQ so that no con�guration data can be transmitted over the high-
speed link when the pulse event rate is high enough to saturate the available bandwidth. It is
therefore not recommended to use the HICANN ARQ links in parallel with pulse events in the
current system except when low throughput is acceptable.

3.5.5 Investigating the DNC bug

During testing it was not possible to gather any substantial evidence that would con�rm the
existence of the DNC bug. In particular, during long running experiments in the Terabyte range
the window de-synchronisation that can happen because of the DNC bug was never observed.
Furthermore, experiments showed that it is possible to transmit large amounts of con�guration
packets to the HICANN without any resends which suggests that the probability for the DNC bug
to occur at all seems to be very low. The only found phenomenon where data arrives corrupted
in the HICANN is when the packet rate from the FPGA exceeds the HICANN link capacity.
However, as this behaviour is deterministic and is completely �xed by the arbiter delay without
requiring the very complex workaround presented in subsection 3.3.3, it does not �t with the
original description of the problem as was described by the DNC designing team during meetings.

Still, it would be too rash to conclude that the DNC bug does not exist at all, as there is
no hard evidence supporting that claim either. That the DNC bug was not clearly observed
could also mean that some other yet unknown e�ect prevents it from happening. As long as this
is not completely understood it would be foolish to stop investigations because the HICANN
ARQ links can not be declared as completely reliable otherwise and the workaround should be
kept enabled for the time being. Fortunately, the upgraded HMF will not have the DNC ASIC
anymore because its functionality will be moved into a bigger FPGA and merged with the current
FPGA design, which o�ers the opportunity to �x the original bug in the �rst place.
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This chapter discusses the measurements and observations made during the evaluation of the
host ARQ and the HICANN ARQ connections and proposes some future improvements to the
system.

4.1 The host link

4.1.1 Summary of evaluation

The measurements done for testing the host ARQ connection as described in section 2.8 yielded
generally very satisfactory results. The host_arq module performs to speci�cation, reaching
wire speed for a wide range of parameters. Implementing the packet bu�er in DRAM to save
BlockRAM usage was also successful and the pre-fetching scheme made sure that the protocol
latency between the network and the application layers is dominated by the DRAM latency,
since the actual protocol processing time is negligible compared to the time it takes to move the
payload through the network stack. Still, there are some issues addressing which would further
improve the link performance.

4.1.2 Packet size vs window size

Experiments clearly showed that while large bu�er sizes generally improve the throughput, the
segmentation in packets makes a signi�cant di�erence. There are several reasons why large packet
sizes are better than large window sizes:

• Less resource consumption in the FPGA because the ARQ needs a very resource-intensive
bit array for maintaining the receiving window. Window sizes larger than 512 packets are
economically impractical, while the DRAM has Gigabytes of space that can be extensively
utilized with su�ciently large packet sizes.

• Better throughput because of the smaller protocol overhead relative to the total packet
size.

• Expensive software interrupts can be decreased in frequency when using large packet sizes.
This is important because the host needs to manage 48 ARQ links per wafer, which means
that for example a single 8 core CPU needs to be able to run 6 software ARQ instances per
core at full speed to fully saturate the available bandwidth. Assuming a peak interrupt rate
of 150 kHz for a single CPU, a single ARQ link is allowed 12,5 kHz interrupts per direction
at most. This is an extreme case however, because in that scenario the host would have to
sacri�ce enormous computing resources just for maintaining throughput.

Small packets are only needed when low latency communication between the host and FPGA
is required, for example in the so-called closed-loop experiments1. However, these experiments

1In this context, a closed loop refers to a bidirectional connection, e.g between a neural network emulated on
neuromorphic hardware and an environment simulated on the host PC at an equivalent speedup
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will likely not use the ARQ at all because the bu�ering of spike events introduces too much
jitter in the inter-spike-intervals. The normal operation mode uses large playback memories
in the FPGA that are preloaded with spike events by the host and are capable of controlling
the timing between spike events very �nely. Thus, only the total throughput to the ARQ link
matters when writing to the playback memory.

