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Abstract

The Short Term Plasticity (STP) implementation of the neuromorphic High
Input Count Analog Neural Network (HICANN) chip is characterised. In this
thesis, a high-level approach is adopted by analyzing a neuron circuit’s res-
ponse to a presynaptic stimulus. By recording analog traces of the membrane
voltage, the STP parameters are extracted.
Starting from the theoretical model, protocols for characterising its para-

meters were developed. Corresponding measurements are discussed in this
thesis.The experiments have shown that the hardware’s characteristics lie wi-
thin ranges suitable for biology-inspired network models. Deviations between
multiple instances of the circuit could be observed. In order to compensate for
these deviations, calibration methods were developed and successfully veri-
fied. As a conclusion, the measured operating range is compared to data from
biological systems and possible limitations of the hardware design are discus-
sed.

Zusammenfassung

Im Rahmen dieser Arbeit wird die Implementierung von Kurzzeitplastizität
auf dem neuromorphen HICANN-Mikrochip untersucht. Durch Beobachtung
und Analyse postsynaptischer Potentiale auf der Membranspannung als Re-
aktion auf einen presynaptischen Stimulus, können die Parameter des Platizi-
tätsmechanismus bestimmt werden.
Ausgehend von einem theoretischen Modell werden Messprotokolle für die

Charakterisierung des Schaltkreises entwickelt. In dieser Arbeit werden die
Ergebnisse der zugehörigen Messreihen diskutiert. Es kann gezeigt werden,
dass das Verhalten des Chips die Realisierung biologisch inspirierter Netzwer-
ke unterstützt. Allerdings fallen starke Schwankungen zwischen verschiede-
nen Instanzen der Schaltung auf. Deshalb werden Kalibrationsmethoden zum
Ausgleich dieser Abweichungen entwickelt und erfolgreich getestet.
Abschließendwerden die Eigenschaften der Kurzzeitplastizität desHICANN-

Chips mit aus der Biologie stammenden Daten verglichen und die möglichen
Grenzen der Schaltung dargelegt.
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1 Introduction

The human brain is estimated to consist of over 20 billion neocortical neurons each with
approximately 7000 synaptic connections on average (Drachman, 2005). In order to un-
derstand the communication in this network, large-scale numerical simulations of neural
models are conducted. Approaches like these require huge computational resources pro-
vided by supercomputers (EPFL and IBM, 2008). Within the BrainScaleS Project (BSS)
(BrainScaleS, 2012), a very different approach is taken: Analog neuromorphic hardware
implements physical models with similar dynamics in silicon. Systems following this de-
sign promise a low energy footprint as well as a high execution speed mostly independent
of the model’s size. In the context of the BSS, the mixed-signal Hybrid Multi-Scale Facil-
ity (HMF) is developed, primarily at the Kirchhoff-Institute for Physics in Heidelberg and
the TU Dresden. For the HMF, a high-performance computing cluster is combined with
highspeed communication links based on Field Programmable Gate Arrays (FPGAs) and a
neuromorphic core. The latter consists of wafer-scale integrated High Input Count Analog
Neural Network (HICANN) chips (HBP SP9 partners, 2014).
This chip does not only provide configurable analog neuron circuits and software-defined

routing capabilities, but also features implementations of Spike-Timing Dependent Plas-
ticity (STDP) (Bi and Poo, 1998, Schemmel et al., 2006) and Short Term Plasticity (STP)
(Tsodyks and Markram, 1997, Schemmel et al., 2006). While the former is believed to at
least partially explain memory storage and Hebbian learning (van Rossum et al., 2000), the
latter regulates a synapse’s response based on presynaptic activity (Zucker and Regehr,
2002). This thesis will entirely focus on the characterization of the STP mechanism on the
HICANN microchip.
An implementation of STP has been available for the predecessor chip Spikey. On that

platform, other publications have already examined STP (Bill, 2008). It has shown to al-
low for a compensation of inhomogeneities in neuromorphic hardware systems due to
variations in the production process (Bill et al., 2010). In particular, STP enables the im-
plementation of self-stabilizing neural network models (Bill, 2008). In order to lay the
groundwork for similar networks on the current hardware generation, it is required to
characterise its properties.
Each HICANN contains 224 individual instances of the STP circuitry. While it is possible

to write down a model of the implementation’s dynamics, hardware measurements show
deviations from these predictions. For a reliable STP mechanism, these variations must be
characterised and compensated by calibration routines.
At the beginning of this thesis, the STP circuit’s dynamics are examined and compared to

the biology-inspired Tsodyks-Markram model (Tsodyks and Markram, 1997). Then, mea-
surement protocols for the characterization of the parameters are presented. The results of
these measurements are shown for one HICANN chip exemplarily and possible calibration
strategies are discussed. As a conclusion, similarities between the hardware implementa-
tion and the Tsodyks-Makram model are pointed out, as well as potential limitations of
the design.
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2 Materials and Background

The HMF is a mixed-signal neuromorphic hardware developed primarily at the Kirchhoff-
Institute in Heidelberg and the TU Dresden in the context of the BSS funded by the Eu-
ropean Union (BrainScaleS, 2012). Core of the HMF wafer-scale neuromorphic hardware
system is the HICANN chip.

2.1 The HICANN Chip
The following paragraphs are meant to serve as a short introduction to the hardware com-
ponents and most importantly to the terminology used in this thesis. For more detailed
information refer to HBP SP9 partners (2014) and Schemmel et al. (2010).
Due to shorter intrinsic time constants, an accelerated execution of neural networks is

inherent in the design of the HICANN microchip. Compared to biological real time, a
speedup of ≈ 104 can be observed. In this thesis, all time scales are given in the Hardware
Time Domain (HTD) as opposed to the Biological Time Domain (BTD). Exceptions to this
are clearly marked.

2.1.1 Analog Neurons

A single HICANN chip contains 512 analog neuron circuits – also referred to as dendritic
membranes – implementing the Adaptive Exponential Integrate-and-Fire model (AdEx)
model (Brette and Gerstner, 2005). Each neuron can receive input via two synaptic input
circuits – usually configured for excitatory and inhibitory stimulation, respectively. Mul-
tiple dendritic membranes can be connected together to form a larger neuron in order to
increase the number of inputs. This feature was not used for this thesis.
When the voltage on a neuron’s membrane reaches a configurable threshold, a digital

spike event is emitted and the membrane voltage is pulled to a configurable reset voltage.

2.1.2 Digital Event Network

Events carry a digital 6 bit address which can be assigned freely to each neuron. The same
applies to external stimulus that is injected via the FPGA’s playback memory.
Spike events are transmitted over the asynchronous, serial Layer 1 bus (Schemmel et al.,

2008). By configuring static switch matrices, events can be passed to different components
of the chip or forwarded to neighbouring HICANNs. Repeaters located at the chips’ edges
restore signals in order to increase the bus system’s transmission reliability, especially
across longer distances.

2.1.3 Synapse Drivers

Furthermore, each HICANN contains 224 synapse drivers, which represent a special type of
repeaters. They serve as an interface between the digital Layer 1 bus system and the analog
synapses. Figure 1 shows a schematic view of a synapse driver and the synapse array.
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Figure 1: A schematic view of a synapse driver and the synapse array. An event arrives
on a driver bus line (1) and enters the synapse driver (2). Its two MSBs are then
matched against a preconfigured mask by the event decoders (3). The synapse
driver translates the event into an analog pulse which can be forwarded to the
synapse circuits (4) via two synapse lines (top bottom). Within the synapses, the
4 LSBs are again matched to a configurable mask. Valid events are then fed into
one of the two synaptic inputs of the neuron circuit (5).

