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Abstract

In this thesis binaural sound localization is performed on neuromorphic hardware.
The neural network described in the JeUress model locates the azimuthal position of a
sound by analysing the interaural time diUerence, so called ITD, of the sound arriving
at both ears. Due to the periodicity of pure tones, the response of the network is
ambiguous. By combining multiple networks for diUerent spectral components of
the sound, the JeUress model is extended to a network that yields an unambiguous
answer. In preceding studies by the author the functionality of this combination of
networks has been shown in software simulations.

Here this network is implemented on the neuromorphic microchip Spikey. Meth-
ods to overcome the obstacles imposed by the limited signal bandwidth of the chip
as well as inhomogeneities in the hardware components are developed. In this con-
text a formerly unknown eUect of interaction between input signals, which impairs
ITD-detection, was measured and investigated in detail. The knowledge obtained
by these measurements allows a modiVcation of the network to decrease the impact
of the signals’ interaction. With the modiVed network a successful ITD-detection is
performed.

Zusammenfassung

In dieser Arbeit wird binaurale Schalllokalisierung auf neuromorpher Hardware ge-
zeigt. Das JeUress-Modell beschreibt ein neuronales Netzwerk, welches die azimutale
Position eines Geräuschs lokalisiert, indem es die interauralen ZeitdiUerenzen, so ge-
nannte ITDs, analysiert. Aufgrund der Periodizität von reinen Tönen ist das Ergebnis
des Netzwerks mehrdeutig. Durch die Kombination mehrerer Netzwerke, die auf un-
terschiedlichen Frequenzen des Schalls arbeiten, kann das JeUress-Modell zu einem
Netzwerk erweitert werdem, das eindeutige Ergebnisse liefert. Vorangegange Arbei-
ten der Autorin haben bereits die Funktionalität dieses kombinierten Netzwerks in
Software-Simulationen gezeigt.

In dieser Arbeit wird das kombinierte Netzwerk auf den neuromorphen Mikro-
chip Spikey übertragen. Dazu werden Methoden zum Ausgleich von Inhomogenitä-
ten in der Hardware sowie zur Kompensation der limitierten Bandbreite des Chips
entwickelt. Dabei wurde eine bis dahin unbekannte Interaktion zwischen Eingangs-
signalen, welche die Detektion von ITDs erschwert, beobachtet. Erkenntnisse, die
bei der detaillierten Untersuchungen dieses EUekts gewonnen wurden, erlaubten ei-
ne ModiVkation des Netzwerk, welche die Interaktion der Eingangssignale reduziert.
Mit diesem modiVzierten Netzwerk konnten erfolgreich ITDs detektiert werden.
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1 Introduction

The immense amount of funding received by recent projects like the European Human
Brain Project (2014) or the American BRAIN-Initiative (2014) shows that understanding
the brain has become a topic of great interest in modern science. Both projects com-
bine experimental and computational neuroscience to gain new insights into the func-
tional principles of the brain. One aim of computational neuroscience is to understand
the mechanisms in the brain by simulating the behaviour of neural networks. But the
simulation of large networks on conventional computers is very demanding concerning
computational power and simulation time. In contrast, the rather recently developed
technology of neuromorphic hardware models the components of the brain with electri-
cal circuits mimicking the electrical behaviour of neurons and synapses. These physical
models evolve in parallel and in continuous time. The hardware is therefore able to per-
form massively parallel computations similar to the brain. In the context of the FACETS
(2010) and BrainScaleS (2014) research projects, the neuromorphic microchip Spikey was
developed.

A possible application of neuromorphic hardware is the emulation of biologically in-
spired networks. Previous works at the KirchhoU-Institute for Physics in Heidelberg in-
vestigated a model that autonomously learns to improve phase-locking as e.g. observed
in the auditory system of barn owls (Gerstner et al., 1996). In this context, it was shown
that phase-locking can be performed on the Spikey chip (Scherzer, 2013; Pfeil et al., 2013b).
Since phase-locked spike trains are essential for binaural sound localization, the next step
is to implement and investigate the networks responsible for the actual localisation of
a sound. In 1948, Lloyd JeUress introduced the model of a network capable of locating
the azimuthal position of a sound source by determining the time diUerence between the
sound at the left and right ear (JeUress, 1948). Biological evidence for the model has been
found more than 40 years later (Carr and Konishi, 1990).

This thesis aims to implement the JeUress model on the Spikey hardware system. Ad-
ditionally, the network is extended to overcome the ambiguity of the answers obtained
by the JeUress model. The ambiguity is caused by periodic input and can be avoided by
combining multiple networks that use diUerent frequencies. In the context of preparative
studies the functionality of the combined network as well as its dependence on network
and input parameters were investigated in software simulations (Kriener, 2014). The fo-
cus of this work lies on overcoming obstacles imposed by the limited neuron and synapse
count on the chip, the narrow parameter range of neuron and synapse parameters as well
as the inWuence of inhomogeneities in the electric components. First, a network similar
to the one tested in simulation is implemented on hardware and calibration algorithms
to compensate for inhomogeneities and imperfections in hardware are developed. In this
context, a formerly unknown eUect of interaction between input signals was found and
investigated in detail in a second step. Finally, with the knowledge obtained by the previ-
ous steps, a modiVed network is introduced and its functionality is tested qualitatively.
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1.1 Biological Background

The JeUress model (JeUress, 1948) proposes a network for binaural sound localization,
which locates a sound by analysing the interaural time diUerence (ITD) of the sound signal.
If the source of the sound is positioned on either side of the head, the sound waves travel
diUerent distances to the ear which is closer to the source of the sound and the one which
is farther away. Therefore, the sound waves arrive at the ears with a diUerent phase. For
a pure tone of frequency f and amplitude a0, the sound waves a(t) and a′(t) arriving at
the ears can be described as

a(t) = a0 · sin(2πft), (left ear)

a′(t) = a0 · sin(2πf(t+ ∆t)), (right ear)

where ∆t describes the ITD.

Before being interpreted by a neural network, the cochlea transforms the sound waves
into spike coded information. In that process, the frequency components of the sound are
split up into spike trains on diUerent auditory nerve Vbres. The resulting spike trains are
phase-locked. This means that an action potential is triggered with the highest probability
at a certain phase of the incoming tone (Gerstner and Kistler, 2002).

As input from the left and right ear the JeUress model assumes two regular spike trains
which are shifted in time by ∆t. The temporal distance between two spikes in these spike
trains is given by the cycle duration of the incoming sound wave. Figure 1 shows the
network architecture of an ITD-detector as described in the JeUress model. Each neuron is
connected to the auditory nerves of both ears. The connecting Vbres delay the incoming
spike trains of the left and right ear. Since the Vbres vary in length, each neuron receives
its input signals with additional delays, which results in an characteristic diUerence be-
tween the left and right delay for each neuron. By assigning each neuron to an individual
diUerence between the left and right delay (in the following called characteristic delay) the
ITD-detector generates a spatial coding of ITDs. For each pair of signals, one of the char-
acteristic delays compensates the ITD and therefore the corresponding neuron receives
the input spikes from the left and right ear coincidently. Then, this neuron Vres with an
higher rate than the other neurons.

