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Abstract

Exploring the potential of brain-inspired computing

The gap between brains and computers regarding both their cognitive capability and power
efficiency is remarkably huge. Brains process information massively in parallel and its
constituents are intrinsically self-organizing, while in digital computers the execution of
instructions is deterministic and rather serial. The recent progress in the development of
dedicated hardware systems implementing physical models of neurons and synapses en-
ables to efficiently emulate spiking neural networks. In this work, we verify the design and
explore the potential for brain-inspired computing of such an analog neuromorphic system,
called Spikey . We demonstrate the versatility of this highly configurable substrate by the
implementation of a rich repertoire of network models, including models for signal prop-
agation and enhancement, general purpose classifiers, cortical models and decorrelating
feedback systems. Network emulations on Spikey are highly accelerated and consume less
than 1 nJ per synaptic transmission. The Spikey system, hence, outperforms modern desk-
top computers in terms of fast and efficient network simulations closing the gap to brains.
During this thesis the stability, performance and user-friendliness of the Spikey system
was improved integrating it into the neuroscientific tool chain and making it available for
the community. The implementation of networks suitable to solve everyday tasks, like
object or speech recognition, qualifies this technology to be an alternative to conventional
computers. Considering the compactness, computational capability and power efficiency,
neuromorphic systems may qualify as a valuable complement to classical computation.

Exploration des Potenzials von neuronaler Datenverarbeitung

Der Unterschied zwischen Gehirnen und Computern, sowohl in ihren kognitiven Fähigkeiten
als auch in ihrer Energieeffizienz, ist bemerkenswert groß. Gehirne verarbeiten Informa-
tionen enorm parallel und ihre Bestandteile organisieren sich potenziell von selbst. Im
Gegensatz dazu führen digitale Computer Programmbefehle in einer deterministischen und
vielmehr sequenziellen Art und Weise aus. Der aktuelle Fortschritt in der Entwicklung
spezieller Hardware, die Neuronen und Synapsen physikalisch nachbildet, ermöglicht ef-
fiziente Emulationen von neuronalen Netzen. In dieser Arbeit verifizieren wir den Aufbau
von Spikey , einem hoch konfigurierbaren neuromorphen Chip. Zudem wurde das Poten-
zial dieses Systems in Bezug auf neuronale Datenverarbeitung untersucht. Wir zeigen die
Vielseitigkeit von Spikey durch die Implementierung einer Vielfalt von Netzwerkmodellen.
Diese beinhalten Modelle zur Signalweiterleitung und -aufbereitung, universelle Klassi-
fizierer, kortikale Modelle und Dekorrelation in rückgekoppelten Systemen. Netzwerke wer-
den auf Spikey beschleunigt emuliert und eine synaptische Übertragung benötigt weniger
als 1 nJ an Energie. Somit lassen sich neuronale Netze schneller und stromsparender
simulieren als mit Schreibtischcomputern, was uns der Energieeffizienz von Gehirnen näher
bringt. Im Zuge dieser Arbeit wurden die Zuverlässigkeit, Geschwindigkeit und Benutzer-
freundlichkeit des Spikey-Systems weiterentwickelt, so dass das System der Forschungsge-
meinschaft zur Verfügung gestellt werden kann, und sich in die dort gebräuchliche Soft-
wareumgebung integrieren lässt. Die Tatsache, dass wir auch Netzwerke aufsetzen konnten,
die für alltägliche Aufgaben wie der Objekt- oder Spracherkennung verwendet werden kön-
nen, macht diese Technologie zu einer Alternative zu herkömmlichen Computern. Bedenkt
man die Kompaktheit, Rechenleistung und Energieeffizienz, könnten neuromorphe Systeme
eine bahnbrechende Erweiterung zur klassischen Datenverarbeitung darstellen.





Chapter 1

Introduction

“The human brain performs computations inaccessible to the most powerful of today’s
computers – all while consuming no more power than a light bulb. Understanding how the
brain computes reliably with unreliable elements, and how different elements of the brain

communicate, can provide the key to a completely new category of hardware
(Neuromorphic Computing Systems) and to a paradigm shift for computing as a whole.

The economic and industrial impact is potentially enormous.”

–
Human Brain Project (2014)

Artificial neural networks are composed of computation nodes, known as neurons, that
are densely interconnected through contact points called synapses. The spiking activity
of each neuron is a non-linear function of its inputs, and connections between neurons
are plastic, and can be tuned by learning mechanisms (Section 1.1). Usually, emergent
dynamics of network models are simulated on general purpose digital computers designed
for serialized, centralized and deterministic data processing (von Neumann, 1993). In this
work, we explore the potential of a neuromorphic computing substrate, in which each
unit of biological neural networks, i.e., neurons and synapses, is represented by a physical
implementation (Section 1.2). Consequently, computation takes place in parallel in all units
and the separation between processing and memory vanishes, like in nervous systems.

Using analog electronics is one approach to implement such physical models of neu-
ral networks. As an example for this, the neuromorphic microchip Spikey comprises an
analog VLSI (very-large-scale integration) implementation of a highly configurable neural
network (Section 1.3). This computing substrate is portable, fast and energy-efficient,
and computation is potentially massively parallel, plastic and robust. However, the design
of algorithms for spiking neural networks, and especially for neuromorphic realizations of
these, is subject to ongoing research. Here, we show the hardware implementation of a rich
repertoire of state-of-the-art functional and non-functional network models (Section 1.4 and
1.5). These models range from plastic models for robust and precise signal processing over
general purpose classifiers to models for fundamental research on correlations in recurrent
systems.

The presented work does not only support the idea of the Spikey system to be a
universal computing substrate, but also suggests the system to be ready as a tool for Com-
putational Neuroscience and technical applications. Altogether, the system’s versatility is
shown by the enclosed publications, in which different networks are implemented on one
and the same neuromorphic substrate. However, each of the five studies focuses on specific
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Chapter 1. Introduction

Figure 1.1: The structure of nerve cells (neurons) and neural networks. Spikes travel
along axons and activate synapses (gap or contact between axon terminal and dendrite).
Released neurotransmitters affect the membrane potential of the postsynaptic neuron.
When the neuron receives sufficient activation, it fires a spike that travels along its axon
to other neurons. Adapted from www.thethirdsource.org (2014).

features of the system.

1.1 The nervous system

The nervous system, and in particular the neocortex of mammals that is thought to be
responsible for higher functions, are composed of interconnected nerve cells (neurons).
Neurons receive their input through synapses, at which action potentials (also known as
spikes) arrive at the axonal terminal and trigger the release of neurotransmitters (Fig-
ure 1.1). These transmitters diffuse quickly to the dendrite of the postsynaptic cell and
affect the neuron’s membrane potential. Two types of synapses, namely excitatory and
inhibitory synapses, either increase (depolarize) or decrease (hyperpolarize) the membrane
potential, respectively. When sufficient excitatory spikes arrive and the membrane poten-
tial crosses a certain threshold, a spike is generated by the neuron itself and travels along
its axon to other neurons. Without further stimulation the membrane potential relaxes to
its ground state.

The above description simplifies a neuron to a point-like structure and exclusively con-
siders biochemical synapses. Biological neurons, however, show more complex morpholo-
gies, electrophysiological properties and firing patterns (e.g., Connors & Gutnick, 1990;
Gray & McCormick, 1996; Gibson et al., 1999; Nowak et al., 2003; Markram et al., 2004).
For example, dendrites are observed to actively process signals (for a review, see London
& Häusser, 2005) and neurons are shown to be electrically coupled (for a review, see Ku-
mar & Gilula, 1996). Neuron models represent a tradeoff between the electrophysiological
richness of detail and both mathematical tractability and computational complexity. For
example, Hodgkin & Huxley (1952) formulated a model that describes the generation of
action potentials in detail (see also Section 1.1.1). Multi-compartment models capture
additional features like the spatial expansion of neurons (Dayan & Abbott, 2001) and the
properties of active dendrites. In this work, the established leaky integrate-and-fire neuron
model is used (for discussion see Section 3.1).

Rate neuron models represent a further abstraction of spiking neurons, and are usually
defined by a single state variable that describes the neuron’s average firing rate (Dayan &
Abbott, 2001). Networks of such rate neurons perform well in many applications in machine
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1.1. The nervous system

(a) Top: Electrical circuit representing the membrane. See
text for details. Adapted from Hodgkin & Huxley (1952).
Bottom: Membrane potential for current injection initi-
ated at t = 5ms. Adapted from Dayan & Abbott (2001).

(b) Measured dependency of the gat-
ing variables n, m and h on the mem-
brane potential V . For details see
text and Equation 1.4. Adapted from
Dayan & Abbott (2001).

Figure 1.2: The Hodgkin-Huxley neuron model.

learning (e.g., Bishop, 2006). However, there is evidence for the benefit of temporal codes,
as generated by spiking neurons, for efficient information processing (see, e.g., review by
Maass, 1997). Because spiking networks can process both temporal and rate codes, these
networks are believed to be a suitable substrate for brain-inspired computation, and are
used throughout this work.

1.1.1 The Hodgkin-Huxley neuron model

In the early 50s Hodgkin & Huxley (1952) proposed a mathematical description of the flow
of electric current through the surface membrane of a giant nerve fibre. Amongst other
observations, this model gives insight into the details of the generation of action potentials.

The membrane of the nerve cell is described by an electrical circuit with capacitance
C (Figure 1.2(a)). Current passing the membrane is carried by ions flowing through resis-
tances R that are in parallel with the capacity. Ionic currents are divided into a sodium
(INa), potassium (IK) and leakage current (Il). The difference between the membrane po-
tential and the equilibrium potentials, which is specific for each type of ion, determines the
driving force for ionic currents (see voltage sources in Figure 1.2(a)). Thus, the derivative
of the membrane potential can be written as

C
dV

dt
= I + gNa(ENa − V ) + gK(EK − V ) + gl(El − V ), (1.1)

where I is an externally applied current, e.g., through patch clamping techniques (e.g.
Sakmann & Neher, 1984). While the conductance of the leakage gl is assumed to be
static, the conductances for sodium (gNa) and potassium (gK) are a function of membrane
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Chapter 1. Introduction

potential and time. The probabilities of ions passing ion channels in the membrane are
associated with gating variables n, m and h such that

gK = gKn
4 (1.2)

and
gNa = gNam

3h. (1.3)

where gK and gNa are constant. The derivative of each of these gating variables is modeled
as

τx(V )
dx

dt
= x∞(V )− x, (1.4)

with x ∈ {n,m, h}. Note that both x∞ and τx are dependent on the membrane potential
(see Figure 1.2(b)).

The generation of an action potential is an interplay between sodium influx and delayed
potassium outflow. If the cell is strongly depolarized, e.g., by an current injection or synap-
tic excitation, the open probability for sodium channels increases almost instantaneous and
depolarization is amplified (see m in Figure 1.2(b)). Because h decreases with increasing
membrane potential, this sodium influx slows down. Simultaneously, the open probability
of potassium channels increases slowly and pulls the membrane back to its resting state.

The Hodgkin-Huxley neuron model has been shown to accurately reproduce membrane
potentials of neurons (Hodgkin & Huxley, 1952), but is computationally rather expensive.

1.1.2 The leaky integrate-and-fire neuron model

The above Hodgkin-Huxley model can be simplified to the so-called leaky integrate-and-
fire model (Dayan & Abbott, 2001), because the generation of action potentials is typically
triggered when the membrane potential reaches a threshold voltage. Although the complex
dynamics of voltage-dependent sodium and potassium channels is replaced by a simple
threshold process, the leaky integrate-and-fire neuron model is a very useful description for
neural activity. Its simplified dynamics allow for more efficient numerical simulations and
easier mathematical tractability compared to the Hodgkin-Huxley model. Sub-threshold
dynamics simplify to:

C
dV

dt
= I + gl(El − V ). (1.5)

When the membrane potential crosses the firing threshold

V > Vth (1.6)

the membrane potential is clamped to Vreset for the duration of the so-called refractory
period τref.

This neuron model is commonly used in neuroscience and is implemented on the neu-
romorphic system used in this study (for details, see Section 1.3). For an example trace,
see membrane potential in Figure 5 of Publication V.

1.1.3 Synaptic transmissions

So far, we considered stimulations of neurons by externally applied currents I. In neural
networks, neurons are interconnected by synapses and action potentials are mediated by
synaptic transmissions. At arrival of action potentials at the presynaptic terminal the
synapse emits transmitters that bind to the membrane of the postsynaptic neurons and
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1.1. The nervous system

(a) The amplitude of excitatory postsynaptic po-
tentials (EPSPs) decreases with frequent presy-
napic spikes until an equilibrium state is reached
(stationary EPSPs). In the absence of further
input the nerve cell recovers (recovery response).
Adapted from Tsodyks & Markram (1997).

(b) Positive time intervals ∆t between the pre- and
postsynaptic spikes cause a positive change in the
synaptic weight, and vice versa for ∆t < 0. Here,
exponential functions are fitted independently for
positive and negative ∆t. Adapted from Bi & Poo
(2001) and based on data by Bi & Poo (1998).

Figure 1.3: Biological measurements of (a) short-term and (b) spike-timing dependent
plasticity, respectively.

thus modifies the membrane’s conductance (see Figure 1.1). This biochemical process can
be modelled by

I = gsyn(t)(Esyn − V ), (1.7)

where Esyn is a static potential, also called reversal potential, and gsyn(t) is the synaptic
conductance course of the synapse. In this work, we use two types of synapses, syn ∈
{exc, inh} for excitatory and inhibitory synapses, respectively, and synaptic conductances
are modeled by exponentially decaying functions

τsyn
dgsyn

dt
= −gsyn, (1.8)

where gsyn is step-wise increased for each incoming spike.
The computational benefit of other interactions between neurons than these biochemical

transmissions, e.g., gap junctions (Kumar & Gilula, 1996), is believed to be secondary, and
is hence not considered in the following.

1.1.4 Short-term plasticity

Tsodyks & Markram (1997), among others, found that synaptic efficacy changes with
presynaptic activity within a range of several hundred milliseconds, which is called short-
term plasticity (STP). Two types of STP have been observed in experiments, short-term
depression (STD; see Figure 1.3(a)) and short-term facilitation (STF). The former is caused
by depletion of neurotransmitters, while the latter can be attributed to the influx of calcium
at the axon terminal, which, in turn, increases the release probability of neurotransmitters.
The distribution of neurotransmitter resources can be described by the following equations
(Tsodyks & Markram, 1997):
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Chapter 1. Introduction

dR

dt
=

I

τrec
, (1.9)

dE

dt
= −

E

τinact
+ USERδ(t− tAP), (1.10)

I = 1−R− E, (1.11)

where R, I, and E are the recovered, inactive and effective fraction of resources, respec-
tively. Each presynaptic spike at time tAP instantaneously activates resources USE from
the recovered state R. The recovered and effective partitions rise and relax with the time
constants τrec and τinact, respectively. The synaptic efficacy is proportional to the effective
partition E.

STP is believed to not only be an unavoidable consequence of synaptic physiology, but
may also be responsible for the processing of temporal information on time scales relevant
in daily life, e.g., in motor control or speech recognition (Tsodyks & Wu, 2013).

1.1.5 Spike-timing dependent plasticity

The strength of connections, the so-called synaptic weight, between neurons can be mod-
ulated by plasticity mechanisms. Hebb (1949) has postulated: “When an axon of cell A is
near enough to excite a cell B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased.” Summarized and simplified this means: “what
fires together wires together”.

Almost half a century later Bi & Poo (1998), among others, have observed the de-
pendence of the change of synaptic weights on the precise timing of action potentials,
namely spike-timing dependent plasticity (STDP; Figure 1.3(b); see also Morrison et al.,
2008; Sjöström & Gerstner, 2010). If the presynaptic neuron fires before the postsynaptic
one, the synaptic weight increases, and vice versa. This set of experimental data suggests
separate exponential fits for pre- before postsynaptic and post- before presynaptic spike
pairings:

x(∆t) = exp

(
−

|∆t|

τSTDP

)
, (1.12)

with ∆t the time interval between a pre- and postsynaptic spike and τSTDP the STDP time
constant.

Weight changes ∆w may not only depend on the spike-timing dependence x(∆t), but
are usually scaled by a factor F (w) that depends on the current weight w (for references
and examples, see Publication II and Morrison et al., 2007):

∆w = F (w)x(∆t). (1.13)

Although spike correlations are considered in the order of several ten milliseconds, long-
term plasticity affects synaptic weights on a time scale of seconds to years (Sjöström &
Gerstner, 2010). STDP is believed to underly learning and memory formation in brains
(e.g., Bi & Poo, 2001; Sjöström et al., 2008), and stabilizes network activity by modifying
the weight of either excitatory (Kempter et al., 2001) or inhibitory synapses (Froemke
et al., 2007; Vogels et al., 2011).

Note that other biological recordings revealed a large variety of fit functions x(∆t) (for
a review, see Abbott & Nelson, 2000), and more complex measurement protocols (e.g.,
Sjöström et al., 2001) suggested more complex plasticity models (e.g., Pfister & Gerstner,
2006; Clopath et al., 2010; Graupner & Brunel, 2012), not further addressed in this work.
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1.2. Physical models of spiking neural networks

Rl C

Reset

ThresholdI(t)

Output

V

El

Figure 1.4: Schematized electronical model of a neuron. The capacity C of the cell
membrane is charged by an external current I and discharged by the leak resistance Rl.
If the external current is strong enough, the firing threshold is crossed, the neuron is reset
and the output spike is propagated to other neurons within the network. Adapted from
Brüderle (2014).

1.2 Physical models of spiking neural networks

To study brain function in terms of its information processing properties, recently, in the
research field of Computational Neuroscience many biologically realistic network models
have been developed. The behavior of the constituents of these models, namely neurons and
synapses, is mostly formulated by differential equations. However, the complex interaction
of spiking neurons, and hence coupling of these equations, requires methods to solve these
equations. To this end, most researches apply numerical methods and simulate their net-
works with software running on computers based on the von Neumann (1993) architecture.
For simplicity, (modified) von Neumann (1993) architectures and parallel arrangements of
these, like graphics processing units (GPUs), are summarized as conventional computers,
in the following. Network simulators utilize conventional computers and allow the inves-
tigation of network dynamics of several ten thousand complex multi-compartment (Hines
& Carnevale, 1997; Hines et al., 2008) or of more than a billion point neurons (Gewaltig
& Diesmann, 2007; Kunkel et al., 2014). In simulations, each variable within the net-
works can be observed, which allows for profound analyses of complete network dynamics
on multiple spatial and temporal scales. This is in contrast to the sparse data that can
be acquired from brains, although recording techniques improved significantly within the
last decades (for reviews, see Helmchen, 2005; Dodt et al., 2007; Weckstrom, 2010; Gross,
2011). However, simulations of spiking neural networks are time and power consuming,
impeding their efficient mass application to solve real world problems.

The gap in efficiency between conventional computers and brains is caused by the fun-
damentally different ways data is processed. While in conventional computers instructions
are executed sequentially, neurons process data massively in parallel. Parallel arrange-
ments of computers in clusters of these bridge the gap in terms of parallel computation,
but are far away from the power efficiency of brains (for discussion see Section 3.4).

An alternative approach to overcome these limitations of conventional computer are
systems that are composed of physical models of neurons and synapses. An intuitive
illustration of this approach is a mechanical implementation of a leaky integrate-and-fire
model (Stefanini, 2012). A leaky water bucket mounted rotatably about its horizontal axis
represents a neuron and is filled with water waves (spikes) released by two other buckets.
Only if the water waves arrive coincidently, this bucket is temporarily full enough to flip
and release water itself.

This concept can be transferred to VLSI systems where neurons and synapses are
electronic models of biological neurons (see reviews by Renaud et al., 2010; Indiveri et al.,
2011; Hasler & Marr, 2013). Electronic components show similar properties compared
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Chapter 1. Introduction

to the biochemical structures in nervous tissue and can be manufactured with very high
density using submicron complementary metal-oxide-semiconductor (CMOS) technology.
For example, capacitances resemble the insulating membrane of nerve cells and transistors
resemble populations of ion channels, respectively (see Figure 1.4 and Mead, 1990). To
emphasize the difference between simulations on conventional computers and simulations
on analog neuromorphic hardware, we use the term emulations for the latter.

Such analog VLSI systems can be categorized in two classes, real-time and accelerated
systems, which does not exclude intermediate implementations. Real-time systems are
usually optimized for applications in prosthetics and robotics (e.g., Floreano & Mattiussi,
2001; Indiveri, 2001; Serrano-Gotarredona et al., 2009; Arthur et al., 2012), and usually
consume little power, e.g., by operating transistors in the weak inversion regime (Badoni
et al., 2006; Indiveri et al., 2006; Hafliger, 2007; Vogelstein et al., 2007; Indiveri et al.,
2009; Giulioni et al., 2008; Serrano-Gotarredona et al., 2009; Renaud et al., 2010; Yu &
Cauwenberghs, 2010; Brink et al., 2013; Benjamin et al., 2014). Furthermore, these real-
time systems can be used for spike-based communication to brain tissue (e.g., Bontorin
et al., 2007) or neuromorphic sensors (e.g., silicon retinas as reviewed by Posch et al.
(2014)).

In contrast, operating the circuits outside the weak inversion regime allows for highly
accelerated systems, which means that the ratio between the time constants of the hardware
network and their biological counterparts is very small. The Spikey system used in this
work (see Section 1.3 and Publication I) and the system developed by Wijekoon & Dudek
(2008, 2012) show similar design goals. In particular, both systems comprise STP and
STDP circuits, and are accelerated by a factor of 104 and 103, respectively, compared to
biological real-time. However, although single neurons and synapses have been analyzed
for the latter, we do not know of any network emulations larger than three neurons for
this system. Recently, highly accelerated photonic systems have been developed, e.g., by
Hurtado et al. (2012) and Coomans et al. (2011), in which lasers (neurons) are used to
trigger light beams (spikes) that travel along optical fibres to excite other lasers (for a
review, see Shastri et al., 2014; Tait et al., 2014). Time scales in these photonic systems
are up to 109 times smaller than in biological systems (Hurtado et al., 2012).

The acceleration of analog neuromorphic systems can potentially be preserved while
scaling to larger network sizes, because all neurons intrinsically run in parallel. However,
scaling becomes more difficult with higher acceleration. Neuromorphic chips in real-time
systems usually communicate to each other via conventional signalling techniques, often us-
ing the address-event representation (AER) protocol (as, e.g., used by Serrano-Gotarredona
et al., 2006). For accelerated systems these techniques quickly reach their limit in terms
of data bandwidth between the chips (Jeltsch, 2010). One approach to break this limit
is the wafer-scale integration of neuromorphic chips improving the data bandwidth dras-
tically (Schemmel et al., 2010; Brüderle et al., 2011). The interconnection of multiple of
these wafers allows for networks consisting of more than one million neurons. To exploit
this multi-wafer system, the modularity and connectivity of biological networks has to be
considered (Perin et al., 2011). Connections between nearby neurons within a modular
structure are dense and should be realized within a wafer, while connections between dis-
tant neurons or modules are sparse and may be realized across wafers in order to save the
rather limited bandwidth between wafers.

An expanded definition of neuromorphic systems also includes purely digital systems.
The approach by Merolla et al. (2011, 2014) comprises dedicated electronic circuits for
each neuron within the network, like in analog systems, but neurons are implemented
fully digital and signals are integrated numerically. Another system uses conventional
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1.3. The Spikey neuromorphic system

(a) Microphotograph of the Spikey chip. (b) The Spikey neuromorphic system

Figure 1.5: The Spikey chip is mounted on a printed circuit board, which is smaller than
a cigarette pack. This board, in turn, is plugged into another board hosting the FPGA,
memory, and many other features (see main text).

integration techniques on off-the-shelf low power processors that are highly interconnected
compared to conventional supercomputers (Furber et al., 2014).

Neuromorphic systems are usually compact and computation is energy efficient, fast
and robust. This makes them perfect candidates for computationally intensive real-world
applications and attract economical interest. Besides heavy long-term funding by the
European Union (SenseMaker, 2005; FACETS, 2010; BrainScaleS, 2014; Human Brain
Project, 2014), the United States of America (SyNAPSE, 2014; The Brain Initiative, 2014)
and other governments (Brain/MINDS, 2014; Government of Canada, 2014; Brainnetome,
2014), recently private companies initiated the development of neuromorphic systems, e.g.,
IBM (Merolla et al., 2014; IBM, 2014), Qualcomm (2013), Intel (Roy et al., 2014), ARM
(Furber et al., 2014), HP (HP, 2010; Jo et al., 2010) and Brain Corporation (2014). How-
ever, efficient neural algorithms for spiking neural networks are still rare.

1.3 The Spikey neuromorphic system

The core component of the used neuromorphic substrate is the very-large-scale integration
(VLSI) chip called Spikey (Figure 1.5). It comprises two blocks of 192 neurons receiving
input from 256 synapses each, totaling 98304 synapses. Within the neural network informa-
tion is processed exclusively with analog circuits, except the digital storage of parameters,
e.g., synaptic weights.

The system is optimized for acceleration of the hardware network. The actual accel-
eration factor depends on the time constants of the implemented network model. In the
current setup the membrane time constant τ of hardware neurons can be configured approx-
imately between 0.2 µs and 1.5 µs (Scherzer, 2013). Consequently, for neocortical neurons
(τ ≈ 10ms has been reported by McCormick et al., 1985) the acceleration is approximately
104-fold. In other words, the acceleration factor is not a fixed property of the hardware
system, but specifies the translation from hardware to biological parameter domain, e.g.,
here, 10 s of biological network time correspond to 1ms on hardware. Throughout this
work, we define the acceleration to be 104-fold, except for the network model shown in
Publication III, in which the time constants of the biological model are much smaller, and
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Figure 1.6: STDP on the Spikey chip. Time intervals ∆t are measured between pairs
of pre- and postsynaptic spikes. These measurements are accumulated on capacitors for
∆t > 0 and < 0, respectively. A global update controller sequentially reads out the
charge on these capacitors and updates to synaptic weight according to the evaluation of
both charges: If condition (1) is fulfilled, a weight update will be triggered. Otherwise,
the synapse continues to measure. In case of an update, condition (2) determines two
alternative and freely configurable rules to update the weight. In this work, we use an
additive update rule (see Publication II).

hence the acceleration factor is reduced.

Besides its high acceleration, the network on the Spikey chip is highly configurable (for
details, see Publication I). To improve the comparability to existing literature, neuron and
synapse parameters are specified in biological parameter domain. During configuration,
these parameters are translated to hardware domain considering the acceleration factor and
the fact that voltages on the Spikey chip differ from those observed in biological tissue.
However, not all parameters can be configured individually for each neuron and synapse.
Besides stimulation through on-chip recurrent connections, data packages containing the
time and source address of spikes can be fed into the hardware network. During experiment
execution the spiking activity of all neurons and the membrane potential of one neuron are
recordable. For a details about the specification of the Spikey chip and the data flow, see
Publication I.

Two plasticity mechanisms are implemented on the Spikey chip, short- and long-term
plasticity. Short-term plasticity is implemented for each axon (Schemmel et al., 2007) and
modulates the maximum conductance in dependence on the presynaptic activity (for de-
tails, see Section 1.1.4). In contrast to a possible mixture of facilitation and depression in
the model of Tsodyks & Markram (1997), on hardware synapses are limited to either facil-
itating or depressing STP. This mechanism is helpful to stabilize the activity of recurrent
networks of excitatory neurons, which mutually reinforce their activity without short-term
plasticity (Brüderle et al., 2010; Bill et al., 2010, and both balanced random network and
cortical model in Publication I).

The hardware implementation of pair-wise STDP is split into local circuits in each
synapse and a global controller for each block of synapses (see Section 1.1.5 and Schemmel
et al., 2006, respectively). In each synapse, the time intervals between pre- and postsy-
naptic, and parallely between post- and presynaptic spikes are measured and accumulated
on two separate capacitors. Rows of synapses are processed sequentially by a global con-
troller that reads out these accumulated measurements and the 4-bit synaptic weights.
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1.3. The Spikey neuromorphic system

In dependence on the evaluation of the charge on both capacitors the synaptic weight is
changed accordingly (see Figure 1.6). The rather small resolution of synaptic weights and
the analog implementation of the measurement and accumulation circuits for STDP keeps
synapses compact. This allows for a high density and hence a large number of synapses,
which takes the typically high synapse count for each neuron into account (e.g., in corti-
cal circuits, several thousand synapses per neuron have been reported in the collection by
Potjans & Diesmann, 2014). The electronics to update the digital synaptic weight is area
consuming and hence shared between synapses (see Publication II). However, this design
has limitations compared to the STDP model described in Section 1.1.5 and its imple-
mentation in software. Firstly, the resolution of synaptic weights is limited on hardware
compared to the floating point precision usually applied in software (for the discussion
of two-valued synapse models, see Publication II). Secondly, in most STDP models the
occurance of single spike pairs is resolved (see, e.g., review by Morrison et al., 2008), while
on hardware multiple spike pairs may be accumulated due to the limited frequency with
which synapses are evaluated. This may be not of concern, because measurement protocols
of STDP are usually composed of several to tens of spike pairs (e.g., Cassenaer & Laurent,
2007, 2012), and so far there is no consensus that a single spike pair actually induces a
weight change. The effect of the above limitations of hardware STDP, among others, is
studied on an exemplary network in Publication II.

Due to fluctuations in the manufacturing process all analog circuits suffer from device
variations. In a parallel arrangement of analog circuits, i.e., physical models of neurons
and synapses, device variations manifest in a spatially disordered pattern, called fixed-
pattern noise. However, these variations of parameters across neurons and synapses are
determined by the time of production. Then, they are approximately constant over time
and can be calibrated for. In contrast, the hardware network is subject to temporal noise
including electronic noise and transient experiment conditions, e.g., fluctuations of the chip
temperature. Reproducibility is a prerequisite for systematic investigations of physical
experiments in general and neural networks in particular. The ratio between signal and
noise has to be significant to test hypothesis. Consequently, network dynamics are generally
averaged across multiple trials. In Publication V both fixed-pattern and temporal noise is
quantified and discussed.

During this thesis, Schemmel (2014), Grübl (2014), Hock (2014b) and Hartel (2014),
among others, developed a new hardware infrastructure to operate the Spikey chip. This
system is connected via universal serial bus (USB) 2.0 to the host computer, and is equipped
with a modern FPGA to manage the data flow and on-board memory to buffer data (for
details, see Publication I). Thereby, the communication bandwidth could be increased
approximately by one order of magnitude compared to the older backplane system (for a
detailed description of the backplane system, see Brüderle, 2009). For all studies we used
chips of identical version 4, but the studies in Publication II to III were performed on the
backplane system, while the studies in Publication IV and V used the USB device. Because
both the backplane and USB system implement the same functionality as seen from the
host computer and the Spikey chip, the system description in Publication I is also valid
for the USB system. However, due to the on-board analog-to-digital converter (ADC), an
oscilloscope to observe the membrane potential becomes obsolete. Additionally, the USB
system provides a gyro and acceleration sensor, a wireless chip, general purpose digital
inputs/outputs (I/Os) and serial high speed data links, e.g., to interconnect multiple of
these systems. During the scope of this thesis, this new system was put into operation,
which included assembly, testing and software development. Obstacles observed during
this process lead to improved revision of the Spikey chip and the board carrying the chip.
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Chapter 1. Introduction

The development of the Spikey neuromorphic hardware system started in the year 2005.
It was designed as a highly configurable mixed-signal system to prototype network mod-
els on neuromorphic hardware. The neural network is mostly implemented with analog
circuits, and the communication to the host computer for configuration, simulation and
observation is mostly implemented with digital signalling techniques. The digital infras-
tructure is described by Grübl (2007) in detail. The layouts of the analog neuron and
synapses circuits are published in Schemmel et al. (2006, 2007) and Indiveri et al. (2011),
respectively. Brüderle (2009) and his students (Kaplan, 2008; Müller, 2008; Bill, 2008;
Friedmann, 2009; Schilling, 2010; Vogginger, 2010; Jeltsch, 2010; Müller, 2011; Pfeil, 2011;
Petkov, 2012)1 established the basis for a standardized operation of the system including
tests and troubleshooting. The access to the system was encapsulated by several layers
of abstraction (for details, see Brüderle, 2009; Brüderle et al., 2009, and Publication I).
The top layer is an interface for the standardized network description language PyNN, which
allows users to model and run neural networks without any detailed knowledge of the hard-
ware system. In addition, methods were developed to calibrate the initially heterogeneous
hardware network (fixed-pattern noise) and the behavior of analog circuits was charac-
terized (Brüderle, 2009). In the course of these measurements the chip was revised three
times up to version four that is used throughout the work at hand. The easy operation
of the hardware system via PyNN and calibrations facilitated the implementation of several
simple network models (for listing, see Publication I). At this stage STDP was measured
isolatedly for single synapses (Schemmel et al., 2006; Müller, 2008; Brüderle, 2009), but
was not stable and not used autonomously for multiple synapses.

1.4 Publication overview

The publications underlying the thesis at hand (see Chapter 2) are briefly summarized in
the next paragraph, and are discussed thematically in the subsequent Section.

The first study emphasizes the high configurability of the hardware system by success-
fully implementing six network models on the neuromorphic Spikey system (Publication I).
Secondly, and thirdly, the hardware implementation of STDP is investigated (Publica-
tion II) and for the first time demonstrated in functional networks on accelerated hardware
(Publication III). Fourthly, the successful implementation of a classifier network proposes
the utilization of the Spikey system to solve real-world computing tasks (Publication IV).
Lastly, the hardware system is used as a stand-alone tool to show that heterogeneity in the
computing substrate increases correlations in recurrent neural networks (Publication V).

1.5 Brain-inspired computing on a neuromorphic substrate

Recently, novel neuromorphic systems inspired by the architecture of brains overcame
the limitation of the word-at-a-time thinking of conventional computers by processing
data massively in parallel, and by breaking the separation of memory and computation.
Potential advantages of this design are compactness, scalability, power efficiency, plasticity
and robustness. Programs are formulated as descriptions of spiking neural networks and
are not necessarily deterministic, but may learn and evolve during runtime. Compared to
the rich repertoire of brain-inspired machine learning algorithms mostly based on networks
consisting of rate neurons (e.g., Bishop, 2006), algorithms for spiking neural networks are
rare.

1Only diploma thesis are listed, bachelor thesis are not included.
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1.5. Brain-inspired computing on a neuromorphic substrate

In this work, we explore the potential of brain-inspired computing with spiking neural
networks in general and of the Spikey system in particular: The versatility of the highly
programmable Spikey chip is shown by the implementation of many different network mod-
els (Section 1.5.1), the capability of learning was analyzed (Section 1.5.2), novel algorithms
for real world application were developed (Section 1.5.3) and network dynamics of interest
for the neuroscientific community were investigated (Section 1.5.4).

1.5.1 Universality of the computing substrate

Central processing units (CPUs) based on the von Neumann (1993) architecture are Tur-
ing complete. This means that these processors can simulate the logic of any computer
algorithm, if we ignore limitations of finite memory. CPUs are programmed by a sequence
of stored instructions, hence the same computing substrate can be used for many different
applications.

Another example for a highly re-configurable and versatile system is an field-programmable
gate array (FPGA), which comprises integrated circuits composed of logic gates and
random-access memory (RAM) blocks. The interconnection of logic gates can be pro-
grammed, and hence FPGAs can be used to prototype application-specific integrated cir-
cuits (ASICs), in which the logic is hardwired. Of course, FPGAs usually contain fewer
building blocks, are slower and consume more power than ASICs, but the uncomplicated
and rapid re-configuration of FPGAs without the need to manufacture new prototype chips
makes them a perfect candidate whenever fast and cheap prototyping is needed in digital
chip design.

Our objective is to transfer this concept of a re-configurable computing substrate to
neuromorphic systems. Obviously, configurable neurons and their interconnections, namely
configurable and optionally plastic synapses, are candidates for basic building blocks. The
Spikey neuromorphic system is one of the first prototypes of such a system that additionally
provides a high acceleration of computation, and is programmed by connecting neurons
and parametrizing neurons and synapses. Configurability of this sort allows for rapid pro-
totyping of neural algorithms, in other words models of spiking neural networks, compared
to the otherwise slow and expensive development of new application-specific neuromorphic
systems. Once an algorithm is fully developed, still an application-specific chip can be
derived from the configurable system. Then, the integration density and power efficiency
may be further improved. However, efficient algorithms for real world tasks are rare and
subject to recent research. Note that Maass (1996) has shown Turing completeness for
spiking neural networks, and hence any algorithm can potentially be implemented with
ideal and sufficiently large networks.

For fast prototyping of neural algorithms, not only the configurability of the computing
substrate is crucial, but also the ease to configure it. Therefore, the standardized model
description language PyNN is used to interface the system. On the one hand, PyNN simplifies
the daily usage of the system by both encapsulating and abstracting network descriptions
and embedding the hardware into the neuroscientific tool chain, on the other hand PyNN

facilitates the usage of the system by external users (e.g., see Publication IV).
Although the neuron and synapse models integrated on the Spikey chip are quite simple

(Section 1.1.2), a large number of network models could already be implemented (Publi-
cation I to V). The configurability of long-term plasticity on hardware was investigated
separately (Publication II).

The actual system incorporates neuron, synapse and plasticity models that were state-
of-the-art at the time of the chip development in 2005. In the meanwhile recording methods
for nervous tissue improved, which led to a deeper theoretical understanding of brain func-

15



Chapter 1. Introduction

tion (for selected recording techniques, see Helmchen, 2005; Weckstrom, 2010; Gross, 2011;
Ahrens et al., 2013). Thus, the extraction of key features promoting efficient computa-
tion stays a challenging task. This is especially true during the design phase of highly
configurable, and potentially universal, neuromorphic substrates, because revising them is
time-consuming and expensive.

1.5.2 Plasticity and learning in hardware networks

The capability of neural networks to learn a task and adapt to a changing environment is
believed to be mostly realized by the modification and formation of connections between
neurons. Additionally, plasticity plays a key role in network formation, maintenance and
repair after lesions. In the context of the vast parameter space of possible connections
between neurons on the Spikey chip, the programming of these connections could poten-
tially be replaced by learning them. Consequently, the size of configuration data is reduced
drastically, and the acceleration of the substrate causes learning to be likely faster than
the configuration of all connections. Furthermore, plasticity mechanisms may enhance the
robustness of hardware networks against a changing environment (see Section 3.5).

One approach for autonomous learning in spiking neural networks is spike-timing de-
pendent plasticity (STDP; Section 1.1.5), an asymmetric form of Hebbian learning, which
is widely used in network models (e.g., Gerstner et al., 1996; Song et al., 2000; Izhike-
vich, 2007; Cassenaer & Laurent, 2007, 2012). STDP is a local plasticity rule inherent to
synapses, and depends only on pre- and postsynaptic activity, in an unsupervised fashion.
Due to the large number of synapses, the potentially spatial separation between pre- and
postsynaptic activity (in terms of computing cores and memory), and the typically long
duration of simulations, STDP is computationally expensive on conventional computers
(Morrison et al., 2007; Davies et al., 2012). On the Spikey chip, emulations are not slowed
down by the activation of plasticity, because a plasticity rule that approximates STDP is
implemented with analog circuits massively in parallel in each synapse. Limited by the
available chip area, the STDP implementation on hardware is a tradeoff between the com-
plexity of the STDP model (see Section 1.1.5 and Publication II) and the resources needed
for each synapse (Schemmel et al., 2006). On the Spikey chip the instantaneous acquisi-
tion of temporal correlations between pre- and postsynaptic activity locally in each synapse
is separated from a comparatively infrequent and global evaluation of these correlations.
Depending on this evaluation the 4-bit synaptic weight that is also stored locally in each
synapse is updated. The functionality of this design is validated by means of an example
network that performs synchrony detection (Publication II). This study is of preparative
nature with regard to the design of the wafer-scale system that comprises circuits for STDP
in each synapse very similar to these in the Spikey chip, but allows for a more configurable
evaluation. In addition, we demonstrate the computational power of massively parallel
plasticity in each synapse by means of implementing a network model that is inspired by
the auditory system of owls (Publication III). Plasticity mechanisms in this networks au-
tonomously converts noisy spike input to a precise phase-locked signal that is the basis for
accurate sound localization.

In contrast to the above on-chip learning, synaptic weights on the Spikey chip can also
be learned by using the chip in the loop (see Publication IV and the liquid state machine
in Publication I). This means that a network is emulated on the chip and dependent on its
activity the connectivity on the chip is re-configured. Thus, plasticity is computed off-chip,
e.g., by the host computer, which is effective for computationally simple plasticity models,
e.g., models depending on the neuron’s firing rates. Computationally complex plasticity
models, like STDP, do not benefit from this approach, because off-chip solutions lack the
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1.5. Brain-inspired computing on a neuromorphic substrate

massive parallelism exploited by on-chip STDP.
In addition to long-term plasticity, the Spikey chip also implements short-term plas-

ticity (Section 1.1.4; Schemmel et al., 2007), which is used to stabilize network activity
in several of the presented networks (see balanced random network and cortical model in
Publication I).

1.5.3 Hardware usage for practical applications

For everyday applications neuromorphic systems offer several advantages compared to con-
ventional processors. Considering the computational power in terms of running neural net-
works, neuromorphic systems are usually compact and power efficient making them perfect
candidates for mobile systems. However, dependent on the computational task, e.g., de-
terministic operations like summations, conventional processors may be still advantageous.
Hence, neuromorphic devices can be seen as complementary to conventional computers.
Due to the fact that both computing architectures are usually implemented in silicon, the
advantages of both architectures can be combined by efficiently integrating them on a sin-
gle chip. One example of such an integration is a general purpose processor that is used
to control plasticity on the wafer-scale system (Friedmann et al., 2013; Friedmann, 2013).

Although not integrated on a single chip, in this work, we show a hybrid implementation
of a classifier for multivariate data (Publication IV). Real-world data is pre-processed on
the host computer, and then filtered and classified by a network implemented on the
Spikey chip. Furthermore, similar filters may be used to effectively reduce the information
in large data streams to the components that are of interest for further data processing.
This approach is inspired by the nervous system, of which we know that it performs this
task with remarkable efficiency, e.g., in the context of vision. However, the Spikey system
is still of prototype nature, its network size is rather limited, and additional features of
neural networks may be missing to address complex real-world problems (for discussion,
see Chapter 3).

The application of accelerated systems in robotics is difficult, because the time con-
stants of sensor data and the computing substrate are likely to differ by several orders
of magnitude. If sensor data is encoded by spikes, the sensor activity has to be buffered
and temporally compressed such that its temporal structure is compatible with the accel-
erated hardware. On first sight this sounds unsuitable, but because the network time of
the accelerated system is in general much shorter than the acquisition time of the sensor,
multiple network emulations can be executed during acquisition. This allows to improve
the network performance by presenting several variants of the sensor data (e.g., Cireşan
et al., 2012) or to virtually increase the network size by sequentially emulating partitions
of the network. However, these partitions have to be arranged in a feed-forward structure
to avoid unsolvable interdependencies. In the case of real-valued sensor data, very small
response times can be achieved with accelerated hardware (Publication IV).