Layer 1 events enter the synapse driver via driver lines where an address decoder compares
the twoMost Significant Bits (MSBs) of its address against a preconfiguredmask. Matching
events are then translated into current pulses which are forwarded to the synapse circuits.
A pulse’s height depends on a configurable base weight, while its width is set by the STP
circuit which is part of the synapse driver.
Each synapse driver has four individually configurable address decoders. Two decoders

each account for the top and bottom synapse line, respectively. While one decoder per line
forwards signals to neurons with even x-coordinates, the other is connected to neurons
with odd ones. This topology results in the A, B, C, D pattern shown in figure 1.

2.1.4 Synapses

One synapse line contains 256 synapses allowing to forward events to the connected neu-
ron. Here, the remaining 4 Least Significant Bits (LSBs) of the address are compared to
another mask. The current pulse received from the synapse driver is then scaled propor-
tionally to a 4 bit weight. This value is stored locally together with the address mask.
The routing topology presented above allows the processing of spike events either orig-

inating from spiking neurons or external input. By configuring static switch matrices and
address masks, events with specific source addresses can be forwarded to one or more neu-
rons. By configuring a synapse driver’s address decoders correctly, all 64 addresses can
be processed by a single driver. With address 0 being assigned to the background event
generators ensuring the correct locking of the synapse drivers to the Level 1 bus signal
(Schemmel et al., 2008), 63 addresses are available for experiments.
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2.2 Short Term Plasticity

STP or Short Term Depression and Facilitation (STDF) represents a concept describing
the change in synaptic efficacy depending on the recent history of presynaptic activity.
In biology, the typical timescale of STP ranges from hundreds of milliseconds to seconds
(Regehr, 2012).
Both, short term depression and facilitation can be explained by the dynamics of neuro-

transmitters. On one side, dense stimulus can lead to a depletion of neurotransmitters at
the presynaptic axon terminals, in turn weakening the synaptic efficacy and leading to a
depression of Postsynaptic Potentials (PSPs). On the other hand, the release probability
of neurotransmitters is increased by calcium influx caused by presynaptic action poten-
tials. This can be observed as facilitation of PSPs. In biology, both effects can be observed
individually or – more commonly – in combination (Hennig, 2013).
The Tsodyks-Markrammodel represents a phenomenologicalmodel describing STP (Tsodyks

and Markram, 1997). In this model, neurotransmitters at the synaptic cleft are divided into
the recovered partition 𝑅, effective partition 𝐸 and inactive partition 𝐼 . The filling levels
of these partitions range from 0 to 1. Their dynamics are given by

𝑑𝑅
𝑑𝑡 = 𝐼

𝜏rec
− 𝑈SE ⋅ 𝑅 ⋅ 𝛿(𝑡 − 𝑡AP) , (1)

𝑑𝐸
𝑑𝑡 = − 𝐸

𝜏inact
+ 𝑈SE ⋅ 𝑅 ⋅ 𝛿(𝑡 − 𝑡AP) , (2)

𝐼 = 1 − 𝑅 − 𝐸 . (3)

In these differential equations, 𝑡AP denotes the time of a presynaptic action potential. The
utilization of synaptic efficacy 𝑈SE represents the fraction of available neurotransmitters
released per incoming spike. 𝜏rec and 𝜏inact specify the time constants for the recovery
and inactivation process, respectively. In figure 2, a simulation of short term depression
following this model is shown.
On the occurrence of a presynaptic spike, the fraction 𝑈SE of the neurotransmitters

stored in the recovered partition 𝑅 is transferred into the effective partition 𝐸. The level
of 𝐸 decays with a time constant of 𝜏inact, while 𝑅 is recovered with 𝜏rec. The synapse’s
weight defining the strength of a synaptic connection is given by

𝑤 ∝ 𝐸 . (4)

Other models have been developed covering specific aspects of STP or cell-specific be-
haviour (Varela et al., 1997, Pan and Zucker, 2009). However, the Tsodyks-Markrammodel
presented above is supported by different neural simulators (Goodman and Brette, 2009,
Gewaltig and Diesmann, 2007) and is the only available STP model in the common inter-
face PyNN (Davison et al., 2008).
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Figure 2: Simulation of short term depression following the Tsodyks-Markram model
(Tsodyks and Markram, 1997). The depression of synaptic efficacy can be seen
in the decrease of the PSPs’ amplitudes. After a period with no presynaptic ac-
tivity, the PSPs’ heights get restored. A stimulus of 25Hz (BTD) was used and
short term depression was set to 𝑈SE = 0.67, 𝜏rec = 800ms (BTD) and 𝜏inact = 0.
The simulation was implemented using PyNNwith the NEST a backend (Davison
et al., 2008, Diesmann and Gewaltig, 2002).

2.3 Hardware Model
An STP implementation was developed for the analog neural network chip Spikey (Schem-
mel et al., 2006). The implementation for the chip’s successor HICANN mostly follows the
same design. Despite being inspired by the Tsodyks-Makram model, depression and facil-
itation can not be applied simultaneously in hardware. This results in only two partitions
𝐼 and 𝑅 being necessary and leads to the simpler model (Schemmel et al., 2006)

𝑑𝐼
𝑑𝑡 = − 𝐼

𝜏rec
+ 𝑈SE ⋅ 𝑅 ⋅ 𝛿(𝑡 − 𝑡AP) , (5)

𝑅 = 1 − 𝐼 . (6)

However, the actual implementation does not exactly follow equation 5. An exponential
recovery process would require discharging a capacitance over an ohmic resistor. Further-
more, this resistor would have to be adjustable in order to allow configurable time con-
stants. In integrated CMOS designs, resistors can be realised using poly elements. Such
implementations take up large areas and, per se, are not adjustable (Aamir, 2014). Thus,
the recovery term had been implemented using a configurable but static current 𝐼rec. This
results in a linear recovery process with slope 𝑀 . Equation 5 is adjusted accordingly:
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𝑑𝐼
𝑑𝑡 = −𝑀 + 𝑈SE ⋅ 𝑅 ⋅ 𝛿(𝑡 − 𝑡AP) . (7)

For short term depression, the inactive partition reduces a synapse’s effective weight. It
is given by

𝑤dep ∝ 1 − 𝜆 ⋅ (𝐼 − 𝑁) (8)

with 𝜆 scaling the impact of short term depression on the synaptic weight and an offset
parameter 𝑁 . Since 𝜆 has no equivalent in the biological model presented in 2.2, it should
be calibrated to 𝜆 = 1. In the absence of a recovery current, this would result in a full
depression for continuous spike input. Higher values of 𝜆 lead to premature depression.
The offset offers control over the absolute amplitudes of the PSPs. In case of a functional
neuron calibration incorporating the calibration of PSP amplitudes, the offset parameter
would be set to 𝑁 = 0. This fixates the first PSP’s height to the same amplitude as for
disabled STP. It has to be noted, that for Spikey, the offset parameter was not configurable
in depression mode. The model was extended accordingly.
In facilitationmode the inactive partition increases the effectiveweight. Now, theweight

can be described by

𝑤fac ∝ 1 + 𝜆 ⋅ (𝐼 − 𝑁) . (9)

As for depression, 𝜆 and 𝑁 allow to control the amplitudes of the first PSP as well as the
steady state amplitude for successive input spikes. These parameters have no equivalents
in the Tsodyks-Makram model where they are implicitly set to 𝜆 = 1 and 𝑁 = 1. Later in
this thesis, a calibration of the hardware to these values will be discussed.

