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A Neural Implementation of Probabilistic Inference in Binary Probability
Spaces

Widely regarded as a hallmark of intelligence, be it artificial or biological, the ability to
perform stochastic inference has been the subject of intense research in both the fields of
machine learning and neuroscience. In this context, graphical models – such as Bayesian
networks – provide a useful framework for representing probability distributions and
performing inference in their respective probability spaces. Extending the theoretical
approaches from Pecevski et al. [2011] and Petrovici et al. [2013], this thesis describes the
"physical" implementation of arbitrary binary probability distributions, represented as
Bayesian networks, in ensembles of leaky integrate-and-fire (LIF) neurons. Based on a
sampling approach rather than belief propagation, the proposed implementation offers
significant advantages in terms of sparseness, convergence and speed. In this framework,
individual neurons represent the binary random variables, while conditional probabilities
are embedded in the synaptic interactions, mediated by postsynaptic potentials (PSPs).
Due to the difference between theoretically optimal PSP shapes and those achievable with
LIF neurons, a novel interaction model is proposed, based on feedforward neural chains.
This new approach is characterized in detail and validated through extensive software
simulations. While creating a bridge to experimental neuroscience, the proposed approach
inherently fosters a promising application for neuromorphic hardware, which can thereby
provide the substrate for fast and power-efficient inference machines. As a necessary
preliminary for such an application, several critical parameters of the BrainScaleS wafer-
scale neuromorphic platform are characterized and discussed.





Eine neuronale Realisierung probabilistischer Inferenz in binären
Wahrscheinlichkeitsräumen

Weitgehend aufgefasst als ein Kennzeichen von Intelligenz, sei sie künstlich oder biolo-
gisch, ist die Fähigkeit, stochastische Inferenz durchzuführen, Gegenstand umfangreicher
Forschung sowohl im Bereich des maschinellen Lernens als auch der Neurowissenschaft. In
diesem Zusammenhang bieten grafische Modelle – wie z.B. Bayes’sche Netze – einen hilfrei-
chen Rahmen zur Darstellung von Wahrscheinlichkeitsverteilungen und Durchführung von
Inferenz in den jeweiligen Wahrscheinlichkeitsräumen. Durch Erweitern der theoretischen
Methoden von Pecevski et al. [2011] und Petrovici et al. [2013] beschreibt diese Arbeit die
"physikalische"Realisierung beliebiger binärer Wahrscheinlichkeitsverteilungen, repräsen-
tiert durch Bayes’sche Netze, in Ensembles von Leaky Integrate-and-Fire (LIF) Neuronen.
Auf der Grundlage einer Samplingmethode an Stelle von Belief Propagation, bietet die
vorgeschlagene Umsetzung wesentliche Vorteile hinsichtlich Effizienz, Konvergenz und
Geschwindigkeit. In diesem Rahmen stellen einzelne Neuronen die binären Zufallsvariablen
dar, während bedingte Wahrscheinlichkeiten in synaptischen Wechselwirkungen verankert
sind und durch postsynaptische Potentiale (PSPs) vermittelt werden. Auf Grund der Ab-
weichung der theoretisch optimalen von den mit LIF Neuronen erreichbaren PSP-Formen
wird ein neuartiges Wechselwirkungsmodell vorgeschlagen, welches auf Feedforwardketten
von Neuronen gründet. Dieser neuartige Ansatz wird eingehend charakterisiert und mittels
umfassender Softwaresimulationen validiert. Indem es einen Übergang zur experimentellen
Neurowissenschaft schafft, ermöglicht das vorgeschlagene Konzept eine vielversprechen-
de Anwendung für neuromorphe Hardware, die dabei das Substrat für schnelle und
leistungseffiziente Inferenzmaschinen bereitstellt. Als notwendige Vorbereitung für eine
derartige Anwendung werden entscheidende Parameter der BrainScaleS wafer-skaligen
neuromorphen Plattform charakterisiert und diskutiert.
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1 Introduction

We owe to the frailty of human mind
one of the most delicate and ingenious
of mathematical theories, namely the
science of chance or probabilities.

(Pierre Simon Laplace 1776)

The human mind is able to discover causal relationships in its surrounding world based
only on a sparse amount of information and to use this knowledge to make predictive
reasoning for future events. This is the key ability which makes it possible for our species
to understand past occurrences and to plan and manipulate prospective actions. Most
notably, the human mind can learn complex causalities with myriads of aspects and
connections far beyond direct cause-effect relationships.
Inference in human mind seems to be Bayesian in nature, rather than purely frequentist.
Decisions rarely depend only on observed events; usually, observations serve to update
a prior model of the problem at hand. It therefore appears natural to describe human
reasoning using Bayesian models. Indeed, Bayesian inference lies at the heart of most
probabilistic models of cognition [Griffiths et al., 2008]. In these approaches, the environ-
mental situation, its causes and its possible effects are represented via random variables,
and their underlying joint and conditional probability distributions. Two or more random
variables can be causally related to each other. The resulting networks of random variables,
so-called Bayesian networks, are an abstract diagrammatic representation of the causal
structure of the contemplated problem.
The search for Bayesian inference at the level of neural network dynamics in the brain
is novel compared the about 100 year-old history of neuroscience [Knill and Pouget ,
2004; Griffiths and Tenenbaum, 2006; Oaksford and Chater , 2007; Doya et al., 2011].
Only recently, empirical research started uncovering how the internal models of the
mammalian brain progressively adapt to the statistics of natural stimuli at the level of
single neurons [Berkes et al., 2011]. Provided with support by these empirical studies,
theoretical neuroscientists use computer simulations of spiking neural networks as a
bottom-up approach for deciphering inference in the neocortex.
In the context of probabilistic inference, the question arises of how to represent statistical
distributions at all. One possible way is to have a closed-form representation of all the
relationships between the random variables and perform inference analytically. This idea
builds the basis of powerful and often precise so-called belief propagation algorithms,
which have also been investigated in the context of spiking neural networks [Steimer et al.,
2009; Petkov , 2012]. However, these algorithms often require complicated calculations
and are not guaranteed to converge towards the correct result (loopy belief propagation,
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1 Introduction

see Bishop [2006]). In contrast to these analytical approaches, probabilistic distributions
can be represented, up to an arbitrary degree of precision, by drawing samples from them.
Sampling methods, such as Markov chain Monte Carlo (MCMC), have the advantage of
being computationally efficient and, in particular, of being able to provide an increasingly
improving approximation of the sought distribution at any moment during their application
(anytime computing).
Early during the BrainScaleS project, a stochastic framework for probabilistic inference
with spiking neural networks, the so-called neural sampling framework, has been developed,
which combines MCMC sampling with the activity of neural networks [Buesing et al.,
2011; Pecevski et al., 2011]. Each binary random variable is represented by a spiking
neuron and the spiking frequency of the neuron is proportional to the probability of the
corresponding variable to assume the state ”1”. Buesing et al. [2011] demonstrate that the
sequences of states assumed by a network of stochastic neurons can be used to sample
from distributions with second-order dependencies over binary variables (Boltzmann
distributions). Pecevski et al. [2011] extend this approach to arbitrary distributions, which
they represent as Bayesian graphical models.
The original neural sampling algorithm uses an abstract neuron model with a sigmoidal
activation function, non-resetting membrane potential after the emission of a spike, an
additional so-called refractory variable and rectangular postsynaptic potentials (PSPs),
none of which applies to biological or standard neuron models. Petrovici et al. [2013],
however, demonstrate that the abstract neuron model from Buesing et al. [2011] can be
mapped to a deterministic Leaky Integrate-and-Fire (LIF) neuron embedded in a noisy
environment.
The aim of this master’s thesis is to extend the framework from Petrovici et al. [2013] by
transferring the implementation of Bayesian networks, proposed by Pecevski et al. [2011],
to networks of LIF neurons. In particular, the more demanding requirements imposed
by the additional complexity of Bayesian networks as compared to Boltzmann machines
require additional structural elements, which are discussed in detail throughout this work.
Beyond investigating the compatibility of the theory proposed by Pecevski et al. [2011]
and networks of LIF neurons, extensive validation runs in software are performed against
the benchmark provided by the abstract neuron model. On the long run, however, the
modeling of large Bayesian networks with the help of software simulations will become
unsuitable because the duration of the simulation increases exponentially with the size of
the neural network.
The BrainScaleS neuromorphic hardware system [Schemmel et al., 2010], which is being
developed in cooperation of the Electronic Vision(s) group at the University of Heidelberg
and the group for Parallel VLSI Systems and Neural Circuits at the TU Dresden, offers a
solution for these time-consuming experiments. The physical modeling of neural networks
on a neuromorphic hardware substrate comes with multiple crucial advantages compared
to traditional numerical simulations. First, neuromorphic systems can be characterized
by a massive parallelism which is only present in the most efficient computing system
in the universe, the human brain. Together with the inherent time scales of the silicon
substrate, this aspect allows to speedup experiments up to 4 orders of magnitude faster
than biological real time, and up to 6 orders of magnitude faster than nowadays’ computer
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simulations. Second, the emulation of the neuron’s differential equations only involves a
few transistors leading to a power consumption reduction by several orders of magnitude
compared to numerical simulations [Schemmel et al., 2010]. The inherent reduction of
the power consumption fosters excellent scalability, with the potential to emulate large
cortical areas, or even an entire brain.
On that account, the final part of this manuscript is dedicated to extensive tests of the
compatibility of the sampling framework from Petrovici et al. [2013] with the neural and
synaptic parameters of the BrainScaleS neuromorphic hardware system.

Outline

This manuscript is structured hierarchically, with each new topic building on the previously
discussed ones. For a detailed understanding of the presented arguments, reading the
chapters in their given order is recommended.
Chapter 2 outlines the mathematical and experimental prerequisites in detail. In particular,
the theory of sampling with spiking neurons, on the one hand, and the hardware and
software framework which are used to implement the theory, on the other hand, are
in the main focus. Chapter 3 provides simulation results of sampling from Boltzmann
distributions with LIF neurons. This chapter functions as a preparatory study for the
remaining experiments described in this thesis. Chapters 4 and 5 represent the backbone
of this manuscript. There, two different implementations of Bayesian networks proposed
by Pecevski et al. [2011] are discussed in detail and translated to networks of LIF neurons.
Additional network substructures required by the LIF implementation are designed and
characterized, and the sampling performance of these networks is investigated against
the benchmark provided by the theoretically ideal abstract model. Chapter 6 illustrates
experimental results aiming to characterize the neuromorphic hardware substrate described
in Chapter 2 and, in particular, to test its compatibility with the requirements of the
sampling framework. In addition, software simulations are used to spot the parameter
ranges which entail the potential to improve the quality of future sampling experiments
on the neuromorphic hardware substrate. Chapter 7 gives a summary of the results
achieved in this thesis. Chapter 8 finally concludes the manuscript by listing suggestions
for prospective experiments which will enhance the sampling results in both software and
hardware implementations.
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2 Materials and Methods

This chapter provides an overview, on the one hand, of the theoretical models utilized
throughout the thesis and, on the other hand, of the tools which were used to implement
the theoretical models.
Broadly speaking, this thesis focuses on the implementation of an abstract theoretical
model in a neuromorphic substrate. The largest part of this chapter is therefore dedicated
to a step-by-step introduction of the theoretical background (see Section 2.1). Here, we
start by summarizing the most essential concepts of probability theory. Afterwards, two
powerful classes of physical implementations of probability distributions are presented:
Boltzmann machines and Bayesian networks. Incidentally1, these are widely used for
modeling paradigms like probabilistic inference in human reasoning (see e.g. Alais and
Blake [2005] or Knill and Kersten [1991]).
An analytical evaluation of probabilities is not always computationally feasible. However,
under certain conditions, sampling algorithms offer an efficient alternative for representing
distributions with, in principle, an arbitrary degree of precision.
Of particular interest to us is the theory of neural sampling, which creates a link between
the dynamics of spiking networks and the widely used Gibbs sampling algorithm. Here,
we briefly recap the neural sampling approach from Buesing et al. [2011] and discuss
concrete implementations of Boltzmann machines and Bayesian networks with stochastic
spiking neural networks.
Neural sampling ultimately serves as a basis for LIF sampling, which denotes sampling from
probability distributions with deterministic LIF neurons in a spiking noisy environment.
Here, we first describe the membrane dynamics of LIF neurons in detail and observe that
they can be well characterized by an Ornstein-Uhlenbeck process under certain stimulus
conditions. This equivalence is the prerequisite for proving that LIF neurons can be used
to sample from well-defined probability distributions.
Section 2.2 surveys the BrainScaleS wafer-scale hardware system, which is the neuromor-
phic hardware substrate on which the feasibility of the LIF sampling implementation
was tested in the course of this thesis. Here, we begin with the description of the analog
and digital circuitry of the HICANN chip, which is the centerpiece of the hardware
system. Thereafter, we continue with the demonstrator setup, which entails the identical
communication infrastructure to the HICANN chip as the actual wafer-scale system and
which was used to run experiments on the HICANN chip. Finally, the prospective Hybrid
Multiscale Facility (HMF) will be briefly introduced.

1While Boltzmann machines have been inspired by Hopfield networks [Hopfield , 1982], which in turn
have been designed as abstract replicas of biological content-addressable memory [Sejnowski , 1986],
Bayesian networks were first developed within the machine learning community [Pearl , 1985] and only
later adopted to explain how animals can perform inference (see e.g. Oaksford and Chater [2007]).
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2.1 Theoretical Prerequisites

Section 2.3 concludes this chapter by presenting the software tools which were applied
to setup neural networks and conduct software and hardware experiments throughout
this thesis. This section is divided into two subparts. The first part describes the
simulator-independent modeling tool PyNN which will be used to run the experiments
with deterministic LIF neurons in Chapters 3, 4 and 5. The second part introduces the
the native interpreter of the BrainScaleS wafer-scale hardware system, the so-called
Hardware Abstraction Layer (HAL). The Python-based PyHAL API, which wraps the
Hardware Abstraction Layer (HAL) interface, is used to setup the hardware experiments
in Chapter 6.

2.1 Theoretical Prerequisites

This section will introduce the theoretical methods underlying this thesis. Subsection
2.1.1 offers a compact overview of the basics of probability theory. Afterwards, in
2.1.2 and 2.1.3, two important representations of probability distributions are presented,
namely Boltzmann machines and Bayesian networks. Subsection 2.1.4 introduces MCMC
sampling in general and Gibbs sampling as a special case, which allows sampling from
probability distributions without knowing their partition function. The MCMC framework
is instrumental for explaining neural sampling, which is presented in Subsection 2.1.5.
Thereafter, Subsection 2.1.6 discusses the dynamics of the utilized deterministic neuron
and synapse models. Subsection 2.1.7 finally transfers neural sampling to leaky integrate-
and-fire neurons, referred to as LIF sampling.

2.1.1 Basics of Probability Theory and Inference

The following summary of basic principles of probability theory is based on Bishop [2006]
and Griffiths et al. [2008].
A random variable (RV) X describes the outcome of a random event. For each RV X and
member c of a set of real numbers, one can calculate the probability p (X = c) that X
takes the value c. The collection of all these probabilities results in the distribution of X. A
RV can be discrete or continuous. Discrete RVs can assume a nonnegative probability for
a countable set of values. A discrete probability distribution is described by its probability
mass function p (X = c) for which the following rules have to be fulfilled:

0 ≤ p (X = c) ≤ 1 , (2.1)

and ∑
c

p (X = c) = 1 . (2.2)

If X is a continuous RV, it has an associated probability density function f(x), which
satisfies:

p (a < X ≤ b) =

∫ b

a
f(x) dx , (2.3)
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2 Materials and Methods

and ∫ ∞
−∞

f(x) dx = 1 . (2.4)

Binary RVs are in the main focus of this thesis. A binary RV X can assume the values
c ∈ {0, 1}.
Multiple RVs X1, X2, X3, ..., XK can be combined to a random vector X =
(X1, X2, X3, ..., XK) with a multivariate distribution over all random variables
p (x = (x1, x2, x3, ..., xK)) with possible assignments x1, x2, x3, ..., xK of the variables.
p (x) is called the joint probability distribution of the RVs X1, X2, X3, ..., XK .
The probability distribution associated with only one of the variables, e.g. Xk, is called a
marginal probability distribution. It is calculated by summing the joint distribution over
all possible assignments of all the other variables, which is known as marginalization:

p (xk) =
∑
x1

...
∑
xk−1

∑
xk+1

...
∑
xK

p (x) . (2.5)

If some of the RVs Xk+1, ..., XK are known to assume the particular values xk+1, ..., xK ,
then the joint probability distribution p (x) can be factorized into

p (x1, ..., xK) = p (x1, ..., xk|xk+1, ..., xK) p (xk+1, ..., xK) , (2.6)

where p (x1, ..., xk|xk+1, ..., xK) is the conditional probability of x1, ..., xk given xk+1, ..., xK .
Equation 2.6 ultimately results in what is known as Bayes’ rule:

p (x1, ..., xk|xk+1, ..., xK) =
p (xk+1, ..., xK |x1, ..., xk) p (x1, ..., xk)

p (xk+1, ..., xK)
. (2.7)

The four probability distributions in Equation 2.7 are referred to as

• the prior probability distribution p (x1, ..., xk),

• the posterior probability distribution p (x1, ..., xk|xk+1, ..., xK),

• the likelihood function p (xk+1, ..., xK |x1, ..., xk),

• the evidence p (xk+1, ..., xK).

The derivation of the posterior probability from the prior probability and the likelihood
function of the assumed model is known as probabilistic inference.
Schematic representations of probability distributions, so-called probabilistic graphical
models, are helpful if complex inferential computations have to be performed. In proba-
bilistic graphical models, RVs are represented by nodes and probabilistic relationships
between RVs are expressed by edges [Bishop, 2006]. Figure 2.1 illustrates examples of
the two general classes of probabilistic graphical models, namely Markov random fields
(or undirected graphical models) and Bayesian networks (or directed graphical models).
Markov random fields are useful for expressing soft constraints between RVs, while
Bayesian networks are suited to expressing causal relationships between RVs [Bishop,

6



2.1 Theoretical Prerequisites

x1 x2

x3

A: Markov random field

x x

x

1 2

3

B: Bayesian network

Figure 2.1: Examples of probabilistic graphical models of a probability distribution
of 3 RVs. (A) Markov random field which describes the probability
distribution p (x1, x2, x3) = 1

Zφ1(x1, x3)φ2(x2, x3) with some nonnegative
specific potential functions φ1 and φ2 and the partition function Z,
which ensures normalization. (B) Bayesian network which represents
the probability distribution p (x1, x2, x3) = p (x1) p (x2) p (x3|x1, x2).

2006]. Section 2.1.2 will describe one special type of Markov random fields, so-called
Boltzmann machines. Afterwards, Section 2.1.3 will introduce Bayesian networks.
A typical evaluation for probabilistic inference in a graphical model which repre-
sents a multivariate distribution p (x) is the computation of a conditional probability
p (x1, ..., xk|xk+1, ..., xK) or marginals thereof. The values xk+1, ..., xK , which are fixed,
could e.g. represent some sensory input or a specific goal for a decided motoric action,
and x1, ..., xl have to be inferred from them.
Computing a marginal p(xn) with a brute force summation over all K − 1 remaining RVs
via Equation 2.5 would require the evaluation and storage of 2K−1 distinct values in the
binary case, so that quickly rendering marginalizations in large ensembles becomes com-
putationally infeasible. Broadly speaking, one can distinguish between two conceptually
different approaches to this problem:

• Exact methods exploit the structure of the underlying graphical model. Message-
passing algorithms are a widely used example of exact inference. Message-passing
algorithms are based on clever reorderings of sums and products of the joint
probability distribution during marginalization. Intermediate sums that arise during
the calculation can be viewed as messages attached to the edges in the graphical
model. In this context, inference can be viewed in terms of a local computation
and routing of messages [Arbib, 2002]. Message-passing algorithms provide an exact
solution to the inference problem if the graphical model does not contain any loops.
In many other cases, they yield an approximate solution. Steimer et al. [2009] and
Petkov [2012] extensively delve into exact computations of marginal and conditional
probabilities via abstract stochastic neurons or via deterministic spiking neurons,
respectively.

• Approximate methods exploit the law of large numbers, which describes that the
relative frequencies of the results of a random experiment converge to the expected
probability distribution if performing the experiment a large number of times.
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2 Materials and Methods

Monte Carlo algorithms are characteristic for approximate methods. Monte Carlo
algorithms are based on the fact that while it may not be possible to compute
expectations under p (x), it may be feasible to obtain samples from p (x), or from
a closely related distribution [Arbib, 2002]. Marginals and other expectations can
then be approximated using sample-based averages. Markov chain Monte Carlo
(MCMC) and Gibbs sampling as a special case of MCMC are examples for Monte
Carlo algorithms (see Section 2.1.4).

2.1.2 Boltzmann Machines

Boltzmann Machines (BMs) are a special type of Markov random fields [Ackley et al.,
1985]. In its original meaning, a BM describes a physical instantiation of the Boltzmann
distribution which is a network of symmetrically connected binary units that are randomly
either "on" (1) or "off" (0) [Hinton, 2007]. For a binary random vector Z = (Z1, ..., ZK),
the general shape of the Boltzmann distribution is

p(z) =
1

Z
exp

∑
i,j

1

2
Wijzizj +

∑
i

bizi

 (2.8)

with arbitrary real-valued parameters bi and Wij , which satisfy the conditions Wij = Wji

and Wii = 0. The parameter bi is called the bias of Zi while Wij is the weight between
Zi and Zj . The constant Z ensures normalization and is called the partition function of
p(z):

Z =
∑
z

exp

∑
i,j

1

2
Wijzizj +

∑
i

bizi

 . (2.9)

Each state is associated with an energy function

E(z) = −
∑
i,j

1

2
Wijzizj −

∑
i

bizi . (2.10)

From Equation 2.8 and 2.10 it follows immediately that states with lower energies are
more likely.
By definition (see Equation 2.8), a Boltzmann distribution maximally allows pairwise, or
second-order, interactions between RVs. Two RVs which are not connected to each other
do not interact. Second-order interactions between RVs, however, are not adequate to
model numerous computational tasks in the brain (see e.g. Figure 2.2).
One example are so-called explaining away effects. For instance, the graphical model
in Figure 2.1B can be interpreted as a probability distribution in which X1 and X2

model two competing causes, or hypotheses, for the random occurrence of the event
described by X3. A change in the probability of one of the hypotheses would affect the
probability of the other hypothesis, even though both of them are not causally related.
These higher-order interactions between RVs can be described with Bayesian networks,
which will be presented in the following section.
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2z  : 3D shapez  : relative reflectance1

z  : shading3 z  : contour4

z  = 01z  = 11 2z  = 02z  = 1
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or   other or
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Figure 2.2: Demonstration of the explaining away effect in the visual perception ex-
periment from Knill and Kersten [1991]. Panel A shows the phenomenon.
Two visual stimuli originate from the reflectance of two geometrical ob-
jects which are both composed of two identical 3D shapes. Both stimuli
feature the same shading profile in the horizontal direction. The percep-
tion of the reflectance of each stimulus is influenced by the perceived 3D
shape: In the case of a flat contour, the right subobject appears brighter
than the left one. This reflectance step is hardly observable for a cylindri-
cal contour. A cylindrical 3D shape thus explains away the reflectance
step. Panel B demonstrates the mathematical description of this optical
illusion. The corresponding Bayesian network model consists of four RVs:
z1 (reflectance step versus uniform reflectance), z2 (cylindrical versus
flat 3D shape), z3 (sawtooth-shaped shading profile versus some other
profile) and z4 (cylindrical versus flat contour). The inference of the
probability distribution p (z1, z2|z3 = 1, z4 = 0) models the perception of
the upper stimulus of Panel A, while the lower stimulus is represented
by the inference of the probability distribution p (z1, z2|z3 = 1, z4 = 1).
The figure is taken from Pecevski et al. [2011].

2.1.3 Bayesian Networks

A Bayesian Network (BN) is a directed acyclic graphical model whose nodes represent the
RVs Z1, ..., ZK [Bishop, 2006; Koller and Friedman, 2009]. The joint distribution defined
by a Bayesian graph is given by the product of a conditional distribution for each node
conditioned on the parent variables of that node. For a graph with K nodes, the joint
probability distribution is given by

p(z) =

K∏
k=1

p(zk|pak) , (2.11)

where pak expresses the set of parents of zk. The factor p(zk|pak) is called an nth-order
factor if it depends on n RVs or rather |pak| = n− 1.
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A: visit to Asia? S: smoking?

T: tuberculosis? C: lung cancer? B: bronchitis?

X: positive X-ray? D: dyspnoea?

Figure 2.3: A simplified version of the ASIA Bayesian network from Lauritzen and
Spiegelhalter [1988]. The graph describes the situation of a doctor who
has to infer which of three diseases tuberculosis (T ), lung cancer (C)
and bronchitis (B) his patient has based on some contextual background
information and on medical indicators. The 7 RVs are arranged in a
three-layer causal structure. The 2 RVs A and S provide information
whether the patient has recently visited Asia (A) or is a smoker (S). The
observable symptoms are the result of an X-ray test (X) and dyspnoea
(D). The graph contains two explaining away effects and undirected
cycles.

Figure 2.2 depicts an example of an optical illusion in Panel A and its Bayesian network
model in Panel B. The network models a visual perception experiment which was first
demonstrated by Knill and Kersten [1991]. Panel A shows the visual stimuli of two
geometrical objects which are both composed of two identical 3D shapes. Both stimuli
feature the same shading profile in the horizontal direction, but differ in their contours.
The perception of the reflectance of each stimulus is influenced by the perceived 3D shape:
In the case of a flat contour, the right subobject appears brighter than the left one. This
reflectance step is hardly observable in the case of a cylindrical contour. A cylindrical
3D shape thus explains away the reflectance step. Conversely, a reflectance step explains
away the presence of a cylindrical 3D shape.
Panel B shows the corresponding Bayesian network. The model consists of four RVs:
z1 (reflectance step versus uniform reflectance), z2 (cylindrical versus flat 3D shape), z3

(sawtooth-shaped shading profile versus some other profile) and z4 (cylindrical versus flat
contour). The joint probability of these RVs is given by the network structure:

p (z1, z2, z3, z4) = p (z1) p (z2) p (z3|z1, z2) p (z4|z2) . (2.12)

The inference of the probability distribution p (z1, z2|z3 = 1, z4 = 0) models the perception
of the upper stimulus of Panel A, while the lower stimulus is represented by the inference
of the probability distribution p (z1, z2|z3 = 1, z4 = 1).
Figure 2.3 illustrates another example of a Bayesian network which is a modified version of
the ASIA network initially introduced in Lauritzen and Spiegelhalter [1988]. The network
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Figure 2.4: Demonstration of the Metropolis-Hastings algorithm (A) in two dimen-
sions with a uniform proposal distribution q and a Gaussian target
distribution p [Bishop, 2006]. Iso-probability lines of the target distribu-
tion are shown in black. Samples are drawn from the proposal distribution
q and accepted according to Equation 2.14. Accepted transitions are
shown in blue, while rejected ones are red. In this case already 5000
drawn samples can well approximate the target distribution (B).

contains seven RVs: two context aspects (A: visit to Asia, S: smoking), three diseases
(T : tuberculosis, C: lung cancer, B: bronchitis) and two indicators (X: positive X-ray
test, D: dyspnoea). The joint probability of the network is given by

p (A,S, T, C,B,X,D) = p (A) p (S) p (T |A) p (C|S) p (B|S) p (X|T,C) p (D|T,C,B) .
(2.13)

The graph shows a more complex structure than the previous example, i.e. two explaining
away effects and undirected cycles, e.g. between the RVs S, C, D and B. A typical
example for evidence in this network is the knowledge that the person has recently visited
Asia (A = 1) and exhibits the symptom of breathlessness (D = 1). The inference task is
to calculate the likelihoods of the three diseases tuberculosis, lung cancer and bronchitis
and how a positive X-ray test (X = 1) would affect these likelihoods [Lauritzen and
Spiegelhalter , 1988].

2.1.4 Markov Chain Monte Carlo Sampling

Markov chain Monte Carlo (MCMC) sampling can be used to construct samples z from
probability distributions p(z) even if the normalizing constant is unknown. MCMC
methods produce a new sample via a local search around a sample from the distribution
rather than a global search over the whole state space of the RVs [Bishop, 2006].
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Metropolis-Hastings algorithm: Each MCMC method uses an arbitrary proposal
distribution q

(
z|z(τ)

)
to generate a sample based only on the current sample z(τ), where τ

is the iteration step. At each iteration, a candidate sample z∗ is drawn from the proposal
distribution. The Metropolis-Hastings algorithm then offers a general criterion, according
to which this candidate sample z∗ is accepted with probability

A
(
z∗, z(τ)

)
= min

(
1,

p̃(z∗)q(z(τ)|z∗)
p̃(z(τ))q(z∗|z(τ))

)
, (2.14)

with p (z) = p̃ (z) /Zp and the normalizing constant Zp [Bishop, 2006]. If the candidate
sample is accepted, then z(τ+1) = z∗, otherwise it is rejected and z(τ+1) = z(τ). The next
sample is drawn from q

(
z|z(τ+1)

)
. Figure 2.4 shows an example of the Metropolis-Hastings

algorithm in two dimensions.