1.5.4 Relevance of the hardware for neuroscience

Besides practical applications, neuromorphic systems have a great potential for Computa-
tional Neuroscience. Especially accelerated systems can provide high performance com-
puting substrates allowing for studies not feasible for conventional supercomputers, e.g.,
for studies in which short emulation times are of advantage (see last paragraph in this Sec-
tion and Müller, 2014). In addition, network emulations on Spikey are usually by several
orders of magnitude more power efficient than simulations of the same network model on
conventional computers (see Section 3.4). Note that the number of neurons on the Spikey
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chip is rather small and limits its spectrum of application in the neuroscience commu-
nity. However, a larger system operating at comparable acceleration is under development
(Schemmel et al., 2010; Brüderle et al., 2011).

Programs for neuromorphic hardware systems, i.e., network descriptions, are formu-
lated in a language that is native for the hardware they are executed on, because biological
entities are mapped to their physical representations on hardware. However, so far, few
spiking network models exist that are suitable for a neuromorphic implementation. Usually,
model parameters are homogeneous and fine-tuned, and there is no standardized proce-
dure to test these models for robustness against parameter variations that are inevitable
for analog neuromorphic hardware. Consequently, following the design of the nervous sys-
tem, e.g., the recovery after a stroke, networks and plasticity rules have to be developed
to improve and stabilize network performance on unreliable computing substrates. Pop-
ulation coding and redundancy is one approach towards robust functional networks on
analog neuromorphic hardware (see Publication IV and cortical model in Publication I).
In combination with online plasticity, noisy and heterogeneous system can even become
precise measuring instruments (Publication III).

While in Publication I and III established network models were transferred to the Spikey
system and the focus lies on the system’s versatility, the study in Publication V revealed
that the decorrelating effect of recurrent inhibition is diminished by heterogeneity in net-
work parameters, and hence demonstrates exemplarily how neuroscientific questions can
be approached by analog neuromorphic hardware. The results of the latter study are not
only relevant for the understanding of dynamics in rather non-functional networks, but are
of general importance for the implementation of brain-inspired networks on heterogeneous
substrates, e.g., analog neuromorphic hardware.

Here, we exploited the high acceleration of the system to gather a vast amount of data
providing proper statistics for our analysis. Despite parallelization in conventional com-
puters, the Spikey chip outperforms desktop computers in terms of fast and power-efficient
network simulations (see Section 1 in Supplements of Publication V and Section 3.4). Of
course, comparable network simulations can be parallelized across multiple CPU cores or
CPUs, however, this does not significantly affect the power efficiency of computation. Fur-
thermore, accelerated operation is of even more advantage if networks can not be simulated
in parallel. This will for example be the case, if simulations depend on previous simulations
like in iterative processes (e.g., see iterative learning in Publication IV).
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Abstract

In this study, we present a highly configurable neuromorphic computing substrate and
use it for emulating several types of neural networks. At the heart of this system lies
a mixed-signal chip, with analog implementations of neurons and synapses and digital
transmission of action potentials. Major advantages of this emulation device, which
has been explicitly designed as a universal neural network emulator, are its inherent
parallelism and high acceleration factor compared to conventional computers. Its
configurability allows the realization of almost arbitrary network topologies and the
use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent
to analog circuitry is reduced by calibration routines. An integrated development
environment allows neuroscientists to operate the device without any prior knowledge
of neuromorphic circuit design. As a showcase for the capabilities of the system, we
describe the successful emulation of six different neural networks which cover a broad
spectrum of both structure and functionality.

†These authors contributed equally to this work. See acknowledgements for details.
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1 Introduction

By nature, computational neuroscience has a high demand for powerful and efficient de-
vices for simulating neural network models. In contrast to conventional general-purpose
machines based on a von-Neumann architecture, neuromorphic systems are, in a rather
broad definition, a class of devices which implement particular features of biological neural
networks in their physical circuit layout (Mead, 1989; Indiveri et al., 2009; Renaud et al.,
2010). In order to discern more easily between computational substrates, the term em-
ulation is generally used when referring to neural networks running on a neuromorphic
back-end.

Several aspects motivate the neuromorphic approach. The arguably most characteristic
feature of neuromorphic devices is inherent parallelism enabled by the fact that individual
neural network components (essentially neurons and synapses) are physically implemented
in silico. Due to this parallelism, scaling of emulated network models does not imply slow-
down, as is usually the case for conventional machines. The hard upper bound in network
size (given by the number of available components on the neuromorphic device) can be bro-
ken by scaling of the devices themselves, e.g., by wafer-scale integration (Schemmel et al.,
2010) or massively interconnected chips (Merolla et al., 2011). Emulations can be further
accelerated by scaling down time constants compared to biology, which is enabled by deep
submicron technology (Schemmel et al., 2006, 2010; Brüderle et al., 2011). Unlike high-
throughput computing with accelerated systems, real-time systems are often specialized
for low power operation (e.g., Indiveri et al., 2006; Farquhar & Hasler, 2005).

However, in contrast to the unlimited model flexibility offered by conventional simula-
tion, the network topology and parameter space of neuromorphic systems are often dedi-
cated for predefined applications and therefore rather restricted (e.g., Serrano-Gotarredona
et al., 2006; Merolla & Boahen, 2006; Akay, 2007; Chicca et al., 2007). Enlarging the con-
figuration space always comes at the cost of hardware resources by occupying additional
chip area. Consequently, the maximum network size is reduced, or the configurability of
one aspect is decreased by increasing the configurability of another. Still, configurability
costs can be counterbalanced by decreasing precision. This could concern the size of in-
tegration time steps (Imam et al., 2012a), the granularity of particular parameters (Pfeil
et al., 2012) or fixed-pattern noise affecting various network components. At least the
latter can be, to some extent, moderated through elaborate calibration methods (Neftci &
Indiveri, 2010; Brüderle et al., 2011; Gao et al., 2012).

In this study, we present a user-friendly integrated development environment that
can serve as a universal neuromorphic substrate for emulating different types of neural
networks. Apart from almost arbitrary network topologies, this system provides a vast
configuration space for neuron and synapse parameters (Schemmel et al., 2006; Brüderle
et al., 2011). Reconfiguration is achieved on-chip and does not require additional support
hardware. While some models can easily be transferred from software simulations to the
neuromorphic substrate, others need modifications. These modifications take into account
the limited hardware resources and compensate for fixed-pattern noise (Kaplan et al., 2009;
Brüderle et al., 2009, 2010, 2011; Bill et al., 2010). In the following, we show six more
networks emulated on our hardware system, each requiring its own hardware configuration
in terms of network topology and neuronal as well as synaptic parameters.

Six networks on a universal neuromorphic computing substrate
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Figure 1: Microphotograph of the Spikey chip (fabricated in a 180 nm CMOS process
with die size 5 × 5mm2). Each of its 384 neurons can be arbitrarily connected to any
other neuron. In the following, we give a short overview of the technical implementation of
neural networks on the Spikey chip. (A) Within the synapse array 256 synapse line drivers
convert incoming digital spikes (blue) into a linear voltage ramp (red) with a falling slew
rate tfall. For simplicity, the slew rate of the rising edge is not illustrated here, because it
is chosen very small for all emulations in this study. Each of these synapse line drivers are
individually driven by either another on-chip neuron (int), e.g., the one depicted in (C),
or an external spike source (ext). (B) Within the synapse, depending on its individually
configurable weight wi, the linear voltage ramp (red) is then translated into a current
pulse (green) with exponential decay. These postsynaptic pulses are sent to the neuron via
the excitatory (exc) and inhibitory (inh) input line, shared by all synapses in that array
column. (C) Upon reaching the neuron circuit, the total current on both input lines is
converted into conductances, respectively. If the membrane potential Vm crosses the firing
threshold Vth, a digital pulse (blue) is generated, which can be recorded and fed back into
the synapse array. After any spike, Vm is set to Vreset for a refractory time period of τrefrac.
Neuron and synapse line driver parameters can be configured as summarized in Table 1.

2 The Neuromorphic System

The central component of our neuromorphic hardware system is the neuromorphic mi-
crochip Spikey . It contains analog very-large-scale integration (VLSI) circuits modeling
the electrical behavior of neurons and synapses (Figure 1). In such a physical model, mea-
surable quantities in the neuromorphic circuitry have corresponding biological equivalents.
For example, the membrane potential Vm of a neuron is modeled by the voltage over a
capacitor Cm that, in turn, can be seen as a model of the capacitance of the cell mem-
brane. In contrast to numerical approaches, dynamics of physical quantities like Vm evolve
continuously in time. We designed our hardware systems to have time constants approx-
imately 104 times faster than their biological counterparts allowing for high-throughput
computing. This is achieved by reducing the size and hence the time constant of electri-
cal components, which also allows for more neurons and synapses on a single chip. To
avoid confusion between hardware and biological domains of time, voltages and currents,
all parameters are specified in biological domains throughout this study.
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2.1 The Neuromorphic Chip

On Spikey (Figure 1), a VLSI version of the standard leaky integrate-and-fire (LIF) neuron
model with conductance-based synapses is implemented (Dayan & Abbott, 2001):

Cm
dVm

dt
= −gl(Vm − El)−

∑

i

gi(Vm − Ei) (1)

For its hardware implementation see Figure 1, Schemmel et al. (2006) and Indiveri et al.
(2011).

Synaptic conductances gi (with the index i running over all synapses) drive the mem-
brane potential Vm towards the reversal potential Ei, with Ei ∈ {Eexc, Einh}. The time
course of the synaptic activation is modeled by

gi(t) = pi(t) · wi · g
max
i (2)

where gmax
i are the maximum conductances and wi the weights for each synapse, respec-

tively. The time course pi(t) of synaptic conductances is a linear transformation of the
current pulses shown in Figure 1 (green), and hence an exponentially decaying function of
time. The generation of conductances at the neuron side is described in detail by Indiveri
et al. (2011), postsynaptic potentials are measured by Schemmel et al. (2007).

The implementation of spike-timing dependent plasticity (STDP; Bi & Poo, 1998; Song
et al., 2000) modulating wi over time is described in Schemmel et al. (2006) and Pfeil
et al. (2012). Correlation measurement between pre- and post-synaptic action potentials
is carried out in each synapse, and the 4-bit weight is updated by an on-chip controller
located in the digital part of the Spikey chip. However, STDP will not be further discussed
in this study.

Short-term plasticity (STP) modulates gmax
i (Schemmel et al., 2007) similar to the

model by Tsodyks & Markram (1997) and Markram et al. (1998). On hardware, STP
can be configured individually for each synapse line driver that corresponds to an axonal
connection in biological terms. It can either be facilitating or depressing.

The propagation of spikes within the Spikey chip is illustrated in Figure 1 and described
in detail by Schemmel et al. (2006). Spikes enter the chip as time-stamped events using
standard digital signaling techniques that facilitate long-range communication, e.g., to the
host computer or other chips. Such digital packets are processed in discrete time in the
digital part of the chip, where they are transformed into digital pulses entering the synapse
line driver (blue in Figure 1A). These pulses propagate in continuous time between on-
chip neurons, and are optionally transformed back into digital spike packets for off-chip
communication.

2.2 System Environment

The Spikey chip is mounted on a network module described and schematized in Fieres
et al. (2004) and Figure 2, respectively. Digital spike and configuration data is transferred
via direct connections between a field-programmable gate array (FPGA) and the Spikey
chip. Onboard digital-to-analog converter (DAC) and analog-to-digital converter (ADC)
components supply external parameter voltages to the Spikey chip and digitize selected
voltages generated by the chip for calibration purposes. Furthermore, up to eight selected
membrane voltages can be recorded in parallel by an oscilloscope. Because communication
between a host computer and the FPGA has a limited bandwidth that does not satisfy
real-time operation requirements of the Spikey chip, experiment execution is controlled by
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Figure 2: Integrated development environment: User access to the Spikey chip is provided
using the PyNN neural network modeling language. The control software controls and
interacts with the network module which is operating the Spikey chip. The RAM size
(512MB) limits the total number of spikes for stimulus and spike recordings to approx.
2 · 108 spikes. The required data for a full configuration of the Spikey chip has a size of
approx. 100 kB.

the FPGA while operating the Spikey chip in continuous time. To this end, all experiment
data is stored in the local random access memory (RAM) of the network module. Once the
experiment data is transferred to the local RAM, emulations run with an acceleration factor
of 104 compared to biological real-time. This acceleration factor applies to all emulations
shown in this study, independent of the size of networks.

Execution of an experiment is split up into three steps (Figure 2). First, the control
software within the memory of the host computer generates configuration data (Table 1,
e.g., synaptic weights, network connectivity, etc.), as well as input stimuli to the network.
All data is stored as a sequence of commands and is transferred to the memory on the
network module. In the second step, a playback sequencer in the FPGA logic interprets
this data and sends it to the Spikey chip, as well as triggers the emulation. Data produced
by the chip, e.g., neuronal activity in terms of spike times, is recorded in parallel. In the
third and final step, this recorded data stored in the memory on the network module is
retrieved and transmitted to the host computer, where they are processed by the control
software.

Having a control software that abstracts hardware greatly simplifies modeling on the
neuromorphic hardware system. However, modelers are already struggling with multiple
incompatible interfaces to software simulators. That is why our neuromorphic hardware
system supports PyNN, a widely used application programming interface (API) that strives
for a coherent user interface, allowing portability of neural network models between differ-
ent software simulation frameworks (e.g., NEST or NEURON) and hardware systems (e.g., the
Spikey system). For details see Gewaltig & Diesmann (2007); Eppler et al. (2009) for NEST,
Carnevale & Hines (2006); Hines et al. (2009) for NEURON, Brüderle et al. (2011, 2009) for
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the Spikey chip, and Davison et al. (2009, 2010) for PyNN, respectively.

2.3 Configurability

In order to facilitate the emulation of network models inspired by biological neural struc-
tures, it is essential to support the implementation of different (cortical) neuron types.
From a mathematical perspective, this can be achieved by varying the appropriate param-
eters of the implemented neuron model (Equation 1).

To this end, the Spikey chip provides 2969 different analog parameters (Table 1) stored
on current memory cells that are continuously refreshed from a digital on-chip memory.
Most of these cells deliver individual parameters for each neuron (or synapse line driver),
e.g., leakage conductances gl. Due to the size of the current-voltage conversion circuitry
it was not possible to provide individual voltage parameters, such as, e.g., El, Eexc and
Einh, for each neuron. As a consequence, groups of 96 neurons share most of these voltage
parameters. Parameters that can not be controlled individually are delivered by global
current memory cells.

In addition to the possibility of controlling analog parameters, the Spikey chip also offers
an almost arbitrary configurability of the network topology. As illustrated in Figure 1,
the fully configurable synapse array allows connections from synapse line drivers (located
alongside the array) to arbitrary neurons (located below the array) via synapses whose
weights can be set individually with a 4-bit resolution. This limits the maximum fan-
in to 256 synapses per neuron, which can be composed of up to 192 synapses from on-
chip neurons, and up to 256 synapses from external spike sources. Because the total
number of neurons exceeds the number of inputs per neuron, an all-to-all connectivity is
not possible. For all networks presented in this study, the connection density is much lower
than realizable on the chip, which supports the chosen trade-off between inputs per neuron
and total neuron count.

2.4 Calibration

Device mismatch that arises from hardware production variability causes fixed-pattern
noise, which causes parameters to vary from neuron to neuron as well as from synapse
to synapse. Electronic noise (including thermal noise) also affects dynamic variables, as,
e.g., the membrane potential Vm. Consequently, experiments will exhibit some amount
of both neuron-to-neuron and trial-to-trial variability given the same input stimulus. It
is, however, important to note that these types of variations are not unlike the neuron
diversity and response stochasticity found in biology (Gupta et al., 2000; Maass et al.,
2002; Marder & Goaillard, 2006; Rolls & Deco, 2010).

To facilitate modeling and provide repeatability of experiments on arbitrary Spikey
chips, it is essential to minimize these effects by calibration routines. Many calibrations
have directly corresponding biological model parameters, e.g., membrane time constants
(described in the following), firing thresholds, synaptic efficacies or PSP shapes. Others
have no equivalents, like compensations for shared parameters or workarounds of defects
(e.g., Kaplan et al., 2009; Bill et al., 2010; Pfeil et al., 2012). In general, calibration
results are used to improve the mapping between biological input parameters and the
corresponding target hardware voltages and currents, as well as to determine the dynamic
range of all model parameters (e.g., Brüderle et al., 2009).

While the calibration of most parameters is rather technical, but straightforward (e.g.,
all neuron voltage parameters), some require more elaborate techniques. These include the
calibration of τm, STP as well as synapse line drivers, as we describe later for individual
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Scope Name Type Description

Neuron
circuits (A)

n/a in Two digital configuration bits activating the neuron and readout of its membrane
voltage

gl in Bias current for neuron leakage circuit
τrefrac in Bias current controlling neuron refractory time
El sn Leakage reversal potential
Einh sn Inhibitory reversal potential
Eexc sn Excitatory reversal potential
Vth sn Firing threshold voltage
Vreset sn Reset potential

Synapse line
drivers (B)

n/a il Two digital configuration bits selecting input of line driver
n/a il Two digital configuration bits setting line excitatory or inhibitory

trise, tfall il Two bias currents for rising and falling slew rate of presynaptic voltage ramp
gmax
i

il Bias current controlling maximum voltage of presynaptic voltage ramp

Synapses (B) w is 4-bit weight of each individual synapse

STP
related (C)

n/a il Two digital configuration bits selecting short-term depression or facilitation
USE il Two digital configuration bits tuning synaptic efficacy for STP
n/a sl Bias voltage controlling spike driver pulse length

τrec, τfacil sl Voltage controlling STP time constant
I sl Short-term facilitation reference voltage
R sl Short-term capacitor high potential

STDP
related (D)

n/a il Bias current controlling delay for presynaptic correlation pulse (for calibration
purposes)

A+/- sl Two voltages dimensioning charge accumulation per (anti-)causal correlation
measurement

n/a sl Two threshold voltages for detection of relevant (anti-)causal correlation
τSTDP g Voltage controlling STDP time constants

Table 1: List of analog current and voltage parameters as well as digital configuration bits.
Each with corresponding model parameter names, excluding technical parameters that
are only relevant for correctly biasing analog support circuitry or controlling digital chip
functionality. Electronic parameters that have no direct translation to model parameters
are denoted n/a. The membrane capacitance is fixed and identical for all neuron circuits
(Cm = 0.2 nF in biological value domain). Parameter types: (i) controllable for each
corresponding circuit: 192 for neuron circuits (denoted with subscript n), 256 for synapse
line drivers (denoted with subscript l), 49152 for synapses (denoted with subscript s), (s)
two values, shared for all even/odd neuron circuits or synapse line drivers, respectively,
(g) global, one value for all corresponding circuits on the chip. All numbers refer to
circuits associated to one synapse array and are doubled for the whole chip. For technical
reasons, the current revision of the chip only allows usage of one synapse array of the
chip. Therefore, all experiments presented in this paper are limited to a maximum of 192
neurons. For parameters denoted by (A) see Equation 1 and Schemmel et al. (2006), for
(B) see Figure 1, Equation 2 and Dayan & Abbott (2001), for (C) see Schemmel et al.
(2007) and for (D) see Schemmel et al. (2006) and Pfeil et al. (2012).
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Figure 3: Calibration results for membrane time constants: Before calibration (left), the
distribution of τm values has a median of τ̃m = 15.1ms with 20th and 80th percentiles of
τ20m = 10.3ms and τ80m = 22.1ms, respectively. After calibration (right), the distribution
median lies closer to the target value and narrows significantly: τ̃m = 11.2ms with τ20m =
10.6ms and τ80m = 12.0ms. Two neurons were discarded, because the automated calibration
algorithm did not converge.

network models. The membrane time constant τm = Cm/gl differs from neuron to neuron
mostly due to variations in the leakage conductance gl. However, gl is independently
adjustable for every neuron. Because this conductance is not directly measurable, an
indirect calibration method is employed. To this end, the threshold potential is set below
the resting potential. Following each spike, the membrane potential is clamped to Vreset

for an absolute refractory time τrefrac, after which it evolves exponentially towards the
resting potential El until the threshold voltage triggers a spike and the next cycle begins.
If the threshold voltage is set to Vth = El − 1/e · (El − Vreset), the spike frequency equals
1/(τm+τrefrac), thereby allowing an indirect measurement and calibration of gl and therefore
τm. For a given τm and τrefrac = const, Vth can be calculated. An iterative method is applied
to find the best-matching Vth, because the exact hardware values for El, Vreset and Vth are
only known after the measurement. The effect of calibration on a typical chip can best be
exemplified for a typical target value of τm = 10ms. Figure 3 depicts the distribution of
τm of a typical chip before and after calibration.

The STP hardware parameters have no direct translation to model equivalents. In fact,
the implemented transconductance amplifier tends to easily saturate within the available
hardware parameter ranges. These non-linear saturation effects can be hard to handle in
an automated fashion on an individual circuit basis. Consequently, the translation of these
parameters is based on STP courses averaged over several circuits.

3 Hardware Emulation of Neural Networks

In the following, we present six neural network models that have been emulated on the
Spikey chip. Most of the emulation results are compared to those obtained by software
simulations in order to verify the network functionality and performance. For all these
simulations the tool NEST (Gewaltig & Diesmann, 2007) or NEURON (Carnevale & Hines,
2006) is used.

3.1 Synfire Chain with Feedforward Inhibition

Architectures with a feedforward connectivity have been employed extensively as compu-
tational components and as models for the study of neuronal dynamics. Synfire chains are
feedforward networks consisting of several neuron groups where each neuron in a group
projects to neurons in the succeeding group.
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They have been originally proposed to account for the presence of behaviorally-related,
highly precise firing patterns (Baker et al., 2001; Prut et al., 1998). Further properties of
such structures have been studied extensively, including activity transport (Aertsen et al.,
1996; Diesmann et al., 1999; Litvak et al., 2003), external control of information flow
(Kremkow et al., 2010), computational capabilities (Abeles et al., 2004; Vogels & Abbott,
2005; Schrader et al., 2010), complex dynamic behavior (Yazdanbakhsh et al., 2002) and
their embedding into surrounding networks (Aviel et al., 2003; Tetzlaff et al., 2005; Schrader
et al., 2008). Kremkow et al. (2010) have shown that feedforward inhibition can increase
the selectivity to the initial stimulus and that the local delay of inhibition can modify this
selectivity.

3.1.1 Network Topology

The presented network model is an adaptation of the feedforward network described in
Kremkow et al. (2010).

The network consists of several neuron groups, each comprising nRS = 100 excitatory
regular spiking (RS) and nFS = 25 inhibitory fast spiking (FS) cells. All neurons are mod-
eled as LIF neurons with exponentially decaying synaptic conductance courses. According
to Kremkow et al. (2010) all neurons have identical parameters.

As shown in Figure 4A, RS neurons project to both RS and FS populations in the
subsequent group while the FS population projects to the RS population in its local group.
Each neuron receives a fixed number of randomly chosen inputs from each presynaptic
population. The first group is stimulated by a population of nRS external spike sources
with identical connection probabilities as used for RS groups within the chain.

Two different criteria are employed to assess the functionality of the emulated synfire
chain. The first, straightforward benchmark is the stability of signal propagation. An
initial synchronous stimulus is expected to cause a stable propagation of activity, with each
neuron in an RS population spiking exactly once. Deviations from the original network
parameters can cause the activity to grow rapidly, i.e., each population emits more spikes
than its predecessor, or stall pulse propagation.

The second, broader characterization follows Kremkow et al. (2010), who has analyzed
the response of the network to various stimuli. The stimulus is parametrized by the vari-
ables a and σ. For each neuron in the stimulus population a spike times are generated by
sampling them from a Gaussian distribution with common mean and standard deviation.
σ is defined as the standard deviation of the spike times of all source neurons. Spiking
activity that is evoked in the subsequent RS populations is characterized analogously by
measuring a and σ.

Figure 4C shows the result of a software simulation of the original network. The filter
properties of the network are reflected by a separatrix dividing the state space shown in
Figure 4C and D into two areas, each with a different fixed point. First, the basin of
attraction (dominated by red circles in Figure 4C) from which stable propagation can be
evoked and second, the remaining region (dominated by crosses in Figure 4C) where any
initial activity becomes extinguished. This separatrix determines which types of initial
input lead to a stable signal propagation.

3.1.2 Hardware Emulation

The original network model could not be mapped directly to the Spikey chip because it
requires 125 neurons per group, while on the chip only 192 neuron circuits are available.
Further constraints were caused by the fixed synaptic delays, which are determined by the
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Figure 4: (A) Synfire chain with feedforward inhibition. The background is only utilized
in the original model, where it is implemented as random Gaussian current. For the
presented hardware implementation it has been omitted due to network size constraints.
As compensation for missing background stimuli, the resting potential was increased to
ensure a comparable excitability of the neurons. (B) Hardware emulation. Top: Raster
plot of pulse packet propagation 1000ms after initial stimulus. Spikes from RS groups are
shown in red and spikes from FS groups are denoted by blue color and background. Bottom:
Membrane potential of the first neuron in the fourth RS group, which is denoted by a dashed
horizontal line. The cycle duration is approximately 20ms. (C) State space generated with
software simulations of the original model. The position of each marker indicates the (σ, a)
parameters of the stimulus while the color encodes the activity in the RS population of the
third synfire group. Lack of activity is indicated with a cross. The evolution of the pulse
packet parameters is shown for three selected cases by a series of arrows. Activity either
stably propagates with fixed point (σ, a) = (0.1ms, 1) or extinguishes with fixed point
(σ, a) = (0ms, 0). (D) Same as (C), but emulated on the FACETS chip-based system.
The activity in the last group is located either near (σ, a) = (0ms, 0) or (0.3ms, 1). The
difference to software simulations is explained in Section 3.1.2.

speed of signal propagation on the chip. The magnitude of the delay is approximately 1ms
in biological time.

By simple modifications of the network, we were able to qualitatively reproduce both
benchmarks defined in Section 3.1.1. Two different network configurations were used,
each adjusted to the requirements of one benchmark. In the following, we describe these
differences, as well as the results for each benchmark.

To demonstrate a stable propagation of pulses, a large number of consecutive group
activations was needed. The chain was configured as a loop by connecting the last group to
the first, allowing the observation of more pulse packet propagations than there are groups
in the network.

The time between two passes of the pulse packet at the same synfire group needs to
be maximized to allow the neurons to recover (see voltage trace in Figure 4B). This is
accomplished by increasing the group count and consequently reducing the group size.
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As too small populations cause an unreliable signal propagation, which is mainly caused
by inhomogeneities in the neuron behavior, nRS = nFS = 8 was chosen as a satisfactory
trade-off between propagation stability and group size. Likewise, the proportion of FS
neurons in a group was increased to maintain a reliable inhibition. To further improve
propagation properties, the membrane time constant was lowered for all neurons by raising
gl to its maximum value. The strength of inhibition was increased by setting the inhibitory
synaptic weight to its maximum value and lowering the inhibitory reversal potential to its
minimum value. Finally, the synaptic weights RSi → RSi + 1 and RSi → FSi + 1 were
adjusted. With these improvements we could observe persisting synfire propagation on the
oscilloscope 2 h wall-clock time after stimulation. This corresponds to more than 2 years
in biological real-time.

The second network demonstrates the filtering properties of a hardware-emulated syn-
fire chain with feedforward inhibition. This use case required larger synfire groups than
in the first case as otherwise, the total excitatory conductance caused by a pulse packet
with large σ was usually not smooth enough due to the low number of spikes. Thus, three
groups were placed on a single chip with nRS = 45 and nFS = 18. The resulting evolution
of pulse packets is shown in Figure 4D. After passing three groups, most runs resulted
in either very low activity in the last group or were located near the point (0.3ms, 1), as
illustrated in Figure 4D.

Emulations on hardware differ from software simulations in two important points: First,
the separation in the parameter space of the initial stimulus is not as sharply bounded,
which is demonstrated by the fact that occasionally, significant activity in the last group
can be evoked by stimuli with large σ and large a, as seen in Figure 4D. This is a combined
effect due to the reduced population sizes and the fixed pattern noise in the neuronal and
synaptic circuits. Second, a stimulus with a small a can evoke weak activity in the last
group, which is attributed to a differing balance between excitation and inhibition. In
hardware, a weak stimulus causes both, the RS and FS populations to response weakly
which leads to a weak inhibition of the RS population, allowing the pulse to reach the last
synfire group. Hence, the pulse fades slowly instead of being extinguished completely. In
the original model, the FS population is more responsive and prevents the propagation
more efficiently.

Nevertheless, the filtering properties of the network are apparent. The quality of the
filter could be improved by employing the original group size, which would require using a
large-scale neuromorphic device (see, e.g., Schemmel et al., 2010).

Our hardware implementation of the synfire chain model demonstrates the possibility to
run extremely long lasting experiments due to the high acceleration factor of the hardware
system. Because the synfire chain model itself does not require sustained external stimulus,
it could be employed as an autonomous source of periodic input to other experiments.

3.2 Balanced Random Network

Brunel (2000) reports balanced random networks (BRNs) exhibiting, among others, asyn-
chronous irregular network states with stationary global activity.

3.2.1 Network Topology

BRNs consist of an inhibitory and excitatory population of neurons, both receiving feed-
forward connections from two populations of Poisson processes mimicking background ac-
tivity. Both neuron populations are recurrently connected including connections within
the populations. All connections are realized with random and sparse connections of prob-
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ability p. In this study, synaptic weights for inhibitory connections are chosen four times
larger than those for excitatory ones. In contrast to the original implementation using
12500 neurons, we scaled this network by a factor of 100 while preserving its firing behav-
ior.

If single cells fire irregularly, the coefficient of variation

CV =
σT

T
(3)

of interspike intervals has values close to or higher than one (Dayan & Abbott, 2001). T
and σT are the mean and standard deviation of these intervals. Synchrony between two
cells can be measured by calculating the correlation coefficient

CC =
cov(n1, n2)√
var(n1)var(n2)

(4)

of their spike trains n1 and n2, respectively (Perkel et al., 1967). The variance (var) and
covariance (cov) are calculated by using time bins with 2ms duration (Kumar et al., 2008).

Brüderle et al. (2010) have shown another approach to investigate networks inspired by
Brunel (2000). Their focus have been the effects of network parameters and STP on the
firing rate of the network. In our study, we show that such BRNs can show an asynchronous
irregular network state, when emulated on hardware.

3.2.2 Hardware Emulation

In addition to standard calibration routines (Section 2.4), we have calibrated the chip ex-
plicitly for the BRN shown in Figure 5A. In the first of two steps, excitatory and inhibitory
synapse line drivers were calibrated sequentially towards equal strength, respectively, but
with inhibition four times stronger than excitation. To this end, all available neurons
received spiking activity from a single synapse line driver, thereby averaging out neuron-
to-neuron variations. The shape of synaptic conductances (specifically tfall and gmax

i ) were
adjusted to obtain a target mean firing rate of 10Hz over all neurons. Similarly, each driver
was calibrated for its inhibitory operation mode. All neurons were strongly stimulated by
an additional driver with its excitatory mode already calibrated, and again the shape of
conductances, this time for inhibition, was adjusted to obtain the target rate.

Untouched by this prior calibration towards a target mean rate, neuron excitability
still varied between neurons and was calibrated consecutively for each neuron in a second
calibration step. For this, all neurons of the BRN were used to stimulate a single neuron
with a total firing rate that was uniformly distributed among all inputs and equal to
the estimated firing rate of the final network implementation. Subsequently, all afferent
synaptic weights to this neuron were scaled in order to adapt its firing rate to the target
rate.

To avoid a self-reinforcement of network activity observed in emulations on the hard-
ware, efferent connections of the excitatory neuron population were modeled as short-term
depressing. Nevertheless, such BRNs still show an asynchronous irregular network state
(Figure 5B).

Figure 5C show recordings of a BRN emulation on a calibrated chip with neurons
firing irregularly and asynchronously. Note that CV ≥ 1 does not necessarily guarantee an
exponential interspike interval distribution and even less Poisson firing. However, neurons
within the BRN clearly exhibit irregular firing (compare raster plots of Figure 5B and C).

A simulation of the same network topology and stimulus using software tools produced
similar results. Synaptic weights were not known for the hardware emulation, but defined
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Figure 5: (A) Network topology of a balanced random network. Populations consisting of
Ne = 100 excitatory and Ni = 25 inhibitory neurons (gray circles), respectively, are stim-
ulated by populations of Poisson sources (black circles). We use Np = 100 independent
sources for excitation and Nq = 25 for inhibition. Arrows denote projections between these
populations with connection probabilities p = 0.1, with solid lines for excitatory and dotted
lines for inhibitory connections. Dot and dash lines are indicating excitatory projections
with short-term depression. (B) Top: Raster plot of a software simulation. Populations
of excitatory and inhibitory neurons are depicted with white and gray background, respec-
tively. Note that for clarity only the time interval [13 s, 14 s] of a 20 s emulation is shown.
For the full 20 s emulation, we have measured CV = 0.96 ± 0.09 (mean over all neurons)
and CC = 0.010 ± 0.017 (mean over 1000 random chosen pairs of neurons), respectively.
Bottom: Recorded membrane potential of an arbitrary excitatory neuron (neuron index
3, highlighted with a red arrow in the above raster plot). (C) Same network topology
and stimulus as in (B), but emulated on the Spikey chip, resulting in CV = 1.02 ± 0.16
and CC = 0.014± 0.019. Note that the membrane recordings are calibrated such that the
threshold and reset potential match those of the software counterpart.

by the target firing rates using the above calibration. A translation to biological param-
eters is possible, but would have required further measurements and was not of further
interest in this context. Instead, for software simulations, the synaptic weight for excita-
tory connections were chosen to fit the mean firing rate of the hardware emulation (approx.
9Hz). Then, the weight of inhibitory connections were chosen to preserve the ratio between
inhibitory and excitatory weights.

Membrane dynamics of single neurons within the network are comparable between
hardware emulations and software simulations (Figure 5B and C). Evidently, spike times
differ between the two approaches due to various hardware noise sources (Section 2.4).
However, in “large” populations of neurons (Ne + Ni = 125 neurons), we observe that
these phenomena have qualitatively no effect on firing statistics, which are comparable
to software simulations (compare raster plots of Figure 5B and C). The ability to repro-
duce these statistics is highly relevant in the context of cortical models which rely on
asynchronous irregular firing activity for information processing (e.g., van Vreeswijk &
Sompolinsky, 1996).
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3.3 Soft Winner-Take-All Network

Soft winner-take-all (sWTA) computation is often viewed as an underlying principle in
models of cortical processing (Grossberg, 1973; Maass, 2000; Itti & Koch, 2001; Douglas &
Martin, 2004; Oster et al., 2009; Lundqvist et al., 2010). The sWTA architecture has many
practical applications, for example contrast enhancement, or making a decision which of
two concurrent inputs is larger. Many neuromorphic systems explicitly implement sWTA
architectures (Lazzaro et al., 1988; Chicca et al., 2007; Neftci et al., 2011).

3.3.1 Network Topology

We implemented an sWTA network that is composed of a ring-shaped layer of recurrently
connected excitatory and a common pool of inhibitory neurons (Figure 6A), following
the implementation by Neftci et al. (2011). Excitatory neurons project to the common
inhibitory pool and receive recurrent feedback from there. In addition, excitatory neurons
have recurrent excitatory connections to their neighbors on the ring. The strength of these
decays with increasing distance on the ring, following a Gaussian profile with a standard
deviation of σrec = 5 neurons. External stimulation is also received through a Gaussian
profile, with the mean µext expressing the neuron index that receives input with maximum
synaptic strength. Synaptic input weights to neighbors of that neuron decay according to
a standard deviation of σext = 3 neurons. We clipped the input weights to zero beyond
σext · 3. Each neuron located within the latter Gaussian profile receives stimulation from
five independent Poisson spike sources each firing at rate r. Depending on the contrast
between the input firing rates r1 and r2 of two stimuli applied to opposing sides of the
ring, one side of the ring “wins” by firing with a higher rate and thereby suppressing the
other.

3.3.2 Hardware Emulation

We assessed the efficiency of this sWTA circuit by measuring the reduction in firing rate
exerted in neurons when the opposite side of the ring is stimulated. We stimulated one
side of the ring with a constant, and the opposite side with a varying firing rate. In case
of hardware emulations, each stimulus was distributed and hence averaged over multiple
line drivers in order to equalize stimulation strength among neurons. For both back-ends,
inhibitory weights were chosen four times stronger than excitatory ones (using the synapse
line driver calibration of Section 3.2).

The firing rate of the reference side decreased when the firing rate of stimulation to the
opposite side was increased, both in software simulation and on the hardware (Figure 6B
and C). In both cases, the average firing rates crossed at approximately r2 = 50Hz, cor-
responding to the spike rate delivered to the reference side. The firing rates rtot are less
distinctive for hardware emulations compared to software simulations, but still sufficient
to produce robust sWTA functionality. Note that the observed firing rates are higher on
the hardware than in the software simulation. This difference is due to the fact that the
reliability of the network performance improved for higher firing rates.

Figure 6D and E depict activity profiles of the excitatory neuron layer. The hardware
neurons exhibited a broader and also slightly asymmetric excitation profile compared to
the software simulation. The asymmetry is likely due to inhomogeneous excitability of
neurons, which is caused by fixed-pattern noise (Section 2). The broader excitation profile
indicates that inhibition is less efficient on the hardware than in the software simulation (a
trend that can also be observed in the firing rates in Figure 6B and C). Counteracting this
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Figure 6: (A) Topology of a soft winner-take-all network with 50 excitatory (gray circles)
and 16 inhibitory neurons. Solid and dotted arrows denote excitatory and inhibitory
connections, respectively. The strength profile of recurrent connections between excitatory
neurons and external stimulations is schematized in blue and red, respectively (for details
see text). All projections between neuron populations have a connection probabilities of
p = 1, except the projection between the excitatory and inhibitory neuron population
(p = 0.6). (B) Results of software simulation (SW). Black curve: Total firing rate of
the reference half where constant external stimulation is received (r1 = 50Hz at µext =
neuron index 13). Gray curve: Total firing rate of the neurons in the half of the ring
where varying external stimulation with rate r2 between zero and 100Hz is received (at
µext = neuron index 38). Firing rates rtot of all neurons in each half of the ring were
averaged over 10 runs with 2 s duration and different random number seeds for drawing
the stimulus spike trains. (C) Same network topology and stimulus as (B), but emulated
on Spikey (HW). (D) Firing rate distribution over neuron indices for r2 = 25Hz (black),
50Hz (dark gray) and 75Hz (light gray). (E) Same as (D), but emulated on Spikey . (F)
Top panel: Time course of firing rates for stimulus indicated in (C, red dashed line), but
without recurrent connections. All excitatory neurons are solely driven by an external
stimulus of r1 = 50Hz and r2 = 35Hz, respectively. Firing rates were averaged over
100 runs. Bottom panel: Same as top panel, but with recurrent connections. For better
comparison, data of the top panel is drawn in cyan dashed lines.
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loss of inhibition may be possible through additional calibration, if the sharpness of the
excitation profile is critical for the task in which such an sWTA circuit is to be employed.

The network emulated on Spikey is said to perform sWTA, because the side of the ring
with stronger stimulation shows an amplified firing rate, while the firing rate of the other
side is suppressed (see Figure 6F). This qualifies our hardware system for applications
relying on similar sWTA network topologies.

3.4 Cortical Layer 2/3 Attractor Model

Throughout the past decades, attractor networks that model working memory in the cere-
bral cortex have gained increasing support from both experimental data and computer
simulations. The cortical layer 2/3 attractor memory model described in Lundqvist et al.
(2006, 2010) has been remarkably successful at reproducing both low-level (firing patterns,
membrane potential dynamics) and high level (pattern completion, attentional blink) fea-
tures of cortical information processing. One particularly valuable aspect is the very low
amount of fine-tuning this model requires in order to reproduce the rich set of desired
internal dynamics. It has also been shown in Brüderle et al. (2011) that there are multiple
ways of scaling this model down in size without affecting its main functionality features.
These aspects make it an ideal candidate for implementation on our analog neuromorphic
device. In this context, it becomes particularly interesting to analyze how the strong feed-
back loops which predominantly determine the characteristic network activity are affected
by the imposed limitations of the neuromorphic substrate and fixed-pattern noise. Here,
we extend the work done in Brüderle et al. (2011) by investigating specific attractor prop-
erties such as firing rates, voltage UP-states and the pattern completion capability of the
network.

3.4.1 Network Topology

From a structural perspective, the most prominent feature of the Layer 2/3 Attractor
Memory Network is its modularity. Faithful to its biological archetype, it implements
a set of cortical hypercolumns, which are in turn subdivided into multiple minicolumns
(Figure 7A). Each minicolumn consists of three cell populations: excitatory pyramidal
cells, inhibitory basket cells and inhibitory RSNP (regular spiking non-pyramidal) cells.

Attractor dynamics arise from the synaptic connectivity on two levels. Within a hy-
percolumn, the basket cell population enables a soft-WTA-like competition among the
pyramidal populations within the minicolumns. On a global scale, the long-range inhi-
bition mediated by the RSNP cells governs the competition among so-called patterns, as
explained in the following.

In the original model described in Lundqvist et al. (2010), each hypercolumn contains
9 minicolumns, each of which consists of 30 pyramidal, 2 RSNP and 1 basket cells. Within
a minicolumn, the pyramidal cells are interconnected and also project onto the 8 closest
basket cells within the same hypercolumn. In turn, pyramidal cells in a minicolumn receive
projections from all basket cells within the same hypercolumn. All pyramidal cells receive
two types of additional excitatory input: an evenly distributed amount of diffuse Poisson
noise and specific activation from the cortical layer 4. Therefore, the minicolumns (i.e.,
the pyramidal populations within) compete among each other in WTA-like fashion, with
the winner being determined by the overall strength of the received input.

A pattern (or attractor) is defined as containing exactly one minicolumn from each
hypercolumn. Considering only orthogonal patterns (each minicolumn may only belong
to a single pattern) and given that all hypercolumns contain an equal amount of mini-
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columns, the number of patterns in the network is equal to the number of minicolumns per
hypercolumn. Pyramidal cells within each minicolumn project onto the pyramidal cells
of all the other minicolumns in the same pattern. These connections ensure a spread of
local activity throughout the entire pattern. Additionally, the pyramidal cells also project
onto the RSNP cells of all minicolumns belonging to different attractors, which in turn
inhibit the pyramidal cells within their minicolumn. This long-range competition enables
the winning pattern to completely shut down the activity of all other patterns.

Two additional mechanisms weaken active patterns, thereby facilitating switches be-
tween patterns. The pyramidal cells contain an adaptation mechanism which decreases
their excitability with every emitted spike. Additionally, the synapses between pyramidal
cells are modeled as short-term depressing.

3.4.2 Hardware Emulation

When scaling down the original model (2673 neurons) to the maximum size available on the
Spikey chip (192 neurons, see Figure 7B for software simulation results), we made use of
the essential observation that the number of pyramidal cells can simply be reduced without
compensating for it by increasing the corresponding projection probabilities. Also, for less
than 8 minicolumns per hypercolumn, all basket cells within a hypercolumn have identical
afferent and efferent connectivity patterns, therefore allowing to treat them as a single
population. Their total number was decreased, while increasing their efferent projection
probabilities accordingly. In general (i.e., except for pyramidal cells), when number and/or
size of populations were changed, projection probabilities were scaled in such a way that
the total fan-in for each neuron was kept at a constant average. When the maximum fan-in
was reached (one afferent synapse for every neuron in the receptive field), the corresponding
synaptic weights were scaled up by the remaining factor.