Because of the periodicity of the spike trains, the network described above is only
able to detect phase diUerences between two input signals rather than the absolute time
diUerence. For two pure tones with the cycle duration T and the ITD ∆t all pairs of pure
tones with an interaural time diUerences ∆t′ of the form

∆t′ = ∆t+ n · T n ∈ Z

result in the same spike trains. Therefore, not only the neuron whose delay compensates
∆t (n = 0), but also neurons that correspond to delays compensating ∆t′ with n 6= 0 Vre
with the highest rate. The network’s response is ambiguous and is only able to detect the
phase diUerence between two signals. DiUerent ITDs causing the same phase diUerence
of the input signals can not be distinguished.
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Figure 1: JeUress model with a source of sound on the right side of the head. The neurons (circles)
receive their input from left and right ear by the auditory nerve Vbres. These Vbres,
also called delay lines, vary in length for the diUerent neurons. Because of that they add
characteristic delays to the incoming signals. In this example the sound waves arrive
earlier at the right ear than at the left. The delays added by the delay lines of neuron
number 1 compensate the ITD of the incoming signal. This neuron therefore Vres with
the highest rate.

The ∆t′ causing an ambiguous response of the network depend on the cycle duration
of the input signals. When using multiple detectors for diUerent input frequencies all
of them show ambiguous responses. However, the neurons Vring with the highest rate
because of the delays corresponding to ∆t′ with n 6= 0 are most likely diUerent for each
detector. Only the neuron corresponding to the real interaural time diUerence ∆t is the
same in all detectors. This allows to detect absolute time diUerences using a network
combining multiple ITD-detectors.

1.2 Preparative Studies

During an internship preceding this thesis (Kriener, 2014), the described networks were
investigated with software simulations using PyNN (Davison et al., 2008) with NEST
(Gewaltig and Diesmann, 2007) as a backend. In the following, the results important for
an implementation of the network on neuromorphic hardware are presented. All results
can be found in detail in Kriener (2014).

Neurons in an ITD-detector should Vre with a higher rate if their input spike trains
coincide. Simulations have shown that this behaviour only occurs for a small range of
synaptic weights connecting the input to the neurons. If the synaptic weight is too low,
the neuron will not spike at all. If the weight is too high, the neuron will spike with every
incoming spike and its Vring rate is therefore not dependent on the ITD of its input. Even
within the described range the dependency of the Vring rate on the synaptic weight is
very strong. This suggests that on hardware a careful calibration of the synaptic weights
is necessary.
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Simulations showed that 3 ITD-detectors for diUerent frequencies are enough to re-
solve the ambiguous responses of the detectors caused by the periodic input. But the
frequencies have to be chosen carefully, since input frequencies that are multiples of each
still lead to ambiguous responses of the network.

There are two possible ways for extracting the network’s response to a certain input.
The Vring rates of the neurons corresponding to the same delay in each detector can be
summed up, which results in a distribution of Vring rates over the characteristic delays.
Ideally this distribution has one clear maximum for the delay that compensates the ITD
and other lower maxima caused by the delays compensating ∆t′ with n 6= 0. By Vnding
the maximum of the distribution the delay compensating the ITD, and by that the ITD
itself, can be determined.

To increase the diUerence between the maximum and the background an integration
layer can be used. It consists of an additional population of neurons of the same size as
a detector. All neurons of the detectors corresponding to the same delay are connected
excitatory to one of the neurons in the integration layer. As the output Vring rate of the
neuron rises more than linear with the input rate, the result of the network will be modu-
lated compared to the summing up of Vring rates. High input rates are ampliVed, whereas
low rates are damped. Therefore, the diUerence between maximum and background is
increased.

The frequency components of the sound signal are assumed to be equally important
and therefore the maximum Vring rates of the detectors for that frequencies should be
approximately equal. Otherwise, the result of one detector might dominate the overall
result. Forcing neurons with diUerent input frequencies to Vre with the same maximum
rate requires an even more careful choice of the synaptic weights than when dealing with
only one ITD-detector.

Additionally, it was found that the value for the membrane time constant of the neu-
rons should be roughly between a half and a fourth of the cycle duration of the input
frequencies. A lower the time constant leads to a better time resolution. Since the conVg-
urable range for the membrane time constants on hardware is roughly between 3 ms and
10 ms (biological time domain), the input frequencies should be chosen around 100 Hz.

1.3 Spikey

The neuromorphic hardware system used in this work is the 5× 5 mm2 microchip Spikey
developed in context of the research project FACETS (2010). It contains 384 circuits mod-
elling the electrical behaviour of neurons. Compared to biology the hardware is up to 105

times accelerated although in this study a speed-up of 104 is used. If not stated other-
wise, all times and frequencies mentioned in the following are given in the biological time
domain.

A detailed compilation of the used hardware as well as the used software stack can be
found in table 2 in appendix A.
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1.3.1 Neuron and Synapse Model

The implemented neuron model is the leaky integrate-and-Vre neuron model with con-
ductance based synapses (Dayan and Abbott, 2001).The dynamics are given by

Cm
dVm
dt

= −gl(Vm − El)−
∑
i

gi(Vm − Ei).

Cm describes the neuron’s membrane capacitance, Vm the membrane potential and gl the
leakage conductance. If there is no synaptic input τm = Cm

gl
is the time constant of the

decay of Vm towards the leakage reversal potential El. The sum over all synapses i of the
neuron adds up the synaptic input. The synaptic input is determined by a synaptic con-
ductance gi that drives the membrane potential towards the synapse’s reversal potential
Ei. For excitatory synapses the reversal potential is given by Ei = Eexc and for inhibitory
by Ei = Einh. The time course of the synaptic conductance gi is described by

gi(t) = pi(t) · wi · gmax
i ,

where pi(t) approximately represents an exponential decay, wi the synaptic weight and
gmax
i the maximum value of the conductance. For a more detailed description see Brüderle
(2009) and Pfeil et al. (2013a).

1.3.2 Hardware SpeciVcations

Spikey is divided into two blocks, each containing 192 neurons and 256 synapse line
drivers. The synapse line drivers receive spike input from an external source or from
neurons on the chip. They forward spike events to postsynaptic neurons to which they
are connected via synapses. The strength of these connections is regulated by the synaptic
weight w. Since every synapse line driver can be connected to every postsynaptic neuron
in the same neuron block there are 256 · 192 = 49152 synapses. Due to technical reasons
only the second neuron block is accessible. Figure 2 shows a micro photograph of the chip
as well as a schematic drawing of the signal transmission between synapse line driver and
neuron.

The synapse line driver receives a pulse event and transforms it into a linear voltage
ramp. The time course and the parameters inWuencing the voltage ramp are shown in
Vgure 3. The rising slew rate, controlled by Irise, is very high, whereas the falling slew
rate Ifall is much smaller and corresponds to the synaptic time constant τsyn. The height
of the voltage ramp is determined by Iout controlling gmax

i . The synapses transform the
voltage ramp into a current with an exponential time course also shown in Vgure 3 and
scale this current with the synaptic weight wi. At the neuron the current is transformed
into the time dependent conductance gi(t). For details see Schemmel et al. (2007) and
Brüderle (2009).