2.4 Hardware Implementation
The model presented above is implemented in an analog circuit located in each synapse
driver. A reduced schematic is shown in figure 3. A more detailed description of the circuit
can be found in Schemmel et al. (2006).
The design is centred around two MOS capacities (Nicollian et al., 1982). 𝐶1 represents

the inactive partition 𝐼 . As a Layer 1 event enters the synapse driver, capacitor 𝐶2 is
charged to the voltage difference 𝑉dda − 𝑉stdf by temporarily closing switch 𝑆2. Then,
transiently connecting both capacities via 𝑆1 initiates a charge sharing process between
𝐶2 and 𝐶1. Thus, a single event increases the voltage across 𝐶1 by

Δ𝑉 = (𝑉stdf − 𝑉cap) ⋅ 𝐶2
𝐶1 + 𝐶2⏟

=𝑈SE

. (10)
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Figure 3: Reduced schematic of the STP circuit. Presynaptic stimulus leads to a stepwise
increase of the voltage on 𝐶1, which represents the inactive partition 𝐼 . 𝐶2
is implemented as a 3 bit configurable capacitance allowing to manipulate the
utilisation of synaptic efficacy 𝑈SE. The recovery process is implemented with
a constant current 𝐼rec controlled by 𝑉dtc. For detailed description of the circuit
refer to Schemmel et al. (2006).

In order to allow configuration of the utilisation of synaptic efficacy 𝑈SE, 𝐶2 has been
designed as a configurable capacitance. Three bits, accessible through the digital setting
𝑐𝑎𝑝, are used for adjusting its value.
In a second stage, the pulse emitted by the synapse driver is modulated. For this purpose,

𝑉cap is applied to a comparator circuit with a reference voltage of 𝑉dep or 𝑉fac, depending
on the STP mode. The voltage difference 𝑉cap − 𝑉dep/fac is then used to scale the width of
the pulse. With the reference voltage, an offset can be configured.
The recovery current is controlled by a floating gate cell. This current is forwarded

to the STP circuit by two current mirror stages. The gate-source voltage is called 𝑉dtc,
hence the name of the corresponding floating gate parameter. Since low recovery currents
are required, the current mirrors are biased in the deep subthreshold region (Schemmel,
2014). The level of the inactive partition needs to be stored and processed individually per
input address. The corresponding capacity 𝐶1 is therefore multiplexed 64 times within
each synapse driver. While the first current mirror is used to transfer the current to the
individual synapse driver instances, the second stage mirrors 𝐼rec to these multiplexed
capacities. Therefore, the end point of the second mirror is replicated with each instance
of 𝐶1. This has to be considered during the characterization of the recovery process, since
deviations across different source addresses are expected.
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2.5 Hardware Parameters
The STP circuit is configured throughmultiple digital parameters as well as analog floating
gate voltages and currents (Lande et al., 1996).
As part of the synapse driver SRAM, the digital settings shown in table 1 consist of

five bits. One is used for enabling STP, a second one for setting the mode (depression
or facilitation). Three bits are reserved for choosing capacity 𝐶2. These parameters are
uniquely adjustable for each synapse driver instance.
Furthermore, the circuit can be configured through five floating gate parameters, which

are presented in table 5. Four voltage cells are available to control the biasing and ref-
erence voltages, while a current cell is used to set the recovery current. Synapse drivers
located at the top left (1, 3, …, 111), top right (0, 2, …, 110), bottom left (112, 114, …, 222)
and bottom right (113, 115, …, 223) quarter of the chip share the same analog parame-
ters, respectively. These parameters are located in the shared floating gate cells, allowing
only four different configurations per HICANN chip at the same time. This results in high
demands for calibration algorithms, since only the mean value of a parameter can be cali-
brated for 56 synapse drivers each. Within these groups, deviations from this average can
not be compensated for.
Voltage cells cover a range of 0V to 1.8V, current cells can be configured for up to 2.5 μA.

These parameters can be set with a precision of 10 bit. In this thesis, voltages as well as
currents are given in DAC values representing the 10 bit range (0 to 1023) of the floating
gate cells. This choice has been made since it represents the impact of a configuration
parameter on an observable more directly.
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Name Description

cap Size of capacitor 𝐶2. With 𝑐𝑎𝑝 = 0 … 7, the actual capacity is given by 𝐶2 =
𝑐𝑎𝑝/30 ⋅ 𝐶1 ≈ 𝑐𝑎𝑝 ⋅ 8 fF

dep STP mode (0: facilitation, 1: depression).
enstdf Enable STP for the synapse driver.

Table 1: Digital STP parameters as an excerpt of the synapse driver SRAM bits. These
settings are specific to each synapse driver. For a complete documentation of the
synapse driver configuration refer to HBP SP9 partners (2014).

Parameter Description

𝑉stdf Maximum voltage, the storage capacitors 𝐶1 are being charged to. 𝑉stdf
scales the impact of STP on the effective weight.

𝑉bstdf Bias voltage for the comparator circuit.
𝑉dep Offset voltage for depression mode.
𝑉fac Offset voltage for facilitation mode.
𝑉dtc Voltage for setting the recovery current. In fact, 𝑉dtc is not set directly

but corresponds to the gate-source voltage of a current mirror connected
to a current cell within the floating gate block.

Table 2: Shared floating gate parameters for the short term plasticity implementation of
the synapse drivers. Since they are located in the shared floating gate blocks,
synapse drivers can not be configured independently.
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3 Methods

3.1 Measurement Setup
Investigating the properties of a synapse driver’s STP circuit requires the stimulation of
an arbitrary neuron via that specific synapse driver. The stimulus consists of predefined
spike trains activating the STP mechanism. A series of input events leads to multiple Ex-
citatory Postsynaptic Potentials (EPSPs) on the neuron’s membrane. Recording its voltage
allows the analysis of the response to the stimulus and thus a characterisation of the STP
parameters. Per HICANN, two Analog Digital Converters (ADCs) can be used to record
analog traces.

3.1.1 Triggered Recording of Membrane Voltage Traces

The ADC’s trigger mechanism allows synchronisation of the analog readout traces with
the FPGA’s playback memory. This enables correlating Layer 1 input spikes with EPSPs
on the recorded membrane voltage. The trace length is limited to approximately 4ms.

3.1.2 Averaging of Voltage Traces

Membrane voltage traces are subject to both voltage fluctuations on the membrane and
readout noise. Averaging over multiple traces is important not only to fulfil statistical
requirements but also to obtain smooth traces that allow further analysis. The speedup
factor of 104 results in a timescale of 100 μs for most of the STP measurements on the
HICANN chip. This allows repeating the input spike pattern until reaching the 4ms limit
for triggered recordings in order to retrieve an averaged trace with a single recording
procedure. In practice it has shown to be possible to repeat a pattern with a duration of
120 μs up to 50 times in a single recording. This allows to reduce measurement overhead.

3.1.3 Improving TraceQuality

Besides averaging, other steps can be adopted to further improve the recorded traces’ qual-
ity. Primarily, the membrane time constant 𝜏𝑚 can be minimised. This leads to a better
separation of consecutive PSPs.
Furthermore, STP measurements do not require all features of the hardware neurons.

Minimizing the impact of the exponential and adaptive terms of the neuron by tuning
floating gate parameters has shown to improve trace quality and suppress unwanted be-
haviour like overshooting membrane voltages. Additionally, applying the neuron calibra-
tion currently being developed increases reproducibility of the results.