Because neuron and synapse models on the Spikey chip are different to the ones used in
the original model, we have performed a heuristic fit in order to approximately reproduce
the target firing patterns. Neuron and synapse parameters were first fitted in such a way
as to generate clearly discernible attractors with relatively high average firing rates (see
Figure 7D). Additional tuning was needed to compensate for missing neuronal adaptation,
limitations in hardware configurability, parameter ranges and fixed-pattern noise affecting
hardware parameters.

During hardware emulations, apart from the appearance of spontaneous attractors
given only diffuse Poisson stimulation of the network (Figure 7C), we were able to observe
two further interesting phenomena which are characteristic for the original attractor model.

When an attractor becomes active, its pyramidal cells enter a so-called UP state which
is characterized by an elevated average membrane potential. Figure 7E clearly shows the
emergence of such UP-states on hardware. The onset of an attractor is characterized by
a steep rise in pyramidal cell average membrane voltage, which then decays towards the
end of the attractor due to synaptic short-term depression and/or competition from other
attractors temporarily receiving stronger stimulation. On both flanks of an UP state, the
average membrane voltage shows a slight undershoot, due to the inhibition by other active
attractors.

A second important characteristic of cortical attractor models is their capability of
performing pattern completion (Lundqvist et al., 2006). This means that a full pattern can
be activated by stimulating only a subset of its constituent pyramidal cells (in the original
model, by cells from cortical Layer 4, modeled by us as additional Poisson sources). The
appearance of this phenomenon is similar to a phase transition from a resting state to
a collective pyramidal UP-state occurring when a critical amount of pyramidal cells are
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Figure 7: (A) Schematic of the cortical layer 2/3 attractor memory network. Two
hypercolumns, each containing two minicolumns, are shown. For better readability, only
connections that are active within an active pattern are depicted. See text for details.
(B) Software simulation of spiking activity in the cortical attractor network model scaled
down to 192 neurons (only pyramidal and RSNP cells shown, basket cells spike almost
continously). Minicolumns belonging to the same pattern are grouped together. The broad
stripes of activity are generated by pyramidal cells in active attractors. The interlaced
narrow stripes of activity represent pairs of RSNP cells, which spike when their home
minicolumn is inhibited by other active patterns. (C) Same as B, but on hardware. The
raster plot is noisier and the duration of attractors (dwell time) are less stable than in
software due to fixed-pattern noise on neuron and synapse circuits. For better readability,
active states are underlied in grey in B and C. (D) Average firing rate of pyramidal cells
on the Spikey chip inside active patterns. To allow averaging over multiple active periods
of varying lengths, all attractor dwell times have been normalized to 1. (E) Average
membrane potential of pyramidal cells on the Spikey chip inside and outside active patterns.
(F) Pattern completion on the Spikey chip. Average values (from multiple runs) depicted in
blue, with the standard deviation shown in red. From a relatively equilibrated state where
all patterns take turns in being active, additional stimulation (see text) of only a subset
of neurons from a given attractor activates the full pattern and enables it to dominate
over the other two. The pattern does not remain active indefinitely due to short-term
depression in excitatory synapses, thereby still allowing short occasional activations of the
other two patterns.
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stimulated. To demonstrate pattern completion, we have used the same setup as in the
previous experiments, except for one pattern receiving additional stimulation. From an
initial equilibrium between the three attractors (approximately equal active time), we
have observed the expected sharp transition to a state where the stimulated attractor
dominates the other two, occurring when one of its four minicolumns received L4 stimulus
(Figure 7F).

The implementation of the attractor memory model is a particularly comprehensive
showcase of the configurability and functionality of our neuromorphic platform due to
the complexity of both model specifications and emergent dynamics. Starting from these
results, the next-generation hardware (Schemmel et al., 2010) will be able to much more
accurately model biological behavior, thanks to a more flexible, adapting neuron model
and a significantly increased network size.

3.5 Insect Antennal Lobe Model

The high acceleration factor of the Spikey chip makes it an attractive platform for neu-
romorphic data processing. Preprocessing of multivariate data is a common problem in
signal and data analysis. In conventional computing, reduction of correlation between in-
put channels is often the first step in the analysis of multidimensional data, achieved, e.g.,
by principal component analysis (PCA). The architecture of the olfactory system maps
particularly well onto this problem (Schmuker & Schneider, 2007). We have implemented
a network that is inspired by processing principles that have been described in the insect
antennal lobe (AL), the first relay station from olfactory sensory neurons to higher brain
areas. The function of the AL has been described to decorrelate the inputs from sensory
neurons, potentially enabling more efficient memory formation and retrieval (Stopfer et al.,
1997; Linster & Smith, 1997; Perez-Orive et al., 2004; Wilson & Laurent, 2005). The mam-
malian analog of the AL (the olfactory bulb) has been the target of a recent neuromorphic
modeling study (Imam et al., 2012b).

The availability of a network building block that achieves channel decorrelation is an
important step toward high-performance neurocomputing. The aim of this experiment
is to demonstrate that the previously studied rate-based AL model (Schmuker & Schnei-
der, 2007) that reduces rate correlation between input channels is applicable to a spiking
neuromorphic hardware system.

3.5.1 Network Topology

In the insect olfactory system, odors are first encoded into neuronal signals by receptor
neurons (RNs) which are located on the antenna. RNs send their axons to the AL (Fig-
ure 8A). The AL is composed of glomeruli, spherical compartments where RNs project
onto local inhibitory neurons (LNs) and projection neurons (PNs). LNs project onto other
glomeruli, effecting lateral inhibition. PNs relay the information to higher brain areas
where multimodal integration and memory formation takes place.

The architecture of our model reflects the neuronal connectivity in the insect AL (Fig-
ure 8A). RNs are modeled as spike train generators, which project onto the PNs in the
corresponding glomerulus. The PNs project onto the LNs, which send inhibitory projec-
tions to the PNs in other glomeruli.

In biology, the AL network reduces the rate correlation between glomeruli, in order to
improve stimulus separability and thus odor identification. Another effect of decorrelation
is that the rate patterns encoding the stimuli become sparser, and use the available coding
space more efficiently as redundancy is reduced. Our goal was to demonstrate the reduc-
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Figure 8: (A) Schematic of the insect antennal lobe network. Neuron populations are
grouped in glomeruli (outlined by dotted lines), which exert lateral inhibition onto each
other. RNs: receptor neurons (input), PNs: projection neurons (output), LNs: inhibitory
local neurons. Some connections are grayed out to emphasize the connection principle. (B)
Correlation matrix of the input data. (C) Correlation matrix of the output spike rates
(PNs) without lateral inhibition, q = 0.0. (D) Correlation of the output with homogeneous
lateral inhibition, q = 1.0. (E) Average pairwise correlation between glomeruli (median
± 20th (black) and 80th (gray) percentile) in dependence of the overall strength of lateral
inhibition q.

tion of rate correlations across glomeruli (channel correlation) by the AL-inspired spiking
network. To this end, we generated patterns of firing rates with channel correlation. We
created a surrogate data set exhibiting channel correlation using a copula, a technique
that allows to generate correlated series of samples from an arbitrary random distribution
and a covariance matrix (Nelsen, 1998). The covariance matrix was uniformly set to a
target correlation of 0.6. Using this copula, we sampled 100 ten-dimensional data vectors
from an exponential distribution. In the biological context, this is equivalent to having a
repertoire of 100 odors, each encoded by ten receptors, and the firing rate of each input
channel following a decaying exponential distribution. Values larger than e were clipped
and the distribution was mapped to the interval [0, 1] by applying v = v/e for each value
v. These values were then converted into firing rates between 20 and 55 spikes/s. The ten-
dimensional data vector was presented to the network by mapping the ten firing rates onto
the ten glomeruli, setting all single RNs in each glomerulus to fire at the respective target
rates. Rates were converted to spike trains individually for each RN using the Gamma
process with γ = 5. Each data vector was presented to the network for the duration of one
second by making the RNs of each glomerulus fire with the specified rate. The inhibitory
weights between glomeruli were uniform, i.e., all inhibitory connections shared the same
weight. During one second of stimulus presentation, output rates were measured from PNs.
One output rate per glomerulus was obtained by averaging the firing rate of all PNs in a
glomerulus.

We have used 6 RN input streams per glomerulus, projecting in an all-to-all fashion
onto 7 PNs, which in turn projected on 3 LNs per glomerulus.

3.5.2 Hardware Emulation

The purpose of the presented network was to reduce rate correlation between input chan-
nels. As in other models, fixed-pattern noise across neurons had a detrimental effect on
the function of the network. We exploited the specific structure of our network to im-
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plement more efficient calibration than can be provided by standard calibration methods
(Section 2.4). Our calibration algorithm targeted PNs and LNs in the first layer of the
network. During calibration, we turned off all projections between glomeruli. Its aim was
to achieve a homogeneous response across PNs and LNs respectively, i.e., within ± 10%
of a target rate. The target rate was chosen from the median response rate of uncali-
brated neurons. For neurons whose response rate was too high it was sufficient to reduce
the synaptic weight of the excitatory input from RNs. For those neurons with a too low
rate the input strength had to be increased. The excitatory synaptic weight of the input
from RNs was initially already at its maximum value and could not be increased. As a
workaround we used PNs from the same glomerulus to add additional excitatory input to
those “weak” neurons. We ensured that no recurrent excitatory loops were introduced by
this procedure. If all neurons in a glomerulus were too weak, we recruit another external
input stream to achieve the desired target rate. Once the PNs were successfully calibrated
(less than 10% deviation from the target rate), we used the same approach to calibrate the
LNs in each glomerulus.

To assess the performance of the network we have compared the channel correlation in
the input and in the output. The channel correlation matrix C was computed according
to

Ci,j = dPearson(νglom.i,νglom.j) , (5)

with dPearson(·, ·) the Pearson correlation coefficient between two vectors. For the input
correlation matrix Cinput, the vector νglom.i contained the average firing rates of the six
RNs projecting to the ith glomerulus, with each element of this vector for one stimulus
presentation. For the output correlation matrix Coutput we used the rates from PNs instead
of RNs. Thus, we obtained 10× 10 matrices containing the rate correlations for each pair
of input or output channels.

Figure 8B depicts the correlation matrix Cinput for the input firing rates. When no
lateral inhibition is present, Cinput matches Coutput (Figure 8C). We have systematically
varied the strength of lateral inhibition by scaling all inhibitory weights by a factor q,
with q = 0 for zero lateral inhibition and q = 1 for inhibition set to its maximal strength.
With increasing lateral inhibition, off-diagonal values in Coutput approach zero and output
channel correlation is virtually gone (Figure 8D). The amount of residual correlation to
be present in the output can be controlled by adjusting the strength of lateral inhibition
(Figure 8E).

Taken together, we demonstrated the implementation of an olfaction-inspired network
to remove correlation between input channels on the Spikey chip. This network can serve
as a preprocessing module for data analysis applications to be implemented on the Spikey
chip. An interesting candidate for such an application is a spiking network for supervised
classification, which may benefit strongly from reduced channel correlations for faster learn-
ing and better discrimination (Häusler et al., 2011).

3.6 Liquid State Machine

Liquid state machines (LSMs) as proposed by Maass et al. (2002) and Jaeger (2001) provide
a generic framework for computation on continuous input streams. The liquid, a recurrent
network, projects an input into a high-dimensional space which is subsequently read out.
It has been proven that LSMs have universal computational power for computations with
fading memory on functions of time (Maass et al., 2002). In the following, we show that
classification performance of an LSM emulated on our hardware is comparable to the
corresponding computer simulation. Synaptic weights of the readout are iteratively learned

Six networks on a universal neuromorphic computing substrate

41



on-chip, which inherently compensates for fixed-pattern noise. A trained system can then
be used as an autonomous and very fast spiking classifier.

3.6.1 Network Topology

The LSM consists of two major components: the recurrent liquid network itself and a spike-
based classifier (Figure 9A). A general purpose liquid needs to meet the separation property
(Maass et al., 2002), which requires that different inputs are mapped to different outputs,
for a wide range of possible inputs. Therefore, we use a network topology similar to the
one proposed by Bill et al. (2010). It consists of an excitatory and inhibitory population
with a ratio of 80:20 excitatory to inhibitory neurons. Both populations have recurrent as
well as feedforward connections. Each neuron in the liquid receives 4 inputs from the 32
excitatory and 32 inhibitory sources, respectively. All other connection probabilities are
illustrated in Figure 9.

The readout is realized by means of a tempotron (Gütig & Sompolinsky, 2006), which
is compatible with our hardware due to its spike-based nature. Furthermore, its modest
single neuron implementation leaves most hardware resources to the liquid. The afferent
synaptic weights are trained with the method described in Gütig & Sompolinsky (2006),
which effectively implements gradient descent dynamics. Upon training, the tempotron
distinguishes between two input classes by emitting either one or no spike within a certain
time window. The former is artificially enforced by blocking all further incoming spikes
after the first spike occurrence.

The PSP kernel of a LIF neuron with current-based synapses is given by

K(t− ti) = A
(
e−

t−ti
τm − e−

t−ti
τs

)
·Θ(t− ti) , (6)

with the membrane time constant τm and the synaptic time constant τs, respectively. Here,
A denotes a constant PSP scaling factor, ti the time of the ith incoming spike and Θ(t)
the Heaviside step function.

During learning, weights are updated as follows

∆wn
j =

{
0 correct

α(n)
∑

ti,j<tmax
K(tmax − ti,j) erroneous,

(7)

where ∆wn
j is the weight update corresponding to the jth afferent neuron after the nth

learning iteration with learning rate α(n). The spike time of the tempotron, or otherwise
the time of highest membrane potential, is denoted with tmax. In other words, for trials
where an erroneous spike was elicited, the excitatory afferents with a causal contribution to
this spike are weakened and inhibitory ones are strengthened according to Equation 7. In
case the tempotron did not spike even though it should have, the weights are modulated the
other way round, i.e. excitatory weights are strengthened and inhibitory ones are weakened.
This learning rule has been implemented on hardware with small modifications, due to the
conductance-based nature of the hardware synapses (see below).

The tempotron is a binary classifier, hence any task needs to be mapped to a set of
binary decisions. Here, we have chosen a simple binary task adapted from Maass et al.
(2002), to evaluate the performance of the LSM. The challenge was to distinguish spike
train segments in a continuous data stream composed of two templates with identical rates
(denoted X and Y in Figure 9A). In order to generate the input, we cut the template
spike trains into segments of 50ms duration. We then composed the spike sequence to be
presented to the network by randomly picking a spike segment from either X or Y in each
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Figure 9: (A) Schematic of the LSM and the given task. Spike sources are composed
of 50ms segments drawn from two template spike trains (X and Y). These patterns are
streamed into the liquid (with descending index), which is a network consisting of 191
neurons, leaving one neuron for the tempotron. Connection probabilities are depicted next
to each connection (arrows). In two experiments, the tempotron is trained to either classify
the origin (X or Y) of the spike train segment with index 1 or 2. (B) The classification
performance of the LSM measured over 200 samples after 1000 training iterations for both
hardware (lighter) and software (darker) implementation.

time window (see Figure 9 for a schematic). Additionally, we added spike timing jitter
from a normal distribution with a standard deviation of σ = 1ms to each spike. For each
experiment run, both for training and evaluation, the composed spike sequence was then
streamed into the liquid. Tempotrons were given the liquid activity as input and trained
to identify whether the segment within the previous time window originated from sequence
X or Y. In a second attempt, we trained the tempotron to identify the origin of the pattern
presented in the window at -100 to -150ms (that is, the second to the last window). Not
only did this task allow to determine the classification capabilities of the LSM, but it also
put the liquid’s fading memory to the test, as classification of a segment further back in
time becomes increasingly difficult.

3.6.2 Hardware Emulation

The liquid itself does not impose any strong requirements on the hardware since virtually
any network is suitable as long as the separation property is satisfied. We adapted a
network from Bill et al. (2010) which, in a similar form, had already been implemented
on our hardware. However, STP was disabled, because at the time of the experiment it
was not possible to exclusively enable STP for the liquid without severely affecting the
performance of the tempotron.

The hardware implementation of the tempotron required more attention, since only
conductance-based synapses are available. The dependence of spike efficacies on the actual
membrane potential was neglected, because the rest potential was chosen to be close to the
firing threshold, with the reversal potentials far away. However, the asymmetric distance
of excitatory and inhibitory reversal potentials from the sub-threshold regime needed com-
pensation. This was achieved by scaling all excitatory weights by (Vm−Einh)/(Vm−Eexc),
where Vm corresponds to the mean neuron membrane voltage and Eexc/Einh is the excita-
tory/inhibitory reversal potentials. Discontinuities in spike efficacies for synapses changing
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from excitatory to inhibitory or vice versa were avoided by prohibiting such transitions.
Finally, membrane potential shunting after the first spike occurrence is neither possible on
our hardware nor very biological and had therefore been neglected, as already proposed by
Gütig & Sompolinsky (2006).

Even though the tempotron was robust against fixed-pattern noise due to on-chip
learning, the liquid required modifications. Therefore, firing thresholds were tuned inde-
pendently in software and hardware to optimize the memory capacity and avoid violations
of the separation property. Since hardware neurons share firing thresholds, the tempotron
was affected accordingly (see Table 1). Additionally, the learning curve α(n) was chosen
individually for software and hardware due to the limited resolution of synaptic weights
on the latter.

The results for software and hardware implementations are illustrated in Figure 9B.
Both LSMs performed at around 90% classification correctness for the spiketrain segment
that lied 50ms to 100ms in the past with respect to the end of the stimulus. For inputs
lying even further away in time, performances dropped to chance level (50% for a binary
task), independent of the simulation back-end.

Regarding the classification capabilities of the LSM, our current implementation allows
a large variety of tasks to be performed. Currently, e.g., we are working on hand-written
digit recognition with the very same setup on the Spikey chip. Even without a liquid, our
implementation of the tempotron (or populations thereof) makes an excellent neuromorphic
classifier, given its bandwidth-friendly sparse response and robustness against fixed-pattern
noise.

4 Discussion

We have successfully implemented a variety of neural microcircuits on a single universal
neuromorphic substrate, which is described in detail by Schemmel et al. (2006). All net-
works show activity patterns qualitatively and to some extent also quantitatively similar
to those obtained by software simulations. The corresponding reference models found in
literature have not been modified significantly and network topologies have been identical
for hardware emulation and software simulation, if not stated otherwise. In particular,
the emulations benefit from the advantages of our neuromorphic implementation, namely
inherent parallelism and accelerated operation compared to software simulations on con-
ventional von-Neumann machines. Previous accounts of networks implemented on the
Spikey system include computing with high-conductance states (Kaplan et al., 2009), self-
stabilizing recurrent networks (Bill et al., 2010), and simple emulations of cortical layer
2/3 attractor networks (Brüderle et al., 2011).

In this contribution, we have presented a number of new networks and extensions of
previous implementations. Our synfire chain implementation achieves reliable signal prop-
agation over years of biological time from one single stimulation, while synchronizing and
filtering these signals (Section 3.1). Our extension of the network from Bill et al. (2010)
to exhibit asynchronous irregular firing behavior is an important achievement in the con-
text of reproducing stochastic activity patterns found in cortex (Section 3.2). We have
realized soft winner-take-all networks on our hardware system (Section 3.3), which are
essential building blocks for many cortical models involving some kind of attractor states
(e.g., the decision-making model by Soltani & Wang, 2010). The emulated cortical attrac-
tor model provides an implementation of working memory for computation with cortical
columns (Section 3.4). Additionally, we have used the Spikey system for preprocessing
of multivariate data inspired by biological archetypes (Section 3.5) and machine learning
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(Section 3.6). Most of these networks allocate the full number of neurons receiving input
from one synapse array on the Spikey chip, but with different sets of neuron and synapse
parameters and especially vastly different connectivity patterns, thereby emphasizing the
remarkable configurability of our neuromorphic substrate.

However, the translation of such models requires modifications to allow execution on
our hardware. The most prominent cause for such modifications is fixed-pattern noise
across analog hardware neurons and synapses. In most cases, especially when population
rate coding is involved, it is sufficient to compensate for this variability by averaging spiking
activity over many neurons. For the data decorrelation and machine learning models, we
have additionally trained the synaptic weights on the chip to achieve finer equilibration of
the variability at critical network nodes. Especially when massive downscaling is required
in order for models to fit onto the substrate, fixed pattern noise presents an additional
challenge because the same amount of information needs to be encoded by fewer units.
For this reason, the implementation of the cortical attractor memory network required
additional heuristic activity fitting procedures.

The usability of the Spikey system, especially for neuroscientists with no neuromorphic
engineering background, is provided by an integrated development environment. We envi-
sion that the configurability made accessible by such a software environment will encourage
a broader neuroscience community to use our hardware system. Examples of use would
be the acceleration of simulations as well as the investigation of the robustness of network
models against parameter variability, both between computational units and between tri-
als, as e.g. published by Brüderle et al. (2010) and Schmuker et al. (2011). The hardware
system can be efficiently used without knowledge about the hardware implementation on
transistor level. Nevertheless, users have to consider basic hardware constraints, as e.g.,
shared parameters. Networks can be developed using the PyNN metalanguage and option-
ally be prototyped on software simulators before running on the Spikey system (Davison
et al., 2009; Brüderle et al., 2009). This rather easy configuration and operation of the
Spikey chip allows the implementation of many other neural network models.

There exist also boundaries to the universal applicability of our hardware system. One
limitation inherent to this type of neuromorphic device is the choice of implemented models
for neuron and synapse dynamics. Models requiring, e.g., neuronal adaptation or exotic
synaptic plasticity rules are difficult, if not impossible to be emulated on this substrate.
Also, the total number of neurons and synapses set a hard upper bound on the size of
networks that can be emulated. However, the next generation of our highly accelerated
hardware system will increase the number of available neurons and synapses by a factor of
103, and provide extended configurability for each of these units (Schemmel et al., 2010).

The main purpose of our hardware system is to provide a flexible platform for highly
accelerated emulation of spiking neuronal networks. Other research groups pursue differ-
ent design goals for their hardware systems. Some focus on dedicated hardware providing
specific network topologies (e.g., Merolla & Boahen, 2006; Chicca et al., 2007), or com-
prising few neurons with more complex dynamics (e.g., Chen et al., 2010; Grassia et al.,
2011; Brink et al., 2012). Others develop hardware systems of comparable configurability,
but operate in biological real-time, mostly using off-chip communication (Vogelstein et al.,
2007; Choudhary et al., 2012). Purely digital systems (Merolla et al., 2011; Furber et al.,
2012; Imam et al., 2012a) and field-programmable analog arrays (FPAA; Basu et al., 2010)
provide even more flexibility in configuration than our system, but have much smaller
acceleration factors.

With the ultimate goal of brain size emulations, there exists a clear requirement for
increasing the size and complexity of neuromorphic substrates. An accompanying upscal-
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ing of the fitting and calibration procedures presented here appears impractical for such
orders of magnitude and can only be done for a small subset of components. Rather, it will
be essential to step beyond simulation equivalence as a quality criterion for neuromorphic
computing, and to develop a theoretical framework for circuits that are robust against, or
even exploit the inherent imperfections of the substrate for achieving the required compu-
tational functions.
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Abstract

Large-scale neuromorphic hardware systems typically bear the trade-off between de-
tail level and required chip resources. Especially when implementing spike-timing-
dependent plasticity, reduction in resources leads to limitations as compared to float-
ing point precision. By design, a natural modification that saves resources would be
reducing synaptic weight resolution. In this study, we give an estimate for the impact
of synaptic weight discretization on different levels, ranging from random walks of
individual weights to computer simulations of spiking neural networks. The FACETS
wafer-scale hardware system offers a 4-bit resolution of synaptic weights, which is
shown to be sufficient within the scope of our network benchmark. Our findings indi-
cate that increasing the resolution may not even be useful in light of further restric-
tions of customized mixed-signal synapses. In addition, variations due to production
imperfections are investigated and shown to be uncritical in the context of the pre-
sented study. Our results represent a general framework for setting up and configuring
hardware-constrained synapses. We suggest how weight discretization could be con-
sidered for other backends dedicated to large-scale simulations. Thus, our proposition
of a good hardware verification practice may rise synergy effects between hardware
developers and neuroscientists.
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1 Introduction

Computer simulations have become an important tool to study cortical networks (e.g.
Brunel, 2000; Morrison et al., 2005; Vogels et al., 2005; Markram, 2006; Brette et al., 2007;
Johansson & Lansner, 2007; Morrison et al., 2007; Kunkel et al., 2011; Yger et al., 2011).
While they provide insight into activity dynamics that can not otherwise be measured in
vivo or calculated analytically, their computation times can be very time-consuming and
consequently unsuitable for statistical analyses, especially for learning neural networks
(Morrison et al., 2007). Even the ongoing enhancement of the von Neumann computer
architecture is not likely to reduce simulation runtime significantly, as both single- and
multi-core scaling face their limits in terms of transistor size (Thompson & Parthasarathy,
2006), energy consumption (Esmaeilzadeh et al., 2011), or communication (Perrin, 2011).

Neuromorphic hardware systems are an alternative to von Neumann computers that
alleviates these limitations. Their underlying VLSI microcircuits are especially designed
to solve neuron dynamics and can be highly accelerated compared to biological time (Indi-
veri et al., 2011). For most neuron models whose dynamics can be analytically stated, the
evaluation of its equations can be determined either digitally (Plana et al., 2007) by means
of numerical methods or with analog circuits that solve the neuron equations intrinsically
(Millner et al., 2010). The analog approach has the advantage of maximal parallelism,
as all neuron circuits are evolving simultaneously in continuous time. Furthermore, high
acceleration factors compared to biological time (e.g. up to 105 reported by Millner et al.
(2010)), can be achieved by reducing the size of the analog neuron circuits. Neverthe-
less, many neuromorphic hardware systems are developed for operation in real-time to
be applied in sensor applications or medical implants (Fromherz, 2002; Levi et al., 2008;
Vogelstein et al., 2008).

Typically, the large number of programmable and possibly plastic synapses accounts
for the major part of chip resources in neuromorphic hardware systems (Figure 1). Hence,
the limited chip area requires a trade-off between the number and size of neurons and
their synapses, while providing sufficiently complex dynamics. For example, decreasing
the resolution of synaptic weights offers an opportunity to reduce the area required for
synapses and therefore allows more synapses on a chip, rendering the synaptic weights
discretized.

In this study, we will analyze the consequences of such a weight discretization and
propose generic configuration strategies for spike-timing dependent plasticity on discrete
weights. Deviations from original models caused by this discretization are quantified by
particular benchmarks. In addition, we will investigate further hardware restrictions spe-
cific for the FACETS 1 wafer-scale hardware system (FACETS, 2010), a pioneering neuro-
morphic device that implements a large amount of both configurable and plastic synapses
(Schemmel et al., 2008, 2010; Brüderle et al., 2011). To this end, custom hardware-inspired
synapse models are integrated into a network benchmark using the simulation tool NEST
(Gewaltig & Diesmann, 2007). The objective is to determine the smallest hardware im-
plementation of synapses without distorting the behavior of theoretical network models
that have been approved by computer simulations.

1Fast Analog Computing with Emergent Transient States
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Neurons

Synapses
Analog

Digital

Figure 1: Photograph of the HICANN (High Input Count Analog Neural Network) chip,
the basic building block of the FACETS wafer-scale hardware system. Notice the large
area occupied by mixed-signal synapse circuits (yellow boxes) compared to neuron circuits
(orange boxes). A digital communication infrastructure (area between red and green
boxes) ensures a high density of connections between neurons on the same and to other
HICANN chips.

2 Materials and Methods

2.1 Spike-timing dependent plasticity

Here, Spike-Timing Dependent Plasticity (STDP) is treated as a pair-based update rule
as reviewed by e.g. Morrison et al. (2008). Most pair-based STDP models (Song et al.,
2000; van Rossum et al., 2000; Gütig et al., 2003; Morrison et al., 2007) separate weight
modifications δw into a spike-timing dependent factor x(∆t) and a weight-dependent factor
F (w):

δw(w,∆t) = F (w)x(∆t), (1)

where ∆t = ti − tj denotes the interval between spike times tj and ti at the pre- and post-
synaptic terminal, respectively. Typically, x(∆t) is chosen to be exponentially decaying
(e.g. Gerstner et al., 1996; Kempter et al., 1999).

In contrast, the weight-dependence F (w), which is divided into F+(w) for a causal
and F−(w) for an anti-causal spike-timing-dependence, differs between different STDP
models. Examples are given in Table 1. As F+(w) is positive and F−(w) negative for all
these STDP models, causal relationships (∆t > 0) between pre- and postsynaptic spikes
potentiate and anti-causal relationships (∆t < 0) depress synaptic weights.

In this study, the intermediate Gütig STDP model (bounded to the weight range [0,1])
is chosen as an example STDP model. It represents a mixture of the multiplicative (µ = 1)
and additive (µ = 0) STDP model and has been shown to provide stability in competitive
synaptic learning (Gütig et al., 2003). Nevertheless, the following studies can be applied to
any pair-based STDP model with exponentially decaying time-dependence, e.g. all models
listed in Table 1.

2.2 Synapses in large-scale hardware systems

The FACETS wafer-scale hardware system (Schemmel et al., 2008, 2010; Brüderle et al.,
2011) represents an example for a possible synapse size reduction in neuromorphic hard-
ware systems. Figure 2 schematizes the hardware implementation of a synapse enabling
STDP similar as presented in Schemmel et al. (2006) and Schemmel et al. (2007). It
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Model name F+(w) F−(w) x(∆t)

Additive
(Song et al., 2000)

λ −λα

Multiplicative
(Turrigiano et al., 1998)

λ(1− w) −λαw

Gütig
(Gütig et al., 2003)

λ(1− w)µ −λαwµ exp(− |∆t|
τSTDP

)

Van Rossum
(van Rossum et al., 2000)

cp −cdw

Power law
(Morrison et al., 2007)

λwµ −λαw

Table 1: Weight- and spike-timing-dependence of pair-based STDP models: additive,
multiplicative, Gütig, van Rossum and power law model. F+ in case of a causal spike-
timing-dependence (∆t > 0) and F− in the anti-causal case (∆t < 0). Throughout this
study, the model proposed by Gütig et al. is applied with parameters α = 1.05, λ = 0.005,
µ = 0.4 and τSTDP = 20ms in accordance with Song et al. (2000); van Rossum et al.
(2000); Rubin et al. (2001); Gütig et al. (2003); Morrison et al. (2008).

pre

post
t

x(Δt)

Δt

Δts

aSSP

a

ath 4-bit
Weight

Evaluate

LUT
F(w)

wn wn+1

(Analog)

(Digital)

(Digital)

a) Measurement b) Accumulation

Weight Update
Controller

{ {
Synapse

ac aa

Figure 2: Schematic drawing of local hardware synapses which are consecutively processed
by a global weight update controller. Analog circuits are highlighted in red (with solid
frame) and digital circuits in green (dashed frames). The spike-timing-dependence (here
one standard spike pair (SSP) with ∆ts, see text) between the pre- and postsynaptic neu-
ron is a) measured (here aSSP) and b) accumulated (here to ac in case of a causal spike
pair, aa for anti-causal spike pairs is not affected). Then, the global weight update con-
troller evaluates the accumulated spike-timing-dependence by means of a crossed threshold
ath (here ac > ath) and modifies the digital weight of the hardware synapse accordingly.
The new synaptic weight wn+1 is retrieved from the LUT according to the accumulated
spike-timing-dependence and the current weight wn and is written back to the hardware
synapse. If either the causal or anti-causal accumulated spike-timing-dependence crosses
the threshold, both accumulations are reset to zero. The analog measurement and accumu-
lation circuit is furthermore minimized by using the reduced symmetric nearest-neighbor
spike pairing scheme (Morrison et al., 2008): instead of considering all past and future
spikes (all-to-all spike pairing scheme), only the latest and the following spike at both
terminals of the synapse are taken into account.
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provides the functionality to store the value of the synaptic weight, to measure the spike-
timing-dependence between pre- and postsynaptic spikes and to update the synaptic weight
according to this measurement. Synapse density is maximized by separating the accumu-
lation of the spike-timing-dependence x(∆t) and the weight update controller, which is
the hardware implementation of F (w). This allows 4 · 107 synapses on a single wafer
(Schemmel et al., 2010).

Synaptic dynamics in the FACETS wafer-scale hardware system exploits the fact that
weight dynamics typically evolves slower than electrical neuronal activity (Morrison et al.,
2007; Kunkel et al., 2011). Therefore, weight updates can be divided into two steps
(Figure 2). First, a measuring and accumulation step which locally determines the relative
spike times between pairs of neurons and thus x(∆t). This stage is designed in analog
hardware (red area in Figure 2), as analog measurement and accumulation circuits require
less chip resources compared to digital realizations thereof. Second, the digital weight
update controller (upper green area in Figure 2) implements F (w) based on the previous
analog result. A global weight update controller2 is responsible for the consecutive updates
of many synapses (Schemmel et al., 2006) and hence limits the maximal rate at which a
synapse can be updated, the update controller frequency νc.

Sharing one weight update controller reduces synapses to small analog measurement
and accumulation circuits as well as a digital circuit that implements the synaptic weight
(Figure 2). The area required to implement these digital weights with a resolution of r
bits is proportional to 2r, the number of discrete weights. Consequently, assuming the
analog circuits to be fixed in size, the size of a synapse is determined by its weight storage
exponentially growing with the weight resolution. E.g. the FACETS wafer-scale hardware
system has a weight resolution of r = 4bits, letting the previously described circuits
(analog and digital) equally sized on the chip.

Modifications in the layout of synapse circuits are time-consuming and involve expen-
sive re-manufacturing of chips. Thus, the configuration of connections between neurons
is designed flexible enough to avoid these modifications and provide a general-purpose
modeling environment (Schemmel et al., 2010). For the same reason, STDP is conform to
the majority of available update rules. The STDP models listed in Table 1 share the same
time-dependence x(∆t). Its exponential shape is mimicked by small analog circuit not
allowing for other time-dependencies (Schemmel et al., 2006, 2007). The widely differing
weight-dependences F (w), on the other hand, are programmable into the weight update
controller. Due to limited weight update controller resources, arithmetic operations F (w)
as listed in Table 1 are not realizable and are replaced by a programmable look-up table
(LUT) (Schemmel et al., 2006).

Such a LUT lists, for each discrete weight, the resulting weights in case of causal
or anti-causal spike-timing-dependence between pre- and postsynaptic spikes. Instead of
performing arithmetic operations during each weight update (Equation 1), LUTs are used
as a recallable memory consisting of precalculated weight modifications. Hence, LUTs do
not limit the flexibility of weight updates if their weight-dependence (Table 1) does not
change over time. Throughout this study, we prefer the concept of LUTs to arithmetic
operations, because we like to focus on the discretized weight space, a state space of limited
dimension.

In addition to STDP, the FACETS wafer-scale hardware system also supports a variant
of short-term plasticity mechanisms according to Tsodyks & Markram (1997) (Schemmel
et al., 2007; Bill et al., 2010), which however leaves synaptic weights unchanged and
therefore lies outside the scope of this study.

2One weight update controller for all 256 neurons with 224 synapses each.
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2.3 Discretization of synaptic weights

Continuous weight values wc ∈ [0, 1], as assumed for the STDP models listed in Table 1,
are transformed into r-bit coded discrete weight values wd:

wd = c

⌊
wc

c
+

1

2

⌋
for wc ∈ I (2)

where c = 1/(2r − 1) denotes the width of a bin and ⌊x⌋ the floor-function, the largest
integer less than or equal to x. This procedure divides the range of weight values I = [0, 1]
into 2r bins. The term 1

2 allows for a correct discretization of weight values near the
borders of I, effectively dividing the width of the ending bins (otherwise, only wc = 1
would be mapped to wd = 1).

2.4 Discretization of spike-timing dependent plasticity

A single weight update, resulting from a pre- and postsynaptic spike, might be too fine
grained to be captured by a low weight resolution (Equation 2). Therefore, it is necessary
to accumulate the effect of weight updates of several consecutive spike pairs in order to
reach the next discrete weight value (Equation 2 and Figure 2). This is equivalent to
state that the implementation of the STDP model assumes additive features for ms range
intervals. To this end, we define a standard spike pair (SSP) as a spike pair with a time
interval between a pre- and postsynaptic spike of ∆ts = 10ms (in accordance to biological
measurements by Markram et al., 1997; Bi & Poo, 1998; Sjöström et al., 2001) in order
to provide a standardized measure for the spike-timing-dependence. This time interval is
chosen arbitrarily defining the granularity only (fine enough for the weight resolutions of
interest) and is valid for both pre-post and post-pre spike pairs, as x(∆t) takes its absolute
value.

The values for a LUT are constructed as follows. First, the parameters r (weight res-
olution) and n (number of SSPs consecutively applied for an accumulated weight update)
as well as the STDP rule-specific parameters τSTDP, λ, µ, α (Table 1) are chosen. Next,
starting with a discrete weight wd, weight updates δw(w,∆ts) specified by Equation 1
are recursively applied n times in continuous weight space using either exclusively F+(w)
or F−(w). This results in two accumulated weight updates ∆w+/−, one for each weight-
dependence F+/−(w). Finally, the resulting weight value in continuous space is according
to Equation 2 transformed back to its discrete representation. This process is then carried
out for each possible discrete weight value wd (Table 2). We will further compare different
LUTs letting n be a free parameter. In the following a weight update refers to ∆w, if not
specified otherwise.

Although we are focusing on the Gütig STDP model, the updated weight values can
in general under- or over-run the allowed weight interval I due to finite weight updates
∆w. In this case, the weight is clipped to its minimum or maximum value, respectively.

2.5 Equilibrium weight distributions

We analyze long-term effects of weight discretization by studying the equilibrium weight
distribution of a synapse that is subject to Poissonian pre- and postsynaptic firing. Thus,
potentiation and depression are equally probable (pd = pp = 1

2). Equilibrium weight dis-
tributions in discrete weight space of low resolution (between 2 and 10 bits) are compared
to those with high resolution (16 bits) via the mean squared error MSEeq. Consecutive
weight updates are performed based on precalculated LUTs.
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wd w+ w−

0 1
3 0

1
3

2
3 0

2
3 1 1

3

1 1 2
3

Table 2: Example look-up table for a weight resolution of r = 2bits and n = 100 SSPs.
Discrete weight wd and the resulting weight increments w+/− = wd + ∆w+/− for causal
and anti-causal weight dependences.

Equilibrium weight distributions of discrete weights for a given weight resolution of
r bits are calculated as follows. First, a LUT for 2r discrete weights is configured with
n SSPs. Initially, all 2r discrete weight values wi have the same probability Pi,0 = 1

2r .
For a compact description, the discrete weights wi are mapped to a 2r dimensional space
with unit vectors ~ei ∈ N

2r . Then, for each iteration cycle j, the probability distribution is
defined by ~Pj =

∑2r−1
i=0 Pi,j−1(pp~ec + pd~ea), where Pi,j−1 is the probability for each discrete

weight value wi of the previous iteration cycle j − 1. The indices of ~ec and ~ea are those of
the resulting discrete weight values wi in case of a causal and anti-causal weight update,
respectively, and are represented by the LUT. We define an equilibrium state as reached

if the Euclidean norm
∥∥∥~Pj−1 − ~Pj

∥∥∥ is smaller than a threshold h = 10−12.

An analytical approach for obtaining equilibrium weight distributions is derived in
Section 6.1.

2.6 Spiking network benchmarks

In addition to the behavior under Poissonian noise, we study the impact of discretized
weights with a software implementation of hardware synapses, enabling us to analyze
synapses in isolation as well as in network benchmarks. The design of our simulation envi-
ronment is flexible enough to take further hardware constraints and biological applications
into account.

2.6.1 Software implementation of hardware synapses

The hardware constraints considered in this study are implemented as a customized
synapse model within the framework of the NEST simulation tool (Gewaltig & Diesmann,
2007), allowing their well controlled application in simulator-based studies on large-scale
neural networks. The basic properties of such a hardware-inspired synapse model are
described as follows and are illustrated in Figure 2 and Figure 5.

For each LUT configuration defined by its weight resolution r and number n of SSPs,
the threshold for allowing weight updates is set to

ath = n · aSSP, (3)

defining a =
∑

i x(∆ti) as the spike pair accumulation for arbitrary intervals. Here, a
single SSP is used, setting a = aSSP = x(∆ts). If either the causal or anti-causal spike
pair accumulation ac/a crosses the threshold ath, the synapse is “tagged” for a weight
update. At the next cycle of the weight update controller all tagged synapses are updated
according to the LUT. Afterwards, the spike pair accumulation (causal or anti-causal)
is reset to zero. Untagged synapses remain unprocessed by the update controller, and
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spike pairs are further accumulated without performing any weight update. If a synapse
accumulates ac and aa above threshold between two cycles of the weight update controller,
both are reset to zero without updating the synaptic weight.

This threshold process implies that the frequency νw of weight updates is dependent
on n, which in turn determines the threshold ath, but also on the firing rates and the
correlation between the pre- and postsynaptic spike train. In general, a increases faster
with higher firing rates or higher correlations. To circumvent these dependencies on net-
work dynamics, we will use n as a generalized description for the weight update frequency
νw. The weight update frequency νw should not be confused with the update controller
frequency νc, with which is checked for threshold crossings and hence limits νw.

Furthermore, we have implemented a reference synapse model in NEST, which is based
on Gütig et al. (2003). It has the reduction of employing nearest-neighbor instead of all-
to-all spike pairing (Morrison et al., 2008).

All simulations involving synapses are simulated with NEST. Spike trains are applied
to built-in parrot neurons, that simply repeat their input, in order to control pre- and
postsynaptic spike trains to interconnecting synapses.

2.6.2 Single synapse benchmark

We compare the weight evolutions of hardware-inspired and reference synapses receiving
correlated pre- and postsynaptic spike trains, drawn from a multiple interaction process
(MIP) (Kuhn et al., 2003). This process introduces excess synchrony between two real-
izations by randomly thinning a template Poisson process. SSPs are then obtained by
shifting one of the processes by ∆ts.

In this first scenario the spike pair accumulation a is checked for crossing ath with a
frequency of νc = 10 kHz to focus on the effects of discrete weights only. This frequency is
equal to the simulation step size, preventing the spike pair accumulation from overshooting
the threshold ath without eliciting a weight update.

Synaptic weights are recorded in time steps of 3 s for an overall period of 150 s and are
averaged over 30 random MIP realizations. Afterwards the mean weight at each recorded
time step is compared between the hardware-inspired and the reference synapse model by
applying the mean squared error MSEw.

2.6.3 Network benchmarks

The detection of presynaptic synchrony is taken as a benchmark for synapse implementa-
tions. Two populations of 10 neurons each converge to an integrate-and-fire neuron with
exponentially decaying synaptic conductances (see schematic in Figure 7A and model
description in Table 7 and 8) by either hardware-inspired or reference synapses. These
synapses are excitatory, and their initial weights are drawn randomly from a uniform
distribution over [0, 1). The amplitude of the postsynaptic conductance is wgmax with
gmax = 100 nS. One population draws its spikes from a MIP with correlation coefficient
c (Kuhn et al., 2003), the other from a Poisson process (MIP with c → 0). We choose
presynaptic firing rates of 7.2Hz such that the target neuron settles at a firing rate of
2 − 22Hz depending on the synapse model . The exact postsynaptic firing rate is of mi-
nor importance as long as the synaptic weights reach an equilibrium state. The synaptic
weights are recorded for 2, 000 s with a sampling frequency of 0.1Hz. The two resulting
weight distributions are compared applying the Mann-Whitney U test Mann & Whitney
(1947).
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Further constraints Not only the discretization of synaptic weights, but also the up-
date controller frequency νc and the reset behavior are constraints of the FACETS wafer-
scale hardware system.