Some of the described parameters of neurons, synapses and synapse line drivers can
be conVgured individually for each instance but others are shared parameters. Table 1
shows the parameters, important for this work as well as their conVgurability.
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Figure 2: The photography on the left shows the Spikey chip and its division into two neuron
blocks as well as the location of synapse line drivers, synapses and neurons. The right
side is a schematic drawing of the signal transmission between synapse line driver and
neuron. A pulse event reaches the synapse line driver and is transformed into a voltage
ramp (A). In the synapse (B) the voltage ramp is converted into an exponentially decaying
current which is transformed into the synaptic conductance in the neuron (C). Taken
from Pfeil et al. (2013a).

t

V (t)

Vstart
Irise Ifall

Iout

t

gi(t)

Irise Ifall

wi · Iout

Figure 3: Top: Time course of the voltage ramp between synapse line driver and synapse. The
parameters inWuencing its shape are depicted. Bottom: Exponential time course of the
current produced by the synapse as well as of the synaptic conductance.
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Scope Name ConVgurability Description

Neuron

gl individual neuron Leakage conductance
El shared odd/even neurons Leakage potential
Einh shared odd/even neurons Inhibitory reversal potential
Eexc shared odd/even neurons Excitatory reversal potential
Vth shared odd/even neurons Firing threshold
Vreset shared odd/even neurons Reset potential

Synapse line driver

Irise, Ifall individual line driver Two bias currents for rising
and falling slew rate of
presynaptic voltage ramp

gmax
i individual line driver Bias current controlling

maximum of voltage ramp

Synapse w individual synapse 4 bit synaptic weight

Table 1: Parameters of neurons, synapse line drivers and synapses and their conVgurability.
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2 Multiple Detector Network

2.1 Implementation on Spikey

Precise artiVcial delays are diXcult to realise on hardware. Therefore, the characteristic
delays of the neurons are not produced on hardware, but added in software before sending
the signals into the network. It is not necessary to modify both the left and the right signal,
since delaying the left signal and moving the right forward in time is equivalent. To assign
the characteristic delays, the left signals are kept at the same values for all neurons and
for each neuron a diUerent delay is added to the right signal.

Figure 4 shows a schematic drawing of the synapse line driver conVguration used
to implement a network consisting of multiple ITD-detectors as described in section 1.1.
Each neuron receives the input from the left and right ear via individual groups of synapse
line drivers. Since the number of synapse line drivers is limited on the chip, it would be
convenient, if synapse line drivers provided input for more than one neuron. This is not
possible due to three reasons: Vrst, the diUerent detectors of the network receive input
of diUerent frequencies. Therefore their input spike trains are diUerent and must come
from separate synapse line drivers. Second, the neurons in one detector can not share the
drivers for their right inputs, because due to the individual delays the right input spike
trains are diUerent for each neuron. Third, the left input is the same for every neuron in a
detector, but due to inhomogeneities in the hardware the strength of synaptic connections
between one synapse line driver and diUerent neurons varies. This leads to a varying
strength of the left input. The only parameter that could compensate these variations is
the synaptic weight. But since the weight is a 4 bit value, its resolution may be too coarse.

To achieve a good time resolution of the network, as many neurons as possible should
be used. If all of the available synapse line drivers are used for 3 ITD-detectors, a maxi-
mum number of 42 neurons per detector is possible. In this case each neuron is connected
to two synapse line drivers, one for the left and one for the right input.

As described in section 1.2 an integration layer can be used to evaluate the Vring
rates of the detectors. Since each neuron in a detector is connected to one neuron in the
integration layer via a diUerent synapse line driver, the integration layer uses a larger
proportion of the synapse line drivers than a detector. For a network consisting of 3

detectors with n neurons each, the integration layer uses 3 · n drivers. The 3 detectors
receive their input via 6 · n drivers. If the maximum number of 256 drivers is used, a
maximum number of n = 28 neurons per detector is possible. For a high resolution the
detector network and the integration layer should be split up into diUerent emulation
runs on Spikey. In the Vrst run the spike times of the detector network are recorded, and
played back into the network of the integration layer in a second emulation run.

It is additionally possible to randomly delete spikes in the input spike trains with a
Vxed thinning probability p. Each spike in a spiketrain is deleted with the probability
p. Simulations in Kriener (2014) have shown that for p ≤ 0.3 this thinning of the input
signals does not change the functional principle of the network, but is a possibility to
continuously scale the amount of input for the network without a change of the input
frequency.
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 Left input of detector 1

 Right input of detector 1

 Left input of detector 2

 Right input of detector 2

Detector 1 Detector 2

Figure 4: Schematic drawing of an exemplary network (consisting of 2 ITD-detectors with 3 neu-
rons each) on Spikey. Each neuron (square) is connected to two synapse line drivers (tri-
angles). The circles represent the active synapses that connect the synapse line drivers
to the neurons. Via two separate synapse line drivers each neuron receives 2 input spike
trains representing the spike trains from the left and right ear.

2.2 Bandwidth Limitations

The input bandwidth for digital events on Spikey depends on the distribution of the events
over time as well as on their distribution over the synapse line drivers and ranges between
approximately 30 kHz and 5 kHz. The bandwidth is is the smallest for events occurring
in very short time periods. In case of a too high input rate as many events as technically
possible are sent into the system, the rest is discarded in software. This is called spike
loss.

The network described above receives more than 200 spike trains with frequencies
of around 100 Hz each. To avoid spike loss caused by the large amount of input spikes,
the bandwidth should be exploited as well as possible. This can be achieved by shifting
the spikes to distribute them in time. The Vring rate of the neuron depends on the phase
diUerence between its left and right input. Therefore the left and right input of each
neuron must be shifted equally for each neuron as shown in Vgure 5. For the diUerent
neurons the spikes of each cycle duration are distributed over a certain time interval T̃ .
For T̃ = T , where T is the cycle duration of the input, the spikes are distributed uniformly
over time. In the following the shift factor s is deVned as s = T̃

T .

Since the neurons are not interconnected with each other, the Vring rate of one neuron
should not depend on the timing of the inputs of all other neurons. Distributing the input
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Neuron 1

Neuron 2

...

Neuron n

0.5 · T

Neuron 1

Neuron 2

...

Neuron n

1 · T

Figure 5: Shifted input spike trains (left and right input for each neuron) of a population consisting
of n neurons. The shift factor (s = 0.5 on the left and s = 1.0 on the right side)
corresponds to the ratio of the time interval over which the spikes of one period of
duration T are distributed.

signals for the diUerent neurons in time therefore as shown in Vgure 5 preserves the Vring
rate of the neurons as well as reduces the number of lost input spikes.

To investigate the dependency of the spike loss on the number of neurons in the
network as well as on the shift factor s, additional measurements with a ITD-detector of
diUerent sizes were carried out. Figure 6 shows the dependency of the spike loss on the
applied shift factor s for diUerent numbers of neurons in the detector. Since the spike
events are more evenly distributed in time for larger s, one would expect the spike loss to
decrease with increasing shift factor. But instead there is an increase in the spike loss for
higher s whose position depends on the number of neurons in the network.

The increase in discarded events is caused by the method of event transportation be-
tween the FPGA and the chip (Grübl, 2014). Incoming spike events are transported in
packages of 3 or less events, where each of these events must be for a synapse line driver
of a diUerent one of the synapse line driver blocks. Each of these 8 blocks contains 64

synapse line drivers. With increasing shift factor s the time interval between diUerent
events increases. If the intervals grow too large the events for diUerent synapse drivers
can not be sent with the same package any more. Therefore the number of needed pack-
ages rises until its maximum is reached and spike events are dropped. The position of
the second maximum depends on the number of neurons, because for larger neuron num-
bers more synapse line drivers are used and there are more possibilities for 3 events from
diUerent blocks to Vt into one package.

This shows that for all networks the number of discarded spikes must be checked and
an appropriate shift factor must be applied to the input signals.

2.3 Calibration

For a good performance of ITD detection all neurons should show the same dependence
of their Vring rate on the ITD. In particular, it is important that all neurons Vre with the
same rate for an ITD of ∆t = 0 ms. Due to imperfections and inhomogeneity in the
electronic components, caused by the production process, this is not automatically the
case on neuromorphic hardware, even if the parameters of neurons and synapses are set

10
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Figure 6: Ratio of discarded input spikes over shift factor s for 3 diUerent numbers of used neurons.
All neurons receive 2 input spike trains with a frequency of 100 Hz. The spike loss
depends on the total number of spikes sent into the network and therefore on the number
of used neurons. Shifting the input signals for the diUerent neurons in time decreases the
spike loss for small shift factors. Larger s again cause larger spike loss. This behaviour
is also dependent on the number of used neurons.

to the same values. Therefore a dedicated calibration for the synapse line drivers and the
leakage conductance is applied (for details about the calibration algorithms see Brüderle
(2009)). A calibration of the neurons’ potentials is not possible since these voltages are
shared parameters.