While the Ethernet MAC in the FPGA as well as the host Network Interface Cards (NICs)
and the switches support framesizes of up to 9kB2, the current limitation to 1500 Bytes is set by
the UDP layer implementation in the FPGA. Although not a top priority, upgrading the UDP
to support large frames will improve the system due to the reasons listed above.

4.1.3 Improvement of the ARQ implementation

It is possible to reimplement the already mentioned resource-intensive bit array that represents
the rx window so that it can be synthesized using BlockRAMs instead of �ip-�ops. This would
make very large window sizes possible because a single BlockRAM is already 36 kbits in size.
However, as larger packet sizes are more important than large windows, implementing this feature
is less important than enabling jumbo framing in the UDP core.

4.1.4 Improving throughput to the host

As described in subsection 2.8.3, the UDP layer seems to not be able to achieve wire speed when
transmitting data to the host. This bottleneck obviously limits the ARQ throughput to the host
to about 80 MB/s which is about 30 % lower than the performance achieved from the host to
the FPGA. The wasted bandwidth is quite signi�cant, especially in a I/O-intensive system like
the HMF, and thus needs immediate addressing and improvement of the current UDP layer.

4.1.5 Enabling Ethernet �ow control

Clause 31 of the IEEE Std 802.3-2005 standard speci�es Ethernet �ow control frames that can
throttle throughput between two nodes at the MAC level. This feature is supported by the Xilinx
MAC that is used in the HMF FPGAs and can be used to throttle tra�c between host and FPGA
when ARQ bu�ers are about to overrun. Of course, the ARQ resend functionality will eventually
make sure that any dropped packets are restored regardless of cause. However, frequent resends
come at a rather large throughput penalty and should be avoided whenever possible. As a
general rule, the ARQ resend functionality should only deal with data loss associated with link
corruption and not be used as a failsafe against congestion, where Ethernet �ow control is much
more suited.

4.2 HICANN con�guration

Improving the HICANN ARQ connection is more di�cult because it necessarily involves changes
in the DNC and/or the HICANN ASICs. Fortunately, almost all of the discovered problems can
be attributed to technological limitations in the current system and not so much to poor design.
The proposed changes should be taken into consideration for the next generation HICANN
design which is entering the implementation phase at the time of writing of this thesis.

2This feature is often called Jumbo Framing
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4.2 HICANN con�guration

As a general note, it is important to emphasize that the existing implementation ful�lls its
purpose, namely to provide a secure con�guration link to a HICANN, perfectly �ne. Since a
complete HICANN con�guration is only a few kilobytes in size and needs to be done once before
the experiment with no concurrent spike events, the current state of the HICANN ARQ link is
very much capable to transfer it e�ciently. The only lacking operation mode is when the ARQ
has to share the link with pulse events, which might be of interest when reading out synapse
weights from the HICANN during an experiment or the like. Several changes can be made to
improve the current design in that regard.

4.2.1 Improving the bandwidth arbitration

The current system employs a strong prioritisation scheme towards spike events in the DNC
which can lead to drops of ARQ packets. This rather aggressive behaviour makes sure that
spike events never get delayed or dropped in the network in favor of con�guration packets, but
can also dramatically decrease the ARQ throughput as was demonstrated in subsection 3.5.4.
Furthermore, the fact that the ARQ can be completely starved on bandwidth at high spike event
rates means that it is rather dangerous to try and use it during an experiment at all. To address
these problems two changes are proposed.

Enabling �ow control between spikes and con�guration The ARQ should be made aware
of the pulse events and only allowed to send packets to the network when it is free. This is
not possible in the current system because the prioritization happens in the DNC which has no
�ow control ports to the FPGA. However, such a feature can be easily implemented in the next
generation FPGA since the DNC functionality will be moved into it without requiring the ASIC
anymore. Similarly, the next generation HICANN should also employ some sort of �ow control
to stall the ARQ when the link is occupied. Note that this scheme will not a�ect the timings of
the pulses because they are still statically prioritised. The di�erence to the current behaviour is
that instead of dropping frames in the network which the ARQ does not know about, the ARQ
itself waits until it can send data. This would dramatically improve the ARQ throughput when
pulse events are present.

