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Investigating Competitive Dynamics in a Recurrent Neural Network on
Neuromorphic Hardware

A recurrent neural network is implemented on neuromorphic hardware and investigated
for its competitive dynamics. Emulation experiments on the High Input Count Analog
Neural Network (HICANN) chip are conducted through the high level PyNN frontend,
giving easy access to the complex hardware.
In a first step, the parameters available after calibration are characterized for their

influence on firing rates of hardware neurons. A blacklisting method is developed to
mark neurons not responding to a given external stimulus.
The neural network is then emulated step by step, investigating the firing rates of

competing populations for different stimuli. Measurement results are compared with
simulations using the Executable System Specification (ESS).
Similar network behaviour in ESS simulation and hardware emulation can be obtained

and possible techniques for improving the experiment results are discussed.

Untersuchung von Kompetitiver Dynamik in einem Rekurrenten
Neuronalen Netz auf Neuromorpher Hardware

Ein rekurrentes neuronales Netz wird auf neuromorpher Hardware implementiert und
hinsichtlich seiner konkurrierenden Feurrerateneigenschaften untersucht. Über die Ab-
straktionsebene der Softwareschnittstelle PyNN werden Experimente auf der komplexen
Hardware durchgeführt.
Zunächst werden die verfügbaren Parameter auf ihren Einfluss auf die Feuerraten der

Hardwareneurone hin überprüft. Eine Methode zur Selektion von Neuronen mit dem
gewünschten Verhalten wird implementiert.
Das neuronale Netz wird daraufhin Schritt für Schritt emuliert, wobei die Feuer-

raten konkurrierenden Neuronenpopulationen für verschiedene Stimuli untersucht wer-
den. Ergebnisse der Hardwareexperimente werden mit denen aus Softwaresimulationen
mit der Executable System Specification (ESS) verglichen.
Es wird vergleichbares Netzwerkverhalten in der ESS-Simulation und Hardwareemu-

lation erreicht. Mögliche Verbesserungen werden diskutiert.
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1 Introduction

The human brain is capable to coordinate complex motion sequences. The fine and gross
motor skills are the result of interactions between multiple populations of neurons local-
ized in different parts of the human brain. For the pathogenesis of Parkinson’s disease,
a widely known model is the hypothesis of degeneration of neurons in certain parts of
the brain (Cutsuridis, 2013). As a result, the interactions between neuron populations
controlling the motor skills is disturbed, leading to the well-known symptoms such as
tremor or rigidity.
In order to better understand such underlying principles of interplay between neurons,
network models are developed and investigated, e.g. in simulations. But the complex-
ity of the brain, where billions of neurons are processing information through a very
dense connectivity, limits the simulation possibilities when using todays Von Neumann
computer architecture.
Therefore, in a different approach neuromorphic computer systems are developed.

These new architectures promise to solve the computational limitations through highly
parallel information processing and use very little energy compared to what supercom-
puters need to simulate just fractions of the human brain.

1.1 Neuromorphic Hardware

The central element of the neuromorphic hardware platform used in this thesis is the
High Input Count Analog Neural Network (HICANN) chip, which basis elements are the
correlates from biology: analog neurons and synapses. 384 of these HICANN chips, each
consisting of 512 neuron circuits and several thousand possible synaptic connections, are
build into one wafer module, of which several can be interconnected.
This hardware architecture allows a massively parallelized emulation of neural networks.
For further information about the hardware we refer to HBP SP9 partners (2014) and
Schemmel et al. (2010).

1.2 Software Framework

PyNN

For implementing neural networks, the high level frontend PyNN is used. PyNN is a
description language for neuron networks implemented in Python. By choosing different
backends, the same code can be executed on hardware or by using a simulator.

1



1 Introduction

Marocco

Marocco is the software responsible for translating a neural network to the hardware
representation, placing neurons and routing connections by using as less resources as
possible.

Cake

Cake is the software defining how calibration measurements are conducted.

1.3 Executable System Specification (ESS)

The ESS simulates the HICANN wafer system, replicating communication infrastructure,
simulating synapse loss and hardware limitations. As default ideal neurons are simulated
which behave exactly the same. Additionally parameters noise can be induces, simulating
hardware variations.
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2 Towards uniform spiking rates

In many neuronal networks spiking rates for different neurons or populations are chosen
as measure to characterize network behaviour. When implementing such networks on
neuromorphic hardware it is important to obtain similar spiking rates for network popu-
lations or subunits of same type. But emulation experiments on the HICANN chip show
neuron-to-neuron and trial-to-trial variations in both, parameter values and firing rates.
One cause for spike rate variability across neurons are transistor variations. Calibra-
tion techniques are used to minimize these technical variations. Another cause for spike
rate variability lies in the variations of floating gates used for storing neuron parameters
(Schmidt , 2014).
To measure the spike rate variability across different neurons and for different param-

eters, the following measurement setup is used throughout this chapter:

• Multiple neurons with same parameters are placed on one HICANN chip.

• An external stimulus is created through a poisson source.

• Each emulated neuron receives the same stimulus from the same poisson source
with same connection parameters.

• All spikes of each neuron are counted and divided by the simulation time to obtain
the spike rates.

• The experiment is repeated multiple times with the same seed for the poisson
process, i.e. the same spike train stimulus is sent for each repetition.

If not stated explicitly, measurements in this thesis are performed on the HICANN 276
of the first prototype wafer system. Hardware neuron size is set to 4 for all measurements
an a speedup factor of 104 is used. The HICANN chip is operated at a clock frequency
of 100Hz and the inter spike intervals (ISIs) of the background event generators are set
to 10 000 to lock the layer 1 repeaters.Neuron block 7 is not used since the output buffer
is reserved for external input and background event generation. This leaves 7 neuron
blocks with 64 dendritic membrane circuits (DenMems) each for experiments. Therefore,
7×64
4 = 112 size 4 neurons can be emulated on one HICANN. Each emulation experiment

on the HICANN is run for a simulation time of 10 000ms biological time, corresponding
to 1ms emulation time on the hardware for a speedup of 104.
For all measurements calibration data from a previous calibration measurement is used.

The calibration settings are explained in section 2.1.1.
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2 Towards uniform spiking rates
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Figure 2.1: Measured rates of one hardware neuron of size 4 for 50 repetitions. The straight line
marks the mean µ and the dashed lines mark the standard deviation ±σ. This is the
neuron with index 12 in figure 2.2.
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µn = 25.57Hz σn = 33.20Hz σn/µn = 1.30

Figure 2.2: Mean and standard deviations of 50 repetitions for different hardware neurons of size
4. In each repetition all neurons are emulated parallel on the first two neuron blocks
of one HICANN chip.
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2.1 Characterization of available parameter space

In figure 2.1 the trial to trial variations for one exemplary neuron are shown. As a
measure of the variations the standard deviation is calculated.1

The mean firing rates and standard deviations for some exemplary neurons are shown
in figure 2.2. The spiking behaviour of neurons with same parameters and same external
stimulus differs significantly for emulations on different hardware neurons. This can be
understood by the lack of membrane time constant and refractory period calibrations
described in section 2.1.1, as well as by varying strength and time course of the synaptic
input.
One target of the work in this thesis was to obtain neuron populations responding

similar to external stimulus and to be able to control their spiking behaviour by changing
neuron parameters. To achieve this, three steps are taken:

• Characterizing the available hardware parameters for influencing spike response.
(section 2.1)

• Blacklisting neurons not responding in a desired way. (section 2.2)

• Sorting remaining neurons in multiple populations depending on their spike re-
sponse.