Figure 7 shows the Vring rates of four arbitrarily chosen neurons of an ITD-detector,
when stimulated with two signals over the ITDs ∆t between the signals. Although the
synapse line driver calibration and the calibration of the leakage conductance were used
and the neurons’ parameters were set to the same values, the Vring rates of diUerent neu-
rons show diUerences of close to 50 Hz e.g. for ∆t = 0 ms. This shows that for the
detection of ITDs an additional calibration is necessary. The main goal of this calibration
is to compel all neurons of the diUerent detectors, that receive inputs of diUerent frequen-
cies, to Vre with an approximately equal maximum rate. The detection of ITDs between
the left and right signal also requires the signals from the left and right ear to be equally
strong. Because of that the Vrst calibration step tries to level the strengths of the synaptic
connections between the synapse line drivers and neurons. The second calibration step
levels out diUerences between neurons caused by the combination of the left and right
input by adjusting the synaptic weights.
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Figure 7: Firing rates of 4 diUerent neurons (each averaged over 10 runs) with same parameter
setting and same inputs plotted over ITD between left and right input. The default
calibration for neuron parameters and synapse line drivers is used.

2.3.1 Calibration of Synapse Line Drivers

The synaptic weight w is the parameter that corresponds to the strength of a synaptic
connection, but since it is only a 4 bit value, its resolution is very coarse. As simulation
showed that the dependency on the synaptic strength is very strong, this parameter alone
may not be suitable for a calibration of the synaptic connections.

The synaptic strength is also inWuenced by the hardware currents Ifall and Iout con-
trolling the voltage ramp between the synapse line driver and the synapses. They can
be conVgured for each synapse line driver individually but since the neurons in this net-
work do not share synapse line drivers, these parameters are not shared between active
synapses and can be used to adjust a synaptic connection. The resolution of these param-
eters is higher than the resolution of the synaptic weight. Figure 8 shows the dependency
of the synaptic strength, measured by the height of an excitatory post synaptic potential
(PSP), on the parameters Ifall and Iout for an exemplary synapse line driver and neuron.
Although the functional correlation is similar for all combination of driver and neuron,
the absolute values diUer. It is therefore diXcult to predict a suitable combination of Ifall
and Iout for a speciVc pair of neuron and synapse line driver.

The following calibration algorithm is designed for a network consisting of neurons
that are connected to 2 synapse line drivers. They correspond to the signals from the left
and right ear and are in the following called the left and right driver of the neuron:

In a calibration of a network to very precise Vring rates, hardware eUects like leakage
currents through synapses have to be considered. They are dependent on the used net-
work topology, input signals and the conVguration of unused synapse line drivers. Their
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Figure 8: Dependency of the PSP-height (measure for strength of synaptic connection) on the cal-
ibration parameters Iout and Ifall for an arbitrarily chosen combination of neuron and
synapse line driver. The PSP-height increases approximately linearly with Iout and de-
creases strongly with Ifall. Each data point was averaged over 20 emulation runs.

inWuence on the Vring rates of the network are hard to predict. It is therefore necessary
to compensate them by calibration. This can only be achieved if the network topology
used in calibration is as similar as possible to the one used in later experiments. Since the
synapse line drivers in the later network are used in parallel, a calibration algorithm that
calibrates them in parallel is required.

This calibration algorithm consists of an iterative combination of bisection methods.
To ensure that the inputs from left and right side are equally strong, each side is calibrated
separately while the synaptic weight of the other side is set to zero. In the network
used in experiments each neuron receives input from two synapse line drives. If, during
calibration, one of these drivers is connected to the neuron with the synaptic weight zero,
the weight for the connection of the other driver must be doubled to achieve the same
strength of the input for the neuron as in later experiment. It is also necessary to repeat
the calibrations of left and right side iteratively, since the Vring rates of the neurons are
dependent on the conVguration of the unused drivers, in this case the drivers of the side
currently set to weight zero.

For the calibration of the right side the parameters Ifall and Iout of the left drivers
are set to the values obtained by the default calibration. Then the Vring rates of each
neuron, when presented with a signal of the same frequency as the one that is used in the
later experiments, are measured and compared to a conVgurable target Vring rate. The
target Vring rate can be set to arbitrary values, but it was found that the calibration yields
good results for target Vring rates of around one tenth of the input frequency. The Vring
rates are roughly brought close to the target Vring rate with a bisection method searching
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for appropriate values of the parameters Ifall and afterwards Vne tuned using a bisection
method to Vnd Iout for each synapse line driver.

It is important that the measured Vring rates are averaged over multiple runs to pre-
vent the bisection methods from jumping into wrong intervals because of statistical Wuc-
tuations in the Vring rates. The calibration of the left side follows the same principle only
the parameters for the right side are set to the values obtained by the bisection meth-
ods instead of the default values. After the calibration of the left side, the calibration for
the right side is repeated and the values for Ifall and Iout of the left drivers are the ones
obtained by the previous calibration step.

2.3.2 Calibration of Synaptic Weights

The algorithm described above assumes, that the impact of two inputs with a certain
weight is approximately the same as the impact of one input with doubled weight. This
is not the case for all neurons and therefore an additional calibration step is necessary. In
this step the neurons are presented with two signals with an ITD of zero and their Vring
rates (averaged over multiple runs) are compared to the target Vring rate used in the Vrst
step. The algorithm decides for each neuron whether its Vring rate is too low or too high
compared to the target Vring rate and respectively increases or decreases the synaptic
weights for the left and right side by one. This process is repeated 10 times.

2.3.3 Calibration Results

Figure 9 shows an exemplary calibration result for 3 detectors with input frequencies of
70 Hz, 100 Hz and 130 Hz. After calibration the network was presented with signals of
diUerent ITDs and the mean Vring rate of all neurons was plotted over the ITD. Figure
9 shows that the calibration algorithm is able to select synaptic strengths for which all
neurons show an approximately equal Vring behaviour with a maximum Vring rate for an
ITD of zero. These results were obtained by applying a shift factor of s = 0.7 to the input
signals. A detailed compilation of the used network and neuron parameters can be found
in table 3 in appendix A.

Figure 10 shows the results of the same experiment on the same network using the
calibration parameters obtained by the calibration above for a shift factor of s = 0.9.
It is important to note that for both shift factors no spike loss occurs. For the second
shift factor the dependency of the Vring rates on ∆t changed strongly although in theory
the shifting of the inputs should not have any inWuence on the Vring behaviour of the
network. The Vring behaviour demanded in the JeUress model is lost completely. Also the
maximum Vring rates changed from 10 Hz to up to 80 Hz.

2.4 Interaction between Input Signals

The comparison of the Vgures 9 and 10 suggests that there is a dependency of the Vring
rates on the shift factor s. This dependency should theoretically not exist and indicates an
interaction between the input signals for diUerent neurons. To investigate it in more detail
the dependency of the Vring rate on swas measured with the same setup as in section 2.2.
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Figure 9: Calibration result for 3 detectors consisting of 41 neurons each calibrated to a maximum
Vring rate of 10 Hz. The plot shows the mean Vring rates averaged over all neurons
in a detector, plotted over the ITD between their inputs. The errors correspond to the
standard deviation of the mean value. The input frequencies of the detectors are 70 Hz

(top), 100 Hz (middle) and 130 Hz (bottom). The applied shift factor s was s = 0.7. The
network consists of 41 neurons per detector instead of the maximum number of 42 neu-
rons, because for an odd number of neurons it is possible to assign characteristic delays
symmetrically around the value zero as well as to assign the delay zero to a neuron.