3.1.4 Extraction of PSP Heights

The membrane voltage is composed of membrane effects on the timescale of 𝜏𝑚 on the
one hand and multiple PSPs as a response to the input stimulus on the other hand. The
height of a PSP is proportional to the effective weight of the specific synapse. Extracting
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Figure 4: Extraction of a PSP’s amplitude from an averaged voltage trace following the
procedure explained in 3.1.4. The average results from 200 single traces, one of
which is shown for illustration. 𝑉min, 𝑉max and the resulting amplitude 𝑎 are
marked within the plot.

this information out of membrane voltage traces is important for conducting STP mea-
surements. During the work for this thesis, two approaches to extract the PSPs’ heights
from an averaged trace were considered.
Fitting one or multiple alpha functions to the PSPs’ expected positions seems to be

the most comprehensive solution. Unfortunately, the superposition of multiple PSPs and
membrane effects leads to unstable fit results.
Defining the height as the difference of the PSPs’ maximum and minimum has shown

to yield reliable results with sufficient precision. This method is shown in figure 4. It is

𝑉max = 𝑚𝑎𝑥 𝑉m(𝑡) with 𝑇𝑛 < 𝑡 < 𝑇𝑛+1 , (11)

𝑉min = 𝑚𝑖𝑛 𝑉m(𝑡) with 𝑡 ∈ 𝑆𝜖(𝑇𝑛) (12)

with 𝑇𝑛 and 𝑇𝑛+1 being the rise time of the specific PSP and its successor, respectively,
and 𝑆𝜖 representing a neighbourhood with a small radius 𝜖 of approximately 5 to 10 ADC
samples. The amplitude 𝑎 of the PSP results as

𝑎 = 𝑉max − 𝑉min Δ𝑎 = √(Δ𝑉max)2 + (Δ𝑉min)2 (13)

with the Δ𝑉min/max resulting from the error of the mean of the averaged trace.
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Figure 5: Protocol for measuring parameters 𝜆 and 𝑈SE in depression mode. Stimulating a
neuron with an equidistant spike train – here, with 0.3MHz – results in the time
course shown above. The parameters can be extracted by fitting an exponential
decay to the measured amplitudes. Here, three fits are shown for 𝜆 < 1, 𝜆 = 1
and 𝜆 > 1, respectively. As visible for the latter two cases, samples that are not
significantly deviating from zero need to be excluded from the fitting range in
order to represent the correct exponential time course. Note that floating gate
variations explain the difference in the amplitudes’ absolute scaling, especially
observable for the first EPSP.

3.2 Characterisation of the STP Parameters

The parameters of the model presented in 2.3 can be measured by using the extracted PSP
amplitudes. The following measurements are grouped into depression, facilitation and the
recovery phase.

3.2.1 Depression

In order to characterise the depression, parameters 𝜆, 𝑁 and 𝑈SE are measured. The pro-
tocol presented in the following has shown to yield stable and reasonable results. Exem-
plarily, figure 5 presents some of the measurements.

The impact of the recovery process needs to be extinguished for these measurements.
Therefore, the recovery current 𝐼rec is minimised by setting 𝑉dtc = 0. Now, stimulating
a neuron with an equidistant spike train with period Δ𝑡 will result in a series of EPSPs.
From equation 7 it follows with 𝑀 = 0 that
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𝑅0 = 1 , (14)

𝑅𝑖+1 = 𝑅𝑖 + Δ𝑅𝑖 = 𝑅𝑖 − Δ𝐼𝑖 (15)

= 𝑅𝑖 ⋅ (1 − 𝑈SE) (16)

⇒ 𝑅𝑖 = (1 − 𝑈SE)𝑖 . (17)

Keeping equations 6 and 8 in mind and assuming that an EPSP’s amplitude is propor-
tional to the synaptic weight, the time course of the EPSPs can be expressed as

𝑎𝑖 = ̂𝑎 ⋅ [1 − 𝜆 ⋅ (𝐼𝑖 − 𝑁)] (18)

= ̂𝑎 ⋅ [1 − 𝜆 ⋅ (1 − 𝑁) + 𝜆 ⋅ 𝑅𝑖] (19)

= ̂𝑎 ⋅ [1 − 𝜆 ⋅ (1 − 𝑁) + 𝜆 ⋅ (1 − 𝑈SE)𝑖] (20)

with ̂𝑎 being the reference amplitude. The latter is measured directly before running the
depression protocol without rewriting the floating gate voltages. This ensures that the
same configuration is used for both parts of the measurement. Index 𝑖 is given by 𝑖 =
(𝑡𝑖 − 𝑡0)/∆𝑡 with 𝑡0 being the time of the first EPSP.
The measured amplitudes are used to fit the exponential in equation 20. For 𝜆 < 1

all data points can be included within the fit. However, the EPSPs’ amplitudes can not
completely represent the time course for 𝜆 ≥ 1, since negative values are not possible.
Therefore it is necessary to omit amplitudes that do not deviate from zero significantly
(𝑎≯3⋅Δ𝑎). This of course will reduce the fit’s quality, since only few or no data samples are
available in the steady state region. Thus, larger confidence intervals have to be expected
for this case.
This method was verified for a simulation of short term depression. Please refer to ap-

pendix A.

3.2.2 Facilitation

The facilitation process’s parameters can be measured with a protocol similar to the one
presented for short term depression. With equations 9 and 17 it follows that

𝑎𝑖 = ̂𝑎 ⋅ [1 + 𝜆 ⋅ (𝐼𝑖 − 𝑁)] (21)

= ̂𝑎 ⋅ [1 + 𝜆 ⋅ (1 − 𝑁) − 𝜆 ⋅ (1 − 𝑈SE)𝑖] . (22)

with the offset 𝑁 , scaling parameter 𝜆 and the reference amplitude ̂𝑎. This again is fitted
to the extracted amplitudes. In figure 6, this protocol is shown.
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Figure 6: The measurement protocol for facilitation mode is shown for an exemplary mea-
surement. As for short term depression, a neuron is stimulated with an equidis-
tant spike train. Here, 0.2MHz have been used. As the synapse changes its
synaptic efficacy, the PSP amplitudes are facilitated. The data can been fitted to
equation 22 in order to extract the model’s parameters. In contrast to 𝜆 which
defines the scaling of facilitation relative to the reference amplitude ̂𝑎, 𝑁 is not
a concrete quantity. Instead, 1 − 𝜆 ⋅ 𝑁 representing the height of the first PSP is
annotated in this plot.

3.2.3 Recovery

In order to characterise the recovery phase, the neuron is stimulated with a series of
equidistant input spikes, which saturate the inactive partition 𝐼 and thus drive the am-
plitudes into a steady state. This burst is followed by another probe spike after a time
difference 𝛿𝑡𝑖. By recording the trace for different 𝛿𝑡𝑖 and combining these measurements
as shown in figure 7, the recovery process can be observed. For the individual samples,
only the input stimulus is changed without reconfiguring the rest of the chip. Therefore,
all probe EPSPs are recorded for exactly the same floating gate voltages.
As explained in 2.3 and shown in equation 7, the recovery process follows a linear rise.

The recovery is complete, when the amplitude of the first EPSP is reached. Therefore, the
composed function

𝑓(𝑡) = {𝑚 ⋅ (𝑡 − 𝑡0) + 𝑎, if (𝑡 − 𝑡0) ⋅ 𝑚 + 𝑎 ≤ 𝑏
𝑏, otherwise

(23)

can be used to perform a fit to the measured amplitudes of the probe spikes. Here, 𝑎
represents the height of the first probe spike and 𝑏 the fully recovered amplitudes. In figure
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Figure 7: Protocol for measuring the recovery process’ slope. The depression is initiated
by a dense burst of input spikes. Then, probe spikes are injected after additional
time periods 𝛿𝑡𝑖. Here, the third probe spike is shown. By extracting the course
of probe spike amplitudes, the linear recovery can be analysed. For illustration
reasons, the EPSP amplitudes are shifted by the resting potential of the mem-
brane. It has also to be noted that the fit deviates from the measured data at the
beginning and end of the recovery, where the linearity does not apply.