To study effects caused by a limited update controller frequency, we choose νc such that
the interval between sequent cycles is a multiple of the simulator time step. Consequently
weight updates can only occur on a time grid.

A common reset means that both the causal and anti-causal spike pair accumulations
are reset, although only either ac or aa has crossed ath. Because the common reset requires
only one reset line instead of two, it decreases the chip resources of synapses and is
implemented in the current FACETS wafer-scale hardware system.

As a basis for a possible compensation mechanism for the common reset, we suggest
analog-to-digital converters (ADCs) with a 4-bit resolution that read out the spike pair
accumulations. Such ADCs require only a small chip area in the global weight update con-
troller compared to the large area occupied by additional reset lines covering all synapses
and are therefore resource saving alternatives to second reset lines. An ADC allows to
compare the spike pair accumulations against multiple thresholds. Implementations of the
common reset as well as ADCs are added to the existing software model. For multiple
thresholds, the same number of LUTs is needed that have to be chosen carefully. To
provide symmetry within the order of consecutive causal and anti-causal weight updates,
the spike pair accumulation (causal or anti-causal) that dominates in means of crossing a
higher threshold is applied first.

Peri-stimulus-time-histograms The difference between static and STDP synapses on
eliciting postsynaptic spikes in the above network benchmark can be analyzed with peri-
stimulus-time-histograms (PSTHs). Here, PSTHs show the probability of postsynaptic
spike occurrences in dependence on the delay between a presynaptic trigger and its fol-
lowing postsynaptic spike. Spike times are recorded within the last third of an elongated
simulation of 3, 000 s with c = 0.025. During the last 1, 000 s the mean weights are already
in their equilibrium state, but are still fluctuating around it. The first spike of any two
presynaptic spikes within a time window of ∆ton = 1ms is used as a trigger. The length
of ∆ton is chosen small compared to the membrane time constant τm = 15ms, such that
the excitatory postsynaptic potentials of both presynaptic spikes overlap each other and
increase the probability of eliciting a postsynaptic spike. On the other hand ∆ton is chosen
large enough to not only include the simultaneous spikes generated by the MIP, but also
include coincident spikes within the uncorrelated presynaptic population.

2.7 Hardware variations

In contrast to arithmetic operations in software models, analog circuits vary due to the
manufacturing process, although they are identically designed. The choice of precision for
all building blocks should be governed by those that distort network functionality most.
In this study, we assume that variations within the analog measurement and accumulation
circuits are likely to be a key requirement for these choices, as they operate on the lowest
level of STDP. Circuit variations are measured and compared between the causal and
anti-causal part within a synapse and between synapses. All measurements are carried
out with the FACETS chip-based hardware system (Schemmel et al., 2006, 2007) with
hardware parameters listed in Table 6. The FACETS chip-based hardware system shares a
conceptually nearly identical STDP circuit with the FACETS wafer-scale hardware system
(for details see Section 6.2) which was still in the assembly process at the course of this
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study. The hardware measurements are written in PyNN (Davison et al., 2009) and use
the workflow described in Brüderle et al. (2011).

2.7.1 Measurement

The circuit variations due to production imperfection are measured by recording STDP
curves and comparing their integrals for ∆t > 0 and ∆t < 0. The curves are recorded
by applying equidistant pairs of pre- and postsynaptic spikes with a predefined latency
∆t. Presynaptic spikes can be fed into the hardware precisely. However, in contrast
to NEST’s parrot neurons, postsynaptic spikes are not directly adjustable and therefore
have to be evoked by several synchronous external triggers (for details see Section 6.3).
After discarding the first 10 spike pairs to ensure regular firing, the pre- and postsynaptic
spike trains are shifted until the desired latency ∆t is measured. Due to the low spike
pair frequency of 10Hz, only the correlations within and not between the spike pairs are
accumulated. The number N of consecutive spike pairs is increased until the threshold
is crossed and hence a correlation flag is set (Figure 8A). The inverse of this number
versus ∆t is called an STDP curve. Such curves were recorded for 252 synapses within
one synapse column, the remaining 4 synapses in this column were discarded.

For each STDP curve the total area At = Aa+Ac is calculated and normalized by the
mean Aabs of the absolute area Aabs = |Aa|+ |Ac| over all STDP curves. Ideally, At would
vanish if both circuits are manufactured identically. The standard deviation σa (assuming
Gaussian distributed measurement data) of these normalized total areas At is taken as
one measure for circuit variations. Besides this asymmetry which measures the variation
within a synapse, a measure for variation across synapses is the standard deviation σt of
the absolute areas Aabs. Therefore the absolute areas Aabs under each STDP curve are
again normalized by Aabs and furthermore the mean of all these normalized absolute areas
is subtracted.

2.7.2 Software analysis

In order to predict the effects of the previously measured variations on the network bench-
mark, these variations are integrated into computer simulations. The thresholds for the
causal and anti-causal spike pair accumulations are drawn from two overlaying Gaus-
sian distributions defined by the ideal thresholds (Equation 3) and their variations σt,
σa. Again, the same network benchmark as described above is used, but with a fixed
correlation coefficient of c = 0.025 and an 8-bit LUT configured with n = 12 SSPs.

3 Results

Synaptic weights of the FACETS wafer-scale hardware system (Schemmel et al., 2010) have
a 4-bit resolution. We show that such a weight resolution is enough to exhibit learning in
a neural network benchmark for synchrony detection. To this end, we analyze the effects
of weight discretization in three steps as summarized in Table 3.

Is a 4-bit synaptic weight resolution enough?

62



Description Results Methods

Look-up table analysis:
Basic analyses on the configuration of STDP on discrete
weights by means of look-up tables (A)

A) Section 3.1 A) Section 2.3 and
2.4

and their long-term dynamics (B). B) Section 3.2 B) Section 2.5

Spiking network benchmarks:
Software implementation of hardware-inspired synapses
with discrete weights for application in spiking neural
environments (C).

C) Section 2.6.1

Analyses of their effects on short-term weight dynamics in
single synapses (D)

D) Section 3.3.1 D) Section 2.6.2

and neural networks (E). E) Section 3.3.2 E) Section 2.6.3

Analyses on how additional hardware constraints effect the
network benchmark (F).

F) Section 3.3.3 F) Section 2.6.3

Hardware measurements:
Measurement of hardware variations (G)

G) Section 3.4 G) Section 2.7.1

and computer simulations analyzing their effects on the
network benchmark (H).

H) Section 3.4 H) Section 2.7.2

Table 3: Outline of analyses on the effects of weight discretization and further hardware
constraints.

3.1 Dynamic range of STDP on discrete weights

We choose the configuration of STDP on discrete weights according to Section 2.3 and
Section 2.4 to obtain weight dynamics comparable to that in continuous weight space.
Each configuration can be described by a LUT “projecting” each discrete weight to new
values, one for potentiation and one for depression. For a given weight resolution r the
free configuration parameter n (number of SSPs) has to be adjusted to avoid a further
reduction of the usable weight resolution by dead discrete weights. Dead discrete weights
are defined as weights projecting to themselves in case of both potentiation and depression
or not receiving any projections from other discrete weights. The percentage of dead
discrete weights d defines the lower and upper limit of feasible values for n, the dynamic
range. The absolute value of the interval within a SSP (∆ts) is an arbitrary choice merely
defining the granularity, but does not affect the results (not shown). Note that spike
timing precision in vivo, which is observed for high dimensional input such as dense noise
and natural scenes, goes rarely beyond 5 to 10 ms (Butts et al., 2007; Desbordes et al.,
2008; Marre et al., 2009; Desbordes et al., 2010; Frégnac, 2012), and the choice of 10ms
as a granular step is thus justified biologically.

Generally, low values of n realize frequent, small weight updates. However, if n is
too low, some discrete weights may project to themselves (see rounding in Equation 2)
and prevent synaptic weights from evolving dynamically (see Table 4b and n = 15 in
Figure 3A).

On the other hand, if n exceeds the upper limit of the dynamic range, intermediate
discrete weights may not be reached by others. Rare, large weight updates favor projec-
tions to discrete weights near the borders of the weight range I and lead to a bimodal
equilibrium weight distribution as shown in Table 4c and Figure 3A (n = 500).
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Figure 3: The dynamic range for configurations of STDP on discrete weights. (A) Equi-
librium weight distributions for a 4-bit weight resolution: Intermediate discrete weights
partly project to themselves (n = 15). The equilibrium weight distribution widens with
an increasing number of SSPs (n = 40 and n = 70). For a large number of SSPs (n = 225
and n = 500) the intermediate discrete weights do not receive projections from others.
(B) Percentage of dead discrete weights d. The limits of the dynamic range (d = 0%) are
highlighted in red. The limit towards low numbers of SSPs (n = 15 in case of r = 4bits)
is caused by rounding effects (Equation 2), whereas the upper limit (n = 206 in case
of r = 4bits) is caused by too large weight updates. Green dashed lines indicate cross
sections shown in (C) and (D). (C) Cross section of (B) at a 4-bit weight resolution. The
histograms shown in (A) are depicted with arrows. (D) Cross section of (B) at n = 1.
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Table 4: Look-up tables for different numbers n of SSPs. (a) As in Table 2 (n = 100),
which results in a LUT as expected. Weights are either potentiated or depressed through
the entire table. (b) n = 60, which is too low, because the discrete weights 1

3 and 2
3 are

projecting exclusively to themselves. (c) n = 350, which is too large, because for w+ the
discrete weight 0 is mapped right to 2

3 (and for w− the weight 1 is mapped to 0), thus 1
3

is never reached.

The lower limit of the dynamic range decreases with increasing resolution (Figure 3B).
Compared to a 4-bit weight resolution, an 8-bit weight resolution is sufficiently high to
resolve weight updates down to a single SSP (Figure 3D). This allows frequent weight
updates comparable to weight evolutions in continuous weight space. The upper limit of
the dynamic range does not change over increasing weight resolutions, but is critical for
limited update controller frequencies as investigated in Section 3.3.

3.2 Equilibrium weight distributions

Studying learning in neural networks may span long periods of time. Therefore we analyze
equilibrium weight distributions being the temporal limit of Poissonian distributed pre-
and postsynaptic spiking. These distributions are obtained by applying random walks
on LUTs with uniformly distributed occurrences of potentiations and depressions (Sec-
tion 2.5). Figure 4A shows i.a. boundary effects caused by LUTs configured within the
upper part of the dynamic range. E.g. for n = 144, the relative frequencies of both bound-
ary values are increased due to large weight steps (red and cyan distributions). Frequent
weights, in turn, increase the probability of weights to which they project (according to
the LUT). This effect decreases with the number of look-ups, due to the random nature of
the stimulus, however, causing intermediate weight values to occur at higher probability.

The impact of weight discretization on long-term weight dynamics is quantified by com-
paring equilibrium weight distributions between low and high weight resolutions. Weight
discretization involves distortions caused by rounding effects for small n (Equation 2 and
Figure 3) and boundary effects for high n (Figure 4A and C). High weight resolutions can
compensate for rounding effects, but not for boundary effects (Figure 4B).

This analysis on long-term weight dynamics (Figure 4C) refines the choice for n roughly
estimated by the dynamic range (Figure 3C).

3.3 Spiking network benchmarks

We extend the above studies on temporal limits by analyses on short-term dynamics with
unequal probabilities for potentiation pp and depression pd. A hardware-inspired synapse
model is used in computer simulations of spiking neural networks, of which an example
of typical dynamics is shown in Figure 5. As the pre- and postsynaptic spike trains are
correlated in a causal fashion, the causal spike pair accumulation increases faster than the
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Figure 4: Equilibrium weight distributions (long-term weight evolutions) for configurations
of STDP on discrete weights. (A) Equilibrium weight distributions for weight resolutions
of r = 4bits (red) and r = 16bits (cyan). Both distributions are displayed in 4-bit sam-
pling, for better comparison. Black curves depict the analytical approach. We have chosen
j = 105 iterations for generating each discrete weight distribution to ensure convergence
to the equilibrium state. (B) Mean squared error MSEeq between the equilibrium weight
distributions for weight resolutions r and the reference weight resolution of 16 bits ver-
sus the number n of SSPs. (C),(D) Cross sections of (B) at r = 4bits and n = 36,
respectively.
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(A) Temporal evolution of spike pair accumulations a (dimensionless) for causal (black)
and anti-causal (gray) spike-timing-dependences. If a crosses the threshold ath (cyan), the
weight is updated and a is reset to zero. Pre- and postsynaptic spike trains are generated
by a MIP with c = 0.5 and r = 10Hz. (B) Corresponding weight evolution (solid red)
for a 4-bit weight resolution and a LUT configured with n = 30. The weight evolution of
the reference synapse model with continuous weights, but a reduced symmetric nearest-
neighbor spike pairing scheme is depicted in solid blue. It differs from that of a synapse
model with continuous weights and an all-to-all spike pairing scheme (dashed green).

anti-causal one (Figure 5A). It crosses the threshold twice, evoking two potentiation steps
(at around 7 s and 13 s) before the anti-causal spike pair accumulation evokes a depression
at around 14 s (Figure 5A and B). The first two potentiations project to the subsequent
entry of the LUT, whereas the following depression rounds to the next but one discrete
weight (omitting one entry in the LUT) due to the asymmetry measure α in the STDP
model by Gütig et al. (2003).

3.3.1 Single synapse benchmark

This benchmark compares single weight traces between hardware-inspired and reference
synapses (Section 2.6.2). A synapse receives correlated pre- and postsynaptic input (Fig-
ure 6A) resulting in weight dynamics as shown in Figure 6B. The standard deviation
for discrete weights (hardware-inspired synapse model) is larger than that for continuous
weights (reference model). This difference is caused by rare, large weight jumps (induced
by high n) also responsible for the broadening of equilibrium weight distributions (Fig-
ure 4A). Consequently, the standard deviation increases further with decreasing weight
resolutions (not shown here).

The dependence of the deviation between discrete and continuous weight traces on
the weight resolution r and the number n of SSPs is qualitatively comparable to that of
comparisons between equilibrium weight distributions (Figure 6D and E). This similar-
ity, especially in dependence on n (Figure 6D), emphasizes the crucial impact of LUT
configurations on both short- and long-term weight dynamics.

To further illustrate underlying rounding effects when configuring LUTs, the asym-
metry value α in Gütig’s STDP model can be taken as an example. In an extreme case
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Figure 6: Weight evolution of a single synapse with discrete weights. (A) Network layout
for single synapse analyses. An STDP synapse (arrow) connects two neurons receiving
correlated spike trains with correlation coefficient c (correlated spikes in red bars). (B)
Example weight traces for the hardware-inspired (r = 4bits, n = 36 in red) and reference
synapse model (blue). Means and standard deviations over 30 realizations are plotted
as bold lines and shaded areas, respectively. The single weight traces for one arbitrarily
chosen random seed are depicted as thin lines. We applied a correlation coefficient c = 0.2,
an initial weight w0 = 0.5 and firing rates of 10Hz. The results persist qualitatively for
differing values staying within biologically relevant ranges (not shown here). (C) Mean
squared error MSEw between the mean weight traces as shown in (A) over the weight
resolution r and the number n of SSPs. The parameters c, w0 and the firing rates are
chosen as in (B). Other values for c and w0 do not change the results qualitatively. (D),(E)
Cross sections of (C) at r = 4bits and n = 36 in green. Red curves are adapted from
Figure 4C and D.

both potentiation and depression are rounded down (compare weight step size for poten-
tiation and depression in Figure 5B). This would increase the originally slight asymmetry
drastically and therefore enlarge the distortion caused by weight discretization.

The weight update frequency νw is determined by the weight resolution r and the
number n of SSPs. High frequencies are beneficial for chronologically keeping up with
weight evolutions in continuous weight space. They can be realized by small numbers of
SSPs lowering the threshold ath (Equation 3). On the other hand, rounding effects in
the LUT configuration deteriorate for too small numbers of SSPs (Figure 6D). In case
of a weight resolution r = 4bits (r = 8bits) choosing n = 36 (n = 12) for the LUT
configuration represents a good balance between a high weight update frequency and
proper both short- and long-term weight dynamics (Figure 3B, Figure 4B and Figure 6C).
Note that n can be chosen smaller for higher weight resolutions, because the distorting
impact of rounding effects decreases.

3.3.2 Network benchmark: synchrony detection

Not only exact weight traces of single synapses (Section 3.3.1), but rather those of synapse
populations are crucial to fulfill tasks, e.g. the detection of synchronous firing within
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neural networks. The principle of synchrony detection is a crucial feature of various neural
networks with plasticity, e.g. reported by Senn et al. (1998); Kuba et al. (2002); Davison &
Frégnac (2006); El Boustani et al. (2012). Here, it is introduced by means of an elementary
benchmark neural network (Figure 7A and Section 2.6.3), using the hardware-inspired or
reference synapse model, respectively.

Figure 7B shows a delay distribution of postsynaptic spike occurrences, relative to
the trigger onset, synchronous presynaptic firing (Section 2.6.3). For the shown range
of ∆tdel, the postsynaptic neuron is more likely to fire if connected with static (dark
gray trace) instead of STDP (black trace) synapses. The correlated population causes its
afferent synapses to strengthen more compared to those from the uncorrelated population.
This can be seen in Figure 7C, where w saturates at different values (t ≈ 700 s). The
same effect can be observed for discretized weights in Figure 7D. For ∆tdel > 170ms the
delay distribution for static synapses is larger than that for STDP synapses (not shown
here), because such delayed postsynaptic spikes are barely influenced by their presynaptic
counterparts. This is due to small time constants of the postsynaptic neuron (see τm = Cm

gL
and τsyn in Table 7 and 8) compared to ∆tdel.

Figure 7E shows the p-values of the Mann-Whitney U test applied to both groups
of synaptic weights at t = 2, 000 s for different configurations of weight resolution r and
number n of SSPs. Generally, p-values (probability of having the same median within
both groups of weights) decrease with an increasing correlation coefficient. Although ap-
plying previously selected “healthy” LUT configurations, weight discretization changes
the required correlation coefficient for reaching significance level (gray shaded areas). In-
crementing the weight resolution while retaining the number of SSPs n does not change
the p-values significantly. Low weight resolutions cause larger spacings between discrete
weights that can further facilitate the distinction between both medians (for n = 36 com-
pare r = 4bits to r = 8bits bits in Figure 7E). However, reducing n for high weight
resolutions shortens the accumulation period and consequently allows the synapses to
capture fluctuations in a on smaller time scales. This improves the p-value, but is in-
convenient for low weight resolutions, because these LUT configurations do not yield the
desired weight dynamics (Figure 3, 4 and 6).

3.3.3 Network benchmark: further constraints

In addition to the discretization of synaptic weights that has been analyzed so far, we
also consider additional hardware constraints of the FACETS wafer-scale system (Sec-
tion 2.6.3). This allows us to compare the effects of other hardware constraints to those
of weight discretization.

First, we take into account a limited update controller frequency νc. Figure 7F shows
that low frequencies (< 1Hz) distort the weight dynamics drastically and deteriorate the
distinction between correlated and uncorrelated inputs. Ideally, a weight update would be
performed whenever the spike pair accumulations cross the threshold (Figure 5A). How-
ever, these weight updates of frequency νw are now limited to a time grid with frequency
νc. The larger the latency between a threshold crossing and the arrival of the weight
update controller, the more likely this threshold is exceeded. Hence, the weight update
is underestimated and delayed. Low weight resolutions are less affected, because a high
ratio νc

νw
reduces threshold overruns and hence distortions. This low resolution requires a

high number of SSPs which in turn increases the threshold ath (Equation 3) and thus the
weight update frequency νw.

Second, hardware-inspired synapses with the limitation to common reset lines cease to
discriminate between correlated and uncorrelated input (Figure 7G, yellow and magenta
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Figure 7: Learning with discrete weights in a neural network benchmark for synchrony
detection. (A) Layout of the network benchmark. Two populations of presynaptic neu-
rons are connected to a postsynaptic neuron. On the right, example spike trains of the
presynaptic neurons are shown. Red spikes indicate correlated firing due to shared spikes.
(B) PSTH for static synapses and STDP reference synapses. The light gray histogram
shows the difference between a simulation with STDP reference synapses (black) and static
synapses (dark gray). (C) The mean weight traces (thick lines) and their standard devia-
tions (shaded areas) for both populations of afferent synapses using the reference synapses
model. Thin lines represent single synapses randomly chosen for each population. (D)
As in (B), but with the hardware-inspired synapse model (r = 4bits and n = 36). (E)
The probability (p-value of Mann-Whitney U test) of having the same median of weights
within both groups of synapses (with correlated and uncorrelated input) at t = 2, 000 s
versus the correlation coefficient c. The hardware-inspired synapse model is represented
in red (r = 4bits and n = 36), green (r = 8bits and n = 36) and blue (r = 8bits and
n = 12). Black depicts the reference synapse model (r = 64bits). The background shad-
ing represents the significance levels: p < 0.05, p < 0.01 and p < 0.001. (F) Dependence
of the p-value on the update controller frequency νc for c = 0.025. Colors as in (E) (G)
Black and red trace as in (E). Additionally, p-values for hardware-inspired synapses with
common resets are plotted in yellow (r = 4bits and n = 36) and magenta (r = 8bits and
n = 12). Compensations with ADCs are depicted in gray (r = 4bits and n = 15 to 45 in
steps of 2) and cyan (r = 8bits and n = 1 to 46 in steps of 3).
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traces). A crossing of the threshold by one spike pair accumulation resets the other (Fig-
ure 5) and suppresses its further weight updates, leading to underestimation of synapses
with less correlated input.

To compensate for common resets we suggest ADCs that allow the comparison of spike
pair accumulations to multiple thresholds. Nevertheless, ADCs compensate common resets
only for high weight resolutions (Figure 7G). Again, for low weight resolutions and hence
high numbers of SSPs fluctuations can not be taken into account (Figure 7G, gray values).
This is the case for a 4-bit weight resolution, whereas a 8-bit weight resolution is high
enough to resolve small fluctuations down to single SSPs (Figure 7G, cyan values). Each
threshold has its own LUT configured with a number of SSPs that matches the dynamic
range (Figure 3). The upper limit of n is chosen according to the results of Section 3.2.
The update controller frequency is chosen to be low enough (νc = 0.2Hz) to enable all
thresholds to be hit.

3.4 Hardware variations

So far, we neglected production imperfections in real hardware systems. However, fixed
pattern noise induced by these imperfections are a crucial limitation on the transistor level
and may distort the functionality of the analog synapse circuit making higher weight res-
olutions unnecessary. The smaller and denser the transistors, the larger the discrepancies
from their theoretical properties (Pelgrom et al., 1989). Using the protocol illustrated in
Figure 8A we recorded STDP curves on the FACETS chip-based hardware system (Fig-
ure 8B, C and Section 2.7.1). Variations within (σa) and between (σt) individual synapses
are shown as distributions in Figure 8D and E, both suggesting variations at around 20%.
Both variations are incorporated into computer simulations of the network benchmark
(Figure 7A and Section 2.7.2) to analyze their effects on synchrony detection. The p-
value (as in Figure 7E-G) rises with increasing asymmetry within synapses, but is hardly
affected by variations between synapses (Figure 8F).

4 Discussion

4.1 Configuration of STDP on discrete weights

In this study, we demonstrate generic strategies to configure STDP on discrete weights
as e.g. implemented in neuromorphic hardware systems. Resulting weight dynamics is
critically dependent on the frequency of weight updates that has to be adjusted to the
available weight resolution. Choosing a frequency within the dynamic range (Figure 3) is
a prerequisite for the exploitation of discrete weight space ensuring proper weight dynam-
ics. Analyses on long-term dynamics using Poisson-driven equilibrium weight distributions
help to refine this choice (Figure 4). The obtained configuration space is similar to that
of short-term dynamics, being the evolution of single synaptic weights (Figure 6). This
similarity confirms the crucial impact of the LUT configuration on weight dynamics which
is caused by rounding effects. Based on these results, we have chosen two example LUT
configurations (r = 4bits; n = 36 and r = 8bits; n = 12) for further analysis, both
realizable on the FACETS wafer-scale hardware system. High weight resolutions allow for
higher frequencies of weight updates approximating the ideal model, occasionally requiring
several spike pairs to evoke a weight update. Correspondingly, in associative pairing litera-
ture, a minimal number of associations is required to detect functional changes (expressed
by the spiking or postsynaptic potential response) and varies from studies to studies from
a few to several tens (Cassenaer & Laurent, 2007, 2012).
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Figure 8: Measurement of hardware synapse variations and their effects on learning in
the neural network benchmark. (A) Setup for recording STDP curves. At the top, spike
trains of the pre- and postsynaptic neuron. Spike pairs with latency ∆t are repeated with
frequency 1

T . At the bottom, a spike pair accumulation that crosses the threshold ath
(arrow). The inverse of the number of SSPs until crossing ath (here N = 3) is plotted in
(B). (B) STDP curves of 252 hardware synapses within one synapse column (gray) and
their mean with error (blue). A speed-up factor of 105 is assumed. These curves correspond
to x(∆t) in Equation 1, whereas F (w) is realized by the LUT. (C) One arbitrarily chosen
STDP curve (over 5 trials) showing the areas for ∆t < 0 (Aa in red) and ∆t > 0 (Ac in
blue). (D) Asymmetry between Aa and Ac within synapses (σa = 21%). (E) Variation
of the absolute areas between synapses (σt = 17%). (F) The p-value (as in Figure 7E-G)
in dependence on σa and σt. The values for (D) and (E) are marked with an asterisk.
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Discretization not only affects the accuracy of weights, but also broadens their equilib-
rium weight distributions (Figure 4), which are actually shown to be narrow in large-scale
neural networks (Morrison et al., 2007). Furthermore, this broadening can distort the func-
tionality of neural networks, e.g. it deteriorates the distinction between the two groups of
weights (of synapses originating from the correlated or uncorrelated population) within
the network benchmark (compare Figure 7C to D). On the other hand, weight discretiza-
tion can also be advantageous for synchrony detection, if e.g. groups of weights separate
due to large step sizes between neighboring discrete weights (compare red and green in
Figure 7E).

In summary, these analyses of STDP on discrete weights are necessary for obtaining
appropriate configurations for a variety of STDP models and weight resolutions.

4.2 4-bit weight resolution

Simulations of the network benchmark show that a 4-bit weight resolution is sufficient to
detect synchronous presynaptic firing significantly (Figure 7). Groups of synapses receiving
correlated input strengthen and in turn increase the probability of synchronous presynap-
tic activity to elicit postsynaptic spikes as compared to static synapses (Figure 7B). Thus,
the weight distribution within the network reflects synchrony within sub-populations of
presynaptic neurons. Increasing the weight resolution causes both weight distributions,
for the correlated and uncorrelated input, to narrow and separate from each other. Con-
sequently, an 8-bit resolution is sufficient to reproduce the p-values of continuous weights
with floating point precision (corresponds to discrete weights with r = 64bits, Figure 7E).
This resolution requires the combination of two hardware synapses and is under develop-
ment (Schemmel et al., 2010). On the other hand, increasing the weight resolution, but
retaining the frequency of weight updates (number of SSPs), results in weight distribu-
tions of comparable width and consequently does not improve the p-values significantly
(Figure 7E).

Other neuromorphic hardware systems implement bistable synapses corresponding to
a 1-bit weight resolution (Badoni et al., 2006; Indiveri et al., 2010). Bistable synapse
models are shown to be sufficient for memory formation (Amit & Fusi, 1994; Fusi et al.,
2005; Brader et al., 2007; Clopath et al., 2008). However, these models do not only employ
spike timings (Levy & Steward, 1983; Markram et al., 1997; Bi & Poo, 2001; Mu & Poo,
2006; Cassenaer & Laurent, 2007), but also read the postsynaptic membrane potential
(Sjöström et al., 2001; Trachtenberg et al., 2002) requiring additional hardware resources.
So far, there is no consensus of a general synapse model, and neuromorphic hardware
systems are mostly limited to only subclasses of these models.

This studies on weight discretization are not limited to the FACETS hardware systems
only, but are applicable to other backends for neural network simulations. For example,
our results can be applied to the fully digital neuromorphic hardware system described
by Jin et al. (2010b), who also report STDP with a reduced weight resolution. Further-
more, weight discretization may be a further approach to reduce memory consumption of
“classical” neural simulators.

4.3 Further hardware constraints

In addition to a limited weight resolution, we have studied further constraints of the
current FACETS wafer-scale hardware system with the network benchmark.

A limited update controller frequency implying a minimum time interval between sub-
sequent weight updates does not affect the p-values down to a critical frequency νc ≈ 1Hz

Is a 4-bit synaptic weight resolution enough?

73



(Figure 7F). The update controller frequency decreases linearly with the number of hard-
ware synapses enabled for STDP. Assuming a hardware acceleration factor of 103 all
synapses can be enabled for STDP staying below this critical frequency. However, the
number of STDP synapses should be decreased if a higher update controller frequency is
required, e.g. for a configuration with an 8-bit weight resolution and a small number of
SSPs.

Common resets of spike pair accumulations reduce synapse chip resources by requir-
ing one instead of two reset lines, but suppress synaptic depression and bias the weight
evolution towards potentiation. This is due to the feed-forward network architecture, in
which causal relationships between pre- and postsynaptic spikes are more likely than anti-
causal ones. Long periods of accumulation (large numbers of SSPs) lower the probability
of synaptic depression. Hence, all weights tend to saturate at the maximum weight value
impeding a distinction between both populations of synapses within the network bench-
mark (Figure 7G). The probability of synaptic depression can be increased by high weight
update frequencies (small numbers of SSPs) shortening the accumulation periods (Equa-
tion 3) and subsequently approaching the behavior of independent resets. However, high
weight update frequencies require high weight resolutions and thus high update controller
frequencies, which decreases the number of available synapses enabled for STDP.

As a compensation for common resets, we suggest that the single spike pair accumu-
lation threshold is expanded to multiple thresholds implemented as ADCs. In comparison
to synapses with common resets, ADCs improve p-values significantly only for an 8-bit
weight resolutions (Figure 7G, compare cyan to magenta values). However, the combina-
tion of two 4-bit hardware synapses allows to mimic independent resets and hence yields
p-values comparable to 8-bit synapses using ADCs (Figure 7G, compare red to cyan val-
ues). Mimicking independent resets is under development for the FACETS wafer-scale
hardware system. Each of the two combined synapses will be configured to accumulate
only either causal or anti-causal spike pairs, while both synapses are updated in a com-
mon process. This requires only minor hardware design changes within the weight update
controller and should be preferred to more expensive changes for realizing ADCs. The
implementation of real second reset lines is not possible without major hardware design
changes, but is considered for future chip revisions.

Benchmark simulations incorporating the measured variations within and between
synapse circuits due to production imperfections result in p-values worse (higher) than
for a 4-bit weight resolution (compare asterisk in Figure 8F to red value for c = 0.025
in Figure 7E). Consequently, a 4-bit weight resolution is sufficient for the current imple-
mentation of the measurement and accumulation circuits. We suppose that the isolatedly
analyzed effects of production imperfections and weight discretization add up and limit
the best possible p-value of each other. Analysis on combinations of hardware restrictions
would allow to quantify how their effects add up and are considered for further studies.
However, hardware variations can also be considered as a limitation on the transistor level
making higher weight resolutions unnecessary.

Figure 9 summarizes the results on how to configure STDP on discrete weights. For
a given weight resolution r the number n of SSPs has to be chosen as low as possible to
allow for high weight update frequencies νw. However, n must be high enough to ensure
STDP dynamics comparable to continuous weights (lightest gray shaded area) and to stay
within the configuration space realizable by the FACETS wafer-scale hardware system.
The hardware system limits the update controller frequency νc and hence distorts STDP
especially for low n.
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Figure 9: The configuration space of STDP on discrete weights spanned by the weight
resolution r and the number n of SSPs that is inversely proportional to the weight update
frequency νw. The darkest gray area depicts the configurations with dead discrete weights
(Figure 3). The lower limits of configurations for proper equilibrium weight distributions
(Figure 4) and single synapse dynamics (Figure 6) are shown with brighter shades. The
dashed rectangle marks configurations realizable by the FACETS wafer-scale hardware
system (assuming an acceleration factor of 103, all synapses enabled for STDP and SSPs
applied with 10Hz). The working points for a 4-bit (n = 36) and 8-bit (n = 12) weight
resolution are highlighted as a triangle and circle, respectively.

4.4 Outlook

Currently, STDP in neuromorphic hardware systems is enabled for only 10 to few 10, 000
synapses in real-time (Arthur & Boahen, 2006; Zou et al., 2006; Daouzli et al., 2008;
Ramakrishnan et al., 2011). Large-scale systems do not implement long-term plasticity
(Merolla & Boahen, 2006; Vogelstein et al., 2007) or operate in real-time only (Jin et al.,
2010a). Enabling a large-scale (over 4 ·107 synapses) and highly accelerated neuromorphic
hardware system (the FACETS wafer-scale hardware system) with configurable STDP
requires trade-offs between number and size of synapses, which raises constraints in their
implementation (Schemmel et al., 2006, 2010). Table 5 summarizes these trade-offs and
gives an impression about the hardware costs and effects on STDP.

In this study, we introduced novel analysis tools allowing the investigation of hardware
constraints and therefore verifying and improving the hardware design without the need
for expensive and time-consuming prototyping. Ideally, this validation process should be
shifted to an earlier stage of hardware design combining the expertise from Computational
Neuroscience and Neuromorphic Engineering, as e.g. published by Linares-Barranco et al.
(2011). This kind of research is crucial for researchers to use and understand research exe-
cuted on neuromorphic hardware systems and thereby transform it into a tool substituting
von Neumann computers in Computational Neuroscience. Brüderle et al. (2011) report
the development of a virtual hardware, a simulation tool replicating the functionality and
configuration space of the entire FACETS wafer-scale hardware system. This tool will
allow further analyses on hardware constraints, e.g. in the communication infrastructure
and configuration space.

The presented results verify the current implementation of the FACETS wafer-scale
hardware system in terms of balance between weight resolution, update controller fre-
quency and circuit variations. Further improvement of the existing hardware implementa-
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Modification Resource
reduction

Effect on STDP

Global weight update
controller

+++ Latency between synapse
processings; spike pair
accumulations necessary

Analog measurement of
spike-timing-dependence

++ Analog measurements are
affected by production
imperfections

Reduced spike pairing scheme ++ n.a.

Decreased weight resolution ++ Loss in synapse dynamics
and competition; large
weight steps require spike
pair accumulations

Reduction of operation
frequency νc of the weight
update controller (overall
frequency could be increased
by implementing multiple
controllers)

++ Threshold over-shootings
distorts synchrony
detection

Common reset line + No synchrony detection
possible

LUTs (compared to
arithmetic operations)

+ None

ADCs as compensation for
common resets

- No significant
compensation in case of
4-bit synapses

Table 5: Possible design modifications of hardware synapses, their reduction in terms of
required chip resources and their effects on STDP. These modifications are listed by their
resource reduction in descending order inspired by the FACETS wafer-scale hardware
system and its production process. A larger reduction of chip resources allows more
synapses on a single chip.
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tion would require improvements of all aspects. The only substantial bottleneck has been
identified to be common resets, already leading to design improvements of the wafer-scale
system.

Although all presented studies refer to the intermediate Gütig STDP model, any other
STDP model relying on Equation 1 and an exponentially decaying time-dependence can
be investigated with the existing software tools in a generic way, e.g. those models listed
in Table 1. In contrast to the fixed exponential time-dependence implemented as analog
circuits in the FACETS wafer-scale hardware system, the weight-dependence is freely
programmable and stored in a LUT.

Ideally, a high resolution in the weight range of highest plausibility is requested, a
high effective resolution. Bounded STDP models (e.g. the intermediate Gütig STDP
model applied in this study) are well suited for a 4-bit weight resolution and allow a
linear mapping of continuous to discrete weights. A 4-bit weight resolution causes large
weight updates and hence broadens the weight distribution spanning the whole weight
range. This results in a high effective resolution. On the other hand, unbounded STDP
models (e.g. the power law and van Rossum STDP models) have long tails towards high
weights. Cutting the tail by only mapping low weights to discrete weights would increase
the frequency of the highest discrete weight. A possible solution is a non-linear mapping of
continuous to discrete weights - large differences between high discrete weights and small
differences between low discrete weights. However, a variable distance between discrete
weights would require more hardware efforts.

An all-to-all spike pairing scheme applied to the reference synapses within the network
benchmark results in p-values worse (higher) than for synapses implementing a reduced
symmetric nearest-neighbor spike pairing scheme (not shown, but comparable to 4-bit
discrete weights in Figure 7E, see red values). Detailed analyses on different spike pairing
schemes could be investigated in further studies.

As a next step, our hardware synapse model can replace the regular STDP synapses
in simulations of established neural networks, to test their robustness and applicability
for physical emulation in the FACETS wafer-scale hardware system. The synapse model
is available in the following NEST release and can easily be applied to NEST or PyNN
network descriptions. If neural networks, or modifications of them, qualitatively reproduce
the simulation, they can be applied to the hardware system, with which similar results
can be expected. Thus, the presented simulation tools allow beforehand modifications of
network architectures to ensure the compatibility with the hardware system.

With respect to more complex long-term plasticity models, the hardware system is
currently being extended by a programmable microprocessor that is in control of all weight
modifications. This processor allows to combine synapse rows in order to compensate for
common resets. With possible access to further neuron or network properties the processor
would allow for more complex plasticity rules as e.g. those of Clopath et al. (2008) and
Vogels et al. (2011). Even modifications of multiple neurons are feasible, a phenomenon
observed in experiments with neuromodulators (Eckhorn et al., 1990; Itti & Koch, 2001;
Reynolds & Wickens, 2002; Shmuel et al., 2005). Nevertheless, more experimental data
and consensus about neuromodulator models and their applications are required to further
customize the processor. New hardware revisions are rather expensive and consequently
should only cover established models that are prepared for hardware implementation by
dedicated studies.

This presented evaluation of the FACETS wafer-scale hardware system is meant to
encourage neuroscientists to benefit from neuromorphic hardware without leaving their
environment in terms of neuron, synapse and network models. We further endorse that,
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towards an efficient exploitation of hardware resources, the design of synapse models will
be influenced by hardware implementations rather than only by their mathematical treata-
bility (e.g. Badoni et al., 2006).
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Schemmel, J., & Meier, K. (2011). A comprehensive workflow for general-purpose neural

Is a 4-bit synaptic weight resolution enough?

78



modeling with highly configurable neuromorphic hardware systems. Biol. Cybern. 104,
263–296.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. J. Comput. Neurosci. 8 (3), 183–208.

Butts, D. A., Weng, C., Jin, J., Yeh, C.-I., Lesica, N. A., Alonso, J.-M., & Stanley, G. B.
(2007). Temporal precision in the neural code and the timescales of natural vision.
Nature 449 (7158), 92–95.

Cassenaer, S., & Laurent, G. (2007). Hebbian STDP in mushroom bodies facilitates the
synchronous flow of olfactory information in locusts. Nature 448 (7154), 709–713.

Cassenaer, S., & Laurent, G. (2012). Conditional modulation of spike-timing-dependent
plasticity for olfactory learning. Nature 482 (7383), 47–52.
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Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., & Millner, S. (2010). A wafer-
scale neuromorphic hardware system for large-scale neural modeling. In Proceedings of
the 2010 International Symposium on Circuits and Systems (ISCAS), Paris, pp. 1947–
1950. IEEE Press.
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6 Appendix

6.1 Analytical distributions

Weight evolutions can be described by asymmetric Markov processes with boundary con-
ditions. Following van Rossum et al. (2000), the weight distribution P (w) can be expressed
by a Taylor expansion of the underlying master equation

∂P (w, t)

∂t
= −pdP (w, t)− ppP (w, t) + pdP (w +∆wd, t) + ppP (w −∆wp, t). (4)

In contrast to van Rossum et al. (2000), this study defines a weight step ∆w by a sequence
of n weight updates δw as described by Equation 1. Hence the weight steps ∆w can be
written as ∆wd(w) = (w + F−(w))n − w and ∆wp(w) = (w + F+(w))n − w, where f(w)n
is the n-th recursive evaluation of f(w).

According to van Rossum et al. (2000) this Taylor expansion results in the Fokker-
Planck equation

∂P (w, t)

∂t
= −

∂

∂w
[A(w)P (w, t)] +

1

2

∂2

∂w2
[B(w)P (w, t)] (5)

with jump moments A(w) = pd∆wd(w)+pp∆wp(w) and B(w) = pd∆wd(w)
2+pp∆wp(w)

2,
which has the following solution for reflecting boundary conditions (Gardiner, 2009):

P (w) =
N

B(w)
exp

[
2

ˆ w

0

A(w′)

B(w′)
dw′

]
, (6)

with N as a normalization factor. For small n this equation can be solved analytically,
but is integrated numerically to cover also large n.

However, this analytical approach fails, because the Taylor expansion in combination
with the boundary conditions does not hold for large n (absorbing boundary conditions
do not improve the results).

6.2 STDP in the FACETS chip-based hardware system

The STDP mechanism of the FACETS chip-based hardware system differs from that of the
FACETS wafer-scale hardware system as follows. The major difference is the comparison
of spike pair accumulations with thresholds. The wafer-scale system analyzed in this
study compares both spike pair accumulations with a threshold (the threshold can be set
independently for both accumulations, but they are assumed to be equal in this study).
An weight update is performed if a single accumulation crosses this threshold. In contrast,
the chip-based system used for all measurements subtracts both spike pair accumulations
and compares the absolute value of their difference |ac − aa| with a single threshold. If
this threshold is crossed, the sign of the difference between the spike pair accumulations
sig (ac − aa) determines, whether the causal or anti-causal accumulation prevails and the
weight is updated accordingly. However, this difference between both hardware systems
can be neglected, because both STDP mechanisms are identical if exclusively causal or
anti-causal spike pairs are accumulated. This is the case for the measurement protocol of
STDP curves.

Is a 4-bit synaptic weight resolution enough?

84



Parameter Description Value

Vclrc Amount of charge that will be
accumulated on the capacitor C1

(Schemmel et al., 2006) in case of
causal spike time correlations,

corresponds to x(∆t)

0.90V

Vclra See Vclrc, but for the anti-causal
circuit

0.94V

Vctlow Lower spike pair accumulation
threshold

0.85V

Vcthigh Higher spike pair accumulation
threshold

1.0V

adjdel Adjustable delay between the pre-
and postsynaptic spike

2.5µA

Vm Parameter to stretch the STDP
time constant τSTDP

0.0V

Ibcorreadb Bias current that influences timing
issues during read outs

2.0µA

drvIrise Rise time of synaptic conductance 1.0V

drvIfall Fall time of synaptic conductance 1.0V

Vstart Start value of synaptic
conductance, need for small rise

times

0.25V

drvIout Maximum value of synaptic
conductance, corresponds to gmax

variable

Table 6: Applied hardware parameters. The difference Vcthigh − Vctlow corresponds to the
threshold ath. All data is recorded with the FACETS chip-based hardware system using
chip number 444 and synapse column 4.