This was necessary, because for some shift factors spike loss occurs and only Vring rates
that are measured for no spike loss are comparable. Figure 11 shows the averaged Vring
rate of a network also used in Vgure 6. A large diUerence in the Vring rates for diUerent
shift factors can be found, although no spikes are lost for either of them. The averaging
over all neurons yields very large standard deviations of the mean value. This shows that
the individual neurons respond diUerently on the changing time shift.

Figure 12 shows the investigation of two shift factors s1 = 0.5 and s2 = 1.0, both
causing no spike loss, in detail. The Vring rates for the individual neurons are signiVcantly
larger for the smaller shift. An exemplary membrane trace shows that this is caused by
much higher PSPs for s1.

The eUect described above corrupts the functional principle of the JeUress model, since
the model assumes that the Vring rate of a neuron is only dependent on the input fre-
quency and the ITD between the left and right signal. The Vring behaviour demanded by
the model can be achieved by calibration as shown in Vgure 9. But the calibration pre-
pares the network for one speciVc shift factor i.e. one speciVc timing of the input spike
trains. If the input rate is preserved but the timing of the input is changed by a changing
shift factor, the Vring behaviour of the neurons changes strongly as shown in Vgure 10.
Unfortunately, because of the added characteristic delays of the neurons and the ITD of
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Figure 10: The same network and calibration as used in Vgure 9 with a changed shift factor of
s = 0.9. Again the mean Vring rates, averaged over all neurons in a detector, was
plotted over the ITD between their inputs. The changing of the shift factor causes a
strong changes in the Vring behaviour of the neurons.

the input signals itself, this change in timing also happens, when the network is used to
detect ITDs. Therefore the network in its current form is unable to detect an ITD. To by-
pass the unintended dependency on time shifts the mechanisms causing this eUect have
to be investigated and understood.

16



0.0 0.2 0.4 0.6 0.8 1.0

Shift Factor

0

20

40

60

80

100

120

M
ea

n
Vr

in
g

ra
te

[H
z]

Figure 11: Mean Vring rate of all neurons and standard deviation of mean value over the shift
factor for 70 neurons with an input frequency of 100 Hz. For a shift factor of s = 0.3

as well as s = 1.0 there is no spike loss (see Vgure 6), but nevertheless the mean Vring
rate is around 80 Hz for s = 0.3 and close to 0 Hz for s = 1.0.
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Figure 12: InWuence of shift factor s on behaviour of neurons. Top: Firing rates of each neuron
for two diUerent shift factors, both having no spike loss. For s = 0.5, the rates are
signiVcantly higher. Bottom: Exemplary membrane traces of neuron number 42. The
PSPs for the shift factor s = 0.5 are signiVcantly higher which results in a higher Vring
rate for the neuron.
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3 Investigation of Interaction between Input Signals

An input signal sent into a network by one synapse line driver seems to inWuence a second
signal that is sent by another synapse line driver. If the second driver is connected to a
neuron the Vrst driver is not connected to, the impact of the second signal on that neuron
is inWuenced by the Vrst signal. By that the Vring rate of a neuron is changed by an input
signal that is not connected to the neuron. This eUect seems to be dependent on the time
relations between the two interacting signals. As the dependency of the described eUect
on the number of active synapse line drivers, the frequency, or the regularity of the signals
might yield information about the underlying cause, it was investigated in detail and as
isolatedly as possible.

3.1 Measurements

The network in Vgure 13 gives a measurement setup to investigate the inWuence of the
number of active synapse line drivers, the spatial distance of the signals pathways, the
timing relations between input signals, the parameters of the synapse line drivers and the
input frequency on the described systematically.

One randomly chosen synapse line driver (measurement driver) is connected to all but
one neuron and fed with a regular input of a Vxed frequency. Symmetrically around that
driver other drivers (disturbance drivers) are connected to the last remaining neuron and
fed with regular input of the same frequency. The input spike trains of the disturbance
drivers are shifted by a time interval ∆t compared to the spike train for the measurement
driver. A spatial distance between the measurement driver and the disturbance drivers is
created by leaving a number of drivers without an input signal. By averaging the Vring
rates across all neurons and across randomly chosen measurement drivers the impact of
the described parameters is determined systematically.

A detailed compilation of the network and neuron parameters used in the following
can be found in table 4 in the appendix A.

3.1.1 Time DiUerence

Figure 14 shows the averages of all neurons’ Vring rates for an exemplary measurement
driver and diUerent numbers of disturbance drivers plotted over the time shift ∆t between
the signal of the measurement driver and the signals of the disturbance drivers. Already
one disturbance driver on each side of the measurement driver causes diUerences in the
Vring rates of more than 10 Hz between ∆t = 12 ms and ∆t = 20 ms. If more disturbance
drivers are used, the diUerences in the Vring rates increase. The dependency of the Vring
rates on ∆t shows a periodicity of the same cycle duration as the input signals.

3.1.2 Comparable Measure

To compare the strength of the Vring rates’ dependency on the disturbing signals for
diUerent measurement drivers a comparable measure is needed. A suitable measure is the
diUerence between the maximum of the mean Vring rate rmax, caused by an interaction
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Measurement Driver

Disturbance Drivers

Disturbance Drivers

Figure 13: Network to investigate the interaction between the inputs. One measurement driver is
connected to all but one neuron (squares) and fed with a regular spike train. Symmetri-
cally around the measurement driver other drivers are connected to the last neuron. The
spike trains sent to these drivers are shifted compared to the one of the measurement
driver. The gray drivers are used to create a spatial distance and receive no input.

with the signals of the disturbance drivers, and the mean Vring rate of the neurons if there
is no disturbance by other drivers in the network rref:

rdiU = rmax − rref

In Figure 14 the maximum of the neurons’ mean Vring rates for one disturbance driver is
rmax = 28 Hz and occurs for ∆t = 12 ms and ∆t = 32 ms. For three disturbance drivers it
is rmax = 38 Hz and occurs for ∆t = 10 ms and ∆t = 32 ms. The reference rate for both
is rref = 18 Hz. This yields rdiU = 10 Hz for one disturbance driver and rdiU = 18 Hz for
three disturbance drivers. These rate diUerences show that the inWuence of 3 disturbance
drivers on the neuron is larger than the inWuence of one disturbance driver, which is also
clearly visible in Vgure 14. But by using the parameter rdiU instead of plots like Vgure 14,
it is possible to average over the results obtained by many diUerent measurement drivers.

3.1.3 Active Synapse Line Drivers

Figure 15 shows the impact of spatial distance between the signals of measurement driver
and disturbance drivers. The strength of the signals interaction was measured by mea-
suring the parameter rdiU for 30 randomly chosen measurement driver and averaging the
obtained values. The spatial distance was created by leaving synapse drivers between the
measurement driver and the disturbance drivers without input as shown in Vgure 13. The
distance is therefore measured in the number of drivers between measurement and dis-
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Figure 14: Dependency of the Vring rates, averaged over all neurons, on the time diUerence ∆t be-
tween the signals of measurement driver and disturbance drivers for a randomly chosen
measurement driver (input frequency 50 Hz). As a reference the Vring rates for a net-
work without disturbance drivers are drawn.

turbance drivers. The results in Vgure 15 suggest, that the strength of interaction between
the signals is not inWuenced by their spatial distance.

In Figure 16 the dependency of rdiU on the number of disturbance drivers, averaged
over 30 randomly chosen measurement drivers, is shown. For an increasing number of
disturbance drivers rdiU rises. This rise slows for larger numbers of disturbance drivers
and saturates after approximately 30 drivers.