Gibbs sampling: The Gibbs sampling algorithm is a special case of the Metropolis-
Hastings algorithm [Geman and Geman, 1984]. At each iteration of the algorithm, the
value zk of one of the RVs from the random vector Z is replaced by a value which is
drawn from the proposal distribution p

(
zk|z\k

)
. The vector z\k contains all assignments

z1, ..., zK but with zk omitted. This update scheme is repeated for all RVs of the vector
Z, either in some defined order or at random [Bishop, 2006]. With z∗\k = z\k and
p (z) = p

(
zk|z\k

)
p
(
z\k
)
in Equation 2.14, the acceptance probability of the Gibbs

sampling algorithm is always 1 by design.
For the concrete example of a probability distribution p (z1, z2, z3) of three RVs z1, z2, z3

with initial samples z(0)
1 , z

(0)
2 , z

(0)
3 , the first sample is drawn from p(z

(1)
1 |z

(0)
2 , z

(0)
3 ), the

following one from p(z
(1)
2 |z

(1)
1 , z

(0)
3 ) and so on.

Kullback-Leibler divergence: The approximation quality of the sampled probability
distribution can be evaluated by a measure of the difference of the approximated probability
distribution q(z) and the target probability distribution p(z), the so-called Kullback-Leibler
(KL) divergence DKL(q||p). It is defined as

DKL(q||p) =
∑
z

q(z) log

(
q(z)

p(z)

)
. (2.15)

The KL divergence is a distance measure DKL(q||p) ≥ 0, with equality if and only if p = q.
But, unlike a distance, it is not symmetric with respect to interchange of p and q [Dayan
and Abbott , 2001].

Markov chain: MCMC algorithms create a set of consecutive samples z(1), z(2), ... which
forms a Markov chain of order 1. A Markov chain of order m is defined by a sequence
of states z(1), z(2), ..., z(K) of a random vector Z such that the following conditional
independence property holds for k ∈ {1, ...,K − 1}:

p
(
z(k+1)|z(k), z(k−1), ..., z(1)

)
= p

(
z(k+1)|z(k), z(k−1), ..., z(k−m+1)

)
, (2.16)
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with k ≥ m. For the particular example of m = 1, a Markov chain can be characterized
by the probability distribution for the initial state p(z(0)) and a transition operator
T
(
z(k), z(k+1)

)
≡ p

(
z(k+1)|z(k)

)
[Bishop, 2006]. The chain starts in some initial state

z(0) and moves through a trajectory of states z(τ) drawn from the conditional probability
distribution T

(
z(τ), z(τ+1)

)
.

A Markov chain can have several important properties. It is called irreducible if any state
z(k+1) can be reached from any other state z(k) in finitely many steps with a probability
larger than zero. A Markov chain is aperiodic if its state transitions cannot be trapped in
deterministic cycles. Irreducibility and aperiodicity are sufficient conditions for ensuring
that the required distribution p (z) is invariant or stationary, i.e. that the probability
distribution p

(
z(τ)|z(0)

)
converges for τ → ∞ to the distribution p (z) that does not

depend on the initial state z(0) [Grimmett and Stirzaker , 2001]. A Markov chain of order
1 is said to be reversible if its transition operator T satisfies the detailed balance condition:

T
(
z(k+1), z(k)

)
p
(
z(k+1)

)
= T

(
z(k), z(k+1)

)
p
(
z(k)

)
. (2.17)

Reversibility is a sufficient but not necessary condition for the invariance of the probability
distribution p (z) [Bishop, 2006]. It is important to note that indeed many physical
ensembles, e.g. neural networks, have irreversible dynamics (see Section 2.1.5).

2.1.5 Neural Sampling

The term neural sampling in general refers to sampling from probability distributions with
networks of spiking neurons. This section presents the theory of neural sampling from
Buesing et al. [2011] which links MCMC sampling to the dynamics of spiking neurons.
In the context of Buesing et al. [2011], neural sampling is performed with a particular
abstract inherently stochastic neuron model.
In contrast to MCMC, spiking neurons do not incorporate reversible dynamics due to
refractory mechanisms. For example, a neuron which is not refractory can always be
brought into the refractory state with enough stimulation, which is not possible for the
opposite case.
However, Buesing et al. [2011] prove that the Markov chain built into the dynamics of a
network of stochastic neurons can be used to sample from probability distributions. This
offers the theoretical framework for the physical instantiation of Boltzmann machines and
Bayesian networks with spiking neurons.

Neural Sampling in Discrete and Continuous Time: In the abstract model used by
Buesing et al. [2011], a neuron elicits spikes stochastically depending on the current
membrane potential. The assignment zk of a RV Zk from a binary random vector Z is
encoded in the spiking activity of a neuron νk. If the neuron νk has elicited a spike within
the recent τ time steps (refractory period) it encodes the state zk = 1, otherwise zk = 0.
The time since the last spike is measured by an additional non-binary refractory variable
ζk ∈ {0, 1, ..., τ} for each individual neuron νk.
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Figure 2.5: Illustration of the local transition operator T k for the internal state
variable ζk of a neuron νk from Buesing et al. [2011]. The transition
probability to the state ζk depends only on the previous state ζ ′k. The
neuron is allowed to elicit a spike for ζk ≤ 1.

In order for a network to sample correctly from a target distribution p (z1, ..., zK) over the
binary random vector Z, each of its constituent neurons νk must "know" their respective
conditional probability p

(
zk|z\k

)
. The so-called neural computability condition (NCC)

provides a sufficient condition for correct sampling, wherein a neuron’s "knowledge" about
the state of the rest of the network is encoded in its membrane potential:

uk(t) = log
p(zk(t) = 1|z\k(t))
p(zk(t) = 0|z\k(t))

, (2.18)

where z\k(t) are the current values zi(t) of all other variables zi with i 6= k. It is required
that each single neuron in the network fulfills the NCC. Equation 2.18 can also be
formulated in terms of an activation function

p(zk(t) = 1|z\k(t)) = σ (uk (t)) :=
1

1 + exp (−uk(t))
, (2.19)

exploiting the condition p(zk = 1) = 1− p(zk = 0).
The neural dynamics can be expressed via a local transition operator

T k(ζk|ζ ′k, z\k) =


σ(uk − log τ), if ζk = τ and ζ ′k ≤ 1
1− σ(uk − log τ), if ζk = 0 and ζ ′k ≤ 1
1, if ζk = ζ ′k − 1 and ζ ′k > 1
0, otherwise

, (2.20)

and

zk =

{
1, if ζk > 0
0, if ζk = 0

. (2.21)
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Figure 2.6: The spike pattern of two neurons which are sampling from a probability
distribution p (z1, z2). The neurons have the refractory period τ (gray
box ) during which their associated RVs keep the state zk = 1. The overall
network state at time t is (z1, z2).

The transition probability to the state ζk only depends on the previous state ζ ′k. The
resulting sequence of states ζk(t = 0), ζk(t = 1), ζk(t = 2), ... is a Markov chain. Equation
2.20 implements what is known as Glauber dynamics. Figure 2.5 illustrates the dynamics
of Equation 2.20.
Buesing et al. [2011] prove that after some (ideally infinite) burn-in time, the dynam-
ics of the network given by the transition operator T k produce samples from the ex-
tended distribution p(ζ, z). The distribution p(z) is provided by marginalizing over ζ:
p(z) =

∑
ζ p(ζ, z). Thus, given that each single neuron in the network fulfills the NCC,

the network will sample from the target distribution p(z).
The spiking neural network can also be used to sample from the posterior distribution
p(z1, ..., zk|zk+1, ..., zK) with the observed subset of variables zk+1, ..., zK . The neurons
νk+1, ..., νK just need to be clamped to a strong positive (negative) current to represent
zj = 1 (zj = 0).
Buesing et al. [2011] present also a continuous version of neural sampling by analyzing the
discrete sampling network in the limit dt→ 0. A continuous version allows for updating
all neurons in parallel.

Implementation of Boltzmann Machines: For the particular case of Boltzmann
distributions, the NCC (see Equation 2.18) is satisfied by neurons νk with the membrane
potential

uk(t) = bk +
K∑
i=1

Wkizi(t) , (2.22)

with the bias bk of neuron νk and the weight Wki of the connection from neuron νi to
neuron νk. Wkizi(t) is the shape of the Postsynaptic Potential (PSP) in the course of the
membrane potential of the neuron νk caused by the firing of neuron νi with a square pulse.
Equation 2.22 implies that all neurons have the synaptic time constant τsyn = τref = τ .
For instance, if we have some bivariate probability distribution p (z1, z2) over binary RVs
Z1 and Z2, the biases of the neurons ν1 and ν2 are implemented as (see Equations 2.18
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and 2.22)

b1 = log
p (z1 = 1, z2 = 0)

p (z1 = 0, z2 = 0)
and b2 = log

p (z1 = 0, z2 = 1)

p (z1 = 0, z2 = 0)
, (2.23)

while the weights between ν1 and ν2 are both

W12 = W21 = log
p (z1 = 0, z2 = 0) p (z1 = 1, z2 = 1)

p (z1 = 1, z2 = 0) p (z1 = 0, z2 = 1)
. (2.24)

Figure 2.6 illustrates a possible spike pattern of two stochastic neurons ν1 and ν2 which
are sampling from a probability distribution p(z1, z2). Both neurons have an absolute
refractory time τ after firing.
BMs provide an adequate model for many real-world inference tasks like e.g. the binocular
rivalry described by Alais and Blake [2005]. However, BMs maximally allow second-order
probability distributions (see Equation 2.8), but numerous real-world phenomena require
probabilistic models with higher-order dependencies between the RVs. Pecevski et al.
[2011] introduce five methods which allow to extend the theory of neural sampling to
higher-order probability distributions. In the course of this thesis, two of these approaches
are applied, which are outlined in the following.

Implementation 1 of Bayesian Networks: Implementation 1 from Pecevski et al.
[2011] exploits the fact that any probability distribution p can be reduced to a Boltzmann
distribution [Ackley et al., 1985]. In particular, a higher-order probability distribution
p (z1, ..., zK) over K binary RVs Z1, ..., ZK can be reduced to a Boltzmann distribution
in the following way: For each nth-order factor with n > 2, 2n auxiliary binary RVs
X1, ..., X2n are introduced, such that the target probability distribution p (z) can be
represented as marginal distribution

p (z) =
∑
x∈X

p (z,x) (2.25)

of the extended distribution p (z,x). Here, X denotes the set of all possible assignments
of the random vector X. The auxiliary variables are chosen such that each possible
assignment of the higher-order factor is covered.
Let us consider the concrete example

p (z1, z2, z3) = p (z1) p (z2) p (z3|z1, z2) . (2.26)

The probability distribution contains the third-order factor p (z3|z1, z2). The reduc-
tion of p (z1, z2, z3) to a Boltzmann distribution will involve 8 additional auxiliary RVs
X000, X001, ..., X111, one for each possible assignment of p (z3|z1, z2). For example, the
auxiliary RV X001 assumes the value 1 only if z1 = 0, z2 = 0 and z3 = 1. For all other
assignments, the variable remains 0.
In the neuron model, this can be achieved by setting the connection strengths toMexc = α
between the neurons corresponding to the variables Z3 and X001 and to Minh = −α
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Figure 2.7: Implementation 1 for the visual perception experiment in Figure 2.2.
There are eight auxiliary neurons (black), one for each possible assignment
of the third-order factor p (z3|z1, z2). The auxiliary neurons determine
the activity of the neurons ν1, ν2 and ν3: there are strong excitatory
connections Mexc between the auxiliary neuron and νi if the i-th digit
of the auxiliary neuron is a 1, and strong inhibitory connections Minh

otherwise. The second-order factor p (z4|z2) is represented via direct
connections between the neurons ν2 and ν4.

between the neurons corresponding to the variables Z1, Z2 and X001. Pecevski et al. [2011]
specify the connection strength α as

α = 10 ·max (p (z3|z1, z2)) . (2.27)

This value arises from the fact that a neuron with a bias of α will always be triggered to
elicit a spike irrespective of the states of the remaining RVs. By analogy, a neuron with a
bias of −α will always remain silent regardless of the input from the other neurons.
The individual values of the factor p (z3|z1, z2) are introduced through the bias of the
neurons which correspond to the auxiliary RVs. For instance, the bias of the neuron
corresponding to the RV X001 is calculated via

b001 = log

(
µ
p (z3 = 1|z1 = 0, z2 = 0)

min [p (z3|z1, z2)]
− 1

)
− η (z1 = 0, z2 = 0, z3 = 1)︸ ︷︷ ︸

=1

Mexc , (2.28)

where µ is an arbitrary factor ensuring that the argument of the logarithm stays larger
than 0 for all possible assignments z1, z2 and z3. The function η (v) returns the L1-norm
of v. The first term of Equation 2.28 contains the NCC from Equation 2.18: It connects
the conditional probability associated with the auxiliary RVs to the membrane potential
of the corresponding neuron. The second term provides a strong inhibition of the neuron
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to ensure that the neuron may only elicit a spike if the assignments of the RVs Z1, Z2

and Z3 assume the appropriate combination.
If, for example, the assignments of the random vector Z are z1 = 1, z2 = 0 and z3 = 1,
which is not compatible with the combination 001, then the voltage of the neuron
corresponding to the auxiliary RV X001 is forced to about −α by the input of ν1 and
the neuron remains silent. Another example is the assignment z1 = 1, z2 = 0 and
z3 = 0, which is not compatible with the combination 101. In this case, the neuron which
corresponds to the RV X101 gets not enough input and thus remains at the low membrane
potential of about −α.
Figure 2.7 illustrates how the visual perception experiment from Figure 2.2 is modeled
via Implementation 1. The neural network contains the four neurons ν1, ..., ν4, which
represent the RVs Z1, ..., Z4, and additionally 8 auxiliary neurons representing the RVs
X000, X001, ..., X111, one for each possible assignment of the factor p (z3|z1, z2).
According to Levin et al. [2006], the convergence of the sampling distribution towards the
target probability distribution p (z) is very slow due to the introduction of additional RVs
X. The following paragraph will present another implementation of BNs with spiking
neurons in which the original RVs Z1, ..., ZK directly fulfill the NCC without the need of
additional RVs.

Implementation 2 of Bayesian Networks: Implementation 2 from Pecevski et al. [2011]
provides the ability to sample from higher-order probability distributions over the binary
random vector Z through a Markov blanket expansion of the NCC (see Equation 2.18).
The Markov blanket Bk of a node Zk in a Bayesian network is defined as the set of all
parents, children and co-parents of this node [Pearl , 1988]. By definition, it has the
property that, once any assignment v to the RVs ZBk in the Markov blanket has been
fixed, Zk is independent from all other RVs in the graph:

p(zk|z\k) = p(zk|zBk) . (2.29)

The Markov blanket Bk "shields" the RV Zk from the rest of the nodes [Bishop, 2006].
For instance, the Markov blanket of node Z1 in Figure 2.2 consists of its co-parent Z2

and its child Z3. By fixing the RVs Z2 and Z3, Z1 becomes conditionally independent of
the RV Z4.
The NCC from Equation 2.18 can then be expanded as

log
p(zk(t) = 1|zBk(t))

p(zk(t) = 0|zBk(t))
=

∑
v∈ZBk

log
p(zk = 1|zBk = v)

p(zk = 0|zBk = v)︸ ︷︷ ︸
wv
k

·[zBk(t) = v] , (2.30)

where v runs through all possible assignments zBk . The expression [zBk(t) = v] is 1 if the
condition inside the brackets is true, otherwise 0. Equation 2.30 implies that for satisfying
the NCC it suffices if there are 2|Bk| auxiliary neurons, one for each possible assignment
v, that become active if and only if the RVs ZBk assume v. The current values zBk of
the RVs ZBk are encoded in the firing activity of their associated principal neurons νk.
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Figure 2.8: Implementation 2 for the example in Equation 2.26. The figure is taken
from Pecevski et al. [2011]. It shows the neural representation of the
Markov blanket of the RV z1. There are 4 auxiliary neurons, one for
each possible assignment v to the RVs z2 and z3. The corresponding
principal neurons νi connect to the auxiliary neuron αv

1 with an excitatory
(inhibitory) connection if vi = 1 (0). The auxiliary neurons connect with
strong (ideally ∞) excitatory synapses to both the principal neuron
ν1 and the inhibitory interneuron ι1 causing them to fire immediately
upon stimulation. The inhibitory neuron connects back to the auxiliary
neurons with strong inhibitory weights. This ensures that all auxiliary
neurons remain silent for τref whenever one of them has spiked.

The NCC is satisfied in the neural implementation by choosing appropriate values for
the excitability of the auxiliary neurons and a specific connectivity pattern between the
principal and the auxiliary neurons.
Figure 2.8 shows the neural implementation of the Markov blanket of variable z1 for the
concrete example distribution in Equation 2.26. It consists of the variables z2 and z3.
The associated principal neurons ν2 and ν3 thus connect directly to the auxiliary neurons
αv

1 . A connection from the ith principal neuron of the Markov blanket to αv
1 is excitatory

(inhibitory) if the assignment v contains a 1 (0) a position i. At each moment in time only
the auxiliary neuron αv

1 corresponding to the current state of the inputs zBk(t) = v can
fire (with a probability determined by the NCC), but only if it is not laterally inhibited
due to a recent spike from another auxiliary neuron. All auxiliary neurons αv

k connect
with strong excitatory synapses to both the principal neuron νk and the local inhibitory
interneuron ιk, causing all efferent neurons to fire whenever they fire. The local inhibitory
interneuron ιk connects back to the auxiliary neurons with strong inhibitory synapses.
This ensures that all auxiliary neurons remain silent for a time τ = τref = τsyn whenever
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one of them has spiked.
The term wv

k from Equation 2.30 is implemented via the bias bvk of the auxiliary neuron
that corresponds to the assignment v, which ensures the satisfaction of the NCC:

bvk = log
p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
− η(v)Mv

k . (2.31)

The factor η(v) denotes the L1-norm of the vector v and Mv
k represents the excitatory

synaptic weight from the principal neuron νi to the auxiliary neuron αv
k . In the case

v 6= zBk(t), the neuron αkv remains silent either due to insufficient input or due to the
strong inhibitory connections from the principal neurons.
The excitatory synaptic weight Mv

k from the principal neuron νi to an auxiliary neuron
αv
k is set to

Mv
k = max

(
log

p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
+ 10, 0

)
. (2.32)

Similarly, the inhibitory synaptic weight Mv
k from both a principal neuron νi and the

local inhibitory interneuron ιk to an auxiliary neuron αv
k is set to

Mv
k = min

(
− log

p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
− 10, 0

)
. (2.33)

The biases of the principal neurons and the local inhibitory interneurons amount to
b = −10. All efferent synaptic weights of the auxiliary neurons are set to w = 30 in order
to ensure that the postsynaptic neurons fire upon each incoming spike.

2.1.6 Deterministic Neuron and Synapse Models

This section discusses the dynamics of deterministic neuron and synapse models. We
start with the description of the membrane dynamics of the leaky integrate-and-fire (LIF)
neuron and study the impact of synaptic input via current-based and conductance-based
synapses on the course of its membrane potential. Thereafter, we discuss the membrane
dynamics of the adaptive exponential integrate-and-fire (AdEx) neuron model, which is
implemented on the BrainScaleS wafer-scale hardware system (see Section 2.2). The last
paragraph describes the Tsodyks-Markram (TM) mechanism of synaptic plasticity which
models the limitedness of synaptic neurotransmitters. The TM model is crucial for LIF
sampling, which will follow in Section 2.1.7.

Leaky Integrate-and-Fire Neuron Model The membrane dynamics of the leaky
integrate-and-fire (LIF) neuron can be described by the following differential equation
[Gerstner and Kistler , 2002]:

Cm
dV (t)

dt
+ gl (V (t)− El) +

∑
syn i

Ii(t) + Iext(t) = 0 . (2.34)

Cm, gl and El represent the membrane capacitance, the membrane leakage conductance
and the membrane leakage potential, respectively. The membrane time constant τm
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is determined by gl according to τm = Cm/gl. Iext(t) subsumes all external currents,
while Ii is the synaptic input current due to recurrent connections in the network or
diffusive background noise. Equation 2.34 describes the dynamics of what is called the
free membrane potential of the LIF neuron.
If a certain threshold voltage Vth is exceeded, the neuron emits a spike and is reset to the
reset voltage Vreset for the so-called refractory time τref .
One can distinguish current-based and conductance-based synapse models. For exponential-
decaying current-based synapses, Ii from Equation 2.34 is the synaptic input current

Ii(t) = wi
∑

spike k

Θ (t− tk) · exp

(
− t− tk

τi

)
. (2.35)

wi determines the height of the PSP and thus represents the synaptic weight. If wi is
positive (negative), the connection is excitatory (inhibitory). τi is the synaptic time
constant, determining the decay speed of the synaptic current in Equation 2.35. The
sum runs over the arrival times of incoming spikes via synapse i. Θ is the Heaviside step
function. The synaptic current is fully determined by wi and τi. We assume from now on
that the synaptic time constant is identically τi = τsyn for each synapse of the neuron.
With the choice of Ii in Equation 2.35, Equation 2.34 becomes a linear differential equation
and can be solved analytically. Bytschok [2011] calculates the PSP time course VPSP(t)
for a current-based LIF neuron upon an incoming spike at time tspike:

VPSP(t) =
wi

gl · τm ·
(

1
τsyn
− 1

τm

) · [exp

(
−
t− tspike

τm

)
− exp

(
−
t− tspike

τsyn

)]
. (2.36)

For conductance-based synapses, the current Ii from Equation 2.34 becomes

Ii(t) = gi(t) (V (t)− Erev
i ) . (2.37)

The quantities gi and Erev
i are the synaptic conductance and the synaptic reversal

potential, respectively. The synaptic conductance gi amounts to

gi(t) = wi
∑

spike k

Θ (t− tk) · exp

(
− t− tk
τsyn

)
, (2.38)

by analogy to Equation 2.35. In difference to the current-based model, each synapse
comes with its individual reversal potential Erev

i . The amplitude of the injected current
upon arrival of a spike depends on the value of the membrane voltage itself, which makes
the system nonlinear. Equation 2.34 then yields

Cm
dV (t)

dt
= −gl (V (t)− El)−

∑
syn i

gi(t) (V (t)− Erev
i )− Iext(t) , (2.39)

Due to the nonlinearity in V (t), Equation 2.39 cannot be solved analytically and a
closed-form solution of the voltage course VPSP of a PSP cannot be calculated. However,
an approximative solution of Equation 2.39 can be obtained for the case that the neuron
is exposed to a spiking noisy environment, which will be presented in Section 2.1.7.
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Capacity of the membrane Cm
Leakage conductance gl
Synaptic conductance gi
Leakage potential El
Reversal potential Erev

i

Slope factor ∆th
Effective threshold potential Vth
Reset potential Vreset
Adaptation time constant τw
Adaptation coupling parameter a
Spike-triggered adaptation b

Table 2.1: Parameters of the adaptive exponential integrate-and-fire neuron model

Adaptive Exponential Integrate-and-Fire Neuron Model The membrane dynamics of
the neurons integrated on the BrainScaleS wafer-scale hardware system (see Section 2.2)
follow those of the adaptive exponential integrate-and-fire (AdEx) neuron model with
conductance-based synapses [Brette and Gerstner , 2005]. The model is described by two
differential equations. The first differential equation determines the time course of the
membrane potential V (t):

−Cm
dV (t)

dt
= gl (V (t)− El)− gl ∆th exp

(
V (t)− Vth

∆th

)
+

∑
syn i

gi(t) (V (t)− Erev
i ) + w(t) . (2.40)

The second differential equation describes the temporal progress of the so-called adaptation
current w (t):

− τw
dw(t)

dt
= w(t)− a(V (t)− El) . (2.41)

Table 2.1 lists the parameters of the two differential equations.
The process of spike generation is embedded in the exponential term: A spike occurs
each time the membrane potential V (t) grows towards infinity. For practical reasons, the
integration of the AdEx model equations usually stops at the time at which the membrane
potential crosses some threshold Θ. Exactly this time is registered as spike time. Upon
each elicited spike, the membrane potential and the adaptation current are abruptly reset,
which serves as a simplification of the downswing of the action potential:

V → Vreset (2.42)
w → w + b . (2.43)

The AdEx model can be reduced to the LIF model by taking the limit ∆th → 0 and
setting w = 0.
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Tsodyks-Markram Mechanism The Tsodyks-Markram (TM) mechanism of synaptic
plasticity, or Short-Term Plasticity (STP), models the limitedness of neurotransmitters
in a synapse [Tsodyks and Markram, 1997; Markram et al., 1998]. It takes account of
the fact that the neurotransmitters which are released upon an action potential are
not instantaneously available for a subsequent action potential and first need to be
recovered. Therefore, the actual effective synaptic strength E is equal to the absolute
synaptic strength A, which is the maximum response to a presynaptic spike, only if all
neurotransmitters are on the spot and otherwise smaller. In the following, the dynamics
of the TM mechanism are presented.
Each presynaptic action potential of a neuron uses some fraction of the absolute synaptic
strength A, which is defined as the utilization of synaptic efficacy parameter U . The
variable U changes for each spike. The running variable of U is referred to as u and is
determined by the equation

un+1 = U0 + un (1− U0) exp

(
− ∆t

τfacil

)
, (2.44)

where ∆t is the time interval between the nth and the (n+1)th spike. Without an arriving
action potential, u decays exponentially with the time constant τfacil towards its resting
value U0.
The fraction of available synaptic strength is described by the recovered synaptic efficacy
parameter R which follows the update rule

Rn+1 = Rn (1− un+1) exp

(
−∆t

τrec

)
+ 1− exp

(
−∆t

τrec

)
, (2.45)

with the recovery time constant τrec. In the absence of action potentials, the R increases
towards 1. The EPSP generated by any action potential then amounts to

EPSPn = A ·Rn · un . (2.46)

Inhibitory synaptic connections are characterized by τfacil → 0 which yields un = U0.

2.1.7 LIF Sampling

This section illustrates the theoretical background of LIF sampling, the sampling from
probability distributions with recurrent networks of deterministic leaky integrate-and-fire
(LIF) neurons. First the characteristics of the membrane dynamics of a LIF neuron in the
so-called High-Conductance-State (HCS) are described. In the HCS, the free membrane
potential of a LIF neuron can be described by an Ornstein-Uhlenbeck (OU) process, which
is outlined thereafter. This mathematical prerequisite finally allows the neuron to closely
reproduce a logistic activation function, which connects the mean membrane potential of
the neuron to the probability to find it in the refractory state. This analogy to the NCC
from Equation 2.18 is the basis for performing neural sampling with LIF neurons.
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The Leaky Integrate-and-Fire Neuron in a Spiking Noisy Environment Due to the
nonlinearity in the membrane potential of a LIF neuron with conductance-based synapses
(see Equation 2.37), Equation 2.39 cannot be solved analytically and a closed-form solution
of the voltage course VPSP of a PSP cannot be calculated. An approximative solution
of Equation 2.39, however, can be obtained for the case that the neuron is exposed to a
spiking noisy environment, which will be outlined in the following.
First we divide both sides of Equation 2.39 by the total conductance gtot(t) = gl+

∑
i gi(t)

and define the effective membrane potential Veff and the effective time constant τeff as

Veff(t) =
glEl +

∑
i gi(t) · Erev

i + Iext

gtot(t)
and τeff(t) =

Cm

gtot(t)
. (2.47)

Equation 2.39 can then be written as

τeff(t)
dV (t)

dt
= Veff(t)− V (t) . (2.48)

A spiking noisy environment can be generated via the stimulation by excitatory and
inhibitory Poisson sources of rate νi →∞ and synaptic weights wi → 0 of the connections
from the Poisson sources to the neuron. The neuron then enters the so-called high-
conductance state (HCS) which can be characterized by an approximately constant total
average conductance gtot(t), which is larger than the leakage conductance gl, and thus
a τeff smaller than τm [Destexhe et al., 2003]. Bytschok [2011] calculates the mean V (t)
and the variance σ2

V (t) of the free membrane potential of a LIF neuron in the HCS:

V (t) = Veff(t) =
glEl +

∑
i gi(t)E

rev
i + Iext

gtot(t)
(2.49)

and
σ2
V (t) =

∑
i

νiS
2
i

(
τeff

2
+
τsyn,i

2
− 2

τeffτsyn,i

τeff + τsyn,i

)
(2.50)

with

Si =
wi

(
Erev
i − V (t)

)
Cm

(
1
τeff
− 1

τsyn,i

) . (2.51)

With τeff → 0, which implies that the membrane potential V (t) instantly follows the
effective membrane potential Veff(t), Equations 2.47 and 2.48 can be rewritten as

V (t) ≈ Veff(t) =
glEl +

∑
i gi(t)E

rev
i +

∑
i ∆gi(t)E

rev
i + Iext

gtot(t) +
∑

i ∆gi(t)
(2.52)

with the fluctuations of the synaptic conductances

∆gi(t) = gi(t)− gi(t) . (2.53)
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The mean and the variance of the conductance evoked by the stimulation via a single
Poisson source with the rate νi, connected to the neuron by a synapse with weight wi
and time constant τsyn, can be calculated analytically [Bytschok , 2011]:

gi(t) = wiνiτsyn and σ2
gi(t)

=
w2
i νiτsyn

2
. (2.54)

The relative fluctuations of the synaptic conductance can be described by the coefficient
of variation cV:

cV =
σgi(t)

gi(t)
=

√
1

2νiτsyn
. (2.55)

In the limit νi →∞, the fluctuations of the synaptic conductances become small, which
allows an expansion of Equation 2.52 in ∆gi. The first-order approximation amounts to
[Petrovici et al., 2013]:

V (t) =
glEl +

∑
i gi(t)E

rev
i + Iext

gtot(t)
, (2.56)

which reveals that in the limit of high input frequencies the free membrane potential (i.e.
Vth →∞) of a LIF neuron depends linearly on the synaptic input

∑
i gi(t)E

rev
i .