6.3 Generating spike pairs in hardware

Spike pairs in the FACETS chip-based hardware system are generated as follows. Presy-
naptic spike times can be set precisely, whereas postsynaptic spikes need to be triggered
by presynaptic input. Therefore, a presynaptic spike (via the measured synapse) and m
trigger spikes (eliciting a postsynaptic spike) are fed into a single neuron occupying m+1
synapses. The synaptic weights as well as the synapse driver strengths of the trigger
synapses are proportional to the synaptic peak conductance and are adjusted in such a
way that a single postsynaptic spike is evoked. The highest reliability of spike times within
a hardware run and between runs is achieved for m = 4 trigger synapses (not shown here).
The synapse driver strength is set to the intermediate value between the limiting case of
no and multiple postsynaptic spikes evoked by one trigger only. The synaptic weight of the
measured synapse is set to zero and consequently the measured synapse has no influence
on the elicitation of postsynaptic spikes.
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A: Model summary

Populations three: uncorrelated input (U), correlated input (C), target (T)

Topology feed-forward

Connectivity all-to-one

Neuron model leaky integrate-and-fire, fixed voltage threshold, fixed absolute
refractory period (voltage clamp)

Synapse model exponential-shaped postsynaptic conductances

Plasticity intermediate Gütig spike-timing dependent plasticity

Input fixed-rate Poisson (for U) and multiple interaction process (for C)
spike trains

Measurements synaptic weights

B: Populations

Name Elements Population size

U parrot neurons NU

C parrot neurons NC

T iaf neurons NT

C: Connectivity

Source Target Pattern

U T all-to-all, uniformly distributed initial weights w,
STDP, delay dC T

D: Neuron and synapse model

Name iaf neuron

Type leaky integrate-and-fire, exponential-shaped synaptic conductances

Sub-threshold
dynamics

Cm
dV
dt = gL(EL − V ) + g(t)(Ee − V ) if t > t∗ + τref

V (t) = Vreset else
g(t) = wgmax exp(−t/τsyn)

Spiking If V (t−) < θ ∧ V (t+) ≥ θ
1. set t∗ = t, 2. emit spike with time stamp t∗

Name parrot neuron

Type repeats input spikes with delay d

E: Plasticity

Name intermediate Gütig STDP

Spike pairing
scheme

reduced symmetric nearest-neighbor

Weight
dynamics

δw(w,∆t) = F (w)x(∆t)
x(∆t) = exp(−|∆t|/τSTDP)
F (w) = λ(1− w)µ if ∆t > 0
F (w) = −λαwµ if ∆t < 0

F: Input

Type Target Description

Poisson
generators

U independent Poisson spike trains with firing rate ρ

MIP generators C spike trains with correlation c and firing rate ρ

G: Measurements

evolution and final distribution of all synaptic weights

Table 7: Model description of the network benchmark using the reference synapse model.
After Nordlie et al. (2009). For details about the hardware-inspired synapse model see
Section 2.6.1.
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B: Populations

Name Value Description

NU 10 number of neurons in uncorrelated input
population

NC 10 number of neurons in correlated input population

NT 1 number of neurons in target population

C: Connectivity

Name Value Description

w uniformly
distributed over
[0,1]

number of neurons in uncorrelated input
population

d 0.1ms synaptic transmission delays

D: Neuron and synapse model

Name Value Description

Cm 250 pF membrane capacity

gL 16.6667 nS leakage conductance

EL −70mV leakage reversal potential

θ −55mV fixed firing threshold

Vreset −60mV reset potential

τref 2ms absolute refractory period

Ee 0mV excitatory reversal potential

gmax 100 nS postsynaptic maximum conductance

τsyn 0.2ms postsynaptic conductance time constant

E: Plasticity

Name Value Description

α 1.05 asymmetry

λ 0.005 learning rate

µ 0.4 exponent

τSTDP 20ms STDP time constant

F: Input

Name Value Description

ρ 7.2Hz firing rate

c [0.005,0.05] pair-wise correlation between spike trains

Table 8: Parameter specification. The categories refer to the model description in Table 7.
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Abstract

Temporal coding is one approach to representing information in spiking neural networks.

An example of its application is the location of sounds by barn owls that requires especially

precise temporal coding. Dependent upon the azimuthal angle, the arrival times of sound sig-

nals are shifted between both ears. In order to determine these interaural time differences,

the phase difference of the signals is measured. We implemented this biologically inspired

network on a neuromorphic hardware system and demonstrate spike-timing dependent plas-

ticity on an analog, highly accelerated hardware substrate. Our neuromorphic implementation

enables the resolution of time differences of less than 50 ns. On-chip Hebbian learning mech-

anisms select inputs from a pool of neurons which code for the same sound frequency. Hence,

noise caused by different synaptic delays across these inputs is reduced. Furthermore, learning

compensates for variations on neuronal and synaptic parameters caused by device mismatch

intrinsic to the neuromorphic substrate.

†Received funding by the European Union 7th Framework Programme under grant agreement no. 243914 (Brain-i-

Nets).
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1 Introduction

Phase-locking has been shown to be one approach towards precise temporal coding in neural

information processing [4] and is observed in the auditory pathway of barn owls [3]. Barn owls

locate sounds by measuring the difference between the respective arrival times at both ears, the

so-called interaural time difference (ITD), also known as the Jeffress model [10]. A neuron in the

laminar nucleus will fire at a high rate if it detects coincidences between the two periodic signals

that code the same sound frequency at both ears (Figure 1B and C). In other words, the neuron will

fire at a maximum rate if the signals from both ears arrive coherently. This requires spike times

that are “locked” to a specific phase of the sound signal. The more precisely spikes are locked,

the higher the temporal resolution for measuring ITDs is. Previous studies have shown phase-

locking with precision much smaller than the membrane time constants of the involved neurons

[3]. However, synaptic delays differ across the neurons that code for the same sound frequency

[3]. Coherence in the arrival time of signals can be restored by learning transmission delays [20]

or by selecting synapses with simultaneous activity [4].

In this study, we present an analog, neuromorphic implementation of a spiking neural network

which selects inputs out of a broad distribution of transmission delays by means of an unsuper-

vised, on-chip Hebbian learning rule. The intrinsic, high acceleration factor of the neuromorphic

substrate [16] allows for learning of phase-locking with 100 ns precision in hardware time domain.

Finally, the results of this on-chip synapse selection is applied to detect ITDs of less than 50 ns.

In addition to noise induced by variations in transmission delays, device mismatch in analog

circuitries of neurons and synapses causes fixed-pattern noise on neural components. This means,

parameters vary between neurons and synapses, as, for example, in the membrane time constant

and synaptic strength.

Both types of variations can be reduced by off-chip calibration routines. In this study, they are

compensated by on-chip learning mechanisms. In contrast, an implementation without plasticity,

but the same variations in neural components, can barely measure any time differences between

two 1MHz signals in hardware time domain.

One of the first neuromorphic implementations for coincidence detection was a silicon replica-

tion of the auditory pathway [12]. Sound location is implemented by two synapses which transmit

the signal from each ear. However, this device does not support on-chip learning, and connectivity

between neurons is hard-wired. In this study, each ear is represented by a population of synapses

rather than a single synapse. Inspired by the biological example [3] we add noise to the synaptic

delays of this population. We demonstrate that spike-timing dependent plasticity which is imple-

mented in our neuromorphic hardware system de-noises the input. The novelty of this system is to

combine a dense integration of highly accelerated neurons with on-chip learning in each synapse

[16] that allows for learning of coincidence detection with resolution higher than 50 ns. Other

approaches with re-configurable connectivity and on-chip plastic synapses have lower counts of

neurons and synapses [8, 1, 6], mostly optimizied for low power consumption, or operate in bio-

logical real-time [21].

2 Network and hardware description

The neuromorphic hardware system we used is designed as a re-configurable, universal neuro-

morphic substrate on which neural networks operate 104 times faster than biological real-time

(Figure 1A, [16]). It comprises pair-wise spike-timing dependent plasticity (STDP) in each of up

to 256 synapses per neuron [19]. This type of Hebbian learning rule is adapted from measurements

in biological tissue [14, 2, 15] and is described later in this section.
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Figure 1: (A) Microphotograph of the neuromorphic chip (fabricated in a 180 nm CMOS process

with die size 5×5mm2). (B) A barn owl locates sound by measuring the interaural time difference

of a presented sound signal. (C) Schematic of the auditory pathway of barn owls. Neurons in the

laminar nucleus detect coincidences between signals that arrive from both ears through fibres

serving as delay lines (blue and green lines). The firing rate of the neuron at which the signals

arrive simultaneously has the highest firing rate (colored darkly). Consequently, each neuron codes

for an azimuthal sector. Figure (B) and (C) are adapted from [11].

The network model implemented in silico is inspired by the auditory pathway of barn owls

[3, 4]. In this study, we investigate sound processing of a single frequency channel, exemplarily

for any frequency of comparable scale. A neuron in the nucleus laminaris receives bilateral input

from several neurons in the cochlear nucleus magnocellularis (Figure 2). The network selects

those inputs, of which signals arrive coherently at the postsynaptic neuron, in order to improve the

temporal coding of sound signals which is used for sound localization.

The delay of signal transmission ∆di for each connection with index i is Gaussian distributed

with standard deviation σ [3]. Note that σ · 2 is larger than the period T of the input signal and,

consequently, neighboring volleys of spikes overlap (black and blue spikes in Figure 2). The

postsynaptic neuron is mimicked by a hardware neuron that approximates the conductance-based,

leaky integrate-and-fire neuron model [16, 9]. The presynaptic input is modeled by individual

spike trains fed into the system. Figure 2 shows the allocation of hardware resources including the

synaptic nodes, each of which comprises STDP.

As the membrane time constant of hardware neurons can not be configured to values below

τ hw
m ≈ 200 ns in hardware time domain, we assume an acceleration factor of 500 throughout this

study for better comparison with biological measurements. Thus, all time constants, as well as

experiment time, are given in biological time domain, if not stated otherwise. For example, in

the following, we use a neuron with τ hw
m = 200 ns in hardware time domain which translates to

τm = 100 µs in biological time domain, as suggested in [4].

We stimulate the network with a pure tone similar to [4]. For each presynaptic input spikes

are drawn with probability pspike = 0.35 from a template of regular spike times with frequency

f = 2 kHz in biological time domain. Additionally, each spike has a jitter following a Gaussian

distribution with standard deviation 40 µs. The individual transmission delay ∆di for each input

with index i is modeled by being added to all spike times of this input.
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Figure 2: Network implementation on the neuromorphic chip. The postsynaptic hardware neuron

(black circle) receives input from 64 presynaptic spike sources, whose spike times are generated on

the host computer and transferred to the chip. All inputs (black triangles) show regular spike times

of identical frequency f = 1
T = 2 kHz, but each input is shifted in time following a Gaussian

distribution with σ = 300 µs (blue). For simplicity we neglected pspike < 1 and jitter on spike

times in this schematic. When the postsynaptic neuron fires, each synapse (red circles) measures

the correlations (∆t) between its pre- and postsynaptic spikes. During the next evaluation of these

synapses, their weights w are potentiated or depressed according to an additive rule (∆w = ±1,

respectively).

On hardware, the strength of a synaptic connection gi is the product of a conductance gmax
i

adjustable for each input stream (triangles in Figure 2) and a 4-bit digital weight wi stored in each

synapse:

gi = gmax
i wi (1)

While gmax
i is static throughout an emulation run, wi is subject to STDP and can assume inte-

ger values between 0 and 15. However, gmax
i varies between synapses. This is caused by device

mismatch due to imperfections in the production process [16]. Excitatory postsynaptic potentials

(EPSPs) were recorded by measuring the impact of a single spike on the resting state of the post-

synaptic membrane potential Vm (Figure 3A). Their time course is configured to be as short as

possible, and their amplitude (gmax) is set to an intermediate value. This results in a target firing

rate of approximately 1 kHz in the final network implementation.

Synaptic weights wi are modified by on-chip learning mechanisms at accelerated runtime de-

scribed as follows: The temporal correlations between spike pairs are measured and stored locally

in each synapse by analog circuitry. Correlations between pre-post and post-pre spike pairs are

accumulated as charge on two capacitors, respectively. In contrast to the local measurement and

accumulation, the evaluation of these measurements is performed by controllers shared between

synapses. Thereby, the controller compares for each synapse the amount of charge on its capacitors

as follows:

|ac − aa| > ath (2)

ac − aa > 0 (3)

where ac is the charge on the capacitor for pre-post, aa for post-pre spike pairs, and ath a con-

figurable threshold. If Equation 2 is true the synaptic weight is updated and the capacitors are

discharged. Otherwise the weight stays unchanged and correlations are further accumulated with-

out discharge of the capacitors. If a weight update is elicited, the synaptic weight will be increased

by one if Equation 3 is true, otherwise it is decreased by one (in both cases with absorbing bound-

aries at the minimum and maximum value). In fact, hardware STDP is not limited to this additive
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Figure 3: EPSPs and STDP learning windows of 64 hardware synapses. (A) Each EPSPs is

averaged over 100 runs. The mean and standard deviation over all synapses are depicted in black

and gray, respectively. The membrane potential Vm is plotted in arbitrary units. The area under

these EPSPs has a ratio of standard deviation to mean of ≈ 50%. (B) Recording STDP learning

windows (gray) is summarized as follows: The inverse number 1/N of spike pairs that need to

be accumulated until a weight update is elicited is plotted against the time difference ∆t between

the pre- and postsynaptic spike (details are described elsewhere [17]). A value of N = 1 means

that one pre-post pair is already sufficient to mark this synapse to be updated. The mean over all

synapses and errors at half maximum (0.044 ± 0.009ms and −0.050 ± 0.016ms) are depicted in

black.

rule, but can be configured to any rule via look-up tables. In the network presented, processing

one synapse takes 1.5 µs in hardware time domain, which has been shown to be sufficient for co-

incidence detection in small networks [17]. For a detailed description of the implementation and

configuration of hardware STDP see [19] and [17].

Parameters for the learning window of STDP on hardware must be adjusted to meet two cri-

teria: On the one hand, the window should be broad in order to resolve a full period T of the

input signal and to ensure a sufficiently high learning rate. On the other hand, the number N of

spike pairs for close-by ∆t should be distinguishable which is the case for overall large N . In

Figure 3B a trade-off between both criteria is shown, because they can not be fulfilled together on

the hardware. Note that learning windows are subject to device mismatch too, due to their analog

measurement and accumulation circuitry. The width at half maximum is approximately 0.05ms

in biological time domain. The time between successive weight updates for 64 inputs is 48ms.

The experiment protocol is split into two steps. First, the network is stimulated without any

interaural time difference and on-chip plasticity is activated. The network selects appropriate

inputs by altering on-chip, synaptic weights. Second, these learned synaptic weights are adopted

for subsequent emulations, during which plasticity is turned off. The ITD is varied and sound is

located via the firing rate of the postsynaptic neuron.

In the first step, the spiking neural network shown in Figure 2 is emulated for a duration of 10 s,

while spike times of the postsynaptic neuron are recorded. After emulation, the digital weights of

all synapses are read out from the chip.

Network performance is measured by the vector strength ν, which quantifies the precision of

phase-locking at the postsynaptic site [5]. Each spike time ti can be considered as a vector of unit

length with a phase angle Θi = 2πfti as well as x and y components as follows:

(xi, yi) = (sin(Θi), cos(Θi)) (4)

The vector strength is defined as the length of the mean vector across the overall number N of

postsynaptic spike times:

ν =
1

N

√(∑N

i=1
xi

)2

+

(∑N

i=1
yi

)2

(5)
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Figure 4: Learning process: Development of postsynaptic firing rates as well as synaptic weights

over time. (A) The mean firing rate r and standard deviation of 100 emulations with 10 s duration

in black and gray, repectively. Transmission delays ∆d and input spike times are re-drawn for

each emulation. (B) Development of digital hardware weights w over time for each synapse. For

technical convenience, each set of weights at time t is recorded after an emulation with duration

t. For each time step weights are averaged over 20 emulations, all with the same distribution of

∆d and input spike times. The color code indicates the difference to the average phase of the

postsynaptic neuron.

It can assume values between 0 and 1. It is minimal for randomly distributed spikes over time,

and maximal for interspike intervals that are multiples of T . The angular dispersion of the mean

vector translates to temporal precision [7]:

σPL =

√
2(1− ν)

2πf
(6)

In the second step, the sensitivity of the postsynaptic neuron’s firing rate to time differences

between two input signals, e.g. ITDs, is determined as follows: First, signal transmission de-

lays and synaptic weights are adopted from the learning result of an emulation described above.

Second, afferent connections are randomly divided into two groups of equal size. Third, time dif-

ferences are modeled by adding an additional transmission delay to one of these groups. Finally,

this network is emulated with static synaptic weights, and the firing rate of the neuron is recorded.

3 Hardware emulation results

Network emulations on hardware show precise, phase-locked spiking of the postsynaptic neuron.

At the beginning of an emulation, all synapses have the same weight, and the firing rate of the post-

synaptic neuron is low. The firing rate increases with increasing weights of those inputs that drive

the neuron most (compare Figure 4A to green traces in B). Once strong synapses have evolved,

phase-locking improves (ν increases, not shown) and synapses firing out of phase are weakend

(red traces in Figure 4B). After approximately 3 s, the strong and weak synapses are in balance,

and the postsynaptic firing rate saturates. The variance of firing rates between emulations (Fig-

ure 4A) is mostly caused by re-drawing the transmission delays for each emulation. Variations on

synapses bias the learning process. For example, few strong synapses with improbable (|∆d| ≫ 0
in upper plot of Figure 5A), but similar ∆d may outperform many weak synapses with probable

(∆d ≈ 0), but similar ∆d. Nevertheless, learning compensates for these variations.

Synapses will be termed selected if their weight after emulation exceeds their initial weight.

Synapses with similar transmission delays or delays which differ by multiples of T are active si-

multaneously, and preferably drive the postsynaptic neuron. If a postsynaptic spike is elicited by

these inputs, they are selected by the on-chip learning mechanism (compare Figure 5A to Fig-

ure 4B). This periodical selection scheme with period T is due to the overlap of consecutive spike
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Figure 5: Selection of synapses and weights after on-chip learning. (A) Top: The distribution of

signal transmission delays ∆d before learning that is accumulated over the emulations shown in

Figure 4A. The distribution is normalized such that its mean is 0. Bottom: The same distribution

after learning, but only synapses with w > wstart are shown. The phase obtained by summing up

the phase vectors (Equation 4) of all spikes is subtracted from the transmission delays after each

emulation. In other words, transmission delays are normalized such that the postsynaptic neuron

fires preferably at ∆d = 0. (B) The distribution of digital hardware weights w after learning for

the same emulations as in (A). Before learning all weights were set to wstart = 7 (arrow).

volleys (Figure 2). However, not all synapses saturate to the minimum or maximum weight (Fig-

ure 5B). Some synaptic weights stay at their initial value. This can be explained by the technical

implementation of STDP on hardware. If both correlations, pre-post and post-pre, accumulate

at the same rate, no weight update will be triggered because the update controller evaluates the

difference between both accumulations (see Equation 2 and [19]).

As an application, we show the detection of ITDs. To this end, we split the resulting synapses

of a single run of Figure 5 into two groups, one for the input from each ear. Both, selected and

unselected synapses are adopted. The performance of phase-locking with ∆ITD = 0 is shown

in Figure 6A. Postsynaptic spikes occur preferably at the same phase with a vector strength of

ν = 0.89 which translates to a precision of σPL ≈ 40 µs in biological time domain. Shifting the

input of one group by ∆ITD deteriorates the precision of phase-locking and consequently reduces

the postsynaptic firing rate (Figure 6C). At ∆ITD = T
2 the postsynaptic neuron receives alternating

input from both groups, and the vector strength is on the same level as the control (compare

Figure 6C to D). For the control we applied the same protocol as before (see Figure 6A and

C), but with a uniform weight distribution instead of previously learned synaptic weights. Time

differences of less than 25 µs can be resolved by the firing rate of the postsynaptic neuron (compare

error bars of neighboring data points of thin red line in Figure 6C). In contrast, the firing rate of

the control barely has a dependency on ∆ITD (thin red line in Figure 6D). This makes it difficult,

if not impossible, to determine any time differences of 2 kHz signals.

4 Conclusions

We have presented an analog, neuromorphic network implementation that de-noises phase infor-

mation and thereby learns to resolve time differences between two periodic stimuli of less than

50 ns in hardware time domain. De-noising is realized by unsupervised, on-chip spike-timing de-

pendent plasticity that improves coincidence detection and locks spike times to a specific phase

of the input signal. This results in precise phase information at the neuron site which enables the

resolution of short phase differences, as for example those of sound signals from both ears. The

network performance is comparable to similar network models simulated in software (compare

Figure 6C to Figure 7). However, the absolute values for firing rate and vector strength differ due
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Figure 6: Phase-locking and the detection of interaural time differences. (A) Cyclic peristimulus

time histograms (PSTHs) of postsynaptic spike times for one arbitrary emulation of those analyzed

in Figure 5 (T = 0.5ms). The vector strength is ν = 0.89 (≈ 40 µs precision), and the average

vector strength over all 100 emulations is ν̄ = 0.81 ± 0.10 (≈ 50 µs precision). (B) PSTH for

emulations of the same network and input as in (A), but STDP deactivated and wstart adjusted to

obtain similar postsynaptic firing rates (ν = 0.38 and ν̄ = 0.43±0.19). (C) Firing rate r (bold red)

and vector strength ν (bold black) averaged over 10 emulations for one half of synapses receiving

input delayed by ∆ITD compared to the other. Single emulations are shown in light shades, each

with another random division of the synapses, but the same spike times. For one arbitrary random

division the mean over 5 emulations is shown in thin black lines. Thereby, the standard deviation

is the trial-to-trial variability. The network has the same transmission delays and synaptic weights

as in (A). (D) The same protocol as in (C), but with static synaptic weights adopted from (B).

Figure 7: Results of a similar network as described in this study, but simulated in software

(adopted from [4]). The firing rate r and vector strength ν of the network is shown in dependence

on the interaural time difference ∆ITD. The signal frequency is 5 kHz.

Neuromorphic learning towards nano second precision

96



to different neuron, synapse, and STDP models, variations of model parameters on hardware, as

well as a higher signal frequency in the reference publication [4].

Additionally, learning does not only de-noise the input, but also compensates for variations

between neural components (Figure 3). These variations are caused by device mismatch and are

inherent in all neuromorphic systems with analog circuitry. Intrinsically weak synapses with si-

multaneous impact on the membrane potential can outperform intrinsically strong synapses. This

allows the measurement of short time differences, although the input is noisy and the neuromor-

phic substrate has variations in its neural components. Performance may even be improved by

a preceding off-chip calibration of synaptic strengths. Furthermore, population coding reduces

noise within signal transmissions by averaging across many unreliable components.

Although variations of neuronal components are measured in biology [13], it is still unclear

how robust a neural network has to be in order to perform computation on these components.

Large-scale neuromorphic systems, as described in [18], may particularly benefit from such self-

adjusting, and hence robust, network implementations. In further studies, the neuromorphic net-

work could be embedded into robotic systems for processing sensory data of, for example, ultra-

sonic sound. This would exploit the high acceleration factor of the neuromorphic system and its

robust capability for handling noise and variations of neural components.
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Abstract 

Computational neuroscience has uncovered a number of computational 
principles employed by nervous systems. At the same time, neuromorphic 
hardware has matured to a state where fast silicon implementations of 
complex neural networks have become feasible. En route to future technical 
applications of neuromorphic computing the current challenge lies in the 
identification and implementation of functional brain algorithms. Taking 
inspiration from the olfactory system of insects we constructed a spiking 
neural network for the classification of multivariate data, a common problem 
in signal and data analysis. In this model, real-valued multivariate data is 

converted into spike trains using “virtual receptors” (VRs). Their output is 
processed by lateral inhibition and drives a winner-take-all circuit that 
supports supervised learning. VRs are conveniently implemented in software, 
while the lateral inhibition and classification stages run on accelerated 
neuromorphic hardware. When trained and tested on real-world data sets we 
find that the classification performance is on par with a Naive Bayes 
Classifier. An analysis of the network dynamics shows that stable decisions 
in output neuron populations are reached within less than 100 ms of biological 
time, matching the time-to-decision reported for the insect nervous system. 
Through leveraging a population code, the network tolerates the variability 
of neuronal transfer functions and trial-to-trial variation that is inevitably 
present on the hardware system.  Our work provides a proof of principle for 
the successful implementation of a functional spiking neural network on a 
configurable neuromorphic hardware system that can readily be applied to 
real-world computing problems. 
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Introduction 

The remarkable sensory and behavioral capabilities of all higher organisms are provided 
by the network of neurons in their nervous systems. The computing principles of the 
brain have inspired many powerful algorithms for data processing, most importantly the 
perceptron and, building on top of that, multilayer artificial neural networks, which are 
being applied with great success to various data analysis problems (1). While these 
networks operate with continuous values, computation in biological neuronal networks 
relies on the exchange of action potentials, or spikes. 

Simulating networks of spiking neurons with software tools is computationally intensive, 
imposing limits to the duration of simulations and maximum network size. To overcome 
this limitation, several groups around the world have started to develop hardware 
realizations of spiking neuron models and neuronal networks (2-10) for studying the 
behavior of biological networks (11). The approach of the Spikey hardware system used 
in the present study is to enable high-throughput network simulations by speeding up 
computation by a factor of 104 compared to biological real time (12,13). It has been 
developed as a reconfigurable multi-neuron computing substrate supporting a wide range 
of network topologies (14). 

In addition to providing faster tools for neurosimulation, high-throughput spiking 
network computation in hardware offers the possibility of using spiking networks to solve 
real-world computational problems. The massive parallelism is a potential advantage over 
conventional computing when processing large amounts of data in parallel. On the other 
hand, conventional algorithms are often difficult to implement using spiking networks for 
which many neuromorphic hardware substrates are designed. Novel algorithms have to 
be designed that embrace the inherent parallelism of a brain-like computing architecture. 

A common problem in data analysis is classification of multivariate data. Many problems 
in artificial intelligence relate to classification in some way or the other, such as object 
recognition or decision making. It is the basis for data mining, and as such has widespread 
applications in industry. We interact with classification systems in many aspects of daily 
life, for example in the form of webshop recommendations, driver assistance systems, or 
when sending a letter with a handwritten address that is deciphered automatically in the 
post office.  

In this work, we present a neuromorphic network for supervised classification of 
multivariate data. We implemented the spiking network part on a neuromorphic 
hardware system. Using a range of data sets, we demonstrate how the classifier network 
supports nonlinear separation through encoding by virtual receptors, while and lateral 
inhibition transforms the input data into a sparser encoding that is better suited for 
learning.  

Results 

We first outline our spiking neural network design and show examples of the network 
activity during operation in supervised classification of multivariate data. Then we 
analyze the temporal dynamics of the classification process and compare the network 
classification performance against the performance of a Naive Bayes classifier. We show 
that the network tolerates the neuronal variability that is present on the hardware 
through leveraging a population code. Finally, we demonstrate that the network design 
is generic and can be applied, without re-parameterization, to different multivariate 
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problems. We used the PyNN software package for network implementations on the 
Spikey neuromorphic hardware system (15,16). For simplicity, all temporal parameters 
are specified in the biological time domain throughout this study. The actual time values 
referring to the spiking network execution on the hardware are 104 times smaller due to 
the speed-up factor of the accelerated Spikey system. 

A spiking network for supervised learning of data classification. 

In multivariate classification problems, data is typically organized as observations of a 
number of variables arranged in a matrix X, with rows corresponding to observations 
and columns to real-valued features. Each observation has an associated class label stored 
in a binary matrix Y, with Yi,j=1 if the observation i belongs to class j. The aim is to 

find a mapping A such that argmax(X∙A)=Y, with argmax returning 1 for the maximal 

value in each row and 0 otherwise. The classes of new observations X' can then be 

predicted by applying the transformation argmax(X'∙A)=Y'. The architecture of the 
insect olfactory system maps well on this task (17,18,19).  

We designed a classifier network that approximates the basic blueprint of the insect 
olfactory system, without claiming to be an exact model of the biological reality. Its 
three-stage architecture consists of an input layer, a decorrelation layer and an association 
layer (Fig. 1A). We provide a detailed parameter list in the supplement (Table ST2 and 
supplemental Methods). 

In the input layer, real-valued multidimensional data is transformed into bounded and 
positive firing rates. The data enters the network via ensembles of receptor neurons 
(RNs). RNs fire spikes at specified rates which are computed from the real-valued input 
data using virtual receptors (VRs) (17, see also supplemental Methods for details). A VR 
corresponds to the center of a linear (cone-shaped) radial basis function in feature space. 
The magnitude of its response to a data point (a stimulus) depends on the distance 
between the VR and the stimulus. Hence, the VR response is large for small distances 
between stimulus and receptor, and vice versa. VRs are placed in data space in a self-
organized manner using the Neural Gas algorithm (20). 

RN ensembles project onto projection neurons (PNs) in the decorrelation layer which are 
grouped in ensembles that represent the so-called glomeruli in the insect antennal lobe. 
Each RN ensemble targets one glomerulus, thus receives excitatory input that represents 
the activation of one VR. The PNs project to local inhibitory neurons (LNs), which 
laterally inhibit other glomeruli. Moderate lateral inhibition between glomeruli reduces 
correlations between the variables they represent without degrading the encoding to a 
fully orthogonalized representation (14,21,22,23).  

The output of the decorrelation layer is projected to the association layer, in which 
supervised learning for data classification is realized. Association neurons (ANs) are 
grouped in as many populations as there are classes in the data set. Each population in 

the association layer is assigned one label from the data set (for example, “choice A” and 

“choice B” as indicated in Fig. 1A). The AN populations project onto associated 
populations of inhibitory neurons. The strong inhibition between AN populations induces 
a soft winner-take-all (sWTA) behavior in the association layer. The synaptic weights 
from PNs to ANs are initialized randomly. An activity pattern presented to the network 

will thus by chance deliver more input to one of the “choice” populations than to the 
others, resulting in higher firing rate of that population (the winner population). If the 
label of the winner population matches the one of the stimulus, the network performed a 

A neuromorphic network for generic multivariate data classification

101



 

correct classification. We used a 50% connection probability from RNs to PNs, from PNs 
to LNs and to ANs, and from excitatory to inhibitory neurons in the sWTA circuit (see 
supplementary Table ST2). Inhibitory populations are fully connected to excitatory 
populations. 

We train the network in a supervised fashion by presenting stimuli with known class 
labels. If classification was correct, active synapses from PNs to the winner population 
are potentiated. If classification was incorrect, active synapses are depressed (see Methods 
for a detailed description of the algorithm). This learning rule is derived from the delta 
rule for perceptron training (24, 25). Network training leads to an optimized set of 
synaptic weights for classification of the data set. After successful training the winner 
population in the association layer indicates which class a stimulus belongs to, and it can 
predict the class adherence for unseen stimuli. 

Application of the neuromorphic classifier network to a real-world data 

set. 

We implemented the classifier network on the Spikey hardware system, which has been 
described in detail previously (14). We assessed its performance using Fisher’s Iris data 
set (26) as a benchmark. The Iris data set is a four-dimensional data set describing 
features of the blossom leaves for three species of the Iris flower, I. setosa, I. virginica 
and I. versicolor. This data set is particularly well suited for this study for two reasons. 
First, it contains only 150 data points, which makes rapid prototyping of the network 
feasible. Second, the constellation of the data points allows for a fine-grained 
interpretation of the classifier capabilities: The I. setosa class is well separated from the 
other two, making learning the classification boundary easy (Fig. 1B). Separation of the 
I. virginica and I. versicolor classes is more difficult because they partly overlap in feature 
space. Classifier performance on this separation indicates how well the classifier copes 
with more challenging problems. Separating such overlapping data classes typically 

requires supervised learning methods, since there is no clear “gap” between the classes in 
data space that would allow an unsupervised method to detect class boundaries.  

We used ten VRs to encode the data set. They represented the data points by firing 
intensities, which were used to generate the RN spike trains in the input layer using a 

Fig. 1: Network architecture and real world classification problem. A) Schematic of the generic network. RN: 
Receptor neuron, PN: Projection neuron, LN: Local inhibitory neuron, AN: Association neuron. B) Projection 
of the complete Iris data set to the first two principal components (97.7% variance explained) and locations 
of ten VRs. Annotations refer to data points presented in Fig. 2. 
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gamma point process. The number of VRs determines the number of glomeruli, and thus 
the total number of neurons required for the network. The specific choice of ten VRs was 
a compromise between choosing a number as high as possible while staying within the 
maximal neuron count of 192 on the present neuromorphic hardware system (see 
supplemental Results for a detailed explanation).  

The spiking activity of the classifier network is depicted in Fig. 2. Fig. 2A shows the 
activity of all neurons in all three layers in the beginning of the training phase when 

stimulated with the data point annotated as “2A” in Fig. 1B. The activity pattern across 
the RN population expresses the activation level of the VRs. PNs exhibited sparser 
activity compared to RNs, largely due to lateral inhibition from LNs. All three 
populations of ANs responded with approximately the same intensity since the weights 
from decorrelation layer to the association layer are initially random. Due to the strong 
lateral inhibition in the association layer, all three populations showed synchronized and 
oscillating activity. The population associated to the I. setosa class emitted a slightly 
higher number of spikes during the 1 s stimulus presentation than the others. Since the 
presented data point belonged to the I. versicolor class, this association was wrong, and 
hence the weights of synapses targeting the I. setosa population were reduced after this 
presentation as part of the training procedure. During the training phase, 80% of all data 
points were presented and the weights adjusted according to the learning rule after each 
presentation. Fig. 2B shows network activity in response to a sample from the I. versicolor 
class in the test phase. The AN population activity rapidly converged to a representation 
that indicated the correct association after only a few spikes and maintained this state 
throughout the duration of the stimulus presentation.  

To assess the convergence of the association layer activity to a winner population, we 
calculated the cumulative fraction of spikes Fc(t) from each population c at time t as 

����� �
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   ,        (1) 

Fig. 2: Network activity during stimulus presentation before and after training. A) Untrained network. Spike 
raster display and population spike count of all neuron populations in the network in response to the 
presentation of one data point from I. versicolor as indicated in Fig. 1B. Distinct neuronal populations are 
labeled by alternating color saturation. Warm/cool color = excitatory/inhibitory population.  The stimulus 
was applied at time t=0 s for the duration of 1 s. B) Network activity after training during 1 s of stimulation 
with a test sample from I. versicolor as labeled in Fig. 1B. C-E) Spiking activity and temporal evolution of 
Fc(t) (eq. 1) for all three excitatory AN populations in response to three different data samples as labeled in 
Fig. 1B. Color of Fc(t) trace indicates the Iris species associated to the respective AN population (color code 
as in Fig. 1B). Only spiking activity from excitatory ANs is shown.  
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where Ic(t) indicates the number of spikes emitted by population c within the interval 
(0,t], while Iall(t) refers to the total number of spikes from all AN populations. Fc(t) thus 
reflects, at each time point t, the integrated activity of one AN population compared to 
the total AN activity up to that point in time. Fig 2C shows the resulting population 
dynamics for the example in Fig. 2B, together with spike trains in the AN populations. 
For this data point, it took about 150 to 200 ms before the network activity converged 
towards a stable state with the I.versicolor population having the highest activity, 
indicating the correct association. This convergence happened faster for data samples 
from the well separated I. setosa class (Fig. 2D). In a third example from the I.versicolor 
class close to the class boundary, the network first showed a slightly higher firing rate 
for the correct class, but eventually converged to a wrong decision (Fig. 2E).   

Time to decision and classification performance. 

We used Gorodkin’s K-category correlation coefficient RK to measure classification 
performance (27, see eq. SE7 in the supplement). Compared to other frequently used 

performance measures like “percent correct”, RK is more sensitive to small performance 
differences when overall performance is already high and thus better suited for 
benchmarking. In addition, RK is corrected for the bias introduced by skewed class 
proportions. For example, if 90% of the data are of one class and 10% the other class, we 

could yield “90% correct” classification by simply assigning all data samples to the first 
class. In contrast, RK would report a value of zero, which is intuitively more accurate. 

In our network each data class is represented by a different AN population. For each 
presentation of a test stimulus the population which generated the most spikes within a 
certain observation time window is the winner population, indicating either a correct or 
incorrect classification. We computed the RK across all test samples in a time-resolved 
manner by varying the time t after stimulus onset that was used to count AN spikes. As 
shown in Fig. 3A, RK rapidly approaches a stable maximum indicating a time-to-decision 

of less than 100 ms in biological time corresponding to 10μs of real-time with the Spikey 
chip. 

We next compared the absolute classification performance with that of the Naive Bayes 
(NB) classifier, which we use here as a benchmark for conventional machine learning 

methods. We chose NB because it’s a linear classifier without any free parameters, so it 
delivers robust classification without the need for parameter tuning. We evaluated the 
RK across the entire 1 s stimulus presentation. For the Iris data set the NB classifier 
yields an average RK value of 0.89 (P20=0.88, P80=0.90) in 50 repetitions of five-fold cross-
validation and thus slightly outperforms the neuromorphic classifier with RK = 0.87 

Fig. 3: Classification performance. A) RK obtained for decision time points between 0 and 1000 ms from a 
single cross-validation run. Vertical dotted lines indicate when RK first exceeds values of 0.7 (42 ms) and 0.8 
(76 ms). B) Classification performance of the hardware classifier network (hw) at decision time of 1 s 
compared to a Naive Bayes classifier (NB) in fivefold cross-validation. Error bars: 20th/80th percentile from 
ten repetitions. 
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(P20=0.85, P80=0.89, 50 repetitions) (Fig 3B). The performance evaluation is described 
in detail in the supplemental Methods.  

For a thorough examination of the classification outcome we compared the confusion 
matrix produced by the classifier network (Table ST1, supplemental Results). The 
classifier only produced errors on the more challenging separation of I. versicolor and I. 
virginica, while it always succeeded to separate I. setosa. This observation indicates that 
the classifier network is capable of delivering reliable classification not only of well 
separable data, but also in cases where samples from different classes overlap in feature 
space.  

Tolerance against neuronal variability.  

The analog circuits used to represent neurons in the Spikey system exhibit inherent 
variability that the classifier network must tolerate in order to be useful in practice. Two 

sources of variability on the hardware system can be distinguished: “Temporal noise” and 

“fixed pattern noise”. Temporal noise (including thermal noise and other sources of 
stochastic variability) affects the circuits on short timescales in an unpredictable fashion. 
In contrast, fixed pattern noise is caused by device mismatch. Device mismatch describes 
the deviance of an electronic component from its specification due to inevitable variations 
in the manufacturing process. The variations of neuron parameters due to device 
mismatch occur on much slower time scales and can be regarded as constant for our use 

case. They introduce heterogeneity across all analog components – neurons and synapses 

– according to a fixed pattern (hence the term “fixed pattern noise”). The individual 
variation can be measured and calibrated for. The integrated development environment 
of the Spikey system contains calibration methods that reduce the amount of fixed 
pattern variability. However, such generic calibration methods cannot account for all 
network configurations in an efficient manner, since calibration at the neuron level does 
not take into account network effects. This is particularly relevant for the Spikey system, 
which was designed to accommodate a wide variety of network topologies (14). In our 
case, the fixed pattern variation that remains after built-in calibration manifests itself in 
variability of the neurons’ transfer functions that relate input rate to output rate. Both, 
maximal output rate and slope of the transfer functions varied considerably across PNs 
and LNs (Fig. 4A).  

Due to its stochastic nature, temporal noise can’t be avoided by systematic measures 
such as calibration of synaptic weights. We quantified the variation in spike count caused 
by temporal noise by measuring the variability of the spike count in all 192 hardware 
neurons across 50 repetitions with identical stimuli. For this purpose we generated input 

spike trains only once and used them repeatedly as input to all 192 neurons (“frozen 

input”). We used six gamma processes of order five and mean rate of 25 spikes/s to mimic 
the inputs that PNs receive in the classifier network. We adjusted the weights of the 
neurons to yield a mean output frequency of 25.4 spikes/s. The neurons exhibited 
moderate trial-to-trial variability under these conditions. Fig. 4B shows the distribution 
of spike counts for one exemplary neuron that produced 25.3 spikes on average, with a 
variance of 1.0. This amount of variability is also reflected when considering the total 
population (Fig. 4C). On average, the individual spike trains from the same neuron varied 
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with a Fano factor (28) of 0.083, which is smaller than the variability inherent to the 

gamma process used for the generation of the RN spike trains (γ=5, FF=0.2). Thus, the 
trial-to-trial variability due to temporal noise intrinsic to the neuromorphic hardware is 
small compared to those variations imposed by the biologically realistic stochastic 
generation of input spike trains.  

The classifier network achieved the reported performance in spite of transfer function 
variability caused by fixed pattern noise and trial-to-trial variability caused by temporal 
noise and by the stochasticity of the input. This robustness is the result of considerable 
efforts to optimize network topology. Essentially, the key to achieve robustness in our 
network was to leverage population coding. Two network properties proved essential to 
ensure a valid population code. First, synchronization of neurons within a population 
should be avoided since it violates the rate code assumption of independent neurons 
within each population. We achieved this by sparsifying the input to individual neurons, 
i.e. using 50% connection probability instead of full connectivity. Second, population sizes 
must be sufficiently large in order to reduce the variance of the population transfer 
function. We provide a detailed explanation of how these properties affect network 

operation in the supplemental Results (Figs. S1, S2 and accompanying text “Network 

optimization for robustness against neuronal variability”).  

General applicability to other data sets. 

As a demonstration for the ability of the network to solve nonlinear problems, we applied 

the network to classification of a two-dimensional “Ring” data set. This simple data set 
consists of two classes, one class situated in a cluster centered at the origin and a second 
class surrounding it (Fig. 5A). It has skewed class proportions with sevenfold more data 
points in the surround than in the center class. In addition, the arrangement of data 
points requires a nonlinear separation between the center and surround classes. Our 
network achieves this separation through the virtual receptor trick: By using ten VRs to 
represent a two-dimensional data set, we transform the data into a higher-dimensional 
space in which linear separation is possible. The classifier network running on the Spikey 
system achieved an average performance of RK=0.96 on the Ring data set (Naive Bayes: 
RK=0.98, Fig.5C, left). 

Fig. 4: Neuromorphic hardware variability. A) Variability of transfer functions across all PNs and LNs on 
the hardware chip. B) Hardware trial-to-trial variability: Histogram of spike counts for one example neuron 
across 50 repeated stimulations with identical “frozen input” of 1 s duration (average spike count: 25.3, 
variance 1.0). C) Histogram of per-neuron spike counts relative to the individual average spike count emitted 
by each of the 192 neurons across 50 repeated identical 1 s stimulations. Vertical lines: 20th/80th percentile 
(P20=3.99, P80=4.58). 
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The MNIST database is a commonly used high-dimensional benchmark problem with 
practical relevance (http://yann.lecun.com/exdb/mnist/). The database contains images 
of handwritten digits from 0 to 9, digitized to 28x28 pixels. Hence, each observation has 

28 ∙28 =768 dimensions. The data set is divided into a training and a test set to enable 
reproducible benchmarking. We picked a subset of this data set consisting of the digits 
’5’ and ’7’, using 2000 samples from the training set and 1920 samples from the test set 
(Fig. 5B). On the MNIST data set the spiking network outperformed the NB classifier 
by a large margin (hardware network: mean RK=0.94, Naive Bayes: 0.82; Fig. 5C, right). 
Interestingly, when training the NB classifier on the spike counts produced by PNs in 
the network (that is, after the lateral inhibition stage in the decorrelation layer), its 
performance increases to similar levels as obtained with the classifier network (mean 
RK=0.96). This observation is in line with a previous study which demonstrated that 
lateral inhibition increases classifier performance on a 184-dimensional odor data set (17). 