2.1 Characterization of available parameter space

The parameters accessible from the PyNN interface are the neuron parameters of the
used neuron model and the connection parameters describing the synapse properties.
For hardware emulations only conductance based neuron models are available. One

can choose between the Adaptive Exponential Integrate and Fire (AdEx) model and
the Leaky Integrate and Fire (LIF) model as described in Brette and Gerstner (2005).
For those neuron parameters calibration methods described by Schmidt (2014) were
developed to reduce parameter variations on the HICANN chip.
The synapse dynamics are by default only governed by the synaptic weight and

delays. Optionally synaptic plasticity mechanisms can be implemented. Both, Short
Term Plasticity (STP) and Spike-Timing Dependent Plasticity (STDP) are in general
supported on the HICANN chip.

2.1.1 Calibration settings

In the following section, a short summary of the used calibration methods is given to
identify the parameters available to change neuron behaviour from PyNN with the cur-
rently available calibration. Information concerning calibration methods and parameter

1All standard deviations are calculated with a denominator of N-1 to account for the finite number of
measurements. σN−1 =

√
1

N−1

∑N

i=1
(xi − µ)2,
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2 Towards uniform spiking rates

transformation are taken from Schmidt (2014) if not stated otherwise. In table 2.1
all biological parameters and their corresponding hardware parameters accessible from
PyNN are listed and a summary of the parameter availability explained in this section
is given. The effect of changing the available parameters on spiking rates of neurons is
characterized in section 2.3.

Table 2.1: Summary of accessibility of biological (bio) parameters and corresponding hardware
(hw) parameters for changing network behaviour from PyNN and for the current
calibration state.

bio parameter hw parameter accessibility comment
cm marocco switch smallcap and bigcap
τm Igl fixed value cake: maximize PSP
τrefrac Ipl free to choose Ipl(DAC) = τrefrac
τsyn,E / τsyn,I Vsyntcx / Vsyntci fixed value cake: maximize PSP
Erev,E / Erev,I Esynx / Esyni not used fixed distance to El

Vreset bio Vreset hw free to choose -
Vrest El not used value used in Igl calibration
Vthresh Vt free to choose -
adaption not used calibration not implemented yet
exponential term not used calibration not implemented yet
weight 4 bit weight only 16 values no calibration available
delay not a parameter no influence technical delays on hw
STP not used calibration not implemented yet

Reversal potentials

Conductances in neurons on hardware are emulated through operational transconduc-
tance amplifiers (OTAs). Since differential voltages larger then 100mV leave the linear
range of the OTA (Kiene, 2014), distances between leakage potential El and synaptic
reversal potential Esyni or Esynx above 100mV are avoided. This corresponds to a voltage
difference of 10mV in biological domain2. The neuron to neuron variability of El was
found to be lowest when El is equidistant to both, Esyni and Esynx. Therefore, for the
measurements in this work the biological parameters for the reversal potential Erev,I and
Erev,E are kept fixed at Vrest−10mV and Vrest+10mV, respectively. Lower distances are
possible but would increase the effect of floating gate variations and decrease the total
dynamic range of the membrane potential.

Resting potential and membrane time constant

Different values of the biological membrane time constant τm are realized by three mech-
anisms on the hardware. First τm scales inversely with a leakage bias current Igl. Second

2The scaling factor between biological and hardware voltages is arbitrary. The current voltage transla-
tion is Vhardware = 10× Vbiological + 1200mV as is described in Schmidt (2014).
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2.1 Characterization of available parameter space

the speedup factor of the hardware influences current mirrors which result in a scaling fac-
tor for Igl. Third there are two different settings of the membrane capacitance available
on the HICANN chip, called bigcap and lowcap setting. In the current software stage the
biological membrane capacitance parameter cm does not change the capacitance on the
hardware. Instead the hardware capacitance can be switched manually through marocco
and is by default set to bigcap. This setting is not changed throughout this thesis.
The available calibration framework used in this thesis calibrates Igl towards a maximal

effect on the postsynaptic potential (PSP). For lower values of Igl the leakage conductance
decreases resulting in higher PSPs but this can affect the resting potential Vrest due to
leakage currents from the synaptic input circuit. The calibration searches for the lowest
value of Igl while not loosing control over the resting potential Vrest. This is done by
choosing a fixed Vrest prior to the calibration too make sure it can still be reached for a
chosen Igl value. The chosen Igl value is then fixed and the τm set in PyNN is ignored.
When using this calibration, changing Vrest to a value other than used for the calibration
method can result in uncharacterized behaviour. Therefore, the biological parameters
Vrest can not reliably be used for changing neuron dynamics.

Synaptic time constants

The synaptic time constants τsyn,I and τsyn,E are controlled by the floating gate values
Vsyntci and Vsyntcx, respectively. The calibration software searches again for maximal
effect of PSPs and sets the hardware parameters to fixed values, not influenced by the
chosen biological parameters.

Refractory time

The refractory period τrefrac determines the hardware parameter Ipl. For measurements
in this thesis, an Ipl calibration was not available. To have controlled influence on the Ipl
parameter, the transformation of biological to hardware parameter was disabled. Instead
the value for τrefrac defined in PyNN is passed directly as digital to analog converted
(DAC) value to the hardware.

Reset potential and spiking threshold

Both, the biological threshold voltage Vthresh and the reset potential Vreset are translated
to the hardware parameters Vt and Vreset, respectively. Both are calibrated values and
are available for influencing neuron dynamics.

Adaption and exponential term

Both, adaption and exponential activation are supported by the HICANN chip. Char-
acterization and calibration of the adaption properties was done recently by Friedrich
(2015). At the time of writing this thesis, the calibration was not integrated into the
calibration framework and was therefore not accessible. Exponential activation was not

7



2 Towards uniform spiking rates

needed for the work of this thesis and is turned off in all measurements by using a LIF
neuron model in PyNN.

Synaptic weights

Synaptic weights are translated linearly from biological parameter to a 4 bit value on
hardware. Therefore, only 16 discrete weight values from 0 to 15 are available on hard-
ware. A biological value of weight ≥ 0.2907 nA corresponds to a hardware value of 15
and a biological value of weight ≤ 0.0029 nA to a hardware value of 0 for the calibtic
version used. Note that both, the biological to hardware transformation and the effect
of hardware value on circuit behaviour are changing as part of ongoing work.

Synaptic delays

Delays on the hardware are not configurable but appear as a result of information pro-
cessing times. Changing the delays in PyNN has no effect.

Synaptic plasticity

Short term and long term plasticity mechanisms are part of the HICANN chip archi-
tecture. Short Term Plasticity (STP) calibration was recently developed by Billaudelle
(2014). The calibration framework is not yet available and STP is not used in the work
for this thesis.