The free membrane potential in the HCS as an Ornstein-Uhlenbeck process The
description of the free membrane potential of a LIF neuron in the HCS as an Ornstein-
Uhlenbeck process is the mathematical prerequisite which allows the application of the
neural sampling theory (see Section 2.1.5) with LIF neurons.
An Ornstein-Uhlenbeck (OU) process [Uhlenbeck and Ornstein, 1930] is a stochastic
process defined by the ODE

dx(t) = Θ · (µ− x(t)) + σ · dW (t) . (2.57)

Here, Θ is a positive constant and W (t) a stationary delta-correlated random process
with mean 0 and variance σ2, a so-called Wiener process. Equation 2.57 can intuitively be
understood as the Brownian motion of the step size σdW (t) of a particle with an attractor
at µ towards which it decays exponentially with the time constant Θ. Ricciardi [1977],
among others, proves that the probability density function (PDF) of the OU process

f(x, t|x0) =

√
Θ

πσ2 (1− e−2Θt)
exp

(
− Θ

σ2

[(
x− x0e−Θt

)2 − µ
1− e−2Θt

])
(2.58)

is the unique solution of the Fokker-Planck equation

∂f(x, t)

∂t
= Θ · ∂

∂x
[(x− µ) f ] +

σ2

2

∂2f(x, t)

∂x2
(2.59)

which satisfies the initial condition

lim
t→0

f(x, t|x0) = δ (x− x0) . (2.60)
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Gerstner and Kistler [2002] and Petrovici et al. [2013] show that the distribution f (ξ, t)
of the synaptic noise ξ := ξ(t) =

∑
i gi(t)E

rev
i of a LIF neuron with conductance-based

synapses obeys the Fokker-Planck equation:

∂f(ξ, t)

∂t
=

1

τsyn

∂

∂ξ

[(
ξ −

∑
i

νi∆ξiτsyn

)
· f(ξ, t)

]
+

∑
i νi∆ξ

2
i τsyn

2τsyn

∂2f(ξ, t)

∂ξ2
. (2.61)

This fact implies that the temporal evolution of the synaptic noise of a LIF neuron can
be described by an OU process.
Due to Equation 2.56, the free membrane potential of a LIF neuron in the HCS depends
linearly on the synaptic noise ξ(t) in the limit τeff → 0. In this situation the free membrane
potential of the a LIF neuron can therefore also be approximated by an OU process.
The parameters of the OU process which describes the free membrane potential can be
deduced from Equations 2.49 and 2.50 with τeff → 0:

Θ =
1

τsyn
(2.62)

µ =
glEl +

∑
i νiwiE

rev
i τsyn + Iext

gtot(t)
(2.63)

σ2 =

∑
i νi (wi (Erev

i − µ))2 τsyn

gtot(t)
. (2.64)

In the next section, we will derive the activation function of a LIF neuron in the HCS,
which connects the mean membrane potential of the neuron with the probability to find
it in the refractory state. This finally allows to translate the biases and weights of the
stochastic neurons from the abstract model described in Section 2.1.5 to the LIF domain.

Neural Sampling via Leaky Integrate-and-Fire Neurons with Conductance-Based
Synapses Petrovici et al. [2013] show that a single LIF neuron in the HCS, whose
membrane dynamics thus can be described by an OU process, can closely reproduce the
activation function p (zk = 1) (see Equation 2.19). The activation function p (zk = 1)
creates a link between the mean membrane potential of a neuron νk and the probability
to find it in the refractory state zk = 1. In the following, the shape of the activation
function of a LIF neuron is presented. Finally, with the help of the activation function, the
parameters of the abstract neuron model from Equation 2.22 can be directly translated
to the parameters of LIF neurons.
By analogy with the abstract neuron model of Section 2.1.5, the RV zk is 1 if neuron νk
is refractory. The state of the LIF neuron can be divided into two "modes": A "bursting
mode" in which the neuron emits spikes sequentially with an inter-spike interval (ISI) of
∆t = τref and a "freely evolving mode" between these bursts, during which the membrane
potential evolves freely in the subthreshold regime. Figure 2.9 shows a typical course
of the membrane potential of a LIF neuron in the HCS with its "bursting states" (gray
boxes) and "freely evolving states" (white area).
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With these two "modes", the activation function of a LIF neuron assumes the following
shape:

p (zk = 1) =

∑
n Pn · n · τref∑

n Pn · (n · τref + Tn)
. (2.65)

Here, Pn is the probability of the occurrence of an n-spike-burst, lasting for nτref . Tn
is the average time interval between the end of the previous n-spike-burst and the next
spike. Summing over the contributions of all possible burst lengths, the nominator in
Equation 2.65 represents the mean bursting time of the neuron, while the denominator is
the sum of both, the mean bursting time and the mean free evolving time, equaling the
total propagation time of the LIF neuron.
As we have seen in the previous paragraph, the free membrane potential of a neuron in the
HCS can be described by an OU process. Thus Pn and Tn can be calculated iteratively
making use of the PDF of the OU process (see Equation 2.58). The pink areas in Figure
2.9 depict the PDFs of the membrane potential of a LIF neuron in a HCS after it leaves
the refractory state.
We will in the following denote the spike times of within an n-spike-burst by t0, ..., tn−1

and define Vi := V (ti). For an arbitrary burst length n we can then write:

Pn = p (Vn < Vth, Vn−1 ≥ Vth, ..., V1 ≥ Vth|V0 = Vth) (2.66)

=

(
1−

n−1∑
i=1

Pn

)∫ ∞
Vth

dVn−1 p (Vn−1|Vn−1 ≥ Vth)

[∫ Vth

−∞
dVn p (Vn|Vn−1)

]
Tn =

∫ ∞
Vth

dVn−1 p (Vn−1|Vn−1 ≥ Vth)

[∫ Vth

−∞
dVn p (Vn|Vn < Vth, Vn−1)T (Vn, Vth)

]
,

where p(Vi|Vi−1) = f(V, τref |Vi) from Equation 2.58 and p(Vi|R(Vi)) is the renormalization
of the PDF of Vi for all values that fulfill the condition R(Vi) (dark pink areas in Figure
2.9). For example, the probability of a burst of length n = 1, which is the probability that
the neuron enters the "freely evolving mode" after a spike, yields according to Equation
2.66:

P1 = p (V1 < Vth|V0 = Vth) =

∫ ∞
Vth

dV0 p (V0|V0 ≥ Vth)

[∫ Vth

−∞
dV1 p (V1|V0)

]
. (2.67)

By analogy, the average interval between the previous "burst" of length n = 1 and the
next spike amounts to:

T1 =

∫ ∞
Vth

dV0 p (V0|V0 ≥ Vth)

[∫ Vth

−∞
dV1 p (V1|V1 < Vth, V0)T (V1, Vth)

]
. (2.68)

T (Vi, Vth) from Equation 2.66 denotes the mean first passage time (FPT) which represents
the duration of reaching the threshold Vth for the first time when starting from Vi. If we
assume a nonzero effective time constant τeff � τsyn, we can find a first-order correction
to the average FPT using an expansion in

√
τeff/τsyn, according to Brunel and Sergi
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Figure 2.9: The blue curve shows a typical course of the membrane potential V (t)
of a LIF neuron in the HCS, while the red curve denotes its effective
membrane potential Veff (t). Each time the membrane potential crosses
the threshold voltage Vth, the neuron is set refractory (gray box ) and
its membrane potential is fixed to the reset potential Vreset. The gray
boxes represent the "bursting mode" of the neuron, while the white area
denotes the "free evolving mode". After the refractory period, the neuron
is instantaneously pulled towards Veff (t) due to the small τeff . The pink
area hereby represents the predicted probability distribution of Veff (t).
The renormalized dark pink subthreshold area is used in Equation 2.66.
The figure is drawn with inspiration from Petrovici et al. [2013].

[1998]:

T (V0, Vth) = τsyn

√
π

∫ Vth,eff−µ
σ

V0−µ
σ

dx exp
(
x2
)
· (erf (x) + 1) , (2.69)

with the initial membrane potential V0 and Vth,eff ≈ Vth − ζ(0.5)
√
τeff/(2τsyn). Here, ζ

denotes the Riemann Zeta function. The values µ and σ are taken from Equations 2.63
and 2.64.
Petrovici et al. [2013] show that the predicted activation function from Equation 2.65
closely reproduces the desired sigmoidal shape which is essential to perform neural
sampling with LIF neurons.
The translation of membrane potentials from the LIF domain to the domain of abstract
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stochastic neurons from Section 2.1.5 is provided by

u =
V (t)− Vk

b=0

α
, (2.70)

where Vk
b=0 represents the value of Vk for which the probability p(zk = 1) to find the

neuron in the refractory state is 1
2 . The factor α denotes the scaling factor between the

two domains and can be deduced by fitting a logistic function to p(zk = 1) in Equation
2.65 and determining its slope.
The linear transformation of the membrane potentials in Equation 2.70 allows to directly
specify the parameter translation of the bias bk of neuron νk and the weight Wki from
neuron νi to νk from the abstract and the LIF domain. The average free membrane
potential Vk

b of the LIF neuron νk that fulfills p (zk = 1) = σ (bk) (see Equation 2.19)
amounts to

Vk
b

= αbk + Vk
b=0

. (2.71)

The translation of synaptic weights Wki from the domain of abstract stochastic neuron to
synaptic weights wki between LIF neurons is achieved in the following fashion. The PSP
of a LIF neuron with conductance-based synapses in the HCS has the approximate shape
[Bytschok , 2011]:

VPSP(t) =
wki

(
Erev
k − Veff

)
Cm ·

(
1
τsyn
− 1

τeff

) · [exp

(
−
t− tspike

τeff

)
− exp

(
−
t− tspike

τsyn

)]
, (2.72)

with the synaptic weight wki, the synaptic time constant τsyn and the mean effective
membrane potential from Equation 2.49. For both the LIF domain and the abstract
domain, a presynaptic spike must have the same impact on the postsynaptic neuron. This
is realized by matching the integrals of individual PSP:

1

α

∫ τref

0
VPSP(t)dt︸ ︷︷ ︸

LIF neuron

!
= Wki · τref︸ ︷︷ ︸

Stochastic neuron

. (2.73)

Evaluating the integral in Equation 2.73 results in the following weight translation between
the abstract and the LIF model:

Wki =
wki (Erev

k − µ)

αCmτref

(
1
τsyn
− 1

τeff

) · [τsyn

(
e
− τref
τsyn − 1

)
− τeff

(
e
− τref
τeff − 1

)]
. (2.74)

Therefore, the weight translation factor β from the abstract domain to the LIF domain

wki = β ·Wki (2.75)

can be expressed as

β =
αCmτref

(
1
τsyn
− 1

τeff

)
(
Erev
k − µ

) ·
[
τsyn

(
e
− τref
τsyn − 1

)
− τeff

(
e
− τref
τeff − 1

)]−1

. (2.76)

29



2 Materials and Methods

By definition, in the abstract neural model from Section 2.1.5, the rectangular PSPs are
renewing, which means that the contribution to the membrane potential from an afferent
neuron is binary (see Equation 2.22). In the context of LIF neurons, however, static
synapses lead to additive conductance courses and thus nonlinearly additive superpositions
of PSPs.
The TM mechanism (see Section 2.1.6) offers a possible workaround for LIF neurons.
Setting τfacil = 0 in Equation 2.44 leads to un+1 = U0. With the choice U0 = 1 and
τrec ≈ τsyn for example, the parameter R, which describes the recovery of the synaptic
strength after emission of an action potential, yields

Rn+1 = 1− exp

(
− ∆t

τsyn

)
, (2.77)

where ∆t is the time interval between the nth and the (n + 1)th spike and τsyn the
synaptic time constant of the LIF neuron. The condition in Equation 2.77 is equivalent
to approximately renewing PSPs.

2.2 Neuromorphic Hardware

With increasing knowledge about the dynamics of biological neural networks it became
clear that the operation principles of the brain are fundamentally different from those of
traditional von Neumann machines. The question therefore naturally arose to which extent
traditional computing architectures are useful instruments for implementing large-scale,
biologically inspired models of cortical tissue. As an alternative to the von Neumann
architecture, the so-called "neuromorphic" concept was proposed in the early 80s. In its
widest sense, as it is used today, the term "neuromorphic" describes a computational device
which mimics some aspect(s) of biological neural networks, be it in terms of architecture
or dynamics. In a more narrow sense, as originally intended by its original proponents (see
e.g. Mead and Mahowald [1988]; Mead [1989]), neuromorphic devices represent physical
implementations of their biological archetype, i.e., they contain electronic components
which behave equivalently to neurons and synapses, albeit on a different time or voltage
scale.
By adopting design principles directly from biological brains, several important functional
consequences are expected. Massively parallel by nature, a physical model of brain tissue
should exhibit a similar defect tolerance, much in contrast to traditional computers. Fur-
thermore, the inherent reduction in power consumption would foster excellent scalability,
with the potential to emulate large cortical areas, or even an entire brain. Through
miniaturization, VLSI technology also offers an additional advantage: due to the small
size of the involved components, neuromorphic circuits can operate with a significant
speedup compared to the biological circuits they emulate, with obvious benefits for large
parameter sweeps or long simulation (or rather, emulation) runs [Schemmel et al., 2010].
Within the FACETS project and its successor BrainScaleS, several such neuromorphic
platforms have been developed. The current wafer-scale system can emulate networks
with up to 180,000 neurons and 40 million synapses [Schemmel et al., 2010]. However, it
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Figure 2.10: Schematic diagram of the Analog Network Core (ANC) from Schemmel
et al. [2010]. The 512 membrane circuits, the so-called DenMems, are
located at the center of the chip. The largest part of the chip is covered
by two synapse arrays of 256 rows and 224 columns. One half of the
membrane circuits receives input from the left synapse array, the other
half from the right one. Each membrane circuit receives input via two
different synapse lines. Each column of the synapse array contains a
synapse driver which can receive up to 64 different presynaptic inputs.
The synapse driver converts the digital spike event into an analog
current pulse and transmits it to the appropriate membrane circuit.
The neuron builder can combine multiple DenMems to neurons with
multiple compartments. Weight adaptation is implemented in terms of
short-term depression and facilitation (STP) and spike-timing dependent
plasticity (STDP).

is designed in a scalable fashion, allowing the interconnection of multiple such wafers to
form a significantly larger neuromorphic machine.
At the time this thesis is written, the infrastructure of this large-scale neuromorphic
system is still in active development. However, a demonstrator setup is available, which
consists of the centerpiece of the prospective hardware system, the so-called HICANN
chip, and the identical communication infrastructure which will be present in the future
system [Schemmel et al., 2012]. This setup has been used for the experiments described
in Chapter 6.
In the following, we will start with a detailed description of the circuitry of the HICANN
chip in Subsection 2.2.1. Afterwards, in Section 2.2.2, the components of the demonstrator
setup are described. Finally, Subsection 2.2.3 gives a brief outlook on the Hybrid
Multiscale Facility (HMF), a combination of a large-scale neuromorphic system and a
high performance computing part, which is being currently developed.
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Figure 2.11: The modular structure of a membrane circuit of the ANC. Each
module represents a subcircuit which models the respective variables
and/or dynamics of the AdEx neuron (see Section 2.1.6). Additionally,
dedicated subcircuits allow the injection of an external current or the
readout of the membrane potential. Each generated spike is fed back into
the circuit to reset the membrane potential and increase the adaptation
current. The figure is taken from Schemmel et al. [2010].

2.2.1 The HICANN Chip

The HICANN chip is the centerpiece of the neuromorphic hardware system developed
within the frame of the BrainScaleS project [Schemmel et al., 2010]. It consists of two
parts: the Analog Network Core (ANC) and the surrounding digital bus system. The
ANC contains the membrane circuits with floating gate cells, which store the parameter
values of the model, and two synapse arrays, which manage the transport of analog
current pulses to the membrane circuits and occupy the largest part of the ANC. The
ANC is surrounded by a bus system, the so-called Layer 1 (L1), which regulates the
correct transduction of digital spikes between two neurons on the same HICANN chip as
well as between neurons located on adjacent chips.
The following paragraphs offer a detailed description of the ANC, the neuron and synapse
integration and the digital circuitry on the HICANN chip. The major information is
taken from Schemmel et al. [2006], Schemmel et al. [2010], Millner [2012] and the internal
HICANN documentation [Schemmel et al., 2014]. These details are of central importance
to the experiments in Chapter 6.

The Analog Network Core of the HICANN chip Figure 2.10 displays a schematic of
the ANC. The ANC contains 512 membrane circuits, the so-called DenMems, which
emulate the dynamics of the AdEx neuron model (see Section 2.1.6). The circuits are
divided into two subgroups: one group of 256 circuits receives synaptic input from the
left synapse array, the other group from the right synapse array. The 512 circuits on the
chip are subdivided into 8 blocks of 64 neurons each. The neuron builder can combine up
to 64 DenMems of the same block to single neurons with multiple compartments.
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The largest part of the die is occupied by two synapse arrays, each of which consists of
256 rows and 224 columns. Each column contains one synapse driver which can receive
up to 64 different inputs from the same and adjacent HICANN chips. In total, about
115, 000 synapse circuits are integrated on one HICANN chip. Each membrane circuit
receives analog input via two different synapse lines for which the reversal potentials can
be set individually.
The following paragraphs outline the integration of the membrane and synapse circuits
and the digital circuitry on the HICANN chip.

Neuron Integration Figure 2.11 illustrates the modular architecture of a membrane
circuit of the HICANN chip [Schemmel et al., 2010]. Each DenMem consists of several
spatially divided subcircuits, each of which emulates one particular component of the
dynamics of the AdEx model (see Section 2.1.6). These are:

• two synaptic input circuits,

• a leakage circuit,

• an exponential circuit, which models the rise of the membrane potential during the
upswing of an action potential,

• an adaptation circuit, which models the adaptation current

• and a circuit which generates digital spike events whenever the membrane potential
crosses some defined threshold.

The digital spike signal is sent to the digital part of the chip. Additionally, the same spike
signal is fed back into the membrane circuit to reset the membrane potential and the
adaptation current. An additional subcircuit allows the injection of an external current
and the readout of the membrane potential of single neurons via two analog readout
channels [Millner , 2012]. One of two different membrane capacitances can be selected for
one block of membrane circuits [Schemmel et al., 2014].
All 18 parameters of the AdEx model are stored as 24 electrical parameters in 10-bit
analog floating gate cells (see Table A.6) which are also located in the center of the ANC
and which bias the membrane circuits [Srowig et al., 2007], depending on their voltage
(0 to 1.8 mV) or current (0 to 2.5µA) value. The parameters which are represented by
the floating gate cells can be subdivided into individual neuron parameters and global
parameters which are shared by the membrane circuits of one block. The floating gate
cells are organized in 4 arrays, each containing 129 columns with 24 rows. Of these, 128
columns are used to store individual neuron parameters, while the last column stores
the values for global parameters such as the reset voltage of the block of neurons, the
maximum synaptic conductance of the synapse row and the STDP parameters. The main
advantage of the floating gate technique is the slow decay of the stored value which is in
the range of several hours [Srowig et al., 2007].
However, the current design of the system entails several drawbacks which are crucial
for this thesis. One drawback of the complex circuitry are leakage currents. Each of
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Figure 2.12: Simplified block diagram of a synapse array of the HICANN chip, on the
left, and a schematic of the connection between the synapse driver and
the synapse lines, on the right. Each synapse driver receives digital spike
events, consisting of a 6 bit address, from up to 64 different presynaptic
sources. The first 2 bits are used to address one of the four strobe lines,
while the last 4 bits determine the destination DenMem of the spike.
An activated synapse line sends a square current pulse of an adjustable
length τSTDF and amplitude wi(t)× gmax(t), where wi is the individual
4 bit synaptic weight and gmax the row-wise maximum conductance.
The figure is taken from Schemmel et al. [2008].

the subcircuits generates unwanted leakage currents, which are of significant amplitude
compared to functionally relevant currents, such as those generated by synaptic interaction
or the LIF leak current gl (V − El) itself.
In summation, these effects may completely disturb the expected membrane dynamics.
Due to varying leakage currents, a complete disconnection of single subcircuits, such as a
reduction of the AdEx model to the simpler LIF model by "turning off" the exponential
circuit, can not be ensured for every membrane circuit on the HICANN chip. One further
drawback lies in the limited precision of the floating gate cell programming, which never
reaches the ideal value of 10 bits. Reprogramming the floating gate cells always leads
to small deviations in the resulting voltages and currents, thereby causing significant
trial-to-trial variability.

Synapse Integration The integration of the synapse circuits is addressed in Schemmel
et al. [2008] in detail. The following passages summarize the most important aspects.
The output of the membrane circuit is a digital spike event which consists of a time stamp
and a 6 bit address. The time stamp is used for the correct recording of the spike events
and for Spike-Timing Dependent Plasticity (STDP) [Song et al., 2000; Friedmann, 2013],
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while the address is used for routing the spike to the correct target neurons. The first
2 bits of the address are used to choose one of four strobe lines, which initiate current
pulses of length τSTDF. The duration of these strobe pulses can be modulated by a STP
mechanism (see Section 2.1.6). The last 4 bits of the address are transmitted to the
synapse array and used to address the 256 DenMem circuits of a half of the HICANN
chip. Figure 2.12 depicts a block diagram of a synapse array of the HICANN chip and a
schematic of the connection between the synapse driver and the synapse lines.
The synaptic weights wi(t) are stored by a 4 bit SRAM cell. A 4 bit DAC translates the
weight wi(t) into an output current pulse. The maximum conductance gmax, which can
be set row-wise by a programmable analog floating-gate cell, determines the scale for the
synapse DAC [Schemmel et al., 2008]. The output signal of a synapse is a square current
pulse with amplitude wi(t)× gmax(t) and duration τSTDF.
The synapses are connected to the DenMem circuits via 2 lines (blue lines in Figure 2.12),
respectively. The current pulses of all synaptic connections to one DenMem circuit sum
up to two time-varying total input currents. The DenMem circuit translates the total
input currents into time-varying conductance traces, emulating two different groups of
ion channels, the reversal potentials of which can be programmed arbitrarily [Schemmel
et al., 2008]. For instance, one ion channel can represent the excitatory input and one the
inhibitory input.
One drawback of the synaptic circuit induced by the nonlinearity of conductance-based
models is the difficulty to calibrate the synaptic drivers. The correct calibration of the
synaptic drivers requires a successful calibration of the synaptic reversal potentials of
the membrane circuits. At the time this thesis is written, the calibration of the synaptic
drivers and the reversal potentials is in active development. Synaptic weights have to
be set by hand based on the PSPs they generate on the postsynaptic membrane, which
obviously leads to limited precision and reproducibility.
Furthermore, a mismatch of the parameter range of the maximum synaptic conductance
gmax shrinks the usable input current pulse height [Millner , 2012]. Due to this mismatch,
in the case of measurements with large biasing parameters in the floating-gate cells,
the membrane potential saturates at some maximum and minimum voltage because of
saturating synaptic weights. This mismatch will be crucial for the results in Chapter 6 of
this thesis.

Digital Circuitry In the following, it is important to differentiate between the hardware
time frame (HT) and the equivalent biological time (BT). The ratio between the two
is defined by the acceleration factor of the hardware, which is usually assumed as 104

[Schemmel et al., 2010]. The membrane circuits generate digital spike signals which
are synchronized to an internal reference clock. The frequency of the reference clock is
250 MHz and thus allows a temporal resolution of 4 ns HT (= 40µs BT). Spikes, which
are emitted closer to each other, are shifted in time. These digital signals then have to be
routed to the appropriate destination. One possible destination are synaptic drivers on the
same or adjacent HICANN chips. For this, the asynchronous serial on-chip Layer 1 (L1)
routing is used, which is composed of parallel Low Voltage Differential Signaling (LVDS)
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Figure 2.13: The merger tree handles the routing of digital spike events on the
HICANN chip. The tree structure allows to combine outputs from
the membrane circuits and the on-chip background event generators
in an arbitrary fashion. The lower row of the merger tree contains the
so-called DNC mergers. The DNC mergers establish a communication
interface with the DNC: Spike events can be sent from the HICANN
chip to the DNC to record spike patterns, as well as from the DNC to
the HICANN chip to enable the generation of a pre-defined spike input
for the membrane circuits. The figure is taken from Kononov [2011].

lines. Signal repeaters and switch matrices ensure that the signal reaches its target. The
delays of the synaptic connections between two neurons are fixed by design to about
0.12µs HT (= 1.2 ms BT).
The other possible destination is the so-called Digital Network Chip (DNC). The DNC
is a digital ASIC which allows to record the spike patterns of neurons of the HICANN
chip and send them via an FPGA board to the host computer [Schemmel et al., 2010].
Conversely, it allows to generate a predefined spike pattern on the host computer and
route it to arbitrary membrane circuits. The DNCs together with the FPGA boards
constitute the so-called Layer 2 (L2) routing, which is synchronous and packet-based.
The so-called merger tree, which is depicted in Figure 2.13, enables an efficient routing of
digital signals on the HICANN chip. There are 8 different mergers in the upper row of
the merger tree, one for each block of membrane circuits. These mergers allow to merge
the digital spike events of the neurons with spike events from one of 8 Background Event
Generators (BEG) which are placed on the HICANN chip.
The BEGs can generate periodic or pseudo-random Poisson-distributed spike patterns
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Figure 2.14: The demonstrator setup, which was used to perform the hardware ex-
periments in the course of this thesis [Schemmel et al., 2012]. It consists
of a System Emulator Board (SEB) which connects up to 8 HICANN
chips to a DNC. Two FPGA boards provide the connection to the
host computer and the power supply. Additionally, an ADC board (not
shown here) is located on the SEB which allows the simultaneous digital
readout of the membrane potential of two neurons of one HICANN chip.
The demonstrator setup establishes a communication infrastructure
equivalent to that of the FACETS Wafer-Scale Hardware System, the
infrastructure of which is currently in active development. The figure is
taken from Millner [2012].

with a temporal resolution of 4 ns HT [Kononov , 2011]. The pseudo-random input is
generated via a 16-bit Linear Feedback Shift Register (LFSR). Therefore, the generated
Poisson-distributed spike pattern is completely deterministic and repeats after it has
occupied its 216 = 65535 states, which is equivalent to about 262µs HT (= 2.62 s BT)
[Schemmel et al., 2014]. Furthermore, each of the 8 BEGs on one HICANN chip occupies
the same sequence of states. However, the starting point of this sequence can be varied
by choosing an arbitrary seed between 0 and 65535.
The lower row of the merger tree (see Figure 2.13) contains the so-called DNC mergers.
At this point, digital signals can leave the HICANN chip towards the DNC or sent to the
HICANN chip via the DNC.
The following section presents the hardware setup which was used to perform the experi-
ments in Chapter 6. Particular focus is placed on the achievable data rates between the
digital and the analog parts of the system.

37



2 Materials and Methods

2.2.2 Demonstrator Setup

This section offers an overview of the so-called demonstrator setup [Schemmel et al., 2012]
which was used to execute the experiments in Chapter 6 of this thesis. The demonstrator
setup aims at providing the identical communication infrastructure to the HICANN chip
(see Section 2.2.1) that will be present in the prospective Hybrid Multiscale Facility (HMF,
see Section 2.2.3).
In the following, first, the demonstrator setup will be described. Afterwards, the commu-
nication infrastructure between the HICANN chip and the host computer will be outlined
with a major focus on the achievable communication bandwidth of the setup.

Setup Figure 2.14 illustrates the demonstrator setup, a scaled-down version of the
FACETS Wafer-Scale Hardware System, which is currently in active development [Schem-
mel et al., 2012]. The setup consists of a System Emulator Board (SEB), 2 FPGA boards,
up to 4 DNCs and up to 8 HICANN chips. The HICANN chips are bonded to the SEB,
which carries the DNCs. The SEB is plugged into the so-called iBoard, which provides
the necessary power supply and the clock for the HICANN chip [Schwartz , 2012]. The
iBoard is connected to another FPGA board which handles the communication with the
host computer via Ethernet. Furthermore, an ADC board has been added to the setup,
which allows the simultaneous digital readout of the membrane voltage of two arbitrary
neurons of the HICANN chip.