7, the extracted amplitudes are overlayed on top of the measured traces. Also included is
an exemplary fit.
The measured slope 𝑚 is given in units of V/s and is proportional to the absolute EPSP

amplitudes. It turns out that due to slightly different configuration and calibration, every
neuron shows an individual response and thus 𝑚 is not transferable to other neurons.
However, STP is a neuron-agnostic property and thus 𝑚 does not represent a meaningful
quantity. Instead, normalizing the slope to the inactive partition’s maximum value of 1
is expected to be more concrete. With a previous calibration of 𝜆 = 1 and 𝑁 = 0 (see
3.2.1), the inactive partition is directly represented in the EPSPs’ amplitudes. A height
of zero indicates a fully charged inactive partition, while the recovered state of 𝐼 = 0 is
represented in the fully recovered EPSPs. Now, the normalised slope can be calculated as

𝑀 = 𝑚
𝑏 ≡ 1

𝑇rec
. (24)

𝑇rec represents the time to complete recovery from total depression. It can be used as an
equivalent to the time constant 𝜏rec used in the Tsodyks-Markram model (see equation 1).
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Figure 8: Schematic drawing of the routing scheme for the synapse driver defect detection
tool. By assigning four different MSB masks to the address decoders of a synapse
driver, all of the 64 L1 source addresses can be processed and forwarded. This
enables a fast address-wise defect detection.

3.3 Functional Testing of Synapse Drivers
In this thesis, sweeps over all 224 synapse drivers of a HICANN chip were carried out. This
did not only allow to perform the actual STP measurements but also to gather information
about malfunctioning synapse drivers. With some modifications to the measurement soft-
ware, a dedicated synapse driver defect detection tool was implemented. In contrast to the
STP protocols, a spike based approach was chosen instead of analysing membrane traces
recorded with ADCs. This enables a parallel evaluation of all source addresses per synapse
driver, while an ADC based approach is limited by the number of available readout boards,
typically to one neuron per experiment.
For this spike based method, the neurons are required to be configured for a binary

spiking behaviour. A preliminary neuron calibration was used for this purpose. Further-
more, a naive blacklisting algorithm was applied to exclude inadequately behaving, e.g.
constantly firing, neurons. Furthermore, STP was disabled in the synapse drivers.
A dedicated routing scheme was developed as presented in figure 8. By assigning dis-

junct MSB masks to the four address decoders on the “half synapse lines”, the whole range
of 64 addresses can be forwarded to appropriately configured synapses. Thus, every Level 1
address can be assigned to a neuron which in turn is configured to emit spikes on the same
address. This step allows to easily correlate recorded output spikes to the input addresses
processed of the synapse driver.
Stimulating a neuron with a burst of dense input spikes ideally results in a high output

activity during the same time window. Successively injecting these bursts for all source
addresses creates a chain-like, diagonal pattern of recorded spikes. Analysing the latter
allows to detect defects with a single-address resolution by scanning for either missing
or incorrect activity. Thus, the developed software not only allows to extract a list of
malfunctioning synapse drivers but also serves as an important tool for investigating issues
with the digital event network.
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4 Results

4.1 Measurement Results
In section 3.2, protocols for the characterisation of the STP parameters are presented. Mea-
surements following these protocols were carried out during this thesis. The following
section contains results for HICANN 84 of the first wafer-scale system. The methods’
portability to other setups was verified.

4.1.1 Depression

The depression phase is characterised by parameters 𝜆, 𝑁 and 𝑈SE. In hardware, the two
floating gate voltages 𝑉stdf and 𝑉dep can be used to configure the first two quantities. The
digital parameter 𝑐𝑎𝑝 controls the size of capacity 𝐶2, which in turn influences the utili-
sation parameter 𝑈SE.

Utilisation of Synaptic Efficacy 𝑈SE
A sweep over 𝑐𝑎𝑝 and the 56 synapse drivers of a quarter of the chip was carried out.
Its results are shown in figure 9. In order to understand the dependency of 𝑈SE on the
hardware parameter, a comparison of the experimental results to the theoretical model is
required. As explained in 2.4, the increase of the inactive partition is implemented using
a charge sharing process. In theory, the relative step size of the storage capacitor’s charge
can be described by

𝑈SE, theo = 𝐶2
𝐶1 + 𝐶2

(25)

as presented in (Bill, 2008) and equation 10. Consequently, for 𝐶2 = 0 a value of 𝑈SE = 0
would be expected. With an observed offset of 0.25, the hardware measurements clearly
show a different behaviour. To account for these deviations, the model was extended with
two additional parameters. 𝐶0 represents parasitic capacities within the circuit. Especially
the metal layer routing of 𝑉cap reaching to the multiplexed storage capacities 𝐶1 could
contribute to these parasitics. 𝑈0 accounts for an additional offset. Early measurements
have shown that the introduction of 𝑈0 improved the fit, though the origin of this offset
is not yet fully understood. The fit model now reads as

𝑈SE = 𝐶0 + 𝐶2
𝐶0 + 𝐶1 + 𝐶2

+ 𝑈0 . (26)

For further analysis, transistor-level simulations of the STP circuitry were carried out.
With the intention to keep the test bench simple, the time course of the inactive neu-
rotransmitter partition was directly observed via 𝑉cap instead of simulating a complete
synapse driver. An exponential fit similar to the measurement protocol for short term
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Figure 9: The utilisation of synaptic efficacy𝑈SE is shown depending on the digital parame-
ter 𝑐𝑎𝑝 controlling the size of capacitor 𝐶2. In this plot, hardware measurements
across 56 synapse drivers are shown. Horizontal histograms are included as an
overlay to give an indication of the statistical distribution of 𝑈SE across multiple
synapse drivers. Error bars indicate the standard deviation over those individ-
ual measurements. Also shown are the results of a transistor-level simulation of
the circuit. The plot includes fits following equation 26 for both, the hardware
measurement and the simulation. Table 3 contains the corresponding fit results.

depression was used to extract 𝑈SE. The results of this simulation are also included in
figure 9.
The fit results for both, the hardware measurement and the simulation are shown in ta-

ble 3. The estimations for the parasitic capacity𝐶0 match for both scenarios. Furthermore,
a parasitic extraction conducted by Andreas Hartel yielded very similar results. However,
simulation and hardware measurements yield largely different results for 𝑈0. Most likely,
this difference can be explained by a non-linear translation of 𝑉cap into the pulse width.
This theory is supported by the observation, that 𝑈SE increases for larger values of 𝑉stdf
and 𝑉dep which influence the modulation of the output pulse. Additionally, it has to be
considered that MOS capacities show a dependency on the gate voltage which might fur-
ther distort the ratio of 𝐶1 and 𝐶2 and thus 𝑈SE. Finally, only the part of the synapse
driver specific to STP was simulated. For a more comprehensive comparison a complete
synapse driver should be incorporated in the simulation.
To conclude, the measured dynamic range of 𝑈SE ≈ 0.25 … 0.4 allows for biology-

inspired use cases. Compared to a natural range of 0.1 … 0.95 (Tsodyks and Markram,
1997), the hardware implementation can realise low to medium utilisation values. Fur-
thermore, with deviations of 6% to 13% across multiple synapse drivers, the parameter
turns out to be precisely adjustable.
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Type 𝐶0 𝑈0

HardwareMeasurement (31.0 ± 4.8) fF 0.14 ± 0.01
Simulation (25.0 ± 2.0) fF 0.02 ± 0.01
Parasitics Extraction 26.2 fF –

Table 3: Results of the fits shown in figure 9 following equation 26 for hardware mea-
surements as well as a transistor-level simulation of the circuit. Additionally, a
parasitics extraction was conducted in software. While 𝐶0 matches for hardware
measurement, simulation and extraction of parasitics, this is not the case for 𝑈0.