2.2 Blacklisting

When emulating neurons on hardware, floating gate parameter variations and systematic
hardware neuron to hardware neuron variations due to transistor mismatches result in
significantly different spiking behaviour as shown in the introduction part of this chapter.
The calibration aims to reduce these variations but since software is still in development,
variations can still be high. In figure 2.2 we can see that some neurons do not spike at
all while others seem to spike at roughly double the mean rate of all spiking neurons, al-
though receiving the same external stimulus. Besides parameter variations and transistor
mismatches defect hardware parts such as synapse drivers, bus lines or neuron circuits
can cause this extremely different behaviour of some hardware neurons. It is therefore
important to be able to identify hardware parts that to not work as necessary for a given
application.
In this section some simple blacklisting methods are introduced to identify neurons

which behave not as required.
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2.2 Blacklisting

2.2.1 Requirements

Number of neurons emulated on one HICANN chip at once

The amount of spike events that can be recorded from a single HICANN is limited. To
extract spikes from a HICANN chip and send it to a host the so-called Layer 2 network
is used. The connection between HICANNs and associated field programmable gate
array (FPGA) can operate at 2Gbit/s (Schemmel et al., 2010). At the time of writing
this thesis the connection is operated at only 1Gbit/s. In Müller (2014) the maximum
spike throughput between HICANN and FPGA is calculated to be 55.6MEvent/s for
optimally packed spike events and a HICANN to FPGA operating bit rate of 2Gbit/s.
In optimally packed spike events each packet contains two spikes. To be able to pack

spike packets optimally small ISIs are needed. If the ISIs vary too much there will
not be always 2 spikes in each packet. A double-spike packet requires 48 bit while a
single-spike packet requires 27 bit. Additionally each packet requires 16 bit for header
and cyclic redundancy check and 8bit for pause after the packet (Müller , 2014). This
results in an effective event size of (46 + 16 + 8)/2 = 36 bit for double packed packets
and 27 + 16 + 8 = 51 bit for only single packed packets.
Since in the measurements conducted for this thesis poisson sources were used, the

ISIs of spiking neurons vary significantly and we can not assume optimally packed spike
packets. In the worst case there will be only one spike per packet. The maximum spike
throughput for optimally and worst packed packets can be calculated:

R 1spike
packet

=
bandwidth
event size

=
1Gbit/s
51 bit

≈ 19.6MEvent/s (2.1)

R 2spikes
packet

=
bandwidth
event size

=
1Gbit/s
36 bit

≈ 27.8MEvent/s (2.2)

These are the limitations for single HICANN usage. The neuromorphic platform is de-
signed for wafer scale integration, allowing the routing of events through other HICANN-
FPGA connections on the wafer. This will change the above calculated bandwidth limi-
tations when all features of the neuromorphic platform are implemented.
Assuming single HICANN usage and filling 7 of 8 neuron blocks with spiking neurons

of size 4, we would have 4 × 7 = 112 neurons on one HICANN. With a speedup factor
of 104 each neuron is limited to a firing rate of.

Rbest =
27.8MEvent/s

104 × 112
≈ 26.8Hz (2.3)

Rworst =
19.6MEvent/s

104 × 112
≈ 13.4Hz (2.4)

To qualitatively determine the spike reduction when emulating many neurons on one

9



2 Towards uniform spiking rates

HICANN chip at once, following measurement is set up:

• All available neurons on one HICANN chip are emulated at once and their spike
rate is measured.

• Then all neurons on only a certain number of neuron blocks are emulated at once
and the measurement is repeated for the other neuron blocks until all hardware
neurons are measured.

• This is repeated for different numbers of filled neuron blocks and the mean rate
from all neurons is calculated.

In figure 2.3a the results of this measurement are plotted. A tendency towards lower
spike rates can be observed when more neurons are emulated at once. But since a
significant number of neurons do not spike at all the mean value is pulled down. In figure
2.3b the same data is shown but all neurons which did not spike in a separate blacklisting
run with an input rate of 200Hz are ignored. The blacklisting is described later in this
section.
For 7 filled neuron blocks the mean rate of all neurons in figure 2.3a is µ = 11.8Hz.

With a speedup factor of 104 this results in a total event output of 11.8Hz×104×112 ≈
13.2MEvent/s. The same result can be obtained using the 61 neurons with a mean of
21.5Hz shown in figure 2.3b. This value still lies below the maximum spike throughput
calculated in equation 2.1. For the maximum throughput we assumed a constant rate
though. In our poisson source, the rate varies resulting in varying firing rates in the
neurons. Since all neurons receive the same poisson stimulus their firing rate should vary
at best identical and at least correlated. Whenever the firing rate is high it can easily
pass the maximum rate calculated in equation 2.4. This could be investigated in more
detail by plotting the temporal evolution of firing rates, but is beyond the scope of this
thesis.

Blacklisting synapse drivers

When conducting any kind of measurement with neurons having incoming synaptic con-
nections, it is crucial that the synapse drivers forward incoming spikes event to the right
target neuron. A synapse driver defect detection tool implemented by Billaudelle (2014)
was used to detect synapse drivers, which do not encode addresses as required. In all
measurements of this chapter there are no synaptic connections between neurons. And
since all external spike inputs are routed through the digital network chip (DNC) link
from output buffer 8, only one bus line is used in the layer 1 event network to route the
input spikes to all neurons3. Before running any experiment the chosen synapse driver
was tested with the defect detection tool and found to be working reliably.

3Whenever only one bus line is used, the routing algorithm in marocco chooses synapse driver 15.
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(a) All neurons.
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blacklisted neurons: 51 / 112

(b) Without not spiking neurons.

Figure 2.3: Mean firing rates for 112 neurons of size 4 on 7 neuron blocks of one HICANN. Each
neuron receives the exact same input from a poisson source with a mean rate of
λ = 200Hz. The x-axis indicates how many neuron blocks are filled with neurons per
measurement step. In each measurement the same number of neuron blocks are filled
and the measurement is repeated for different neuron blocks until all 7 neuron blocks
are covered. For each data point the entire measurement is repeated 15 times. The
colored lines connect the mean firing rates of the 15 repetitions for single neurons.
The thick black line connects the neuron to neuron means for each measurement,
the error bars indicate the neuron to neuron standard deviations. In figure (b) the
same data is shown without not-spiking neurons. (From a separate blacklisting run
as explained in section 2.2.2)
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2 Towards uniform spiking rates

2.2.2 Method

In this section, two blacklisting methods are introduced and investigated for their appli-
cability:

• blacklisting neurons which spike without external stimulus

• blacklisting not-spiking neurons for a given external stimulus rate

For any of these methods all 112 hardware neurons on one HICANN are emulated.
Only 16 neurons on one neuron block are emulated parallel in one measurement step
to avoid any spike loss. The neurons of each neuron block are emulated in a separate
measurement.

Always spiking neurons

To find neurons which spike independent of external stimulus, neurons without any in-
coming synapses are emulated. Reasons for independently spiking neurons can be for
example a bad calibration resulting in threshold voltages to be set below resting volt-
ages. Then a measurement of 10 000ms biological time is started and repeated for 5
times. Any neuron spiking at any of the emulation runs is marked as defect. The num-
ber of repetitions is arbitrary. 5 repetitions are chosen to make sure that neurons are
marked which only sometimes spike as these neurons are expected to be more easily
excitable. These neurons would have higher spiking rates for even low stimulus.