Dynamic prioritisation Softening the prioritisation towards the pulse events, e�ectively allo-
cating a minimum guaranteed bandwidth for the ARQ connection, would make sure that the
HICANN is accessible for con�guration even at high pulse event rates. In practice, this might
be realised via a timeout counter that counts the number of cycles where the ARQ is requesting
access to the link but is not allowed to send because of event packets. When that timeout is
reached the priority is reversed and the ARQ gets to send data even if it means that events are
dropped. This timeout can be con�gurable to allow individual settings for the experiments.

4.2.2 The tag structure

It has been observed that using both HICANN tag clients simultaneously will hinder the
throughput instead of improving it because the bu�er size is e�ectively doubled. The cause was
found to be in the HICANN tag arbitration circuitry which induces drops when both tags request
access to the network simultaneously. This can be easily �xed and should be implemented in
the next HICANN generation.

This minor problem notwithstanding, an argument is to be made against the usage of two
tags altogether. The only reason why two ARQ clients were used is so that di�erent types of
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con�guration words that have a di�erent processing time deeper in the HICANN have their own
bu�er and are transported independently from each other. However, since the dnc_arq module
only has a single access port to the AL for eight HICANNs and two tags, the distribution of
targets in the stream can a�ect the throughput. For example, if the dnc_arq is not able to pop
data from the AL because the corresponding ARQ bu�er is full it will stall data for all other
clients as well, even if their bu�ers might be free3. Thus, to maximise the throughput to the
dnc_arq module the host should already order the con�guration stream in a way that �lls all of
the ARQ bu�ers evenly.

If the ARQ tag structure is deprecated and only a single ARQ client manages the transport
of con�guration data over the high speed link instead, the host could also make sure to scatter
slow commands in the con�guration stream to avoid congestion. In the HICANN, two additional
FIFOs separate the slow and fast commands from the ARQ. The proposed structure in the
HICANN is sketched in Figure 4.1

pulse
events

network

ARQ

slow
cmd
FIFO

fast
cmd
FIFO

Figure 4.1: Proposed changes for the next generation HICANN communication bus. Instead of
using two ARQ clients that share the network together with pulses there is only one
ARQ client and the split in slow and fast commands is done afterwards

3It is possible to mitigate this problem by providing the AL with 16 FIFOs that each feed in their own ARQ
bu�er, but since all of the con�guration data comes in a single contiguous stream from the host ARQ this
does not provide a general solution.
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The modules designed and implemented during the presented thesis replace analogous func-
tionality in the FPGA and host systems designed by a team at the University of Technology
Dresden. The at the time available host and HICANN links were always meant to be only an
temporary solution until the �nal system is completed. This chapter compares the two solutions
and estimates the performance increases for high level tasks to the user.

5.1 HICANN con�guration performance

Before starting an experiment, the HICANN needs to be con�gured by the host. To avoid unde-
�ned behaviour, all con�guration values in the HICANN are set even if they are not needed for
the particular experiment. A complete con�guration of a HICANN requires 26090 con�guration
packets sent over the HICANN ARQ. Since the con�guration packets are aligned to 64 bits at the
FPGA Application Layer, the total amount of data that has to be sent from the host is 208720
Bytes per HICANN.

Description Number
SwitchRAM 4 · 112

Crossbar switches 2 · 64
Floating Gate parameters 2 · 129 · 21

Synapse values 8960 · 2
Synapse Driver 2 · 3 · 224

Repeater 4 · 64 · 32
Neuron builder 512

Sum 26090

Table 5.1: Various types of con�guration values that can be con�gured by the HICANN ARQ
con�guration packets

5.1.1 Comparing con�guration times

Con�guration via JTAG In the original FPGA system there was no equivalent circuitry to
the dnc_arq module, i.e the FPGA was not able to exchange con�guration packets with the
HICANN via the high speed serial link. Instead, the HICANN had to be con�gured using a
JTAG debug port which has access to the ARQ module in the HICANN, bypassing the high
speed link. In this scheme, the FPGA ARQ module facing the HICANN has to be emulated in
software at the host, and the individual con�guration packets are sent to the FPGA via Ethernet
and from there to the HICANN via JTAG.