3.1.4 Hardware Current Irise

The measurement of the dependency of rdiU on the number of disturbance drivers was re-
peated for a changed value of the hardware current Irise. As described in section 1.3.2 Irise
controls the rising slew rate in the voltage ramp between synapse line driver and synapse.
Its default value, which was used in the previous measurements, is Irise = 1.0µA. In this
measurement it was set to Irise = 0.1µA. To achieve reasonably high Vring rates, the
neurons’ resting potential was changed, too. Figure 17 shows, that for the lower Irise the
diUerence between reference rate and maximum rate also rises with the number of dis-
turbance drivers but saturates at approximately 30 disturbance drivers. Compared to the
measurement with Irise = 1.0µA the maximum values for rdiU are smaller for the smaller
Irise.
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Figure 15: Dependency of rdiU on the distance between measurement and disturbance drivers for a
number of 3 disturbance drivers and input signals with a frequency of 50 Hz. Each data
point is the average over 30 randomly chosen measurement drivers.

3.1.5 Membrane Potential

The membrane potential of a neuron not receiving input from any synapse line driver
was measured when only the measurement driver received an input signal with a fre-
quency of 30 Hz. Figure 18 shows the obtained membrane trace. Additionally, the mem-
brane potential of a neuron connected to the measurement driver is displayed. Ideally,
the membrane potential of the Vrst neuron should be approximately constant, but the
membrane trace shows two prominent features: Vrst, there are short, equidistant high
frequency pulses occurring with the same cycle duration as the input signal. They are
caused by crosstalk from the digital input to the read out electronics. For every incoming
spike a short crosstalk signal is visible on the read out membrane voltage, although it is
not actually occurring on the membrane (Schemmel et al., 2014). Since these pulses are
only artefacts of the read out mechanism, they are not relevant for the investigated eUect.
Second, the membrane voltage decreases after every incoming spike. A comparison with
the membrane potential of the second neuron shows, that the voltage drop last approx-
imately as long as the rising Wank of the PSP. In the appendix B the same measurement
is repeated for an input frequency of 100 Hz (see Vgure 25). It shows that the periodic
impact diUers with the input frequency, since the membrane voltage in Vgure 25 shows
periodic increases rather than decreases.

3.1.6 Additional Measurements

The experiments described above were repeated for the weights, connecting the distur-
bance drivers to the neuron whose Vring rate is not measured, set to the value zero. The
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Figure 16: Dependency rdiU on the number of disturbance drivers for an input frequency of 50 Hz,
a distance of 0 and Irise = 1.0µA. Each data point is the average over 30 randomly
chosen measurement drivers. The reference rate was approximately rref = 8 Hz for all
data points.

results were the same as shown in the previous sections. The synaptic weight of the
disturbance signals seems to have no inWuence on the interaction of signals.

More measurements concerning the dependency on the frequency and the networks
behaviour when the regular spike trains are replaced by Poisson input as well as a com-
parison of the behaviour of all synapse line drivers can be found in the appendix B.

3.2 Conclusion

The most probable causes of the interaction between input signals are crosstalk in the
synapse array or a temporarily overloaded power supply.

The observation that the synaptic weights of the disturbance signals seemingly have
no inWuence on the interaction of the signals, suggests that the interaction is not caused
by crosstalk in the vertical lines of the synapse array. If the signals interfered after the
synapses, the strength of the interaction would scale with the synaptic weight, since the
synapses scale the strength of the signals with the synaptic weight. Crosstalk in the
horizontal lines of the synapse array can not be excluded by that fact, because the volt-
age ramps propagating between synapse line driver and synapse are independent of the
synaptic weight. But crosstalk is rather short ranged and should happen only for sig-
nal pathways that are very close to each other. Figure 15 shows that the eUect does not
weaken with increasing distance as it would be expected for crosstalk.

An overloaded power supply could explain the observed eUects, because a dropping
supply voltage might change other voltages on the chip. These in turn might lead to
changes in the eUect of synaptic events on the membrane as well as to changes of the
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Figure 17: Dependency of rdiU on the number of disturbance drivers for an input frequency of
50 Hz, a distance of 0 and Irise = 0.1µA. Each data point is the average over 30 ran-
domly chosen measurement drivers. The reference rate was approximately rref = 12 Hz

for all data points.

neurons’ potentials. On the one hand, the membrane voltage of a neuron not connected
to any input drops during the rising Wank of a PSP of another neuron (Vgure 18). This
suggests that the overload in the power supply may be caused by the high currents needed
to generate the short rising Wank of synaptic conductance (Schemmel et al., 2014). This
hypothesis is supported by the fact that the maximum value of rdiU in Vgure 16 is larger
than in Vgure 17 where Irise was lowered. But these results have to be treated with care,
since the reference rates for both experiments were not equal. If the input frequency rises
or more synapse line drivers are used, the power supply might not be able to recover
to the original value, which could lead to a change of other voltages and the described
consequences. On the other hand, should a lower Irise be less demanding for the power
supply and therefore should the saturation of rdiU occur for a larger number of disturbance
drivers as the saturation of rdiU for the larger Irise. However, a comparison between Vgure
16 and 17 shows that rdiU saturates at the same number of disturbance drivers for both
values of Irise.

Summarized, it is not possible to state with certainty whether the power supply of
the synapse line drivers is overloaded by the high currents during the generation of a
synaptic event. In addition, it is not clear whether the power supply on the chip or on
the board the chip is mounted on is responsible for the power shortage (Schemmel et al.,
2014). To deVnitively locate the cause of the interaction between the input signals, further
investigations are necessary.
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Figure 18: Top: Membrane voltage of a neuron receiving no input. The measurement driver was
connected to other neurons and received an input signal of the frequency 30 Hz. Al-
though the neuron should not see any input, there are short high frequency pulses, e.g.
at t ≈ 66 ms, as well as low frequency drops visible in the membrane voltage. Bot-
tom: Membrane trace of a neuron connected to the measurement driver. Both traces
are averaged over 100 emulation runs.
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4 Single Detector Network

4.1 Network Architecture

The previous section showed that the unintended interactions between input signals for
diUerent neurons are caused by hardware properties that can not be changed or avoided
in the scope of this thesis. It is therefore necessary, to change the network’s architecture
in a way that increases its robustness against these interactions that impair the network’s
performance.

The dependency of the strength of these unintended interactions, that is the increase
of the diUerences in Vring rates, on the input frequency shown in Vgure 24, suggests to
reduce the input drastically. Then, the signals fed into the synapse array are distributed
over a larger time interval, which should be less demanding for the power supply. The
reduction of the input frequencies introduces the problem that the neurons, when receiv-
ing their input via only two synapse line drivers, are driven over their spike threshold
far too seldom. Connecting two groups instead of single synapse line drivers represent-
ing the left and right input to each neuron compensates for the weaker input. This also
has the positive side eUect that each signal is sent to the neuron over multiple synapse
line drivers. It is therefore possible to increase the probability p of thinning of the spike
trains. By decreasing the input frequency and simultaneously increasing the thinning of
the spike trains, the total amount of input for the network is reduced strongly. Addition-
ally, the parameter Irise that is responsible for the fast rise of the voltage ramp, which
possibly causes the voltage drop, is reduced to Irise = 0.5µA. Even lower values for Irise
were tested, but due to time constraints the optimal values for other parameters like the
neurons’ potential and the synaptic weights could not be found for them.

A detailed compilation of the network and neuron parameters used in the following
can be found in table 5 in the appendix A.