Not-spiking neurons

For most hardware emulations there are several not-spiking neurons. The number of
not spiking neurons depends highly on the stimulus the neurons receive. Therefore,
blacklisting runs with different stimulus rates were conducted.
Neurons spiking only sometimes are more likely to be blacklisted for less repetitions.

Therefore, each measurement step was repeated only 2 times.

2.2.3 Results

First, all neurons on the HICANN are emulated without any connections. This mea-
surement was repeated several times and there were never any spiking neurons without
stimulus on HICANN 276. The same measurements were conducted also on the vertical
setup4.Figure 2.4 shows the result of measuring all 112 available size 4 neurons on the
HICANN on the vertical setup without any connections at all. 6 out of 112 neurons
spiked without any stimulus input and are marked as defect.
In the next step, all neurons were emulated with external poisson input. For different

external stimulus rates, all neurons on HICANN 276 which did not spike were marked as

4A setup where only a single HICANN chip is build in vertical setup and connected to a host. For this
measurement the vertical setup connected to porthos was used.
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Figure 2.4: Measurement without any external stimulus. Mean and standard deviation of firing
rates for still spiking neurons is shown. In each measurement step the 16 neurons of
one neuron block are emulated at once. Each measurement step is repeated 5 times.
These measurements were conducted on the vertical setup connected to porthos.
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2 Towards uniform spiking rates

defect. In each measurement step only the 16 neurons on one neuron block were emulated
at once.
In figure 2.5 exemplary results are shown for poisson rates λ = 40Hz and λ = 200Hz.
In figure 2.6 the number of not spiking neurons for different stimulus rates is shown.

For stimulus rates below 20Hz the number of not spiking neurons drastically decreases.
Most neurons with the chosen neuron parameters (see appendix A) need more then one
incoming spike to reach their threshold potential and emit a spike. When the rate is too
low there is enough time for the membrane voltage to reach it’s resting potential between
two incoming spikes. This would lead to not spiking of the neuron.
We can also see that the curve seems to move asymptotically towards a value just

above 40% of not spiking neurons for high rates. All the neurons not spiking at low
rates can be therefore characterized as neurons which just need more input but are not
entirely idle.
In figure 2.7 all neurons from the measurement with a poisson rate of 200Hz are

plotted again and all neurons blacklisted in the 10Hz and in the 40Hz measurement are
marked. We can see in figure 2.7a that the neurons marked in the 40Hz measurement
hardly spike at all for poisson input of 200Hz. The roughly 10 neurons marked in the
40Hz measurement but not marked at the 200Hz measurement show rates close to zero.
However, some of the neurons marked in the 10Hz measurement do spike significantly
for a poisson input of 200Hz as can be seen in figure 2.7b.
Since for emulations of high spiking neurons on a single HICANN bandwidth limi-

tations can be reached fairly easy (see section 2.2.1), it seems reasonable to conduct
measurements on a lower rates. Therefore, for the following measurements mainly the
blacklist from the 40Hz measurement is used since it does not mark many neurons which
would spike properly at higher rates.
The behaviour of neurons being blacklisted at lower rates but not at higher rates is

also part of the investigated properties in section 2.3.

2.3 Investigating rate response to parameter changes

In the following section different parameters are varied to determine the resulting change
in firing rates. The blacklisting results from section 2.2 are investigated by applying
them to the measurement results of this section. To avoid spike loss in the parameter
measurements in this section but not increase measurement times too much, the neurons
of one HICANN are always measured in steps of 2 filled neuron blocks.

2.3.1 Inputrate

To make a more general statement about firing rate dependencies of hardware neurons
for the parameters given in appendix A, the same measurement as in section 2.2 was
repeated with more repetitions. Each measurement was repeated 15 times to account
for trial-to-trial variations.In figure 2.8a the result for all neurons is shown. In figures
2.8b, 2.8c and 2.8d the same data is plotted but only for neurons not blacklisted in
blacklisting runs at 200Hz, 40Hz and 10Hz, respectively (see section 2.2). We can see
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0 20 40 60 80 100

neuron index

0

50

100

150

200

fir
in
g
ra
te

(H
z)

µn = 48.20Hz σn = 39.18Hz σn/µn = 0.81

(b) Poisson stimulus rate λ = 200Hz.

Figure 2.5: Mean rates and standard deviations for 112 neurons of size 4 emulated on one
HICANN. The red crosses mark not spiking neurons. µn indicates the neuron to
neuron mean firing rate and σn the standard deviation. Not spiking neurons are not
used for mean and standard deviation calculations. Each neuron receives the same
stimulus from a poisson source. In one measurement step only one neuron block of
16 neurons is emulated. Each measurement step is repeated 15 times.
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Figure 2.6: Number of blacklisted neurons for blacklisting measurements with different poisson
source rates. Dashed lines indicate rates 10Hz, 40Hz and 200Hz.

16



2.3 Investigating rate response to parameter changes

0 20 40 60 80 100

neuron index

0

50

100

150

200

fir
in
g
ra
te

(H
z)

µn = 56.22Hz σn = 36.89Hz σn/µn = 0.66

(a) Neurons from blacklisting measurement with 40Hz are marked.

0 20 40 60 80 100

neuron index

0

50

100

150

200

fir
in
g
ra
te

(H
z)

µn = 78.30Hz σn = 29.22Hz σn/µn = 0.37
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Figure 2.7: Rates plotted for poisson stimulus of λ = 200Hz for all 112 size 4 neurons on 7 neuron
blocks of HICANN 276. The data is the same as used in figure 2.5b but a blacklist
from the measurements with (a) 40Hz and (b) 200Hz are applied. The red crosses
indicate neurons which did not spike in the corresponding blacklisting measurement.
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Figure 2.8: Firing rates dependency on stimulus rates, measured for 112 size 4 neurons on the
first 7 neuron blocks of HICANN 276. In each measurements step 32 neurons on two
successive neuron blocks are emulated. Each measurement step is repeated 15 times.
The thick lines indicates the mean of all neurons and all repetitions, the error bars
indicate the standard deviations. (continue next page)...
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(c) Neurons not spiking at a stimulus rate of 40Hz are blacklisted.
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(d) Neurons not spiking at a stimulus rate of 10Hz are blacklisted.

Figure 2.7: ...(start previous page) The faded lines in the background connect the means of 15
repetitions for each emulated neuron. The error bars indicate standard deviations
across all neurons. In figure (a) all neurons are plotted. In figures (b), (c) and (d)
the same data is plotted without neurons being blacklisted in previous blacklisting
measurements (see section 2.2).
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2 Towards uniform spiking rates

that the neurons blacklisted at lower rate blacklisting measurements are those neurons
which show an overall lower mean spiking rate. When successively taken those neurons
out, the mean spiking rate of all neurons for all trials increases.