HostAL + dnc_arq When the dnc_arq module was �nished it was accessible by the host via
the HostAL software layer that is capable of packing several con�guration values in a single
Ethernet frame and send it to the FPGA where they are fed to the dnc_arq module. The
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HostAL realizes transport layer functionality by using the stop-and-go scheme, i.e it waits for a
response from the FPGA after each individual frame before sending the next.

Since there are large discrepancies between processing times of various con�guration values in
the HICANN it is rather di�cult to gauge the di�erence the communication makes. A rather
arti�cial experiment is to compare the time it takes to write all of the 26090 con�guration packets
to the HICANN but only use the fastest values available. This way, a fair comparison can be
made between the di�erent communication links without the in�uence of the HICANN itself.
Using the two di�erent methods, this experiment had the following results:

Method Time
JTAG 39.72 s (measured)
HostAL + dnc_arq 0.521 s (measured)
host ARQ + dnc_arq ≈5 ms (projected)

Table 5.2: Measured and estimated times for transmitting con�guration �les to a HICANN from
the host using di�erent methods

Currently, no direct measurements exist on how long this experiment will take on the �nished
system because the integration of the host ARQ module into the FPGA will be completed after
the submission of this thesis. However, using available data it can be estimated that transmitting
26090 con�guration words to the HICANN should take of the order of milliseconds from the
host over the host ARQ and the HICANN ARQ1.

Subsection 3.5.3 demonstrated that the dnc_arq module takes 12 clock cycles to send a con-
�guration packet to the HICANN in best case. Consequently, a full HICANN con�guration �le
will take about 2.5 ms to transmit at the dnc_arq AL side, assuming that the AL is fast enough.
Furthermore, performance measurements described in section 2.8 reported bandwidths of up to
117 MB/s from host to the FPGA. This bandwidth is enough to transmit the 208720 Byte large
HICANN con�guration �le in under 2 milliseconds. The total con�guration delay from host to
FPGA and from FPGA to HICANN is thus smaller than 5 milliseconds. The only remaining un-
known factor is the delay of the AL in the FPGA, which should however be negligible compared
to network delays � assuming e�cient implementation � because FPGAs are easily capable of
moving Gigabytes per second in the chip.

5.2 Spike data throughput

The HICANN con�guration data size is negligible compared to the Gigabytes of spike events
that need to be transmitted from the host to the HICANN during an experiment. The large
amount of spike data is simply explained by the high acceleration factor of the hardware neurons
and the fact that neurons are typically stimulated with spike frequencies of about 10 Hz over
seconds or even minutes in biological time. The spikes are preloaded in the FPGA from the host
and are sent under precise timings to the HICANNs after starting the experiment. The relevant
bottleneck is thus the throughput between the host and the FPGA.

1It should be again noted that the current HICANN generation takes a very long time to write analog �oating
gate values which limits the ARQ bandwidth in itself. However, the next generation will have only fast SRAM
or register memory which allows single clock cycle accesses
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5.2.1 HostAL vs Host ARQ

The main limitation in the current Host AL connection is that the host needs to wait for a
response between individual Ethernet frames because the protocol does not implement a window.
Measurements show that the achieved maximum packet rate from host to FPGA is about 4kHz.
Since the maximum packet size is �xed to 1500 Bytes, the maximum HostAL throughput is in
the low Megabytes per second range even when neglecting protocol overhead. Conversely, the
evaluation of the host ARQ connection demonstrated stable net bandwidths from host to FPGA
of up to 117 MB/s which improves the connection by a factor of at least 20 and dramatically
decreases experiment setup times.
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List of acronyms

AL Application Layer

ARP Address Resolution Protocol

ARQ Automatic Repeat reQuest

ASIC Application Speci�c Integrated Circuit

BEG Background Event Generator

CMOS Complementary Metal�Oxide�Semiconductor

DNC Digital Network Chip

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Language

HICANN High Input Count Analog Neural Network

HMF Hybrid Multiscale Facility

HPC High Performance Computing

MPMC Multi Port Memory Core

NIC Network Interface Card

OSI Open Systems Interconnection

PAR Place And Route

PCB Printed Circuit Board

RGMII Reduced Gigabit Media Independent Interface

RTL Register Transfer Level

SO-DIMM Small Outline Dual In-line Memory Module
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