The reason for this effect lies in the fact that lateral inhibition transforms the broad, 
overlapping receptive fields of VRs (and in consequence RNs) into more localized 
representations of input space. In other words, receptive fields of PNs are narrower than 
those of VRs, and they overlap to a lesser degree. As a result, PN activity is also sparser 
than VR activity, that is, only few PN populations respond to a particular stimulus. This 
behavior can be observed for example when comparing the spike counts of RNs and PNs 
in Fig. 2 A and B. Sparser activity and more local receptive fields simplify the training 
process, since it becomes easier to identify the input units that are relevant to 

discriminate data points in a particular region of input space (the “credit assignment 

problem”). We explain the soft partitioning effect provided by lateral inhibition in detail 
in the supplemental Results, including an illustrated example (Fig. S3).  

Speed considerations. 

The major advantage in using accelerated neuromorphic hardware for spiking neuronal 
simulations is its potentially fast execution time. On the neuromorphic hardware system 
used in this study simulations run with a speed-up factor of 104. Hence, presenting all 
150 Iris data points for 1 s (biological time) each to the hardware network takes 
150s/104=15 ms pure network run time. Practical applications require data transfer for 
spikes and synaptic weights to and from the system as well as the parameterization of 
the hardware network, which adds to the pure network run time (for details see 
supplemental Methods and Fig. S4). These factors depend on the efficiency of the 

Fig. 5: Application to generic classification problems. A) Ring data set (training samples) and locations of 
ten VRs. B) PCA of MNIST digits ‘5‘ (893 samples) and ‘7’ (1107 samples) from the training set (2000 
samples total) and VR locations. C) Performance comparison of the Naive Bayes classifier (NB) vs. the 
classifier network on hardware (hw), and the NB classifier trained on PN firing rates (NB/PN). Error bars: 
20th/80th percentile from ten repetitions. When trained on the VR responses, the NB performance is 
deterministic for these data sets because the training and test data sets are fixed. For NB/PN, we extracted 
the PN firing rates from the ten repeated network runs that we used to assess the spiking network. Hence, 
the NB classification performance varies. 
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software interface for the hardware system. Since we are working with a prototype setup, 
its interface is under constant development and improvement. At the time of writing, the 
hardware system effectively achieved an overall 13-fold speedup compared to biological 
real-time. We wish to stress that this number may improve as the software interface is 
continuously optimized. 

Discussion 

We demonstrated the implementation of a spiking neuronal network for classification of 
multidimensional data on a neuromorphic hardware system. The network is capable of 
separating data in a nonlinear fashion through encoding by virtual receptors (VRs). The 
transformation by lateral inhibition increases classification performance. It performed 
robustly in the presence of stochastic trial-to-trial variability inherent to the hardware 
system. The network is not restricted to any specific kind of data, but is capable of 
classifying arbitrary real-valued, multidimensional data, and hence universally suited for 
all kinds of classification tasks. It achieved performance values comparable to a standard 
machine learning classifier, which points out the network’s wide applicability to real-
world problems. The present network implementation is a proof of concept that can serve 
as a building block for classifier tasks on neuromorphic hardware. Together with the high 
speed-up factor of the neuromorphic hardware system, our universal classification 
network is an important step towards high-performance neurocomputing. 

We verified the capability of our implementation of VRs to transform data into a higher-
dimensional space in which linear separation is possible. The network we presented 
contains a linear classifier, with the additional constraint that the separating hyperplane 
must pass through the origin (29). As such, it is limited to separating linear problems. 
We overcame this limitation through the VR approach, which provides a higher-
dimensional representation of the data. Our results on the MNIST data set point out 
that the lateral inhibition step is crucial for successful classification of real-world, high-
dimensional data sets. While more complex machine learning algorithms like SVMs or 
Restricted Boltzmann Machines may allow for better classification performance directly 
on the VR data, the strength of our approach lies in the simplicity of a linear classifier 
combined with appropriate filtering of input data through the lateral inhibition step, that 
is very efficiently carried out in a massively parallel neuromorphic hardware network.  

Lateral inhibition provides a soft partitioning of input space that facilitates classifier 
training. Note that this circumstance also points out a limitation of the presented 
classifier network, since class boundaries in data space can only be optimally represented 
if they coincide with partition borders. A straightforward way to deal with this problem 
is to increase the number of VRs and glomeruli, resulting in a more fine-grained 
partitioning of data space. Such an approach will be possible using emerging large-scale 
neuromorphic hardware systems supporting tens of thousands of neurons (7,30). 

VRs depend on a self-organizing process that is trained in data space. A particularly 
interesting prospect is to implement this process on the neuronal substrate. Spiking self-
organizing maps have been described in the literature (30,32,33), suggesting that, in 
principle, it is possible to implement a self-organizing process on a neuromorphic 
hardware system. However, the learning rules used in these studies would require 
sophisticated control logic, which makes it difficult to implement them on the Spikey 
system. A more straightforward and mathematically well founded approach has recently 
been put forward by Nessler and colleagues (34). They suggested a probabilistic, self-
organizing mechanism to learn prototypes in feature space using spike-timing dependent 
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plasticity (STDP) and a winner-take-all circuit, which is suited to represent the VR 
encoding. An integrated implementation of this encoding together with the classifier 
network we present here will likely require a much higher neuron count and more flexible 
plasticity mechanisms compared to what is available on the Spikey system (13). On-chip 
implementations may become feasible considering the BrainScaleS wafer-scale hardware 
system that extends the number of available neurons by up to several orders of magnitude 
and provides more sophisticated plasticity mechanisms (6,35,36). In that system, multiple 
identical neuromorphic modules may be implemented on a single silicon wafer and 
communicate through high-bandwidth connections. Moreover, advanced control logic for 
on-chip implementation of elaborate STDP rules is under development (36), which is 
designed to be compatible with the self-organized prototype learning mechanisms 
described by Nessler et al. (34). In addition, the deterministic connectivity structure of 
the glomerular classifier network presented here facilitates splitting the network across 
different neuromorphic modules. The increased neuron count available in a large-scale 
system would allow for a larger number of VRs to solve more complex problems and 
enables scaling the network to larger population sizes in order to support robustness 
against noise.  

Analysis of the dynamic network activation in response to the onset of a stimulus 
presentation revealed a fast decision time where the average performance reached its 
maximum within less than 100 ms in biological time (cf. Fig. 3A). This is in good 
agreement with recent measurements in insects. In the honeybee, a prominent animal 
model for studying learning and memory, it was shown that the encoding of the identity 
of an olfactory stimulus at the level of PNs evolved rapidly within tens of milliseconds 
(37,38). Neuronal populations at the output of the mushroom body encode odor-reward 
associations. These neuronal populations fulfill a similar function like the ANs in our 
network. In a classical conditioning paradigm, they indicated the classification of the 
conditioned stimulus (an odor that was previously paired with a sugar reward) within 
less than 200 ms (39). 

Our network proved to be robust against neuronal variability, which is an important 
factor in the design of neuromorphic algorithms. Biological neuronal networks face a 
similar challenge. The study of neuronal variance is an integral part of today’s 
neuroscience ever since the seminal study by Mainen and Sejnowski (40). Many neural 
properties are stochastic in nature, like neurotransmitter release or spike initiation, so a 
certain amount of variability is inevitable in biological neuronal networks (41). In the 
same vein, the analog nature of the circuits in the hardware enables the massive speed-
up and integration density, but invariably entails variability. In our case, we achieved 
tolerance against variability by using a population code. Generally, accelerated analog 
neurocomputing requires models which can cope with and, ideally, make use of 
variability. The design of these models will benefit greatly from a deep understanding of 
biological circuits, interpreted in the light of variability. Likewise, creating functional 
networks on an analog neuromorphic substrate provides insight into critical properties 
that networks must possess in order to operate under noisy conditions. 
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Materials and Methods 

Network training and supervised learning rule.  

Stimuli were presented to the classifier network in a sequential manner. For each stimulus 
i the corresponding feature vector xi was obtained from the observation matrix X, 
converted into a firing-rate presentation with VRs, from which spike trains were 
generated by a gamma point process (42). Each stimulus was presented for 1 s of 
biological time. Synaptic weights that fulfilled a Hebbian eligibility constraint were 
updated after each stimulus presentation. A synaptic weight was eligible for updating if 
the target neuron was a member of the winner population, and if the spike count emitted 
by the presynaptic neuron during the previous stimulus presentation exceeded a threshold 
(fixed to 35 spikes in the 1 s stimulus interval). Eligible synapses were potentiated by a 
fixed amount if classification was correct, or depressed by a fixed amount if classification 
was incorrect. A formal description of the training algorithm is available in the 
supplemental Methods.  

Network training was implemented in an interactive chip-in-the-loop fashion: Stimuli 
were processed by the network on the chip. After each stimulus, the network response 
was evaluated on the host computer where the weight changes are calculated. The 
network was then re-configured and the next stimulus presented. 
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Supplemental Results and Methods 

Supplemental Results  

Number of glomeruli 

We used ten VRs and thus ten glomeruli in the network. The specific choice of ten was 
made as a compromise to use as many VRs as possible to encode the data while staying 
within the maximal neuron count of 192 on the present hardware system. In the following 
we describe this circumstance in more detail. First, each VR requires one glomerulus. 
One glomerulus consists of 6 input channels (RNs) and 13 neurons (7 PNs and 6 LNs). 
Ten glomeruli thus require 130 neurons and 60 additional synapse line drivers for input 
spikes (see (1) for a detailed technical explanation of the hardware system with regard 
to synapse line drivers). In addition, each AN population consists of 16 neurons (8 
excitatory and 8 inhibitory neurons). For the Iris data set, we require three AN 
populations, or a total of 48 neurons. Since each neuron requires a synapse line driver, 
we thus require a total of 130 + 60 + 48 = 238 synapse line drivers. An additional VR 
would require 6 RNs + 7 PNs + 6 LNs = 19 additional line drivers, totaling to 257 and 
exceeding the maximum number of 256 synapse line drivers. Although it might be 
possible to gain space for one or two additional glomeruli by tuning the network to use 

fewer neurons per glomerulus, we don’t expect a significantly different network behavior 
from a small increase in glomerulus number (see also (2) for an analysis of how VR count 
affects the performance of a Naive Bayes classifier). Large-scale neuromorphic hardware 
systems that are under development (e.g. (3,4)) will overcome this limitation and support 
thousands of neurons.  

Per-class classification performance. 

For a thorough examination of the classification outcome we depict the confusion matrix 
produced by the classifier network (Table ST1). The classifier only produced errors on 
the separation of I. versicolor and I. virginica, while it always succeeded to correctly 
separate I. setosa (RK=0.87, P20=0.85, P80=0.89). I. setosa is well separated from the 
other classes in feature space. The classifier network achieved perfect separation in cross-
validated training in all 50 repetitions. I. versicolor and I. virginica overlap in feature 
space, providing a harder challenge to the classifier that is reflected in the higher error 
rate for that particular separation. 

Network optimization for robustness against neuronal variability. 

Constructing a heterogeneous network under constraints of limited neuron count and 
bounded synaptic weights imposes a tradeoff in connectivity: The number of neurons in 

a population that project on postsynaptic neurons (the postsynaptic “fan-in”) must be 
sufficiently large to be able to drive the postsynaptic neuron to spiking, but the 
population must be kept small in order to accommodate many populations. In a previous 
version of the network, we achieved the maximum possible postsynaptic fan-in by using 
all-to-all connectivity (connection probability pconn=100%) between all connected 
populations. In addition, that network contained only three LNs per glomerulus (instead 
of six in the current, optimized network). Since the fan-in of LNs on PNs is large anyway, 
this decision seemed a viable way to reduce the total neuron count. Achieving good 
classification performance with that network required a network-specific calibration 
routine (see supplemental Methods). The calibration improved the homogeneity of the 

A neuromorphic network for generic multivariate data classification

113



 

transfer functions (Fig. S1A) and classification performance improved from RK around 
0.75 to values around 0.86 (Fig. S1B). 

Analyzing the operation of the fully connected network in detail, we found that neurons 
in a population were highly synchronized (Fig. S2). This synchronization at the 
population level was a direct consequence of full connectivity, which entails that all 
neurons of a population receive the same input. For example, all PNs in a glomerulus 
received input from the same set of RNs, and their spiking activity was highly correlated 
as a consequence of the common input. The same was true for LNs, and populations on 
the AN level. Under these conditions, the assumption of a population rate code with 

independent neurons is violated – the whole population of n neurons acts like a single 
neuron with n times the synaptic weight. Clearly, the postsynaptic interaction of 
excitatory and inhibitory inputs in this regime is impaired, since synchronous PN spikes 
lead to synchronized inhibitory LN spikes with a short delay. In contrast, if all n neurons 
fire independently the post-synaptic cell receives the same total number of spikes, but 
distributed more evenly in time. Hence, the chance that excitatory and inhibitory post-
synaptic potentials overlap is considerably higher in the asynchronous case. In the 
optimized network we reduced the synchronization within relevant populations by 
sparsifying the connectivity from RNs to PNs and from PNs to LNs and ANs by 50% 
and re-adjusting the synaptic weights accordingly.  

As an additional step to increase the robustness against transfer function variability, we 
increased the number of LNs from three to six. Since the individual transfer functions of 
LNs underlie variability on the hardware, the total transfer function of an LN population 

will vary according to σ2/n, with n the population size and σ2 the variance of the 

Fig. S1: Neuronal variability on the hardware system and impact of calibration on classifier performance 
using a previous version of the network with 100% connectivity. A) Rate-response functions of the hardware 
neurons, before (left) and after (right) calibration (5 s stimulation duration). Upper row: PNs, lower row: 
LNs. B) Classifier performance in the Iris benchmark before and after network specific calibration. Error 
bars denote P20 and P80. Horizontal gray bar: Naive Bayes performance. 
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individual transfer functions. Thus, increasing LN population size decreases variability of 
LN population transfer functions. In consequence, the inhibition strength that a PN 
population receives from other glomeruli becomes more homogeneous. In other words, 
increasing LN population size decreases the likelihood that a particular glomerulus may 
exert significantly higher inhibition than the others and thus alleviates the impact of 
transfer function variability.  

Taken together, we achieved robustness to transfer function variability by two measures: 
First, we improved population rate coding by making the connectivity sparser, thus 
alleviating strong coupling on the postsynaptic side. Second, we increased the size of LN 
populations, thus reducing the variance of the population transfer functions of the LN 
groups. These steps resulted in the present network that is robust against variability in 
the transfer functions of individual neurons. 

Effect of lateral inhibition on classification performance 

The result that the Naive Bayes classifier’s performance increases if trained on the PN 
firing rates compared to training on the VR responses (Fig. 5C in the main text) points 
out the beneficial effect of lateral inhibition in the presented network. Lateral inhibition 
transforms the broad, overlapping receptive fields of VRs into localized and more selective 

receptive fields on the PN level. This step facilitates the “credit assignment problem”, 
that is, the identification of the PNs (or more precisely the PN-AN synapses) that are 
most responsible for the classification outcome. This information is necessary to select 

the correct synapses to be potentiated or depressed during classifier training (the “credit 

assignment problem”).  

Fig. S3 shows a sketch to illustrate this circumstance. Consider the VR “R2” in Fig. S3A. 
Since the distances d1 and d2 are equal, the response of R2 to the respective points will 
be equal, because it depends linearly on these distances (see eq. SE1). Thus, the response 
magnitude of this particular VR provides ambiguous information with regard to class 
adherence, which complicates the learning process. Moreover, since VR receptive fields 
are broad, there is considerable overlap in the receptive fields of R1 and R2 (Fig. S3B). 
One could now simply reduce the receptive field size of VRs (Fig. S3C). However, this 

approach would cause many data points not to be covered by any receptive field – the 

Fig. S2: Synchronized spiking activity in PNs, LNs and ANs in a previous version of the network with pconn=100%. The total neuron count in the previous network is lower than in the version presented in the 
main manuscript due to different per-population neuron counts for LNs (3 in the previous network vs. 6 in 
the main manuscript) and inhibitory ANs (6 vs. 8). 

A neuromorphic network for generic multivariate data classification

115



 

network would be “blind” towards these data points (Fig. S3D). They could neither be 
used for training, nor could the trained network achieve correct classification to any data 

point in the “blind” areas. Moreover, as the density of VRs in different regions of data 
space may be different, choosing one RF size for all VRs is clearly not optimal. 

Lateral inhibition solves this problem in an elegant way: The response of a VR to a data 
point will be attenuated by lateral inhibition on the PN level if another VR is closer. 

Every PN thus has an “authoritative” region in data space where it provides the highest 
response and the responses of PNs in other glomeruli are attenuated. This region is 
equivalent to the Voronoi partitioning of input space with the VRs as generators 
(symbolized by the dotted lines in Fig. S3E). The resulting PN receptive fields become 
narrower in regions where there is overlap, but retain their full extent in regions where 
no other PN competes (Fig. S3F). Hence, lateral inhibition between PNs optimally and 
efficiently partitions data space on the PN level. Each PN thus represents a region in 
input space for which it is authoritative, considerably simplifying the credit assignment 
problem. 

Fig. S3: Illustration of the credit assignment problem and the effect of lateral inhibition. A) Cartoon of a 
hypothetical two-class, two-dimensional classification problem with VRs. The distances d1 and d2 are equal. 
B) One-dimensional sketch of the response profile of the two VRs R1 and R2. C) Effect of reducing VR 
receptive field size in data space. D) Effect of reducing VR receptive field size on the response profiles. E) 
Voronoi partitioning of input space with VRs as generators. F) Effect of lateral inhibition on PN receptive 
field size. 
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Why does the Naive Bayes classifier benefit from lateral inhibition? This classifier 

estimates the mean µ and the variance σ2 of each class along each dimension in its input 
space. Classification is then achieved by comparing the (naively) estimated probability 
of adherence to class 1 vs. class 2. These probabilities are computed from the multivariate 

normal distributions N(µ,σ2), with µ and σ2 the means and variances along each dimension 
of input space. Broad VR receptive fields entail high variance of VR responses, thus the 
estimated variance of the multivariate response distribution will also be high. In contrast, 
PN responses exhibit smaller variance since their receptive fields are narrower. Thus, the 
estimated variance of the PN response distribution will be smaller, and in consequence 
the Naive Bayes estimate of class adherence will exhibit lower variance, allowing for a 
better discrimination of classes in data space.  

Supplemental Methods 

Network parameters. 

Each glomerulus was driven by six RNs, and contained seven PNs and six LNs. Each 
population in the associative layer comprised eight excitatory and eight inhibitory 
neurons. Connectivity and synaptic weights are described in detail Table ST2 (table 
design from (5)). For a schematic overview of the general network architecture see Fig. 
1A in the body of the main manuscript. Time constants in the table refer to the biological 
value they model. The actual values on the hardware are 104 times smaller, due to the 
104 speedup factor at which the hardware operates (6,7). The weights are specified as 

fractions of the maximal weight 	
��� {��,���} for excitatory and inhibitory synapses in the 

hardware system, where 	
��� �� ~ 4 ∙ 	
���  ��� . Neurons were implemented as standard 
integrate-and-fire models (see (1) for details). 

Virtual receptors. 

The response r of a virtual receptor with coordinates p to the stimulus s is given by eq. 
SE1, 

� = 1 − ���,� ! �"#$�"%&!�"#$   ,        (SE1) 

with d�s,p  the Manhattan distance (Minkowski metric with k=1, sum of absolute 

coordinate differences) between s and p; dmin and dmax denote the minimum and maximum 

distance observed in the data set. Hence, the receptor response is a value in [0, 1], and it 
is inversely proportional to the distance between stimulus and receptor. 

The receptive fields implemented by eq. SE1 are equivalent to linear radial basis functions 
(RBFs) representing cones. They extend over the entire space that is covered by the data 

(“broadly tuned”). Their receptive fields are largely overlapping. This guarantees that 

there are no ‘‘blind spots” in data space that are not covered by any receptive field. 

Virtual receptors were placed in data space using a self-organizing process. In this study, 
we used the neural gas algorithm (8), as implemented in the MDP toolkit (9). The neural 
gas learns to represent the distribution of data in the original coordinate space, thus 
ensuring that the virtual receptors cover data space appropriately. Each node in the 

neuronal gas corresponds to one virtual receptor. Using n virtual receptors, a stimulus 
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will thus evoke a response vector r = �r1, . . . , rn . The elements of response vector ri are 

then converted into firing rates ρi using eq. SE2, 

34 = �4 ∙ �3
�� − 3
�� + 3
��    for    i = �1, . . . , n  ,   (SE2) 

with ρmin and ρmax the minimal and maximal firing rate, set to 20 and 70 spikes/s, 
respectively.  Firing rates were transformed into spike trains using a Gamma process of 
order five. The waiting time between stimulus onset and the first RN spike was drawn 
from the appropriate waiting time distribution, in our case a gamma distribution of order 
six, in order to prevent synchronization of RNs at stimulus onset. We chose a gamma 
process to generate spike times because its spiking statistics compares realistically to 
biological neurons (see e.g. (10)). In addition, the increased regularity of a gamma process 
of order five (Fano factor FF=0.2) compared to a Poisson process (FF=1.0) reduces the 
spike count variability and thus yields a more reliable encoding of input firing rates. 

VRs were implemented in software as a convenient approach to convert numerical data 
into a spiking format. The VR approach satisfies the need for dimensionality reduction 
due to limited neuron counts and the need for a generic approach to convert real-valued 
data into bounded firing rate intervals. 

Network training and supervised learning rule. 

The classifier network was trained using a supervised learning algorithm. Only synapses 
between PNs and excitatory association layer neurons were subject to learning.  

After stimulus presentation, a synapse was eligible for weight update if it fulfilled a 
Hebbian eligibility constraint. A synaptic weight was eligible for updating if the target 

neuron υtarget was a member of the winner population Υwinner, and if the firing rate ρpre of 
the presynaptic neuron during the previous stimulus presentation exceeded a threshold θ (fixed to 35 spikes/s in this study). The eligibility constraint ε can thus be formalized 
as 

> = ?1, if ρpre> A and BC�DE�C ∈ Υ�����D,0, otherwise.      (SE3) 

The change of the weight ΔwPN→υ between any PN and target neuron υ in the association 
layer was governed by eq. SE4, 

L	MN→O = ? ε ∙ c, if classification was correct,−ε ∙ c, if classification was incorrect,    (SE4) 

with c a constant value determined by the granularity of synaptic weights on the 

hardware (1). The new weight wnew was computed from wold as in SE5, 

	��� = 	RST + Δ	MN→O  .       (SE5) 

Synaptic weights were bounded in the interval [wmin, wmax] by the constraints of the 
hardware. Thus, the final value of the synaptic weight was given by eq. SE6,  

UV#$%WXYU"%&, 4f U$Z[\U"%&,U"#$, 4f U$Z[]U"#$,U$Z[, RC�D��^�.
       (SE6) 
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Evaluation of Classifier performance. 

Classifier performance was evaluated from fivefold cross-validation (CV). The data was 
split into five equal parts, and four parts were used in training and one part was used to 
test the classifier predictions in each CV run. After five runs, each data point was once 
in the test set, allowing computing a single performance value for all five CV runs. CV 
was repeated multiple times with different random splitting of the data into five equal 
parts. 

Classifier performance (i.e., prediction accuracy) was assessed using Gorodkin’s RK 
correlation coefficient for discrete multi-category data (11). The aim is to compare a 

prediction Ypred to the true target values Y, with Yn,k ∈ { 0,1} for n predictions of k classes. 

The K × K confusion matrix C contains the number of correctly and falsely predicted data 

instances per class. Ck,k contains the number of correctly predicted instances of class k, 
and off-diagonal elements contain the number of falsely predicted instances. For example, C1,2 contains the number of instances predicted to belong to class 1, but actually belonging 
to class 2. The K-category correlation coefficient computes as in eq. SE7.  

ef = ∑ hi,ihj,kijk !hi,jhk,i 
l∑ m∑ hi,jj ni m∑ hi´,j´j´,i´pi nl∑ m∑ hj,ij ni m∑ hi´,j´j´,i´pi n   .    (SE7) 

Application-specific calibration of the neuromorphic hardware system. 

The network-specific calibration for the previous version of the network with 100% 
connectivity (see supplemental results above) consisted of two steps. We first calibrated 
the PNs for homogeneous rate response, before calibrating the LNs. Calibration was 
carried out with the weight of all inhibitory synapses set to zero. We first measured PN 
firing rates in response to a one-second stimulation with maximum intensity, formed the 

median from all PN rates and used this as target firing rate. The “fitness” of the rate 
distribution was assessed by mean square deviation (MSD) of PN firing rates from the 
targeted PN firing rate, 

MSD = tu ∑ m3ER�SMN − 34MNnvut   ,       (SE8) 

with n the number of PNs, 34MN the firing rate of the ith PN, and 3ER�SMN  the targeted firing 

rate. The weights wi from the RNs to the ith PN were then updated according to 

	4��� = 	4 ∙ wxy%Wz{
w|z{  .        (SE9) 

In this case we relied on the automatic conversion of the Spikey control software that 
mapped the weight values into the discrete distribution required by the hardware (1). 

When the MSD failed to decrease over five iterations, optimization was terminated and 
the weight set that yielded the best MSD until then was used. After the weights from 
RNs to PNs were optimized, we adjusted the weights between PNs and LNs using the 
same algorithm. 

Speed considerations for the neuromorphic hardware system 

The execution of the network on the accelerated hardware happens extremely fast: A 
simulation lasting for 150 s biological time is executed in 15 ms (a 104 speedup factor). 

A neuromorphic network for generic multivariate data classification

119



 

However, the total run time of the classifier network is mainly determined by other 
factors, which we describe in the following.  

A typical crossvalidation run requires 150 stimulus presentations of 1 s duration. Before 
starting such a simulation session, generic calibration data must be loaded and applied. 
The network connectivity as well as synaptic weights must be encoded and transferred, 
and subsequently be mapped from their specification in biologically realistic physical 
units to the appropriate hardware parameters. In addition, for each of the 150 
simulations, spike data needs to be sent to and received from the hardware, including 
transfer, encoding and decoding of spike times and neuron IDs. During the training phase 
of the classifier synaptic weights also have to be updated before every stimulus 
presentation.  

The absolute duration of these additional factors depends heavily on the efficiency of the 
software interface that links the hardware with the host system. Since it is a prototype 
system, this software interface is constantly developed and improved. It is therefore 
difficult to state an absolute number for the effective speedup achieved by offloading 
network simulations to the hardware. In order to give the reader the opportunity of an 
informed estimate, we analyzed how much time is required by each of the above steps 
(Fig. S4).  

Several of these steps still bear potential for optimization. For example, the time required 
for weight update could be drastically shortened by differential configuration, i.e. 
updating only those hardware weights which have changed, instead of overwriting all 
weights as in the current implementation. In addition, on the current system all spike 
times produced in the network are being transferred back to the host system during 

Fig. S4: Simulation time for one crossvalidation run (150 simulations) broken down into discrete steps. The 
largest fraction of the time is required by mapping the simulation parameters to hardware-compatible values 
and configuring the hardware network. Some of these tasks have to be repeated for every simulation, adding 
up to a substantial amount of total time. The second largest chunk is taken up by updating weights. The 
actual simulation requires less than 2% of the total time. “Other” encompasses numerous small tasks like 
handling of spike data and network configuration in the PyNN interface code. All numbers are subject to 
change as the software interface evolves. 
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training and testing phases of the classifier network. The interface can be improved to 
only transfer those spikes which are necessary for the off-chip calculation of the weight 
change, namely PNs and excitatory ANs, and not transferring spike times from LNs and 
inhibitory ANs. When the network is completely trained, only the spike times from 
excitatory ANs are needed, further reducing the overhead due to handling spike data. 
We plan to implement these optimizations in future versions of the software interface. 
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Table ST1: Average count of predicted vs. actual class adherence (columns vs. rows) 
obtained across 50 repetitions of fivefold cross-validation. 

 I. setosa I. versicolor I. virginica 

I. setosa 50.0 0.0 0.0 

I. versicolor 0.0 47.1 10.7 

I. virginica 0.0 2.9 39.3 
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Table ST2: Network parameters. 

Receptor Neurons (RNs) 

Type Gamma process (γ=5) 

Count 6 RNs per virtual receptor 

Outgoing 
connectivity 

Each RN projects on the PNs in one glomerulus, connection 
probability pconn=50% 

Outgoing weights RN to PN: Ͳ.ͷ ∙ �୫a୶୦୵  e୶c  
Projection Neurons (PNs) 

Type Leaky integrate-and-fire 

Count 7 PNs per glomerulus 

Outgoing 
connectivity 

Excitatory synapses on LNs in the same glomerulus (pconn=50%) 
and on excitatory ANs (pconn=50%) 

Outgoing weights 
PN to LN: Ͳ. ∙ �୫a୶୦୵  e୶c.  
PN to AN: initially random between Ͳ.ʹ ∙ �୫a୶୦୵  e୶c and Ͳ. ∙�୫a୶୦୵  e୶c (adjusted in training). 

Local inhibitory Neurons (LNs) 

Type Leaky integrate-and-fire 

Count 6 LNs per glomerulus 

Outgoing 
connectivity 

Inhibitory synapses on all PNs in all other glomeruli 
(pconn=100%) 

Outgoing weights LN to PNs: Ͳ.ͳ͵͵ ∙ �୫a୶୦୵  ୧୬୦ 

Excitatory neurons in association layer (ANs) 

Type Leaky integrate-and-fire 

Count 8 per association population 

Outgoing 
connectivity 

Excitatory synapses on adjoint inhibitory population 
(pconn=50%) 

Outgoing weights AN to adjoint inhibibitory  population: Ͳ.ͷ ∙ �୫a୶୦୵  e୶c 
Inhibitory neurons in association layer 

Type Leaky integrate-and-fire 

Count 8 per association population 

Outgoing 
connectivity 

Inhibitory synapses on excitatory neurons of all other 
association populations (pconn=100%). 

Outgoing weights 
Inhibitory neuron to ANs different association populations: ͳ.Ͳ ∙�୫a୶୦୵  ୧୬୦ 
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Abstract

Correlations in neural activity can severely impair the processing of information in
neural networks. In finite-size networks, correlations are however inevitable due to
common presynaptic sources. Recent theoretical studies have shown that inhibitory
feedback, abundant in biological neural networks, can actively suppress these shared-
input correlations and thereby enable neurons to fire nearly independently. For net-
works of spiking neurons, the decorrelating effect of inhibitory feedback has so far
been explicitly demonstrated only for homogeneous networks of neurons with linear
sub-threshold dynamics. Theory, however, suggests that the effect is a general phe-
nomenon, present in any system with inhibitory feedback, irrespective of the details
of the network structure and the neuron and synapse properties. Here, we investi-
gate the effect of network heterogeneity on correlations in sparse, random networks
of inhibitory neurons with conductance-based synapses. Accelerated neuromorphic
hardware is used as a user-friendly stand-alone research tool to emulate these net-
works. The configurability of the hardware substrate enables us to modulate the
extent of network heterogeneity in a systematic manner. We selectively study the
effects of shared-input and recurrent connections on correlations in synaptic inputs
and spike trains. Our results confirm that shared-input correlations are actively sup-
pressed by inhibitory feedback also in highly heterogeneous networks exhibiting broad,
heavy-tailed firing-rate distributions. However, while cell and synapse heterogeneities
lead to a reduction of shared-input correlations (feedforward decorrelation), feedback
decorrelation is impaired as a consequence of diminished effective feedback.

†These authors contributed equally to this study.
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1 Introduction

Spatial correlations in the activity can severely impair information processing in neural
networks [1, 2, 3, 4]. A functional benefit of small cross-correlations has been demonstrated,
e.g., in [5], showing that decreased spike-train correlations are accompanied by increased
task performance. In finite-size neural networks, an inevitable source of correlated neural
activity is presynaptic input shared by multiple postsynaptic neurons. In network models
and in-vivo recordings, however, pairwise correlations in the activity of neighboring neurons
have been found to be much smaller than expected given the amount of shared input [6, 7, 8,
9, 10, 11, 12]. Renart et al. [13] and Tetzlaff et al. [14] have attributed this observation to an
active decorrelation of neural activity by negative feedback. Negative feedback, abundant
in biological neural networks, can effectively suppress pairwise correlations and fluctuations
in the population activity, and thereby enable neurons to fire nearly independently despite
substantial shared input.

For networks of spiking neurons, decorrelation by inhibitory feedback has so far been
explicitly demonstrated only for the homogeneous case, where all neurons have identical
properties, receive (approximately) the same number of inputs, and, hence, fire at about
the same rate [13, 11]. Moreover, the sub-threshold dynamics of individual neurons was
assumed to be linear. The underlying theory [14], however, suggests the effect to be much
more general: Decorrelation should be observable in any system with sufficiently strong
inhibitory feedback, irrespective of the details of the network structure and the cell and
synapse properties.

Biological neuronal networks often exhibit broad, heavy-tailed firing-rate distributions
[15, 16, 17, 18, 19, 20, 21], indicating a high degree of heterogeneity, e.g., in synaptic weights
[22, 23, 24, 25, 26], in-degrees [27] or time constants [28, 20]. The same holds for neural
networks implemented on analog neuromorphic hardware: Analog neuromorphic hardware
substrates [29] mimic properties of biological nervous systems using physical models of
neurons and synapses [30] (capacitors, for example, emulate insulating cell membranes).
In consequence, neural-network emulations on analog neuromorphic hardware are massively
parallel, energy efficient and potentially extremely fast, thereby making these substrates
highly attractive as tools for neuroscientific research and technical applications [4, 31, 32,
33]. All analog circuits, however, suffer from device variations caused by unavoidable
variability in the manufacturing process. Neurons and synapses implemented in analog
neuromorphic hardware therefore exhibit heterogeneous response properties, similar to
their biological counterparts [34, 35]. To understand the dynamics and function of recurrent
neural networks in both biological and artificial substrates, it is therefore essential to
account for such heterogeneities.

Previous studies on recurrent neural networks have shown that heterogeneity in single-
neuron properties or connectivity broadens the distribution of firing rates [36, 20] and
affects the stability of asynchronous or oscillatory states [37, 38, 39, 40, 27, 41]. A number
of studies pointed at a potential benefit of heterogeneity for the information-processing
capabilities of neural networks [42, 43, 44, 41, 45, 46]. The effect of heterogeneity on corre-
lations in the activity of recurrent networks of spiking neurons, however, remains unclear
yet. Roxin [27] pointed out that heterogeneity in the number of outgoing connections
(out-degree) increases the fraction of shared input and may therefore lead to an increase
in correlations. Padmanabhan & Urban [43] have shown that the responses of a popula-
tion of unconnected neurons are decorrelated by heterogeneity in the neuronal response
properties. These results are supported by the subsequent theoretical analysis in [44]. In
the following, we refer to this type of decorrelation by heterogeneity as feedforward decor-
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Figure 1: The neuromorphic hardware system Spikey . (a) Photograph of the Spikey
chip (size 5 × 5mm2). It comprises analog circuits of 384 neurons and 98304 synapses
(half of which are accessible for chip version 4 used in this study), is highly configurable
and emulates neural-network dynamics by a factor 104 faster than biological real-time.
(b) Photograph of the Spikey system, carrying the Spikey chip (covered by a black round
seal) and conventional memory. The system is connected to the host computer via USB
2.0, consumes 6W of power in total and less than 1 nJ per synaptic transmission (see
Supplements 1).

relation. It does not account for the effect of the recurrent network dynamics. Active
decorrelation due to inhibitory feedback [see above; 13, 14], in contrast, constitutes a very
different mechanism. The effect of heterogeneity on this feedback decorrelation has lately
been studied by Bernacchia & Wang [47] in the framework of a recurrent network of linear
firing-rate neurons. In this setup, correlations are suppressed by heterogeneity in the net-
work connectivity (distributions of coupling strengths or random dilution of connectivity).
It remains unclear, however, whether this holds true for networks of (nonlinear) spiking
neurons.

In this study, we investigate the impact of heterogeneity on input and output correla-
tions in sparse networks of leaky integrate-and-fire (LIF) neurons with conductance-based
synapses, implemented in the analog neuromorphic hardware system Spikey (Figure 1)
[48, 49]. The configurability of this system [49] enables us to systematically vary the level
of heterogeneity, and to disentangle the effects of heterogeneity on feedforward and feed-
back decorrelation (see above). For simplicity, we focus on purely inhibitory networks,
thereby emphasizing that active decorrelation by inhibitory feedback does not rely on a
dynamical balance between excitation and inhibition [14, 50]. We show that decorrelation
by inhibitory feedback is effective even in highly heterogeneous networks with broad dis-
tributions of firing rates (Section 3.1). Increasing the level of heterogeneity has two effects:
Feedforward decorrelation is enhanced, feedback decorrelation is impaired. Overall, input
and output correlations are increased (Section 3.2). Note that the findings presented in
this article are acquired by network emulations on analog neuromorphic hardware. Qual-
itatively similar results are however obtained by means of simulations using conventional
computers (see Supplements 3).

2 Methods

2.1 Network model

Details on the network, neuron and synapse model are provided in Table 1. Parameter
values are given in Table 2. Briefly: We consider a purely inhibitory, sparse network
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of N (N = 192, unless stated otherwise) LIF neurons with conductance-based synapses.
Each neuron receives input from a fixed number K = 15 of randomly chosen presynaptic
sources, independently of the network size N . Self-connections and multiple connections
between neurons are excluded. Resting potentials El are set above the firing thresholds
Θ (equivalent to applying a constant supra-threshold input current). We thereby ensure
autonomous firing in the absence of any further external input. Due to temporal noise, the
initial conditions are essentially random.

2.2 Network emulations on the neuromorphic hardware system Spikey

The Spikey chip consists of physical models of LIF neurons and conductance-based synapses
with exponentially decaying dynamics (Figure 1; for details, see Table 1). The emergent
dynamics of these physical models represents a solution for the model equations of neurons
and synapses in continuous time, and in parallel for all units. In contrast, in numerical
simulations model equations are solved by stepwise integration, where parallelization is
limited by the available number of virtual processes. To emphasize the difference between
simulations using software and simulations using physical models the term emulation is
used for the latter [49].

The response properties of physical neurons and synapses vary across the chip due to
unavoidable variations in the production process that manifest in a spatially disordered
pattern (fixed-pattern noise). In contrast to the approximately static fixed-pattern noise,
temporal noise, including electronic noise and transient experiment conditions (e.g., chip
temperature), impairs the reproducibility of emulations. Two network emulations with
identical configuration and stimulation do generally not result in identical network activity.
Both fixed-pattern and temporal noise need to be taken into account when developing
models for analog neuromorphic hardware.

The key features of the Spikey chip are the high acceleration and configurability of
the analog network implementation. Some network parameters, e.g., synaptic weights and
leak conductances, are configurable for each unit, while other parameters are shared for
several units (for details see [49]). The hardware system is optimized for spike in- and
output and allows to record the membrane potential of one (arbitrarily chosen) neuron
with a sampling frequency of 96MHz in hardware time. Networks on the Spikey chip are
emulated much faster (approximately 104-fold) than biological real-time, which is a direct
consequence of the small capacitances and much higher conductances of VLSI technology
compared to biological nervous systems. Due to this high acceleration of the neuromorphic
chip, the data bandwidth of the connection between the neuromorphic system and the host
computer is not sufficient to communicate with the chip in real time. Consequently, input
and output spikes (for stimulation and from recordings, respectively) are buffered in a
local memory next to the chip. The high acceleration of the Spikey chip allows to operate
most of the transistors outside of weak inversion, thereby reducing the effect of transistor
variations and minimizing fixed-pattern noise.

In contrast to such accelerated systems, most other analog neuromorphic substrates are
designed for real-time emulations at very low power consumption [51, 52, 53, 54, 55, 56, 57]
and implement a few but complex neurons [58, 59].

Access to the Spikey system is encapsulated by the simulator-independent language
PyNN [60, 61], providing a stable and user-friendly interface. PyNN integrates the hardware
into the computational neuroscience tool chain and has facilitated the implementation of
several network models on the Spikey chip [62, 63, 64, 49, 4].

On the Spikey system, a spiking neural network is emulated as follows (Figure 2a):
First, the network described in PyNN is mapped to the Spikey chip, i.e., neurons and
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Figure 2: Experimental setup. (a) Data flow of the Spikey system. For details see
Section 2.2. (b) Network with on-chip feedback connections (FB). Spikes from all neurons
are recorded to the local memory. (c) Spikes of the FB network in (b) replayed from
memory via off-chip spike sources ξi to neurons i (FBreplay). Spike times of ξi correspond
to those recorded from neuron i in (b). Spikes from all neurons or the free membrane
potential of one selected neuron are recorded. (d) Like (c), but spike times from (b) are
randomized for each source (RAND).

synapses are allocated and parametrized. Second, input spikes, if available, are prepared
on the host computer and transferred to the local memory on the hardware system. Third,
the emulation is triggered and available input spikes are generated. Output spikes and
membrane data are recorded to local memory. Last, spike and membrane data are trans-
ferred to the host computer and scaled back into the biological domain of the PyNN model
description.

For consistency with the model description and simplified comparison to the existing
literature, all hardware times and all hardware voltages are expressed in terms of the
quantities they represent in the neurobiological model, throughout this study.

2.3 Experimental setup

To differentiate and compare the effects of shared inputs and feedback connections on
correlations, we investigate two different emulation scenarios: First, we emulate networks
with intact feedback (FB, Figure 2b), and second, the contribution of shared input is
isolated by randomizing the temporal order of this feedback (RAND, Figure 2d).

In the RAND scenario, the inputs of neurons are decoupled from their outputs. The
activity of the previously recorded FB network is replayed to a population of unconnected
neurons of equal size. We keep the connectivity the same, but randomize the presynaptic
spike times. Each neuron hence receives the same number of spikes as in the recurrent
network during the whole emulation, but spatio-temporal correlations in presynaptic spike
trains are removed. To preserve the fixed pattern of variability of synaptic weights in
hardware, the same hardware synapses are used for each connection in both scenarios.

Input correlations between neurons are measured via their free membrane potential,
i.e., the membrane potential with disabled spiking mechanism (technically, the threshold
is set very high). Because membrane potential traces can be recorded in the hardware only
one at a time, traces are obtained consecutively while repeatedly replaying the activity
of the FB network without randomization (FBreplay, Figure 2c) or replaying randomized
activity (RAND), respectively. If network dynamics were reproduced perfectly, membrane
potential traces and spike times would be identical in the FB and FBreplay cases (see also
Section 2.4).
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Drawing two different network realizations (i.e., the connectivity matrix) results in the
allocation of different hardware synapses, and, due to fixed-pattern noise, in different values
of synaptic weights. To average over this variability, throughout this study, emulation
results are averaged over M = 100 network realizations, if not stated otherwise.