2.3.2 Refractory time τrefrac

The refractory time τrefrac is the time for which a neuron can not be excited after it has
emitted a spike. The biological value of τrefrac scales inversely with the pulse current Ipl.
Thus, a higher value of Ipl results in a lower refractory time. The effect of Ipl on the
refractory time τrefrac was investigated in Schmidt (2014). For values of Ipl > 200 nA the
refractory time only changed insignificantly. Therefore, in this measurement Ipl was var-
ied in the range of 0DAC < Ipl ≤ 100DAC5. Figure 2.8a shows the results of measuring
the Ipl dependency of the firing rates with a poisson stimulus rate of λ = 200Hz. For the
same data, different blacklistings are applied. Like in previous measurements the overall
rate increases for blacklistings measured at lower rates. And we can observe that the
increasing of mean rate decreases with higher Ipl. This is in accordance with the results
obtained in Schmidt (2014).

2.3.3 Synaptic weights

The synaptic weight is varied in the biological range in which all hardware values are
covered as described in section 2.1.1. In figure 2.9 the results are plotted for two poisson
stimulus rates λ = 200Hz and λ = 40Hz and different blacklisting data are applied. We
can see that lowering the weight results in lower spiking rates. Thus, we can conclude
that the intensity of incoming spikes is decreased for lower weights as intended by the
hardware design.

2.3.4 Threshold voltage Vthresh

The threshold voltage Vthresh was investigated in previous work (Alevi , 2014) for very
similar parameters. It was found that for voltage differences between resting and thresh-
old voltages Vthresh−Vrest < 3mV the floating gate variations result in continuous spiking
neurons. Higher distances decrease the spiking rate drastically. Since lowering spiking
rates is not an issue of the investigations in chapter 3, decreasing Vthresh was not further
investigated.

2.4 Summary

In this chapter it is characterized how a user of the HICANN wafer module can control
neuron behaviour via access from PyNN. The characterization is based on the calibration
and software available at the time of writing this thesis.

5Note that in Schmidt (2014) the current was given in nA while the parameter set in this work is given
in DAC values. Conversion: 1 nA = 2500 nA

1023
DAC.
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(b) Poisson stimulus rate λ = 40Hz.

Figure 2.8: Firing rate dependencies on the hardware current Ipl. The legend indicates which
blacklisting data are applied to the experimental result. All 112 size 4 neurons on
7 neuron blocks on the HICANN 276 were emulated. In each measurement step 32
neurons on 2 neuron blocks were emulated at once. Each measurement step was
repeated 15 times.
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Figure 2.9: Firing rate dependencies on synaptic weight of the poisson source connection for
stimulus rates λ = 200Hz and λ = 40Hz. The legend indicates which blacklisting
data are applied to the experimental result. All 112 size 4 neurons on 7 neuron blocks
on the HICANN 276 are emulated. In each measurement step 32 neurons on 2 neuron
blocks are emulated at once. Each measurement step is repeated 15 times.
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2.4 Summary

Some neuron parameters are currently calibrated towards maximizing the PSPs trig-
gered by incoming spike events. Others are fixed at certain values to avoid unchar-
acterized influence on other parameters. (Section 2.1.1) These preliminary calibration
methods result in many properly spiking neurons and disable uncontrollable behaviour
but at the cost of influence by the user using the PyNN interface. Then some parameters
are still being characterized or developed calibration methods need to be implemented
in the software stack.
These prerequisites leave only a few parameters to control neuron behaviour. These

are:

• Ipl controlling the refractory time τrefrac

• Threshold voltage Vthresh

• Reset potential Vreset

• Synaptic weight

Synaptic plasticity mechanisms as well as adaption and exponential activation are also
available but have not been investigated in the scope of this thesis. The parameters
Erev,E, Erev,I and Vrest are not fixed by the calibration but changing their values can
undo the calibration benefits. This could be investigated in more detail but is not done
in this thesis.
Despite the available calibration methods, some neurons do still vary significantly.

Neuron to neuron standard deviation to mean ratios of above 1 can be measured. Some
neurons do not spike at all for different parameter settings or spike independent of receiv-
ing stimulus. A blacklisting method was used to mark all neurons not spiking for different
stimulus rates (Section 2.2). Neurons not spiking when receiving an external stimulus of
40Hz were found to spike either not or at least only very rarely even for higher rates.
Some of the neurons not spiking with an external stimulus of 10Hz did spike reasonably
for higher rates, though. The number of not spiking neurons did only decrease slightly
for rates higher then 200Hz while increasing rapidly for rates below 40Hz (see figure
2.6). Therefore, a blacklist created from not spiking neurons at 40Hz external stimulus
is used throughout the measurements of this thesis. When seen suitable results using
blacklists created at stimulus rates of 10Hz or 200Hz are used for comparison.
In section 2.3 the available parameters listed above are sweeped within their dynamic

ranges. All the investigated parameters are able to influence the spiking rate of neu-
rons. When more neurons are blacklisted and not taken into account for calculating the
mean spiking rates, the influence of parameter change is higher. When less neurons are
blacklisted, more not spiking neurons depress the mean spiking rate.
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3 Emulating a recurrent neural network

In previous work (Alevi , 2014), a basic feed forward chain network was emulated on
the HICANN wafer module. That chain network was build in a way, that the only
requirements for it to work are firing neurons and a working spike transport through the
layer 1 event network. By choosing parameters for which neurons in the network spike
at high rates, the network behaves as intended and spikes are passed through different
populations.
In this chapter the competitive dynamics in a recurrent network are investigated. The

network is intended to behave similar to a soft Winner Take All (sWTA) network.The
chosen network is inspired by the sWTA network investigated in Pfeil et al. (2013). As
a first step we chose a slightly more simple network then described in the paper.
Neuron-to-neuron standard deviation to mean ratios rarely drop below 0.4, even with

blacklisting methods marking 70% of the hardware neurons as not behaving as re-
quired.Since the neuron number per population is limited with only one HICANN used
and the neuron-to-neuron deviations are so high, connection probabilities below 1 are
avoided in the chosen network.
The inter HICANN routing had only been used for the above mentioned chain network

at the time of conducting these experiments. To avoid uncharacterized influences, the
network was emulated on only one HICANN chip.

3.1 Network Topology

soft Winner Take All (sWTA) networks are characterized through competitions for ac-
tivity in different subunits. In this network the competition is realized through two equal
sized populations being inhibitory connected to each other. Each neuron inhibits each
neuron of the other population. Each population is then excited by a different external
poisson source. The network topology is drawn in figure 3.1. To decrease the effect of
neuron-to-neuron variations, connection probabilities are chosen to be all p = 1.
This network topology is expected to result in the higher stimulated population to

suppress the other population. Consequently the other population would inhibit the first
one less. Depending on the strength of the inhibition and difference of external stimuli
the both populations receive, this will result in a certain difference in mean firing rates
between the two populations. For strong inhibition and high stimulus differences one
population should entirely inhibit any spiking in the other population.
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3 Emulating a recurrent neural network

source 0source 0

population 0

source 0source 1

population 1

excitatory inhibitory

Figure 3.1: Network topology of the emulated sWTA network. All neurons available after black-
listing are split into two populations. All neurons of each population are connected
inhibitory to all neurons of the other population. Each neuron in one population
receives external stimulus from the same poisson source.

3.2 Methods

3.2.1 Choosing the neurons for each population

The methods in this section intend to find two populations behaving similar when re-
ceiving the same stimulus. To ensure that the two population behave similar, all neurons
available after blacklisting are sorted by their spiking rate for a chosen stimulus. Then
every second neuron is chosen to belong to population 0 and every other neuron to pop-
ulation 1 to get a similar overall mean spiking rate. For the following measurements, the
measurement results from the blacklisting run with a poisson stimulus of λ = 40Hz are
used (see section 2.2).
This method depends on the spike data which is used to determine the spike rates.