Scaling 𝜆 and Offset 𝑁
Scaling 𝜆 and offset parameter 𝑁 of the depression mode result from the same measure-
ment protocol. As alreadymentioned, 𝜆 and𝑁 are configured through 𝑉stdf and 𝑉dep. With
a coarse sweep, the usable range was narrowed down. A finer measurement is shown in
figures 10 and 11. While trends are observable for both, 𝜆 and 𝑁 , no one-to-one correla-
tion between the voltage and model parameters are visible. Furthermore, in this specific
range of 𝑉dep, the measurements behave very unstable. Large trial-to-trial variations of up
to Δ𝜆 = 0.09 and Δ𝑁 = 0.05 (standard deviation of ten measurements) were observed.
This is caused by the fact that the floating gate cells do not show a linear behaviour in the
range below 100 DAC values (Koke, 2014). Unfortunately, this corresponds to the range
required for 𝑉dep.
Nevertheless, areas with the desired values, 𝜆 = 1 and 𝑁 = 0 respectively, can be found

for both variables. By calculating the overlap of these two independent sets, suitable pa-
rameters can be found for 𝑉stdf and 𝑉dep. However, this approach can not be used efficiently
for all synapse drivers, since the required number of measurements scales quadratically.
Instead, an iterative algorithm was developed. For this method, two helper variables are
defined as

𝛼 = −𝜆 ⋅ 𝑁 , 𝛽 = 1 − 𝜆 ⋅ (1 − 𝑁) . (27)

According to equation 8, 𝛼 represents the difference of the first EPSP and the reference
amplitude ̂𝑎 and 𝛽 the deviation of the steady state amplitudes from 0, respectively.
The algorithm is initialised with two predefined values for 𝑉stdf and 𝑉dep. After measur-

ing 𝜆 and 𝑁 , the parameters are changed according to

Δ𝑉stdf = 𝑐1 ⋅ 𝛽 , Δ𝑉dep = 𝑐2 ⋅ 𝛼 . (28)

Constants 𝑐𝑖 can be used to control the speed of the algorithm. By applying these cor-
rections to the voltage parameters, the algorithm follows the gradients of 𝜆 and 𝑁 . The
algorithm terminates, when one of the two following exit conditions is met. An upper limit
for the number of iterations is defined, for cases where the calibration does not converge.
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Otherwise, the calibration is complete when 𝛼 and 𝛽 are within a predefined neighbour-
hood of zero. It is to be noted that this algorithm does not necessarily terminate with the
same results for multiple runs. Due to floating gate variations, the path taken by this algo-
rithm might vary. Furthermore, the operating point is not unique, several correct settings
can exist.
With this algorithm, a preliminary calibration was generated for the top left and top

right quarters of the chip. Since both 𝑉stdf as well as 𝑉fac are shared parameters, a common
value must be inferred from the values of multiple individually calibrated drivers. Instead
of measuring all 56 synapse drivers per side, the calibration was carried out for only eight
drivers each, for this proof-of-concept. This sample size was chosen in order to reduce the
execution time. Since a random distribution of deviations is expected, this should not sig-
nificantly influence the quality of the resulting calibration. However, a future calibration
should include all synapse drivers.
In order to quantify the precision of this method, a measurement across the drivers

located in the top half was taken. For each side separately, 𝑉stdf and 𝑉dep were set to
an average of the calibration results for the eight drivers. Despite the low number of
calibrated individual instances, the calibration yielded 𝜆 = 1.00 ± 0.19 and 𝑁 = 0.01 ±
0.07 for the complete top half. Unfortunately, a calibration is not able to decrease the
variations between synapse drivers since a shared value has to be set. However, most
networkmodels will not use all synapse drivers of a chip for STP and blacklisting of outliers
can be considered for a better precision.

4.1.2 Facilitation

For facilitation mode, the same parameters 𝜆, 𝑁 and 𝑈SE are available. They can be mea-
sured following the protocol presented in 3.2.2. While the utilisation of synaptic efficacy
behaves similarly to the depression mode, the other two quantities require further inves-
tigation.
They are controlled through floating gate voltages 𝑉stdf and 𝑉fac. These voltages were

swept coarsely to find a usable operating range. In figures 14 and 15, a second, finer sweep
is shown for 𝜆 and 𝑁 , respectively. Since 𝑉fac is configured to values in the medium range
of floating gate voltages, the trial-to-trial variations decreased compared to the depression
mode measurements. Noticeably, the measurements contain a much lower level of noise.
However, as for the depression mode, a one-on-one assignment of the model’s parameters
to the floating gate voltages is not possible.
In order to calibrate 𝜆 = 1 and𝑁 = 1, an iterative algorithm for finding valid configura-

tion values was implemented. The algorithm is similar to its equivalent for the depression
mode. Now the helper variables are defined as

𝛼 = 1 − 𝜆 ⋅ 𝑁 , 𝛽 = −𝜆 ⋅ (1 − 𝑁) . (29)

The first value stands for the relative amplitude of the first EPSP while the second one
represents the difference between ̂𝑎 and the steady state heights. For each iteration, these
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Figure 10: In this plot, 𝜆 is shown for depression mode as a dependency of 𝑉stdf and 𝑉dep.
It can be observed that the variable depends on both parameters. As an overlay,
the path taken by the iterative calibration algorithm is shown as it converges to
an optimised value. Note, that outliers caused by large trial-to-trial variations
were removed from this plot in order to optimise the dynamic range of the color
plot. This sweep takes about 5 h with approximately 150 s per sample.
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Figure 11: This plot shows the offset 𝑁 for depression mode depending on 𝑉stdf and 𝑉dep.
The data originates from the same measurement displayed in figure 10. As
above, the path taken by the calibration method is included. Outliers were re-
moved.
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Figure 12: Result of a proof-of-concept calibration of the top half to 𝜆 = 1 in depression
mode. Despite only including data from eight synapse drivers per side, the cal-
ibration can be considered successful with a resulting value of 𝜆 = 1.00 ± 0.19.
The left side was configured with 𝑉stdf = 597 and 𝑉dep = 89, while the calibra-
tion resulted in 𝑉stdf = 579 and 𝑉dep = 98 for the right half. Please note that
only the average across a quarter’s drivers can be calibrated. The variance can
not be decreased, since both voltages are shared parameters. Measuring a single
sample takes approximately 150 s.
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Figure 13: Calibration results to 𝑁 = 0 for depression mode originating from the same
data already shown in figure 13. The calibration resulted in 𝑁 = 0.01 ± 0.07.