Communication Infrastructure The communication bandwidths of the prospective
HMF system (see Section 2.2.3) and, therefore, also of the demonstrator setup are
addressed in Hartmann et al. [2010]. The following passages summarize the most important
aspects.
The FPGA board which handles the communication of the HICANN chip with the
host computer has a 2 GBit/s Ethernet connection to the host, with a communication
packet size of 64 Bit, containing 2× 28 Bit pulse events and additional configuration bits.
Assuming 10Hz pulse rate in biological real time for each of the 512 possible inputs to a
single HICANN, a total rate of 1.6 Gevents/s has to be transmitted, which is an order
of magnitude more than can be handled by the host interface [Hartmann et al., 2010].
Therefore, a 4 GB local playback memory which resides on the FPGA board is used to
load the spikes before the simulation is started.
The communication bandwidth between the FPGA board and the DNCs amounts to
8 GBit/s with packet sizes of 128 Bit, containing 4 × 24 Bit pulse events, configuration
bits and error detection bits. The data rate between the DNC and one HICANN chip
is 2 GBit/s. At a clock frequency of 250 MHz and packet size of 24 Bit, it allows for the
transmission of about 27.75 Mevents/s. This means that, at the standard acceleration
factor 104 compared to biological real-time, the maximum frequency of a regular spike train
which can be transmitted to the HICANN chip is about 2775 Hz (biological frequency).
Regarding the experiments in Chapter 6, much lower frequencies in the range of 200 Hz
per Poisson stimulus will be applied to ensure that, on the one hand, spikes which are
closer to each other than the 4 ns temporal resolution are not shifted in time by more
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Figure 2.15: The neuromorphic part of the HMF with the wafer as main component.
One wafer consists of about 180,000 neurons and more than 40 million
synapses. Additionally, the infrastructure of the wafer is depicted which
consists of a large PCB with modules which handle the wafer-to-wafer
and the wafer-to-host communication. Aluminum frames stabilize the
system and act as heat sinks. The figure is taken from [Brüderle et al.,
2011].

than about 100 ns hardware execution time. On the other hand, multiple neurons can be
simultaneously supplied by multiple independent Poisson sources.

2.2.3 Hybrid Multiscale Facility

The Electronic Vision(s) group at the University of Heidelberg and the group for Parallel
VLSI Systems and Neural Circuits at the TU Dresden are currently developing the
so-called Hybrid Multiscale Facility (HMF), which is a system that goes far beyond the
single chip level [Schwartz , 2012]. The HMF will consist of two parts: a neuromorphic
part of 6 interconnected wafers containing up to 1.2 million membrane circuits and about
260 million synapse circuits, and a modern high-performance computer cluster which
provides the communication and control of the neuromorphic system [Schwartz , 2012].
The following brief discussion will focus on the characterization of the neuromorphic part
of the system, which comprises the wafers and their communication environment.

Wafer The neuromorphic part of the HMF will contain 6 wafer modules. Figure 2.15
depicts one of the wafer modules and its associated communication, control and power
structures. The silicon wafer has a diameter of 20 cm and is fabricated using the 180 nm
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UMC CMOS process [Schemmel et al., 2010]. It consists of 384 HICANN chips (see
Section 2.2.1) which are organized in groups of 8 chips, the so-called reticles. Each wafer
is left uncut after the fabrication and during the so-called post-processing step the chips
are connected directly on the wafer. With the help of this "third spatial dimension",
very large communication densities between the chips are realized. Altogether, one wafer
contains about 180, 000 membrane circuits and 40 million synapse circuits.

Communication Infrastructure The wafer is connected to a Printed Circuit Board
(PCB) which provides the necessary power supply for the wafer and connects it to the
digital communication part. The digital communication part has the same hierarchy and
identical bandwidths as the communication part of the demonstrator setup described in
Section 2.2.2. At the lowest hierarchical level are the 48 DNCs, one DNC per reticle. 4
DNCs are connected to 1 FPGA board, respectively, which amounts to 12 FPGA boards
for the whole wafer. The FPGA boards are connected to the host computer and to each
other via a 10 GBit/s Ethernet connection. For further information, see Hartmann et al.
[2010].

2.3 Software Framework

This section describes the software environments which have been used throughout this
thesis. It is divided into two subsections.
Subsection 2.3.1 presents the simulator-independent metalanguage PyNN which, together
with the simulator NEST [Diesmann and Gewaltig , 2002] as its back-end, has been used
to run the simulations of networks of LIF neurons in Chapters 3, 4 and 5.
Subsection 2.3.2 deals with the Hardware Abstraction Layer (HAL), the stack of software
modules which allows to run experiments on the demonstrator setup described in Section
2.2. In particular, the hardware experiments in Chapter 6 have been executed via the
Python-based interpreter PyHAL, which wraps the native HAL language.

2.3.1 Simulation of Neural Networks

Plenty of simulation environments have emerged in computational neuroscience in the
past 20 years [Brette et al., 2007] and nowadays serve as non-invasive alternatives for
the common in-vivo and in-vitro experiments in neuroscientific research. All of these
software simulators come with their individualities: the level of detail of neuron and
network models, the simulation strategy, the algorithms and the native programming
language to name some of these. They offer the neuroscientific modeler a diverse pool of
tools to set up the desired networks models.
However, with the diversity of software simulators, the lack of reproducibility of neurosci-
entific experiments increases [Davison et al., 2008]. The code of a model which has been
written for one particular simulation environment has to be, in the worst case, completely
rewritten in order to fit into another simulator, since network components and parameters
are expressed differently in the different environments.
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To overcome this lack of reproducibility, the simulator-independent software environment
PyNN has been established [Davison et al., 2008] and remains in active development
within the BrainScaleS project. The following paragraph gives a brief introduction of
PyNN and its API. Afterwards, the simulator NEST is described, which is used as PyNN
back-end throughout this thesis.

PyNN PyNN [2014] is a Python package [Python, 2014] for simulator-independent
modeling of neural networks. PyNN is designed with the main aim to "write the code
once and run it on any supported simulator or hardware device without modification"
[Davison et al., 2008].
PyNN exploits the fact that many of the available non-commercial software simulators
have, additionally to their native interpreter language, a Python interpreter which offers
the equivalent functionality to the native language. Figure 2.16 gives an overview of the
simulation and emulation back-ends which PyNN currently supports: NEST [Diesmann
and Gewaltig , 2002], NEURON [Hines and Carnevale, 2003], PCSIM [Pecevski et al., 2009],
Brian [Goodman and Brette, 2008], NeuroML [Gleeson et al., 2010] and the FACETS and
BrainScaleS hardware systems, described in Section 2.2. However, due to the still ongoing
development of suitable calibration and routing routines of the current neuromorphic
hardware system (see Section 2.2), a PyNN-level implementation was infeasible. Instead,
the hardware experiments were executed via the native interpreter language StHAL (see
Section 2.3.2).
The PyNN API can be divided into two levels of abstraction: the low-level API and the
high-level API [PyNN , 2014]. The low-level procedural API provides a flexible access
to individual neurons and synapses via functions like create(), connect() and record().
The high-level object-oriented API provides classes like Population() and Projection().
These classes allow the modeling of neuron populations, layers or columns with arbitrary
connectivity algorithms, such as all-to-all connections, random or distance-dependent
connectivity.
The PyNN API contains a huge library of models of neurons, synapses and synaptic
plasticity which have been proven to show the same dynamics on all supported simulation
back-ends [Davison et al., 2008].

NEST The software simulations in the course of this thesis have been carried out using
PyNN with the simulator NEST as a back-end.
The NEST software environment [Diesmann and Gewaltig , 2002] mainly focuses on the
simulation of large networks of neurons with a biologically realistic connectivity pattern,
without going into the morphological details of individual neurons. Biologically realistic
connectivity patterns require an efficient representation and updating of synapses as
well as a parallelization of the network construction and its dynamics. Therefore, the
computational efficiency is of major interest for the NEST developers [Brette et al., 2007].
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Figure 2.16: Schematic of the simulator-independent modeling language PyNN from
Brüderle et al. [2011]. The software simulators NEST [Diesmann
and Gewaltig , 2002], NEURON [Hines and Carnevale, 2003], PCSIM
[Pecevski et al., 2009], Brian [Goodman and Brette, 2008], NeuroML
[Gleeson et al., 2010] as well as the FACETS and BrainScaleS neuro-
morphic hardware systems have been integrated into the PyNN concept.
The dashed frame comprises the interpreter levels of the hardware ab-
straction layer (HAL), which is currently in active development. The
HAL is the stack of software modules which will, in the future, provide
an automated translation between PyNN model descriptions and appro-
priate hardware configuration and control patterns. For further details,
see Brüderle et al. [2011].

2.3.2 Emulation of Neural Networks

The desired software framework for the neuromorphic hardware setup described in Section
2.2 has to comprise two general aspects: it has to hide as many hardware-specific details
as possible from the modeler on the one hand, and, on the other hand, provide an
intuitive access to the hardware system similar to that of common software simulators.
Therefore, a PyNN interface to the hardware system is currently in active development
(see Figure 2.16).
However, setting up an experiment in software distinctly differs from setting up exactly the
same experiment on the hardware system. Several additional facts have to be considered
when running experiments on hardware: the limited range of neurons and synapses,
the maximally available bandwidths, the spatial arrangement of neurons and synapses,
varying or even defect dynamics of membrane and synapse circuits due to floating gate
imprecisions or production faults during the fabrication process to name just a few.
Therefore, in order to be able to provide a reliable system for the end user, sophisticated
mapping and calibration routines have to implemented which are able to translate abstract
descriptions of neural networks to maps of membrane circuits on the hardware system
and parameters of single neurons, such as reversal potentials and time constants, to their
hardware representation.
At the time this thesis was written, the mapping and calibration routines were in active
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development. Thus, the experiments which were executed on the hardware system
throughout this thesis had to be setup by hand using the native interpreter of the
hardware system (HAL, see Figure 2.16). Setting up the experiments by hand involves
the searching of appropriate membrane and synapse circuits on the hardware setup and
the adjusting of floating gates cells such that the circuits exhibit the expected dynamics.
The following paragraph gives a brief introduction to the HAL interpreter and its major
classes and functions. Further information can be found e.g. in Brüderle et al. [2011].

The HAL Interface The dashed frame in Figure 2.16 comprises the interpreter levels
of the so-called hardware abstraction layer (HAL). The HAL is the batch of software
modules which will provide an automated translation between PyNN model descriptions
and correct hardware configuration and control patterns in the prospective hardware
system [Brüderle et al., 2011]. In its current version, the hardware system is accessed
via calling the native classes and functions of the HAL API from its Python layer, the
so-called PyHAL.
At the lowest level, the HAL interfaces with the hardware assembler via various C++
classes and uses the ARQ protocol [Peterson and Davie, 2003] to establish a fast and
reliable communication. The HAL can be subdivided into two different interfaces: the
stateless HALbe interface and the stateful StHAL interface.
The major task of the HALbe interface is the specification of a coordinate system for
each single component of the hardware system described in Section 2.2. The coordinate
system represents several addressable layers reaching from wafers, to FPGAs and DNCs
connected to the wafer, to reticles on the wafer, to HICANN chips on the reticle, and
finally to membrane circuits, floating gate cells, synapse circuits, repeaters and switch
matrices on the HICANN chip. For detailed information, see Schemmel et al. [2014].
The stateful StHAL interface provides, from the end-user perspective, methods which
enable to e.g. write floating gate cells, set up the configuration of the BEGs and the
merger tree, change the state of repeaters and switches on the HICANN chip, configure the
synapse drivers, inject a current into the membrane of a neuron, read out the membrane
potential and the output spikes of a neuron or send spikes from the host computer via
the FPGA boards to the chip (see Schemmel et al. [2014]).
The Boost.Python library [Abrahams and Grosse-Kunstleve, 2003] is used to wrap the
original C++ classes and functions to Python, yielding the Python control layer PyHAL
[Brüderle et al., 2009]. PyHAL is the highest abstraction level of the hardware system
and provides the desired interpreter-based interface to the hardware.
A module for the integration of this interface into the meta-language PyNN (see Sec-
tion 2.3.1) is implemented, but not utilizable at the time this thesis is written due to
the lack of reliable mapping and calibration routines, which are in active development.
In the future, the mapping of a PyNN network onto the configuration space of the
wafer-scale hardware system will be divided into three automated processing steps: the
placing of neurons onto the available circuitry, the configuring of the routing infrastructure
on the device, and the transformation of 18 neuron and synapse parameters into the
corresponding 24 hardware parameters [Brüderle et al., 2011].
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3 Characterization of LIF Sampling from
Boltzmann Distributions

The characterization of LIF sampling from Boltzmann distributions is an essential starting
point for the remainder of this thesis. We get used to the crucial parameters of LIF
neurons and find out the limits of LIF sampling from Boltzmann distributions. Here, we
especially focus on the question: how reliable are the sampling results of LIF neurons from
Boltzmann distributions with large weights and biases? Since both implementations of
Bayesian Networks with spiking neurons require large weights and biases (see Section 2.1.5)
these results will be useful for prognosticating the expected performance of LIF sampling
from Bayesian Networks.
Section 3.1 describes the necessary calibration procedure which aims at finding the
correspondence of the effective membrane potential of a conductance-based LIF neuron
and the probability to find the neuron in the refractory state. For this, the effective
membrane voltage of a LIF neuron in a spiking noisy environment will be varied and the
time fraction during which the neuron is refractory will be measured. The calibration
allows to set the resting potential of a LIF neuron according to the a priori known bias of
the associated RV.
Then we attend in Section 3.2 to Boltzmann Machines (BMs) of 5 RVs and test the
sampling performance of LIF neurons for randomly generated Boltzmann distributions
with different maximal weights and biases. For this, the parameters of the LIF neurons
are set with respect to simplicity and compatibility with fluctuations of the neuromorphic
hardware which will be used in Chapter 6. The same measure of the sampling quality is
performed for stochastic spiking neurons with ideal rectangular or alpha-shaped PSPs
(from Pecevski et al. [2011]) for reasons of comparison. In contrast to the ideal PSPs, LIF
PSPs are highly asymmetric and decay exponentially, thus, they significantly affect the
subsequent course of the membrane potential. These facts will turn out to delimitate the
LIF sampling performance.
Two randomly picked BMs, one with low weights and biases and one which incorporates
very large weights and biases, are then used in Section 3.3 to explore the sampling
performance under different parameter choices. The time constants τm, τsyn and τref are
in the major focus of this investigation since they define the shape of a PSP. Although it
will be impossible to draw general conclusions for all BMs from these results, we will see
that there are indeed individual task-dependent parameters, which enable LIF neurons to
sample with a satisfactory precision from Boltzmann distributions with large weights and
biases.
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3.1 Calibration of a LIF Neuron to Perform LIF Sampling
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Figure 3.1: The figure shows the calibration procedure which has to be established
once per set of neuron parameters. For 21 different effective potentials
Veff (blue) the fraction of time is measured which the neuron spends in
the refractory state (ON-state). The error bars are standard deviations
from 5 simulations of duration 200 s. The calibration via effective po-
tentials Veff , instead of resting potentials Vrest, is appropriate for the
conductance-based model, since it considers the impact of the additional
synaptic conductances provided by the background input on the mem-
brane potential. The green histogram shows the distribution of the free
membrane potential of a LIF neuron with parameters from Table A.1
and Vrest = −50 mV.

3.1 Calibration of a LIF Neuron to Perform LIF Sampling

A conductance-based LIF neuron has to be calibrated before it can be used for sampling
from probability distributions. Similar to the NCC in Equation 2.18, its mean membrane
potential has to be related to its probability pON to be in the refractory state.
For this, two essential steps have to be fulfilled. First we need to measure the activation
curve. A range of effective membrane potentials Veff is chosen which covers the whole
range of probabilities pON from 0 to 1. This is done by estimating the mean µV and the
spread σV of the free membrane potential based on the known mean synaptic input. In
the second step, these effective membrane potentials are translated into resting potentials
Vrest and corresponding leakage conductances gl. For each resting potential and leakage
conductance, pON can be measured from a single neuron simulation. A logistic function is
then fitted to the measured data and we directly obtain the value of the resting potential
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3 Characterization of LIF Sampling from Boltzmann Distributions

V
b=0, for which pON = 0.5, and the parameter α from Equation 2.70. This will allow for

translating Boltzmann biases and weights to resting potentials of neurons and weights of
the synaptic connections.

3.1.1 Finding a Good Range of Effective Membrane Potentials

Section 2.1.7 demonstrates that under balanced random synaptic stimulation the free
membrane potential of a LIF neuron can be described by an OU process. The histogram
in Figure 3.1 shows that the free membrane potential of the neuron then is Gaussian
distributed. Given the parameters of the neuron and the background input, the mean µV
and the spread σV of the free membrane potential amount to (see Equations 2.49 and
2.50):

µV =
glEl +

∑
i gi(t)E

rev
i

gtot(t)
, (3.1)

and
σ2
V =

∑
i

νiS
2
i

(
τeff

2
+
τsyn,i

2
− 2

τeffτsyn,i

τeff + τsyn,i

)
, (3.2)

with
Si =

wi (Erev
i − µV )

Cm

(
1
τeff
− 1

τsyn,i

) . (3.3)

Now we can estimate the range of effective membrane voltages which is needed to cover
the whole range of probabilities pON from 0 to 1. Under the assumption that in the
HCS the membrane potential will stay close to the threshold compared to the reversal
potentials the threshold voltage is used as central point for this range. Heuristically 4σV
turns out to be a good estimate for the spread of this range: it contains more than 99.9%
of the possible assignments of the free membrane voltage and likewise provides for an
optimal resolution of the growth of the activation curve. We choose NV equally spaced
potentials with a maximal effective membrane potential

Veff,max = Vth + 4σV

(
1 +

1

NV − 1

)
, (3.4)

and a minimal effective membrane potential

Veff,min = Vth − 4σV

(
1 +

1

NV − 1

)
. (3.5)

3.1.2 Measuring the Activation Curve

Now the membrane potential of the LIF neuron has to be set to these effective membrane
potentials and the fraction of time has to be measured during which the neuron stays
refractory. For this, the effective membrane potentials have to be transformed to resting
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3.2 LIF Sampling from Boltzmann Distributions of 5 Random Variables

potentials Vrest and additional leakage conductances w. The maximal and minimal
additional conductance wmax and wmin can be calculated:

wmax =
gtot(t)Veff,max − glVth −

∑
i gi(t)E

rev
i

Erev
exc − Veff,max

, (3.6)

and wmin = −wmax. For each of the equally spaced NV additional conductances w the
total leakage conductance amounts to g̃l = gl + |w|. The parameters of the LIF neuron
which determine the effective membrane potential are τm and Vrest, for which we get:

τm =
Cm

g̃l
, (3.7)

and

Vrest =

{
glVth+wErev

exc
g̃l

, if w ≥ 0
glVth−wErev

inh
g̃l

, if w < 0
. (3.8)

Following this procedure, we get NV different values for τm and Vrest. These values can
now be initialized for the LIF neuron in simulations. If the neuron elicits NS spikes in a
simulation of duration T , then the probability to be in the ON-state z = 1 is

pON =
NSτref

T
. (3.9)

The blue dots in Figure 3.1 illustrate the measured probabilities pON for NV = 21 different
effective membrane potentials for a LIF neuron with parameters from Table A.1. The
error bars indicate the standard deviations from 5 simulations of duration 200 s.
The measured data is fitted to a logistic function

σ

(
V − V b=0

α

)
=

1

1 + exp
(
−
(
V−V b=0

α

)) , (3.10)

and the parameters V b=0 and α can be directly extracted. Figure 3.1 shows a logistic
fit to measured data. For the intermediate part of the curve, the logistic function well
describes the data. However, at low voltages the transition to pON = 0 occurs faster. At
large voltages, the state pON = 1 is never reached because of non-zero time constants.

3.2 LIF Sampling from Boltzmann Distributions of 5
Random Variables

From previous experiments by e.g. Petrovici et al. [2013], it is known that the LIF
parameters in Table A.1 provide for a good sampling performance from BMs with low
weights and biases. We will conduct a closer investigation of BMs via the following
experiment: Different BMs of 5 RVs are randomly generated by drawing the weights
and biases from a uniform distribution [−wmax, wmax]. The parameter wmax is varied
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Figure 3.2: The LIF PSP shape (green) with τref = 30 ms and τsyn = 30 ms which was
used in the simulations in this section. In addition, the rectangular PSP
and alpha-shaped PSP, which are the original PSPs from Pecevski et al.
[2011], are plotted.

from 0.2 to 10.0 and for each generated BM a simulation of 200 s is run. The obtained
joint probability distribution is compared to the theoretical joint distribution via the KL
divergence (see Equation 2.15). This experiment is repeated 10 times for each wmax.
Figure 3.3 shows the results of the simulations. Furthermore, it shows results of the same
experiments with stochastic neurons with ideal rectangular PSPs and alpha-shaped PSPs
(see Figure 3.2). For each wmax, the LIF sampling result is does not reach the quality of
sampling with stochastic neurons: about one order of magnitude less precise than the
simulations using alpha-shaped PSPs and up to two orders of magnitude less precise than
the results with ideal rectangular PSPs. Furthermore, the sampling quality decreases
by three orders of magnitude for large weights and biases, which is to some degree also
observable in the experiments with stochastic neurons: The KL divergence between the
simulated and theoretical joint probability distribution for alpha-shaped PSPs decreases
by two orders of magnitude, for rectangular PSPs by about one order of magnitude.
The imprecise LIF sampling performance can be explained based on the PSP shapes
in Figure 3.2. Two differences are crucial: On the one hand, in opposite to the PSPs
of the stochastic neurons the LIF PSP is highly asymmetric, thus the firing probability
directly after an incoming spike is by far larger than the firing probability at the end of
the refractory period. On the other hand, the LIF PSP has an infinite duration and thus
influences the course of the membrane potential beyond τref . This influence obviously
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Figure 3.3: Performance measure of simulated Boltzmann machines (BMs) of 5 RVs
with neuron parameters from Table A.1. The performance is measured
via the KL divergence from Equation 2.15 for the joint probability
distributions of the five random variables. The three PSP shapes from
Figure 3.2 are used: the LIF PSP for LIF sampling and the rectangular
PSP and alpha-shaped PSP for neural sampling with stochastic neurons.
Each measured data point results from 10 simulation runs of 200 s each.
The confidence areas denote the standard deviations. For each new
data point, weights and biases are randomly chosen from the interval
[−wmax, wmax].

increases with larger weights.
However, the LIF-based Bayesian networks in Chapter 4 and 5 will require a reliable
performance for large weights and biases. Therefore, the following section deals with the
exploration of the parameter space of LIF neurons and with the question whether the
parameters in Table A.1 are the best parameters for all BMs.

3.3 Parameter Analysis of LIF Neurons for Boltzmann
Machines of 5 Random Variables

After some first unsatisfactory sampling results from BMs with large weights and biases in
Section 3.2, it is important to gain a sense for the dependence of the sampling performance
on the parameters of the LIF neurons. In the following, the standard parameters for LIF
neurons which will be used for sampling from BMs are purposely fixed. Afterwards some
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Figure 3.4: Color-coded KL divergence of the simulated and theoretical joint proba-
bility distribution for a simulated BM consisting of 5 RVs. The varied
quantities are the time constants τref and τsyn. Each square corresponds
to one simulation of duration 1000 s · τref/30 ms. The BM weights are
chosen from the interval [−wmax, wmax] and the BM biases from the
interval [−0.5 · wmax, 0.5 · wmax] once, then both are kept fixed during
the sweep.
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Figure 3.5: Color-coded KL divergence of the simulated and theoretical joint prob-
ability distribution for a simulated BM consisting of 5 RVs with the
varied quantities τm and τsyn. The parameter τref is 10 ms. Each square
corresponds to one simulation of duration 333 s. The BM weights and
biases are the same as in Figure 3.4.
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3.3 Parameter Analysis of LIF Neurons for Boltzmann Machines of 5 Random Variables

free parameters will be altered and the sampling performance will be measured for the
new parameter choices. In particular, it will be tested whether the sampling results can
be improved for BMs with large weights and biases by optimizing the neural parameters.

3.3.1 Parameter Selection

The parameters in Table A.1 have been selected for different reasons. First, there is the
reason of simplicity. The values for Vth, Erev

exc and Erev
inh are selected such that EPSPs and

IPSPs are approximately the same size. The STP parameters U0 and τrec are chosen in
order to provide for renewal PSPs (see Section 2.1.7).
Second, for mathematical reasons it is important to keep the quotient τeff/τsyn small such
that the first-order approximation of Equation 2.69 can be applied. This is achieved by
a very small membrane time constant τm and a very large synaptic time constant τsyn.
Finally, the parameters Cm, Vreset and the background input rates are chosen such that
they match the constraints of the neuromorphic hardware which will be used in Chapter
6.

3.3.2 Parameter Optimization for Sample Boltzmann Machines

In the following an extensive parameter analysis of LIF neurons is provided based on the
LIF sampling results from two different Boltzmann distributions. The distributions are
randomly generated once, by uniformly drawing weights from the interval [−wmax, wmax]
and biases from [−0.5 · wmax, 0.5 · wmax], and kept for all experiments. For the first BM
the maximum weight is wmax = 1.5, so only small weights and biases are allowed.
The KL divergence of the product of theoretical marginals and the theoretical joint
distribution is DKL(pPOM||ptheo) = 0.02. This result is taken as a worst case scenario
because it assumes independence among the RVs. The second BM has wmax = 10.0 and
also allows for large weights and biases. Its KL divergence of the product of theoretical
marginals and the theoretical joint distribution is DKL(pPOM||ptheo) = 2.03.
If not explicitly mentioned, the standard parameters of the following simulations are
taken from Table A.1. The experimental durations of the simulations are chosen for
reasons of comparability. The duration of a simulation with LIF neurons with a refractory
time τref = 30 ms is fixed to 1000 s for this chapter. For other τref the duration of the
simulation obviously has to be 1000 s · τref/30 ms such that the LIF neuron has the same
number of opportunities to change the state of its corresponding RV.
Figure 3.4 shows the LIF sampling results for different choices of the refractory time
constant τref and the synaptic time constant τsyn. In both cases, τsyn � τref is the yields
a bad sampling quality and τsyn ≈ τref performs better. For the BM with wmax = 10,
τsyn > τref yields the best results of about DKL(psim||ptheo) = 0.4 which is distinctly
better than DKL(pPOM||ptheo) = 2.03.
Figure 3.5 illustrates the LIF sampling quality under variation of the membrane time
constant τm and the synaptic time constant τsyn with τref = 10 ms. For the BM with
wmax = 1.5, the best results are achieved for τm = 0.1 ms and τsyn < τref . LIF sampling
from the BM with wmax = 10, if τsyn > τref , a result which can also be seen in Figure 3.4.
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Figure 3.6: The impact of excitatory and inhibitory background rates νi and weights
wi on the sampling performance for a BM consisting of 5 RVs. The BM
weights and biases are the same as in Figure 3.4. Each square corresponds
to a 1000 s-simulation with τref = 30 ms.
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Figure 3.7: The impact of the STP parameters utilization U0 and the recovery time
constant τrec on the sampling quality for a BM consisting of 5 RVs. The
BM weights and biases are the same as in Figure 3.4. Each square
corresponds to a 1000 s-simulation with τref = 30 ms.
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3.4 Conclusion

Figure 3.6 shows the impact of the input rate and weight of the Poisson background
stimulus on the LIF sampling performance. For the BM with wmax = 1.5, a tendency
towards small weights is visible, an observation which is also expected due to Equation
2.55. For the BM with large weights and biases, no significant preference of a rate and
weight can be observed. However, in difference to the parameter sweeps in Figures 3.4
and 3.5, the overall variations of the sampling performance are very low.
Figure 3.7 demonstrates the LIF sampling performance for different choices of the uti-
lization of the synaptic efficacy parameter U0 and the recovery time constant τrec from
the TM model (see Section 2.1.6). For both BMs, the best results are achieved with the
utilization parameter U = 1 and the recovery time τrec = 0.09 · τsyn. These results might
express that for these two special BMs the resulting LIF PSPs are too large. In this case,
the experimental results would probably improve by choosing a larger weight translation
factor β from Equation 2.76.
Figure 3.8 shows the impact of the weight translation factor β from Equation 2.76 and the
synaptic time constant τsyn on the LIF sampling quality. Here, three different BMs are
examined: a BM with wmax = 1.0 in Panels A and B, a BM with wmax = 2.0 in Panels
C and D and another BM with wmax = 4.0 in Panels E and F. The biases are drawn
uniformly from the interval [−0.1 ·wmax, 0.1 ·wmax]. The experiments are performed with
two different refractory time constants: once with τref = 10 ms and once with τref = 30 ms.
The color-plots imply that the choice τref = τsyn yields the best sampling results for all
three BMs, but only if the weight translation factor β is calculated by matching the areas
under the PSP shape as in Equation 2.76 (black curve). However, these are not the best
sampling results. There are distribution-specific parameters for which the sampling quality
is even better. These are synaptic time constants τsyn > τref together with β ≈ 0.01.