It is therefore only a rough approximation of spiking behaviour which effect will be
investigated in the result section.
Note that the neurons of the two populations are now randomly placed across the

HICANN.

3.2.2 ESS vs. HICANN

Most measurements in this chapter are simulated with the ESS backend first and then
compared with emulation results on the HICANN. The ESS simulations in this work
assume ideal hardware neurons without neuron-to-neuron variations.
To simulate a network on the ESS no changes to the (PyNN) script are necessary.

This made it possible to investigate the ideal behavior of the network beforehand and
prototype the analysis.
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3.3 Results
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Figure 3.2: Independently measured parts of the sWTA network.

3.2.3 Investigating different parts of the network

At first only subunits of the network are investigated individually. In the first step only
one population is emulated receiving external stimulus from a poisson source as shown
in figure 3.2a. This is done for both populations separately to examine if the neuron
sorting yielded the intended result.
In a second step, the network is emulated with only one population being inhibitory

connected to the other while not receiving inhibitory input itself. The setup is shown in
figure 3.2b.
At last, the entire network as shown in figure 3.1 is emulated and investigated.

3.2.4 Investigated network properties

For the following investigations the entire network is emulated.

Point of equal firing rates

The first characterization is motivated by the investigations in Pfeil et al. (2013). One
population receives external stimulation at constant rate while the other populations
external stimulus is varied. Both populations firing rates are then plotted in dependence
of the varied external stimulus. For identical populations the firing rates should be on
average equal when both populations receive the same poisson input.

3.3 Results

After having done all measurements and while writing this thesis a bug in the simulation
script was found. Unfortunately the blacklisting was not applied correctly and the neu-
rons of the populations were chosen randomly. The following results therefore include
non spiking neurons. In the end of the chapter some results from measurements with
correctly applied blacklisting are shown and compared.
The hardware settings for measurements are the same as explained in the introduction

part of chapter 2. Thus, there can be 112 neurons emulated on one HICANN.
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3 Emulating a recurrent neural network

In this section the blacklisting data gained from the measurements at 40Hz is used (see
section 2.2). Therefore, 60 neurons are blacklisted and 52 are available for experiments.
The same measurement data used for the blacklisting is also used to sort the available
neurons by their rates into two similar spiking populations as explained in section 3.2.1.
Each population consists therefore of 26 neurons.

3.3.1 Only one population with poisson stimulus

To evaluate the success of the sorting, both populations mean firing rates are measured
for different stimulus rates. The results are shown in figure 3.3. The standard error of the
mean after 15 repetitions is assumed to be negligible compared to the neuron-to-neuron
variations. Hence, only the error bars of the neuron-to-neuron standard deviations are
plotted.
We can see that population 1 spikes roughly 5Hz higher for stimuli above 10Hz then

population 0 does. The effect of the rate difference will be examined in the following.
Figure 3.3a shows the same measurement with the ESS backend. The tendency of

less increasing spiking rate for higher stimulus input is in agreement with the hardware
results. But the ESS neurons spike at much higher rates. The reason is that ideal neurons
are simulated.
Figure 3.10a shows an exemplary voltage trace of one neuron from the described setup,

illustrating the correlation of stimulus events and membrane response.

3.3.2 Two populations with only unidirectional inhibitory connections

To determine the effect of different strength of inhibitory input without any recurrent
connections, both populations are emulated but only one population inhibits the other
one and not vice versa. For one stimulus at constant rate and the other at varied rates
the populations mean rates are investigated. The measurements were again conducted
on both, the ESS and the hardware. Results are shown in figure 3.4.
We can see that both, ESS simulation and hardware emulation show similar behaviour.

Population 0 spikes at the same mean rate as population 1 when population 0 receives
external stimulus at 21Hz and population 0 receives external stimulus at 50Hz but
also inhibitory input from population 1. The point of same spiking rates in simulation
and emulation is in good accordance. figure 3.4b is zoomed into the relevant range.
In appendix B the plot can be seen. We can see that there are some neurons spiking
at high rates and some at very low but in between is a gap. The reason could be the
missing blacklisting which might have marked the low spiking neurons as defect. A main
difference between hardware and simulation can be found again in overall spiking rate
and in the neuron-to-neuron deviations. The neurons from the ESS measurement spike
much stronger.Another very important observation is, that the effect of inhibition in
the hardware emulation is much less then in the ESS simulation. While the inhibited
populations mean rate goes down to low rates already for rates of λ0 = 50Hz for the ESS
simulation, in the hardware emulation the decrease is less steep and continues almost
linear until a population 0 stimulus rate of 100Hz.
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(a) Simulation with the ESS
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Figure 3.3: Only one population is emulated and receiving poisson stimulus at different rates.
Figure (a) shows the simulations on the ESS. Only one population is shown since
both mean firing rates are the same. The faded lines indicate single neurons. The
thick, black line is the mean of all neurons and the error bars indicate the neuron-to-
neuron standard deviations. In figure (b) the relevant range of the hardware results
are shown. In appendix B the full plot can be found. Each line indicates the results
of one population, both measured in separate runs. The plotted data points are the
means of all 26 neurons firing rates which are determined as the means of 15 repeated
measurements. The error bars indicate the standard deviations across the 26 neurons.
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3 Emulating a recurrent neural network

In figure 3.5, the results of the same experimental setup are shown for a higher constant
poisson rate of population 0. The point of equal firing rates are shifted by roughly
10Hz between ESS simulation and hardware emulation. This could be caused by the
different overall firing rates show in figure 3.3, due to the wrongly applied blacklisting.
Additionally the point of equal firing rates is shifted to a higher stimulus compared to
the measurement in figure 3.4 as would be expected. But one has to be careful with the
conclusions from these plots since in close range of the crossing of both plots there are
only few data points.

3.3.3 Emulating the entire network

In the final step the entire network is emulated. The ESS simulation results shown in
figures 3.6 and 3.7 are in surprisingly good agreement with the hardware measurements.
But this could be coincidence since in the plotted range there are only two data points
for the hardware measurement. The only significant difference is the overall firing rate of
the populations which differs by a factor of 2 to 5 depending on the stimulus rates since
the firing rates on the hardware saturate faster then the ESS simulation assumes.

3.3.4 Results with correctly applied blacklisting

After fixing the experiment software to correctly apply the blacklisting data, some mea-
surements were repeated. In figure 3.8 both populations independent mean rates are
shown for different stimuli. The difference between the mean rates is lower then it was
with the wrong blacklisting applied.