2.4 Reproducibility of hardware emulations

In contrast to the chaotic activity in the FB network (see however [65]), in the RAND
and FBreplay case the input of neurons is decoupled from their output. Therefore, even
in the presence of the unavoidable temporal noise, the system’s trajectory tends to return
to the trajectory of the noiseless case. A certain degree of reproducibility is required for
two reasons: First, the investigated effect of decorrelation by inhibitory feedback requires
a precise relation between spike input and output. Thus our method of replacing the
feedback loop by replay is only valid if temporal noise does not substantially corrupt this
relationship. Second, to record the membrane potentials of all neurons, as if recorded at
once, neuron dynamics have to be reasonably similar in consecutive emulations.

We measure the reproducibility of neuron dynamics by comparing consecutive emula-
tions with identical configuration, i.e., connectivity and stimulation. For this purpose the
spiking activity of a FB network is first recorded (Figure 2b) and then repeatedly replayed
(Figure 2c). Reproducibility is quantified by the correlations (κX in Table 3) of free mem-
brane potential traces and output spike trains obtained for individual neurons in L = 25
different trials.

Free membrane potentials are reproduced quite well, while spike trains show larger de-
viations across trials (Figure 3). Small deviations in the membrane potential (Figure 3b)
are amplified by the thresholding procedure [66, 67, 68] and can lead to large differences
between spike trains (Figure 3c). Consequently, measures based on data of several consec-
utive replays are more precise for membrane potentials than for spike trains. Nevertheless,
results have to be interpreted with care in both cases.

2.5 Calibration

The heterogeneity of the Spikey hardware is adjusted by calibrating the leak conductance1

for each individual neuron, compensating for fixed-pattern noise of neuron parameters.
To this end, a population of unconnected neurons is driven by a suprathreshold constant
current influx and the time-averaged population activity r̄ is measured. Then, we applied
the bisection method [69] to adjust the leak conductance gl of each neuron, such that the
neuron’s firing rate matches the target rate r̄. This results in calibration values b for the
leak conductance gl = gl,0(1 + b), where gl,0 is the leak conductance before calibration.
Because emulations on hardware are not perfectly reproducible, more precise calibration
was achieved by evaluating the median over 25 identically configured trials instead of single
trials. Furthermore, the bisection method was modified for noisy systems (for details, see
Supplements 2).

Intermediate calibration states are obtained by linearly scaling the full calibration:

gl = gl,0(1 + (1− a)b) . (1)

The heterogeneity a is chosen in [0, 1] for calibrations between the uncalibrated (a = 1)
and calibrated state (a = 0). In the following, the fully calibrated chip (a = 0) is used, if
not stated otherwise.

1since capacitances and potentials can not be configured individually for each hardware neuron [49]
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Figure 3: Reproducibility of free membrane potentials and spiking activity in the FBreplay

case. (a) Low-frequency coherence κV and κS of free membrane potentials vki (t) and vli(t)
and binned spike trains ski (t) and sli(t), respectively, for each neuron i averaged over L = 25
trials k, l with k 6= l, for M = 50 different network realizations. The diamond marks the
average across all neurons i and M network realizations. (b) Free single-trial membrane
potentials vki (t) (gray) and average over trials 1

L

∑L
k=1 v

k
i (t) (black) and (c) spike density

ξi(t) of a single neuron i for L = 25 identical trials. The selected neuron i has membrane
potential coherence and spike train coherence closest to the diamond in (a).
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Figure 4: Calibration of the Spikey chip. (a) Histogram of firing rates r for a population
of unconnected neurons before (gray) and after (black) calibration, each neuron averaged
over L = 100 trials. The arrow denotes the target rate r̄. (b) Difference P 75 − P 25 of
75th and 25th percentile of histograms in (a) as a function of network heterogeneity a
(Equation 1). The mean firing rate over all values of a is (78.1± 0.7) s−1.

This calibration substantially narrows the distribution of firing rates compared to the
uncalibrated state (Figure 4). With respect to the stationary firing rate, variability on the
neuron level is reduced from 38% to 2%.

Note that after this calibration procedure the hardware network is still not homoge-
neous. In addition to remaining variations in neuron parameters, synaptic parameters have
a significant variation [70, 4].

2.6 Correlation measures

In the following, we introduce definitions used to analyze the recorded data. For clarity,
all relevant equations and their parametrization are listed in Table 3 and 4, respectively.

We quantify correlations of membrane potentials vi(t) and spike trains si(t) by the
population-averaged low-frequency coherence κV and κS , respectively. At frequency zero,
the coherence corresponds to the normalized integral of the cross-covariance function, i.e.,
it measures correlations on all time scales. We define the low-frequency coherence κX ,
with X ∈ {S, V }, to be the average coherence over a frequency interval from 0.1 to 20Hz.
In this interval, the suppression of population-rate fluctuations in recurrent networks due
to inhibitory feedback is most pronounced, and the coherence is approximately constant.
Before calculating the coherence, we average the power- and cross-spectra with a sliding
window to average out random fluctuations. This measure, or a variant of it, is commonly
used in the neuroscientific literature [71, 72, 73, 67, 13, 14, 44]. We use the terms low-
frequency coherence and correlation interchangeably.

Throughout this study, the term input correlations is used for correlations between
free membrane potentials, and output correlations for correlations between spike trains.
Shared-input correlations are membrane potential correlations that are exclusively caused
by overlapping presynaptic sources, ignoring possible correlations in the presynaptic activ-
ity. The average pairwise shared-input correlations in a homogeneous network are of the
size of the connectivity [14]:

κV = K/N . (2)

To quantify fluctuations in the population activity s̄ (Figure 5a–c, horizontal his-
tograms) we compute the power spectrum Ā of the population activity (Figure 5e), which
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we scale with the duration T of the emulation. Consequently, the population power spec-
trum Ā(f), scaled by the population size, coincides with the time-averaged population
activity r̄ for high frequencies: limf→∞

1
N Ā(f) = r̄ [11].

As a measure of pairwise correlations in the time domain (Figure 5d), we compute the
population-averaged cross-correlation function c(τ) by Fourier transforming the population-
averaged cross-spectrum C(f) to time domain.

3 Results

In this study, we investigate the roles of shared input, feedback and heterogeneity on
input and output correlations in random, sparse networks of inhibitory LIF neurons with
conductance-based synapses (Table 1), implemented on the analog neuromorphic hardware
chip Spikey (Figure 1). Similarly to [14], we separate the contributions of shared input and
feedback by studying different network scenarios (Figure 2): In the FB case, we emulate
the recurrent network with intact feedback loop (Figure 2b) and record its spiking activity
(Figure 5a). In the FBreplay case (Figure 2c), the feedback loop is cut and replaced by
the activity recorded in the FB network. Ideally, the input to each neuron in the FBreplay

case should be identical to the input of the corresponding neuron in the FB network.
As the replay of spikes and the resulting postsynaptic currents and membrane potentials
are not perfectly reproducible on the Spikey chip, the neural responses in the FB and in
the FBreplay scenario are slightly different (compare Figure 5 a to b). In the RAND case
(Figures 2d and 5c), we use the same setup as in the FBreplay case. However, the spike times
in each presynaptic spike train are randomized. While the average presynaptic firing rates
and the shared-input structure are exactly preserved in this scenario, the spatio-temporal
correlations in the presynaptic spiking activity are destroyed.

Using this setup, we first demonstrate in Section 3.1 that active decorrelation by in-
hibitory feedback [13, 14] is effective in heterogeneous networks with conductance-base
synapses over a range of different network sizes. In Section 3.2, we show that decreasing
the level of heterogeneity by calibration of hardware neurons leads to an enhancement of
this active decorrelation and thereby to a decrease in input and output correlations.

3.1 Decorrelation by inhibitory feedback

The time-averaged population activities in the FB, FBreplay and RAND scenarios are
roughly identical (Figure 5a–c; see also high-frequency power in Figure 5e). In the FB
and FBreplay scenario, fluctuations in the population-averaged activity are small (horizon-
tal histograms in Figure 5a and b). The removal of spatial and temporal correlations in the
presynaptic spike trains in the RAND case leads to a significant increase in the fluctuations
of the population-averaged response activity (horizontal histograms in Figure 5c). At low
frequencies (≤ 20Hz), the population-rate power in the FB and in the RAND case differs
by almost two orders of magnitudes (black dotted and gray curves in Figure 5e). This
increase in low-frequency fluctuations in the RAND case is mainly caused by an increase
in pairwise correlations in the spiking activity (Figure 5d; the power spectra of individ-
ual spike trains [inset in Figure 5e] are only marginally affected by a randomization of
presynaptic spike times) [14]. In other words, shared-input correlations, i.e., those leading
to large spike-train correlations in the RAND scenario, are efficiently suppressed by the
feedback loop in the FB case.

On the neuromorphic hardware, the replay of network activity is not perfectly repro-
ducible (Section 2.4). While the across-trial variability in membrane potentials is small,
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Figure 5: Spiking and membrane-potential activity in a random inhibitory network of LIF
neurons with intact and cut feedback loop. (a–c) Spiking activity (raster plots), popula-
tion activity s̄(t) (horizontal histograms; bin size 50ms) and time-averaged single-neuron
firing rates rid (vertical histograms) in the network with intact feedback (a) and for cases
where the feedback loop is cut (b and c). (a) Intact recurrent network (FB scenario). (b)
Population of mutually unconnected neurons receiving identical input spike trains as in
(a) (FBreplay scenario). (c) As in (b), but after randomization of presynaptic spike times
(RAND scenario). (d and e) Population-averaged cross-correlation functions c(τ) (after
offset subtraction) of pairs of spike trains (d) and power spectra Ā(f) (e; log-log representa-
tion) of the population activity s̄(t) (cf. horizontal histograms in (a–c)) for the FB (dotted),
FBreplay (solid black) and RAND scenario (gray). Inset in (e): Population-averaged power
spectra A(f) of individual single-cell spike trains (same scales as in main panel). Cor-
relation functions and spectra are averaged across M = 100 network realizations. (f)
Membrane potential of a neuron in the RAND scenario (with firing rate of 29.0 s−1 close
to population average of 27.8 s−1; see black arrow in (c)) with intact (black curve) and re-
moved threshold (gray curve; free membrane potential). The threshold potential is marked
by the horizontal dashed line. The time frame corresponds to the gray-shaded region in
(c).
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Figure 6: Dependence of population-averaged input correlations (a) and spike-train cor-
relations (b) on the network size N for the intact network (FB, dark gray), the FBreplay

(black) and the RAND (light gray) case (fixed in-degree K = 15). Symbols and error
bars denote mean and standard deviation, respectively, across M = 100 network realiza-
tions (errorbars are partly covered by markers). Gray curve in (a) depicts shared-input
correlations in a homogeneous network (Equation 2). Black dashed line in (b) marks zero
for orientation. The inset in (b) shows a magnified view of the spike-train correlations in
the FB case (diamonds) with a power-law fit ∼ N−1 (dark gray curve). Note that free
membrane potentials cannot be recorded in the FB case (see Section 2). Hence, there are
no gray diamonds in (a).

postsynaptic spikes are jittered on a timescale of approximately 5ms (Figure 3). In the
FBreplay case, the suppression of shared-input correlations by correlations in presynaptic
spike trains is therefore slightly less efficient as compared to the intact network (FB). The
differences in the population-rate power spectra and in the spike-train correlations be-
tween the FBreplay and RAND case, respectively, are nevertheless substantial (solid black
and gray curves in Figure 5d and e).

In the RAND case, input (i.e., free-membrane-potential) correlations are exclusively
determined by the number of shared presynaptic sources, i.e., by the connectivity K/N ,
and, hence, decrease with network size N if the in-degree K is fixed (gray curve and sym-
bols in Figure 6; see also Equation 2 and [14, 74]). In the FB scenario, two components
contribute to the input correlation: Shared input and correlations in presynaptic spike
trains. In purely inhibitory networks, the average spike-train correlation is negative (di-
amonds in Figure 6b) [14]. Shared-input correlations, which are always positive if Dale’s
law is respected [10], are largely canceled by these negative spike-train correlations. The
average input correlations are therefore significantly reduced (black symbols in Figure 6a).
As both spike-train and shared-input correlations scale with the inverse N−1 of the net-
work size (Figure 6a and inset in Figure 6b) [67], this suppression of correlations in the
FB (and FBreplay) case is observed for all investigated network sizes N . Note that the
output correlations are negative even though input correlations are positive. This effect
is predicted by theory and also observed in linear network models as well as LIF-network
simulations on conventional computers (see Supplements 3, Supplements 4 and Section 4).
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3.2 Effect of heterogeneity on decorrelation

In neural networks implemented in analog neuromorphic hardware, neuron (and synapse)
parameters vary significantly across the population of cells (fixed-pattern noise; see Sec-
tion 2.2). For a population of mutually unconnected neurons with distributed parameters,
injection of a constant (suprathreshold) input current leads to a diversity of response firing
rates (Figure 4). In this study, we consider the width of this firing-rate distribution as a
representation of neuron heterogeneity. It is systematically varied by partial calibration of
leak conductances. The extent of heterogeneity is quantified by the calibration parameter
a (a = 1 and a = 0 correspond to the uncalibrated and the fully calibrated system, respec-
tively; for details, see Section 2.5). For an unconnected population of neurons subject to
constant input, the width of the firing-rate distribution increases monotonically with a.

As shown in Figure 7, the level of heterogeneity (i.e., the calibration state a) is clearly
reflected in the activity of the wired recurrent network (FB case). Both the width of the
distribution of mean free membrane potentials (Figure 7a–c) as well as the width of the
firing-rate distribution increase with a (Figure 7d–f; bottom panels). In the uncalibrated
system (a = 1), a substantial fraction of neurons is predominantly driven by constant
suprathreshold input currents and therefore generates highly regular spike trains (CISI

V ≈
0) with high firing rates (> 120 s−1). Simultaneously, about 40% of the neurons are silent
(0 s−1). Both highly active and inactive neurons are hardly modulated by (inhibitory)
recurrent inputs from the local network. After calibration, the firing-rate distribution is
narrowed. For a = 0, the fraction of silent neurons is reduced to about 10%. Maximum
rates are limited to < 80 s−1. Note that our calibration routine compensates only for
the distribution of neuron parameters, but not for the heterogeneity in synapse properties
(synaptic weights, synaptic time constants; see Section 4). For the fully calibrated network
(a = 0), the firing-rate distribution is therefore still broad. In the RAND case, we obtain
similar firing-rate and inter-spike interval statistics as in the FB case (Supplements 5).

For all levels of heterogeneity attainable by our calibration procedure (a ∈ [0, 1]), input
and output correlations are significantly suppressed by the recurrent-network dynamics (cf.
black and dark gray vs. light gray symbols in Figure 8). In a homogeneous, random (Erdős-
Rényi) network with fixed in-degree K and linear subthreshold dynamics, the contribution
of shared input to the input (free-membrane-potential) correlation is given by the network
connectivity K/N [14] (gray curves in Figure 6a and Figure 8a). Nonlinearities in synaptic
and/or spike-generation dynamics [67] as well as heterogeneity in neuron (and synapse)
parameters lead to a suppression of this contribution [43]. Here, we refer to this type of
decorrelation as feedforward decorrelation. In fact, in our setup the spike-train correlations
in the RAND case slightly decrease with increasing heterogeneity (light gray symbols in
Figure 8b). The input correlations in the RAND case, in contrast, are marginally affected
by the calibration and only slightly smaller than K/N (gray symbols vs. gray curve in
Figure 8a). This observation may indicate that the dominant source of heterogeneity in
our networks results from distributions of parameters which affect the spike-generation
(spike thresholds Θ, leak conductances gl, resting potentials El) or after-spike dynamics
(reset potentials vreset, refractory periods τref), but not the integration of synaptic inputs.
Broad distributions of synaptic weights J , inhibitory reversal potentials Einh, membrane
or synaptic time constants τm, τsyn or delays d would lead to a feedforward decorrelation
also at the level of the free membrane potential. We mimicked the effect of threshold
heterogeneity in network simulations on conventional computers and obtain results which
are qualitatively similar to those shown here (Supplements 3).

Although feedforward decorrelation benefits from cell heterogeneity, input and output
correlations grow with the level of heterogeneity in the presence of an intact feedback
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Figure 7: Modulation of network heterogeneity by leak-conductance calibration (see Sec-
tion 2.5). Input (top row) and firing statistics (bottom row) in the intact recurrent networks
(FB scenarios) for fully calibrated (a and d; a = 0), partially calibrated (b and e; a = 0.625)
and uncalibrated neurons (c and f; a = 1). (a–c) Effect of calibration on input statistics.
Distributions of relative mean input D = (v̄ − Θ)/σ(v) (distance of time averaged free
membrane potential v̄ from firing threshold Θ in units of the standard deviation σ(v))
across the population of neurons. Gray areas in (a), (b) and (c) highlight [−3, 3] intervals,
containing 88%, 69% and 60% of the total mass of the distribution, respectively. Inset
in (a): Distributions of free membrane potentials v for three neurons α, β and γ with
D = −3, D = 0 and D = 3 (arrows in (a)), respectively. Dotted lines mark threshold po-
tentials that may vary due to fixed-pattern noise. (d–f) Effect of calibration on spike-train
statistics. Joint (scatter plots) and marginal distributions of single-neuron firing rates r
(horizontal histograms; log-linear scale) and coefficients of variation CISI

V of inter-spike
intervals (vertical histograms; log-linear scale). Dashed lines mark mean of firing rate
(26.9 s−1, 31.2 s−1, 37.3 s−1) and CISI

V distributions (0.33, 0.28, 0.27), respectively. Gray
bars (bottom panels) represent fractions of silent neurons. Data obtained from M = 50
different network realizations.
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Figure 8: Dependence of population-averaged input correlations (a) and spike-train cor-
relations (b) on the heterogeneity of the neuromorphic substrate for the intact network
(FB, dark gray), the FBreplay (black) and the RAND (light gray) case. Symbols and error
bars denote mean and standard deviation, respectively, across M = 100 network realiza-
tions (errorbars are partly covered by markers). Gray curve in (a) depicts shared-input
correlations in a homogeneous network (Equation 2). Black dashed line in (b) marks zero
for orientation. The inset in (b) shows a magnified view of the spike-train correlations in
the FB case (diamonds). Note that free membrane potentials cannot be recorded in the
FB case (see Section 2). Hence, there are no gray diamonds in (a).

signal (black and dark gray symbols in Figure 8). We attribute this effect to a weakening
of the effective feedback loop in the recurrent circuit: In heterogeneous networks with
broad firing-rate distributions, neurons firing with very low or high rates (corresponding
to mean inputs far below or far above firing threshold; see Figure 7a–c) are less sensitive
to input fluctuations than moderately active neurons. Hence, they contribute less to the
overall feedback. In consequence, feedback decorrelation is impaired (see also Section 4).

4 Discussion

We have shown that inhibitory feedback effectively suppresses correlations in heteroge-
neous recurrent neural networks of leaky integrate-and-fire (LIF) neurons with nonlinear
sub-threshold dynamics , emulated on analog neuromorphic hardware (Spikey ; [48, 49]).
Both input and output correlations are substantially smaller in networks with intact feed-
back loop (FB) as compared to the case where the feedback is replaced by randomized
input (RAND). The study hence confirms that active decorrelation of network activity by
inhibitory feedback [13, 14] is a general phenomenon which can be observed in realistic,
highly inhomogeneous networks with sufficiently strong negative feedback.

Partial calibration of hardware neurons allowed us to modulate the level of network
heterogeneity and, therefore, to systematically study its effect on correlations in the net-
work activity. The analysis revealed two counteracting contributions: As shown in previous
studies [e.g. 43], neuron heterogeneity decorrelates (shared) feedforward input (feedforward
decorrelation). On the other hand, however, heterogeneity impairs feedback decorrelation
(see next paragraph). In our network model, this weakening of feedback decorrelation is
the dominating factor. Overall, we observed an increase in correlations with increasing
level of heterogeneity. We cannot exclude that feedforward decorrelation may play a more

The effect of heterogeneity on decorrelation mechanisms in spiking neural networks

138



significant role for different network configurations (e.g., different connection strengths or
network topologies, different structure of external inputs, other types of heterogeneity).
Our study demonstrates, however, that heterogeneity is not necessarily suppressing corre-
lations in recurrent systems.

As shown in [14], feedback decorrelation in recurrent networks becomes more (less)
efficient with increasing (decreasing) strength of the effective negative feedback. For net-
works of spiking neurons, the effective connection strength wij (also termed DC suscepti-
bility [67]) between two neurons j and i corresponds to the total number of extra spikes
emitted by neuron i in response to an additional input spike (perturbation) generated by
neuron j. Assuming that the effect of a single additional input spike is small, the effective
connectivity can be obtained by linear-response theory. Note that the effective weights
wij depend on the working point, i.e., the average firing rates of all pre- and postsynaptic
neurons (mathematically, wij is given by the derivative of the stationary response firing
rate ri = φi(r1, . . . , rj , . . . , rN ) with respect to the input firing rate rj , evaluated at the
working point; for details, see [14]). Neurons firing at very low or very high rates are
typically less sensitive to input fluctuations than neurons firing at intermediate rates (due
to the shape of the response function φi(r1, . . . , rN )). Their dynamical range is reduced.
In consequence, they can hardly mediate the feedback in a recurrent network. In hetero-
geneous networks with broad distributions of firing rates, the number of these insensitive
neurons is increased. Hence, the effective feedback is weakened. In Supplements 4, we
mimic the effect of heterogeneity by decreasing the effective weights in a linear rate model.
The resulting dependence of input and output correlations on the level of heterogeneity
qualitatively resembles those results we obtained for the nonlinear spiking network emu-
lated on the neuromorphic system. A direct quantitative comparison between both models
requires an explicit mapping of the synaptic weights in the LIF-neuron network to the
effective weights of the linear model in the presence of distributed firing rates. We commit
this task to future studies. Note that the rate dependence of the effective weights and
the resulting effects of heterogeneity are consistent with our observation that LIF-neuron
pairs with very low firing rates exhibit spike-train correlations close to zero, whereas pairs
with high firing rates are positively correlated. Pairs with at least one neuron firing at an
intermediate rate (the second neuron can fire at a higher rate) exhibit negative spike-train
correlations (see Supplements 6). As shown in [13, 14], these negative spike-train corre-
lations are essential for compensating the positive contribution of shared inputs to the
total input correlation (at least in purely inhibitory networks). Narrowing the firing rate
distribution (e.g., by calibration of hardware neurons) increases the number of neurons
contributing to the negative feedback, which, in turn, leads to more neuron pairs with
negative spike-train correlations and, therefore, to smaller overall correlations.

Seemingly contrary to our findings, Bernacchia & Wang [47] report a decrease in cor-
relations with increasing level of heterogeneity. The results of their study are obtained for
a linear network model, which can be considered the outcome of the linearization proce-
dure described above. Hence, the connectivity of their model corresponds to an effective
connectivity (see above). Their study neglects the rate (working-point) dependence of the
effective weights and can therefore not account for the effect of firing-rate heterogeneity.
In [47], heterogeneity is quantified by the variance of the (effective) weight matrix (Equa-
tions 2.2 and 2.4 in [47]). For sparse connectivity matrices (with a large number of zero
elements), the variance of the weight matrix reflects not only the width of the non-zero-
weight distribution, but also its mean (Equation 2.4 in [47]). For networks of nonlinear
spiking neurons, heterogeneities in neuron and/or synapse parameters broadens the distri-
bution of non-zero effective weights, but may simultaneously reduce its mean (see above
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and [20, 75]). Hence, the variance of the full weight matrix may decrease (for illustration,
see Supplements Figure 3). In other words, increasing heterogeneity in the nonlinear sys-
tem may correspond to decreasing heterogeneity in the linearized system. A direct test
of this hypothesis requires an explicit linearization of the nonlinear heterogeneous system,
which, again, may be subject of future studies.

The results of this study were obtained by network emulations on analog neuromor-
phic hardware. We reproduced the main findings by means of simulations of LIF-neuron
networks with distributed firing thresholds on conventional computers (see Supplements
3). Although networks simulated on conventional computers and those emulated on the
neuromorphic hardware differ in several respects (e.g., in the exact implementation of het-
erogeneity or the synapse model; see Supplements Table 1 and 2), the qualitative results
are very similar: In networks with intact feedback loop, input and output correlations are
substantially reduced (as compared to the case where the feedback is replaced by random-
ized input), but increase with the extent of heterogeneity. As predicted by the theory
for homogeneous inhibitory networks, we observe positive input correlations and negative
output correlations (see Equation 21 in [14] and paragraph thereafter; see also [74] and
Supplements 4). Further, note that heterogeneity in neuron parameters does not “average
out” in larger networks. Upscaling the network size by a factor of 25 (N = 4800, in-degree
K = 384) yields smaller spike-train correlations, but the qualitative results are similar to
those obtained for the smaller network (N = 192, K = 15) emulated on the Spikey chip
(compare Figure 8 to Supplements Figure 1).

In networks with intact feedback loop (FB scenarios), the precise spatio-temporal struc-
ture of spike trains arranges such that the self-consistent input and output correlations are
suppressed. Perturbations of this structure in the local input typically lead to an increase
in correlations [14]. In this study, we demonstrate this by replaying spiking activity after
randomization of spike times, i.e., by replacing the time of each input spike by a random
number uniformly drawn from the full emulation time interval [0, T ) (RAND case). How-
ever, even subtle modifications of input spike trains, such as random jitter of spike times
by few milliseconds, lead to an increase of correlations. On the neuromorphic hardware,
replay of spike trains is not entirely reproducible (see Section 2.4). Hence, spike-train cor-
relations measured in the FBreplay mode are slightly larger than in the FB case. We would
expect the same effect on the input side (free membrane potentials). Due to hardware
limitations, however, we can measure input correlations only in replay mode (FBreplay or
RAND), but not in the fully connected network (FB). Therefore, all reported input cor-
relations are likely to be slightly overestimated. In conventional network simulations, we
mimicked the effect of unreliable replay by input-spike jittering and, indeed, find a gradual
increase in input and output correlations (data not shown). Despite the imperfect replay
of input spikes, the decorrelation effect is clearly visible in hardware emulations, both on
the input and on the output side. The reproducibility of emulations on neuromorphic
hardware could be improved by stabilizing the environment of the system, e.g., the chip
temperature or the support electronics (under development). Analog hardware, however,
will never reach the level of reproducibility of digital computers. But note that, similar to
analog hardware, biological neurons exhibit a considerable amount of trial-to-trial variabil-
ity, even under controlled in-vitro conditions [66]. So far, it is unclear how neuronal noise
such as, for example, synaptic stochasticity (spontaneous postsynaptic events, stochastic
spike transmission, synaptic failure [76]), affects correlations in recurrent neural circuits.

Although different Spikey chips exhibit different realizations of fixed-pattern noise, they
show a comparable extent of heterogeneity and yield results which are qualitatively similar
to those presented in this article (Supplements 7). In the uncalibrated state, correlations
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are more sensitive to the specific realization of fixed-pattern noise and therefore vary more
strongly across different chips (see (B) in Supplements Figure 6 and 7). For the same reason,
the variance of correlations across network realizations is largest in the uncalibrated state.
Note that the variance across different network realizations is larger than the variance
across different trials, i.e., consecutive emulations of identical networks (compare Figure 8
to Supplements Figure 8).

We have shown that negative feedback in recurrent circuits can efficiently suppress
correlations, even in highly heterogeneous systems such as the analog neuromorphic archi-
tecture Spikey . Correlations can be further reduced by minimizing the level of network
heterogeneity. In this study, we reduced the level of heterogeneity through calibration of
neuron parameters in the unconnected case (see Section 2.5). The calibration could, in
principle, be improved by calibrating neuron (and possibly synapse) parameters in the full
recurrent network. Such calibration procedures are however time consuming and cumber-
some. In biological substrates, homeostasis mechanisms [35, 77] keep neurons in a respon-
sive regime and reduce the level of firing-rate heterogeneity in a self-regulating manner.
Future neuromorphic devices could mimic this behavior, thereby reducing the necessity of
time consuming calibration procedures.

For simplicity, this work focuses on purely inhibitory networks. On the one hand,
this demonstrates that decorrelation by inhibitory feedback does not rely on a dynamical
balance between excitation and inhibition (note that the external “excitatory” drive is
constant in our model) [14, 50]. On the other hand, it remains unclear whether our
results on the effect of heterogeneity generalize to systems with mixed excitatory-inhibitory
coupling. Previous studies have shown that, for the homogeneous case, decorrelation by
inhibitory feedback is a general phenomenon, which also occurs in excitatory-inhibitory
networks, provided the overall inhibition is sufficiently strong (which is typically the case
to ensure stability) [13, 14, 47, 50]. It is therefore likely that heterogeneity in excitatory-
inhibitory networks plays a similar role as in purely inhibitory networks.

This study demonstrates that the Spikey system has matured to a level that permits its
use as a tool for neuroscientific research. For the results presented in this study, we recorded
in total 1011 membrane-potential and spike-train samples, representing more than 100 days
of biological time. Due to the 104-fold acceleration of the Spikey chip, this corresponds
to less than 15 minutes in the hardware-time domain. Interfacing the hardware system,
however, reduces the acceleration to an approximately 50-fold speed-up (Figure 9). The
translation between the network description and its hardware representation claims the
majority of execution time, more than the network emulation and the transfer of data to
and from the hardware system together. Especially encoding and decoding spike times on
the host computer is computationally expensive. Obviously, the system could be optimized
by processing data directly on the hardware or by choosing a data representation which is
closer to the format used on the Spikey chip, but this would impair user-friendliness, and
hence, the effectiveness of prototyping. While the Spikey system allows monitoring of the
spiking activity of all neurons simultaneously, access to the membrane potentials is limited
to a single (albeit arbitrary) neuron in each emulation run. Monitoring of membrane po-
tentials of a population of n neurons therefore requires n repetitions of the same emulation.
Extending the hardware system to enable access to the membrane potentials of at least two
neurons simultaneously would allow a direct observation of input correlations in the intact
network (and thereby avoid problems with replay reproducibility; see above) and reduce
execution time (the Spikey chip itself permits recording of up to eight neurons in parallel,
the support electronics, however, does not). While the Spikey system does not significantly
outperform conventional computers in terms of computational power, emulations on this
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Figure 9: Acceleration factor as a function of emulated network time T for the record
(black) and the replay case (gray). The acceleration factor is defined as the ratio between
the emulated network time T (in biological time) and the execution time (wallclock time).
In the record case, a network realization is generated on the host computer and uploaded
to the chip. During the subsequent emulation, spike trains are recorded. In the replay
case, spikes are replayed and the membrane potential of one neuron is recorded with
full sampling frequency (9.6 kHz). The execution time covers the full data flow from a
network description in PyNN to the emulation on the Spikey system and back to the network
representation in PyNN. The time-averaged population firing rate is r̄ = (25.0± 0.4) s−1.
The vertical dashed line depicts the runtime used in this study. The hardware system has
to be initialized once before usage (< 1 s), which is not considered here.

system are more energy efficient than simulations on conventional computers (Supplements
1). A substantial increase of computational power is expected for large systems exploiting
the scalability of this technology without slow-down [78].

Functional neural architectures often rely on a stochastic dynamics of its constituents
or on some form of background noise (see, e.g., [79, 49, 4]). Deterministic recurrent neu-
ral networks with inhibitory feedback could provide decorrelated noise to such functional
networks, both in artificial as well as in biological substrates. In neuromorphic hardware
applications, these “noise networks” could thereby replace conventional random-number
generators and avoid a costly transmission of background noise from a host computer to
the hardware substrate (which may be particularly relevant for mobile applications with
low power consumption; see Supplements 1). It needs to be investigated, however, how well
functional stochastic circuits perform in the presence of such network-generated noise.
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A Model summary

Populations One (inhibitory)
Topology -
Connectivity Random convergent connections (fixed in-degree)
Neuron model Leaky integrate-and-fire (LIF), fixed firing threshold, fixed absolute refractory

time
Channel models -
Synapse model Exponentially decaying conductances, fixed delays
Plasticity -
External input Resting potential higher than threshold (= constant current) (El > Θ)
Measurements Spikes and membrane potentials
Other No autapses, no multapses

B Populations

Name Elements Size

I LIF neuron N

C Connectivity

Source Target Pattern

I I Random convergent connect, in-degree K

D Neuron and synapse model

Type Leaky integrate-and-fire, exponential conductances
Subthreshold dy-
namics

Subthreshold dynamics (t 6∈ (t∗, t∗ + τref)):
Cm

d
dtv(t) = −gl(v(t)− El)− gsyn(t)(v(t)− Einh)

Reset and refractoriness (t ∈ (t∗, t∗ + τref)):
v(t) = vreset

This model is emulated by analog circuitry on the Spikey chip [29].
Conductance dy-
namics

For each presynaptic spike at time t∗ (t > t∗ + d):
gsyn(t) ≈ J exp(− t−t∗−d

τsyn
), where J = whwgmax

This model is emulated by analog circuitry on the Spikey chip [49].
Spiking If v(t∗−) < Θ ∧ v(t∗+) ≥ Θ:

emit spike with time stamp t∗

Table 1: Decription of the network model (according to [80]).
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B Populations

Name Values Description

N {96, 112, 128, 144, 160, 176,192} network size
C Connectivity

Name Values Description

K 15 number of presynaptic partners
D Neuron

Name Values Description

Cm 0.2 nF membrane capacitance
τref 1ms refractory period
vreset −80mV reset potential
El −52mV resting potential
Θ −62mV firing threshold
gl calibrated leak conductance
Einh −80mV inhibitory reversal potential
D Synapse

Name Values Description

gmax in the order of 1 nS conductance amplitude
τsyn ≪ Cm

gl
conductance time constant

whw 3 synaptic weight (in hardware values
∈ [0, 15])

d ≈ 1.3ms synaptic delay
Other Software

Name Values Description

67bc2eec git revision SpikeyHAL
e793bb97 git revision pyNN
d948716a git revision vmodule

Table 2: Parameter values for the network model described in Table 1. Bold numbers
indicate default values. Leak conductances gl are adjusted in the calibration process (see
Section 2.5). Gray numbers indicate target values not considering fixed-pattern noise.
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A Analysis measures

Measure Details

spike density ξi(t) =
∑

k δ(t− tki )

spike train si(tk) = number of spikes of neuron i per bin [k∆t, (k +
1)∆t)

population activity s̄(t) = 1
N

∑
i si(t)

time-averaged population activity r̄ = 〈s̄(t)〉t

membrane potential vi(tk) = membrane potential of neuron i at time step k

(finite time) Fourier transform Xi(f) = F[xi(t)](f) =
∫ T
0 dt xi(t)e

−2πift (with inverse
F−1)

(single unit) power spectrum Ai(f) =
1
T X

∗
i (f)Xi(f)

population-averaged power spectrum A(f) = 1
N

∑
iAi(f)

population power spectrum Ā(f) = (
∑

i S
∗
i (f))(

∑
j Sj(f))

pairwise cross spectrum Cij =
1
T X

∗
i (f)Xj(f), i 6= j

population-averaged cross spectrum C(f) = 1
N(N−1)

∑
i 6=j Cij(f) ≡

1
N(N−1)(Ā(f)−NA(f))

(note: C(f) ∈ R)

sliding window filter X(f) → X(f) ∗H(f)

with H(f) = 1
f1−f0

Θ(f − f0)Θ(f1 − f)

coherence κ(f) = C(f)
A(f)

low-frequency coherence κX = 1
fmax−fmin

∫ fmax

fmin
dfκ(f)

pop.-averaged cross-correlation function c(τ) = 1
N(N−1)

∑
i 6=j 〈si(t)sj(t+ τ)〉t ≡ F−1[C(f)](τ)

trial average 〈. . . 〉k

time average 〈. . . 〉t

Table 3: Summary of the data analysis. Here i ∈ [1, N ], X ∈ S, V .
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A Analysis parameters

Parameter Description Values

∆t bin size for spike trains 1ms

∆tm bin size for membrane potential traces 0.52ms

Twarmup initial warmup time (not considered in analysis) 1 s

T emulated network time (biol. time domain) 10 s

M number of trials (different network realizations) {50,100}

∆F width of sliding window 1Hz

fmin, fmax interval boundaries for low-frequency coherence 0.1Hz, 20Hz

a calibration state {0, 18 ,
2
8 ,

3
8 ,

4
8 ,

5
8 ,

6
8 ,

7
8 ,1}

Table 4: Summary of analysis parameters (default values in bold).
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Supplements

Supplements 1 Power consumption

The Spikey system consumes approximately 6W of power, and the chip itself less than
0.6W. On the chip most power is consumed by digital communication infrastructure,
which is not part of the neuromorphic network. In the following, we estimate the power
consumption for a single synaptic event using the data set partly shown in Figure 5a. This
emulation lasts T = 10 s in biological time and generates approximately 48 · 103 spikes.
Considering the acceleration of the hardware network (104) and the synapse count per
neuron (K = 15), the system generates 720 · 106 synaptic events per second in hardware
time. If we consider the total power consumption of the Spikey chip, the upper bound
of energy consumed by each synaptic transmission will be approximately 1 nJ. Because
these measurements include the communication infrastructure and other support electron-
ics to observe spike times and membrane traces, the real energy consumption for synaptic
transmissions is estimated to be approximately ten times smaller. Network simulations on
conventional supercomputers a far less energy efficient and consume tens of µJ for each
synaptic transmission [81].

Supplements 2 Modification of the bisection method

In each iteration of the bisection method that is used to calibrate the leak conductances of
hardware neurons (Section 2.5), we evaluated the firing rate for each neuron by the median
over L = 25 identical trials. However, if this measure is compared between consecutive
identical iterations, temporal noise on time scales longer than the duration of one iteration
may still lead to variability. In the original bisection method, the interval of possible
solutions is halved after each iteration step [69]. To improve the convergence of this method
in the context of our calibration we expanded the halved interval by 20% at both ends after
each iteration. This prevents the algorithm to get stuck in an interval wrongly chosen by
random fluctuations of the firing rates.

Supplements 3 Simulations with software

We validate our results by comparing them to simulations with software (NEST [82]). In
these simulations we modulated the degree of heterogeneity by distributing the thresholds
of all neurons according to a normal distribution with mean Θ and variance σ(Θ). Details
about the network, neuron and synapse models and their parameters can be found in
Supplements Table 1 and 2, respectively. The results are qualitatively the same compared
to network emulations on the Spikey chip (compare Supplements Figure 1 to Figure 8).
In the FB case, input correlations increase with network heterogeneity and spike-train
correlations become less negative. In the RAND case, input correlations stay approximately
constant, while output correlations decrease with the variance σ(Θ). This can be explained
by the fact that, here, heterogeneity only affects the output spike times, and not the
integrative properties of the neurons (see also Section 3.2 and [44]).
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SUP. FIG. 1: Dependence of population-averaged input correlations (a) and (c), and
spike-train correlations (b) and (d) on the width of the threshold distribution for networks
of two different sizes (N = 192 for (a) and (b), and N = 4800 for (c) and (d); both
networks have a connectivity of approximately ǫ = 0.08), for the FB (diamonds) and
RAND (circles) case. Networks are simulated with NEST [82]. Symbols and error bars
denote mean and standard deviation, respectively, across M = 20 (input correlations)
and M = 30 (output correlations) network realizations (error bars are partly covered by
markers). The gray curve in (a) and (c) depicts shared-input correlations in a homogeneous
network (Equation 2). The black dashed line in (b) and (d) marks zero for orientation.
Note that in simulations the FBreplay is indentical to the FB case, and is hence not shown.
Also note the different y-scales in panel (b) and (d).
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Supplements 4 Linear model

We investigate the consistency of our results with a linear rate model that allows to numer-
ically calculate the average correlations from a given connectivity matrix W. The model
is defined as (according to, e.g., [75])

r(t) = (W(r+ x) ∗ h)(t) . (S1)

Here, r(t) denotes the rate of the individual neurons and x(t) a Gaussian white noise input
that is independent for each neuron. The linear filter kernel h(t) depends on the details
of the model, is not relevant in our calculation, and hence is not further specified, here.
Equation S1 can be transformed to Fourier domain, where the input and output spectral
matrices can be expressed by

CRR(ω) = T (ω)T (ω)† , (S2)

Cin
RR(ω) = WCRR(ω)W

T , (S3)

with T (ω) = (1−H(ω)W)−1 [75]. In the RAND case, the linear equation for the rate of
the (unconnected) neurons reads

q(t) = (W(r̃+ x) ∗ h)(t) , (S4)

where r̃(t) has the same auto-correlations as r(t) but zero cross correlations, i.e., CR̃R̃ =
diag(CRR), since the randomization of spike times removes all spatio-temporal correlations.
According to Tetzlaff et al. [14] spectral matrices in the RAND case are given by

Cin
QQ(ω) =WCR̃R̃W

T , (S5)

CQQ(ω) =|H(ω)|2(Cin
QQ + ρ) . (S6)

We calculate the population-averaged power- and cross-spectra from the full matrices:

ĀX(ω) =
1

N

∑

i

CXX,ii , (S7)

C̄XX(ω) =
1

N(N − 1)

∑

i 6=j

CXX,ij . (S8)

Here, X ∈ {R,Q} denotes the FB and RAND case, respectively. The low frequency
coherence is the cross-spectra normalized by the power spectra:

κX(0) =
C̄XX(0)

ĀX(0)
. (S9)

Note that in the linear model we are actually taking the zero frequency coherence.
As in the spiking model, we consider a sparse network, i.e., we randomly choose for

each neuron i ∈ [1, N ] an identical number of presynaptic partners (K = 15). In the linear
model we do not consider a distribution of non-zero effective weights. Instead, each realized
connection is assigned the same weight value −w. To mimic the effect of calibration we vary
the absolute value of the effective weight by scaling the weights of the non-zero connections
with a sigmoidal function of ã ∈ [0, 1]:

w̃ =
1

1 + e10×(ã−0.5)
w . (S10)
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SUP. FIG. 2: Dependence of population-averaged input (a) and output correlations (b)
on the heterogeneity of the effective weight matrix, for the FB (diamonds) and RAND
(circles) case. The gray curve in (a) depicts shared-input correlations in a homogeneous
network (Equation 2). The black dashed line in (b) marks zero correlations for orientation.
Note that in the linear model the FBreplay is identical to the FB case, and is hence not
shown.

This procedure changes the variance of the weight matrix [47] and hence ã is denoted the
heterogeneity of the network. More homogeneous (heterogeneous) networks have a larger
(smaller) effective weights and hence a stronger (weaker) feedback loop. We obtain qual-
itatively similar results as we observe on the Spikey chip (compare Supplements Figure 2
to Figure 8). Correlations in the RAND case decrease, while correlations in the FB case
increase with network heterogeneity, i.e., with the variance of the effective weight matrix.

In Supplements Figure 3 we illustrate, how in a sparse network the variance of the
weight matrix can increase, although the distribution of non-zero weights narrows. The
standard deviation σw of a distribution of non-zero weights with mean µw is (in this
example) smaller than the standard deviation σW of the full effective weight matrix, due
to the sparseness of the matrix (Supplements Figure 3a; here, we chose ǫ = 0.8). If
we, at the same time, increase the mean µw and decrease the standard deviation σw of
non-zero weights, the standard deviation of the weight matrix σW can increase significantly
(Supplements Figure 3). While the distribution of effective weights is broadened, the mean
is decreased playing the more significant role for the size of correlations. This observation
could explain the decrease of correlations with increasing calibration.