3.4 Conclusion

This chapter showed that there are no unique neuron parameters which yield optimal
results for LIF sampling from arbitrary Boltzmann distributions. This circumstance has
advantages and disadvantages with regard to the requirements in the next chapter, where
we move to LIF sampling from distributions represented as Bayesian Networks.
On the one hand, the results from this chapter do not preclude from a satisfactory sampling
quality from BMs with large weights and biases when using LIF neurons. Indeed, there
exist individual task-dependent parameters which enable LIF neurons to approximately
generate samples from Boltzmann distributions with large weights and biases.
On the other hand, however, for each new Boltzmann distribution an extensive search for
the parameters which facilitate the optimal LIF sampling quality has to be accomplished.
These parameters can not be calculated analytically and can only be optimized via an
exhaustive exploration of the parameter space.
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D: τref = 30 ms, wmax = 2
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E: τref = 10 ms, wmax = 4
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Figure 3.8: Color-coded KL divergence of the simulated and theoretical joint proba-
bility distribution for BMs of 5 samplers. Each square corresponds to
a 333 s simulation for τref = 10 ms (left column) or a 1000 s simulation
for τref = 30 ms (right column). In each simulation, the synaptic time
constant τsyn and the weight translation factor β (see Equation 2.74)
are varied. Before the sweep, the BM weights are chosen from the in-
terval [−wmax, wmax] while the BM biases are chosen from the interval
[−0.1 · wmax, 0.1 · wmax] and then are kept fixed for the simulations with
both refractory times. The black lines in the color-plots indicate the
calculated β for the given τsyn and τref.



4 Bayesian Networks: Implementation 1
with LIF Neurons

The previous chapter focused on the feasibility of LIF sampling from Boltzmann distribu-
tions which have large weights and biases. Simulation results showed that the sampling
performance varies greatly depending on the choice of the neuron parameters. Now we
will focus on LIF sampling from Bayesian Networks (BNs). Section 2.1.5 presented two
methods to implement BNs with LIF neurons.
This chapter deals with Implementation 1, which exploits the fact, that each BN can
be reduced to a Boltzmann distribution with the help of auxiliary variables. Hereby,
each nth-order factor of the probability distribution, with n > 2, is represented via 2n

additional auxiliary RVs, each of which codes for one of the possible states of the nth-order
factor.
Section 4.1 will explicitly describe the representation via LIF neurons for two example BNs:
a model of the Visual Perception Experiment (VPE) and the ASIA network (see Section
2.1.3). The VPE is represented by a probability distribution of 4 RVs and incorporates
an explaining away effect. The ASIA network consists of 7 RVs which are arranged in a
structure of three layers. This network has two explaining away effects, multiple acyclic
loops and a larger discrepancy of prior and conditional probabilities than the model of
the VPE.
Section 4.2 presents the simulation results of a rigorous parameter analysis for both
example BNs. We will observe that it is indeed possible to find a set of parameters which
yields good LIF sampling results for both probability distributions.
In Section 4.3, the optimal LIF sampling results for the two example distributions are
illustrated and compared to sampling results of stochastic neurons with rectangular and
alpha-shaped PSPs. Although the results for the VPE are comparable to those of the
stochastic neurons, sampling from the ASIA network will yield unsatisfactory results for
typical inference tasks.
With the special aim to enhance the LIF sampling results for the ASIA network, Section
4.4 introduces a method which enables to create LIF PSPs close to the ideal rectangular
shape. Hereby the postsynaptic effect of each sampling neuron is modified by a feed
forward chain of additional neurons which are connected on the postsynaptic site of the
sampling neuron. It is demonstrated for the two example BNs that these so-called mLIF
PSPs yield better sampling results than the standard LIF PSPs. This section also reveals
the overall slow convergence of Implementation 1 due to the introduction of additional
RVs.
Section 4.5 generalizes the sampling results for arbitrary BNs of 5 RVs. For this, BNs are
randomly generated and the extremeness of the discrepancy of the prior and conditional
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probabilities is determined by a parameter α. The simulations show that mLIF PSPs
outperform the original LIF PSPs for arbitrary BNs.

4.1 Implementation 1: Illustrative Implementation of
Example Bayesian Networks

This section introduces the neural implementation of the two Bayesian networks, the
VPE and the ASIA network, which will be applied in the following sections as example
probability distributions to test the LIF sampling performance. The phenomenology of
both Bayesian networks is described in Section 2.1.3.

4.1.1 Implementation of the Visual Perception Experiment

The VPE is modeled by the joint probability distribution

p(z1, z2, z3, z4) = p(z1) p(z2) p(z3|z1, z2) p(z4|z2) . (4.1)

Due to the presence of the third-order factor p(z3|z1, z2), 8 auxiliary RVs have to be
introduced, which code for the 8 possible assignments of p(z3|z1, z2). Figure 4.1 illustrates
the representation of the BN with neurons. In addition to the 4 principal neurons ν1 to ν4

which code for the 4 principal RVs z1 to z4 there are 8 auxiliary neurons. The connectivity
pattern of the neural network is described in Section 2.1.5. Due to Equation 2.27 and the
maximal conditional probability of the third-order factor max (p(z3|z1, z2)) = 0.85, the
strength of the connections between the principal and the auxiliary neurons amounts to
Mexc = 8.5 and Minh = −8.5. The biases of the auxiliary neurons are set according to
Equation 2.28. The biases of the principal neurons are calculated via Equation 2.23 and
the weights between the neurons ν2 and ν4 according to Equation 2.24.

4.1.2 Implementation of the ASIA Network

The ASIA network is modeled by the joint probability distribution

p(A,S, T, C,B,X,D) = p(A) p(S) p(T |A) p(C|S) p(B|S) p(X|T,C) p(D|T,C,B) . (4.2)

The probability distribution has two factors which depend on more than 2 RVs. The factor
p(X|T,C) provides for 8 auxiliary RVs, the factor p(D|T,C,B) for 16 auxiliary RVs. The
entire neural network which represents this BN is illustrated in Figure 4.2. It consists of
7 principal neurons and 24 auxiliary neurons. With max (p(X|T,C)) = 0.98 we have the
connection strengths Mexc = 9.8 and Minh = −9.8 between the neurons representing the
RVs T,C,X and the corresponding auxiliary neurons. The connection strengths between
the neurons representing the RVs T,C,B,D and their corresponding auxiliary neurons
amount to Mexc = 9.0 and Minh = −9.0 due to max (p(D|T,C,B)) = 0.9. As before,
the biases of the principal and auxiliary neurons are calculated via Equations 2.23 and
2.28, respectively. The weights between the principal neurons are calculated according to
Equation 2.24.
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Figure 4.1: Implementation 1 of the visual perception experiment from Figure 2.2.
The network contains 8 auxiliary neurons (black) in order to represent
the third-order factor p(z3|z1, z2).
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Figure 4.2: Implementation 1 of the ASIA network from Figure 2.3. The network
contains 8 auxiliary neurons to express the third-order factor p(X|T,C)
and additional 16 auxiliary neurons to represent the fourth-order factor
p(D|T,C,B).
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Figure 4.3: Measure of the sampling quality for the VPE and ASIA network with
variation of the unspecified parameter µ from Equation 2.28. The du-
ration of a simulation is 100 s. For µ = 1 + 10−3 and lower µ, the KL
divergence between the simulated and theoretical joint probability distri-
bution remains constant. For the remainder of this thesis, µ = 1 + 10−4

is chosen.

4.2 Parameter Analysis of LIF Neurons for Example
Bayesian Networks

A detailed parameter analysis for the two example BNs equivalent to the analysis of
Section 3.3 for Boltzmann distributions is in the focus of this section. The following
sweeps will yield the LIF neuron parameters which provide for the best sampling results
from the BNs described in Section 4.1.

4.2.1 Dependence of LIF Sampling on the Parameter µ

Equation 2.28 introduces the parameter µ which determines the magnitude of the biases
of the auxiliary neurons, once they are not inhibited due to the wrong combination of
active principal neurons. For example, the bias of the auxiliary neuron which corresponds
to the RV X001 from the VPE in Figure 4.1 is determined by

b001 = log

(
µ
p (z3 = 1|z1 = 0, z2 = 0)

min [p (z3|z1, z2)]
− 1

)
− η (z1 = 0, z2 = 0, z3 = 1)︸ ︷︷ ︸

=1

Mexc . (4.3)
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Figure 4.4: Sampling quality for the VPE and ASIA network with variation of the
time constants τref and τsyn. Each colored square corresponds to the KL
divergence of the simulated and theoretical joint probability distribution
of all RVs in one simulation of duration 1000 s · τref/30 ms.

Whenever the principal RVs assume the state (z1 = 0, z2 = 0, z3 = 1), Equation 4.3 reduces
to

b′001 = log

(
µ
p (z3 = 1|z1 = 0, z2 = 0)

min [p (z3|z1, z2)]
− 1

)
, (4.4)

since the neuron ν3 connects with the weight Mexc to the auxiliary neuron corresponding
to X001 and thus the second term of Equation 4.3 vanishes. This allows for a free choice
of the parameter µ as long as µ is larger than 1. The closer µ approaches 1, however, the
more negative become the values of the biases.
Figure 4.3 illustrates the LIF sampling performance from both BNs described in Section
4.1 depending on the the choice of the parameter µ. Table A.1 lists the parameters of the
LIF neurons. For both networks, there is a significant change in sampling performance
if µ assumes values larger than 1 + 10−3. For µ smaller than 1 + 10−3, the sampling
performance stays almost constant. However, for very small µ the absolute values of the
biases are very large and the performance may become affected by asymmetrical effects
due to the nonlinear impact of PSPs to the course of the membrane potential in the
conductance-based LIF models, since then the voltage traces are much closer to Erev

inh than
Erev

exc. For the remaining experiments µ will be fixed to 1 + 10−4.

4.2.2 Dependence of LIF Sampling from Bayesian Networks on the
Parameters of the LIF Neurons

Figure 4.4 shows the LIF sampling results for different choices of the refractory time
constant τref and the synaptic time constant τsyn. Both BNs entail the similar preference
that τsyn has to be slightly smaller than τref to achieve the best sampling results. The
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Figure 4.5: Sampling quality for the VPE and ASIA network for different time
constants τm and τsyn. Each colored square corresponds to the KL
divergence of the simulated and theoretical joint probability distribution
of all RVs in one simulation of duration 333 s. The parameter τref is
10 ms.

best parameters lie for both distributions on the curve τsyn ≈ 0.5 τref . However, the best
parameters for the ASIA network have a smaller spread in the parameter space than the
best parameters for the VPE. A choice which yields good LIF sampling results from both
BNs is τsyn = 10 ms and τref = 20 ms.
Figure 4.5 illustrates the LIF sampling quality under variation of the membrane time
constant τm and the synaptic time constant τsyn with τref = 10 ms. Due to the low input
frequency of 2 × 400 Hz, the approximation τm ≈ τeff is valid. As expected from the
discussion in Section 3.3, a very small τm and a comparably large τsyn yield good sampling
results. Like in Figure 4.4 the parameter choice τsyn ≈ 0.5 τref is preferred. An interesting
observation is that for both BNs the region around τm = 3.5 ms and τsyn = 6.5 ms also
yield good results. This fact has not been further considered since such large τeff are
unfavorable whenever e.g. a neuron with a large negative bias is perpetually activated by
the large synaptic weight from another neuron. The neuron will never reach an ON-state
close to p = 1 due to the slow membrane dynamics. Another reason is the fact that a
small ratio τm/τsyn necessary for the validity of the approximation in Equation 2.69.
Figure 4.6 demonstrates the LIF sampling performance for different choices of the STP
parameters utilization U0 and the recovery time constant τrec. For both BNs the optimal
parameter choices are U = 1 and τrec ≈ τsyn which is a good approximation to renewing
PSPs (see Equation 2.77).
Like in Chapter 3, we can conclude that each BN requires its specific parameter choice
which achieves the best sampling performance. However, for the two investigated BNs
the parameters from Table A.2 yield good sampling results. The preference of τsyn < τref

for networks with large weights can be explained based on Figure 4.7. Due to the shorter
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Figure 4.6: Impact of the STP parameters utilization U0 and recovery time constant
τrec on the sampling quality for the VPE and ASIA network. The
neuron parameters are taken from Table A.2. The duration of each single
simulation is 666 s. Each square corresponds to one simulation.

synaptic time constant, the impact of a PSP on the subsequent course of the membrane
potential is much smaller than with a large τsyn. This property comes with the fact that
the peak height of the PSP is larger compared to the LIF PSP in Figure 3.2 and thus
less similar to the ideal rectangular PSP shape. However, a larger peak height compared
to Figure 3.2 together with a PSP which has almost completely decayed at τref appears
to be a good compromise.

4.3 Optimal Results of LIF Sampling from Bayesian
Networks

Section 4.2 showed that LIF PSPs with τsyn = 10 ms and τref = 20 ms allow for good results
for sampling from the probability distributions which model the VPE and the ASIA
network.
This section offers a comparison of the LIF sampling results with ideal sampling results
using stochastic neurons with rectangular or alpha-shaped PSP shapes from the original
implementation by Pecevski et al. [2011]. Figure 4.7 illustrates the three PSP shapes
which all have the refractory time τref = 20 ms. In contrast to the PSPs of the stochastic
neurons, the LIF PSPs are highly asymmetric and influence the course of the membrane
voltage on a larger time scale than τref .
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Figure 4.7: The three single neuron PSP shapes with τref = 20 ms which were used
in the simulations. The rectangular PSP and alpha-shaped PSP are the
original PSPs from Pecevski et al. [2011] and are used for neural sampling
with stochastic neurons, while the LIF PSPs are used for LIF sampling.

4.3.1 Results of LIF Sampling for the Visual Perception Experiment

Figure 4.8 shows the sampling results for the VPE averaged over 20 simulations of duration
100 s. The bar charts A and B contain the sampling results of the marginals and joints
of the free distribution, C and D the results of sampling from the conditional distribu-
tion p (z1, z2|z3 = 1, z4 = 1), and E and F the results of sampling from the conditional
distribution p (z1, z2|z3 = 1, z4 = 0).
The sampling from these two conditional distributions refers to the inference tasks
presented in Section 2.1.3. The conditional probability distribution p (z1, z2|z3 = 1, z4 = 1)
describes the scenario that a sawtooth-like shading profile and cylindrical contour have
been observed, which implicates a high probability p (z2 = 1) that the 3D shape is
cylindrical and a high probability p (z1 = 0) that the relative reflectance is uniform. The
distribution p (z1, z2|z3 = 1, z4 = 0) instead presumes the observation of a flat contour,
which results in a high probability p (z2 = 0) that the 3D shape is flat and a high
probability p (z1 = 1) there is a reflectance step. The clamping of the RVs to 1 or 0 is
achieved by injecting a large positive or negative current which is equivalent to setting
the bias of the corresponding LIF neurons to 20 or −20, respectively.
For all three sampling tasks the LIF sampling performance is comparable to the results
of the stochastic neurons with alpha-shaped PSPs. The average probabilities always lie
close to the theoretical values. In contrast to the performance of stochastic neurons with
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Figure 4.8: Comparison of the sampling performance for simulations of Implemen-
tation 1 with LIF PSPs with parameters from Table A.2, alpha-shaped
PSPs, ideal rectangular PSPs and the target probabilities for the VPE.
The left column shows the marginal distributions and the right column
the corresponding joint probability distributions of the random variables
z1 and z2. The evidence e corresponds to the vector (z3, z4). The bars
show the average results of 20 simulations each of duration 100 s. The
error bars denote the standard deviations.
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Figure 4.9: The firing rates of the principal neurons ν1 and ν2 from the VPE. The
rate was determined by convolving the spike pattern with a kernel
K(t) = t

τ exp
(
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)
with τ = 0.1 s. At time point 100 s (red line), the

evidence was switched from e = (z3 = 1, z4 = 1) to e = (z3 = 1, z4 = 0).
The evolution of the firing rates demonstrates the "explaining away"
effect. The dashed lines denote the mean firing rates.

ideal rectangular PSPs the average probabilities of the LIF sampling results differ more
than one standard deviation from the theoretical probabilities in most cases.
The LIF sampling results of the marginals of the free distribution imply that the two
directly connected neurons ν2 and ν4 (see Figure 4.1) spike too rarely. This might arise
from the fact that the weights between ν2 and ν4 are much smaller than the weights
between ν1, ν2, ν3 and the auxiliary neurons. Thus the network activity is shifted away
from the interactions of the two neurons.
The LIF results of the two inference tasks have one characteristic. If the theoretical
value is lower than p (z = 0.5), the LIF sampling result is below the theoretical value.
If the theoretical value is larger than p (z = 0.5), the LIF sampling result is above the
theoretical value. This aspect might happen for several reasons. First, it is a hint for too
large peaks of the synaptic PSPs, which lead to the fact that neurons with a bias close to
0 are forced to spike more often than expected by the synaptic inputs from other neurons.
Second, due to the non-vanishing influence of a PSPs on the course of the membrane
voltage beyond τref e.g. neurons which tend to spike rarely are even longer inhibited than
expected. Third, the small deviations of the activation function from an ideal logistic
function could lead to lower or larger biases than expected, respectively (see Figure 3.1).
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Figure 4.9 shows the evaluation of the firing rates of the neurons ν1 and ν2 for the two
inference tasks. During the first 100 s the RVs z3 and z4 are clamped to 1. In this case,
the neuron ν1 has a firing rate of about 13 Hz and the neuron ν2 of about 25 Hz. This
situation corresponds to the inference task in Figure 4.8C and D. At time point 100 s, the
RV z4 is clamped to 0. Now we have the inference situation of Figure 4.8E and F. After
a transition of about 5 s, the firing rates of the neurons ν1 and ν2 settle to new values
and remain there in average. Now, the neuron ν1 elicits spikes with a frequency of about
20 Hz and the neuron ν2 with about 4 Hz. These values correlate with the probabilities
which were inferred in Figure 4.8.

4.3.2 Results of LIF Sampling from the ASIA Network

The same performance comparison as in Section 4.3.1 was provided for the ASIA network.
Here the probabilities of a patient having one of the three diseases tuberculosis (T ), lung
cancer (C) and bronchitis (B) are inferred for two different situations. Figures 4.10A
and B display the results of sampling from the conditional probability distribution
p (T,C,B|A = 1, D = 1): this distribution models the situation in which the patient has
recently visited Asia (A = 1) and suffers from dyspnoea (D = 1). The diagnosis that
the person has a bronchitis is much more probable than any of the the other diseases.
Figures 4.10C and D present the results of sampling from the conditional probability
distribution p (T,C,B|A = 1, X = 1, D = 1). In this case, an additional X-ray test has
been accomplished with a positive result. Now the diagnosis that the person has a
bronchitis is not as certain any more and the probabilities to have any of the other
diseases are almost as large as the probability to have bronchitis.
In both cases, the results of LIF sampling from the conditional probability distributions
are unsatisfactory compared to the sampling results with stochastic neurons. The sampled
probabilities with LIF neurons always differ more than two standard deviations from the
corresponding theoretical values. In particular, Figure 4.10C implies that the LIF neurons
fall short of sampling correctly from the distribution p (T,C,B|A = 1, X = 1, D = 1).
According to Figure 4.10D, the states (T = 0, C = 0, B = 0) and (T = 0, C = 0, B = 1)
are occupied systematically more frequent than statistical fluctuations would account for at
an expense of the occurrence of states (T = 0, C = 1, B = 1) and (T = 1, C = 0, B = 1).
The unsatisfactory LIF sampling results can be mainly traced back to the large differences
of weights and biases induced by the extreme values of the conditionals p (X = 1|T,C)
(see Figure 4.2). Furthermore, both RVs T and C interact with two groups of auxiliary
RVs, while the RV B is only influenced by one group of auxiliary RVs. This might lead
to the fact that the neurons associated with T and C are e.g. longer inhibited because
the PSP impact on the course of the membrane voltage is nonzero beyond τref and both
neurons are inhibited by large negative weights from two groups of auxiliary neurons.
The standard deviations of the sampling results of the stochastic neurons also express
the difficulty to sample from the given conditional probability distributions of the ASIA
network. With much longer simulation times, the results can be vastly improved. However,
this can not be applied to the LIF sampling results. Here, the standard deviations are
already very small and longer simulation runs would not improve the sampling performance,
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Figure 4.10: Comparison of the sampling performance for simulations of Implemen-
tation 1 with LIF PSPs with parameters from Table A.2, alpha-shaped
PSPs, ideal rectangular PSPs and the target probabilities for the ASIA
network. The left column shows the marginal distributions and the
right column the corresponding joint probability distributions of the
three RVs of interest: T , C and B. The bars show the average results
of 20 simulations of duration 100 s. The error bars denote the standard
deviations.

66



4.4 LIF Sampling Improvement via mLIF PSPs

which implies systematic mismatches. An eligible question at this point is whether there
is an option to modify the LIF PSP shape towards the optimal rectangular PSP shape.
The next section will introduce mLIF PSP with the help of which the sampling results
will improve considerably.

4.4 LIF Sampling Improvement via mLIF PSPs

In the course of the 4th BrainScaleS Demo3 workshop [2013], the idea originated that a
LIF PSP shape which is closer to an ideal rectangular shape and which abruptly vanishes
after the refractory time τref will drastically improve the LIF sampling results. A more
rectangular LIF PSP shape would mimic the ideal PSP shape of stochastic neurons and
comprise the advantage of being symmetrical. A PSP shape which vanishes after the
refractory time would have the advantage that it will not influence the course of the
membrane potential of the neuron beyond τref .
In the following, first the generation of such a so-called mLIF1 PSP shape is described.
Afterwards, the LIF sampling results with the new mLIF PSPs are compared to the
results with the standard LIF PSPs. In the end of this section a temporal analysis of the
convergence behavior with LIF PSPs and mLIF PSPs is presented.

4.4.1 Engineering mLIF PSPs

The generation of a PSP shape with LIF neurons which is close to the ideal rectangular
shape requires the interplay of the dynamics of multiple neurons for at least two reasons.
First, a single neural membrane with the requirement of a fast rising edge of the membrane
potential will result in a highly asymmetrical shape. Thus the falling edge has to be
prolonged such that the membrane stays at an almost constant potential during the
refractory period. Second, a prolongation of the PSP shape will even increase the size
of the PSP at the end of the refractory period and thus increase the impact on the
subsequent course of the membrane potential. For this reason, an additional neuron is
needed, which abruptly terminates the PSP.
Figure 4.11 illustrates the general idea to design such a PSP shape with LIF neurons,
which will be referred to as mLIF PSP. One principal or auxiliary sampling neuron of the
original Implementation 1 is replaced by a group of neurons. The first neuron remains
the actual sampling neuron with bias and weights as introduced in Section 2.1.5. The
remaining neurons are parrot neurons which forward the action potentials of the sampling
neuron. In the following I will refer to the first neuron as sampling neuron and to the
remaining neurons as forwarding neurons.
In addition to the existing network connectivity, each of the forwarding neurons projects
onto the same sampling neurons to which their associated sampling neuron is connected.
The biases of the forwarding neurons and the weights to the forwarding neurons are
selected such that a forwarding neuron is directly triggered to spike upon each incoming
spike. The last of the forwarding neurons connects with the opposite sign to postsynaptic

1The letter "m" in mLIF refers to "multiple" since we are now using multiple neurons per RV.
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Figure 4.11: The previous experiments were simulated with a standard LIF PSP
shape (A). To establish a PSP shape which is closer to the ideal rect-
angular shape, the following network structure was set up (B): Instead
of using one principal neuron ν for one random variable, each random
variable is represented by a chain of neurons of which the first neuron
is the actual sampling neuron. Additionally to the network connections
from Figure 4.1, there are feed forward connections along this neural
chain. Each of the chain neurons connects to the postsynaptic sampling
neuron (all connections from νi1 to ν2) which itself is the sampling
neuron of another feed forward chain. By choosing appropriate synaptic
efficacies, a sawtooth like PSP shape can be artificially established
which is close to the desired rectangular shape.

sampling neuron. This allows to directly terminate the PSP on the postsynaptic site.
This last forwarding neuron automatically provides for renewal PSPs even without the
presence of STP.
One will ensure a sawtooth-like PSP shape which is shown in Figure 4.12A, if the
delays and the weights connecting the forwarding neurons and also those connecting the
forwarding neurons and the following sampling neurons are chosen deliberately. Table
A.4 lists the parameters of the extended neural network.
Several issues when engineering mLIF PSP shapes need to be considered. First, the size
of the teeth of the PSP shape has to be constructed such that it is smaller than the
overall size of the PSP. This prevents from strong variation of the firing probability
of the postsynaptic neuron during the refractory period of the presynaptic sampling
neuron. A second issue is illustrated in Figure 4.12B. The delays between the forwarding
neurons have to be chosen such that once a sampling neuron ν1 is clamped to a very high
membrane potential, the postsynaptic sampling neuron ν2 will receive a constant offset.
An incautious selection of the delays will result in terminating and directly arising PSPs
after each refractory period and might cause undesired threshold crossings.
The same PSP shape could also be modeled in a different manner. This involves the
simultaneous activation of the forwarding neurons by the sampling neuron. Due to different
synaptic weights and membrane time constants, the time course of the postsynaptic action
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A: Resulting mLIF PSP shape by apply-
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Figure 4.12: Panel A shows the resulting mLIF PSP shape of the method described
in Figure 4.11. The neural chains which are used in this chapter consist
of 6 neurons: one neuron to initiate the PSP, 4 neurons to maintain
the level of the membrane potential and one neuron to cancel the PSP.
Table A.4 lists the parameters of this extended neural network. Panel B
shows the criterion which was used to find the optimal refractory time
τref for a given number of chain neurons: a sampling neuron receives
the spiking input of a presynaptic sampling neuron and its forwarding
neurons. Without Poisson background input the membrane just receives
an almost constant offset current, which is the stringing together of
consecutive mLIF PSPs. A refractory time of τref = 29.5 ms is preferred
for 6 neurons and τsyn = 30 ms. With τref = 29.4 ms or τref = 29.6 ms,
there are potential jumps after each τref which may cause undesirable
threshold crossings.

potential of each forwarding neuron would be delayed for each neuron differently which
would result in the same PSP course on the membrane of the postsynaptic sampling neuron
as shown in Figure 4.12. However, there are several crucial disadvantages compared to
the method explained before. First, this method would require an individual adjustment
of the membrane time constants for each neuron which becomes very exhausting for
large groups of neurons and long refractory times. Second, this method would require
an arbitrary flexibility and a high precision of the membrane time constants. This will
not be compatible with the inherent variations of a neuromorphic hardware device (see
Chapter 6).
The next sections will compare the sampling performance of sampling with LIF PSPs
and mLIF PSPs for the VPE and the ASIA network. It will become apparent that the
mLIF PSPs outperform the LIF PSPs by a large margin.
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Figure 4.13: Comparison of the LIF sampling performance via Implementation 1 with
standard LIF neurons with parameters from Table A.2, two versions of
Implementation 1 with the improved PSPs from Figure 4.11B and the
target probabilities for the VPE. The versions mLIF−50 and mLIF−53

have different reset voltages -50.01mV and -53.0mV, respectively. The
left column contains the marginal distributions and the right column the
corresponding joint probability distributions of the random variables
z1 and z2. The evidence e corresponds to the vector (z3, z4). The bars
show the average results of 20 simulations of duration 100 s for the LIF
PSP, 150 s for the mLIF PSPs. The error bars denote the standard
deviations.



4.4 LIF Sampling Improvement via mLIF PSPs

4.4.2 Results of LIF Sampling with mLIF PSPs for the Visual Perception
Experiment

Two different versions of mLIF PSPs were used to test the sampling performance and
compare it to the performance with standard LIF PSPs. A.2 lists the parameters of
the neurons with standard LIF PSPs. The parameters for generating the mLIF PSPs
are taken from Table A.4. The PSPs mLIF−50 and mLIF−53 only differ in the reset
potential of the sampling neuron. mLIF−50 refers to an optimal reset potential of
Vreset = −50.01 mV which is close to the threshold potential such that the neuron
is allowed to spike again directly after the refractory period. mLIF−53 refers to the
reset potential Vreset = −53.0 mV which e.g. takes account for the compatibility with
the fluctuations of floating gate voltages and currents on the FACETS Wafer-Scale
Hardware System, with respect to a prospective implementation of mLIF PSPs. Due
to the reset potential Vreset = −53.0 mV, the neuron needs a longer time to recover to
its free membrane potential after it has passed the refractory time, which shifts neural
correlations and, therefore, leads to a slight imprecision of the sampling results compared
to Vreset = −50.01 mV.
Figure 4.13 shows the LIF sampling results for the VPE of 20 simulation runs of 100.0 s each
for LIF PSPs and of 150.0 s each for mLIF PSPs. This distinction is made due to different
refractory times τref. For each of the three probability distributions p (z1, z2, z3, z4),
p (z1, z2|z3 = 1, z4 = 1) and p (z1, z2|z3 = 1, z4 = 0), the sampling results with mLIF PSPs
are superior. The theoretical probabilities are mostly in the range of two standard
deviations of the simulated probabilities for both, mLIF−50 and mLIF−53. Only for
the distribution p (z1, z2|z3 = 1, z4 = 1) (see Figure 4.13C and D) larger deviations are
observable, but which still the results are better than the results obtained via LIF PSPs.