3.3.5 Observation of network behaviour on neuron level

In figure 3.10b the voltage trace and incoming and outgoing spike events are shown for
one exemplary neuron. The plots only show a short period of the simulation time. The
correlation of incoming stimulus spikes and registered spikes of the neuron itself can be
seen. And the inhibitory effect of inhibitory spike events from the other population can
also be observed.
In figure 3.11 a raster plot is shown were all spike events in the network can be seen. For

this plot a measurement with correct applied blacklisting was used. In this experiment
run one population receives the usual poisson stimulus with constant rate λ = 50Hz. The
other population receives a stimulus which rate increases with the time from λ = 1Hz to
λ = 300Hz. It can be observed how the spike amount in the population with constant
stimulus decreases when the other populations stimulus increases. Also the inhibition
is delayed from the increasing stimulus since the stimulated population first needs to
increase its own rate while overcoming the other populations inhibition. And then its
own inhibition will effect the other population.
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(a) Results from ESS measurement
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(b) Results from hardware measurement

Figure 3.4: Two populations are emulated but only population 1 receives inhibitory input from
the population 0 as shown in figure 3.2b. The network is emulated for different
population 0 stimuli λ0. The poisson stimulus for population 1 is constant at λ1 =
50Hz. The faded lines in the background are the means of 15 repeated measurements
for each single neuron. The thick lines indicate the means of all neurons of one
populations, error bars indicate the neuron-to-neuron standard deviations. The solid
lines belong to population 0 and the dashed lines to population 1. Figure (b) is a
zoom in the relevant ranges. The full plot can be found in appendix B.
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(b) Results from hardware measurement

Figure 3.5: Two populations are emulated but only population 1 receives inhibitory input from
the population 0 as shown in figure 3.2b. The experimental setup is the same as
described in figure 3.4 but with population 1 receiving a poisson stimulus of rate
λ1 = 200Hz. Figure (b) is a zoom in the relevant ranges. The full plot can be found
in appendix B.
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(b) Results from hardware measurement

Figure 3.6: The entire network is emulated with all connections as shown in figure 3.1. Population
1 receives constant poisson stimulus with rate λ1 = 50Hz. Population 0 receives a
poisson stimulus of different rate λ0 for each measurement step. The faded lines in the
background are the means of 15 repeated measurements for each single neuron. The
thick lines indicate the means of all neurons of one populations, error bars indicate
the neuron-to-neuron standard deviations. The solid lines belong to population 0 and
the dashed lines to population 1. Figure (b) is a zoom in the relevant ranges. The
full plot can be found in appendix B.
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(b) Results from hardware measurement

Figure 3.7: The entire network is emulated with all connections as shown in figure 3.1. The
experimental setup is the same as described in figure 3.6 but with population 1
receiving a poisson stimulus of rate λ1 = 200Hz. Figure (b) is a zoom in the relevant
ranges. The full plot can be found in appendix B.
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Figure 3.8: Each population is emulated independently, receiving different poisson stimulus. This
is the same plot as shown in figure 3.3 but with correctly applied blacklisting. The
plotted data points are the means of all 26 neurons which are determined as the
means of 15 repeated measurements. The error bars indicate the standard deviations
across the 26 neurons.
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(b)

Figure 3.9: The entire network is emulated with all connections shown in figure 3.1. The same
measurement setup as before is repeated but with correctly applied blacklisting. In
this measurement the stimulus of population 1 is constant and the stimulus of pop-
ulation 0 is varied. The data points indicate the means across all neurons in one
population which are determined by 15 repeated measurements. The error bars in-
dicate the neuron-to-neuron standard deviations.
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(a) Neuron without inhibition
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(b) Neuron with inhibition

Figure 3.10: Voltage traces from an exemplary neuron in the network, emulated on hardware. In
figure (a) only one population with external stimulus is emulated. The neuron does
not have incoming inhibitory connections. Spike address 0 are the spike times of the
poisson source and address 1 are the recorded spike events of the neuron. In figure
(b) the entire network is emulated. The spike address 0 are excitatory stimulus
events, spike address 1 are inhibitory events from the other population and spike
address 2 are the recorded spike events of the neuron. 37
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Figure 3.11: Raster plot for all neurons in the network for a single experiment run. The external
stimulus of population 1 has a constant poisson rate of λ1 = 50Hz. The rate
of the external stimulus of population 0 is constantly increased in the range of
1Hz ≤ λ0 ≤ 300Hz, λ1 = 50Hz. Neuron index 0 and 28 are the spikes event of the
poisson sources 0 and 1, respectively. Indices 2-27 are the neurons of population 0,
indices 30-35 are the neurons of population 1.
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4 Discussion and Outlook

In this thesis, a recurrent soft Winner Take All (sWTA) like neural network was imple-
mented on neuromorphic hardware and investigated for its competitive dynamics. For
conducting emulation experiments, the PyNN frontend was used giving access to the
complex hardware structures through an easy to use high level frontend. Before inves-
tigating network dynamics, the hardware was characterized for parameter control from
the PyNN interface. Those parameters available to the PyNN user after calibrating the
hardware were investigated in their dynamic ranges. To have reliably spiking hardware
neurons, a blacklisting measurement was implemented.
Finally, the sWTA like neural network was build up step by step in PyNN. The

investigated network properties were developed using the Executable System Specifica-
tion (ESS) as reference. Qualitatively similar results could be obtained in ESS simulation
and hardware emulation. The major difference lies in overall spiking rates which are in
simulation higher by a factor of 2 to 5, depending on the stimulus strength. Causes for
differences can be found in missing or insufficient calibration, which is in a preliminary
stage. Further, the hardware used for implementing the network is a prototype system
still in development.
All in all it was possible to implement the neural network on a single HICANN chip, but

there is room for improvement. The main focus in this thesis was on the implementation
of the network and less on the investigation of network properties. Neuron spiking rates
were averaged over several independent measurements. This does not take the possibly
changing network dynamics into account. A possible solution would be to emulate the
network with different stimulus rates within one experiment, avoiding the dependence of
network dynamics on trial to trial variations.
All neurons of one population in the investigated network received always stimulus from

the same external source. The resulting parallel activity and firing has strong influence
in network dynamics, giving the first firing population advantage over the other one.
To properly investigate network dynamics, neurons would need to receive individual
stimulus. In single HICANN usage this would be strictly limited through bandwidth
limitations. The next step would be to use several HICANNs, making it possible to
emulate a greater number of neurons. This would also allow to choose only optimally
behaving neurons and still be able to average over a large number. Another possible
technique would be to investigate parameter noise in simulations with the ESS, e.g. by
varying the parameters of the PyNN import.
This year the next version of the hardware chip, the HICANNv4, will be available for

experiments. Hardware bugs will be fixed which limit parameter usage or put constrains
on calibration possibilities. Additionally an implementation of a multi wafer scale system
is planned which will make experiments over several wafer modules possible.
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4 Discussion and Outlook

With further developed and newly implemented calibration techniques, as well as fur-
ther developed hardware specifications, more complex networks can be investigated for
possible implementations. A network having already been investigated for theoretical
implementation on the HICANN wafer system is the Cortical Layer 2/3 Attractor Mem-
ory network (Petrovici et al., 2014). Even though the network is scalable in size, for
a reasonable implementation the usage of multiple HICANNs is necessary. One reason
is the high connectivity in the network, reaching limitations for single HICANN usage.
Further, the network requires Short Term Plasticity (STP) and adaption mechanisms
which have been characterized recently and will soon be available in the calibration work
flow. One main method used for compensation for distortion mechanisms on the hard-
ware was adapting the synaptic weights. Currently there is no detailed characterization
and calibration of the synaptic weights available in the calibration work flow. Still, the
basic requirements are fulfilled and a first approach on implementing a larger and more
complex neural network on multiple HICANNs could be taken.
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Appendix