4.2 ShuYing of Input Spike Trains

Because of bandwidth limitations the input spike trains can not be sent into the network
at the same time for all neurons. Instead they are distributed over a certain time interval
as described in section 2.2. To avoid that calibrations are valid for only speciVc timing
of the input spike trains as described in section 2.3.3 the arrangement of the input spike
trains is randomly drawn for every emulation run.

In detail, this means that no longer as shown in Vgure 5 the input spike train of the
Vrst synapse line driver starts Vrst, the input of the second is shifted by one time step, the
third by two time steps but the order is changed for every emulation run diUerently. It is
essential, that the signals from the left and right ear to the same neuron are not shifted
amongst each other, because otherwise the coding of the ITD in the phase diUerence
between the signals is lost.
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4.3 Calibration

Since the calibration algorithm developed in section 2.3 is only suitable for a network con-
necting each neuron to exactly two synapse line drivers, another algorithm is introduced
here. The reason for the choice of Ifall and Iout as calibration parameters in section 2.3.1
was the too coarse resolution of the synaptic weight with only 16 possible values. Hav-
ing now n synapse line drivers per input the number of possible values for the eUective
synaptic weight is increased to n · 16. Since for n > 3 the resolution has shown to be
large enough, the parameter tuned in the new calibration is the synaptic weight.

Like before it is necessary to calibrate all synaptic weights in parallel, because the cali-
bration parameters are not completely independent of each other. In a Vrst step all synap-
tic weights are set to an intermediate start value wstart and the Vring rates of all neurons
when receiving left and right input with an ITD of zero are measured. To minimize the
eUect of statistical Wuctuations and the remaining interactions between the input signals,
the Vring rates are averaged over several emulation runs as well as over diUerent random
arrangements of the inputs spike trains. Then the Vring rates are compared to a cho-
sen target Vring rate and for each neuron it is determined, whether the synaptic strength
needs to be reduced or increased. If the Vring rate is too high, the strongest synapse line
drivers of left and right side are deduced and their synaptic weight is decreased by one.
The identiVcation of the strongest synapse line drivers is done by measuring the heights
of single PSPs. For each neuron an input is created that sends single spike events to one
synapse line driver after the other with large time intervals between the events. These
events cause as many PSPs on the neurons membrane potential as there are synapse line
drivers per neuron. By averaging over multiple repetitions of this protocol, the heights of
the PSPs allow to sort the drivers by their strength. For a too small Vring rate, the synaptic
weights of weakest drivers are increased by one. After the correction of the weights for
all neurons the new Vring rates are measured and the process is repeated.

Unfortunately this calibration algorithm is strongly dependent on the start values of
the synaptic weights wstart, the probability p of thinning as well as the target Vring rate.
Due to time constraints of this study, it was not possible to improve its stability. Never-
theless, calibration was satisfying, if the target Vring rate was set to the mean value of the
uncalibrated network’s Vring rates. This increases the dependency of the calibration re-
sult on the start value of the synaptic weights wstart since these weights are applied for the
determination of the target Vring rate. Figure 19 shows the strong inWuence of the start
value of synaptic weight wstart on the calibration result. For wstart = 3 and wstart = 4 the
target Vring rate was chosen to the mean value of the uncalibrated network’s Vring rates.
For the both parameter sets the neurons show the demanded Vring behaviour, although
the maximum rates show a diUerence of 11 Hz.

Since the calibration algorithm lacks the capability of automatically Vnding suitable
parameters for p and wstart, these had to be found manually. For the detection of ITDs
the Vring behaviour achieved by wstart = 3 is most suitable, since the maximum is narrow
and therefore the detection is likely to be precise.

27



−20 −15 −10 −5 0 5 10 15 20

∆t [ms]

0

2

4

6

8

10

12

14

16

M
ea

n
Vr

in
g

ra
te

[H
z]

wstart = 3

wstart = 4

Figure 19: Calibration results for an ITD-detectors consisting of 20 neurons each connected to 4

left and 4 right input drivers for wstart = 3 and wstart = 4 both with a thinning of
p = 0.4. The mean of the Vring rates over all neurons is plotted over the ITD between
their inputs. The errors correspond to the standard deviation of this mean value. The
input frequency of the detector was 50 Hz.

4.4 ITD-Detection

In spite of the imperfect calibration and the possibly overloaded power supply the de-
scribed network is used to detect ITDs. Figure 20 shows an example for an ITD-detection
of input signals with a frequency of 70 Hz and an ITD of ∆t = −4 ms. On the one hand
the Vgure shows the averaged Vring rates obtained by diUerent arrangements of the shuf-
Wed input signals described in section 4.2. On the other hand the average over the diUerent
shuYe arrangements is depicted. This shows that the dependency on the timing of the
inputs is still strong for single measurements, but the precision can be increased by aver-
aging over diUerent random arrangements of the input. Regarding the averaged response
the network yields an approximately correct result. For an ITD of ∆t = −4 ms the delay
of d = 4 ms compensates the phase diUerence between left and right signal, and therefore
the neuron corresponding to that delay Vres with an higher rate. The other maxima are
caused by the periodic input. For an input with the cycle duration T ≈ 14 ms the ITD is
also compensated by a delay of d = −10 ms and d = 18 ms. The maximum for d = 18 ms

is shifted to slightly lower delays. A possible explanation for that might be that some
neurons do not have their maximum Vring rate for ∆t = 0 ms but for slightly higher or
lower delays. This might be caused by intrinsic delays in some of the synapse line drivers,
e.g. due to variations in Irise. In future studies a better calibration algorithm could Vlter
out these neurons and drivers and replace them by others for which the maximum Vring
rate occurs for ∆t = 0.
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Figure 20: ITD-detection for input signals with an ITD of ∆t = −4 ms and a frequency of 70 Hz.
The Vring rates of the neurons are plotted over the characteristic delays of the neurons.
Each gray trace corresponds to one arrangement of the shuYed input signals described
in section 4.2 (each averaged over 10 emulation runs). The average over the diUerent
arrangements (red) shows maxima for the expected delays.

The periodic response of the network shows, that multiple frequencies are necessary
to resolve the ambiguity. But since each neuron in these network receives its inputs from
more than two synapse line drivers, there are not enough drivers to run multiple detectors
simultaneously on the chip. Consequently the experiment is split up in multiple runs for
each detector.

4.5 Integration Layer

An integration layer as described in section 1.2 combines the results obtained by the dif-
ferent detectors. If the integration layer is used in a separate emulation run, the spike
times of neurons in the detectors need to be recorded from the hardware and played back
to the integration layer in another emulation run. Due to time constraints of this study
this was not possible here.

As a proof of concept for the integration layer the recorded spike times of the neurons
in the detectors can be substituted by a Poisson process of the same rate as the average
rate across the diUerent arrangements of input spike trains. To calibrate the integration
layer the same algorithm as for the detectors was used. The only change was to use
Poissonian input instead of regular spike trains and leaving the input unthinned (p = 0).
Since the detectors consisted of 20 neurons, the integration layer uses the same number
of neurons. Figure 22 shows that for Poissonian input the chip does neither show a strong
dependency on the number of used synapse line drivers nor the timing of the inputs.
Hence, all synapse line drivers can be used in an integration layer. Then each neuron is
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Figure 21: Exemplary result of an integration layer presented with Poisson input of the rates ob-
tained in averaged measurements for the ITD-detectors (input frequencies of 30 Hz,
50 Hz and 70 Hz). For the sake of visibility the error bars were omitted. For 70 Hz see
Vgure 20. The detectors were presented with signals with an ITD of −4 ms. For the
detectors the maximum rate at d = 4 ms as well as the maxima caused by the periodic
input are visible. The integration layer damps the single maxima but strongly ampliVes
the common maximum of all three detectors. The result of the integration layer was
averaged over 20 emulation runs.

connected to 12 synapse line drivers. Therefore, for an integration layer combining the
results of 3 detectors, the Vring rate of each detector neuron is sent in into the integration
layer using 4 synapse line drivers. This makes the network more robust against parameter
heterogeneity.