4.4.3 Results of LIF Sampling with mLIF PSPs from the ASIA Network

Figure 4.13 shows the LIF sampling results for the ASIA network of 20 simulation
runs of 100.0 s each for LIF PSPs and of 150.0 s each for mLIF PSPs. With both
implementations of mLIF PSPs, the LIF sampling quality distinctly improves for both
probability distributions p (T,C,B|A = 1, D = 1) and p (T,C,B|A = 1, X = 1, D = 1).
The theoretical probabilities are always in the range of two standard deviations of the
simulated probabilities for both versions of the mLIF PSP.
The most distinctive result is the sampling performance for the distribution
p (T,C,B|A = 1, X = 1, D = 1) in Figure 4.13C and D. Similar to the results with
stochastic neurons in Figure 4.10 the standard deviations of the results of the simulations
with mLIF PSP become very large. This might indicate two facts. On the one hand, the
convergence of Implementation 1 is known to be very slow due to the additional set of
auxiliary RVs [Levin et al., 2006]. On the other hand, the underlying Bayesian network
contains prior and conditional probabilities which are close to 0 or 1 and thus lead to
large variations of firing frequencies throughout the network.
The following section offers an analysis of the convergence time of LIF sampling with LIF
and mLIF PSPs based on the presented example BNs.
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Figure 4.14: Comparison of the LIF sampling performance via Implementation 1 with
standard LIF neurons with parameters from Table A.2, two versions
of Implementation 1 with the improved PSPs from Figure 4.11B, and
the target probabilities for the ASIA network. The versions mLIF−50

and mLIF−53 have different reset voltages -50.01mV and -53.0mV,
respectively. The left column contains the marginal distributions and
the right column the corresponding joint probability distributions of
the random variables T , C and B. The bars show the average results
of 20 simulations of duration 100 s for the LIF PSP, 150 s for the mLIF
PSPs. The error bars denote the standard deviations.
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4.4.4 Temporal Evolution of the KL Divergence

Figure 4.14 already indicated that the convergence of the sampled probability distribution
towards the stationary probability distribution is very slow for mLIF PSPs. In the
following, the convergence times of sampling with LIF PSPs and mLIF PSPs are compared.
As before, Table A.2 lists the parameters for LIF sampling with LIF PSPs. Table A.4
contains the parameters for the LIF sampling with mLIF PSPs.
Figure 4.15 presents the temporal evolution of the KL divergence between the simulated
and the target joint probability distributions for the VPE, in Panels A and B, and the ASIA
network, in Panels C and D. Panels A and B refer to the results of sampling from the distri-
butions p (z1|z3 = 1, z4 = 1) and p (z1|z3 = 1, z4 = 0) of the VPE, respectively. Panels C
and D show the results of sampling from the distributions p (T,C,B|A = 1, X = 1, D = 1)
and p (T,C,B|A = 1, D = 1) of the ASIA network, respectively.
For all four probability distributions, the convergence time of sampling with LIF PSPs is
in the range of 10 s. With mLIF PSPs the convergence time is about 100 s for the VPE
and larger than 100 s for the ASIA network. This can be partly explained by the fact that
he refractory time constant is longer for mLIF PSPs than for LIF PSPs. Another reason
is that for mLIF PSPs the firing times of the sampling neurons are more distributed along
the duration of the PSP. Implementation 1 rather favors PSP shapes for which the firing
occurs directly after activation ("all or nothing") and which better mimic ideal infinite
weights (see Section 2.1.5). With regard to the convergence time, this feature fits better
to the asymmetric LIF PSPs because they peak at the beginning of τref .
However, the slow convergence and longer simulation times due to a larger number of
neurons comes with the advantage of a more accurate sampling result which militates
for the implementation of mLIF PSPs. The obviously better sampling performance with
LIF PSP in Panel A and D of Figure 4.15 is misleading. If comparing with the actual
sampling results in Figures 4.13C and 4.14C, respectively, the results of LIF sampling
with mLIF PSPs are better. This discrepancy is an artifact of the asymmetry of the KL
divergence (see Equation 2.15).

4.5 Implementation 1: LIF Sampling Performance on
General Bayesian Networks

So far, the sampling performance via Implementation 1 via LIF neurons has been tested
on the two specific BNs presented in Section 4.1. As for sampling from BMs in Chapter
3, it would be desirable to gain a more general result of LIF sampling from BNs and
compare sampling with LIF PSPs to sampling with mLIF PSPs from random BNs. For
this, Section 4.5.1 describes a procedure to create random BNs with pairwise random
prior and conditional probabilities. Section 4.5.2 presents the results of sampling from
random BNs of 5 RVs with LIF neurons and compares them to the sampling results of
stochastic neurons with ideal PSPs.
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Figure 4.15: Temporal evolution of the mean KL divergence of the simulated and
target joint probability distribution of the RVs z1 and z2 from the VPE
(upper row) and of the RVs T , C and B from the ASIA network (lower
row) for the three PSP shapes LIF, mLIF−50, mLIF−53 as well as the
ideal rectangular PSP shape. For each plot, the given evidence e is
different. Each curve denotes the average result of 10 simulations of
duration 1000 s. The shaded regions denote the standard error of the
mean.
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Figure 4.16: Symmetrical two-dimensional Dirichlet distributions for different pa-
rameters α1=α2=α. The prior and conditional probabilities of the
randomly generated Bayesian networks are samples from these Dirichlet
distributions. The parameter α allows to choose the extreme nature
of the resulting BN. The smaller α is, the larger is the probability to
choose a sample close to the boundaries 0 or 1. With higher α, the
discrepancy of the prior and conditional probabilities decreases.

4.5.1 Generating General Bayesian Networks

Ide and Cozman [2002] present a method to generate random BNs of K binary RVs
z1, z2, ..., zK and pairwise random prior and conditional probabilities. The algorithm
starts with the simplest possible connectivity pattern for which a BN is fully connected,
which is a Markov chain (see Section 2.1.4): z1 is connected to z2, z2 is connected to z3

and so on. The term fully connected means that irrespective of the direction of the edges
in the BNs every node can be reached from every other node. The algorithm runs for N
iterations and in each iteration randomly creates a pair (zi, zj) of RVs with the condition
zi < zj . For each pair one of the two following actions is performed:

• If the connection zi → zj exists, it is removed, but only if the BN remains fully
connected. Otherwise nothing is done.

• If the connection zi → zj does not exist, then it is added, but only if zi and zj have
less than 8 connections to other nodes. Otherwise nothing is done.

This algorithm leads to a BN with a random connectivity pattern.
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The BN then needs to be fully defined by assigning prior and conditional probabilities
similar to these of the VPE and the ASIA network in Figure 4.1 and 4.2. For this, the
prior and conditional probabilities xi are randomly drawn from a Dirichlet distribution of
second order

D (x1, x2, α1, α2) =
1

B (α)

2∏
i=1

xαi−1
i , (4.5)

with the multinomial Beta function

B (α) =

∏2
i=1 Γ (αi)

Γ
(∑2

i=1 αi

) , (4.6)

with the Gamma function Γ (α), the vector α = (α1, α2) and the condition x1 + x2 = 1.
The last condition means that the probabilities xi are pairwise determined: once x1

has been drawn, x2 denotes 1− x1. Choosing the parameters α1 = α2 := α makes the
Dirichlet distribution symmetrical.
Figure 4.16 shows the probability density function of a Dirichlet distribution as a function
of α. The case α = 1 is the one-dimensional uniform distribution. For α < 1, the
probability to draw samples close to the boundaries 0 and 1 is larger than the probability
to draw samples from the middle of the interval. For α > 1, the probability to draw
samples around 0.5 is larger than the probability to draw samples close to the boundaries
0 and 1. By choosing α, we determine the extreme nature of the resulting BN.

4.5.2 Performance Comparison of Sampling from General Bayesian
Networks

The algorithm to generate random BNs described in Section 4.5.1 is applied for BNs of
K = 5 RVs and N = 50000 iterations. The parameter α is varied between 0.3 and 10. For
each α, 10 random BNs are created. For each of these BNs, the sampling performance
with standard LIF PSPs and mLIF PSPs is measured and compared to the performance
of stochastic neurons with ideal rectangular PSPs. The duration of one simulation is 500 s
for all investigated PSPs.
Figure 4.17 illustrates the average sampling results for the different PSP shapes as a
function of α. For larger α, the sampling performance increases for each of the PSPs after
the same simulation time. This can be explained by the fact that a large α favors prior
and conditional probabilities which are rather close to 0.5 than to the boundaries 0 and 1.
In this case, we have a smaller discrepancy of the prior and conditional probabilities, and,
thus, a smaller discrepancy of the weights and biases in the neural representation of the
BNs due to Equations 2.27 and 2.28. It has been shown in Figure 3.3 that sampling from
BMs with low weights and biases yields better results after the same simulation time.
Sampling with mLIF PSPs leads to results which are up to one order of magnitude more
precise than sampling with LIF PSPs in terms of KL divergence between the simulated and
the target joint probability distribution. Among the mLIF PSPs, sampling with mLIF−50

PSPs is more precise than sampling with mLIF−53 PSPs for each α, a consequence of the
different choice of the reset potential (see Section 4.4.2).
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Figure 4.17: Sampling performance of LIF neurons and stochastic neurons on general
Bayesian networks as a function of the Dirichlet parameter α (see
Figure 4.16). Both mLIF PSP implementations show a better sampling
performance of up to one order of magnitude, in terms of KL divergence
between the sampling and the target probability distribution, compared
to LIF PSPs. The shaded regions denote the standard error of the
mean.

4.6 Conclusion

This chapter showed that it is possible to transfer Implementation 1, or in general words,
sampling from probability distributions described by BNs to the dynamics of LIF neurons
in a spiking noisy environment.
A sophisticated modification of the LIF PSPs led to a vast improvement of the LIF
sampling performance from general BNs. The so-called mLIF PSPs were designed by an
extension of the connectivity pattern of Implementation 1 by chains of parrot-like neurons.
In difference to the LIF PSPs, the new PSPs were close to the ideal rectangular PSPs and
had a finite duration. The introduced mLIF PSPs allowed for a sampling performance
from general BNs which was up to one order of magnitude more precise than sampling
with LIF PSPs in terms of KL divergence between the simulated and the target joint
probability distribution.
A disfavor of the mLIF PSPs was the slow convergence in the range of 100 s and longer
which arises due to the introduced auxiliary RVs. However, the same slow convergence of
Implementation 1 as for mLIF PSPs was observed for the abstract neuron model with
rectangular and alpha-shaped PSPs. Inherent LIF PSPs, indeed, allowed for a convergence
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time in the range of 10 s. This can be explained by the asymmetry of the PSP shape and,
thus, a fast settling towards some stationary distribution.
With regard to a possible application of Implementation 1 on the BrainScaleS neuromorphic
hardware system (see Section 2.2), the mLIF PSPs were tested for an optimal and a
hardware-compatible distance between the threshold and reset voltage of the sampling
neurons. The sampling performance of the hardware-compatible version was close to the
optimal one and more precise than the sampling quality with standard LIF PSPs. What
will be more crucial for an application on hardware are for both LIF PSPs and mLIF
PSPs the time constants and delays (see Chapter 6).
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with LIF Neurons

The simulation results in Chapter 4 demonstrated that Implementation 1 (see Section
2.1.5) allows for sampling from BNs via networks of LIF neurons. It was shown for general
BNs that so-called mLIF PSPs, which aim at mimicking the ideal rectangular PSP shape
of the abstract neuron model, yield better sampling results than the original LIF PSPs.
However, one disadvantage of Implementation 1 in general, which results due to the
increased number of RVs and, consequently, a higher number of computational units, was
the slow convergence in the range of 100 s towards a stationary distribution.
Pecevski et al. [2011] introduce a further method which uses auxiliary neurons to implement
neural sampling from BNs. In opposite to the method described in Chapter 4, in this
so-called Implementation 2 (see Section 2.1.5) the neurons which correspond to the
original RVs directly satisfy the NCC (see Equation 2.18), and not only in the extended
probability distribution p(z,x) with auxiliary RVs X. According to Pecevski et al. [2011],
this circumstance allows for a much faster convergence to the stationary distribution.
Implementation 2 uses a Markov blanket expansion of the NCC to provide the ability to
sample from BN. For each Markov blanket Bk in the graphical model, which is the set of
all parents, co-parents and children of the node k, auxiliary neurons αv

k are introduced,
which code for all possible states v of the Markov blanket. An auxiliary neuron αv

k is only
allowed to spike, if the Markov blanket occupies its corresponding state v. In this case,
the membrane potential of the auxiliary neuron αv

k satisfies the NCC. Each Zk of the
actual RVs Z of the probability distribution p (z) is represented via a principal neuron νk.
The firing of an auxiliary neuron αv

k triggers an immediate firing of the corresponding
principal neuron νk which ensures that also the principal neurons satisfy the NCC.
Section 5.1 introduces the concrete implementations of two BNs which were used to test
the sampling performance with LIF neurons. The first BN is a network which consists of
two RVs whose joint probability distribution is a uniform distribution. The second BN is
the probabilistic model of the Visual Perception Experiment (see Section 2.1.3).
Section 5.2 presents the sampling performance of LIF neurons for the two described
BNs when using Implementation 2. The LIF sampling results are compared with these
of stochastic neurons with rectangular or alpha-shaped PSPs. It is shown that the
non-uniformity of the LIF PSP shape facilitates a correlated spiking activity among the
principal neurons and, thus, is responsible for the unsatisfactory sampling results of
Implementation 2.
Section 5.3 entails the sampling results of LIF neurons with mLIF PSPs, which were
introduced in Section 4.4. Neurons incorporating mLIF PSPs show a better sampling
performance compared to those with standard LIF PSPs. However, the sampling quality
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Figure 5.1: Demonstration of Implementation 2 (see Section 2.1.5) for the so-called
Two-Node-Network (TNN), a Bayesian network of two random variables
whose joint probability distribution follows a uniform distribution. A)
Graphical model and prior probabilities. B) Its neural representation.
Each of the auxiliary neurons (black) satisfies the NCC (Equation 2.18).
The principal neurons (blue) and the inhibitory interneurons (gray) fire
on each incoming spike.

is unsatisfactory compared to the results of Implementation 1 in Section 4.4. A vast
improvement of the sampling quality can only be achieved with distinctly longer chains
of neurons, which goes at the expense of the overall network size and, thus, the duration
of simulations.
Finally, Section 5.4 provides for a theoretical explanation of the dissatisfying sampling
performance with mLIF PSPs based on the distributions of first passage times. It is shown
that substantial imprecisions arise due to the non-uniformity of the firing probability,
the stochasticity induced by the OU process of LIF neurons in a noisy environment in
contrast to the Bernoulli process of abstract neurons, and the autocorrelation of the
membrane potential.

5.1 Implementation 2: Illustrative Implementation of
Sample Bayesian Networks

This section presents the two BNs which are used as example probability distributions
for testing the sampling performance of LIF neurons with Implementation 2.
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5 Bayesian Networks: Implementation 2

5.1.1 Implementation of the Two-Node-Network

The first BN is a uniform probability distribution of two RVs Z1 and Z2 of the shape

p (z1, z2) = p (z1) p (z2|z1) . (5.1)

Figure 5.1A shows the graphical model of the BN and the prior and conditional probabili-
ties p (z1 = 1) and p (z2 = 1|z1), which completely describe the BN. In the following, the
network will be referred to as Two-Node-Network (TNN).
Figure 5.1B shows the neural implementation of the BN in terms of Implementation 2.
The task involves 8 neurons: the two principal neurons ν1 and ν2 represent the two nodes
Z1 and Z2. The RV Z1 constitutes the Markov blanket B2 of Z2 and Z2 constitutes the
Markov blanket B1 of Z1. Therefore, each Markov blanket can have two possible states,
which are coded by the auxiliary neurons α0

k and α1
k, where νk is their corresponding RV.

Furthermore, each group of auxiliary neurons is connected to an inhibitory interneuron
ι which ensures that after one of the auxiliary neurons α0

k and α1
k has emitted a spike,

both of them remain silent during the refractory period.
Since the membrane potential of the auxiliary neurons satisfies the NCC, the biases of the
auxiliary neurons are calculated via Equation 2.31. In the case of the TNN, both α0

1 and
α0

2 have the bias 0 and α1
1 and α1

2 occupy the bias −10 in the stochastic neuron model.
Equation 2.32 is used to calculate the excitatory weights from the principal neurons to
the auxiliary neurons. The excitatory weights of the connections ν1 → α1

2 and ν2 → α1
1

amount to 10. The inhibitory weights of the connections ν1 → α0
2, ν2 → α0

1, as well as
the weights from the inhibitory interneurons ιk to the auxiliary neurons are calculated
via Equation 2.33. Each of these weights amount to −10 in the stochastic neuron model.
The strengths of all outgoing connections of the auxiliary neurons are chosen such that a
spike of an auxiliary neuron directly evokes a spike of the postsynaptic neuron. For the
stochastic neurons the weight is 30 and for LIF neurons with the parameters from Table
A.3 the weight amounts to 0.16µS.

5.1.2 Implementation of the Visual Perception Experiment

The second BN is the probability distribution which models the VPE described in Section
2.1.3. It is described by the probability distribution

p(z1, z2, z3, z4) = p(z1) p(z2) p(z3|z1, z2) p(z4|z2) . (5.2)

Figure 5.2 shows the neural implementation of the VPE. The Markov blankets of the
RVs Z1 to Z4 are: B1 = (Z2, Z3), B2 = (Z1, Z3, Z4), B3 = (Z1, Z2) and B4 = (Z2). The
neural implementation therefore involves 26 neurons: 4 principal neurons, 4 inhibitory
interneurons, 4 auxiliary neurons of z1, 8 auxiliary neurons of z2, 4 auxiliary neurons
of z3 and 2 auxiliary neurons of z4. The concrete implementation of biases and weights
is accomplished via the Equations 2.31, 2.32 and 2.33 using the prior and conditionals
probabilities introduced in Figure 4.1.
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Figure 5.3: Comparison of the sampling performance of Implementation 2 with LIF
PSPs with parameters from Table A.2, alpha-shaped and rectangular
PSPs from the stochastic neuron model, and the target probabilities
for the TNN (upper row) and the VPE (lower row). The left column
shows the marginal distributions and the right column the corresponding
joint probability distributions. The bars show the average results of
20 simulations of duration 20 s. The error bars denote the standard
deviations.
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5.2 Implementation 2: Performance on Sample Bayesian
Networks

In the following, the sampling results of a LIF-based version of Implementation 2 are
presented and compared to the sampling results of stochastic neurons with rectangular
and alpha-shaped PSPs. The example probability distributions are the two distributions
TNN and VPE which were described in Section 5.1.

5.2.1 Results of Sampling from the Two-Node-Network and the Visual
Perception Experiment

Table A.2 lists the parameters of the auxiliary neurons. The principal neurons and
inhibitory interneurons adopt the parameter set of Table A.3. They are designed such
that upon each incoming spike they elicit exactly one spike. The principal neurons and
inhibitory interneurons do not receive background stimuli and the connections to these
neurons are static.
For both probability distributions, 20 simulations of 20 s are executed and the average
results of sampling from the joint probability distribution of the involved principal neurons
are measured. The small standard deviations of the sampling results justify the short
duration 20 s of one simulation compared to the ones obtained via Implementation 1.
Figure 5.3 illustrates the sampling results: Panels A and B presents the results of
sampling from the TNN while Panels C and D show the results of sampling from the
VPE. In comparison to the sampling performance of stochastic neurons with rectangular
or alpha-shaped PSPs, the LIF neurons exhibit substantial inaccuracies when sampling
from both probability distributions. The most salient characteristic of the sampling
results of LIF neurons is the U-like shape of the joint probability distributions. This
is caused by the correlated spiking activity of auxiliary neurons, which leads to a vast
overrepresentation of the states (z1 = 0, z2 = 0) and (z1 = 1, z2 = 1) for the TNN and
(z1 = 0, z2 = 0, z3 = 0, z4 = 0) and (z1 = 1, z2 = 1, z3 = 1, z4 = 1) for the VPE, indicating
a significant tendency to synchronize the dynamics.

5.2.2 Theoretical Explanation of the Insufficiency of LIF Sampling when
Applying Implementation 2

An explanation for the insufficiency of of LIF Sampling when applying Implementation 2
is sketched in Figure 5.4. It shows a simplified sketch of the membrane potential traces
without the Gaussian jitter due to the Poisson distributed background input. The starting
point is the network state (z1 = 0, z2 = 0). The illustration begins in Panel A with a
spike of the auxiliary neuron α0

1 according to the NCC at time t1. This action potential
triggers a firing of the inhibitory interneuron ι1 which leads to an inhibitory PSP in
the membrane voltage trace of α0

1. Furthermore, the principal neuron ν1 is triggered to
elicit an immediate spike at time t1 + ∆t (Panel B), which changes the network state to
(z1 = 1, z2 = 0). The expression ∆t hereby denotes the combination of the interneural
delay and the rise time of the membrane potential.
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Figure 5.4: A simplified sketch of the mean membrane voltage traces for the neurons
from the TNN, which shows the impact of the asymmetry of the LIF PSP
shape on the sampling distribution of network states. After the neuron
α0

1 has elicited a spike (A), it forces ν1 to spike directly (B) which itself
raises the membrane potential of neuron α1

2 to the average potential
V
b=0

. The firing probability during the first milliseconds of the LIF PSP
is much higher than the firing probability during the residual part. Thus,
α1

2 is very likely to spike very soon after it has been activated (C). The
firing of α1

2 directly triggers ν2 to elicit a spike (D). This leads to the
overrepresentation of the states (z1 = 0, z2 = 0) and (z1 = 1, z2 = 1) in
the sampling probability distribution decreasing the frequency of the
states (z1 = 0, z2 = 1) and (z1 = 1, z2 = 0) (see Figure 5.3).
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The firing of the principal neuron ν1 decreases the average membrane potential of α0
2 to

V
b=−10 and, at once, raises the average membrane potential of α1

2 to V b=0. Due to the
asymmetric PSP shape the α1

2 spikes with a very high probability at the beginning of the
refractory period and a very low probability close to τref . This discrepancy, compared
to the stochasticity of the abstract neuron model, favors a soon spiking of α1

2 at time t2
as shown in Panel C. The spike of α1

2 immediately triggers ν2 to spike at t2 + ∆t (Panel
D), which changes the network state to (z1 = 1, z2 = 1). In average, this quick change of
states is the reason that the states (z1 = 0, z2 = 1) and (z1 = 1, z2 = 0) are only assumed
for a short fraction of time, which results in the U-like shape of the joint probability
distribution in Figure 5.3B.
A further error source is the too large residual of a LIF PSP on the course of the
membrane potential after τref (see Figure 4.7). Since the overall network activity has to
be spontaneously initiated by the firing of one of the α0 neurons, a prolonged inhibition
due to this effect explains the higher frequency of the states (z1 = 0, z2 = 0) as compared
to (z1 = 1, z2 = 1) in the sampling result of LIF neurons in Figure 5.3B.
The large deviations of the simulated joint probability distribution of the VPE from the
theoretical distribution can be reduced to the same drawbacks. The overrepresentation
of the states (z1 = 0, z2 = 0, z3 = 0, z4 = 0) and (z1 = 1, z2 = 1, z3 = 1, z4 = 1) in Figure
5.3D at the reduces probability of occurrence of the remaining states follows directly from
the asymmetry and (endless) exponential decay of the PSP shape, which were described
in Figure 5.4.

5.3 Improvement of LIF Sampling via mLIF PSPs

The unsatisfactory LIF sampling results from Section 5.2 raise the question whether it
is possible to improve the sampling performance with mLIF PSPs, a method which was
already successfully applied for Implementation 1 in Section 4.4. A PSP shape which is
closer to the ideal rectangular shape would have two advantages. Firstly, the symmetric
shape would not favor the firing at a special point in time during the refractory period.
Secondly, due to the instant decay of the PSP at the end of the refractory period, the
subsequent course of the membrane potential, and therefore the spiking probability, will
not be influenced beyond the refractory period.

5.3.1 Engineering mLIF PSPs

Figure 5.5 shows the two mLIF PSP shapes which were used in this section. The PSP
shape in Panel A is generated with chains of 6 neurons and thus will be referred to as
mLIF6 PSP. Table A.4 contains the parameters that are necessary to design the mLIF6

PSP, with the reset voltage of the sampling neurons Vreset = −50.01 mV. The mLIF6

PSP already provided for sufficiently precise sampling results with Implementation 1.
Panel B shows the so-called mLIF166 PSP. It is generated via chains of 166 neurons. The
utilized parameters are listed in Table A.5.
Only the principal neurons and the inhibitory interneurons are replaced by neural chains,
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Figure 5.5: The two mLIF PSP shapes which are used to investigate the feasibility
of Implementation 2 with LIF neurons. Each of the PSP shapes is
constructed by a chain of multiple principle neurons realizing the method
from Figure 4.11B. In each of the voltage plots the dashed line represents
the threshold potential, the upper solid line is V

b=0
(no bias) and the

lower solid line is V
b=−10

, the potential which corresponds to the bias
−10. Both figures show a PSP shape induced by an incoming spike via
a connection of strength 10.

which is in contrast to Implementation 1. The principal neurons and the inhibitory
interneurons indeed require the asymmetric shape of a standard LIF PSP, such that with
the parameters listed in Table A.4 and A.5, they are triggered to elicit a spike upon each
incoming spike from their corresponding auxiliary neurons. Therefore, the spikes of the
auxiliary neurons do not need to be forwarded by parrot neurons.
In contrast to mLIF6 PSPs, two consecutive mLIF166 PSP are completely uncorrelated
which can be deduced from Figure 5.6. The synaptic time constant τsyn hereby can be
associated with a "memory" of the LIF neuron in the HCS. For τsyn = 30 ms, which
corresponds to an mLIF6 PSP, the autocorrelation of the membrane voltage is much
larger than 0 at τref = 30 ms. For τsyn = 10 ms, which indeed corresponds to an mLIF166

PSP, the "memory" of the LIF unit is shorter, such that the autocorrelation function
is approximately 0 at τref = 100 ms, which is exactly like the autocorrelation of the
membrane potential in the stochastic neuron model.

5.3.2 Results of LIF Sampling with mLIF PSPs

The sampling performance of LIF neurons with LIF PSPs, mLIF6 PSPs and mLIF166

PSPs is measured for the two probability distributions which are introduced in Section
5.1. The total number of neurons which is needed to sample from the TNN amounts to
28 neurons for mLIF6 PSPs and 668 neurons for mLIF166 PSPs. The number of neurons
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Figure 5.6: The relative autocorrelation function of the membrane potential of a
LIF neuron with τsyn = 30 ms, which refers to mLIF6 PSPs, or τsyn =
10 ms, which refers to mLIF166 PSPs, with respect to the maximal
autocorrelation. For mLIF6 PSPs, autocorrelations of the membrane
potential exist even after the refractory period τref = 30 ms. In contrast,
the autocorrelation of the membrane potential for mLIF166 PSPs are
about 0 at τref = 100 ms.

which is indeed needed to sample from the VPE network is 66 neurons for mLIF6 PSPs
and 1346 neurons for sampling with mLIF166 PSPs.
Figure 5.7 presents the sampling results of 20 simulations of duration 20 s for LIF PSPs,
30 s for mLIF6 PSPs and 100 s for mLIF166 PSPs. The different simulation times are
chosen due to differing refractory times τref , such that in all three cases the neurons have
the same number of opportunities to change their state.
Both implementations with mLIF PSPs outperform the sampling results with LIF PSPs.
The results with mLIF166 PSPs, however, are much closer to the target probabilities.
mLIF6 PSPs show a less precise sampling performance than stochastic neurons with
alpha-shaped PSPs in Figure 5.3. Similar to the results with LIF PSPs in Figure 5.3,
mLIF6 PSPs lead to a U-like shape of the sampled joint probability distribution.
This observation needs to be discussed in the following, since the mLIF PSP shapes were
primarily engineered in order to resolve the drawbacks due to the asymmetry of the LIF
PSP shape and its influence on the membrane potential beyond the refractory period.
The insufficient results of mLIF6 PSPs, on the one hand, and the satisfactory results for
mLIF166 PSPs, on the other hand, however, show that these can not be the only factors
which influence the sampling ability when using Implementation 2. The next section
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Figure 5.7: Comparison of the sampling performance for simulations of Implemen-
tation 2 with LIF PSPs with parameters from Table A.2, mLIF6 PSPs,
mLIF166 PSPs and the target probabilities for the TNN (Panels A and
B) and the VPE (Panels C and D). The left column shows the marginal
distributions and the right column the corresponding joint probability
distributions. The bars show the average results of 20 simulations of
duration 20 s for LIF PSPs, 30 s for mLIF6 PSPs and 100 s for mLIF166

PSPs. The error bars denote the standard deviations.
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Figure 5.8: Comparison of the FPT distributions of stochastic neurons and LIF
neurons with τref = 29.5 ms (A), which is the duration of the mLIF6

PSP shape, and τref = 99 ms (B), which is the duration of the mLIF166

PSP shape, for the auxiliary neuron α0 from the TNN. The stochastic
neuron model allows for an instant spiking. Thus, the FPT distribution
of the stochastic neuron model is exponential, while the FPT distribution
of LIF neurons is Poisson-shaped. Both distributions of first passage
times of LIF neurons are characteristic for an OU process (see e.g. Gotoh
et al. [2011]).

deals with the investigation of the distribution of first passage times for both, mLIF6 and
mLIF166 PSPs, and reveals that the distribution of spike times is crucial for a satisfactory
sampling performance via Implementation 2.