A: Emulation Parameters

Parameter Value
Cm fixed calibration value
τm fixed calibration value
τrefrac 100DAC (Ipl)
τsyn,E fixed calibration value
τsyn,I fixed calibration value
Erev,I −60mV
Erev,E −40mV
Vreset −55mV
Vrest −50mV
Vthresh −47mV
weight 4nA

Table .1: Parameters used in PyNN. Neuron model used: IF_cond_exp
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4 Discussion and Outlook

B: Full sized emulation plots of sWTA network
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Figure .1: The full plot to 3.4b. Two populations are emulated but only population 1 receives
inhibitory input from the population 0 as shown in figure 3.2b. The network is em-
ulated for different population 0 stimuli λ0. The poisson stimulus for population 1
is constant at λ1 = 50Hz. The faded lines in the background are the means of 15
repeated measurements for each single neuron. The thick lines indicate the means
of all neurons of one populations, error bars indicate the neuron-to-neuron standard
deviations. The solid lines belong to population 0 and the dashed lines to population
1.
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Figure .2: The full plot to 3.5b. Two populations are emulated but only population 1 receives
inhibitory input from the population 0 as shown in figure 3.2b. The experimental
setup is the same as described in figure .1 but with population 1 receiving a poisson
stimulus of rate λ1 = 200Hz.
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Figure .3: The full plot to 3.6b. The entire network is emulated with all connections as shown
in figure 3.1. Population 1 receives constant poisson stimulus with rate λ1 = 50Hz.
Population 0 receives a poisson stimulus of different rate λ0 for each measurement step.
The faded lines in the background are the means of 15 repeated measurements for each
single neuron. The thick lines indicate the means of all neurons of one populations,
error bars indicate the neuron-to-neuron standard deviations. The solid lines belong
to population 0 and the dashed lines to population 1.
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Figure .4: The full plot to 3.7b. The entire network is emulated with all connections as shown
in figure 3.1. The experimental setup is the same as described in figure .3 but with
population 1 receiving a poisson stimulus of rate λ1 = 200Hz.
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List of Abbreviations

ESS . . . . . . . . . . . . . . Executable System Specification

HICANN. . . . . . . . . High Input Count Analog Neural Network

AdEx . . . . . . . . . . . . Adaptive Exponential Integrate and Fire

LIF . . . . . . . . . . . . . . Leaky Integrate and Fire

sWTA. . . . . . . . . . . . soft Winner Take All

STP. . . . . . . . . . . . . . Short Term Plasticity

STDP. . . . . . . . . . . . Spike-Timing Dependent Plasticity

PSP. . . . . . . . . . . . . . postsynaptic potential

OTA . . . . . . . . . . . . . operational transconductance amplifier

DAC . . . . . . . . . . . . . digital to analog converted

DenMem . . . . . . . . . dendritic membrane circuit

DNC . . . . . . . . . . . . . digital network chip

FPGA . . . . . . . . . . . field programmable gate array

ISI . . . . . . . . . . . . . . . inter spike interval

47





Bibliography

Alevi, D., Investigation of a simple feed-forward neuronal network on neu-
romorphic hardware, Internship rep., 2014, [Online]. Available: http:
//www.kip.uni-heidelberg.de/cms/fileadmin/groups/vision/Downloads/
Internship_Reports/report_alevi.pdf.

Billaudelle, S., Characterisation and calibration of short term plasticity on a neuromor-
phic hardware chip, Bachelor thesis, University of Heidelberg, HD-KIP 14-93, 2014.

Brette, R., and W. Gerstner, Adaptive exponential integrate-and-fire model as an ef-
fective description of neuronal activity, J. Neurophysiol., 94, 3637 – 3642, doi:NA,
2005.

Cutsuridis, V., Bradykinesia models of parkinson’s disease, Scholarpedia, 8 (9), 30,937,
doi:10.4249/scholarpedia.30937, 2013.

Friedrich, A., Charakterisierung von adaption auf neuromorpher hardware, Bachelor the-
sis, University of Heidelberg, HD-KIP 15-10, 2015.

HBP SP9 partners, Neuromorphic Platform Specification, Human Brain Project, 2014.

Kiene, G., Evaluating the synaptic input of a neuromorphic circuit, Bachelor thesis,
Universität Heidelberg, 2014.

Müller, E. C., Novel operation modes of accelerated neuromorphic hardware, Ph.D. the-
sis, Heidelberg, Univ., Diss, 2014.

Petrovici, M. A., et al., Characterization and compensation of network-level anomalies in
mixed-signal neuromorphic modeling platforms, PLOS ONE, doi:dx.doi.org/10.1371/
journal.pone.0108590, 2014.

Pfeil, T., et al., Six networks on a universal neuromorphic computing substrate, Frontiers
in Neuroscience, 7, 11, doi:10.3389/fnins.2013.00011, 2013.

Schemmel, J., D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner, A wafer-scale
neuromorphic hardware system for large-scale neural modeling, in Proceedings of the
2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1947–1950,
2010.

Schmidt, D., Automated characterization of a wafer-scale neuromorphic hardware sys-
tem, Masterarbeit, Universität Heidelberg, 2014.

49

http://www.kip.uni-heidelberg.de/cms/fileadmin/groups/vision/Downloads/Internship_Reports/report_alevi.pdf
http://www.kip.uni-heidelberg.de/cms/fileadmin/groups/vision/Downloads/Internship_Reports/report_alevi.pdf
http://www.kip.uni-heidelberg.de/cms/fileadmin/groups/vision/Downloads/Internship_Reports/report_alevi.pdf




Statement of Originality (Erklärung):

I certify that this thesis, and the research to which it refers, are the product of my own
work. Any ideas or quotations from the work of other people, published or otherwise, are
fully acknowledged in accordance with the standard referencing practices of the discipline.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die ange-
gebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, March 20, 2015
.......................................

(signature)


	Introduction
	Neuromorphic Hardware
	Software Framework
	Executable System Specification (ESS)

	Towards uniform spiking rates
	Characterization of available parameter space
	Calibration settings
	Reversal potentials
	Resting potential and membrane time constant
	Synaptic time constants
	Refractory time
	Reset potential and spiking threshold
	Adaption and exponential term
	Synaptic weights
	Synaptic delays
	Synaptic plasticity


	Blacklisting
	Requirements better title?...
	Number of neurons emulated on one HICANN chip at once
	Blacklisting synapse drivers

	Method
	Always spiking neurons
	Not-spiking neurons

	Results

	Investigating rate response to parameter changes
	Inputrate
	Refractory time refrac
	Synaptic weights
	Threshold voltage Vthresh

	Summary

	Emulating a recurrent neural network
	Network Topology
	Methods
	Choosing the neurons for each population
	ESS vs. HICANN
	Investigating different parts of the network
	Investigated network properties
	Point of equal firing rates


	Results
	Only one population with poisson stimulus
	Two populations with only unidirectional inhibitory connections
	Emulating the entire network
	Results with correctly applied blacklisting
	Observation of network behaviour on neuron level


	Discussion and Outlook
	Appendix
	Nomenclature
	Bibliography