Supplements 5 Firing statistics in the RAND case

The firing rate distributions in the RAND case are similar to those in the FB scenario
(compare Supplements Figure 4 to Figure 7d–f). They are narrower for more homogeneous
networks. Nevertheless, former inactive neurons in the FB case have a higher probability
to fire in the RAND case, because the temporal fluctuations of their membrane potentials
increase due to higher correlations in their input (Figure 5e). Neurons with firing rates
above average are barely affected by this effect, because they are strongly driven by the
constant current influx, and hence show similar firing rates than in the FB scenario. The
regularity of firing increases for the RAND compared to the FB case, also due to stronger
fluctuations of the input.
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0 40 80 120 160

Rate r (s−1 )

0.0

0.5

1.0

1.5

2.0

2.5

C
IS
I

V

0 40 80 120 160 0 40 80 120 160

a b c

SUP. FIG. 4: (a–c) Like Figure 7d–f, but for the RAND case. The mean of firing rate
(27.2 s−1, 26.0 s−1, 30.0 s−1) and CISI

V distributions (0.52, 0.51, 0.48) are marked with
dashed lines.

The effect of heterogeneity on decorrelation mechanisms in spiking neural networks

157



0 25 50 75 100 125 150

Rate (s−1 )

0

25

50

75

100

125

150

R
at

e 
(s
−1

)

Uncalibrated

0 25 50 75 100 125 150

Rate (s−1 )

Calibrated

0.010

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

0.010

C
or

re
la

tio
n

a b

SUP. FIG. 5: Pairwise spike-train correlations for all pairs of neurons for M = 100 trials,
sorted by the rate of the respective neurons. Diagonal stripes indicate that no data was
available. Here Cij(f) ∈ C, but we only consider the real part of the cross spectrum to
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SUP. FIG. 6: Like chip 1 in Figure 4 and 8, but for chip 2 in (A) and (B), respectively.

Supplements 6 Correlation matrix

In addition to the population-averaged measures from the main manuscript, we also cal-
culated the pairwise correlations for each pair i, j of neurons with i 6= j ∈ [1, N ], and
ordered these by the time-averaged rate of the corresponding neurons (Supplements Fig-
ure 5). This reveals a dependence of the pairwise correlation on the rate of the respective
neurons. If both neurons fire at low rate (here < 5 s−1), correlations will be close to
zero similar to the results in [67]. For high rates (here > 25 s−1) we find mostly positive
correlations. However, if both neurons fire at intermediate rates, the activity of neurons
will be anti-correlated, and will suppress positive shared-input correlations. After calibra-
tion, the amount of neurons firing at intermediate rates increases, and hence shared-input
correlations are suppressed by more neurons (Supplements Figure 5, Figure 7).

Supplements 7 Results for different Spikey chips

The experimental protocol presented in the main text was used for two additional Spikey
chips. Different chips show different realizations of fixed-pattern noise, and hence cali-
bration was repeated for each chip (Figure 4, Supplements Figure 6A and 7A). In the
calibrated state free membrane potentials (and spike trains) are decorrelated by inhibitory
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SUP. FIG. 7: Like Supplements Figure 6, but for chip 3.
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SUP. FIG. 8: Like Figure 8 and for the same chip, but for L = 20 trials of one network
realization.

feedback for all chips (Figure 8, Supplements Figure 6B and 7B). However, the more uncal-
ibrated the system is, the more the results differ between chips, which is likely to be caused
by different extents of intrinsic fixed-pattern noise. This is most pronounced for chip 2
(Supplements Figure 6B), where the input correlations of the FBreplay case reaches that of
the RAND scenario for the uncalibrated state, which means that the input of neurons is
not decorrelated by the inhibitory feedback anymore.

Supplements 8 Reproducibility of networks with intact feed-

back

We measured the variance of free membrane potential and spike train correlations over sev-
eral trials for a single network realization (Supplements Figure 8). This variance is smaller
than the variance we observe over different network realizations (compare to Figure 8 and
Supplements Figure 6 and 7), which indicates that the latter is mostly caused by the dif-
ferent connectivity, not by trial-to-trial variability. Note that the variability between trials
of networks with intact feedback is likely to be larger than between replays of network
activity as shown in Figure 3, because network dynamics may be chaotic. The data shown
in Supplements Figure 8 has to be interpreted with care, because the reproducibility of
only a single network realization is considered. For different realizations, the variance may
change.
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A Model summary

Populations One (inhibitory)

Topology -

Connectivity Random convergent connections (fixed in-degree)

Neuron model Leaky integrate-and-fire (LIF), fixed firing threshold, fixed absolute refractory
time

Channel models -

Synapse model Exponentially decaying currents, fixed delays

Plasticity -

External input Resting potential higher than threshold (= constant current) (El > Θ)

Measurements Spikes and membrane potentials

Other No autapses, no multapses

B Populations

Name Elements Size

I LIF neuron N

C Connectivity

Source Target Pattern

I I Random convergent connect, in-degree K

D Neuron and synapse model

Type Leaky integrate-and-fire, exponential currents

Subthreshold dy-
namics

Subthreshold dynamics (t 6∈ (t∗, t∗ + τref)):
Cm

d
dtv(t) = −gl(v(t)− El) + Isyn(t)

Reset and refractoriness (t ∈ (t∗, t∗ + τref)):
v(t) = vreset

Current dynamics τsyn
d
dtIsyn(t) = −Isyn(t) +

∑
i,k Jδ(t− tki )

Here the sum over i runs over all presynaptic neurons and the sum over k over
all spiketimes of the respective neuron i

Spiking If v(t∗−) < Θ ∧ v(t∗+) ≥ Θ:
emit spike with time stamp t∗

SUP. TABLE 1: Description of the network model (according to [80]).
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B Populations

Name Values Description

N {192, 4800} network size

C Connectivity

Name Values Description

K {15, 384} number of presynaptic partners

D Neuron

Name Values Description

Cm 0.2 nF membrane capacitance

τref 0.1ms refractory period

vreset −80mV reset potential

El −52mV resting potential

Θ −62mV firing threshold

gl 10 nS leak conductance

D Synapse

Name Values Description

τsyn 5ms conductance time constant

J 3 nA synaptic weight

d 1.0ms synaptic delay

SUP. TABLE 2: Parameter values for the network model described in Table 1 (default
values in bold).

The effect of heterogeneity on decorrelation mechanisms in spiking neural networks

161



The effect of heterogeneity on decorrelation mechanisms in spiking neural networks

162



Chapter 3

Discussion

In the following, we evaluate the potential of brain-inspired computing in general, and for
the neuromorphic Spikey system in particular. Therefore, first, we briefly summarize the
differences between neuromorphic and conventional computing (Section 3.1). Second, we
discuss the key features of the used neuromorphic system in detail: The Spikey system
is portable (Section 3.2), fast (Section 3.3), energy efficient (Section 3.4), and networks
implemented on the chip are potentially plastic (Section 3.5) and robust (Section 3.6).
Ideas for further possible studies and applications using the Spikey system, and future
perspectives are given in Section 3.7.

3.1 Neuromorphic computing

Analog neuromorphic and digital conventional computing is different in certain aspects, as
listed below. Note that in the following Sections 3.2 to 3.6 these aspects are discussed in
detail on the example of the Spikey system.

For example, on conventional computers network models can be sized to more neurons
than there are computing cores. Currently, networks are limited to 1013 synapses because
of memory limitations (e.g., Kunkel et al., 2012, 2014), and the size of the human neocortex
(1014 synapses have been reported by Pakkenberg et al., 2003) is not reachable, yet.

On hardware, in contrast, the network size is limited by the number of physical imple-
mentations of its constituents. The parallel arrangement of neurons and synapses, however,
renders computation massively parallel.

In addition, on hardware neuron and synapse models are fixed, which allows to minimize
both the complexity and size of their analog circuits, and hence enables for high integration
densities. In contrast, for simulations with software, the flexibility of models is virtually
unlimited. However, more complex models are usually computationally more expensive
and hence elongate the runtime of simulations. By altering the source code, neuron and
synapse models can be rapidly adapted to new hypothesis and experimental data. This
is especially useful when it is still unclear how rich the dynamics of neurons and synapses
have to be for the efficient implementation of brain-inspired algorithms. For example,
how does computation benefit from features like ion channel dynamics (on molecular level,
or on population level as used in the Hodgkin-Huxley model described in Section 1.1.1),
multiple compartments, dendritic computation or plasticity mechanisms beyond STDP?
The hardware design of neurons and synapses involves tradeoffs between model accuracy
and costs in terms of chip area. In certain circumstances, a compact neuron or synapse
circuit may deviate from the mathematical description, but may be closer to biological
observations. For example, the step-wise rise of synaptic conductances in the LIF neuron
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model (see gsyn in Section 1.1.2) is difficult to implement in hardware. A finite rise time,
however, is easier to implement and is closer to biological measurements (Section 1.1.1)
despite the more complex mathematical description and tractability. To verify the behavior
of such implementations we propose the practice of preliminary studies to evaluate the
performance of these implementations in the context of functional networks (see, e.g.,
Publication II).

On hardware, network models can not be paused and continued at any time, because
the physical process underlying the network dynamics is continuous. In contrast, the
intrinsic computation of physical models enables for a high acceleration at low chip area,
and consequently high energy efficiency.

In software, practically each variable of the network can be accessed at any time, which
simplifies the parallel acquisition of continuous variables, as, e.g., membrane potentials as
used in Publication V, but potentially prolongs the simulation time. On hardware, the
access to observables is typically limited. In case of the Spikey system the spike times of
all neurons and membrane potential traces of few neurons can be accessed at the same
time, while other variables, e.g., conductances are not directly observable. However, the
bandwidth with which spike times can be recorded during accelerated network emulations
is remarkable for the Spikey system (up to 300 million spikes per second in hardware time
domain).

Prototype systems of analog neuromorphic hardware usually consist of highly custom
and configurable network circuits. A significant step to an active community developing
brain-inspired algorithms for such devices is to provide an abstract interface for the con-
figuration and operation of these devices (e.g., Brüderle et al., 2009; Galluppi et al., 2010).
Then, the standardized description language PyNN can be used to run networks on conven-
tional computers (Davison et al., 2008) as well as on hardware systems, which simplifies
the exploitation and comparison of different simulation and emulation platforms.

Both spatial and transient noise, i.e., variation between neuron and synapse parameters
and between trials of network emulations, respectively, are abundant in biological systems
(Mainen & Sejnowski, 1995; Stein et al., 2005; Marder & Goaillard, 2006; Shafi et al.,
2007) and analog neuromorphic hardware (see, e.g., Brüderle, 2009; Neftci et al., 2011, and
Section 3.6). The presence of noise facilitates the development of robust network models,
but will also make the investigation of network dynamics more difficult, if repeatable
experiment conditions are required. We propose the method of averaging out spatial and
temporal variations by emulating different realizations of the same network model for
all network implementations on hardware (as, e.g., applied in Publication III and V).
Moreover, spatial variations can be reduced by calibration routines (for the Spikey system,
see Publication I, V and Brüderle (2009)).

For the Spikey system, however, calibrations are not feasible for all parameters, because
some parameters are shared between neurons and synapses, respectively. Nevertheless, this
does not seem to limit the system’s versatility, as demonstrated by the implementation of
diverse network models throughout this work.

3.2 Portability and the roadmap towards practical applica-

tions

The physical dimensions of a computing substrate determines its suitability for portable
applications outside the laboratory. In the following, the dimensions of the Spikey chip
and system and possible reductions of these are discussed in the context of real world
applications.
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3.3. Computational capability of the accelerated system

With a die size of 5mm × 5mm the Spikey chip has approximately the size of the
cross-section of a pencil (Figure 1.5). Compared to a modern CPU1 manufactured in
a 22 nm process technology and consisting of 1.4 billion transistors, the Spikey chip is
manufactured in a 180 nm process technology, and comprises complex circuits built from
about 8 millions transistors. Migrating to a smaller process technology would reduce
the area for digital circuits including synaptic weights, and would hence minimize the
dimensions of the chip (see digital part and synapse arrays in Figure 1 of Publication I).
The reduction of analog circuits, however, is likely to be less effective than for digital
circuits, because their reduction affects the fixed-pattern noise and acceleration of the
system (Hock, 2014a), and is hence limited by the effort for calibration and high-speed
communication infrastructure.

Compared to the former backplane system that is mounted in a 19-inch rack, the USB
version is substantially smaller, and consequently more attractive for mobile applications.
For the latter, the support electronics is reduced in size and is optimized for single-chip
operation. However, the application of this system in robotics is difficult because of the
high acceleration of network emulations (for details, see Section 1.5.3). One approach to
still exploit the acceleration in robotics is to modularize the task and serialize its emula-
tion. This would bridge the gap between the different time scales and could improve the
performance of emulations (for an example, see Section 3.7).

In order to run networks on the Spikey chip, is has to be powered and configured,
which is provided by dedicated support electronics (Figure 1.5) and software (Brüderle
et al., 2009). Additional features, like the recording of membrane potentials and debug
functionality, are useful for the development of brain-inspired algorithms, but may be left
out once the development of the algorithm is finished. The same customization process
accounts for the network circuits on the chip. Once the connectivity and necessary config-
urability of a certain network model is found, the chip could be optimized for this scenario.
For example, the removal of unused synapses (the connectivity of network models is usually
sparse) or synaptic plasticity (for static networks, see Publication I, V, and also IV) could
further reduce the chip dimensions.

Other hardware systems usually comprise chips of comparable size, but are larger on
system level. For example, the wafer-scale system integrates many chips, has the size of a
19 inch rack and one wafer allows for the emulation of networks of up to 200000 neurons
(Schemmel et al., 2010; Brüderle et al., 2011). Real time systems mostly have a volume
of several liters, and a neuron count and configurability comparable to the Spikey system
(Indiveri et al., 2009; Indiveri, 2012), or have a larger neuron count, but are limited to
specific computational tasks (Serrano-Gotarredona et al., 2009).

Concluding, the Spikey chip and system has compact dimensions considering its re-
markable configurability (Section 1.5.1), computational power (Section 3.3) and power-
efficiency (Section 3.4). Consequently, the Spikey chip may be suitable for a coprocessor in
portable systems like, e.g., in mobile phones or to a limited extend in robots (see above).
To promote the development of algorithms for brain-inspired computing, the Spikey sys-
tem could be distributed as a compact and powerful prototyping system for educational
and/or scientific purposes.

3.3 Computational capability of the accelerated system

The advantage of an approximately 104-fold accelerated neuromorphic systems lies both in
the short time-to-decision for single network emulations and the high frequency of emula-

13rd generation Intel R© CoreTM processor, also known as Ivy Bridge, with a die size of 160mm2
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tions in the context of iterative operation (see, e.g., Publication IV). Although consecutive
emulations that are independent of each other can be (virtually) parallelized on conven-
tional computers, their execution on Spikey is more power efficient (Section 3.4). However,
the massive parallelism and power efficiency is only guaranteed, if the network size does
not exceed the number of neurons on a single chip (scaled by the maximum number of chips
that can potentially be interconnected). Otherwise, the network has to be partitioned and
emulated consecutively, if possible, losing the intrinsic acceleration of the chip due to the
need for buffering and sorting the spiking activity as well as re-configuring the system (see
also Müller, 2014).

Because the current hardware setup is of prototype nature, most of the pre- and post-
processing of data takes place on the host computer, and hence the time to execute network
emulations is much longer than the pure runtime of the hardware network. For future
systems this overhead can be reduced by optimizing the software infrastructure and trans-
ferring computational expensive operations, as, e.g., the encoding and compression of spike
data, to the FPGA or dedicated circuits. If only performance, but not user-friendliness
and fast prototyping, is of concern, the PyNN layer could be omitted making the costly
translation between voltage and time domains obsolete. Because the time required to con-
figure the chip is constant, but the number of spikes fed into and received from the system
usually grows linearly with runtime, the execution time increases with the runtime of the
network (see Figure 9 in Publication V). Dependent on the task, currently, network emu-
lations are effectively accelerated by a factor of 10 to 100 compared to biological real-time
(for profilings, see Publication IV and V).

In order to come closer to the full acceleration of the analog hardware network, the
amount of input and output data could be reduced. This can be achieved by networks
that do not need external spike input (Publication V), or by networks for which only few
neurons encode the final response (e.g., the readout of the classifier in Publication IV can
be reduced to neurons of the association layer). Ideally, the Spikey chip directly interfaces
spiking sensors and actuators, making the spike communication to the host computer
obsolete.

At the moment, for small spike counts (emulations of few seconds) the configuration of
analog parameters (for details, see Publication I) holds a substantial share of the execution
time. These analog parameter cells need time to settle to their target value, which is the
shorter the closer the last configuration was to this target value. By adapting the time
reserved for parameter settling to the difference to its former value, the configuration of
analog parameters could be substantially accelerated. In addition, so far, partial configu-
ration of the chip is implemented only on a coarse level, which means, e.g., that blocks of
digital synaptic weights can be written without the re-configuration of the analog param-
eters. An increase of the granularity of this process, e.g., by writing a subset of weights
(only these that actually changed since the last emulation), would further improve the
performance of emulations. Moreover, for emulations using the identical or a manageable
set of stimulation patterns, all of these patterns could be buffered on the on-board memory
in order to be recalled quickly without the necessity to transfer the data again. Similarly,
configuration data can be buffered for later retrieval. Of course, the size of the on-board
memory limits the size and number of stimulation patterns and configuration data that
can be buffered. Such buffering is especially of advantage, if the sets of stimulation or
configuration data is known in advance, as, e.g., for pattern recognition (Publication IV
and liquid state machine in Publication I) or parameter sweeps (Publication V). Currently,
this mechanism is not implemented, but instead identical stimulation patterns and config-
uration data have to be transferred again and again.
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Most other hardware systems are not accelerated and operate in real time (for list-
ing, see Section 1.2). This usually results in less computational power, but simplifies the
interaction with the environment, e.g., for robotics.

3.4 Power efficiency of neuromorphic computation

For portable applications energy is usually a limiting factor, and hence data processing
units should be power efficient, and ideally coolable by ambient temperature. The Spikey
chip consumes approximately 0.6W of power, and the system in total P = 6W (Publica-
tion V). Compared to other neuromorphic systems this system seems to be rather power
consuming (e.g., Sharp et al., 2012). On the other hand, if one takes the system’s accel-
eration into account and provided that static currents dominate the power consumption,
as it is usually the case, the energy needed for a single synaptic transmission is on par
with other low power systems (see Supplements in Publication V). This makes the system
attractive to high-throughput applications like classification (see, e.g., Publication IV and
liquid state machine in Publication I) and statistical analysis (see, e.g., Publication V)
that can be efficiently implemented on the chip. Consequently, if intense computation is
required and the chip is continuously used over time, this neuromorphic system is indeed
suitable for mobile applications.

In general, neuromorphic systems outperform conventional computers or clusters of
these in power efficiency (e.g., Arthur et al., 2012; Sharp et al., 2012; Benjamin et al.,
2014). To compare systems operating at different speed, the power efficiency is compared by
considering the energy for single synaptic transmissions. Note that the following numbers
have to be treated with care, because the neuron, synapse and network model are different
for each example. Additionally, the power efficiency of network simulations is dependent on
the mean activity of the network model, which should be stable during these comparisons.
In the following, we consider two scenarios:

First, we benchmarked the classifier network on the Spikey system (see also Publica-
tion IV) and on a modern desktop machine. Synaptic transmissions on the Spikey chip cost
approximately six orders of magnitude less than on a conventional computer in terms of en-
ergy (compare Spikey chip to multi-threaded simulation with conductance-based synapses
in Table 3.1). If we consider the power consumption of the whole Spikey system (excluding
the host computer, for discussion see below), and the time to execute a network emulation
including the full software stack, the gain in energy efficiency shrinks to less than two
orders of magnitude. However, by optimizing the performance of the software interface
and for long-lasting emulations (see Figure 9 in Publication V) the power efficiency of the
Spikey system can be drastically improved. Additionally, the FPGA consumes the major
share of power in the Spikey system, and could be replaced by dedicated circuits consuming
less power. Software simulations can be accelerated by replacing the conductance-based
synapse model by a current-based one, which allows for semi-analytical instead of purely
numerical simulation techniques (Rotter & Diesmann, 1999). Note that the performance
of simulations with software scales less than linear with the number of used threads, hence
this network may not be executed efficiently in parallel on the desktop machine, like it is
approximately the case for supercomputers (see e.g. Ananthanarayanan et al., 2009; Kunkel
et al., 2014).

Second, supercomputers are investigated for different network models. Ananthanarayanan
et al. (2009) showed a 1 s simulation of a network consisting of 1.617 billion neurons with
S = 8.87 trillion synapses on a Blue Gene/P supercomputer with 147456 CPUs and 144TB
main memory. The execution of this network took T = 3.41 h and resulted in a mean ac-
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Simulation platform Execution time (T ) Energy for syn. transm. (E)

Spikey chip (network time) 0.1ms 230 pJ

Spikey system (73± 1)ms 1.7 µJ

NEST with single thread
(cond.-based syn.)

(595± 2)ms 191 µJ

NEST with 4 threads
(cond.-based syn.)

(250± 2)ms 80 µJ

NEST with single thread
(curr.-based syn.)

(142± 2)ms 46 µJ

NEST with 4 threads
(curr.-based syn.)

(134± 2)ms 43 µJ

Table 3.1: Benchmark for classifier network using the simulator NEST (Gewaltig &
Diesmann, 2007) and the Spikey (for details see Section 4.1). A simplified version of
the classifier network consists of the identical number of inputs (M = 60), neurons
(N = 178) and synapses (S = 5520), and is tuned towards the same average rate of
inputs R = (47.3± 0.8) s−1 and neurons (11.5± 0.9) s−1 than in a typical use case of the
original network (Schmuker, 2013): Note that the mean and error of the above rates denote
the average values across all simulation platforms. Because the input (Poisson process of
rate 47.3 s−1) and the connectivity (S randomly drawn synapses between M inputs and N
neurons) is re-drawn for every simulation, the spiking activity varies and we average the
execution time across 100 trials. For simulations using multiple threads, for each synapse
model we consider the number of threads with the smallest execution time. The execution
time is defined as the time to re-write synaptic weights, run the network and read out all
spike times excluding the initialization of the simulation platform and building the network.
The errors for energies E are likely to be large because of imprecise power measurements.
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tivity of R = 19.1Hz. With a power consumption of P = 1.14MW (Hennecke et al., 2012)
we obtain E = (P · T )/(S · R) = 83 µJ for each synaptic transmission. For a different
network simulated with different software (Gewaltig & Diesmann, 2007) on a different ma-
chine the efficiency is even worse. The K computer consumes P = 12.66MW of power
(Uno, 2011), and 1 s of a network with S = 10.4 trillion synapses and an average firing rate
of approximately R = 10Hz (Eppler, 2014) is simulated in T = 40min (Diesmann, 2013).
This results in E = 292mJ for each synaptic transmission. Note that the worse perfor-
mance of the latter compared to the first example is caused by different network models
and simulation techniques. In comparison with the classifier network, the first example is
on level with the desktop machine, but less energy-efficient than the Spikey system.

The above classifier benchmark does not include STDP, as it is the case for both
networks in the supercomputer scenario. In case of the Spikey system, the energy efficiency
does not increase for networks using STDP, because the acceleration is fixed and the
power consumption of hardware emulations stays approximately constant. In contrast, the
efficiency of simulations on desktop computers will decrease, if static synapses are replaced
by synapses comprising STDP, because the runtime of simulations usually increases with
model complexity.

Note that while prototyping networks, or using the Spikey system as a tool to inter-
actively emulate networks (see all publications in this work), the workload on the host
computer is not negligible (see also Section 3.3). Consequently, to be fair, the power con-
sumption of the host computer has to be added to that of the Spikey system. However,
image the Spikey chip to be embedded into a system of sensors and actuators that are
also highly accelerated and spike-based. Then, after configuring the chip once, any further
non-spiking communication to the outside world (including the host computer) is obsolete.

For biological brains, Attwell & Laughlin (2001) have reported an energy consumption
of approximately 1 fJ for single synaptic transmissions (we assumed 12 kilo calories for
each mole of ATP, see Alberts et al., 2007). Summarized, the neuromorphic chip Spikey
represents a power efficient alternative to conventional computers, but is still far away from
biological performance. Future silicon systems try to close this gap by, e.g., novel com-
ponents, called memristors (Jo et al., 2010), or three-dimensional integration techniques
(Koyanagi et al., 2001).

3.5 Hardware plasticity and learning

The Spikey neuromorphic system facilitates two types of plasticity: on-chip STDP and
plasticity with the chip in the loop. On-chip STDP is implemented locally in each synapse,
and hence allows for massively parallel learning, exploiting the full acceleration of the
Spikey chip (see Publication III). However, the area efficient and hybrid implementation
of STDP restricts the configurability of STDP: Due to its analog implementation, the
time-dependence of hardware STDP (Publication II) is limited to exponential functions
without offset (Schmidt, 2013, and Publication II and III), making it difficult to implement
models with other curve shapes (e.g., Vogels et al., 2011; Nessler et al., 2013). The limited
resolution and linear discretization of synaptic weights may be sufficient for additive and
slightly multiplicative weight dependencies (Publication II), but are inappropriate to reflect
strongly multiplicative and power law rules. However, the weight resolution can be virtually
increased by feeding the same input to a second line of static synapses adding an offset to
the plastic weights.

On network level, the hardware implementation and configuration of the time- and
weight-dependency is sufficient for fine-grained synchrony detection, but the long integra-
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tion of spike correlations, threshold effects, and common resets during the evaluation of
correlations is not (Publication II). In feed-forward networks with random and slightly
correlated input, due to the unidirectional connections, causal (∆t > 0) correlations be-
tween pre- and postsynaptic spikes will dominate anti-causal (∆t < 0) ones. Statistical
fluctuations on short time-scales can break this domination, but are suppressed by the
rather long integration of correlations caused by the low frequency with which synapses
are processed and updated by the global controller (imagine common resets in Figure 5A
of Publication II). Consequently, all synaptic weights tend to saturate at the maximum
weight value on hardware. However, for highly correlated and structured input, the balance
between potentiation and depression can be established by strong anti-causal correlations
(Publication III).

In contrast to the above autonomous and on-chip plasticity, we demonstrated super-
vised learning on the Spikey system (Publication IV and liquid state machine Publica-
tion I). Networks are consecutively emulated on the chip, and the connectivity of these
networks is optimized for pattern classification. Because learning is performed step-wise,
using the chip in the loop exploits its acceleration and allows for rapid learning and clas-
sification. However, the costly pre- and post-processing of stimuli and chip configurations
reduces the effective acceleration of the system (for reasons and possible improvements see
Section 3.3).

While for a similar liquid state machine than in Publication I data sets for classification
are linearly translated into firing rates (Probst, 2011), in the olfaction-inspired classifier,
the placement of virtual receptors is rather complex and computationally expensive (Pub-
lication IV). In future systems, on-chip plasticity can be used to place these receptors, the
classification of which can then be learned by using the chip in the loop.

Other accelerated systems also implement plastic synapses (Wijekoon & Dudek, 2012),
but functional networks have only be shown for real time systems (e.g., Bofill-i Petit &
Murray, 2004; Cameron et al., 2005; Hafliger, 2007; Mitra et al., 2009; Seo et al., 2011;
Davies et al., 2012; Diehl & Cook, 2014). Moreover, we do not know of any analog neuro-
morphic system with a comparable number of plastic synapses. Even for digital systems,
STDP is difficult to implement, because both pre- and postsynaptic activity has to be
available at the synapse (Diehl & Cook, 2014). To reduce the computational complexity
of STDP, Davies et al. (2012) have suggested to replace the purely spike-based STDP rule
by a forecast rule involving the membrane potential.

Although, at the moment, hardware STDP is limited to few network models because of
the common resets, adding a second reset line for future versions of the chip would extend its
applicability substantially (for details, see Publication II). Then, hardware networks with
STDP can be used to detect small correlations, which is the underlying functionality for
many network models (e.g., Bofill-i Petit & Murray, 2004). To control on-chip chip learning,
e.g., to turn plasticity on and off, the on-chip update controller could be extended with
mechanisms that would allow to regulate learning rates or to mimic, e.g., neuromodulators.
For the wafer-scale system, a dedicated on-chip microprocessor is under development to
fulfill this task (Friedmann et al., 2013; Friedmann, 2013), also enabling quite complex
tasks like expectation maximization (for details, seeSection 3.7).

3.6 Robustness of neuromorphic implementations

The robustness of data processing is a key feature of neural networks. By robustness
we do not only mean the stability of the network and its convergence to a solution (see,
e.g., Figure 3A in Publication IV and Figure 4D, 6C, 7F in Publication I), but also its
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compensation for temporal and spatial variations of the computing substrate, or loss of
single components, i.e., neurons and synapses (see Publication V, Figure 8 in Publication II
and Petrovici et al., 2014). Without any dedicated calibrations of network parameters, the
coefficient of variation of membrane time constants on Spikey is approximately 40% (see
Figure 3 in Publication I), excitatory postsynaptic potentials vary by approximately 50%
(see Figure 3 in Publication III) and the firing rates of neurons with constant current influx
vary by roughly 50% (see Figure 4 in Publication V). Note that the variation of neuron
and synapse parameters depends on their mean values and on the operation point of the
network (for further listings of variations, see Brüderle et al., 2009).

In order to test the robustness of network models against parameter variations inherent
to the hardware, we randomized the mapping from the model description to the hardware
resources. For different realizations of the same network model, each neuron and synapse
in the model description was randomly mapped to hardware representations of these. Be-
cause neuron and synapse parameters vary in hardware due to fixed-pattern noise, this
procedure assigns different parameter sets to the model description. The average network
performance across these realizations can then be used as a criterion for the robustness of
the neuromorphic implementation of the network model (see Publication III and V).

Further, we tested the robustness of network models by varying the stimulation of these
between hardware emulations. If the stimulation is specified by a stochastic process, spikes
were re-drawn between emulations (Publication IV and winner-take-all model in Publica-
tion I). Otherwise, spike times were jittered (Publication III and liquid state machine in
Publication I). In future studies, randomization could also be applied to the original data
set, e.g., images may be translated, scaled or rotated, which may not only put the robust-
ness of the network to the test, but may even improve classification performance (Cireşan
et al., 2012).

Compared to variations induced by fixed-pattern noise in the computing substrate and
the stochasticity in the input, trial-to-trial variations caused by temporal noise are usually
small (see Publication V). Nevertheless, the robustness against trail-to-trial variability can
be improved by elongating network emulations or averaging across multiple and identical
repetitions of these. Rapid repetitions of trials are facilitated by the fact that the input
can be buffered in the on-chip memory, and hence the stimulus has to be encoded and
transferred to the system only once.

In this work, we developed three methods to improve the robustness of network models
against fixed-pattern noise. First, fixed-pattern noise is compensated by calibrating neuron
and synapse parameters, as used in Publication I, II, IV and V. Second, diversities in the
response properties of neurons and synapses are reduced by averaging across populations
of these, respectively. For example, a larger group size and sparser connectivity support
the stability of signal propagation in synfire chains (Publication I), and improve the pre-
cision of encoding and processing data in the olfaction-inspired classifier (Publication IV).
Third, even without prior calibration, the network can be designed to compensate for these
variations autonomously, e.g., by using on-chip STDP to select these synapses that have
the strongest simultaneous impact on the postsynaptic neuron (Publication III). Thereby,
we obtain a signal more precise than the size of the membrane time constant, although
the neuron receives noisy input via heterogeneous synapses. Such networks can be seen as
self-calibrating by their design and are especially useful if prior calibration is too complex
or the network has to adapt to a changing environment, like temperature or supply voltage
fluctuations that are abundant in electronic devices.

Naturally, each network model has its limitation in terms of robustness against fixed-
pattern noise. While some networks are robust and perform well on the uncalibrated
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system (see Publication III and V), other networks rely on adequate calibration (see
Publication IV and cortical model as well as winner-take-all network in Publication I).
If calibration is impossible, e.g., due to parameters that are shared between neurons and
synapses, respectively, fixed-pattern noise may incorrigibly distort network performance
(e.g., see asymmetry in STDP curves in Publication II).

In order to compensate for the variability of response properties of neurons, we propose
homeostatic mechanisms, e.g., for the firing rates of neurons, to be implemented in future
systems. This would facilitate, e.g., the speed and convergence of learning (Nessler et al.,
2013) and the decorrelating effect by inhibitory feedback (Publication V).

Concluding, throughout this study, the extend of fixed-pattern noise was no hard lim-
itation for the implementation of network models, but usually additional resources had
to be spent for its compensation. For example, in case of the classifier network, the size
of neuron populations was larger than necessary for homogeneous neurons and synapses,
which in turn reduced the number of virtual receptors and data classes (Publication IV).
Detailed investigations of the ideal ratio between network size and the size of fixed-pattern
noise may be subject to future studies, and the further development of intrinsic plasticity
mechanisms (like, e.g., Publication III and see homeostasis above) may shift this tradeoff
towards the neuron count.

3.7 Conclusion and perspectives

Throughout this work we presented tools, methods, scientific approaches, and examples
for the exploration of brain-inspired algorithms on analog neuromorphic hardware.

During the design phase of neuromorphic systems, a compromise between the model’s
level of detail and its cost in terms of chip area and power efficiency has to be made. To
verify the functionality of the final implementation of the chip in the context of single
components and on network level, we presented a preparative study on the example of
hardware STDP (Publication II). In the course of this study we developed strategies and the
infrastructure for the generic configuration of STDP with discretized weights. Additionally,
the prediction of potential bottlenecks led to improvements in the design of the wafer-
scale system (Friedmann et al., 2013; Friedmann, 2013). Concluding, we recommend this
“good practice” of preparative studies, because costly and time-consuming revisions of
chip designs can be avoided, and the experience gained with a prototype, even though in
software, likely accelerates the implementation of algorithms.

The versatility of the Spikey system is demonstrated by the attached publications,
and the system matured to a valuable prototyping platform for neural algorithms. The
Spikey system was applied to solve real-world problems (Publication I and IV), and to
deepen the understanding of dynamics in recurrent networks on heterogeneous substrates
(Publication V). Additionally, we showed efficient implementations of established network
models with both static and plastic synapses (Publication I and III).

However, during the implementation of these models on hardware, the characteristics
of the hardware had to be considered. For example, network models had to be reduced in
size, had to be adapted to differing neuron and synapse models, and had to be modified to
improve their robustness against fixed-pattern and temporal noise (see, e.g., networks in
Publication I). For most networks, this adaptation resulted in less network modules and
worse network performance. For the presented networks, the LIF neuron with synapses
comprising short-term plasticity turned out to be sufficient to replace more complex neu-
ron models (see cortical model in Publication I and Petrovici et al., 2014, for a similar
approach). Up to now it is unclear to what extend networks of LIF neurons can replace
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networks comprising dendritic computation or neurons with multiple compartments.

Fixed-pattern noise, inevitable in analog neuromorphic hardware, was compensated by
calibration methods, population coding, and plasticity (for details, see Section 3.6). In
contrast, temporal noise did not critically distort the performance of network emulations,
and could easily be reduced by averaging over multiple trials. For many network mod-
els, the precision of spike times is not necessary, but the relative timing between spikes is
(e.g., see Publication III and V). Hence, usually the network performance does not suffer
from spike jitter, as long as spike times are consistent within the network. In addition,
some studies require rather precise repeatability of network emulations, e.g., to record ob-
servables consecutively, which is given for most networks, especially if their structure is
dominated by feed-forward connections (see Figure 3 in Publication V). An exception are
networks with chaotic dynamics, e.g., highly recurrent networks (Publication V), in which
the trajectory of network activity is highly sensitive to small disturbances of single vari-
ables, e.g., jittered spike times. In that case and when emulations should precisely match
theoretical models, digital neuromorphic systems should be preferred to analog systems,
because digital systems are less noisy, or not noisy at all (Merolla et al., 2014; Furber et al.,
2014). If network models require precision beyond methodological requirements, this could
indicate that they are biologically less plausible, because biological networks are noisy, too
(e.g., Mainen & Sejnowski, 1995; Shafi et al., 2007).

Most network models shown in Publication I had to be shrinked to fit on the Spikey
system, because the neuron count on Spikey is rather small. In order to tackle more
complex problems requiring larger networks, networks have to be modularized, if possible,
or otherwise larger systems have to be used (see wafer-scale system as discussed below).
Through modularization of the network, the activity of single modules can be buffered,
and consecutively fed into depending modules that are implemented on the same chip
after re-configuring (e.g., see Kriener, 2014). In future studies, this approach may also
be applied to the presented olfaction-inspired classifier network. The decorrelation and
association layer could be emulated in consecutive emulations, and hence more neurons
are available for both layers allowing for an increase of the number of glomeruli and data
labels. However, modularization slows down the execution of networks through buffering
network activity and re-configuring the chip, and are therefore only an intermediate step
towards neuromorphic implementations of the full network.

In this work, we have shown that the Spikey chip and system provide considerable
computational speed, which is especially important for investigations of network models
comprising long-time plasticity, both on-chip and with the chip in the loop (Section 3.5),
extensive parameter sweeps, or statistical analysis (Section 3.3). The latter is required
anyway if effects on the performance by either fixed-pattern or temporal noise should be
averaged out (see Section 3.6). In addition, fast responses to stimuli may be useful for
practical applications, like decision making or object recognition (see Publication IV).

In the scope of this thesis, the performance of the system could be significantly im-
proved compared to former work (Brüderle, 2009). In particular, we improved the software
infrastructure, including the interface between the Spikey hardware and the standardized
network description language PyNN, and commissioned the USB version of the Spikey sys-
tem. Nevertheless, there is still a great potential to further improve the performance of
the system (for details see Section 3.3).

To further develop the classifier network presented in Publication IV, the placement of
virtual receptors in data space could be performed by stochastic network models. Büsing
et al. (2011) propose that neural activity represents samples from underlying probability
distributions and networks of spiking neurons emulate powerful algorithms for reasoning,
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i.e., carry out probabilistic inference. To run these algorithms on the Spikey chip, its deter-
ministic spiking neurons have to be driven into an activity regime, in which they achieve
the correct firing statistics to sample from a well-defined target distribution (Petrovici
et al., 2013; Probst et al., 2014). The performance of sampling, however, depends on
the background stimulation that keeps these neurons in this activity regime. In order
to use the existing hardware and to reduce the costly generation of appropriate back-
ground activity and its transfer to the hardware system, this activity could be provided
by recurrent networks that are implemented on the same computing substrate (see Pub-
lication V). The effect of different statistics of this background activity is left for further
studies. Through STDP sampling networks are shown to perform unsupervised classifi-
cation on high-dimensional spike inputs by performing expectation maximization (Nessler
et al., 2009, 2013). In the Spikey system, the configurability of STDP is rather limited, and
neurons miss homeostatic mechanisms, which makes it difficult to implement this network
model (see Section 1.5.2). However, the wafer-scale system may offer plasticity features
(Friedmann et al., 2013; Friedmann, 2013) to overcome these obstacles. This would enable
expectation maximization in stochastic networks of spiking neurons exploiting accelerated
neuromorphic hardware (work in progress by Breitwieser, 2014, among others).

In its current state, the Spikey system is ready to be applied to real-world computing
problems, like object recognition, decision making and data mining (see Publication IV).
However, performance in terms of network size and power efficiency can be further increased
by customizing the previously configurable Spikey chip to a less configurable version, which
is dedicated to a specific task. Furthermore, neuromorphic circuits and CPUs could be
densely interconnected on a single chip to integrate the advantages of both computing
architectures (see also Section 1.5.3).

Although the Spikey chip has hardly more computational power than a modern desk-
top computer (i.a., see Table 3.1), the integration of many neuromorphic chips on a wafer
allows to scale this technology to network sizes that may allow for performance and effi-
ciency not reachable by conventional clusters of computers (Schemmel et al., 2010; Brüderle
et al., 2011; Müller, 2014). Highly accelerated and massively parallel emulations of large
networks enable for rapid exploration of brain-inspired algorithms, especially effective for
networks requiring long runtimes, e.g., long-term learning experiments, or intensive pa-
rameter sweeps. Beyond the utilization shown in this work, such systems could be used to
evolve neural networks by genetic algorithms (work in progress by Lackner, 2014). These
algorithms could make manual configuration obsolete, and have the potential to compen-
sate or even exploit variations of the hardware system. Usually, the differences between
network configurations are sparse during evolution, and hence differential configuration
may allow for a high throughput of genes. In cases, where automated tuning of network
parameters is not feasible, graphical user interfaces may be used for this purpose, taking
advantage of the rapid response of accelerated hardware.

This work is not restricted only to the Spikey system, but can also be seen as a prepar-
ative study for the wafer-scale system, because the methodology to develop and implement
network models are likely to be transferable between these systems. Besides calibration
techniques and configuration strategies (Publication I and II), networks models established
on Spikey are likely to run on the wafer-scale system, because comparable configuration
space, fixed-pattern noise and temporal noise is expected. Note, however, that the wafer-
scale system consists of neuromorphic chips that are dedicated for wafer-scale integration
and comprise different neuron and synapse circuits than the Spikey chip.

In case of the end of Moore’s law (Moore, 2006; ITRS, 2013), postulating a long-term
trend of the transistor count in dense integrated circuits (and hence of the computational
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power), von-Neumann-like architectures may be replaced or complemented by novel hard-
ware architectures. The neuromorphic approach proposes a fundamentally different utiliza-
tion of silicon resources and is hence a promising candidate to increase the computational
power and efficiency beyond that of conventional computers (including graphics processing
units (GPUs) and many-core CPUs and systems, e.g., Intel (2014) and Parallella (2014)).
Once neural features and algorithms are sufficiently identified and neuromorphic devices
mature to a state where mass production is feasible, such devices may shape the dimen-
sion, performance, and power efficiency of technical devices, like, e.g., mobile phones.
Consequently, research on the implementation of brain-inspired algorithms may not only
be beneficial for understanding brains, but may also facilitate the daily applicability of
neuromorphic hardware systems.

The presented publications demonstrate that the neuromorphic Spikey system matured
from a laboratory-only system to an ecosystem of neuromorphic hardware and software
that supports practical applications and helps to answer neuroscientific questions.
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Chapter 4

Appendix

4.1 Classifier benchmark

For benchmarking software simulations we used a desktop computer with an Intel R© CoreTM

i5-4570 CPU @ 3.20GHz processor consuming P = 84watt of power, and NEST version 2.2.2
with PyNN version 0.7.5.

For hardware emulations we used the Spikey system (carrier board version 1) with chip
number 605 connected to the computer specified above. We used vmodule (db5bc413),
SpikeyHAL (00755bc1) and pynn-hardware (c76e1a48) in their version specified by the
commit hashs.

4.2 Chip usage

For Publication I, II and III we used station 111 (with chip number 444) and 315 (with
chip number 445) on the backplane system 1. For Publication IV we used station 309 (with
chip number 443) on the backplane system 3 and the USB system (carrier board version 1)
with chip number 666. For Publication V we used the USB system (carrier board version
1) with chips number 603, 605 and 666.
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