5.4 Investigation of the Distributions of First Passage Times
of LIF Neurons

Section 5.2 concluded based on simulation results that the LIF sampling performance
with standard LIF PSPs using Implementation 2 is unsatisfactory due to the asymmetric
PSP shape and the exponential decay of the PSP shape and, thus, an influence on the
course of the membrane potential beyond the refractory period.
With the help of mLIF PSPs, we eliminated both error sources (see Section 5.3), which
distinctly improved the sampling results. However, compared to the sampling results
of Implementation 1 in Section 4.4, these results are still unsatisfactory. In order to
investigate the inferior sampling quality of LIF neurons with mLIF6 PSPs, a detailed
analysis of the first passage times of the auxiliary neurons α0 and α1 of the TNN in
Figure 5.1 is performed in the following.
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5.4.1 Distribution of First Passage Times for α0 from the
Two-Node-Network

Figure 5.8 shows the distributions of first passage times of stochastic neurons and LIF
neurons for the auxiliary neuron α0 from the TNN. Panel A shows the distributions for
τref = 29.5 ms and τsyn = 30 ms which are the parameters of the mLIF6 PSP shape, while
Panel B illustrates the distributions for τref = 99 ms and τsyn = 10 ms, which refer to
the mLIF166 PSP shape. For the stochastic neuron, we have τref = τsyn. The histograms
are results of 10000 simulations of 100 ms each. For each run, the bias of the neurons
is initialized to 0. It is a model e.g. for the auxiliary neuron α0

1 of Figure 5.1 if it is not
inhibited by the interneuron ι1 or the active principal neuron ν2.
The distribution of the first passage times has an exponential shape for stochastic neurons
and a Poisson shape for LIF neurons, which is due to τm, which is 0 for stochastic neurons
and larger than 0 for LIF neurons. The histograms in Figure 5.8 indicate an increased
firing probability of LIF neurons at the beginning of the refractory period compared to
the firing probability of the stochastic neuron model. These dynamics favor a synchronous
spiking activity of the neurons which was also observed for neurons with LIF PSP in
Section 5.2.
The distribution for LIF neurons in Panel B approximates more accurately to the dis-
tribution of the stochastic neuron model compared to the distribution in Panel A. This
partly explains the better sampling performance using mLIF166 PSPs compared to the
performance of mLIF6 PSPs in Section 5.3.
The following subsection investigates the distribution of FPTs for the neuron α1 from
the Two-Node-Network and entails a further aspect which leads to the unsatisfactory
sampling performance in Section 5.3.

5.4.2 Distribution of First Passage Times for α1 from the
Two-Node-Network

Figure 5.9 illustrates an experiment which comprises a further explanation of the unsat-
isfactory sampling performance via mLIF6 PSPs. The setup measures the distribution
of first passage times for the auxiliary neurons α1 from the TNN in Figure 5.1 if they
are not inhibited by the interneurons. Without an external stimulus, the neuron α1

has an average membrane potential V b=−10. Due to the Poisson background stimulus
the membrane potential exhibits stochastic fluctuations around this average membrane
potential. If the principal neuron ν1

1 elicits a spike, the mean membrane potential of α1
2

is raised to V b=0 for the duration of the refractory period. Now the first passage time
∆t
(
ν1

1 , α
1
2

)
is measured, after which the auxiliary neuron fires for the first time.

Evaluation of the FPT Distribution of α1 Figure 5.10 shows the distribution of first
passage times of the auxiliary neuron α1

2 which is measured in 10000 simulation runs using
the method described in Figure 5.9. Panel A and B show the distributions of first passage
times for the two respective mLIF PSP shapes in Figure 5.5. The main characteristic of
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Figure 5.9: Feasibility test of Implementation 2 with LIF neurons and PSP shapes
from Figure 5.5: The auxiliary neuron α1

2 has a mean membrane potential
V
b=−10

, which corresponds to the bias−10 in the stochastic neuron model.
At the point 500ms, a spike of an external spike source triggers the firing
of the chain of K principal neurons ν1

1 , ..., ν
K
1 which provide an mLIF

PSP shape in the voltage trace of α1
2. The weight from the chain of

principal neurons to the auxiliary neuron corresponds to the weight 10
in the stochastic neuron model. The first passage time ∆t

(
ν1

1 , α
1
2

)
is

measured, which is the time after which α1
2 emits a spike once its mean

membrane potential has been raised to V
b=0

by the input of the principal
neurons.

both distributions of LIF neurons are the large peaks within the first few milliseconds
compared to distributions of stochastic neurons with rectangular or alpha-shaped PSPs.
In the FPT distribution of the mLIF6 PSP in Figure 5.10A 5 peaks can be distinguished
which coincide with the time positions of the edges of the "teeth" of the corresponding
PSP shape in Figure 5.5. The first peak is more than an order of magnitude higher than
the largest value of the exponentially-shaped distribution of the stochastic neuron with a
rectangular PSP shape. This means: if the mean membrane potential of the neurons α1

1

and α1
2 is increased to V b=0 by an incoming spike from a principal neuron, they either

emit a spike immediately or, otherwise, tend to remain silent for the whole refractory
period of the principal neurons. In addition to the FPT distribution of α0

1 and α0
2 in

Figure 5.8, this fact is a further and even more intuitive explanation for the unsatisfactory
sampling performance of LIF neurons with mLIF6 PSPs in Figure 5.7.
In contrast to the distribution of the mLIF6 PSP, the FPT distribution when using
mLIF166 PSP in Panel A fits well to the distribution of rectangular PSPs for the most
part of the interval. This explains the clearly superior sampling performance of mLIF166

PSPs in Figure 5.7. The large first peak explains the small overrepresentation of the
states (z1 = 1, z2 = 1) in Figure 5.7B: the neurons α1

1 and α1
2 spike consecutively slightly
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Figure 5.10: Panels A and B show the unnormalized probability densities that a
firing after the time ∆t occurs once the auxiliary neuron α1 for the
TNN has been activated from voltage V

b=−10
to V

b=0
(see Figure 5.9).

The distributions for rectangular PSPs, alpha-shaped PSPs and mLIF
PSPs are illustrated with τref = 29.5 ms (left) and τref = 99 ms (right).
Panels C and D show the distributions of the free membrane potential
of the auxiliary neuron α1

1, which is elevated to the average membrane
potential V

b=0
by stringing together consecutive mLIF PSP. This

mimics the input of ν2 with z2 clamped to 1. The blue part of the
distributions is below the threshold voltage while the red part is above.
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Figure 5.11: Color-coded probability p (Vfree ≥ Vth = −50 mV) of the free membrane
potential of a LIF neuron, whose mean membrane potential is V

b=0
and

which receives a balanced random background input. With larger τref
and lower τsyn (e.g. mLIF166 compared to mLIF6), the fraction of Vfree

above Vth becomes smaller and, therefore, the sampling performance
will improve (see Figure 5.10). The simulations are run with different
background rates and weights, both of which are chosen such that the
standard deviation of the free membrane potential is equal, but the
average free membrane potential is lower in Panel B compared to Panel
A (see Equation 2.54). However, the shift of the average membrane
potential to lower values is too small to expect a noticeable improvement
of the sampling quality.

more frequently than the stochastic neurons with rectangular PSPs and, thus, decrease
the proportion of the states (z1 = 0, z2 = 1) and (z1 = 1, z2 = 0).

Evaluation of the Distribution of the Free Membrane Potential of α1 The large first
peaks of the distributions of first passage times in Figure 5.10 can be explained by
evaluating the distribution of the free membrane potential of a LIF neuron with average
membrane potential V b=0 which is plotted in Figure 5.10C and D for the respective PSP
shapes in Figure 5.5. For both distributions, the red bars denote the fraction of the
membrane potential above the threshold voltage and the blue bars denote the fraction of
the membrane potential below the threshold voltage.
The fluctuations of the membrane voltage around some mean membrane potential induced
by the Poisson-distributed background input are equal for the mean membrane potentials
V
b=−10 and for V b=0. This implies that the probability of the neurons α1

1 and α1
2 to fire

immediately after the increase of the mean membrane potential from V
b=−10 to V b=0

is proportional to the red area of the corresponding distribution of the free membrane
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potential in Figure 5.10C and D. For τref = 29.5 ms and τsyn = 30 ms, which are the
time scales of the mLIF6 PSP, the red area in Figure 5.10C amounts to about 27.2%.
This value is in approximate accordance with the relative height of the first peak of the
FPT distribution of α1 in Figure 5.10A. For τref = 99 ms and τsyn = 10 ms, which refers
to the mLIF166 PSP, the red fraction in Figure 5.10D is about 3.7%, which is also in
approximate accordance with the overshoot of the first large peak in Figure 5.10B.
Figure 5.11A illustrates the fraction of the free membrane potential which is larger than
the threshold voltage Vth for different choices of τsyn and τref. In order to achieve a
satisfactory sampling result with Implementation 2, it is essential to choose a large τref
and low τsyn, which means that the autocorrelation of the membrane potential, which
bears the "memory" of the LIF neuron, has to vanish at best. However, a large τref and
low τsyn implies very long chains of neurons which scales exponentially for tasks with an
increasing number of RVs and, thus, becomes computationally not feasible.
A question that remains is whether it is possible to decrease the height of the first peak
in of the FPT distribution of α1 in Figure 5.10A by modifying the background input
parameters. The new frequency and synaptic input weights can be chosen such that
the standard deviation of the membrane potential remains constant but the average
membrane potential is shifted to a lower value (see Equation 2.54). A shift of the mean
membrane potential to a lower value implies a shrinkage of the red area of Figure 5.10C
and consequently a shrinkage of the height of the first peak in of the FPT distribution of
α1 in Figure 5.10A.
Figure 5.11B shows the fraction of the free membrane potential which is larger than the
threshold voltage Vth for a much larger background input frequency of ν = 6400 Hz and
much lower synaptic input weight w = 0.5 nS for the excitatory and inhibitory connections.
However, this shift of the mean membrane potential turns out to be very small compared
to Figure 5.11A and will not significantly improve the sampling results.
The following paragraph comprises two crucial reasons against a modification of the mLIF
PSP shape with the aim to improve the sampling quality.

Reasons Against a Further Modification of the mLIF PSP Shape The results of the
distribution of first passage times with alpha-shaped PSPs in Figure 5.10 might lead to
the assumption that rounder PSP shapes, instead of the imitations of the ideal rectangular
PSPs in Figure 5.5, could improve the results of LIF sampling with mLIF6 PSPs. A
rounding of the PSP shape would shift the large peak in Figure 5.10A towards the end of
the refractory period of the principal neuron.
However, rendering the first "tooth" of the PSP shape in Figure 5.5 smaller would entail
a raising of the remaining "teeth" in order to fulfill the consistency of the integral of
individual PSPs of the LIF neuron model and the stochastic neuron model in Equation
2.73. Such an increase would result in a PSP shape crossing the threshold potential by
design.
Furthermore, a rounding of the PSP shape would lead to large jumps of the membrane
potential e.g. of the auxiliary neuron α1

1 whenever the RV z2 is clamped to 1. This results
in undesirable threshold crossings (see Figure 4.12B) and distorts the sampling quality.
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5.5 Conclusion

This chapter aimed at testing the feasibility of Implementation 2 of BNs with LIF neurons
(see Section 2.1.5). Based on simulation results we can conclude that, if the sampling
ability depends on the distribution of spike timings, LIF sampling with both original LIF
PSPs and mLIF PSPs suffers substantial precision.
This imprecision could be ascribed to three inherent aspects which differ between the
LIF neuron model and the abstract neuron model. First, both LIF and mLIF PSPs are
non-uniform, which results in a non-uniform firing probability. Second, the stochasticity
induced by the OU process, which describes the membrane potential of LIF neurons in a
noisy environment, is different from the stochasticity induced by the Bernoulli process,
which characterizes the evolution of the membrane potential of abstract neurons. Third,
the membrane potential of the LIF neurons is autocorrelated, which is in contrast to the
abstract neuron model. Due to this fact, additional correlations of the spiking activity of
the sampling neurons were introduced, which deterred from the desired functionality of
the networks.
Only for large chains of neurons, yielding large refractory times and low synaptic time
constants, adequate sampling results were achieved which are still less promising than the
LIF sampling results via Implementation 1 in Chapter 4. In this case, the occurrences of
the first threshold crossing were much more distributed in accordance with the distribution
of first passage times of the stochastic neuron model.
An application of Implementation 2 with mLIF166 PSPs on the BrainScaleS neuromorphic
hardware system (see Section 2.2) will be infeasible with the inherent fluctuations of
voltages and currents, since mLIF166 PSPs require the implementation of chains of 166
neurons which all have the same characteristics.

96



6 Towards LIF-based Boltzmann
Machines on Neuromorphic Hardware

The previous chapters have demonstrated through software simulations that it is possible
to physically instantiate Boltzmann Machines and Bayesian Networks with networks of
LIF neurons. This chapter investigates the feasibility of performing LIF sampling with
the neurons integrated on the HICANN chip described in Section 2.2.1. The demonstra-
tor setup, which is described in Section 2.2.2, provides the necessary communication
infrastructure for the chip. The PyHAL API (see Section 2.3.2) is used to control the
desired neural and synaptic parameters and run the experiments.
As outlined in Section 2.2, a neuromorphic hardware system entails a broad range
of advantages such as defect tolerance, massive parallelism, acceleration compared to
biological real-time and low power consumption. However, especially when running
experiments with which strongly depend on certain parameter settings, whose precision
is crucial for the expected outcome of the experiment, the drawbacks and limitations of
the analog elements of the neuromorphic hardware become apparent: the imprecision
of floating gate cells, the limitation of parameter ranges, the malfunction of electrical
circuits due to production faults or the limitation of the communication bandwidth, to
name some examples.
The simulation results in the previous chapters showed that LIF sampling strongly depends
on the accurate choice of neuron parameters. In particular, the choice of time constants
is important: The refractory period has to be much larger than the inherent delays on
the chip, the synaptic time constant must be of the order of the refractory period and
the effective membrane time constant has to be much smaller than the synaptic time
constant (see Section 2.1.7). The crucial question in this chapter is therefore: Do the
range limitations and the variations of parameters on the HICANN chip suit the needs of
LIF sampling? And if not, can suitable workarounds be found?
Section 6.1 thus starts with a characterization of the circuits on the HICANN chip with
a particular focus on the parameters which are essential for LIF sampling. First, the
values of the floating gate cells are fixed to plausible values needed for LIF sampling and
those neurons are selected on the HICANN chip, whose membrane potential exhibits
approximately the expected behavior. Thereafter, Spike-Triggered Average (STA) is used
to extract the time constants of the selected membrane circuits. It will become clear that
the ranges of time constants are unsatisfactory to allow a concrete implementation of
LIF sampling. In particular, the saturation of the synaptic conductances and the limited
ranges of the synaptic and membrane time constants will complicate the application of
LIF sampling on the current version of the HICANN chip.
Section 6.2 therefore aims at providing desired parameter ranges for the LIF neurons based
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on the results of software simulations of neurons with the deduced hardware parameters
from Section 6.1. It will become apparent that a reasonable LIF sampling performance
can only be achieved with larger synaptic time constants together with larger frequencies
of the background stimulus or smaller membrane time constants than currently achievable
on the used version of the HICANN chip.

6.1 Characterization of the Neural and Synaptic Circuits of
the HICANN chip

This section aims at testing the feasibility of the application of LIF sampling with the
neurons integrated on the HICANN chip. Subsection 6.1.1 starts with a description of the
utilized set of the individual neural and synaptic parameters. Thereafter, Subsection 6.1.2
continues with a rigorous measurement of the involved time constants, the proportions of
which are essential for a satisfactory LIF sampling performance. Subsection 6.1.3 presents
the activation curve of a selected neuron and concludes that, with the currently available
methods, a generic application of LIF sampling on the current version of the HICANN
chip is not feasible.

6.1.1 Parameter Selection

Table A.6 contains the utilized values of the floating gate cells that were used throughout
the experiments in this section. The table comprises global and individual neuron
parameters as well as parameters of the synaptic circuits. The following paragraphs discuss
the choice of the neural and synaptic parameters in the course of this section. Hereby, the
hardware parameters are written in typewriter font, while their corresponding actual
neural and synaptic parameters are written in normal font.

Neural Parameters 24 of the 44 parameters in Table A.6 describe the dynamics of
the AdEx membrane circuits (see Section 2.1.6) on the HICANN chip. The neural
parameters which were manually set for the experiments in this thesis are the global
parameter V_reset and the individual neuron parameters V_t, E_l, E_synx, E_syni,
I_fire, I_gladapt, I_gl, I_pl, V_syntcx and V_syntci.
First of all, the exponential term in Equation 2.40 and the adaptive current w(t) (see
Equation 2.41) have to be quiesced such that the membrane dynamics of the neurons
approximately reduce to those of standard LIF neurons in Equation 2.34. For this, the
DAC-values of the currents I_fire and I_gladapt are set to 0 [Millner , 2012]. However,
this does not exclude the existence of remaining leakage currents, such that, for some
neurons, adaptive mechanisms are still observable.
The floating gate cells of the leakage potential, E_l, and of the reversal potentials, E_synx
and E_syni, are set to 512 DAC, 626 DAC and 398 DAC, respectively, so that the reversal
potentials are lying symmetrically with respect to the leakage potential. The leakage and
reversal potentials are therefore expected to lie at 0.9 V, 0.7 V and 1.1 V, respectively
(DAC value

1024 × 1.8 V).
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Figure 6.1: Distribution of the free membrane voltage of Neuron #27 and #222 on
the used HICANN chip. Both panels show the voltage distribution of 5
simulations of 15 s BT with equal parameters. Before each new run, the
floating gates are written twice to the values in Table A.6. The expected
mean of the voltage distribution is 0.9 V. However, the mean and spread
of the distributions varies from neuron to neuron. Panel A shows a
positive example with a small spread of the membrane potential and
small trial-to-trial variations. The spread and the trial-to-trial variations
in Panel B are unsatisfactory. Empty histogram bins are artifacts which
result from the discretization of the analog voltage signal via the ADC.

The values of the floating gate cells I_gl, I_pl, V_syntcx and V_syntci determine
the membrane time constant, the refractory period and the excitatory and inhibitory
synaptic time constants, respectively. The currents I_gl and I_pl are set to 1000 DAC
and 30 DAC, respectively, to ensure small τm and large τref . The voltages V_syntcx and
V_syntci have been fixed to 800 DAC. For values smaller than 800 DAC, the height of the
PSP shrinks towards 0 and remains indiscernible from the electrical noise of the membrane
potential. For values larger than 800 DAC, the trace of the synaptic conductance shows a
saturation plateau (see Figure 6.5).
Furthermore, switching use_big_capacitors to False allows to choose the smaller one
of the two possible membrane capacitances of a neuron block. This ensures that the
membrane time constant is as small as possible due to τm = Cm

gl
, but has the side effect

that the PSPs become larger and saturate faster.
Figure 6.1 shows examples of the distributions of the free membrane potential for the
two neurons #27 and #222. Both panels show the voltage distributions of 5 different
experimental runs of 15 s BT. For each new run, the floating gate cells are rewritten twice.
Both examples are intentionally selected to show the disparity of membrane dynamics of
the neurons on the HICANN chip.
The voltage distributions of Neuron #27 in Panel A are close to the expected value 0.9 V
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Figure 6.2: Typical voltage trace and voltage distribution of Neuron #27 under a
balanced Poisson stimulation with a biological rate of 200 Hz for the
excitatory and inhibitory input, respectively. The black arrows in Panel A
indicate saturation effects of the membrane potential, which appear due
to the saturation of the synaptic conductances. The voltage distribution
results from an experiment of the duration 15 s BT and has a bimodal
shape around the mean voltage of about 0.89 V (see Panel B). The
first peak of the distribution represents the value at which the synaptic
conductance, and hence the voltage trace, saturates, while the second
peak is at the leakage potential. EPSPs are smaller than IPSPs for the
selected parameters and do not saturate.

and Gaussian-shaped due to the noise of the electrical components. Panel B shows the
same results for Neuron #222. In comparison to Panel A, the mean value of measured
distributions is far from the expected value of 0.9 V and the spread of the distributions is
about twice as large as the spread of the distributions of Neuron #27. Moreover, there
are large deviations of the mean voltage among the different experimental runs.
In the experiments of the following Subsection 6.1.2, only those neurons on the HICANN
chip are considered which show a membrane behavior similar to Neuron #27 regarding
the average and spread of the membrane potential and the trial-to-trial variation.

Synaptic Parameters The manually set synaptic parameters are the global parameters
g_max and g_max_div and the individual synaptic weights.
The parameter g_max allows the choice of 4 different strengths of the maximal synaptic
conductance gmax via an analog floating gate cell [Schemmel et al., 2014]. For all following
experiments, g_max is set to 0.
The 4-bit parameter g_max_div determines the divisor of the maximal conductance. The
value of g_max_div is set to 5 for the synaptic weights of the background stimulus. This
heuristic choice allows, on the one hand, choosing large weights between the neurons,
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when setting g_max_div to 0, and, on the other hand, prevents the PSPs from becoming
very small and thus indistinguishable from the electrical noise on the membrane.
Figure 6.2 shows a typical voltage trace (Panel A) and voltage distribution (Panel B)
of a neuron which receives synaptic input from an excitatory and inhibitory Poisson
source with a biological rate of 200 Hz, respectively. The spikes are generated on the host
computer and sent to the HICANN chip via the FPGA board and the DNC.
Figure 6.2A reveals that the membrane voltage saturates at about 0.86 V which can be
traced back to the saturation of the total synaptic conductance, a phenomenon which
has also been documented in Millner [2012]. The voltage distribution in Figure 6.2B has
a bimodal shape around a mean voltage of 0.89 V. The first peak of the distribution at
0.86 V represents the value at which the synaptic conductance, and hence the voltage
trace, saturates, while the second peak at 0.89 V is the leakage potential. EPSPs are
smaller than IPSPs for the selected parameters and, thus, do not saturate.

6.1.2 Measuring the Time Constants

The appropriate setting of the time constants of a LIF neuron is crucial for the LIF
sampling performance (see e.g. Figures 3.4 and 4.4). The refractory period τref has to
be at least an order of magnitude larger than the inherent synaptic delays, in order to
minimize their effect on neuron correlations. The synaptic time constant τsyn has to be
in the order of the refractory period τref , such that a neuron which elicits a spike has
a noticeable impact on the postsynaptic neurons during the next refractory period. In
contrast, the effective membrane time constant τeff of the neuron has to be very small
in order to enable fast membrane dynamics. This can be achieved either by setting
the membrane time constant τm to a value close to 0 or by injecting a high-frequency
excitatory and inhibitory background stimulus into the neuron.
The following three paragraphs aim at determining the time constants of the neurons on
the HICANN chip with a special focus on the consistency with the requirements of LIF
sampling. The constants τref and τsyn are measured via Spike-Triggered Average (STA)
[de Boer and Kuyper , 1968], while τm is measured by injecting a finite current pulse
into the membrane and fitting an exponential function to the response of the membrane
potential. For each time constant, 200 PSPs (for τsyn), 200 APs (for τref), or 200 current
pulses (for τm) are averaged. The experiments are run once with Neuron #27 using
different hardware parameters, and once with different neurons which have the same
hardware parameters. All measured results of the time constants are given in biological
real-time.

Refractory Period For the measurement of τref , the hardware parameter V_t, which
represents the threshold potential, is set to 410 DAC, which is far below the leakage
potential. This setting provokes a bursting of the neuron with an ISI of τref plus the
upswing time until the following spike. Thus, τref is the distance between a peak (averaged
spike) and the upswing to the following peak. Likewise, the parameter V_reset is set to
400 DAC to remain below the threshold potential.
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Neuron #19, τref =8.13 ms
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Neuron #80, τref =15.62 ms
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Figure 6.3: Measurement of the refractory period τref of Neuron #27 for different
currents I_pl in Panel A and of different neurons for the current I_pl =
30 DAC in Panel B. The panels show the autocorrelation of the membrane
potential of a neuron whose threshold potential is below the leakage
potential, such that the neuron spikes with a ISI close to τref . The value
of τref corresponds to the distance between one peak (spike) and the next
upswing. Panel A implies that the refractory period can be selected from
at least two different orders of magnitude. However, τref varies greatly
for different neurons when injecting the same currents I_pl (see Panel
B).

Figure 6.3A shows the measured refractory periods τref of Neuron #27 for different
currents I_pl. The figure implies that τref can be selected from at least 2 different orders
of magnitude: For I_pl = 0 DAC, we get τref = 31.88 ms, while for I_pl = 100 DAC, we
have τref = 1.04 ms, which is more than one order of magnitude lower.
Figure 6.3B displays the measured τref of different neurons for the current I_pl = 30 DAC.
Similar to Panel A, the value of τref varies by an order of magnitude between 2 ms and
16 ms for different neurons, even if the same current I_pl = 30 DAC is selected.
For too low τref ≈ 1.2 ms the synaptic delays on the HICANN chip, which are fixed to
1.2 ms (see Section 2.2.1), will have a disturbing effect on the resulting LIF sampling
quality because they will affect neuron correlations. That is why τref � 1.2 ms is required
and, indeed, achievable for certain neurons on the chip.

Membrane Time Constant The measurement of the membrane time constant τm is
conducted by averaging the responses of the membrane potential to the same current
stimuli and fitting an exponential function to the average curve. The growth constant of
the exponential function then corresponds to τm.
Figure 6.4A shows the results of the measured τm of Neuron #27 for different currents
I_gl. The membrane time constant can be tuned on a finer scale compared to the
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Neuron #19, τm =2.67 ms
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Figure 6.4: Measurement of the membrane time constant τm of Neuron #27 for
different currents I_gl in Panel A and of different neurons for the
current I_gl = 1000 DAC in Panel B. The membrane time constant was
deduced by applying a rectangular current stimulus to the membrane
and fitting an exponential function to the upswing of the membrane
potential. The neuron-to-neuron variations of τm are small compared to
these of τref in Figure 6.3. The smallest possible value for τm is about
2 ms biological time.

refractory period in the last paragraph. Between the currents I_gl = 200 DAC and
I_gl = 1000 DAC, τm only changes by a factor of 2.
Also the neuron-to-neuron variations of τm in Figure 6.4B are small compared to these of
τref . For all tested neurons, the smallest value of the membrane time constant amounts
to about τm = 2.0 ms.

Synaptic Time Constant The measurement of the synaptic time constant τsyn is
achieved by injecting a regular spike train into the neuron and averaging over the
resulting PSPs. By fitting a difference-of-exponentials function to this average PSP, we
can deduce the (effective) membrane time constant and the synaptic time constant. Since
we know the value of τm from the last paragraph, the remaining time constant obtained
from the fit belongs to the synaptic conductance.
One important aspect which has to be mentioned at this point is the fact that the PSP
shape is not a real difference-of-exponentials function but has an exponential growth at the
upswing. However, the difference-of-exponentials function yields a sufficient approximation
to the PSP shape.
Figure 6.5A displays the measured synaptic time constant τsyn of Neuron #27 for different
voltages V_syntc. For each of the displayed curves except for V_syntc = 850 DAC, the
value of τsyn lies in the range between 0.7 and 1.6 ms. However, for all V_syntc > 800 DAC,
the PSP saturates at some peak value due to saturating synaptic conductances (see
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Figure 6.5: Measurement of the synaptic time constant τsyn of Neuron #27 for differ-
ent voltages V_syntc in Panel A and of different neurons for the voltage
V_syntc = 800 DAC in Panel B. For each V_syntc except 850 DAC, the
value of τsyn lies in the range between 0.7 and 1.6 ms in Panel A. However,
for each V_syntc > 800 DAC, the PSP saturates at some peak value due
to saturating synaptic conductances. The synaptic time constant at the
voltage V_syntc = 800 DAC lies around 1.5 ms for all tested neurons (see
Panel B).

Subsection 6.1.1). For the remaining range of V_syntc, the PSPs can not be distinguished
from the electrical noise of the membrane potential.
The synaptic time constant at the voltage V_syntc = 800 DAC lies around 1.5 ms for
all tested neurons, which is shown in Figure 6.5B. Thus, the synaptic time constant is
consistently lower than the membrane time constant of the neurons and of the order of
the synaptic delays. The second statement is even worse because τsyn has to be in the
range of τref (see Chapters 3 and 4) to achieve optimal LIF sampling results, but, however,
delays of the order of τref will affect neuron correlations.