22



400 430 460 490 520 550

𝑉fac [DAC]

300

330

360

390

420

450

𝑉 s
td
f
[D
AC

]

0.76

0.80

0.84

0.88

0.92

0.96

1.00

1.04

1.08

𝜆

Figure 14: Scaling parameter 𝜆 depending on 𝑉stdf and 𝑉fac in facilitation mode. A direct
one-to-one correlation of the observable to one of the voltage parameters is not
possible, instead 𝜆 shows a dependency on both parameters. For three different
initialisation values, the paths taken by the calibration algorithm are drawn as
an overlay. It can be observed how they converge to similar final states. The
measurements were all carried out for the same synapse driver. As can be seen
in figure 16, the results vary for different synapse drivers.
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Figure 15: The same sweep as in figure 14 is shown for parameter 𝑁 . While a gradient can
be observed in the bottom right area, a plateau is reached slightly above𝑁 = 1.
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Figure 16: Results of the calibration of the top half of the chip to 𝜆 = 1 in facilitation mode.
The top left and top right quarters were configured to 𝑉stdf = 440, 𝑉fac = 494
and 𝑉stdf = 425, 𝑉fac = 472 (DAC values), respectively. With 𝜆 = 0.95 ± 0.17
the calibration did yield a usable result, despite being slightly shifted towards
lower values.
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Figure 17: Results of the calibration to 𝑁 = 0 from the same measurements as shown in
figure 16. With 𝑁 = 1.03 ± 0.01, the calibration yielded usable results. As can
be observed in figure 15, a plateau is reached for values slightly above 1. Thus,
configuring the synapse drivers to a lower value is not possible.
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quantities are calculated from the measurement results and then applied to the voltage
parameters with constants 𝑐1 and 𝑐2 as defined by

Δ𝑉stdf = 𝑐1 ⋅ 𝛽 , Δ𝑉fac = 𝑐2 ⋅ 𝛼 . (30)

For each iteration, 𝑉stdf and 𝑉fac follow the gradients of 𝜆 and 𝑁 and eventually converge
to values suitable for a calibration. As for short term depression, these operating points
are not necessarily unique. Exemplarily, paths taken by this algorithm are drawn on top
of figures 14 and 15 for three different initialisation values. As can be seen, the paths
converge to approximately the same final state.
As for depression, the calibration was tested for eight randomly chosen synapse drivers

located on the top left and top right quarter of the chip, respectively. Both sides were then
configured with the average of the eight individually acquired values and a sweep over all
112 synapse drivers of the top half was conducted. The results of this measurement are
shown in figures 16 and 17. With 𝜆 = 0.95 ± 0.17 the calibration again yielded usable
results. Still, the calibration did not perfectly converge to the desired value. Similarly, the
mean is slightly off for𝑁 = 1.03±0.01. As observable in figure 15, a plateau is reached for
𝑁 = 1. Thus, lowering the mean value is not possible. It is expected that the calibration
can be improved by taking all synapse drivers into account.

4.1.3 Recovery

As presented in equation 7, the recovery is characterised by its slope 𝑀 which is con-
figured through the floating gate current 𝑉dtc. A sweep over this parameter is shown in
figure 18 for a single synapse driver and source address. The fit indicates a linear depen-
dency allowing for a straight-forward calibration method.
The two-staged current mirror design forwarding 𝐼rec to the multiplexed capacities in-

troduces large deviations. The first mirror leads to variations between different synapse
drivers, while the second one causes further deviations across the 64 Level 1 addresses.
The above sweep was extended to additionally quantify variations across multiple synapse
drivers as well as source addresses. In figure 19, the results are shown. The linear depen-
dence on𝑉dtc is still observable, while the slope now shows awide, asymmetric distribution
with deviations of 25% to 67%.
This distribution is inherent in the hardware implementation. Local within-die varia-

tions, primarily random dopand fluctuations, lead to a normally distributed threshold volt-
age 𝑉𝑡 of the MOSFETs. Since the involved MOSFETs are biased in the deep subthreshold
region, their drain current depends exponentially on 𝑉𝑡. Therefore, the recovery current
𝐼rec is expected to feature a lognormal distribution. This is not only the case for devia-
tions across synapse drivers. The second mirroring stage introduces further lognormally
distributed fluctuations for different source addresses. The latter can be observed in fig-
ure 20a. Measuring the slope for different source addresses and synapse drivers leads to
a sum of lognormal distributions which can be approximated by yet another lognormal
distribution (Gubner, 2006). This behaviour can be observed in figure 20b. In both plots, a
lognormal distribution was fitted to the data. While for a single synapse driver the num-
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Figure 18: The slope of the recovery is plotted against 𝑉dtc for a single synapse driver and
source address. The average of ten measurements is shown, error bars indi-
cate the corresponding trial-to-trial variations. A fit is included to highlight the
linear dependency.

ber of samples is limited by the 63 usable Level 1 addresses and thus the statistics are not
significant, the second histogram clearly follows the predicted distribution.
A comparison of the hardware results to the Tsodyks-Makram model is complicated by

the fact that the latter implements an exponential recovery as opposed to the linear one in
hardware. At least, the recovery time 𝑇 = 1/𝑀 might represent a less abstract quantity
in comparison to the slope itself. From the measurements shown in figure 19, a maximum
recovery time of approximately 104 ± 26 μs can be calculated. With a speedup of 104,
this results in 1040ms in the BTD, allowing to configure values similar to the behaviour
of different biological cell types (Varela et al., 1997, Losonczy et al., 2002).
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Figure 19: The slope of the recovery process dependending on 𝑉dtc. The underlying data is
based on a sweep over eight addresses for 19 synapse drivers each. Horizontal
histograms are included as an overlay to indicate the statistical distribution. The
asymmetric error bars show a confidence interval of 34% on both sides of the
geometric mean which is equal to the median for lognormal distributions.
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Figure 20: Distribution of the recovery process’ slope 𝑀 for multiple synapse drivers and
source addresses. In (a), these deviations are shown for 63 input addresses of
a single synapse driver, while (b) contains data of 63 source addresses for 15
drivers. In both plots, a lognormal distribution was fitted to the data. The mea-
surements were taken for 𝑉dtc = 25 DAC values.

27



4.2 Functional Testing of Synapse Drivers
The synapse driver defect detection tool introduced in 3.3 was implemented and then used
to analyse several HICANNs. While first test runs were carried out by the author, the work
was continued by Sebastian Schmitt. The following paragraphs will present and discuss
preliminary findings.
As could be expected, events with address 0, originating from the background event

generators (Schemmel et al., 2010) could be observed in all response patterns. Similarly,
most responses contained incorrect spikes due to some neurons either firing continuously
or showing no response at all. However, these erroneous spikes can be attributed to a
non-ideal neuron calibration rather than defect synapse drivers.
Mainly, three typical response patterns could be observed: Approximately 80% of the

synapse drivers showed to operate correctly. This was indicated by a proper response
pattern as shown in the topmost plot in figure 21. About 5% of the drivers did not show
a response pattern at all or forwarded random spike events to a subset of the connected
neurons. This case is represented in the bottommost plot in figure 21. No spatial correla-
tion for the defect drivers could be found. 15% of the synapse drivers showed erroneous
handling of addresses ≥ 32, which have a MSB of 1. The latter case is represented by the
centre plot in figure 21.
Multiple experiments were conducted to examine the source of error (Schmitt, 2014).