Figure 21 shows an exemplary result of such an integration layer combining and pro-
cessing the results of 3 ITD-detectors with input frequencies of 30 Hz, 50 Hz and 70 Hz.
Their input signals have an ITD of ∆t = −4 ms. The detectors show a commonmaximum
for the delay d = 4 ms as well as additional maxima caused by the periodic input. The
integration layer damps the single maxima but strongly ampliVes the common maximum
of all three detectors.

Note that the maximum rates of all detectors are be approximately equal. If one detec-
tor had much higher maximum Vring rates than the others, this detector would overrule
the results of the other detectors when processed by an integration layer.

30



5 Conclusion and Outlook

In this thesis the feasibility of performing binaural sound localisation on the neuromor-
phic microchip Spikey was investigated. In order to implement a network consisting of
multiple ITD-detectors (JeUress, 1948) on hardware, calibration algorithms compensating
for leakage currents and inhomogeneities in the electrical components were developed.
Futhermore, a method to overcome the limited input bandwidth of the chip by shifting
the input signals was introduced. By applying these methods, all neurons could be cali-
brated to exhibit the Vring behaviour required by the JeUress model. However, in further
experiments it was found that the required Vring behaviour only occurs for the speciVc
way of shifting the input signals used during calibration. Changing the temporal order or
distance of theoretically independent input signals also changes the Vring behaviour. This
leads to the conclusion that there is a strong interaction between these signals. Since the
JeUress model assumes that the Vring rate of a neuron only depends on the ITD between
its inputs, this interaction between the signals impairs the detection of ITDs.

Regarding the strong impact of the described interaction on the network’s Vring rates,
it seems astonishing that the eUect was not relevant for other networks in previous studies
(e.g. Pfeil et al., 2013a). However, further investigation showed that the interaction is
not noticeable for sparse or random input. Even for high frequencies, large numbers of
input sources and periodic signals, the eUect is only noticed, if the results measured for
diUerent ways of shifting the inputs are compared systematically. To Vnd the cause of the
signal interaction, the dependency on parameters such as the number of used synapse line
drivers, spatial distance of the signal pathways and hardware parameters was investigated
systematically. The measurement results, already discussed in detail in section 3.2, exclude
crosstalk eUects in the synapse array and suggest an overloaded power supply as the most
likely cause.

The knowledge obtained by the preceding investigations allowed targeted changes in
the network to weaken the signals’ interaction. Reducing the input frequency, lowering
Irise, connecting the neurons to more than two synapse line drivers and averaging over
multiple diUerent arrangements of the input spike trains enables the network to perform a
successful ITD-detection. This serves as a proof of concept that a successful ITD-detection
can be performed and may be improved if the overloading of the power supply is reduced.
However, a systematical investigations of the network’s performance are subject to fur-
ther studies.

To consolidate the hypothesis of the overloaded power supply, further investigations
are required. Measurements of the supply voltages not accessible through the software in-
terface could reveal whether there is a voltage drop in the support electronics and whether
it aUects the voltage supply of the chip or the board the chip is mounted on. A possible
voltage drop on the board might be avoided by improving or replacing the power sup-
ply. If the power drops within the chip, simulations of the hardware circuits can yield
information necessary to improve the chip’s design.

Furthermore, the calibration algorithm for the single detector network could be im-
proved. Particularly, the dependency of the calibration result on the start parameter of
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the synaptic weights and the thinning of the spike trains needs to be reduced. The algo-
rithm could also include a detection of synapse line drivers and neurons whose maximum
Vring rates occur at ∆t 6= 0 because of intrinsic delays, most likely caused by parameter
variations. These drivers and neurons can be blacklisted and replaced.

The necessity to average over multiple emulation runs does not aUect the possible
usage of the described networks e.g. in a robotic system, since the hardware is highly ac-
celerated, which leaves enough time for the repetition of emulations. However, the costly
computation of the characteristic delays for the neurons in software is not suitable for an
application of the network in robotics. On the new version of the Spikey chip, the second
neuron and synapse block is accessible. With the doubled number of neurons and synapse
line drivers it could be possible to generate the delays using synVre chains and to run the
detector network in parallel (Stoeckel, 2014; Pfeil, 2014). This would make the network
less dependent on the controlling software and utilizable for practical applications.
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A Emulation Parameters

Scope Parameter Value/git-hash

Hardware
Spikey-Version 4

Spikey-Station 603

Software

PyNN-Version 0.6-hw
symap2ic 26e2950a
SpikeyHal 00755bc1
vmodule dbba1d6d

Table 2: General speciVcation of used hardware and software.

Scope Parameter Value

Neurons

gl 50 nS

Vrest −75 mV

Vth −45 mV

Vreset −75 mV

Network

Number of detectors 3

Neurons per detector 41

Input frequencies 70 Hz, 100 Hz, 130 Hz

Synaptic weights 7

Thinning p 0.3

Simulation Time 2000 ms

Table 3: Network and neuron parameters for setup in section 2.
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Scope Parameter Value

Neurons

gl 50 nS

Vrest −70 mV

Vth −50 mV

Vreset −70 mV

Network

Disturbance drivers 3

Synaptic weights 15

Input frequency 50 Hz

Distance 0

Irise 1.0µA

Simulation Time 3000 ms

Table 4: Default network and neuron parameters used for measurements in section 3. For the
investigation of diUerent dependencies one of these parameters at a time was changed.

Scope Name Value

Detector Neurons

Number of neurons 20
gl 50 nS

Vrest −70 mV

Vth −45 mV

Vreset −70 mV

Integration Layer Neurons Vth −55 mV

Detector 1
Input frequency 30 Hz

Thinning p 0.3

wstart 4

Detector 2
Input frequency 50 Hz

Thinning p 0.4

wstart 3

Detector 3
Input frequency 70 Hz

Thinning p 0.3

wstart 3

Integration Layer
Thinning p 0

wstart 12

Network Simulation Time 3000 ms

Table 5: Network and neuron parameters for setup in section 4.
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B Additional Measurements
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Figure 22: Dependency of the neurons’ mean Vring rates on the time shift ∆t between the signals
of measurement and disturbance drivers for a randomly chosen measurement driver
when presented with spike trains drawn from a Poisson process. The dependency on
the time shift does not seem to occur for randomly distributed spikes.

0 50 100 150 200 250

Synapse Line Driver

0

20

40

60

80

100

r d
iU

[H
z]

Figure 23: Measurement of rdiU for each synapse line driver. The input frequency was 50 Hz and
the network consisted of 3 disturbance driver with no distance on each side of the
measurement driver. The strength of the eUect varies strongly for diUerent drivers.
There is no regularity visible. For the sake of visibility the error bars were omitted.
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Figure 24: Dependency of rdiU on the input frequency. Each data point is the average over 20

randomly chosen measurement drivers. For the measurement 3 disturbance drivers on
both sides with no distance between measurement and disturbance drivers were used.
The strength of the eUect grows with the input frequency. The variations between
diUerent measurement drivers increase as well.
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Figure 25: Top: Membrane voltage of a neuron receiving no input. The measurement driver was
connected to other neurons and received an input signal of the frequency 100 Hz. Al-
though the neuron should not see any input, there are short high frequency pulses as
well as a periodic change in the voltage. Bottom: Membrane trace of a neuron con-
nected to the measurement driver. Both traces were averaged over 100 runs.
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