6.1.3 Measuring the Activation Curve

In the software simulations in Chapters 3, 4 and 5, the activation curve of a LIF neuron
was measured by varying the mean membrane potential of the neuron and measuring the
fraction pON of the time that the neuron spends in the refractory state (see Figure 3.1).
A shift of the leakage potential towards one of the reversal potentials might introduce
non-linearities, additionally to those which are in the system anyway.
Therefore, the method used in this section leaves the leakage potential and the reversal
potentials constant such that the reversal potentials remain symmetrical with respect to
the leakage potential. In order to trace the activation curve, the threshold voltage V_t
and the reset voltage V_reset = V_t− 10 DAC are shifted from the inhibitory towards
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Figure 6.6: Activation curve of Neuron #27. Each measuring point corresponds to
the average of 5 experiments of the duration 15 s biological time. The
error bars denote the standard deviations. The Poisson background
has a biological rate of 200 Hz for the excitatory and inhibitory input,
respectively. In opposite to Figure 3.1, the threshold voltage V_t and the
reset voltage V_reset = V_t−10 DAC are modified. This ensures that the
actual reversal potentials stay symmetrically around the leakage potential.
Due to τm (see Figure 6.4) and the necessary condition V_t− V_reset ≥
10 DAC , the neuron maximally reaches pON = 0.7, which is insufficient
for LIF sampling.

the excitatory reversal potential. For each data point, the number NS of elicited spikes
during T = 15 s biological time is measured. With the extracted refractory period of the
neurons from Figure 6.3, pON = NSτref

T can be calculated.
Figure 6.6 displays the measured activation curve of Neuron #27. Each data point of
the curve corresponds to an average over 5 experiments, in which the neuron received
an excitatory and inhibitory background input of 200 Hz biological rate1, respectively.
Between consecutive experimental runs, the floating gate cells are reprogrammed twice.
The activation curve in Figure 6.6 is sigmoidal and can be well fitted to a logistic function
with a proper linear transformation of V_t. However, several aspects are unsatisfactory
for a reliable application of LIF sampling. First, the curve saturates at a maximum of
about 5000 spikes which corresponds to pON ≈ 0.7. This implies that a larger pON can

1A background rate of 200Hz allows to supply several neurons with the same rate in parallel in
prospective experiments with LIF-based BMs, with the given maximal bandwidth and acceleration
factor (see Section 2.2.2).
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not be reached. This can be traced back to the large τm and the saturation of synaptic
conductances, which results in a large effective membrane time constant τeff ≈ τm and
thus insufficiently fast membrane dynamics.
A second unsatisfactory issue are the large error bars particularly around the midpoint
of the activation curve. These errors can be mainly ascribed to the imprecision of the
floating gate cells in the individual experimental runs. However, this inconsistency is
expected to be overcome in prospective experiments with a calibrated hardware system.
The following subsection will present the results of software simulations which aim to find
the parameter values of the time constants and the background input which fit best to
the requirements of LIF sampling.

6.2 Towards a Parametrization that Will Enable LIF
Sampling on Hardware

The previous section has shown that a naive application of LIF sampling is not directly
compatible with the range and the fluctuations of parameters available on the current
version of the HICANN chip. This section aims at finding the parameters ranges which fit
best to the requirements of LIF sampling, while still taking into account the parameters of
the neurons on the HICANN chip, which were deduced in Section 6.1. For this, software
simulations are run in which the neurons are initialized with the optimal parameters of the
neurons on the HICANN chip. Subsection 6.2.1 deals with the impact of the parameters
of the background stimulus on the effective membrane time constant of the LIF neuron.
Thereafter, Subsection 6.2.2 investigates the quality of LIF sampling from an example
Boltzmann distribution of 5 RVs based on the determined time constants of the neurons
on the HICANN chip.

6.2.1 Background Input Parameters

The saturation of the activation function in Figure 6.6 at pON = 0.7 implies that the
effective membrane time constant τeff is not small enough compared to τsyn and τref . This
is due to the fact that, on the one hand, the maximum background input frequency and
weight to the neuron is too small and, on the other hand, the membrane time constant τm

too large. According to Equation 2.54, both the background input frequency and weight
have an impact on the synaptic conductance and, consequently, on the total conductance
gtot = Cm

τeff
:

gi(t) = wiνiτsyn . (6.1)

With gtot(t) = gl +
∑

i gi(t), the effective membrane time constant τeff can be directly
calculated:

τeff =
Cm

gtot
=

Cm

gl + τsyn (wexcνexc + winhνinh)
. (6.2)

Now we can fix the parameters τsyn = 1.5 ms and τm = 2.0 ms, which were both measured
in Section 6.1, and illustrate τeff as a function of the background input rates ν = νexc = νinh

and weights w = wexc = winh.
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Figure 6.7: Dependence of the effective membrane time constant τeff on the rate ν
(see Panel A) and the weight w (see Panel B) of the background Poisson
stimulus. The excitatory and inhibitory synaptic weights in Panel A
are 2 nS. The background rate in Panel B amounts to 400 Hz for the
excitatory and inhibitory input, respectively.

Figure 6.7A shows the impact of the background input rate ν on τeff for the synaptic input
weights w = 2.0 nS. For low input frequencies, the effective membrane time constant stays
constant at τeff = τm. At frequencies higher than 1.0 kHz, τeff begins to shrink. At about
100.0 kHz and more, τeff reaches values of 0.2 to 0.4 ms, which are an order of magnitude
smaller than τsyn, and, thus, suit the requirements of LIF sampling.
Figure 6.7B displays the dependency of τeff on the strength of the background input
weights w for an input frequency of ν = 400.0 Hz for the excitatory and inhibitory
connections, respectively. The plot shows that τeff decreases with larger synaptic weights.
Only for very large synaptic weights close to w = 1.0µS, τeff becomes about an order of
magnitude smaller than τsyn. However, very large weights are impractical because the
neurons would quickly reach the reversal potentials and the PSPs would saturate.

6.2.2 Time Constants

In Section 6.1.2 it was shown that the best achievable values of the time constants on
the current version of the HICANN chip are τm = 2 ms and τsyn = 1.5 ms. The following
discussion aims at finding an optimal working point for LIF sampling for a BM of 5
RVs using the determined hardware parameters. Furthermore, the experiments comprise
optimal values for the time constants, which fit best to the requirements of LIF sampling.
Figure 6.8 presents the sampling performance based on the KL divergence of the simulated
and theoretical joint probability distribution (see Equation 2.15) for a simulated BM of 5
RVs. Each experiment has a duration of 15 s BT, just like in the hardware measurements
in Section 6.1. If not given by the color-plots, the parameters of the LIF neuron are
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Figure 6.8: Color-coded KL divergence of the simulated and target joint probability
distribution for a simulated BM consisting of 5 RVs. The duration of one
simulation is 15 s biological time. Table A.1 shows the utilized neuron and
stimulus parameters, but with τm = 2 ms in Panel A and τref = 1.5 ms
and τsyn = 1.5 ms in Panel B. Furthermore, in contrast to Table A.1,
the synaptic delays are fixed to 1.2 ms, mimicking the synaptic delays on
the HICANN chip. The black crosses show the best currently achievable
results with the neurons on the HICANN chip. The figures imply that
the best sampling results are reached with large τref and τsyn compared
to τm, and large input frequencies.

chosen from Table A.1, but with τref = 1.5 ms, τm = 2.0 ms, τsyn = 1.5 ms and delays of
1.2 ms.
Figure 6.8A shows the sampling quality under the variation of the time constants τsyn

and τref . The best sampling performance is achieved with the conditions τref � 1.2 ms,
such that the synaptic delay is vanishing compared to the time scales of the neuron, and
τsyn ≈ τref , a result which has already been verified in Chapter 3. The black cross in
Figure 6.8A shows the expected best achievable result with the current version of the
HICANN chip taking into account a constant synaptic time constant τsyn ≈ 2.0 ms.
Figure 6.8B displays the sampling performance for different background input rates ν
and membrane time constant τm. As expected according to Equations 2.48 and 2.55,
respectively, the best sampling results are achieved with very large input rates ν and thus
a fast membrane, which means τeff ≈ 0. Due to the bandwidth limitation (see Chapter
2.2) regarding the current acceleration of 104 of the HICANN chip compared to biological
real-time, however, the best achievable result, when using the parameter set of the neurons
on the HICANN chip, is unsatisfactory (see black cross in Figure 6.8B).
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6.3 Conclusion

This chapter investigated the feasibility of naively implementing LIF sampling on the cur-
rent version of the HICANN chip. It turned out that the membrane and synaptic circuits
on the current version of the HICANN chip do not allow such a direct implementation of
LIF sampling for several reasons.
First, and most crucially, the synaptic conductances saturate very quickly. This leads to
a rapid saturation of the membrane potential and, consequently, non-additive PSPs.
Second, the synaptic time constant cannot be set larger than the effective membrane
time constant, a fact which is crucial for LIF sampling. Due to the short synaptic time
constant, the effect of the individual background spikes on the course of the membrane
potential of a neuron is very small, demanding for large input frequencies far beyond the
maximum bandwidth of about 2775 Hz for regular spike trains at the acceleration factor
104 of the HICANN chip compared to biological real-time.
Third, the membrane time constant of the neurons cannot be set smaller than τm = 2.0 ms.
In the software simulations of the previous chapters, τm ≈ 0.1 ms was used, which allowed
fast membrane dynamics independent of the background input rates. Software simulations
showed that, with the demonstrated constraint of the parameter range of τm on the
HICANN chip, a very large background input frequency in the range of 10 kHz is required
to achieve a fast membrane and, consequently, satisfactory LIF sampling results. This
option is, however, not approachable with the current hardware setup due to the bandwidth
limitation.
Fourth, imprecisions arise during the measurements which prevent from setting up well-
tuned LIF-based BMs. These imprecisions can be be ascribed to the inaccuracies of the
floating gate cells. Since many parameters (τref , τsyn, τm, Erev

exc, Erev
inh , Vrest, Vth) need

to be tuned simultaneously, inaccuracies of one parameter affect the precision of other
parameters.
All in all, the current version of the HICANN chip appears to prohibit a direct implemen-
tation of LIF sampling. In the ongoing experiments, some workarounds can be envisioned,
among which mLIF PSPs emerge as a promising candidate, since large τref but only small
τsyn can be achieved.
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7 Discussion

The simulation results in this thesis have demonstrated the feasibility of using networks of
deterministic Leaky Integrate-and-Fire (LIF) neurons to sample from probability distribu-
tions schematized by Bayesian Networks (BNs). For this, two different implementations of
BNs over binary RVs, which were proposed by Pecevski et al. [2011], have been transferred
to the framework of Petrovici et al. [2013].
In the first implementation, the BNs were reduced to a Boltzmann Machines (BMs) with
the help of auxiliary RVs. Each factor of order larger than 2 of the probability distribution
was represented via additional auxiliary RVs, each of which coded for one of the possible
states of this higher-order factor. The neurons corresponding to the original RVs satisfied
the NCC in the extended probability distribution of the original and auxiliary RVs.
Chapter 4 provided the results of this first implementation of BNs with LIF neurons.
The chapter revealed that it is possible to sample from BNs via networks of LIF neurons.
However, the sampling quality was unsatisfactory for BNs with an extreme discrepancy
of the probability distribution due to the shape of the LIF PSP. In this case, auxiliary
neurons with high firing rates consistently silenced auxiliary neurons with very low,
non-zero firing rates. This phenomenon arose mainly due to the exponential tail of the
PSP shape. A sophisticated modification of the synaptic interaction in order to approach
the shape of ideal rectangular PSPs from Pecevski et al. [2011] led to a vast improvement
of the LIF sampling performance for arbitrary BNs. For this, instead of one neuron
per RV, each RV was represented by a feed-forward chain of neurons, which allowed to
reshape the PSPs of the postsynaptic sampling neuron. However, similar to the results
using the original stochastic neuron model with rectangular PSPs, a slow convergence
in the range of hundreds of seconds towards the stationary probability distribution was
observed, which was a result of the increase of the probability space dimensionality due to
the addition of auxiliary RVs. In contrast, the convergence time with standard LIF PSPs
was about an order of magnitude lower, which could be explained by the asymmetry of
the PSP shape and, thus, a fast settling towards some stationary distribution.
In the second implementation of BNs with LIF neurons, the principal neurons, which
correspond to the original RVs, directly satisfied the NCC. This was achieved by a
different network structure which is induced via a Markov blanket expansion of the NCC:
Auxiliary neurons were introduced as preprocessing units which code for the states of
the Markov blanket of the corresponding principal neuron, while satisfying the NCC.
In contrast to the first implementation, the information flow in the neural network was
directed, such that concrete distributions of spike timings became crucial.
Chapter 5 described the results of Implementation 2 with LIF neurons. Achieving good
sampling quality using both the standard LIF PSPs and the novel mLIF PSPs was
particularly challenging compared to the first implementation for three different reasons.
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First, the non-uniformity of the PSP shape led to a non-uniformity of the firing probability.
Second, the stochasticity induced by the Poisson background input was different from
the inherent stochasticity of the abstract neuron model. Third, the autocorrelation
of the membrane potential provoked undesired correlations of spike times among the
auxiliary neurons. Only for large refractory periods and small synaptic time constants,
a modification which came in favor of all three issues, LIF sampling with mLIF PSPs
provided adequate results. However, large refractory periods and small synaptic time
constants came at the expense of very large neural networks and, therefore, long durations
of simulations.
Chapter 6 investigated the feasibility to realize BMs with LIF neurons integrated on
the HICANN chip, which is the centerpiece of the neuromorphic hardware system which
is being developed in the frame of the BrainScaleS project. The neural and synaptic
circuits on the current version of HICANN chip, however, appear to not allow a direct
implementation of LIF sampling for several reasons. The most crucial issue is the
saturation of synaptic conductances due to a production mismatch which leads to a
limited dynamic range of the membrane potential. This saturation also does not allow
setting the synaptic time constant larger than the membrane time constant, which is
required to achieve satisfactory sampling results. Furthermore, the limitation of available
independent Poisson sources on the HICANN chip, together with the acceleration factor of
104 compared to biological time, only allowed for maximal biological rates in the range of
100 Hz for the Poisson stimulus on the chip. These frequencies, however, were insufficient
to facilitate a low effective membrane time constant, and thus, the High-Conductance-
State (HCS) required to perform sampling with LIF neurons.
The following chapter will provide an overview of tasks which will extend the existent
framework of LIF-based BNs. Furthermore, the potential for facilitating LIF sampling
with the current and the new, decelerated version of the HICANN chip, which is currently
being developed, is discussed.
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8 Outlook

This thesis has successfully demonstrated the applicability of deterministic Leaky Integrate-
and-Fire (LIF) neurons for sampling from probability distributions described by Bayesian
Networks (BNs). A modification of the standard LIF PSPs, the so-called mLIF PSPs,
led to a vast improvement of the sampling quality. The inherent parameter constraints
and fluctuations of the neurons and synapses integrated on the BrainScaleS neuromorphic
hardware system, however, appeared to not allow a naive application of LIF sampling.
The following discussion contains suggestions for prospective experiments which will
enhance the sampling results in both software and hardware implementations.

Improvement of the LIF Sampling Performance in Software Simulations First of all,
the mLIF PSP shape needs to be optimized. In particular, the sampling performance has
to be measured for different sizes of the feed-forward chains, synaptic time constants and
refractory periods.
Second, the LIF sampling performance with mLIF PSPs needs to be tested with respect
to the size of the BN. Here, a limiting factor regarding software simulations is expected.
The size of the neural networks grows exponentially with the size of the BNs, due to an
increasing number of auxiliary RVs. In addition, a larger number of RVs automatically
leads to longer convergence times towards the target distributions. Both facts come at
the expense of the necessary simulation time.
Third, the question arises, whether the feed-forward chains of neurons might be extended
to small populations of neurons in order to increase robustness. This modification will,
on the one hand, make the system more complex but, on the other hand, might come in
favor of Implementation 2, because the stochastic firing of the neural populations might
redistribute the FPTs of the postsynaptic sampling neuron.
Fourth, regarding the simulation results of Implementation 1 when using standard LIF
PSPs, a PyNN option facilitating the selection of different synaptic time constants for
the connections to the same neuron would allow to choose the shape of the PSP as a
function of the weight and, with this, would improve the LIF sampling results.
Furthermore, the work which is planned for the future incorporates the learning of synaptic
weights using Contrastive Divergence [Hinton, 2002] or rules based on STDP [Nessler
et al., 2013], which hold the potential to enhance the LIF sampling results. In addition,
as proposed by Pecevski et al. [2011], WTA circuits could be used to extend the sampling
framework from binary to discrete probability distributions.

Preparation of an Effective Implementation of LIF Sampling on the BrainScaleS
Neuromorphic Hardware System Concerning a future implementation of LIF sampling
on the HICANN chip, several issues have to be managed. With respect to the current
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version of the HICANN chip, one could use the on-chip BEGs and BEGs from neighboring
HICANN chips to provide for a high-frequent background input of the hardware neurons,
and, consequently, a small effective membrane time constant. Each BEG would be
initialized with a different seed, which is randomly updated during the experiment, such
that, adding two or more spike trains from two different BEGs might results in a unique
Poisson-distributed spike train [Schemmel , 2014]. However, the randomness of this spike
train needs to be investigated, e.g. by comparing the resulting sampling quality to an
ideal Poisson-distributed background spike pattern.
Recurrent networks of spiking neurons, so-called Balanced Random Networks (BRNs),
which were investigated in Jordan [2013], are a promising candidate to be used for
generating uncorrelated background noise for the functional BNs on the neuromorphic
hardware substrate, even if the on-chip noise resources are limited. Jordan [2013] shows
that the output activity of a BRN, whose neurons partly share the same input sources, can
be decorrelated by inhibitory feedback within the networks themselves. BRNs integrated
on the neuromorphic hardware, on the one hand, will allow a high-frequent background
input for the functional networks and, thus, fast membrane dynamics, and on the other
hand, will improve the sampling results compared to these with usual Poisson input
[Jordan, 2013].
The prospective version of the HICANN chip, which is currently being developed, will
contain several useful improvements with regard to the feasibility of the implementation
of LIF sampling. First, a correct matching of the synaptic conductance will allow for
non-saturating membrane voltage traces and additive PSPs, which is a fundamental
requirement of LIF sampling. Second, an increase of the reliably achievable refractory
times and, by the same amount, of the synaptic constant by at least a magnitude above
the inherent synaptic delays on the HICANN chip will come in favor of the LIF sampling
results.
The planned reduction of the acceleration factor of the HICANN chip from 104 to 103

compared to biological time will automatically solve two issues available on the current
hardware system regarding the applicability of LIF sampling. On the one hand, the
synaptic delays will shrink by an order of magnitude in terms of biological time, thereby
becoming less problematic. On the other hand, a reduced speed-up factor will allow for
input frequencies, which are by an order of magnitude larger than these on the current
hardware system. These high input frequencies are essential to reduce the effective
membrane time constant, which will be in favor of the LIF sampling performance.
Last but not least, a complete calibration of the membrane and synaptic circuits will
significantly ease the implementation of any network model on the hardware substrate,
including, of course, LIF sampling.
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A Appendix

A.1 Code References

The code associated with this manuscript is located in the BrainScaleS git repository
git@gitviz.kip.uni-heidelberg.de:model-nmsampling.git.
The folder root/code/bayesian contains the subfolders:

• neuralsampling: Implementation 1 and 2 of BMs and BNs using the abstract
neuron model

• impl1LIF: Implementation 1 with LIF neurons

• impl2LIF: Implementation 2 with LIF neurons

• impl1mLIF: Implementation 1 with LIF neurons and mLIF PSPs

• impl2mLIF: Implementation 2 with LIF neurons and mLIF PSPs

• Psp: Design and investigation of PSP shapes

The folder root/code/gibbs_sampling provides an efficient implementation of Gibbs
sampling from Boltzmann distributions.
Hardware experiments are saved in root/code/hardware_experiments:

• lif_in_hcs: LIF neuron in a spiking noisy environment provided by spikes created
on the host computer and transmitted via the FPGA

• lif_in_hcs_beg: LIF neuron in a spiking noisy environment provided by the
on-chip BEGs

• bm_2: Neural implementation of a BM of 2 RVs

• bm_3: Neural implementation of a BM of 3 RVs
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A.2 Neuron Parameters

A.2 Neuron Parameters

The following tables contain the parameters which have been used for the LIF neurons in
the course of this thesis.

Resting membrane potential Vrest V b
k with bias b

Capacity of the membrane Cm 0.2 nF
Membrane time constant τm 0.1ms
Duration of refractory period τref 30.0ms
Decay time of the excitatory synaptic conductance τsyn,exc 30.0ms
Decay time of the inhibitory synaptic conductance τsyn,inh 30.0ms
Reversal potential for excitatory input Erev

exc 0.0mV
Reversal potential for inhibitory input Erev

inh -100.0mV
Spike threshold Vth -50.0mV
Reset potential after a spike Vreset -53.0mV
Offset current Ioffset 0.0 nA
Utilization of synaptic efficacy U0 1.0
Recovery time constant τrec 0.99 · 30.0 ms
Facilitation time constant τfacil 0.0ms
Excitatory/inhibitory Poisson input rate 400.0Hz/400.0Hz
Excitatory/inhibitory background weight 0.002µS/0.002µS
Synaptic delays 0.1ms

Table A.1: Standard parameters of the LIF neurons with conductance-based synapses
utilized in Chapter 3.
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Resting membrane potential Vrest V b
k with bias b

Capacity of the membrane Cm 0.2 nF
Membrane time constant τm 0.1ms
Duration of refractory period τref 20.0ms
Decay time of the excitatory synaptic conductance τsyn,exc 10.0ms
Decay time of the inhibitory synaptic conductance τsyn,inh 10.0ms
Reversal potential for excitatory input Erev

exc 0.0mV
Reversal potential for inhibitory input Erev

inh -100.0mV
Spike threshold Vth -50.0mV
Reset potential after a spike Vreset -53.0mV
Offset current Ioffset 0.0 nA
Utilization of synaptic efficacy U0 1.0
Recovery time constant τrec 0.99 · 10.0 ms
Facilitation time constant τfacil 0.0ms
Excitatory/inhibitory Poisson input rate 400.0Hz/400.0Hz
Excitatory/inhibitory background weight 0.002µS/0.002µS
Synaptic delays 0.1ms

Table A.2: Standard parameters of the LIF neurons with conductance-based synapses
utilized in Chapter 4 and 5.

Resting membrane potential Vrest -52.3mV
Capacity of the membrane Cm 0.2 nF
Membrane time constant τm 0.1ms
Duration of refractory period τref 19.8ms
Decay time of the excitatory synaptic conductance τsyn,exc 2.0ms
Decay time of the inhibitory synaptic conductance τsyn,inh 2.0ms
Reversal potential for excitatory input Erev

exc 0.0mV
Reversal potential for inhibitory input Erev

inh -100.0mV
Spike threshold Vth -50.0mV
Reset potential after a spike Vreset -52.3mV
Offset current Ioffset 0.0 nA
Synaptic delays 0.1ms

Table A.3: Parameters of the principal LIF neurons utilized in Chapter 5.
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A.2 Neuron Parameters

Parameters of the sampling neurons

Capacity of the membrane Cm 0.2 nF
Membrane time constant τm 0.1ms
Duration of refractory period τref 29.5ms
Decay time of the excitatory synaptic conductance τsyn,exc 30.0ms
Decay time of the inhibitory synaptic conductance τsyn,inh 30.0ms
Reversal potential for excitatory input Erev

exc 0.0mV
Reversal potential for inhibitory input Erev

inh -100.0mV
Spike threshold Vth -50.0mV
Reset potential after a spike V mLIF-50

reset -50.01mV
Reset potential after a spike V mLIF-53

reset -53.00mV

Parameters of the forwarding neurons

Capacity of the membrane Cm 0.2 nF
Membrane time constant τm 0.1ms
Duration of refractory period τref 29.3ms
Decay time of the excitatory synaptic conductance τsyn,exc 2.0ms
Decay time of the inhibitory synaptic conductance τsyn,inh 2.0ms
Reversal potential for excitatory input Erev

exc 0.0mV
Reversal potential for inhibitory input Erev

inh -100.0mV
Spike threshold Vth -50.0mV
Reset potential after a spike Vreset -52.3mV
Resting membrane potential Vrest -52.3mV

Parameters of the neural chain

Number of chain neurons 6
Delay: sampling → sampling neuron 0.1ms
Delay: sampling → forwarding neuron 5.8ms
Delay: forwarding → sampling neuron 0.1ms
Delay: forwarding → forwarding neuron 5.8ms
Delay: forwarding → last forwarding neuron 5.9ms
Weight: sampling → sampling neuron w
Weight: sampling → forwarding neuron 0.16µS
Weight: forwarding → sampling neuron 0.180 · w
Weight: last forwarding → sampling neuron −0.815 · w
Weight: forwarding → forwarding neuron 0.16µS

Table A.4: Parameters of the chain of 6 neurons which is used to create mLIF PSPs
in Chapters 4 and 5
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Parameters of the sampling neurons

Capacity of the membrane Cm 0.2 nF
Membrane time constant τm 0.1ms
Duration of refractory period τref 99.0ms
Decay time of the excitatory synaptic conductance τsyn,exc 10.0ms
Decay time of the inhibitory synaptic conductance τsyn,inh 10.0ms
Reversal potential for excitatory input Erev

exc 0.0mV
Reversal potential for inhibitory input Erev

inh -100.0mV
Spike threshold Vth -50.0mV
Reset potential after a spike Vreset -50.01mV

Parameters of the forwarding neurons

Capacity of the membrane Cm 0.2 nF
Membrane time constant τm 0.1ms
Duration of refractory period τref 98.8ms
Decay time of the excitatory synaptic conductance τsyn,exc 2.0ms
Decay time of the inhibitory synaptic conductance τsyn,inh 2.0ms
Reversal potential for excitatory input Erev

exc 0.0mV
Reversal potential for inhibitory input Erev

inh -100.0mV
Spike threshold Vth -50.0mV
Reset potential after a spike Vreset -52.3mV
Resting membrane potential Vrest -52.3mV

Parameters of the neural chain

Number of chain neurons 166
Delay: sampling → sampling neuron 0.1ms
Delay: sampling → forwarding neuron 0.5ms
Delay: forwarding → sampling neuron 0.1ms
Delay: forwarding → forwarding neuron 0.5ms
Weight: sampling → sampling neuron w
Weight: sampling → forwarding neuron 0.16µS
Weight: forwarding → sampling neuron 0.0583 · w
Weight: last forwarding → sampling neuron −0.9430 · w
Weight: forwarding → forwarding neuron 0.16µS

Table A.5: Parameters of the chain of 166 neurons which is used to create mLIF
PSPs in Chapter 5
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Floating gate parameters of the membrane circuits

Parameter Value [DAC] Parameter Value [DAC]

I_breset 1023 V_reset (global) 590
I_bstim 1023 E_l 512
V_bout 1023 E_syni 398
V_bexp 1023 E_synx 626
V_br 0 I_bexp 0
V_bstdf 0 I_convi 1023
V_ccas 800 I_convx 1023
V_clrc 0 I_fire 0
V_clra 0 I_gl 1023
V_dep 0 I_gladapt 0
V_fac 0 I_intbbi 1023
V_dllres 200 I_intbbx 1023
V_dtc 0 I_pl 30
V_gmax0 1000 I_radapt 1023
V_gmax1 1000 I_rexp 1023
V_gmax2 1000 I_spikeamp 1023
V_gmax3 1000 V_exp 1023
V_m 0 V_syni 1023
int_op_bias 1023 V_syntci 800
V_stdf 0 V_syntcx 800
V_thigh 0 V_synx 1023
V_tlow 0 V_t 600

Parameters of the synapse circuits

Parameter Value Parameter Value

g_max 0 g_max_div 5
Exc. synaptic weight 5 Inh. synaptic weight 5

Additional settings

Parameter Value Parameter Value

fg_speed_up_scaling NORMAL use_big_capacitors False

Table A.6: Floating gate parameters of the membrane and synapse circuits on the
HICANN chip which have been used in Chapter 6. The membrane
parameters on the left hand side are global, the membrane parameters
on the right hand side are individual neuron parameters except for the
global parameter Vreset.
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A.3 Acronyms

ADC Analog-to-Digital-Converter

AdEx Adaptive Exponential Integrate-and-Fire

ANC Analog Network Core

AP Action Potential

API Application Programming Interface

ARQ Automatic Repeat reQuest

ASIC Application Specific Integrated Circuit

BEG Background Event Generator

BM Boltzmann Machine

BN Bayesian Network

BRN Balanced Random Network

BT Biological Time

CMOS Complementary Metal Oxide Semiconductor

DAC Digital Analog Converter

DenMem Dendrite membrane

DNC Digital Network Chip

EPSP Excitatory Postsynaptic Potential

FACETS Fast Analog Computing with Emergent Transient States

FPGA Field Programmable Gate Array

FPT First-Passage Time

HAL Hardware Abstraction Layer

HCS High-Conductance-State

HICANN High Input Count Analog Neural Network

HMF Hybrid Multiscale Facility

HT Hardware Time

IPSP Inhibitory Postsynaptic Potential
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ISI Inter-Spike Interval

KL Kullback-Leibler

L1 Layer 1

L2 Layer 2

LFSR Linear Feedback Shift Register

LIF Leaky Integrate-and-Fire

LVDS Low Voltage Differential Signaling

MCMC Markov chain Monte Carlo

mLIF "Multiple" Leaky Integrate-and-Fire

NCC Neural computability condition

ODE Ordinary Differential Equation

OU Ornstein-Uhlenbeck

PCB Printed Circuit Board

PDF Probability Density Function

PSP Postsynaptic Potential

RV Random Variable

SEB System Emulator Board

SRAM Static Random-Access Memory

STA Spike-Triggered Average

STDP Spike-Timing Dependent Plasticity

STP Short-Term Plasticity

TM Tsodyks-Markram

TNN Two-Node-Network

UMC United Microelectronics Corporation

VLSI Very-Large-Scale Integration

VPE Visual Perception Experiment

WTA Winner-Take-All
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