Firstly, the frequency of the background event generators was varied with the intention of
significantly improving the synapse drivers’ locking. This did not lead to lower fault rates.
Furthermore, the influence of the slow bit of the DNC mergers (Schemmel et al., 2010)
was investigated. It could be shown that deliberately disabling this bit setting resulted in
a higher number of defects. Interestingly, the count of MSB faults could be reduced by
disabling all but one sending repeaters, despite them being completely independent. Since
a definite explanation is yet to be found, further investigations, e.g. tuning the Layer 1
signalling voltages 𝑉OH and 𝑉OL, are required to pinpoint the exact source of error.
Assuming all configuration problems are solved, the remaining malfunctioning synapse

drivers can be blacklisted. This is feasible, since most network models do not utilise all
synapse drivers available on a chip. In future revisions, the results of the synapse driver
defect detection tool can be merged into the redman defect database (Klähn, 2013).
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Figure 21: Results from the defect detection presented in section 3.3 exemplarily presented
for three synapse drivers. In these plots, the neurons’ responses to the input are
shown. The topmost plot shows the result for a fully functional synapse driver,
forwarding events with every possible L1 address. In the centre, a common
defect scheme is displayed. Addresses≥ 32 are not processed correctly, while all
other events are not affected. Defect synapse drivers do not show the required
response pattern but forward random events as shown in the bottommost plot.
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5 Discussion and Outlook

The STP mechanism of the HICANN chip was examined during this thesis. Starting from
a theoretical model based on the phenomenological description of STP by Tsodyks and
Markram, measurement protocols for the characterisation of the neuromorphic imple-
mentation were developed and implemented. Measurements on the HICANN chip were
carried out which proved the suitability of the circuit for short term depression as well as
short term facilitation. Furthermore, configurations yielding biology-inspired parameter
ranges were demonstrated. For the utilisation of synaptic efficacy 𝑈SE, a dynamic range
of 0.25 … 0.4 was found and the recovery term showed to be configurable up to recov-
ery times of approximately 1 s in the biological time domain. These values at least partly
match observations in biology (Tsodyks and Markram, 1997, Varela et al., 1997, Losonczy
et al., 2002).
Being inherent in the production of integrated circuits, large variations between dif-

ferent synapse driver instances were observed. Particularly, this applies to the recovery
process’s implementation. Here, deviations of 25% to 67% have to be expected for the re-
covery times. Similar observations were made for the hardware specific offset and scaling
parameters. Since the floating gate voltages are shared for groups of 56 synapse drivers
each, the variability of the measured parameters can not be compensated by calibration.
However, algorithms for calibrating the mean across different drivers to the desired val-
ues were discussed. Proof-of-concept implementations showed that a calibration with a
precision of approximately ±20% is feasible for the scaling and offset parameters. The
utilisation of synaptic efficacy 𝑈SE showed to be precisely adjustable. Still, deviations
from the theoretical model were observed by simulating the corresponding circuitry on
transistor-level.
Currently, the configuration through shared parameters represents the limiting factor

for a calibration. Allowing an independent configuration would significantly reduce varia-
tions between synapse drivers. Furthermore, the sizing of the adjustable capacitance could
be improved in order to enable larger values of the utilisation of synaptic efficacy.
Exposing the hardware’s STP features to the end-user still requires further work. First

and foremost, the scalability of the calibration methods developed in this thesis needs to be
improved. Currently, the execution speed is limited by hardware configuration times. By
improving the algorithms to reduce the configuration overhead and parallelise the charac-
terisation of multiple synapse drivers, the calibration can be optimised. With the planned
change to the ARQ communication protocol, a drastic decrease in hardware configuration
times can be expected (Karasenko, 2014) allowing for large-scale characterisation of STP
on the wafer-scale system incorporating a higher number of HICANNs. Additionally, the
algorithms presented in this thesis sould be integrated with the current neuron calibration
stack.
Furthermore, software support for STP must still be improved throughout the stack for

the HMF. The top level layer, a PyNN-compatible software interface for the configuration
of neural network models called PyHMF, contains support for STP following the Tsodyks-
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Markram model (Billaudelle, 2014). The need for a custom configuration interface incor-
porating hardware-specific behaviour such as the linear recovery has to be evaluated. On
a lower level, appropriate handling of STP related parameters needs to be implemented
in the mapping and routing software marocco (Jeltsch, 2014). Algorithms for the assign-
ment of synapse drivers were partly reimplemented by the author in order to take these
additional settings into account. However, further efforts are still required.
As a side effect, the results from this thesis might prove valuable for an enhanced support

of STP on the Spikey chip (Pfeil, 2014). As the implementations are nearly identical on both
hardware platforms, the existing, yet rudimentary calibration could be improved with the
findings and algorithms from this thesis.
Backed by a complete software stack, the realisation of network models requiring STP

will be possible. The measured parameter ranges outlined above allow for an implemen-
tation of different neural networks on the HICANN chip. For example, the self-tuning
network developed for Spikey (Bill, 2008) can be adopted without the need for changes in
the STP configuration. The same applies to the cortical attractor-memory network (Bre-
itwieser, 2011), which is currently under development as a benchmark for neuromorphic
hardware systems (Rivkin, 2014). The influence of the linear recovery – as opposed to
the exponential behaviour featured in the Tsodyks-Markram model – on such models still
needs to be investigated.
To conclude, the implementation of STP on the HICANN chip showed to be operational.

Assuming the existence of a feature-complete neuron calibration, the realisation of first
network models incorporating STP can be approached.
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A Verification of the Measurement Pro-
tocol for Depression

The measurement protocol for the depression phase presented in 3.2.1 has been tested
with a simulation of short term depression. For this simulation, PyNN has been used in
connection to the NEST backend. This STP implementation follows the Tsodyks-Makram
model. Therefore, only 𝑈SE can be configured for the depression phase, while 𝜆 = 1 and
𝑁 = 0 are fixed.
In figure 22, the simulation is shown including the protocol’s fit. The amplitudes have

been extracted following the method presented in 3.1.4. The fit results as well as the con-
figured values are shown in table 4.
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Figure 22: A simulation of STP including the extracted PSP amplitudes as well as a fit fol-
lowing the protocol for the characterization of the depression phase.

Parameter Configured Value Extracted Value

Utilization of Synaptic Efficacy 𝑈SE 0.5 0.5003 ± 0.0002
Scaling Parameter 𝜆 1 (fixed) 0.9999 ± 0.0003
Offset Parameter 𝑁 0 (fixed) 0.0000 ± 0.0002

Table 4: Fit results of the depression protocol for a simulation of STP. Parameters 𝜆 and 𝑁
are not configurable in the Tsodyks-Markram model.
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B Floating Gate Parameters

In the table 5, the floating gate parameters used as a starting point for the measurement
presented in this thesis are shown. While unusual values were chosen e.g. for 𝐸l, the
measurement principles were tested with other parameters as well.

Type Name Value [DAC] Comment

shared 𝑉fac 400…1023 Swept for facilitation measurements.
𝑉dep 0…200 Swept for depression measurements.
𝑉stdf 400…800 Most measurements taken with 200 DAC

values.
𝑉reset 200
𝑉dtc 0…100 Swept for recovery measurements.
𝑉gmax0 50
𝑉bstdf 400…800

neuron 𝑉t 500
𝐼gl 1023 Minimised in order to increase separation

of PSPs.
𝑉syntcx 800
𝑉syntci 800
𝑉synx 100
𝐸l 100 Set to low level in order to maximise PSP

amplitudes.

Table 5: Common floating gate parameters used as a starting point for most measurements.
Optimised for large PSP amplitudes and thus well suited for STP measurements.

The adaptive and exponential terms were disabled through floating gate settings shown
in table 6.

Type Name Value [DAC]

neuron 𝑉exp 1023
𝐼rexp 1023
𝐼bexp 1023

Type Name Value [DAC]

neuron 𝐼gladapt 0
𝐼fire 0
𝐼radapt 1023

Table 6: Common floating gate parameters used as a starting point for most measurements.
Optimised for large PSP amplitudes and thus well suited for STP measurements.
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